B(E2)↑ Measurements for Radioactive Neutron-Rich Ge Isotopes: Reaching the N=50 Closed Shell
NASA Astrophysics Data System (ADS)
Padilla-Rodal, E.; Galindo-Uribarri, A.; Baktash, C.; Batchelder, J. C.; Beene, J. R.; Bijker, R.; Brown, B. A.; Castaños, O.; Fuentes, B.; del Campo, J. Gomez; Hausladen, P. A.; Larochelle, Y.; Lisetskiy, A. F.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego, J. P.; Varner, R. L.; Yu, C.-H.
2005-03-01
The B(E2;0+1→2+1) values for the radioactive neutron-rich germanium isotopes 78,80Ge and the closed neutron shell nucleus 82Ge were measured at the HRIBF using Coulomb excitation in inverse kinematics. These data allow a study of the systematic trend between the subshell closures at N=40 and 50. The B(E2) behavior approaching N=50 is similar to the trend observed for heavier isotopic chains. A comparison of the experimental results with a shell model calculation demonstrates persistence of the N=50 shell gap and a strong sensitivity of the B(E2) values to the effective interaction.
DOE R&D Accomplishments Database
Mayer, M. G.
1948-02-01
It has been suggested in the past that special numbers of neutrons or protons in the nucleus form a particularly stable configuration.{sup1} The complete evidence for this has never been summarized, nor is it generally recognized how convincing this evidence is. That 20 neutrons or protons (Ca{sup40}) form a closed shell is predicted by the Hartree model. A number of calculations support this fact.{sup2} These considerations will not be repeated here. In this paper, the experimental facts indicating a particular stability of shells of 50 and 82 protons and of 50, 82, and 126 neutrons will be listed.
Covalent Binding with Neutrons on the Femto-scale
NASA Astrophysics Data System (ADS)
von Oertzen, W.; Kanada-En'yo, Y.; Kimura, M.
2017-06-01
In light nuclei we have well defined clusters, nuclei with closed shells, which serve as centers for binary molecules with covalent binding by valence neutrons. Single neutron orbitals in light neutron-excess nuclei have well defined shell model quantum numbers. With the combination of two clusters and their neutron valence states, molecular two-center orbitals are defined; in the two-center shell model we can place valence neutrons in a large variety of molecular two-center states, and the formation of Dimers becomes possible. The corresponding rotational bands point with their large moments of inertia and the Coriolis decoupling effect (for K = 1/2 bands) to the internal molecular orbital structure in these states. On the basis of these the neutron rich isotopes allow the formation of a large variety molecular structures on the nuclear scale. An extended Ikeda diagram can be drawn for these cases. Molecular bands in Be and Ne-isotopes are discussed as text-book examples.
NASA Astrophysics Data System (ADS)
Quero, D.; Vardaci, E.; Kozulin, E. M.; Zagrebaev, V. A.; Corradi, L.; Pulcini, A.; La Rana, G.; Itkis, I. M.; Knyazheva, G. N.; Novikov, K.; Harca, I.; Fioretto, E.; Stefanini, A. M.; Montanari, D.; Montagnoli, G.; Scarlassara, F.; Szilner, S.; Mijatović, T.; Trzaska, W. H.
2018-05-01
Multi-nucleon transfer reactions are nowadays the only known mean to produce neutron-rich nuclei in the Terra Incognita. The closed-shell region N=126 is crucial for both studying shell-quenching in exotic nuclei and the r-process, being its last “waiting-point”. The choice of suitable reactions is challenging and a favorable case is 136Xe+208Pb, near the Coulomb barrier, because their neutron shell-closures play a stabilizing role, favoring the proton-transfer from lead to xenon. TOF-TOF data were analyzed to reconstruct the mass-energy distribution of the primary fragments. Preliminary results of an experiment held at Laboratori Nazionali di Legnaro with PRISMA, aimed at A and Z identification of the products, will be shown.
Proton - Neutron Interactions and The New Atomic Masses
NASA Astrophysics Data System (ADS)
Cakirli, R. B.; Casten, R. F.; Brenner, D. S.; Millman, E. A.
2005-04-01
Proton - neutron interactions determine structural evolution with N and Z including the onset of collectivity, deformation, and phase transitions. We have extracted the interaction of the last proton and the last neutron, called δVpn, from a specific double difference of binding energies using the new mass tabulation [1]. Striking variations are seen near closed shells. In the Pb region, these are interpreted using overlaps of shell model orbits, which are large when both protons and neutrons are in similar orbits, and small when they are not. Further, we used the idea that shell filling follows a typical systematic pattern to look at the correlation of δVpn values to the fractions of the proton and neutron shells that are filled. These results provide useful signatures of structure in exotic nuclei.This work was supported by US DOE Grant Nos. DE-FG02-91ER40609 and DE-FG02-88ER-40417. [1] G. Audi, A.H. Wapstra and C. Thibault, Nucl. Phys.A729, 337 (2003).
Core excitations across the neutron shell gap in 207Tl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, E.; Podolyák, Zs.; Grawe, H.
2015-05-05
The single closed-neutron-shell, one proton–hole nucleus 207Tl was populated in deep-inelastic collisions of a 208Pb beam with a 208Pb target. The yrast and near-yrast level scheme has been established up to high excitation energy, comprising an octupole phonon state and a large number of core excited states. Based on shell-model calculations, all observed single core excitations were established to arise from the breaking of the N=126 neutron core. While the shell-model calculations correctly predict the ordering of these states, their energies are compressed at high spins. It is concluded that this compression is an intrinsic feature of shell-model calculations usingmore » two-body matrix elements developed for the description of two-body states, and that multiple core excitations need to be considered in order to accurately calculate the energy spacings of the predominantly three-quasiparticle states.« less
Recent Direct Reaction Experimental Studies with Radioactive Tin Beams
Jones, K. L.; Ahn, S.; Allmond, J. M.; ...
2015-01-01
Direct reaction techniques are powerful tools to study the single-particle nature of nuclei. Performing direct reactions on short-lived nuclei requires radioactive ion beams produced either via fragmentation or the Isotope Separation OnLine (ISOL) method. Some of the most interesting regions to study with direct reactions are close to the magic numbers where changes in shell structure can be tracked. These changes can impact the final abundances of explosive nucleosynthesis. The structure of the chain of tin isotopes is strongly influenced by the Z = 50 proton shell closure, as well as the neutron shell closures lying in the neutron-rich, Nmore » = 82, and neutron-deficient, N = 50, regions. Here, we present two examples of direct reactions on exotic tin isotopes. The first uses a one-neutron transfer reaction and a low-energy reaccelerated ISOL beam to study states in Sn-131 from across the N = 82 shell closure. The second example utilizes a one-neutron knockout reaction on fragmentation beams of neutron-deficient Sn- 106,108Sn. In conclusion, In both cases, measurements of γ rays in coincidence with charged particles proved to be invaluable.« less
Shape coexistence from lifetime and branching-ratio measurements in 68,70Ni
Crider, B. P.; Prokop, C. J.; Liddick, S. N.; ...
2016-10-15
Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near 68Ni (Z=28, N=40), the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0 + states. In 68,70Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0 + states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions.more » The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near 68Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons.« less
Descriptions of carbon isotopes within the energy density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ismail, Atef; Cheong, Lee Yen; Yahya, Noorhana
2014-10-24
Within the energy density functional (EDF) theory, the structure properties of Carbon isotopes are systematically studied. The shell model calculations are done for both even-A and odd-A nuclei, to study the structure of rich-neutron Carbon isotopes. The EDF theory indicates the single-neutron halo structures in {sup 15}C, {sup 17}C and {sup 19}C, and the two-neutron halo structures in {sup 16}C and {sup 22}C nuclei. It is also found that close to the neutron drip-line, there exist amazing increase in the neutron radii and decrease on the binding energies BE, which are tightly related with the blocking effect and correspondingly themore » blocking effect plays a significant role in the shell model configurations.« less
Possibility of synthesizing a doubly magic superheavy nucleus
NASA Astrophysics Data System (ADS)
Aritomo, Y.
2007-02-01
The possibility of synthesizing a doubly magic superheavy nucleus, 298114184, is investigated on the basis of fluctuation-dissipation dynamics. In order to synthesize this nucleus, we must generate more neutron-rich compound nuclei because of the neutron emissions from excited compound nuclei. The compound nucleus 304114 has two advantages to achieving a high survival probability. First, because of low neutron separation energy and rapid cooling, the shell correction energy recovers quickly. Secondly, owing to neutron emissions, the neutron number in the nucleus approaches that of the double closed shell and the nucleus attains a large fission barrier. Because of these two effects, the survival probability of 304114 does not decrease until the excitation energy E*=50 MeV. These properties lead to a rather high evaporation residue cross section.
Mass Measurements Demonstrate a Strong N = 28 Shell Gap in Argon
Meisel, Z.; George, S.; Ahn, S.; ...
2015-01-15
We present results from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. We report the first mass measurements of 48Ar and 49Ar and find atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively. These masses provide strong evidence for the closed shell nature of neutron number N = 28 in argon, which is therefore the lowest even-Z element exhibiting the N = 28 closed shell. The resulting trend in binding-energy differences, which probes the strength of the N = 28 shell, compares favorably with shell-model calculations in the sd-pf shell using SDPF-Umore » and SDPF-MU Hamiltonians.« less
Structure analysis for hole-nuclei close to 132Sn by a large-scale shell-model calculation
NASA Astrophysics Data System (ADS)
Wang, Han-Kui; Sun, Yang; Jin, Hua; Kaneko, Kazunari; Tazaki, Shigeru
2013-11-01
The structure of neutron-rich nuclei with a few holes in respect of the doubly magic nucleus 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including orbitals allowing both neutron and proton core excitations, an effective interaction for the extended pairing-plus-quadrupole model with monopole corrections is tested through detailed comparison between the calculation and experimental data. By using the experimental energy of the core-excited 21/2+ level in 131In as a benchmark, monopole corrections are determined that describe the size of the neutron N=82 shell gap. The level spectra, up to 5 MeV of excitation in 131In, 131Sn, 130In, 130Cd, and 130Sn, are well described and clearly explained by couplings of single-hole orbitals and by core excitations.
Olsher, Richard H.; Hsu, Hsiao-Hua; Casson, William H.; Vasilik, Dennis G.; Kleck, Jeffrey H.; Beverding, Anthony
1996-01-01
A neutron dose equivalent detector for measuring neutron dose capable of accurately responding to neutron energies according to published fluence to dose curves. The neutron dose equivalent meter has an inner sphere of polyethylene, with a middle shell overlying the inner sphere, the middle shell comprising RTV.RTM. silicone (organosiloxane) loaded with boron. An outer shell overlies the middle shell and comprises polyethylene loaded with tungsten. The neutron dose equivalent meter defines a channel through the outer shell, the middle shell, and the inner sphere for accepting a neutron counter tube. The outer shell is loaded with tungsten to provide neutron generation, increasing the neutron dose equivalent meter's response sensitivity above 8 MeV.
Structure of Sn 107 studied through single-neutron knockout reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerizza, G.; Ayres, A.; Jones, K. L.
2016-02-04
The neutron-deficient nucleus Sn-107 has been studied by using the one-neutron knockout reaction. By measuring the decay gamma rays and momentum distributions of reaction residues, the spins of the ground, 5/2 +, and first-excited, 7/2 +, states of Sn-107 have been assigned by comparisons to eikonal-model reaction calculations. We also observed limits on the inclusive and exclusive cross sections and transitions due to neutron removals from below the N = 50 closed shell have been observed. New excited states up to 5.5 MeV in Sn-107 have been identified.
β-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Shibagaki, Shota; Yoshida, Takashi; Kajino, Toshitaka; Otsuka, Takaharu
2018-06-01
Beta-decay rates for exotic nuclei with neutron magic number of N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard finite-range-droplet model, are used to study r-process nucleosynthesis in core-collapse supernova (CCSN) explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. The position of the third peak is found to be shifted toward a higher mass region in both CCSN explosions and neutron star mergers. We find that thorium and uranium elements are produced more with the shorter shell-model half-lives and their abundances come close to the observed values in CCSN explosions. In the case of binary neutron star mergers, thorium and uranium are produced consistently with the observed values independent of the half-lives.
Magnetic moments of light nuclei from lattice quantum chromodynamics
Beane, S. R.; Chang, E.; Cohen, S.; ...
2014-12-16
We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton and 3He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m π ~ 800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. We find that the magnetic moment of 3He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron capturesmore » its dominant structure. Similarly a shell-model-like moment is found for the triton, μ 3H ~ μ p. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations.« less
Beta-Delayed Neutron Spectroscopy of 72Co with VANDLE
NASA Astrophysics Data System (ADS)
Keeler, Andrew; Grzywacz, Robert; King, Thomas; Taylor, Steven; Paulauskas, Stanley; Zachary, Christopher; Vandle Collaboration
2017-09-01
Measurements of simple, closed-shell isotopes far from stability provide important benchmarks for nuclear models and are a key constraint in r-process calculations. In particular, r-process models are sensitive to beta decay lifetimes and branching ratios of these neutron-rich isotopes. In this experiment, the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was used to observe decays of nuclei produced by the fragmentation of 82Se at the National Superconducting Cyclotron Laboratory (NSCL). The neutron and gamma emissions of 72Co were measured to map the beta strength distribution (S_beta) above the neutron separation energy and infer the size of the Z = 28 shell gap in the 78Ni region. An implantation detector made of a radiation-hardened, inorganic scintillator was used to correlate implanted ions with beta decays as well as provide a start signal for the neutron Time of Flight measurement. Funded by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DE-NA0002132 and by the Office of Nuclear Physics, U.S. Department of Energy under Awards No. DE-FG02-96ER40983 (UTK).
Charge Radii of Neutron Deficient Fe,5352 Produced by Projectile Fragmentation
NASA Astrophysics Data System (ADS)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; Fritzsche, S.; Garand, D.; Klose, A.; Liu, Y.; Maaß, B.; Mantica, P. F.; Miller, A. J.; Müller, P.; Nazarewicz, W.; Nörtershäuser, W.; Olsen, E.; Pearson, M. R.; Reinhard, P.-G.; Saperstein, E. E.; Sumithrarachchi, C.; Tolokonnikov, S. V.
2016-12-01
Bunched-beam collinear laser spectroscopy is performed on neutron deficient Fe,5352 prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δ ⟨r2⟩ of Fe,5352 are determined relative to stable 56Fe as δ ⟨r2⟩56 ,52=-0.034 (13 ) fm2 and δ ⟨r2⟩56 ,53=-0.218 (13 ) fm2 , respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ ⟨r2⟩. The values of δ ⟨r2⟩ exhibit a minimum at the N =28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. The trend of δ ⟨r2⟩ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ ⟨r2⟩ of closed-shell Ca isotopes.
Highlights of modern nuclear structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daly, P. J.
1998-09-11
Excitations of nuclei close to magic {sup 132}Sn have been investigated by analysis of fission product {gamma}-ray data measured at Eurogam II using a {sup 248}Cm source. Results for the N=82 isotopes up to {sup 136}Xe, for the one proton-one neutron nucleus {sup 134}Sb, and for the N=84 isotones {sup 134}Sn. {sup 135}Sb, and {sup 136}Te are summarized. The interpretation of the observed level spectra is mainly based on shell model calculations using empirical proton-proton interactions from {sup 134}Te, neutron-neutron interactions from is {sup 134}Sn, and proton-neutron interactions estimated (with scaling as A{sup {minus}1/3}) from the well-known {sup 210}Bi spectrum.
Measurement of picosecond lifetimes in neutron-rich Xe isotopes
NASA Astrophysics Data System (ADS)
Ilieva, S.; Kröll, Th.; Régis, J.-M.; Saed-Samii, N.; Blanc, A.; Bruce, A. M.; Fraile, L. M.; de France, G.; Hartig, A.-L.; Henrich, C.; Ignatov, A.; Jentschel, M.; Jolie, J.; Korten, W.; Köster, U.; Lalkovski, S.; Lozeva, R.; Mach, H.; Mǎrginean, N.; Mutti, P.; Paziy, V.; Regan, P. H.; Simpson, G. S.; Soldner, T.; Thürauf, M.; Ur, C. A.; Urban, W.; Warr, N.
2016-09-01
Background: Lifetimes of nuclear excited states in fission fragments have been studied in the past following isotope separation, thus giving access mainly to the fragments' daughters and only to long-lived isomeric states in the primary fragments. For the first time now, short-lived excited states in the primary fragments, produced in neutron-induced prompt fission of 235U and 241Pu, were studied within the EXILL&FATIMA campaign at the intense neutron-beam facility of the Institute Laue-Langevin in Grenoble. Purpose: We aim to investigate the quadrupole collective properties of neutron-rich even-even 138,140,142Xe isotopes lying between the double shell closure N =82 and Z =50 and a deformed region with octupole collectivity. Method: The γ rays emitted from the excited fragments were detected with a mixed array consisting of 8 HPGe EXOGAM Clover detectors (EXILL) and 16 LaBr3(Ce) fast scintillators (FATIMA). The detector system has the unique ability to select the interesting fragment making use of the high resolution of the HPGe detectors and determine subnanosecond lifetimes using the fast scintillators. For the analysis the generalized centroid difference method was used. Results: We show that quadrupole collectivity increases smoothly with increasing neutron number above the closed N =82 neutron shell. Our measurements are complemented by state-of-the-art theory calculations based on shell-model descriptions. Conclusions: The observed smooth increase in quadrupole collectivity is similar to the evolution seen in the measured masses of the xenon isotopic chain and is well reproduced by theory. This behavior is in contrast to higher Z even-even nuclei where abrupt change in deformation occurs around N =90 .
Characterizing subcritical assemblies with time of flight fixed by energy estimation distributions
NASA Astrophysics Data System (ADS)
Monterial, Mateusz; Marleau, Peter; Pozzi, Sara
2018-04-01
We present the Time of Flight Fixed by Energy Estimation (TOFFEE) as a measure of the fission chain dynamics in subcritical assemblies. TOFFEE is the time between correlated gamma rays and neutrons, subtracted by the estimated travel time of the incident neutron from its proton recoil. The measured subcritical assembly was the BeRP ball, a 4.482 kg sphere of α-phase weapons grade plutonium metal, which came in five configurations: bare, 0.5, 1, and 1.5 in iron, and 1 in nickel closed fitting shell reflectors. We extend the measurement with MCNPX-PoliMi simulations of shells ranging up to 6 inches in thickness, and two new reflector materials: aluminum and tungsten. We also simulated the BeRP ball with different masses ranging from 1 to 8 kg. A two-region and single-region point kinetics models were used to model the behavior of the positive side of the TOFFEE distribution from 0 to 100 ns. The single region model of the bare cases gave positive linear correlations between estimated and expected neutron decay constants and leakage multiplications. The two-region model provided a way to estimate neutron multiplication for the reflected cases, which correlated positively with expected multiplication, but the nature of the correlation (sub or superlinear) changed between material types. Finally, we found that the areal density of the reflector shells had a linear correlation with the integral of the two-region model fit. Therefore, we expect that with knowledge of reflector composition, one could determine the shell thickness, or vice versa. Furthermore, up to a certain amount and thickness of the reflector, the two-region model provides a way of distinguishing bare and reflected plutonium assemblies.
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minamisono, K.; Rossi, D. M.; Beerwerth, R.
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
Charge radii of neutron deficient Fe 52 , 53 produced by projectile fragmentation
Minamisono, K.; Rossi, D. M.; Beerwerth, R.; ...
2016-12-15
Bunched-beam collinear laser spectroscopy is performed on neutron deficient 52,53Fe prepared through in-flight separation followed by a gas stopping. This novel scheme is a major step to reach nuclides far from the stability line in laser spectroscopy. Differential mean-square charge radii δmore » $$\\langle$$r 2$$\\rangle$$ of 52,53Fe are determined relative to stable 56Fe as δ$$\\langle$$r2$$\\rangle$$ 56,52=$-$0.034(13) fm 2 and δ$$\\langle$$r 2$$\\rangle$$56,53=$-$0.218(13) fm 2, respectively, from the isotope shift of atomic hyperfine structures. The multiconfiguration Dirac-Fock method is used to calculate atomic factors to deduce δ$$\\langle$$r 2$$\\rangle$$. The values of δ$$\\langle$$r 2$$\\rangle$$ exhibit a minimum at the N=28 neutron shell closure. The nuclear density functional theory with Fayans and Skyrme energy density functionals is used to interpret the data. As a result, the trend of δ$$\\langle$$r 2$$\\rangle$$ along the Fe isotopic chain results from an interplay between single-particle shell structure, pairing, and polarization effects and provides important data for understanding the intricate trend in the δ$$\\langle$$r 2$$\\rangle$$ of closed-shell Ca isotopes« less
Nuclear structure studies with gamma-ray beams
Tonchev, Anton; Bhatia, Chitra; Kelley, John; ...
2015-05-28
In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR) in contrast to the Giant Dipole Resonance (GDR) that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.
Nuclear Structure Studies with Gamma-Ray Beams
NASA Astrophysics Data System (ADS)
Tonchev, Anton; Bhatia, Chitra; Kelley, John; Raut, Rajarshi; Rusev, Gencho; Tornow, Werner; Tsoneva, Nadia
2015-05-01
In stable and weakly bound neutron-rich nuclei, a resonance-like concentration of dipole states has been observed for excitation energies below the neutron-separation energy. This clustering of strong dipole states has been named the Pygmy Dipole Resonance (PDR) in contrast to the Giant Dipole Resonance (GDR) that dominates the E1 response. Understanding the PDR is presently of great interest in nuclear structure and nuclear astrophysics. High-sensitivity studies of E1 and M1 transitions in closed-shell nuclei using monoenergetic and 100% linearly-polarized photon beams are presented.
NASA Astrophysics Data System (ADS)
Prelas, M. A.; Hora, H.; Miley, G. H.
2014-07-01
Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.
Inferences of Shell Asymmetry in ICF Implosions using Fluence Compensated Neutron Images at the NIF
NASA Astrophysics Data System (ADS)
Casey, D.; Fittinghoff, D.; Bionta, R.; Smalyuk, V.; Grim, G.; Munro, D.; Spears, B.; Raman, K.; Clark, D.; Kritcher, A.; Hinkel, D.; Hurricane, O.; Callahan, D.; Döppner, T.; Landen, O.; Ma, T.; Le Pape, S.; Ross, S.; Meezan, N.; Pak, A.; Park, H.-S.; Volegov, P.; Merill, F.
2016-10-01
In ICF experiments, a dense shell is imploded and used to compress and heat a hotspot of DT fuel. Controlling the symmetry of this process is both important and challenging. It is therefore important to observe the symmetry of the stagnated shell assembly. The Neutron Imaging System at the NIF is used to observe the primary 14 MeV neutrons from the hotspot and the down-scattered neutrons (6-12 MeV), from the assembled shell but with a strong imprint from the primary-neutron fluence. Using a characteristic scattering angle approximation, we have compensated the image for this fluence effect, revealing information about shell asymmetry that is otherwise difficult to extract without models. Preliminary observations with NIF data show asymmetries in imploded shell, which will be compared with other nuclear diagnostics and postshot simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Quasispherical subsonic accretion in X-ray pulsars
NASA Astrophysics Data System (ADS)
Shakura, Nikolai I.; Postnov, Konstantin A.; Kochetkova, A. Yu; Hjalmarsdotter, L.
2013-04-01
A theoretical model is considered for quasispherical subsonic accretion onto slowly rotating magnetized neutron stars. In this regime, the accreting matter settles down subsonically onto the rotating magnetosphere, forming an extended quasistatic shell. Angular momentum transfer in the shell occurs via large-scale convective motions resulting, for observed pulsars, in an almost iso-angular-momentum \\omega \\sim 1/R^2 rotation law inside the shell. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere due to Rayleigh-Taylor instabilities, with allowance for cooling. A settling accretion regime is possible for moderate accretion rates \\dot M \\lesssim \\dot M_* \\simeq 4\\times 10^{16} g s ^{-1}. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and the accretion becomes highly nonstationary. Observations of spin-up/spin-down rates of quasispherically wind accreting equilibrium X-ray pulsars with known orbital periods (e.g., GX 301-2 and Vela X-1) enable us to determine the main dimensionless parameters of the model, as well as to estimate surface magnetic field of the neutron star. For equilibrium pulsars, the independent measurements of the neutron star magnetic field allow for an estimate of the stellar wind velocity of the optical companion without using complicated spectroscopic measurements. For nonequilibrium pulsars, a maximum value is shown to exist for the spin-down rate of the accreting neutron star. From observations of the spin-down rate and the X-ray luminosity in such pulsars (e.g., GX 1+4, SXP 1062, and 4U 2206+54), a lower limit can be put on the neutron star magnetic field, which in all cases turns out to be close to the standard value and which agrees with cyclotron line measurements. Furthermore, both explains the spin-up/spin-down of the pulsar frequency on large time-scales and also accounts for the irregular short-term frequency fluctuations, which may correlate or anticorrelate with the observed X-ray luminosity fluctuations.
R-process experiments with the Advanced Implantation Detector Array
NASA Astrophysics Data System (ADS)
Estrade, Alfredo; Griffin, Chris; Davinson, Tom; Bruno, Carlo; Hall, Oscar; Liu, Zhong; Woods, Phil; Coleman-Smith, Patrick; Labiche, Marc; Lazarus, Ian; Pucknell, Victor; Simpson, John; Harkness-Brennan, Laura; Page, Robert; Kiss, Gabor; Liu, Jiajiang; Matsui, Keishi; Nishimura, Shunji; Phong, Vi; Lorusso, Giuseppe; Montes, Fernando; Nepal, Neerajan; Briken Collaboration; Ribf106 Experiment Team
2017-09-01
Decay properties of neutron rich isotopes, such as half-lives and β-delayed neutron emission probabilities, are an important input for astrophysical models of the r-process. A new generation of fragmentation beam facilities has made it possible to access large regions of the nuclear chart that are close to the path of the r-process for some astrophysical models. The Advanced Implantation Detector Array (AIDA) is a segmented active-stopper detector designed for decay experiments with fast ion beams, which was recently commissioned at the Radioactive Ion Beam Factory in RIKEN, Japan. In this presentation we describe the main characteristics of AIDA, and present preliminary results of the first experiments in the region of neutron-rich selenium isotopes and along the N=82 shell closure.
Probing the structure of the stable Xe isotopes with inelastic neutron scattering
NASA Astrophysics Data System (ADS)
Peters, Erin E.; Ross, Timothy J.; Crider, Benjamin P.; Yates, Steven W.
2018-05-01
The stable isotopes of xenon, which have attracted interest for a number of reasons, span a transitional region that evolves from γ-soft structures for the lighter mass isotopes to nearly spherical 136Xe with a closed neutron shell. The nature of this transition, which is gradual, is not well understood. To provide detailed spectroscopic information on the Xe isotopes, we have studied 130,132,134,136Xe at the University of Kentucky Accelerator Laboratory using inelastic neutron scattering and γ-ray detection. These measurements yielded γ-ray angular distributions, branching ratios, multipole mixing ratios, and level lifetimes (from the Doppler-shift attenuation method), which allowed the determination of reduced transition probabilities and provided insight into the structure of these nuclei.
Magnetic Core-Shell Morphology of Structurally Uniform Magnetite Nanoparticles
NASA Astrophysics Data System (ADS)
Krycka, Kathryn
2011-03-01
Magnetic nanoscale structures are intriguing, in part, because of the exotic properties that emerge compared with bulk. The reduction of magnetic moment per atom in magnetite with decreasing nanoparticle size, for example, has been hypothesized to originate from surface disordering to anisotropy-induced radial canting, which are difficult to distinguish using conventional magnetometry. Small-angle neutron scattering (SANS) is ideal for probing structure, both chemical and magnetic, from nm to microns across an ensemble of particles. Adding polarization analysis (PASANS) of the neutron spin orientation before and after interaction with the scattering particles allows the magnetic structure to be separated into its vector components. Application of this novel technique to 9 nm magnetite nanoparticles closed-packed into face-centered crystallites with order of a micron revealed that at nominal saturation the missing magnetic moments unexpectedly interacted to form well-ordered shells 1.0 to 1.5 nm thick canted perpendicular to their ferrimagnetic cores between 160 to 320 K. These shells additionally displayed intra-particle ``cross-talk'', selecting a common orientation over clusters of tens of nanoparticles. However, the shells disappeared when the external field was removed and interparticle magnetic interactions were negligible (300 K), confirming their magnetic origin. This work has been carried out in collaboration with Ryan Booth, Julie Borchers, Wangchun Chen, Liv Dedon, Thomas Gentile, Charles Hogg, Yumi Ijiri, Mark Laver, Sara Majetich, James Rhyne, and Shannon Watson.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, D. T., E-mail: casey21@llnl.gov; Munro, D. H.; Grim, G. P.
The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.
Casey, D T; Volegov, P L; Merrill, F E; Munro, D H; Grim, G P; Landen, O L; Spears, B K; Fittinghoff, D N; Field, J E; Smalyuk, V A
2016-11-01
The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.
Nuclear Structure of the Closed Subshell Nucleus 90Zr Studied with the (n,n'(gamma)) Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, P E; Younes, Y; Becker, J A
States in {sup 90}Zr have been observed with the (n,n{prime}{gamma}) reaction using both spallation and monoenergetic accelerator-produced neutrons. A scheme comprised of 81 levels and 157 transitions was constructed concentrating on levels below 5.6 MeV in excitation energy. Spins have been determined by considering data from all experimental studies performed for {sup 90}Zr. Lifetimes have been deduced using the Doppler-shift attenuation method for many of the states and transition rates have been obtained. A spherical shell-model interpretation in terms of particle-hole excitations assuming a {sup 88}Sr closed core is given. In some cases, enhancements in B(M1) and B(E2) values aremore » observed that cannot be explained by assuming simple particle-hole excitations. Shell-model calculations using an extended f pg-shell model space reproduce the spectrum of excited states very well, and the gross features of the B(M1) and B(E2) transition rates. Transition rates for individual levels show discrepancies between calculations and experimental values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.
Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less
Vibrational Properties of Anhydrous and Partially Hydrated Uranyl Fluoride
Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.; ...
2017-01-01
Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less
Resource Letter NSM-1: New insights into the nuclear shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dean, David Jarvis; Hamilton, J. H.
2011-01-01
This Resource Letter provides a guide to the literature on the spherical shell model as applied to nuclei. The nuclear shell model describes the structure of nuclei starting with a nuclear core developed by the classical neutron and proton magic numbers N,Z=2,8,20,28,50,82, 126, where gaps occur in the single-particle energies as a shell is filled, and the interactions of valence nucleons that reside beyond that core. Various modern extensions of this model for spherical nuclei are likewise described. Significant extensions of the nuclear shell model include new magic numbers for spherical nuclei and now for deformed nuclei as well. Whenmore » both protons and neutrons have shell gaps at the same spherical or deformed shapes, they can reinforce each other to give added stability to that shape and lead to new magic numbers. The vanishings of the classical spherical shell model energy gaps and magic numbers in new neutron-rich nuclei are described. Spherical and deformed shell gaps are seen to be critical for the existence of elements with Z > 100.« less
Type II shell evolution in A = 70 isobars from the N ≥ 40 island of inversion
NASA Astrophysics Data System (ADS)
Morales, A. I.; Benzoni, G.; Watanabe, H.; Tsunoda, Y.; Otsuka, T.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoybjor, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Schaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.
2017-02-01
The level structures of 70Co and 70Ni, populated from the β decay of 70Fe, have been investigated using β-delayed γ-ray spectroscopy following in-flight fission of a 238U beam. The experimental results are compared to Monte-Carlo Shell-Model calculations including the pf +g9/2 +d5/2 orbitals. The strong population of a (1+) state at 274 keV in 70Co is at variance with the expected excitation energy of ∼1 MeV from near spherical single-particle estimates. This observation indicates a dominance of prolate-deformed intruder configurations in the low-lying levels, which coexist with the normal near spherical states. It is shown that the β decay of the neutron-rich A = 70 isobars from the new island of inversion to the Z = 28 closed-shell regime progresses in accordance with a newly reported type of shell evolution, the so-called Type II, which involves many particle-hole excitations across energy gaps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez, W.; Torres, D. A.; Cristancho, F.
2014-11-11
In this contribution an experimental study of the deep-inelastic reaction {sub 40}{sup 96}Zr+{sub 50}{sup 124}Sn at 530 MeV, using the GASP and PRISMA-CLARA arrays, is presented. The experiments populate a wealth of projectile-like and target-like binary fragments, in a large neutron-rich region around N ≥ 50 and Z ≈ 40. Preliminary results on the study of the yrast and near-yrast states for {sup 95}Nb will be shown, along with a comparison of the experimental yields obtained in the experiments.
NASA Astrophysics Data System (ADS)
Deng, Jun-Gang; Zhao, Jie-Cheng; Chu, Peng-Cheng; Li, Xiao-Hua
2018-04-01
In the present work, we systematically study the α decay preformation factors Pα within the cluster-formation model and α decay half-lives by the proximity potential 1977 formalism for nuclei around Z =82 ,N =126 closed shells. The calculations show that the realistic Pα is linearly dependent on the product of valance protons (holes) and valance neutrons (holes) NpNn . It is consistent with our previous works [Sun et al., Phys. Rev. C 94, 024338 (2016), 10.1103/PhysRevC.94.024338; Deng et al., Phys. Rev. C 96, 024318 (2017), 10.1103/PhysRevC.96.024318], in which Pα are model dependent and extracted from the ratios of calculated α half-lives to experimental data. Combining with our previous works, we confirm that the valance proton-neutron interaction plays a key role in the α preformation for nuclei around Z =82 ,N =126 shell closures whether the Pα is model dependent or microcosmic. In addition, our calculated α decay half-lives by using the proximity potential 1977 formalism taking Pα evaluated by the cluster-formation model can well reproduce the experimental data and significantly reduce the errors.
Low energy dipole strength from large scale shell model calculations
NASA Astrophysics Data System (ADS)
Sieja, Kamila
2017-09-01
Low energy enhancement of radiative strength functions has been deduced from experiments in several mass regions of nuclei. Such an enhancement is believed to impact the calculated neutron capture rates which are crucial input for reaction rates of astrophysical interest. Recently, shell model calculations have been performed to explain the upbend of the γ-strength as due to the M1 transitions between close-lying states in the quasi-continuum in Fe and Mo nuclei. Beyond mean-↓eld calculations in Mo suggested, however, a non-negligible role of electric dipole in the low energy enhancement. So far, no calculations of both dipole components within the same theoretical framework have been presented in this context. In this work we present newly developed large scale shell model appraoch that allows to treat on the same footing natural and non-natural parity states. The calculations are performed in a large sd - pf - gds model space, allowing for 1p{1h excitations on the top of the full pf-shell con↓guration mixing. We restrict the discussion to the magnetic part of the dipole strength, however, we calculate for the ↓rst time the magnetic dipole strength between states built of excitations going beyond the classical shell model spaces. Our results corroborate previous ↓ndings for the M1 enhancement for the natural parity states while we observe no enhancement for the 1p{1h contributions. We also discuss in more detail the e↑ects of con↓guration mixing limitations on the enhancement coming out from shell model calculations.
Self-consistent description of the SHFB equations for 112Sn
NASA Astrophysics Data System (ADS)
Ghafouri, M.; Sadeghi, H.; Torkiha, M.
2018-03-01
The Hartree-Fock (HF) method is an excellent approximation of the closed shell magic nuclei. Pair correlation is essential for the description of open shell nuclei and has been derived for even-even, odd-odd and even-odd nuclei. These effects are reported by Hartree-Fock with BCS (HFBCS) or Hartree-Fock-Bogolyubov (HFB). These issues have been investigated, especially in the nuclear charts, and such studies have been compared with the observed information. We compute observations such as total binding energy, charge radius, densities, separation energies, pairing gaps and potential energy surfaces for neutrons and protons, and compare them with experimental data and the result of the spherical codes. In spherical even-even neutron-rich nuclei are considered in the Skyrme-Hartree-Fock-Bogolyubov (SHFB) method with density-dependent pairing interaction. Zero-range density-dependent interactions is used in the pairing channel. We solve SHF or SHFB equations in the spatial coordinates with spherical symmetry for tin isotopes such as 112Sn. The numerical accuracy of solving equations in the coordinate space is much greater than the fundamental extensions, which yields almost precise results.
NASA Astrophysics Data System (ADS)
Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.
2017-05-01
The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.
Itoga, Toshiro; Asano, Yoshihiro; Tanimura, Yoshihiko
2011-07-01
Superheated drop detectors are currently used for personal and environmental dosimetry and their characteristics such as response to neutrons and temperature dependency are well known. A new bubble counter based on the superheated drop technology has been developed by Framework Scientific. However, the response of this detector with the lead shell is not clear especially above several tens of MeV. In this study, the response has been measured with quasi-monoenergetic and monoenergetic neutron sources with and without a lead shell. The experimental results were compared with the results of the Monte Carlo calculations using the 'Event Generator Mode' in the PHITS code with the JENDL-HE/2007 data library to clarify the response of this detector with a lead shell in the entire energy range.
Neutron knockout from 68,70Ni ground and isomeric states.
NASA Astrophysics Data System (ADS)
Recchia, F.; Weisshaar, D.; Gade, A.; Tostevin, J. A.; Janssens, R. V. F.; Albers, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Campbell, C. M.; Carpenter, M. P.; Chen, J.; Chiara, C. J.; Crawford, H. L.; Hoffman, C. R.; Kondev, F. G.; Korichi, A.; Langer, C.; Lauritsen, T.; Liddick, S. N.; Lunderberg, E.; Noji, S.; Prokop, C.; Stroberg, S. R.; Suchyta, S.; Wimmer, K.; Zhu, S.
2018-02-01
Neutron-rich isotopes are an important source of new information on nuclear physics. Specifically, the spin-isospin components in the nucleon-nucleon (NN) interaction, e.g., the proton-neutron tensor force, are expected to modify shell structure in exotic nuclei. These potential changes in the intrinsic shell structure are of fundamental interest. The study of the excitation energy of states corresponding to specific configurations in even-even isotopes, together with the single-particle character of the first excited states of odd-A, neutron-rich Ni isotopes, probes the evolution of the neutron orbitals around the Fermi surface as a function of the neutron number a step forward in the understanding of the region and the nature of the NN interaction at large N/Z ratios. In an experiment carried out at the National Superconducting Cyclotron Laboratory [1], new spectroscopic information was obtained for 68Ni and the distribution of single-particle strengths in 67,69Ni was characterized by means of single-neutron knockout from 68,70Ni secondary beams. The spectroscopic strengths, deduced from the measured partial cross sections to the individual states tagged by their de-exciting gamma rays, is used to identify and quantify configurations that involve neutron excitations across the N = 40 harmonic oscillator shell closure. The de-excitation γ rays were measured with the GRETINA tracking array [2]. The results challenge the validity of the most current shell-model Hamiltonians and effective interactions, highlighting shortcomings that cannot yet be explained. These results suggest that our understanding of the low-energy states in such nuclei is not complete and requires further investigation.
NASA Astrophysics Data System (ADS)
Rodríguez-Guzmán, R.; Robledo, L. M.; Sharma, M. M.
2015-06-01
The quadrupole collectivity in Nd, Sm, Gd, Dy, Er, Yb, Hf and W nuclei with neutron numbers 122 ≤ N ≤ 156 is studied, both at the mean field level and beyond, using the Gogny energy density functional. Besides the robustness of the N = 126 neutron shell closure, it is shown that the onset of static deformations in those isotopic chains with increasing neutron number leads to an enhanced stability and further extends the corresponding two-neutron drip lines far beyond what could be expected from spherical calculations. Independence of the mean-field predictions with respect to the particular version of the Gogny energy density functional employed is demonstrated by comparing results based on the D1S and D1M parameter sets. Correlations beyond mean field are taken into account in the framework of the angular momentum projected generator coordinate method calculation. It is shown that N = 126 remains a robust neutron magic number when dynamical effects are included. The analysis of the collective wave functions, average deformations and excitation energies indicate that, with increasing neutron number, the zero-point quantum corrections lead to dominant prolate configurations in the 0{1/+}, 0{2/+}, 2{1/+} and 2{2/+} states of the studied nuclei. Moreover, those dynamical deformation effects provide an enhanced stability that further supports the mean-field predictions, corroborating a shift of the r-process path to higher neutron numbers. Beyond mean-field calculations provide a smaller shell gap at N = 126 than the mean-field one in good agreement with previous theoretical studies. However, the shell gap still remains strong enough in the two-neutron drip lines.
Yrast excitations of neutron-rich nuclei around doubly magic Tin-132
NASA Astrophysics Data System (ADS)
Bhattacharyya, Pallab Kumar
Investigation of the yrast structures of neutron-rich nuclei around the double closed shell nucleus 132Sn is important in the understanding of simple two-body nucleon-nucleon interactions in that region. However conventional fusion-evaporation methods do not populate these nuclei and β-decay studies are useful only in studying low spin states. The spectroscopy of these nuclei from thick target γ-γ coincidence measurements of deep inelastic heavy ion collisions as well as from fission fragment γ-ray studies using large multidetector arrays are presented in this thesis. Analyses of data from the 124Sn + 665 MeV 136Xe and 130Te + 272 MeV 64Ni deep inelastic experiments identified new yrast isomers in the N = 80 nuclei 134Xe and 136Ba which de- excite by γ-ray cascades concluding with their known 4+/to2+ and 2+/to0+ transitions. The isomeric decay characteristics are presented and discussed in light of the systematic features in N = 80 isotones. By analyzing fission product γ-ray data measured at Eurogam II using a 248Cm source, yrast level structures of the two-, three- and four-proton N = 82 isotones 134Te, 135I and 136Xe were developed, and the proton-proton interactions from the two-body nucleus 134Te were used in interpreting 135I and 136Xe levels using shell model calculations. From the same data the yrast states in the N = 83 isotones 134Sb, 135Te, 136I and 137Xe were explored, and key proton-neutron interactions were extracted from the 134Sb level spectrum which were used in interpreting the levels of the other N = 83 isotones. Similarly yrast states in previously unexplored N = 81 isotones 132Sb and 133Te were also identified and interpreted with shell model calculations; the 132Sb level spectrum yielded important proton-neutron hole interactions. Neutron core-excited states at higher energies were also identified in most of these nuclei. For establishing isotopic assignments of unknown cascades, the γgamma cross coincidences between heavy and light fission partners were vital. Overall, both deep inelastic and fission product studies have contributed to the exploration of an otherwise inaccessible region of the nuclidic chart. This opens up a new horizon in studying the structure of these important neutron-rich nuclei.
Neutron production in deuterium gas-puff z-pinch with outer plasma shell at current of 3 MA
NASA Astrophysics Data System (ADS)
Cikhardt, J.; Klir, D.; Rezac, K.; Cikhardtova, B.; Kravarik, J.; Kubes, P.; Sila, O.; Shishlov, A. V.; Cherdizov, R. K.; Frusov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu.; Ratakhin, N. A.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.; Turek, K.; Krasa, J.
2015-11-01
Z-pinch experiments at the current of about 3 MA were carried out on the GIT-12 generator. The outer plasma shell of deuterium gas-puff was generated by the system of 48 plasma guns. This configuration exhibits a high efficiency of the production of DD fusion neutrons with the yield of above 1012 neutrons produced in a single shot with the duration of about 20 ns. The maximum energy of the neutrons produced in this pulse exceeded 30 MeV. The neutron radiation was measured using scintillation TOF detectors, CR-39 nuclear track detectors, bubble detectors BD-PND and BDS-10000 and by several types of nuclear activation detectors. These diagnostic tools were used to measure the anisotropy of neutron fluence and neutron energy spectra. It allows us to estimate the total number of DD neutrons, the contribution of other nuclear reactions, the amount of scattered neutrons, and other parameters of neutron production. This work was supported by the MSMT grants LH13283, LD14089.
Cason, J.L. Jr.; Shaw, C.B.
1975-10-21
A neutron source which is particularly useful for neutron radiography consists of a vessel containing a moderating media of relatively low moderating ratio, a flux trap including a moderating media of relatively high moderating ratio at the center of the vessel, a shell of depleted uranium dioxide surrounding the moderating media of relatively high moderating ratio, a plurality of guide tubes each containing a movable source of neutrons surrounding the flux trap, a neutron shield surrounding one part of each guide tube, and at least one collimator extending from the flux trap to the exterior of the neutron source. The shell of depleted uranium dioxide has a window provided with depleted uranium dioxide shutters for each collimator. Reflectors are provided above and below the flux trap and on the guide tubes away from the flux trap.
STEAM STIRRED HOMOGENEOUS NUCLEAR REACTOR
Busey, H.M.
1958-06-01
A homogeneous nuclear reactor utilizing a selfcirculating liquid fuel is described. The reactor vessel is in the form of a vertically disposed tubular member having the lower end closed by the tube walls and the upper end closed by a removal fianged assembly. A spherical reaction shell is located in the lower end of the vessel and spaced from the inside walls. The reaction shell is perforated on its lower surface and is provided with a bundle of small-diameter tubes extending vertically upward from its top central portion. The reactor vessel is surrounded in the region of the reaction shell by a neutron reflector. The liquid fuel, which may be a solution of enriched uranyl sulfate in ordinary or heavy water, is mainiained at a level within the reactor vessel of approximately the top of the tubes. The heat of the reaction which is created in the critical region within the spherical reaction shell forms steam bubbles which more upwardly through the tubes. The upward movement of these bubbles results in the forcing of the liquid fuel out of the top of these tubes, from where the fuel passes downwardly in the space between the tubes and the vessel wall where it is cooled by heat exchangers. The fuel then re-enters the critical region in the reaction shell through the perforations in the bottom. The upper portion of the reactor vessel is provided with baffles to prevent the liquid fuel from splashing into this region which is also provided with a recombiner apparatus for recombining the radiolytically dissociated moderator vapor and a control means.
Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu
Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.
Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei
NASA Astrophysics Data System (ADS)
Leoni, S.
2016-05-01
The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.
Leung, Ka-Ngo
2006-11-21
A spherical neutron generator is formed with a small spherical target and a spherical shell RF-driven plasma ion source surrounding the target. A deuterium (or deuterium and tritium) ion plasma is produced by RF excitation in the plasma ion source using an RF antenna. The plasma generation region is a spherical shell between an outer chamber and an inner extraction electrode. A spherical neutron generating target is at the center of the chamber and is biased negatively with respect to the extraction electrode which contains many holes. Ions passing through the holes in the extraction electrode are focused onto the target which produces neutrons by D-D or D-T reactions.
NASA Astrophysics Data System (ADS)
Yoshida, Sota; Utsuno, Yutaka; Shimizu, Noritaka; Otsuka, Takaharu
2018-05-01
We perform large-scale shell-model calculations of β -decay properties for neutron-rich nuclei with 13 ≤Z ≤18 and 22 ≤N ≤34 , taking the first-forbidden transitions into account. The natural-parity and unnatural-parity states are calculated in the 0 ℏ ω and 1 ℏ ω model spaces, respectively, within the full s d +p f +s d g valence shell. The calculated β -decay half-lives and β -delayed neutron emission probabilities show good agreement with the experimental data. The first-forbidden transitions make a non-negligible contribution to the half-lives of N ≳28 nuclei. The low-lying Gamow-Teller strengths of even-even nuclei are considerably larger than those of the neighboring odd-A and odd-odd nuclei, strongly affecting the half-lives and neutron emission probabilities. It is shown that this even-odd effect is caused by the Jπ=1+ proton-neutron pairing interaction. We derive a formula to represent the positions of the Gamow-Teller giant resonances from the calculated strength distributions.
NASA Astrophysics Data System (ADS)
Recchia, F.; Weisshaar, D.; Gade, A.; Tostevin, J. A.; Janssens, R. V. F.; Albers, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Brown, B. A.; Campbell, C. M.; Carpenter, M. P.; Chen, J.; Chiara, C. J.; Crawford, H. L.; Hoffman, C. R.; Kondev, F. G.; Korichi, A.; Langer, C.; Lauritsen, T.; Liddick, S. N.; Lunderberg, E.; Noji, S.; Prokop, C.; Stroberg, S. R.; Suchyta, S.; Wimmer, K.; Zhu, S.
2016-11-01
The distribution of single-particle strength in Ni,6967 was characterized with one-neutron knockout reactions from intermediate-energy Ni,7068 secondary beams, selectively populating neutron-hole configurations at N =39 and 41, respectively. The spectroscopic strengths deduced from the measured partial cross sections to the individual final states, as tagged by their γ -ray decays, are used to identify and quantify neutron configurations in the wave functions. While 69Ni compares well with shell-model predictions, the results for 67Ni challenge the validity of current effective shell-model Hamiltonians by revealing discrepancies that cannot be explained so far. These results suggest that our understanding of the low-lying states in the neutron-rich, semimagic Ni isotopes may be incomplete and requires further investigation on both the experimental and theoretical sides.
Large-scale shell-model calculation with core excitations for neutron-rich nuclei beyond 132Sn
NASA Astrophysics Data System (ADS)
Jin, Hua; Hasegawa, Munetake; Tazaki, Shigeru; Kaneko, Kazunari; Sun, Yang
2011-10-01
The structure of neutron-rich nuclei with a few nucleons beyond 132Sn is investigated by means of large-scale shell-model calculations. For a considerably large model space, including neutron core excitations, a new effective interaction is determined by employing the extended pairing-plus-quadrupole model with monopole corrections. The model provides a systematical description for energy levels of A=133-135 nuclei up to high spins and reproduces available data of electromagnetic transitions. The structure of these nuclei is analyzed in detail, with emphasis of effects associated with core excitations. The results show evidence of hexadecupole correlation in addition to octupole correlation in this mass region. The suggested feature of magnetic rotation in 135Te occurs in the present shell-model calculation.
The s-process in massive stars: the Shell C-burning contribution
NASA Astrophysics Data System (ADS)
Pignatari, Marco; Gallino, R.; Baldovin, C.; Wiescher, M.; Herwig, F.; Heger, A.; Heil, M.; Käppeler, F.
In massive stars the s¡ process (slow neutron capture process) is activated at different tempera- tures, during He¡ burning and during convective shell C¡ burning. At solar metallicity, the neu- tron capture process in the convective C¡ shell adds a substantial contribution to the s¡ process yields made by the previous core He¡ burning, and the final results carry the signature of both processes. With decreasing metallicity, the contribution of the C¡ burning shell to the weak s¡ process rapidly decreases, because of the effect of the primary neutron poisons. On the other hand, also the s¡ process efficiency in the He core decreases with metallicity.
Nuclear data measurements at the new NFS facility at GANIL
NASA Astrophysics Data System (ADS)
Gustavsson, C.; Pomp, S.; Scian, G.; Lecolley, F.-R.; Tippawan, U.; Watanabe, Y.
2012-10-01
The NFS (Neutrons For Science) facility is part of the SPRIAL 2 project at GANIL, Caen, France. The facility is currently under construction and the first beam is expected in early 2013. NFS will have a white neutron source covering the 1-40 MeV energy range with a neutron flux higher than comparable facilities. A quasi-mono-energetic neutron beam will also be available. In these energy ranges, especially above 14 MeV, there is a large demand for neutron-induced data for a wide range of applications involving dosimetry, medical therapy, single-event upsets in electronics and nuclear energy. Today, there are a few or no cross section data on reactions such as (n, fission), (n, xn), (n, p), (n, d) and (n, α). We propose to install experimental equipment for measuring neutron-induced light-charged particle production and fission relative to the H(n, p) cross section. Both the H(n, p) cross section and the fission cross section for 238U are important reference cross sections used as standards for many other experiments. Nuclear data for certain key elements, such as closed shell nuclei, are also of relevance for the development of nuclear reaction models. Our primary intention is to measure charged particle production (protons, deuterons and alphas) from 12C, 16O, 28Si and 56Fe and neutron-induced fission cross sections from 238U and 232Th.
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.
2015-04-01
Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.
NASA Astrophysics Data System (ADS)
Leistenschneider, E.; Reiter, M. P.; Ayet San Andrés, S.; Kootte, B.; Holt, J. D.; Navrátil, P.; Babcock, C.; Barbieri, C.; Barquest, B. R.; Bergmann, J.; Bollig, J.; Brunner, T.; Dunling, E.; Finlay, A.; Geissel, H.; Graham, L.; Greiner, F.; Hergert, H.; Hornung, C.; Jesch, C.; Klawitter, R.; Lan, Y.; Lascar, D.; Leach, K. G.; Lippert, W.; McKay, J. E.; Paul, S. F.; Schwenk, A.; Short, D.; Simonis, J.; Somà, V.; Steinbrügge, R.; Stroberg, S. R.; Thompson, R.; Wieser, M. E.; Will, C.; Yavor, M.; Andreoiu, C.; Dickel, T.; Dillmann, I.; Gwinner, G.; Plaß, W. R.; Scheidenberger, C.; Kwiatkowski, A. A.; Dilling, J.
2018-02-01
A precision mass investigation of the neutron-rich titanium isotopes Ti-5551 was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N =32 shell closure, and the overall uncertainties of the Ti-5552 mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N =32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N =32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
Michel, D. T.; Hu, S. X.; Davis, A. K.; ...
2017-05-10
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michel, D. T.; Hu, S. X.; Davis, A. K.
Measurement of the effect of adiabat (α) on the shell thickness were performed in direct-drive implosions. When reducing the adiabat of the shell from α = 6 to α = 4:5, the shell thickness was measured to decrease from 75 μm to 60 μm, but when decreasing the adiabat further (α = 1:8), the shell thickness was measured to increase to 75 μm. The measured shell thickness, shell trajectories, neutron bang time, and neutron yield were reproduced by two dimensional simulations that include laser imprint, nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state models. The minimum core size wasmore » measured to decrease from 40 μm to 30 μm, consistent with the reduction of the adiabat from α = 6 to α = 1:8. Simulations that neglected imprint reproduced the measured core size of the entire adiabat scan, but signi cantly underestimate the shell thickness for adiabat below ~3. These results show that the decompression of the shell measured for low-adiabat implosions was a result of laser imprint.« less
Single-neutron orbits near 78Ni: Spectroscopy of the N = 49 isotope 79Zn
Orlandi, R.; Mücher, D.; Raabe, R.; ...
2014-12-09
Single-neutron states in the Z=30, N=49 isotope 79Zn have been populated using the 78Zn(d, p) 79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γ rays emitted by 79Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1 MeV of excitation, and involve neutron orbits above the N=50 shell gap. From the analysis of γ -ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a 5/2 + configuration was assigned to a state at 983more » keV. Comparison with large-scale-shell-model calculations supports a robust neutron N=50 shell-closure for 78Ni. Finally, these data constitute an important step towards the understanding of the magicity of 78Ni and of the structure of nuclei in the region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P; Robey, H F; Park, H-S
2003-08-22
An experimental campaign to study hohlraum-driven ignition-like double-shell target performance using the Omega laser facility has begun. These targets are intended to incorporate as many ignition-like properties of the proposed National Ignition Facility (NIF) double-shell ignition design [1,2] as possible, given the energy constraints of the Omega laser. In particular, this latest generation of Omega double-shells is nominally predicted to produce over 99% of the (clean) DD neutron yield from the compressional or stagnation phase of the implosion as required in the NIF ignition design. By contrast, previous double-shell experience on Omega [3] was restricted to cases where a significantmore » fraction of the observed neutron yield was produced during the earlier shock convergence phase where the effects of mix are deemed negligibly small. These new targets are specifically designed to have optimized fall-line behavior for mitigating the effects of pusher-fuel mix after deceleration onset and, thereby, providing maximum neutron yield from the stagnation phase. Experimental results from this recent Omega ignition-like double-shell implosion campaign show favorable agreement with two-dimensional integrated hohlraum simulation studies when enhanced (gold) hohlraum M-band (2-5 keV) radiation is included at a level consistent with observations.« less
Dependence of weak interaction rates on the nuclear composition during stellar core collapse
NASA Astrophysics Data System (ADS)
Furusawa, Shun; Nagakura, Hiroki; Sumiyoshi, Kohsuke; Kato, Chinami; Yamada, Shoichi
2017-02-01
We investigate the influences of the nuclear composition on the weak interaction rates of heavy nuclei during the core collapse of massive stars. The nuclear abundances in nuclear statistical equilibrium (NSE) are calculated by some equation of state (EOS) models including in-medium effects on nuclear masses. We systematically examine the sensitivities of electron capture and neutrino-nucleus scattering on heavy nuclei to the nuclear shell effects and the single-nucleus approximation. We find that the washout of the shell effect at high temperatures brings significant change to weak rates by smoothing the nuclear abundance distribution: the electron capture rate decreases by ˜20 % in the early phase and increases by ˜40 % in the late phase at most, while the cross section for neutrino-nucleus scattering is reduced by ˜15 % . This is because the open-shell nuclei become abundant instead of those with closed neutron shells as the shell effects disappear. We also find that the single-nucleus description based on the average values leads to underestimations of weak rates. Electron captures and neutrino coherent scattering on heavy nuclei are reduced by ˜80 % in the early phase and by ˜5 % in the late phase, respectively. These results indicate that NSE like EOS accounting for shell washout is indispensable for the reliable estimation of weak interaction rates in simulations of core-collapse supernovae.
Recchia, F.; Weisshaar, D.; Gade, A.; ...
2016-11-28
The distribution of single-particle strength in 67,69Ni was characterized with one-neutron knockout reactions from intermediate-energy 68,70Ni secondary beams, selectively populating neutron-hole configurations at N = 39 and 41, respectively. The spectroscopic strengths deduced from the measured partial cross sections to the individual final states, as tagged by their γ-ray decays, is used to identify and quantify neutron configurations in the wave functions. While 69Ni compares well to shell-model predictions, the results for 67Ni challenge the validity of current effective shell-model Hamiltonians by revealing discrepancies that cannot be explained so far. Furthermore, these results suggest that our understanding of the low-lyingmore » states in the neutron-rich, semi-magic Ni isotopes may be incomplete and requires further investigation on both the experimental and theoretical sides.« less
Effects of Hot-Spot Geometry on Backscattering and Down-Scattering Neutron Spectra
NASA Astrophysics Data System (ADS)
Mohamed, Z. L.; Mannion, O. M.; Forrest, C. J.; Knauer, J. P.; Anderson, K. S.; Radha, P. B.
2017-10-01
The measured neutron spectrum produced by a fusion experiment plays a key role in inferring observable quantities. One important observable is the areal density of an implosion, which is inferred by measuring the scattering of neutrons. This project seeks to use particle-transport simulations to model the effects of hot-spot geometry on backscattering and down-scattering neutron spectra along different lines of sight. Implosions similar to those conducted at the Laboratory of Laser Energetics are modeled by neutron transport through a DT plasma and a DT ice shell using the particle transport codes MCNP and IRIS. Effects of hot-spot geometry are obtained by ``detecting'' scattered neutrons along different lines of sight. This process is repeated for various hot-spot geometries representing known shape distortions between the hot spot and the shell. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates
Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...
2016-02-05
A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less
NASA Astrophysics Data System (ADS)
Wang, Wei-Hua; Huang, Xi; Zheng, Xiao-Ping
We discuss the effect of compression on Urca shells in the ocean and crust of accreting neutron stars, especially in superbursting sources. We find that Urca shells may be deviated from chemical equilibrium in neutron stars which accrete at several tenths of the local Eddington accretion rate. The deviation depends on the energy threshold of the parent and daughter nuclei, the transition strength, the temperature, and the local accretion rate. In a typical crust model of accreting neutron stars, the chemical departures range from a few tenths of kBT to tens of kBT for various Urca pairs. If the Urca shell can exist in crusts of accreting neutron stars, compression may enhance the net neutrino cooling rate by a factor of about 1-2 relative to the neutrino emissivity in chemical equilibrium. For some cases, such as Urca pairs with small energy thresholds and/or weak transition strength, the large chemical departure may result in net heating rather than cooling, although the released heat can be small. Strong Urca pairs in the deep crust are hard to be deviated even in neutron stars accreting at the local Eddington accretion rate.
NASA Astrophysics Data System (ADS)
Rosenbusch, M.; Ito, Y.; Schury, P.; Wada, M.; Kaji, D.; Morimoto, K.; Haba, H.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morita, K.; Murray, I.; Niwase, T.; Ozawa, A.; Reponen, M.; Takamine, A.; Tanaka, T.; Wollnik, H.
2018-06-01
The masses of the exotic isotopes Ac-214210 and Ra-214210 have been measured with a multireflection time-of-flight mass spectrograph. These isotopes were obtained in flight as fusion-evaporation products behind the gas-filled recoil ion separator GARIS-II at RIKEN. The new direct mass measurements serve as an independent and direct benchmark for existing α -γ spectroscopy data in this mass region. Further, new mass anchor points are set for U and Np nuclei close to the N =126 shell closure for a future benchmark of the Z =92 subshell for neutron-deficient heavy isotopes. Our mass results are in general in good agreement with the previously indirectly determined mass values. Together with the measurement data, reasons for possible mass ambiguities from decay-data links between ground states are discussed.
Nuclear shapes: Quest for triaxiality in 86Ge and the shape of 98Zr
NASA Astrophysics Data System (ADS)
Werner, V.; Lettmann, M.; Lizarazo, C.; Witt, W.; Cline, D.; Carpenter, M.; Doornenbal, P.; Obertelli, A.; Pietralla, N.; Savard, G.; Söderström, P.-A.; Wu, C.-Y.; Zhu, S.
2018-05-01
The region of neutron-rich nuclei above the N = 50 magic neutron shell closure encompasses a rich variety of nuclear structure, especially shapeevolutionary phenomena. This can be attributed to the complexity of sub-shell closures, their appearance and disappearance in the region, such as the N = 56 sub shell or Z = 40 for protons. Structural effects reach from a shape phase transition in the Zr isotopes, over shape coexistence between spherical, prolate, and oblate shapes, to possibly rigid triaxial deformation. Recent experiments in this region and their main physics viewpoints are summarized.
Structure of neutron-rich nuclei around the N = 50 shell-gap closure
NASA Astrophysics Data System (ADS)
Faul, T.; Duchêne, G.; Thomas, J.-C.; Nowacki, F.; Huyse, M.; Van Duppen, P.
2010-04-01
The structure of neutron-rich nuclei in the vicinity of 78Ni have been investigated via the β-decay of 71,73,75Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p3/21f5/22p1/21g9/2) valence space and a 56/28Ni28 core.
Determination of shell content by activation analysis : final report.
DOT National Transportation Integrated Search
1978-08-01
The objective of this study is to determine if neutron activation analysis technique, developed under Research Project 70-1ST, can be used to determine the shell content of a sand-shell mixture. : In order to accomplish this objective, samples of san...
Shell Model Far From Stability: Island of Inversion Mergers
NASA Astrophysics Data System (ADS)
Nowacki, F.; Poves, A.
2018-02-01
In this study we propose a common mechanism for the disappearance of shell closures far from stabilty. With the use of Large Scale Shell Model calculations (SM-CI), we predict that the region of deformation which comprises the heaviest Chromium and Iron isotopes at and beyond N=40 will merge with a new one at N=50 in an astonishing parallel to the N=20 and N=28 case in the Neon and Magnesium isotopes. We propose a valence space including the full pf-shell for the protons and the full sdg shell for the neutrons, which represents a come-back of the the harmonic oscillator shells in the very neutron rich regime. Our calculations preserve the doubly magic nature of the ground state of 78Ni, which, however, exhibits a well deformed prolate band at low excitation energy, providing a striking example of shape coexistence far from stability. This new Island of Inversion (IoI) adds to the four well documented ones at N=8, 20, 28 and 40.
The velocity and composition of supernova ejecta
NASA Technical Reports Server (NTRS)
Colgate, S. A.
1971-01-01
In case of the Gum nebula, a pulsar - a presumed neutron star - is believed to be a relic of the supernova explosion. Regardless of the mechanism of the explosion, the velocity distribution and composition of the ejected matter will be roughly the same. The reimploding mass fraction is presumed to be neutron rich. The final composition is thought to be roughly 1/3 iron and 2/3 silicon, with many small fractions of elements from helium to iron. The termination of helium shell burning occurs because the shell is expanded and cooled by radiation stress. The mass fraction of the helium burning shell was calculated.
Design of a novel instrument for active neutron interrogation of artillery shells.
Bélanger-Champagne, Camille; Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter
2017-01-01
The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from [Formula: see text]% to [Formula: see text]% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s.
Design of a novel instrument for active neutron interrogation of artillery shells
Vainionpää, Hannes; Peura, Pauli; Toivonen, Harri; Eerola, Paula; Dendooven, Peter
2017-01-01
The most common explosives can be uniquely identified by measuring the elemental H/N ratio with a precision better than 10%. Monte Carlo simulations were used to design two variants of a new prompt gamma neutron activation instrument that can achieve this precision. The instrument features an intense pulsed neutron generator with precise timing. Measuring the hydrogen peak from the target explosive is especially challenging because the instrument itself contains hydrogen, which is needed for neutron moderation and shielding. By iterative design optimization, the fraction of the hydrogen peak counts coming from the explosive under interrogation increased from 53-7+7% to 74-10+8% (statistical only) for the benchmark design. In the optimized design variants, the hydrogen signal from a high-explosive shell can be measured to a statistics-only precision better than 1% in less than 30 minutes for an average neutron production yield of 109 n/s. PMID:29211773
Ground-state properties of neutron magic nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saxena, G., E-mail: gauravphy@gmail.com; Kaushik, M.
2017-03-15
A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of themore » proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.« less
NASA Astrophysics Data System (ADS)
Hooker, Joshua; Rogachev, Grigory; Goldberg, Vladilen; Koshchiy, Evgeny; Roeder, Brian; Jayatissa, Heshani; Hunt, Curtis; Magana, Cordero; Upadhyayula, Sriteja; Uberseder, Ethan; Saastamoinen, Antti
2017-09-01
We report on the first observation of the ground and first excited states in 10N via 9C+p resonance scattering. The experiment was carried out at the Cyclotron Institute at Texas A&M University. Both states were determined to be l = 0 . We can now reliably place the location of the 2s1/2 shell in 10N at 2.3 +/- 0.2 MeV above the proton decay threshold. Using mirror symmetry and correcting for Thomas-Ehrman shift we argue that the ground state of 10Li is an l = 0 states that should be very close to the neutron threshold.
Naked-eye optical flash from gamma-ray burst 080319B: Tracing the decaying neutrons in the outflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan Yizhong; Zhang Bing; Wei Daming
For an unsteady baryonic gamma-ray burst (GRB) outflow, the fast and slow proton shells collide with each other and produce energetic soft gamma-ray emission. If the outflow has a significant neutron component, the ultrarelativistic neutrons initially expand freely until decaying at a larger radius. The late-time proton shells ejected from the GRB central engine, after powering the regular internal shocks, will sweep these {beta}-decay products and give rise to very bright UV/optical emission. The naked-eye optical flash from GRB 080319B, an energetic explosion in the distant Universe, can be well explained in this way.
Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem; Pipich, Vitaliy; Appavou, Marie-Sousai; Su, Yixi; Feng, Erxi; Jin, Wentao; Brückel, Thomas
2016-11-03
The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.
NASA Astrophysics Data System (ADS)
Denissenkov, Pavel A.; Herwig, Falk; Battino, Umberto; Ritter, Christian; Pignatari, Marco; Jones, Samuel; Paxton, Bill
2017-01-01
Based on stellar evolution simulations, we demonstrate that rapidly accreting white dwarfs (WDs) in close binary systems are an astrophysical site for the intermediate neutron-capture process. During recurrent and very strong He-shell flashes in the stable H-burning accretion regime H-rich material enters the He-shell flash convection zone. {}12{{C}}(p,γ ){}13{{N}} reactions release enough energy to potentially impact convection, and I process is activated through the {}13{{C}}{(α ,{{n}})}16{{O}} reaction. The H-ingestion flash may not cause a split of the convection zone as it was seen in simulations of He-shell flashes in post-AGB and low-Z asymptotic giant branch (AGB) stars. We estimate that for the production of first-peak heavy elements this site can be of similar importance for galactic chemical evolution as the s-process production by low-mass AGB stars. The He-shell flashes result in the expansion and, ultimately, ejection of the accreted and then I-process enriched material, via super-Eddington-luminosity winds or Roche-lobe overflow. The WD models do not retain any significant amount of the accreted mass, with a He retention efficiency of ≲ 10 % depending on mass and convective boundary mixing assumptions. This makes the evolutionary path of such systems to supernova Ia explosion highly unlikely.
Building Atoms Shell by Shell.
ERIC Educational Resources Information Center
Sussman, Beverly
1993-01-01
Describes an atom-building activity where students construct three-dimensional models of atoms using a styrofoam ball as the nucleus and pom-poms, gum drops, minimarshmallows, or other small items of two different colors to represent protons and neutrons attached. Rings of various sizes with pom-poms attached represent electron shells and…
Surface symmetry energy of nuclear energy density functionals
NASA Astrophysics Data System (ADS)
Nikolov, N.; Schunck, N.; Nazarewicz, W.; Bender, M.; Pei, J.
2011-03-01
We study the bulk deformation properties of the Skyrme nuclear energy density functionals (EDFs). Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band heads in Hg and Pb isotopes and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear EDFs. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.
Self-assembled iron oxide nanoparticle multilayer: x-ray and polarized neutron reflectivity.
Mishra, D; Benitez, M J; Petracic, O; Badini Confalonieri, G A; Szary, P; Brüssing, F; Theis-Bröhl, K; Devishvili, A; Vorobiev, A; Konovalov, O; Paulus, M; Sternemann, C; Toperverg, B P; Zabel, H
2012-02-10
We have investigated the structure and magnetism of self-assembled, 20 nm diameter iron oxide nanoparticles covered by an oleic acid shell for scrutinizing their structural and magnetic correlations. The nanoparticles were spin-coated on an Si substrate as a single monolayer and as a stack of 5 ML forming a multilayer. X-ray scattering (reflectivity and grazing incidence small-angle scattering) confirms high in-plane hexagonal correlation and a good layering property of the nanoparticles. Using polarized neutron reflectivity we have also determined the long range magnetic correlations parallel and perpendicular to the layers in addition to the structural ones. In a field of 5 kOe we determine a magnetization value of about 80% of the saturation value. At remanence the global magnetization is close to zero. However, polarized neutron reflectivity reveals the existence of regions in which magnetic moments of nanoparticles are well aligned, while losing order over longer distances. These findings confirm that in the nanoparticle assembly the magnetic dipole-dipole interaction is rather strong, dominating the collective magnetic properties at room temperature.
PREFACE: New nuclear structure phenomena in the vicinity of closed shells
NASA Astrophysics Data System (ADS)
Johnson, A.; Wyss, R.
1995-01-01
The proceedings of the international symposium on "New Nuclear Structure Phenomena in the Vicinity of Closed Shells - SELMA 94", held in Stockholm, Uppsala and on the Baltic Sea from Aug. 30 - Sep. 3 are collected in this volume. Since almost 40% of the session time was kept open for discussions, it is difficult to give full justice to the character of the meeting in a written report. However, since also many posters are presented in this volume, we hope that some of the flavour of this lively symposium will pass onto the reader. We have chosen to group related contributions in order to facilitate the reading. Several articles, though, may fit into several categories. With the event of large detector arrays there has been a tremendous development in the field of nuclear spectroscopy. The discovery of super-deformation has been followed by detailed spectroscopy in the second well. Hence, the concept of shell closure is reinterpreted in general terms, involving shapes different from spherical. Close to the drip lines, we expect new shells and new structure effects to emerge. Loosely bound neutrons may form a new state of nuclear matter. The regions of the nuclear chart far from the line of stability can be explored in the future by means of radioactive ion beams. New structure effects, that one might encounter far from the line of stability was one of the themes of this conference. The strong impact of the nuclear shell model is also evident in other branches of physics, like the structure of metal-clusters. Special attention was paid to the Sn-isotopes. In the Sn-isotopic chain, spectroscopic measurements are extending beyond the doubly-magic nucleus 132Sn. Large efforts have recently been made to study nuclei in the vicinity of the doubly-magic nucleus 100Sn, the other extreme end of the chain. Spectroscopic data on 100Sn would open the entire shell for nuclear structure studies, ranging over a number of 32 neutrons. During the organization of this meeting, the first 100Sn nuclei were observed at GSI, Germany, and in a subsequent experiment at GANIL, France. Results from these experiments were reported during the symposium as were much of the recent data around "classical" shell model nuclei. Neutron deficient nuclei in the Sn region show a variety of phenomena, such as coexisting shapes, enhanced quadrupole transitions etc. The role of intruder states in this mass region as well as the excitation pattern is still a puzzle for experimentalists and theoreticians and was discussed during the meeting. More work is needed until a unified picture of the structure of these nuclei will emerge. The combination of powerful mean-field models, large scale shell model calculations as well as new algebraic approaches to nuclear structure shows the strong and lively development in the field of nuclear theory as was evident from the presentations. It is obvious that great effort is needed to match the rapid development in the field of experimental nuclear structure. The organizing committee expresses special thanks to the Royal Swedish Academy of Sciences, through its Nobel Institute for Physics, for its generous support. We also want to thank the Royal Institute of Technology and Uppsala University for supporting this symposium. All this support was extremely essential for organizing the meeting as well as for rendering it success. We are very pleased about the possibility to print the proceedings of this meeting in Physics Scripta and thank their staff for helpful collaboration. Thanks also to the international advisory committee for its helpful work to select speakers and for suggestions. Conference secretary Inger Ericson's assistance during the meeting as well as the work of the organizing committee is highly appreciated. Finally, we like to thank all speakers and participants for making this symposium extremely lively and exciting. Last but not least: this symposium got its name from little Selma, born 19 January 1994, daughter of A Atac and J Nyberg.
Electron scattering from high-momentum neutrons in deuterium
NASA Astrophysics Data System (ADS)
Klimenko, A. V.; Kuhn, S. E.; Butuceanu, C.; Egiyan, K. S.; Griffioen, K. A.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Cummings, J. P.; Dashyan, N. B.; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Fersch, R. G.; Feuerbach, R. J.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.
2006-03-01
We report results from an experiment measuring the semiinclusive reaction H2(e,e'ps) in which the proton ps is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p→s, and momentum transfer Q2. The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a “bound neutron structure function” F2neff was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For ps>0.4GeV/c, where the neutron is far off-shell, the model overestimates the value of F2neff in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's “off-shell-ness” is one possible effect that can cause the observed deviation.
Extension of the nuclear mass surface for neutron-rich isotopes of argon through iron
NASA Astrophysics Data System (ADS)
Meisel, Zachary Paul
Nuclear mass measurement has maintained an important position in the field of nuclear physics for a little over a century. Nuclear masses provide key evidence of the structural transformation of nuclei away from the valley of beta-stability and are essential input for many simulations of extreme astrophysical environments. However, obtaining these masses is often a challenging endeavor due to the low production cross sections and short half-lives of the exotic nuclei which are of particular interest. To this end, the time-of-flight mass measurement technique has been developed to obtain the masses of several nuclei at once to precisions of 1 part in 105 with virtually no half-life limitation. This dissertation contains a description of the experiment, analysis, and results of the second implementation of the time-of-flight nuclear mass measurement technique at the National Superconducting Cyclotron Laboratory. 18 masses were obtained for neutron-rich isotopes of argon through iron, where the masses of 48Ar, 49Ar, 56Sc, 57Sc, 64Cr, 67Mn, and 69Fe were measured for the first time. These newly obtained masses were applied to outstanding problems in nuclear structure and nuclear astrophysics, resulting in significant scientific advances. The measurement results for 48Ar and 49Ar, which were found to have atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively, provide strong evidence for the closed shell nature of neutron number N = 28 in argon. It follows that argon is therefore the lowest even-Z element exhibiting the N = 28 closed shell. The masses of 64Cr, 67 Mn, and 69Fe, which were found to have atomic mass excesses of -33.48(44) MeV, -34.09(62) MeV, and -39.35(60) MeV, respectively, show signs of nuclear deformation occurring around the N = 40 subshell. In addition, we found 64Cr is substantially less bound than predicted by global mass models that are commonly used in nuclear astrophysics simulations, resulting in a significant reduction in the predicted strength and depth of electron capture heating in the accreted neutron star crust due to the rather abundant A = 64 mass-chain. The reported value for the atomic mass excess of 56Sc, -24.85(59)(+0,-54) MeV, which contains an asymmetric systematic uncertainty due to potential isomeric contamination, results in a smaller than expected odd-even mass staggering in the A = 56 mass chain. Depending on the choice of theoretical models for electron capture transition strengths and energies, this could lead to strong Urca cooling in accreted neutron star crusts, due to the large amount of A = 56 material predicted to be present on the surface of accreted neutron stars.
NASA Astrophysics Data System (ADS)
Zhao, Yumin
1997-07-01
By the techniques of the Wick theorem for coupled clusters, the no-energy-weighted electromagnetic sum-rule calculations are presented in the sdg neutron-proton interacting boson model, the nuclear pair shell model and the fermion-dynamical symmetry model. The project supported by Development Project Foundation of China, National Natural Science Foundation of China, Doctoral Education Fund of National Education Committee, Fundamental Research Fund of Southeast University
Roles of nuclear weak rates on the evolution of degenerate cores in stars
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Tsunodaa, Naofumi; Tsunoda, Yuhsuke; Shimizu, Noritaka; Otsuka, Takaharu
2018-01-01
Electron-capture and β-decay rates in stellar environments are evaluated with the use of new shell-model Hamiltonians for sd-shell and pf-shell nuclei as well as for nuclei belonging to the island of inversion. Important role of the nuclear weak rates on the final evolution of stellar degenerate cores is presented. The weak interaction rates for sd-shell nuclei are calculated to study nuclear Urca processes in O-Ne-Mg cores of stars with 8-10 M⊙ (solar mass) and their effects on the final fate of the stars. Nucleosynthesis of iron-group elements in Type Ia supernova explosions are studied with the weak rates for pf-shell nuclei. The problem of the neutron-rich iron-group isotope over-production compared to the solar abundances is shown to be nearly solved with the use of the new rates and explosion model of slow defraglation with delayed detonation. Evaluation of the weak rates is extended to the island of inversion and the region of neutron-rich nuclei near 78Ni, where two major shells contribute to their configurations.
Interplay between proton-neutron pairing and deformation in self-conjugated medium mass nuclei
NASA Astrophysics Data System (ADS)
Gambacurta, Danilo; Lacroix, Denis
2016-05-01
We employ a model combining self-consistent mean-field and shell model techniques to study the competition between particle-like and proton-neutron pairing correlations in fp-shell even-even self-conjugate nuclei. Deformation effects are realistically and microscopically described. The resulting approach can give a precise description of pairing correlations and eventually treat the coexistence of different condensate formed of pairs with different total spin/ isospin. The standard BCS calculations are systematically compared with approaches including correlation effects beyond the independent quasi-particle picture. The competition between proton-neutron correlations in the isoscalar and isovector channels is also analyzed, as well as their dependence on the deformation properties.
Progress toward a unified kJ-machine CANDY
NASA Astrophysics Data System (ADS)
Kitagawa, Yoneyoshi; Mori, Yoshitaka; Komeda, Osamu; Hanayama, Ryohei; Ishii, Katsuhiro; Okihara, Shinichiro; Fujita, Kazuhisa; Nakayama, Suisei; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Watari, Takeshi; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi; Kakeno, Mitsutaka; Nishimura, Yasuhiko; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke; Arikawa, Yasunobu; Nagai, Takahiro; Abe, Yuki; Ozaki, Satoshi; Noda, Akira
2016-03-01
To construct a unified experimental machine CANDY using a kJ DPSSL driver in the fast-ignition scheme, the Laser for Fast Ignition Experiment (LFEX) at Osaka is used, showing that the laser-driven ions heat the preimploded core of a deuterated polystyrene (CD) shell target from 0.8 keV to 2 keV, resulting in 5 x 108 DD neutrons best ever obtained in the scheme. 4-J/10-Hz DPSSL laser HAMA is for the first time applied to the CD shell implosion- core heating experiments in the fast ignition scheme to yield neutrons and also to a continuous target injection, which yields neutrons of 3 x 105 n/4πsr n/shot.
Study of near-stability nuclei populated as fission fragments in heavy-ion fusion reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fotiadis, Nikolaos; Nelson, Ronald O; Devlin, Matthew
2010-01-01
Examples are presented to illustrate the power of prompt {gamma}-ray spectroscopy of fission fragments from compound nuclei with A {approx} 200 formed in fusion-evaporation reactions in experiments using the Gammasphere Ge-detector array. Complementary methods, such as Coulomb excitation and deep-inelastic processes, are also discussed. In other cases (n, xn{gamma}) reactions on stable isotopes have been used to establish neutron excitation functions for {gamma}-rays using a pulsed 'white'-neutron source, coupled to a high-energy-resolution germanium-detector array. The excitation functions can unambiguously assign {gamma}-rays to a specific reaction product. Results from all these methods bridge the gaps in the systematics of high-spin statesmore » between the neutron-deficient and neutron-rich nuclei. Results near shell closures should motivate new shell model calculations.« less
Mass and Radius Constraints Using Magnetar Giant Flare Oscillations
NASA Astrophysics Data System (ADS)
Deibel, Alex T.; Steiner, A. W.; Brown, E. F.
2013-04-01
We extend the study of oscillating neutron stars to include observed magnetic field strengths. The strong magnetic field will alter the equilibrium composition of the outer neutron star crust. We construct a new neutron star crust model which predicts nuclear masses with an accuracy very close to that of the Finite Range Droplet Model. The mass model for equilibrium nuclei also includes recent developments in the nuclear physics, in particular, shell corrections and an updated neutron-drip line. We perturb our crust model to predict axial crust modes and assign them to observed giant flare quasi-periodic oscillation (QPO) frequencies from SGR 1806-20. The QPOs associated with the fundamental and harmonic crust modes can be used to constrain magnetar masses and radii. We use these modes and the phenomenological equations of state from Steiner et al. to find a magnetar crust which reproduces observations of SGR 1806-20. We find magnetar crusts which match observations for various magnetic field strengths and values of entrainment of the free neutron gas in the inner crust. For a crust without a magnetic field we obtain the approximate values of M = 1.35 Msun and R = 11.85 km. For a magnetized crust with the surface dipole field of SGR 1806-20 we obtain the approximate values of M = 1.25 Msun and R = 12.41 km. If there is less entrainment of the free neutron gas the magnetar requires a larger mass and radius to reproduce observations.
USDA-ARS?s Scientific Manuscript database
Due to low consumer acceptance and the possibility of immature kernels, closed-shell pistachio nuts should be separated from open-shell nuts before reaching the consumer. The feasibility of a system using impact acoustics as a means of classifying closed-shell nuts from open-shell nuts has already b...
Tidal deformability and I-Love-Q relations for gravastars with polytropic thin shells
NASA Astrophysics Data System (ADS)
Uchikata, Nami; Yoshida, Shijun; Pani, Paolo
2016-09-01
The moment of inertia, the spin-induced quadrupole moment, and the tidal Love number of neutron-star and quark-star models are related through some relations which depend only mildly on the stellar equation of state. These "I-Love-Q" relations have important implications for astrophysics and gravitational-wave astronomy. An interesting problem is whether similar relations hold for other compact objects and how they approach the black hole limit. To answer these questions, here we investigate the deformation properties of a large class of thin-shell gravastars, which are exotic compact objects that do not possess an event horizon nor a spacetime singularity. Working in a small-spin and small-tidal field expansion, we calculate the moment of inertia, the quadrupole moment, and the (quadrupolar electric) tidal Love number of gravastars with a polytropic thin shell. The I-Love-Q relations of a thin-shell gravastar are drastically different from those of an ordinary neutron star. The Love number and quadrupole moment for less compact models have the opposite sign relative to those of ordinary neutron stars, and the I-Love-Q relations continuously approach the black hole limit. We consider a variety of polytropic equations of state for the matter shell and find no universality in the I-Love-Q relations. However, we cannot deny the possibility that, similarly to the neutron-star case, an approximate universality might emerge for a limited class of equations of state. Finally, we discuss how a measurement of the tidal deformability from the gravitational-wave detection of a compact-binary inspiral can be used to constrain exotic compact objects like gravastars.
Rübe, Andrea; Hause, Gerd; Mäder, Karsten; Kohlbrecher, Joachim
2005-10-03
The contrast variation technique in small angle neutron scattering (SANS) was used to investigate the inner structure of nanocapsules on the example of poly(D,L-lactide) (PLA) nanocapsules. The determination of the PLA and Poloxamer shell thickness was the focus of this study. Highest sensitivity on the inner structure of the nanocapsules was obtained when the scattering length density of the solvent was varied between the one of the Miglyol core and the PLA shell. According to the fit data the PLA shell thickness was 9.8 nm. The z-averaged radius determined by SANS experiments correlated well with dynamic light scattering (DLS) results, although DLS values were systematically slightly higher than the ones measured by SANS. This could be explained by taking into account the influence of Poloxamer attached to the nanocapsules surface. For a refined fit model with a second shell consisting of Poloxamer, SANS values and DLS values fitted well with each other. The characterization method presented here is significant because detailed insights into the nanocapsule and the Poloxamer shell were gained for the first time. This method could be used to develop strategies for the optimization of the shell properties concerning controlled release and to study changes in the shell structure during degradation processes.
Single-particle and collective motion in unbound deformed 39Mg
NASA Astrophysics Data System (ADS)
Fossez, K.; Rotureau, J.; Michel, N.; Liu, Quan; Nazarewicz, W.
2016-11-01
Background: Deformed neutron-rich magnesium isotopes constitute a fascinating territory where the interplay between collective rotation and single-particle motion is strongly affected by the neutron continuum. The unbound f p -shell nucleus 39Mg is an ideal candidate to study this interplay. Purpose: In this work, we predict the properties of low-lying resonant states of 39Mg, using a suite of realistic theoretical approaches rooted in the open quantum system framework. Method: To describe the spectrum and decay modes of 39Mg we use the conventional shell model, Gamow shell model, resonating group method, density matrix renormalization group method, and the nonadiabatic particle-plus-rotor model formulated in the Berggren basis. Results: The unbound ground state of 39Mg is predicted to be either a Jπ=7/2 - state or a 3/2 - state. A narrow Jπ=7/2 - ground-state candidate exhibits a resonant structure reminiscent of that of its one-neutron halo neighbor 37Mg, which is dominated by the f7 /2 partial wave at short distances and a p3 /2 component at large distances. A Jπ=3/2 - ground-state candidate is favored by the large deformation of the system. It can be associated with the 1/2 -[321 ] Nilsson orbital dominated by the ℓ =1 wave; hence its predicted width is large. The excited Jπ=1/2 - and 5 /2- states are expected to be broad resonances, while the Jπ=9/2 - and 11/2 - members of the ground-state rotational band are predicted to have very small neutron decay widths. Conclusion: We demonstrate that the subtle interplay between deformation, shell structure, and continuum coupling can result in a variety of excitations in an unbound nucleus just outside the neutron drip line.
Quasi-spherical accretion in High Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Postnov, Konstantin
2016-07-01
Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.
Multidimensional Analysis of Direct-Drive Plastic-Shell Implosions on OMEGA
NASA Astrophysics Data System (ADS)
Radha, P. B.
2004-11-01
Direct-drive implosions of plastic shells with the OMEGA laser are used as energy-scaled warm surrogates for ignition cryogenic targets designed for use on the National Ignition Facility. Plastic targets involve varying shell thickness (15 to 33 μm), fill pressures (3 to 15 atm), and shell adiabats. The multidimensional hydrodynamics code DRACO is used to evaluate the effects of capsule-surface roughness and illumination nonuniformities on target performance. These simulations indicate that shell stability during the acceleration phase plays a critical role in determining fusion yields. For shells that are thick enough to survive the Rayleigh--Taylor growth, target yields are significantly reduced by growth of the long (ℓ < 10) and intermediate modes (20 < ℓ < 50) occurring from single-beam laser nonuniformities. The neutron production rate for these thick shells truncates relative to one-dimensional (1-D) predictions. The neutron-rate curves for the thinner shells, however, have significantly lower amplitudes and widths closer to 1-D results, indicating shell breakup during the acceleration phase. The simulation results are consistent with experimental observations. Previously, the stability of plastic-shell implosions had been correlated to a static ``mix-width'' at the boundary of the gas and plastic pusher estimated using a variety of experimental observables and an assumption of spherical symmetry. Results of these 2-D simulations provide a comprehensive understanding of warm-target implosion dynamics without assumptions of spherical symmetry and serve to answer the question of the hydrodynamic surrogacy between these plastic-shell implosions and the cryogenic ignition designs.
Nucleon correlations and the structure of Zn 41 30 71
Bottoni, Simone; Zhu, S.; Janssens, R. V. F.; ...
2017-11-06
Here, the structure of 71Zn was investigated by one-neutron transfer and heavy-ion induced complex (deep-inelastic) reactions using the GRETINA-CHICO2 and the Gammasphere setups, respectively. The observed inversion between the 9/2 + and 1/2 – states is explained in terms of the role of neutron pairing correlations. Non-collective sequences of levels were delineated above the 9/2 + isomeric state. These are interpreted as being associated with a modest oblate deformation in the framework of Monte-Carlo shell-model calculations carried out with the A3DA-m Hamiltonian in the pfg 9/2d 5/2 valence space. Similarities with the structure of 68 28Ni 40 were observed andmore » the shape-coexistence mechanism in the N = 40 region of neutron-rich nuclei is discussed in terms of the so-called Type-II shell evolution, with an emphasis on proton–neutron correlations between valence nucleons, especially those involving the shape-driving g 9/2 neutron orbital.« less
Nucleon correlations and the structure of 41 30 71Zn
NASA Astrophysics Data System (ADS)
Bottoni, S.; Zhu, S.; Janssens, R. V. F.; Carpenter, M. P.; Tsunoda, Y.; Otsuka, T.; Macchiavelli, A. O.; Cline, D.; Wu, C. Y.; Ayangeakaa, A. D.; Bucher, B.; Buckner, M. Q.; Campbell, C. M.; Chiara, C. J.; Crawford, H. L.; Cromaz, M.; David, H. M.; Fallon, P.; Gade, A.; Greene, J. P.; Harker, J.; Hayes, A. B.; Hoffman, C. R.; Kay, B. P.; Korichi, A.; Lauritsen, T.; Sethi, J.; Seweryniak, D.; Walters, W. B.; Weisshaar, D.; Wiens, A.
2017-12-01
The structure of 71Zn was investigated by one-neutron transfer and heavy-ion induced complex (deep-inelastic) reactions using the GRETINA-CHICO2 and the Gammasphere setups, respectively. The observed inversion between the 9/2+ and 1/2- states is explained in terms of the role of neutron pairing correlations. Non-collective sequences of levels were delineated above the 9/2+ isomeric state. These are interpreted as being associated with a modest oblate deformation in the framework of Monte-Carlo shell-model calculations carried out with the A3DA-m Hamiltonian in the pfg9/2d5/2 valence space. Similarities with the structure of 40,28,68Ni were observed and the shape-coexistence mechanism in the N = 40 region of neutron-rich nuclei is discussed in terms of the so-called Type-II shell evolution, with an emphasis on proton-neutron correlations between valence nucleons, especially those involving the shape-driving g9/2 neutron orbital.
Enhanced low-energy γ -decay strength of 70Ni and its robustness within the shell model
NASA Astrophysics Data System (ADS)
Larsen, A. C.; Midtbø, J. E.; Guttormsen, M.; Renstrøm, T.; Liddick, S. N.; Spyrou, A.; Karampagia, S.; Brown, B. A.; Achakovskiy, O.; Kamerdzhiev, S.; Bleuel, D. L.; Couture, A.; Campo, L. Crespo; Crider, B. P.; Dombos, A. C.; Lewis, R.; Mosby, S.; Naqvi, F.; Perdikakis, G.; Prokop, C. J.; Quinn, S. J.; Siem, S.
2018-05-01
Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture is extremely sensitive to their γ -emission probability at very low γ energies. In this work, we present measurements of the γ -decay strength of 70Ni over the wide range 1.3 ≤Eγ≤8 MeV. A significant enhancement is found in the γ -decay strength for transitions with Eγ<3 MeV. At present, this is the most neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We have performed E 1 -strength calculations within the quasiparticle time-blocking approximation, which describe our data above Eγ≃5 MeV very well. Moreover, large-scale shell-model calculations indicate an M 1 nature of the low-energy γ strength. This turns out to be remarkably robust with respect to the choice of interaction, truncation, and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich
Maria Goeppert Mayer, the Nuclear Shell Structure, and Magic Numbers
dropdown arrow Site Map A-Z Index Menu Synopsis Maria Goeppert-Mayer, the Nuclear Shell Model, and Magic explanation of how neutrons and protons within atomic nuclei are structured. Called the "nuclear shell American husband, chemical physicist Joseph Mayer. At Argonne, Goeppert-Mayer learned most of her nuclear
Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993
NASA Astrophysics Data System (ADS)
Palmese, A.; Hartley, W.; Tarsitano, F.; Conselice, C.; Lahav, O.; Allam, S.; Annis, J.; Lin, H.; Soares-Santos, M.; Tucker, D.; Brout, D.; Banerji, M.; Bechtol, K.; Diehl, H. T.; Fruchter, A.; García-Bellido, J.; Herner, K.; Levan, A. J.; Li, T. S.; Lidman, C.; Misra, K.; Sako, M.; Scolnic, D.; Smith, M.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Davis, C.; DePoy, D. L.; Desai, S.; Dietrich, J. P.; Doel, P.; Drlica-Wagner, A.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kron, R.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lima, M.; Maia, M. A. G.; March, M.; Marshall, J. L.; McMahon, R. G.; Menanteau, F.; Miller, C. J.; Miquel, R.; Neilsen, E.; Ogando, R. L. C.; Plazas, A. A.; Reil, K.; Romer, A. K.; Sanchez, E.; Schindler, R.; Smith, R. C.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Thomas, R. C.; Walker, A. R.; Weller, J.; Zhang, Y.; Zuntz, J.
2017-11-01
We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an I-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as {R}{NSM}{gal}={5.7}-3.3+0.57× {10}-6{{yr}}-1. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is {0.038}-0.022+0.004, as opposed to ˜0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer ≲ 200 Myr prior to the BNS coalescence.
Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmese, A.; Hartley, W.; Tarsitano, F.
Here, we present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, asmore » $${R}_{\\mathrm{NSM}}^{\\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\\times {10}^{-6}{\\mathrm{yr}}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $${0.038}_{-0.022}^{+0.004}$$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer $$\\lesssim$$ 200 Myr prior to the BNS coalescence.« less
Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993
Palmese, A.; Hartley, W.; Tarsitano, F.; ...
2017-11-09
Here, we present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n = 4.0 and low asymmetry (A = 0.04 ± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, asmore » $${R}_{\\mathrm{NSM}}^{\\mathrm{gal}}={5.7}_{-3.3}^{+0.57}\\times {10}^{-6}{\\mathrm{yr}}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $${0.038}_{-0.022}^{+0.004}$$, as opposed to ~0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred t mer $$\\lesssim$$ 200 Myr prior to the BNS coalescence.« less
Defect Implosion Experiments (DIME) at OMEGA
NASA Astrophysics Data System (ADS)
Cobble, J. A.; Schmitt, M. J.; Tregillis, I. L.; Obrey, K. D.; Magelssen, G. R.; Wilke, M. D.; Glebov, V.; Marshall, F. J.; Kim, Y. H.; Bradley, P. A.; Batha, S. H.
2010-11-01
The Los Alamos DIME campaign involves perturbed spherical implosions, driven by 60 OMEGA beams with uniform, symmetrical illumination. D-T-filled CH-shell targets with equatorial-plane defects are designed to produce a non-spherical neutron burn region. The objectives of the DIME series are to observe the non-spherical burn with the neutron imaging system (NIS) and to simulate the physics of the neutron and x-ray production. We have demonstrated adequate neutron yield for NIS imaging with targets of diameter 860 μm. All targets are filled with 5 atm of DT. We used two separate shell thicknesses: 8 μm and 15 μm, thus testing both exploding pusher and ablative designs. Defect channel depth ranges from 0 -- 8 μm. Width is 20 -- 40 μm. Perfect targets have no defect. Numerical simulations predict enhanced x-ray emission, that is suggested by experiment. Results from a recent DIME campaign will be discussed.
Effect of multiple spin species on spherical shell neutron transmission analysis
NASA Technical Reports Server (NTRS)
Semler, T. T.
1972-01-01
A series of Monte Carlo calculations were performed in order to evaluate the effect of separated against merged spin statistics on the analysis of spherical shell neutron transmission experiments for gold. It is shown that the use of separated spin statistics results in larger average capture cross sections of gold at 24 KeV. This effect is explained by stronger windows in the total cross section caused by the interference between potential and J(+) resonances and by J(+) and J(-) resonance overlap allowed by the use of separated spin statistics.
NASA Technical Reports Server (NTRS)
Stelmakh, S.; Grzanka, E.; Zhao, Y.; Palosz, W.; Palosz, B.
2004-01-01
Thermal atomic motions of nanocrystalline Sic were characterized by two temperature atomic factors B(sub core), and B(sub shell). With the use of wide angle neutron diffraction data it was shown that at the diffraction vector above 15A(exp -1) the Wilson plots gives directly the temperature factor of the grain interior (B(sub core)). At lower Q values the slope of the Wilson plot provides information on the relative amplitudes of vibrations of the core and shell atoms.
Stretched proton-neutron configurations in fp-shell nuclei (II). Systematics
NASA Astrophysics Data System (ADS)
von Neumann-Cosel, P.; Fister, U.; Jahn, R.; Schenk, P.; Trelle, T. K.; Wenzel, D.; Wienands, U.
1994-03-01
The systematics of the binding energies of stretched proton-neutron configurations ( f{7}/{2}, g{9}/{2}) 8 -, ( p{3}/{2}, g{9}/{2}) 6 -, ( g{9}/{2}, p{3}/{2}) 6- and ( g{9}/{2}) 29 + are studied over a wide range of f p-shell nuclei. The effective proton-neutron interaction energies deduced from the data are nearly constant for ( p{3}/{2}, g{9}/{2}) 6 -and ( g{9}/{2}) 29 + states while the ( f{7}/{2}, g{9}/{2}) 8 - configuration reveals an additional repulsive term proportional to the partial filling of the f{7}/{2} orbit in the target ground state. Two-body matrix elements are extracted. A crude shell model, which predicts that the excitation energy of a stretched state is equal to the sum of the single-particle energies, works well for the 6 - and 9 + states, but fails for the 8 - levels due to neglect of the additional interactions described above. The physics underlying the empirically introduced basic assumptions of the crude shell model is discussed. The binding energies are found to be linearly dependent on the mass number A and the isospin Tz component and are well described by the weak-coupling model of Bansal and French. The derived parameters agree with averaged values of a similar analysis for the single-particle states in the corresponding odd-even neighbours. The data indicate a significant change of the particle-hole energies with closure of the proton f{7}/{2} shell.
Shell effects in a multinucleon transfer process
NASA Astrophysics Data System (ADS)
Zhu, Long; Wen, Pei-Wei; Lin, Cheng-Jian; Bao, Xiao-Jun; Su, Jun; Li, Cheng; Guo, Chen-Chen
2018-04-01
The shell effects in multinucleon transfer process are investigated in the systems 136Xe + 198Pt and 136Xe + 208Pb within the dinuclear system (DNS) model. The temperature dependence of shell corrections on potential energy surface is taken into account in the DNS model and remarkable improvement for description of experimental data is noticed. The reactions 136Xe + 186W and 150Nd + 186W are also studied. It is found that due to shell effects the projectile 150Nd is more promising for producing transtarget nuclei rather than 136Xe with neutron shell closure.
NASA Astrophysics Data System (ADS)
Patra, S. K.; Wu, Cheng-Li; Praharaj, C. R.; Gupta, Raj K.
1999-05-01
We have studied the structural properties of even-even, neutron deficient, Z = 114-126, superheavy nuclei in the mass region A ˜ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z = 80, 92, (114), 120 and 138, N = 138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z = 114 and N = 164 ˜ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z = 120 and N = 172 or N = 184 double shell closure is also discussed.
Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes
NASA Astrophysics Data System (ADS)
Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.
2017-09-01
We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.
Gamma-ray spectroscopy of 131Sn81 via the (9Be, 8Be γ) reaction
NASA Astrophysics Data System (ADS)
Burcher, Sean; Bey, A.; Jones, K.; Ahn, S. H.; Ayres, A.; Schmitt, K. T.; Allmond, J.; Galindo-Urribari, A.; Radford, D. C.; Liang, J. F.; Neseraja, C. D.; Pain, S. D.; Pittman, S. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.; Bardayan, D. W.; O'Malley, P. D.; Cizewski, J. A.; Howard, M. E.; Manning, B. M.; Garcia Ruiz, R. F.; Kozub, R. L.; Matos, M.; Padilla-Rodal, E.
2016-09-01
Nuclear data in the region of the doubly-magic nucleus 132Sn82 is useful for benchmarking nuclear structure theories due to the clean single-particle nature of the nuclear wavefunction near the closed shells. At the Holifield Radioactive Ion Beam Facility (HRIBF) neutron-rich beams in the 132Sn82 region were produced via proton-induced fission of a Uranium-Carbide target. The CLARION array of HPGe detectors was coupled with the HyBall array of CsI detectors to allow for particle-gamma coincidence measurements. The gamma-ray de-excitation of the four lowest lying single-neutron states has been observed for the first time via the (9Be,8Be γ) reaction. The excitation energy of these states have been measured to higher precision than was possible with the previous charged particle measurement. This work was supported in part by the U.S. Department of Energy and the National Science Foundation.
Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.
Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less
Structure of Nano-sized CeO 2 Materials: Combined Scattering and Spectroscopic Investigations
Marchbank, Huw R.; Clark, Adam H.; Hyde, Timothy I.; ...
2016-08-29
Here, the nature of nano-sized ceria, CeO 2, systems were investigated using neutron and X-ray diffraction and X-ray absorption spectroscopy. Whilst both diffraction andtotal pair distribution functions (PDFs) revealed that in all the samples the occupancy of both Ce 4+ and O 2- are very close to the ideal stoichiometry, the analysis using reverse Monte Carlo technique revealedsignificant disorder around oxygen atoms in the nano sized ceria samples in comparison to the highly crystalline NIST standard.In addition, the analysis reveal that the main differences observed in the pair correlations from various X-ray and neutron diffraction techniques were attributed to themore » particle size of the CeO 2 prepared by the reported three methods. Furthermore, detailed analysis of the Ce L 3– and K-edge EXAFS data support this finding; in particular the decrease in higher shell coordination numbers with respect to the NIST standard, are attributed to differences in particle size.« less
RELATIVE CONTRIBUTIONS OF THE WEAK, MAIN, AND FISSION-RECYCLING r-PROCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibagaki, S.; Kajino, T.; Mathews, G. J.
There has been a persistent conundrum in attempts to model the nucleosynthesis of heavy elements by rapid neutron capture (the r-process). Although the locations of the abundance peaks near nuclear mass numbers 130 and 195 identify an environment of rapid neutron capture near closed nuclear shells, the abundances of elements just above and below those peaks are often underproduced by more than an order of magnitude in model calculations. At the same time, there is a debate in the literature as to what degree the r-process elements are produced in supernovae or the mergers of binary neutron stars. In thismore » paper we propose a novel solution to both problems. We demonstrate that the underproduction of nuclides above and below the r-process peaks in main or weak r-process models (like magnetohydrodynamic jets or neutrino-driven winds in core-collapse supernovae) can be supplemented via fission fragment distributions from the recycling of material in a neutron-rich environment such as that encountered in neutron star mergers (NSMs). In this paradigm, the abundance peaks themselves are well reproduced by a moderately neutron-rich, main r-process environment such as that encountered in the magnetohydrodynamical jets in supernovae supplemented with a high-entropy, weakly neutron-rich environment such as that encountered in the neutrino-driven-wind model to produce the lighter r-process isotopes. Moreover, we show that the relative contributions to the r-process abundances in both the solar system and metal-poor stars from the weak, main, and fission-recycling environments required by this proposal are consistent with estimates of the relative Galactic event rates of core-collapse supernovae for the weak and main r-process and NSMs for the fission-recycling r-process.« less
Helium-Shell Nucleosynthesis and Extinct Radioactivities
NASA Technical Reports Server (NTRS)
Meyer, B. S.; The, L.-S.; Clayton, D. D.; ElEid, M. F.
2004-01-01
Although the exact site for the origin of the r-process isotopes remains mysterious, most thinking has centered on matter ejected from the cores of massive stars in core-collapse supernovae [13]. In the 1970's and 1980's, however, difficulties in understanding the yields from such models led workers to consider the possibility of r-process nucleosynthesis farther out in the exploding star, in particular, in the helium burning shell [4,5]. The essential idea was that shock passage through this shell would heat and compress this material to the point that the reactions 13C(alpha; n)16O and, especially, 22Ne(alpha; n)25Mg would generate enough neutrons to capture on preexisting seed nuclei and drive an "n process" [6], which could reproduce the r-process abundances. Subsequent work showed that the required 13C and 22Ne abundances were too large compared to the amounts available in realistic models [7] and recent thinking has returned to supernova core material or matter ejected from neutron star-neutron star collisions as the more likely r-process sites.
Charge radii of neutron-deficient Ca isotopes
NASA Astrophysics Data System (ADS)
Miller, A. J.; Minamisono, K.; Klose, A.; Everett, N.; Kalman, C.; Powel, R. C.; Watkins, J.; Garand, D.; Sumithrarachchi, C.; Krämer, J.; Maa, B.; Nörtershäuser, W.; Rossi, D. M.; Kujawa, C.; Pineda, S.; Lantis, J.; Liu, Y.; Mantica, P. F.; Pearson, M. R.
2017-09-01
Nucleon shell closures are generally associated with a local minimum in mean-square charge radii, 〈r2 〉 , along an isotopic chain. The 〈r2 〉 of 18Ar and 19K isotopes, however, do not show this signature at the N = 20 neutron shell closure. To gain a microscopic understanding of this abnormal behavior, measurements of 〈r2 〉 of neutron-deficient Ca isotopes below N = 20 have been proposed at the BEam COoling and LAser spectroscopy (BECOLA) facility at NSCL/MSU. Preliminary results will be presented and the deduced charge radii will be compared to theoretical calculations and the trends in the nearby isotopic chains. Work supported in part by NSF Grant PHY-15-65546, U.S. DOE Grant DE-NA0002924 and by the Deutsche Forschungsgemeinschaft through Grant SFB 1245.
Designing an extended energy range single-sphere multi-detector neutron spectrometer
NASA Astrophysics Data System (ADS)
Gómez-Ros, J. M.; Bedogni, R.; Moraleda, M.; Esposito, A.; Pola, A.; Introini, M. V.; Mazzitelli, G.; Quintieri, L.; Buonomo, B.
2012-06-01
This communication describes the design specifications for a neutron spectrometer consisting of 31 thermal neutron detectors, namely Dysprosium activation foils, embedded in a 25 cm diameter polyethylene sphere which includes a 1 cm thick lead shell insert that degrades the energy of neutrons through (n,xn) reactions, thus allowing to extension of the energy range of the response up to hundreds of MeV neutrons. The new spectrometer, called SP2 (SPherical SPectrometer), relies on the same detection mechanism as that of the Bonner Sphere Spectrometer, but with the advantage of determining the whole neutron spectrum in a single exposure. The Monte Carlo transport code MCNPX was used to design the spectrometer in terms of sphere diameter, number and position of the detectors, position and thickness of the lead shell, as well as to obtain the response matrix for the final configuration. This work focuses on evaluating the spectrometric capabilities of the SP2 design by simulating the exposure of SP2 in neutron fields representing different irradiation conditions (test spectra). The simulated SP2 readings were then unfolded with the FRUIT unfolding code, in the absence of detailed pre-information, and the unfolded spectra were compared with the known test spectra. The results are satisfactory and allowed approving the production of a prototypal spectrometer.
Light neutron-rich hypernuclei from the importance-truncated no-core shell model
NASA Astrophysics Data System (ADS)
Wirth, Roland; Roth, Robert
2018-04-01
We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.
NASA Astrophysics Data System (ADS)
Lapierre, A.; Brodeur, M.; Brunner, T.; Ettenauer, S.; Finlay, P.; Gallant, A. T.; Simon, V. V.; Delheij, P.; Lunney, D.; Ringle, R.; Savajols, H.; Dilling, J.
2012-02-01
We present Penning-trap mass measurements of neutron-rich 44,47-50K and 49,50Ca isotopes carried out at the TITAN facility at TRIUMF-ISAC. The 44K mass measurement was performed with a charge-bred 4+ ion utilizing the TITAN electron beam ion trap and agrees with the literature. The mass excesses obtained for 47K and 49,50Ca are more precise and agree with the values published in the 2003 Atomic Mass Evaluation (AME’03). The 48,49,50K mass excesses are more precise than the AME’03 values by more than 1 order of magnitude. For 48,49K, we find deviations of 7σ and 10σ, respectively. The new 49K mass excess lowers significantly the two-neutron separation energy at the neutron number N=30 compared with the separation energy calculated from the AME’03 mass-excess values and thus increases the N=28 neutron-shell gap energy at Z=19 by approximately 1 MeV.
Isoscalar neutron-proton pairing and SU(4)-symmetry breaking in Gamow-Teller transitions
NASA Astrophysics Data System (ADS)
Kaneko, K.; Sun, Y.; Mizusaki, T.
2018-05-01
The isoscalar neutron-proton pairing is thought to be important for nuclei with equal number of protons and neutrons but its manifestation in structure properties remains to be understood. We investigate the Gamow-Teller (GT) transitions for the f7 /2-shell nuclei in large-scale shell-model calculations with the realistic Hamiltonian. We show that the isoscalar T =0 ,Jπ=1+ neutron-proton pairing interaction plays a decisive role for the concentration of GT strengths at the first-excited 11+ state in 42Sc, and that the suppression of these strengths in 46V, 50Mn, and 54Co is mainly caused by the spin-orbit force supplemented by the quadrupole-quadrupole interaction. Based on the good reproduction of the charge-exchange reaction data, we further analyze the interplay between the isoscalar and isovector pairing correlations. We conclude that even for the most promising A =42 nuclei where the SU(4) isoscalar-isovector-pairing symmetry is less broken, the probability of forming an isoscalar neutron-proton pairing condensation is less than 60% as compared to the expectation at the SU(4)-symmetry limit.
Coulomb Excitation of n-rich nuclei along the N = 50 shell closure
NASA Astrophysics Data System (ADS)
Padilla-Rodal, E.; Galindo-Uribarri, A.; Batchelder, J. C.; Beene, J. R.; Bingham, C.; Brown, B. A.; Lagergren, K. B.; Mueller, P. E.; Radford, D. C.; Stracener, D. W.; Urrego-Blanco, J. P.; Varner, R. L.; Yu, C.-H.
2008-04-01
Recently, we have been investigating characteristics of nuclear states around the neutron-rich mass A=80 region [1]. Using the Radioactive Ion Beams (RIBs) produced at HRIBF, we have successfully measured the B(E2) values for ^78,80,82Ge , using Coulomb excitation in inverse kinematics. For the germanium isotopes, these data allow a study of the systematic trend between the subshell N= 40 and the N=50 shell. Using the same technique, we have measured the B(E2) value of various nuclei along the N=50 shell including the radioactive nucleus ^84Se. This value together with our previously measured ^82Ge, and the recent result on ^80Zn from ISOLDE [2] are providing basic experimental information needed for a better understanding of the neutron-rich nuclei around A˜80. We report the new results and compare with shell model calculations. [1] E. Padilla-Rodal et al., Phys. Rev. Lett. 94 (2005) 122501. [2] J. Van de Walle et al., Phys. Rev. Lett. 99 (2007) 142501.
Experimental study of the β decay of the very neutron-rich nucleus Ge 85
Korgul, A.; Rykaczewski, Krzysztof Piotr; Grzywacz, Robert Kazimierz; ...
2017-04-04
The β -decay properties of the very neutron-rich nucleus 85Ge, produced in the proton-induced fission of 238U, were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The level scheme of 33 85As 52 populated in 85Geβ γ decay was reconstructed and compared to shell-model calculations. The investigation of the systematics of low-energy levels in N =52 isotones together with shell-model analysis allowed us to provide an estimate of the low-energy structure of the more exotic N =52 isotone 81Cu.
Gaps in nuclear spectra as traces of seniority changes in systems of both neutrons and protons
NASA Astrophysics Data System (ADS)
Zamick, Larry
2016-03-01
There has been a great deal of attention given to the low-lying energy spectrum in a nucleus because of the abundance of experimental data. Likewise, perhaps to a lesser extent but still significant, the high end for a given configuration has been examined. Here, using single j shell calculations as a guide, we examine the middle part of the spectrum resulting from single j shell calculations. Seniority arguments are used to partially explain the midshell behaviors even though in general seniority is not a good quantum number for mixed systems of neutrons and protons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasjev, A.V.; Laboratory of Radiation Physics, Institute of Solid State Physics, University of Latvia, LV 2169 Salaspils, Miera str. 31; Frauendorf, S.
The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied within the relativistic mean-field theory. A large depression leads to the shell gaps at the proton Z=120 and neutron N=172 numbers, whereas a flatter density distribution favors N=184 and leads to the appearance of a Z=126 shell gap and to the decrease of the size of the Z=120 shell gap. The correlations between the magic shell gaps and the magnitude of the central depression are discussed for relativistic and nonrelativistic mean field theories.
Fission fragment mass distributions from 210Po and 213At
NASA Astrophysics Data System (ADS)
Sen, A.; Ghosh, T. K.; Bhattacharya, S.; Banerjee, K.; Bhattacharya, C.; Kundu, S.; Mukherjee, G.; Asgar, A.; Dey, A.; Dhal, A.; Shaikh, Md. Moin; Meena, J. K.; Manna, S.; Pandey, R.; Rana, T. K.; Roy, Pratap; Roy, T.; Srivastava, V.; Bhattacharya, P.
2017-12-01
Background: The influence of shell effect on the dynamics of the fusion fission process and its evolution with excitation energy in the preactinide Hg-Pb region in general is a matter of intense research in recent years. In particular, a strong ambiguity remains for the neutron shell closed 210Po nucleus regarding the role of shell effect in fission around ≈30 -40 MeV of excitation energy. Purpose: We have measured the fission fragment mass distribution of 210Po populated using fusion of 4He+206Pb at different excitation energies and compare the result with recent theoretical predictions as well as with our previous measurement for the same nucleus populated through a different entrance channel. Mass distribution in the fission of the neighboring nuclei 213At is also studied for comparison. Methods: Two large area multiwire proportional counters (MWPC) were used for complete kinematical measurement of the coincident fission fragments. The time of flight differences of the coincident fission fragments were used to directly extract the fission fragment mass distributions. Results: The measured fragment mass distribution for the reactions 4He+206Pb and 4He+209Bi were symmetric and the width of the mass distributions were found to increase monotonically with excitation energy above 36.7 MeV and 32.9 MeV, respectively, indicating the absence of shell effects at the saddle. However, in the fission of 210Po, we find minor deviation from symmetric mass distributions at the lowest excitation energy (30.8 MeV). Conclusion: Persistence of shell effect in fission fragment mass distribution of 210Po was observed at the excitation energy ≈31 MeV as predicted by the theory; at higher excitation energy, however, the present study reaffirms the absence of any shell correction in the fission of 210Po.
NASA Astrophysics Data System (ADS)
Bietenholz, M. F.; Bartel, N.; Rupen, M. P.
2010-04-01
We present new Very Long Baseline Interferometry (VLBI) images of supernova (SN) 1986J, taken at 5, 8.4, and 22 GHz between t = 22 and 25 yr after the explosion. The shell expands vpropt 0.69±0.03. We estimate the progenitor's mass-loss rate at (4-10) × 10-5 M sun yr-1 (for v w = 10 km s-1). Two bright spots are seen in the images. The first, in the northeast, is now fading. The second, very near the center of the projected shell and unique to SN 1986J, is still brightening relative to the shell, and now dominates the VLBI images. It is marginally resolved at 22 GHz (diameter ~0.3 mas; ~5 × 1016 cm at 10 Mpc). The integrated VLA spectrum of SN 1986J shows an inversion point and a high-frequency turnover, both progressing downward in frequency and due to the central bright spot. The optically thin spectral index of the central bright spot is indistinguishable from that of the shell. The small proper motion of 1500 ± 1500 km s-1 of the central bright spot is consistent with our previous interpretation of it as being associated with the expected black-hole or neutron-star remnant. Now, an alternate scenario seems also plausible, where the central bright spot, like the northeast one, results when the shock front impacts on a condensation within the circumstellar medium (CSM). The condensation would have to be so dense as to be opaque at cm wavelengths (~103× denser than the average corresponding CSM) and fortuitously close to the center of the projected shell. We include a movie of the evolution of SN 1986J at 5 GHz from t = 0 to 25 yr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Douglas Carl; Loomis, Eric Nicholas
2017-08-17
We are anticipating our first NIF double shell shot using an aluminum ablator and a glass inner shell filled with deuterium shown in figure 1. The expected yield is between a few 10 10 to a few 10 11 dd neutrons. The maximum credible yield is 5e+13. This memo describes why, and what would be expected with variations on the target. This memo evaluates the maximum credible yield for deuterium filled double shell capsule targets with an aluminum ablator shell and a glass inner shell in yield Category A (< 10 14 neutrons). It also pertains to fills of gasmore » diluted with hydrogen, helium ( 3He or 4He), or any other fuel except tritium. This memo does not apply to lower z ablator dopants, such as beryllium, as this would increase the ablation efficiency. This evaluation is for 5.75 scale hohlraum targets of either gold or uranium with helium gas fills with density between 0 and 1.6 mg/cc. It could be extended to other hohlraum sizes and shapes with slight modifications. At present only laser pulse energies up to 1.5 MJ were considered with a single step laser pulse of arbitrary shape. Since yield decreases with laser energy for this target, the memo could be extended to higher laser energies if desired. These maximum laser parameters of pulses addressed here are near the edge of NIF’s capability, and constitute the operating envelope for experiments covered by this memo. We have not considered multiple step pulses, would probably create no advantages in performance, and are not planned for double shell capsules. The main target variables are summarized in Table 1 and explained in detail in the memo. Predicted neutron yields are based on 1D and 2D clean simulations.« less
NASA Astrophysics Data System (ADS)
Pan, Feng; Ding, Xiaoxue; Launey, Kristina D.; Dai, Lianrong; Draayer, Jerry P.
2018-05-01
An extended pairing Hamiltonian that describes multi-pair interactions among isospin T = 1 and angular momentum J = 0 neutron-neutron, proton-proton, and neutron-proton pairs in a spherical mean field, such as the spherical shell model, is proposed based on the standard T = 1 pairing formalism. The advantage of the model lies in the fact that numerical solutions within the seniority-zero symmetric subspace can be obtained more easily and with less computational time than those calculated from the mean-field plus standard T = 1 pairing model. Thus, large-scale calculations within the seniority-zero symmetric subspace of the model is feasible. As an example of the application, the average neutron-proton interaction in even-even N ∼ Z nuclei that can be suitably described in the f5 pg9 shell is estimated in the present model, with a focus on the role of np-pairing correlations.
Designing Mixed Detergent Micelles for Uniform Neutron Contrast
Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.
2017-09-29
Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less
Designing Mixed Detergent Micelles for Uniform Neutron Contrast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, Ryan C.; Pingali, Sai Venkatesh; Urban, Volker S.
Micelle-forming detergents provide an amphipathic environment that mimics lipid bilayers and are important tools used to solubilize and stabilize membrane proteins in solution for in vitro structural investigations. Small-angle neutron scattering (SANS) performed at the neutron contrast match point of detergent molecules allows observing the scattering signal from membrane proteins unobstructed by contributions from the detergent. However, we show here that even for a perfectly average-contrast matched detergent there arises significant core-shell scattering from the contrast difference between aliphatic detergent tails and hydrophilic head groups. This residual signal at the average detergent contrast match point interferes with interpreting structural datamore » of membrane proteins. This complication is often made worse by the presence of excess empty (protein-free) micelles. Here, we present an approach for the rational design of mixed micelles containing a deuterated detergent analog, which eliminates neutron contrast between core and shell, and allows the micelle scattering to be fully contrast matched to unambiguously resolve membrane protein structure using solution SANS.« less
Discovery of element 117: Super-heavy elements and the “island of stability”
Roberto, James B.; Rykaczewski, Krzysztof Piotr
2017-04-12
Element 117 (tennessine) joined the periodic table in November 2016. Two tennessine isotopes were synthesized by bombarding 249Bk from Oak Ridge National Laboratory with 48Ca ions at the Joint Institute of Nuclear Research, Russia, and 11 new heaviest isotopes of odd-Z elements were observed in subsequent decay chains. These isotopes exhibit increasing lifetimes as the closed nuclear shell at neutron number N = 184 is approached, providing evidence for the “island of stability” for super-heavy elements. Here, this article summarizes recent super-heavy element research with a focus on element 117, the role of actinide targets, and opportunities to synthesize elementsmore » 119 and 120.« less
Discovery of element 117: Super-heavy elements and the “island of stability”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberto, James B.; Rykaczewski, Krzysztof Piotr
Element 117 (tennessine) joined the periodic table in November 2016. Two tennessine isotopes were synthesized by bombarding 249Bk from Oak Ridge National Laboratory with 48Ca ions at the Joint Institute of Nuclear Research, Russia, and 11 new heaviest isotopes of odd-Z elements were observed in subsequent decay chains. These isotopes exhibit increasing lifetimes as the closed nuclear shell at neutron number N = 184 is approached, providing evidence for the “island of stability” for super-heavy elements. Here, this article summarizes recent super-heavy element research with a focus on element 117, the role of actinide targets, and opportunities to synthesize elementsmore » 119 and 120.« less
Structural analysis of Fe–Mn–O nanoparticles in glass ceramics by small angle scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raghuwanshi, Vikram Singh, E-mail: vikram.raghuwanshi@helmholtz-berlin.de; Harizanova, Ruzha; Tatchev, Dragomir
2015-02-15
Magnetic nanocrystals containing Fe and Mn were obtained by annealing of silicate glasses with the composition 13.6Na{sub 2}O–62.9SiO{sub 2}–8.5MnO–15.0Fe{sub 2}O{sub 3−x} (mol%) at 580 °C for different periods of time. Here, we present Small Angle Neutron Scattering using Polarized neutrons (SANSPOL) and Anomalous Small Angle X-ray Scattering (ASAXS) investigation on these glass ceramic samples. Analysis of scattering data from both methods reveals the formation of spherical core–shell type of nanoparticles with mean sizes between 10 nm and 100 nm. ASAXS investigation shows the particles have higher concentration of iron atoms and the shell like region surrounding the particles is enrichedmore » in SiO{sub 2}. SANSPOL investigation shows the particles are found to be magnetic and are surrounded by a non-magnetic shell-like region. - Graphical abstract: Magnetic spherical core–shell nanoparticles in glass ceramics: SANSPOL and ASAXS investigations. - Highlights: • Formation and growth mechanisms of magnetic nanoparticles in silicate glass. • SANSPOL and ASAXS methods employed to evaluate quantitative information. • Analyses showed formation of nanoparticles with spherical core–shell structures. • Core of the particle is magnetic and surrounded by weak magnetic shell like region.« less
Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J
2008-10-01
We present the calculations and preliminary results from experiments on the Omega laser facility using d-(3)He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 microm length x 1200 microm diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-(3)He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.
NASA Astrophysics Data System (ADS)
Dumazert, Jonathan; Coulon, Romain; Carrel, Frédérick; Corre, Gwenolé; Normand, Stéphane; Méchin, Laurence; Hamel, Matthieu
2016-08-01
Neutron detection forms a critical branch of nuclear-related issues, currently driven by the search for competitive alternative technologies to neutron counters based on the helium-3 isotope. The deployment of plastic scintillators shows a high potential for efficient detectors, safer and more reliable than liquids, more easily scalable and cost-effective than inorganic. In the meantime, natural gadolinium, through its 155 and mostly 157 isotopes, presents an exceptionally high interaction probability with thermal neutrons. This paper introduces a dual system including a metal gadolinium core inserted at the center of a high-scale plastic scintillator sphere. Incident fast neutrons are thermalized by the scintillator shell and then may be captured with a significant probability by gadolinium 155 and 157 nuclei in the core. The deposition of a sufficient fraction of the capture high-energy prompt gamma signature inside the scintillator shell will then allow discrimination from background radiations by energy threshold, and therefore neutron detection. The scaling of the system with the Monte Carlo MCNPX2.7 code was carried out according to a tradeoff between the moderation of incident fast neutrons and the probability of slow neutron capture by a moderate-cost metal gadolinium core. Based on the parameters extracted from simulation, a first laboratory prototype for the assessment of the detection method principle has been synthetized. The robustness and sensitivity of the neutron detection principle are then assessed by counting measurement experiments. Experimental results confirm the potential for a stable, highly sensitive, transportable and cost-efficient neutron detector and orientate future investigation toward promising axes.
Empirical mass formula with proton-neutron interaction
NASA Astrophysics Data System (ADS)
Tachibana, Takahiro; Uno, Masahiro; Yamada, So; Yamada, Masami
1987-12-01
An atomic mass formula consisting of a gross part, and averge even-odd part and an empirical shell part is studied. The gross part is, apart from a small atomic term, taken to be the sum of nucleon rest masses. Coulomb energies and a polynomial in A1/3 and ‖N-Z‖/A. The shell part includes, in addition to proton and neutron support of nuclear magicities and the cooperative deformation effect. After the first construction of such a formula, refinements have been made in two respects. One is a separate treatment of Z=N odd-odd nuclei suggested by a quartet model, and the other is an improvement of the proton neutron interaction term. By these refinements the root-mean-square deviation of calculated masses from the 1986 Audi-Wapstra masses has been reduced from 538 keV to 460 keV.
NASA Astrophysics Data System (ADS)
Shiga, Y.; Yoneda, K.; Steppenbeck, D.; Aoi, N.; Doornenbal, P.; Lee, J.; Liu, H.; Matsushita, M.; Takeuchi, S.; Wang, H.; Baba, H.; Bednarczyk, P.; Dombradi, Zs.; Fulop, Zs.; Go, S.; Hashimoto, T.; Honma, M.; Ideguchi, E.; Ieki, K.; Kobayashi, K.; Kondo, Y.; Minakata, R.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Otsu, H.; Sakurai, H.; Shimizu, N.; Sohler, D.; Sun, Y.; Tamii, A.; Tanaka, R.; Tian, Z.; Tsunoda, Y.; Vajta, Zs.; Yamamoto, T.; Yang, X.; Yang, Z.; Ye, Y.; Yokoyama, R.; Zenihiro, J.
2016-02-01
The low-lying level structures of nuclei in the vicinity of 78Ni were investigated using in-beam γ -ray spectroscopy to clarify the nature of the nuclear magic numbers Z =28 and N =50 in systems close to the neutron drip line. Nucleon knockout reactions were employed to populate excited states in 80Zn and 82Zn. A candidate for the 41+ level in 80Zn was identified at 1979(30) keV, and the lifetime of this state was estimated to be 136-67+92 ps from a line-shape analysis. Moreover, the energy of the 21+ state in 82Zn is reported to lie at 621(11) keV. The large drop in the 21+ energy at 82Zn indicates the presence of a significant peak in the E (21+) systematics at N =50 . Furthermore, the E (41+) /E (21+) and B (E 2 ;41+→21+) /B (E 2 ;21+→0g.s . +) ratios in 80Zn were deduced to be 1.32 (3 ) and 1 .12-60+80 , respectively. These results imply that 80Zn can be described in terms of two-proton configurations with a 78Ni core and are consistent with a robust N =50 magic number along the Zn isotopic chain. These observations, therefore, indicate a persistent N =50 shell closure in nuclei far from the line of β stability, which in turn suggests a doubly magic structure for 78Ni.
In-beam γ -ray spectroscopy of the neutron-rich platinum isotope 200Pt toward the N =126 shell gap
NASA Astrophysics Data System (ADS)
John, P. R.; Valiente-Dobón, J. J.; Mengoni, D.; Modamio, V.; Lunardi, S.; Bazzacco, D.; Gadea, A.; Wheldon, C.; Rodríguez, T. R.; Alexander, T.; de Angelis, G.; Ashwood, N.; Barr, M.; Benzoni, G.; Birkenbach, B.; Bizzeti, P. G.; Bizzeti-Sona, A. M.; Bottoni, S.; Bowry, M.; Bracco, A.; Browne, F.; Bunce, M.; Camera, F.; Corradi, L.; Crespi, F. C. L.; Melon, B.; Farnea, E.; Fioretto, E.; Gottardo, A.; Grente, L.; Hess, H.; Kokalova, Tz.; Korten, W.; Kuşoǧlu, A.; Lenzi, S.; Leoni, S.; Ljungvall, J.; Menegazzo, R.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D. R.; Podolyák, Zs.; Pollarolo, G.; Recchia, F.; Reiter, P.; Roberts, O. J.; Şahin, E.; Salsac, M.-D.; Scarlassara, F.; Sferrazza, M.; Söderström, P.-A.; Stefanini, A. M.; Szilner, S.; Ur, C. A.; Vogt, A.; Walshe, J.
2017-06-01
The neutron-rich nucleus 200Pt is investigated via in-beam γ -ray spectroscopy to study the shape evolution in the neutron-rich platinum isotopes towards the N =126 shell closure. The two-neutron transfer reaction 198Pt(82Se, 80Se)200Pt is used to populate excited states of 200Pt. The Advanced Gamma Ray Tracking Array (AGATA) demonstrator coupled with the PRISMA spectrometer detects γ rays coincident with the 80Se recoils, the binary partner of 200Pt. The binary partner method is applied to extract the γ -ray transitions and build the level scheme of 200Pt. The level at 1884 keV reported by Yates et al. [S. W. Yates, E. M. Baum, E. A. Henry, L. G. Mann, N. Roy, A. Aprahamian, R. A. Meyer, and R. Estep, Phys. Rev. C 37, 1889 (1988)] was confirmed to be at 1882.1 keV and assigned as the (61+) state. An additional γ ray was found and it presumably deexcites the (81+) state. The results are compared with state-of-the-art beyond mean-field calculations, performed for the even-even 190 -204Pt isotopes, revealing that 200Pt marks the transition from the γ -unstable behavior of lighter Pt nuclei towards a more spherical one when approaching the N =126 shell closure.
Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.
2017-10-01
A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, N. Sanjeeva; Zhang, Zheng; Borsadia, Siddharth
The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).
NASA Astrophysics Data System (ADS)
Murphy, T. J.; Kyrala, G. A.; Bradley, P. A.; Krasheninnikova, N. S.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Grim, G. P.; Baumgaertel, J. A.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.
2013-10-01
Mix of shell material into ICF capsule fuel can degrade implosion performance through a number of mechanisms. One way is by dilution of the fusion fuel, which affects performance by an amount that is dependent on the degree of mix at the atomic level. Experiments are underway to quantify the mix of shell material into fuel using directly driven capsules on the National Ignition Facility. Deuterated plastic shells will be utilized with tritium fill so that the production of DT neutrons is indicative of mix at the atomic level. Neutron imaging will locate the burn region and spectroscopic imaging of the doped layers will reveal the location, temperature, and density of the shell material. Correlation of the two will be used to determine the degree of atomic mixing of the shell into the fuel and will be compared to models. This talk will review progress toward the development of an experimental platform to measure burn in the presence of measured mix. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
Multi-Shell Hollow Nanogels with Responsive Shell Permeability
Schmid, Andreas J.; Dubbert, Janine; Rudov, Andrey A.; Pedersen, Jan Skov; Lindner, Peter; Karg, Matthias; Potemkin, Igor I.; Richtering, Walter
2016-01-01
We report on hollow shell-shell nanogels with two polymer shells that have different volume phase transition temperatures. By means of small angle neutron scattering (SANS) employing contrast variation and molecular dynamics (MD) simulations we show that hollow shell-shell nanocontainers are ideal systems for controlled drug delivery: The temperature responsive swelling of the inner shell controls the uptake and release, while the thermoresponsive swelling of the outer shell controls the size of the void and the colloidal stability. At temperatures between 32 °C < T < 42 °C, the hollow nanocontainers provide a significant void, which is even larger than the initial core size of the template, and they possess a high colloidal stability due to the steric stabilization of the swollen outer shell. Computer simulations showed, that temperature induced switching of the permeability of the inner shell allows for the encapsulation in and release of molecules from the cavity. PMID:26984478
Neutron Nucleic Acid Crystallography.
Chatake, Toshiyuki
2016-01-01
The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.
Beta delayed neutrons for nuclear structure and astrophysics
NASA Astrophysics Data System (ADS)
Grzywacz, Robert
2014-09-01
Beta-delayed neutron emission (β xn) is a significant or even dominant decay channel for the majority of very neutron-rich nuclei, especially for those on the r-process path. The recent theoretical models predicts that it may play more significant role then previously expected for astrophysics and this realization instigated a renewed experimental interest in this topic as a part of a larger scope of research on beta-decay strength distribution. Because studies of the decay strength directly probe relevant physics on the microscopic level, energy-resolved measurements of the beta-decay strength distribution is a better test of nuclear models than traditionally used experimental observables like half-lives and neutron branching ratios. A new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed to directly address this issue. In its first experimental campaign at the Holifield Radioactive Ion Beam Facility neutron energy spectra in key regions of the nuclear chart were measured: near the shell closures at 78Ni and 132Sn, and for the deformed nuclei near 100Rb. In several cases, unexpectedly intense and concentrated, resonant-like, high-energy neutron structures were observed. These results were interpreted within shell model framework which clearly indicated that these neutron emission is driven by nuclear structure effects and are due to large Gamow-Teller type transition matrix elements. This research was sponsored in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-FG52-08NA28552.
NASA Astrophysics Data System (ADS)
Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; Robey, H. F.; Benedetti, L. R.; Berzak Hopkins, L.; Bradley, D. K.; Field, J. E.; Haan, S. W.; Hatarik, R.; Hartouni, E.; Izumi, N.; Johnson, S.; Khan, S.; Lahmann, B.; Landen, O. L.; Le Pape, S.; MacPhee, A. G.; Meezan, N. B.; Milovich, J.; Nagel, S. R.; Nikroo, A.; Pak, A. E.; Petrasso, R.; Remington, B. A.; Rice, N. G.; Springer, P. T.; Stadermann, M.; Widmann, K.; Hsing, W.
2018-05-01
High-mode perturbations and low-mode asymmetries were measured in the deceleration phase of indirectly driven, deuterium gas filled inertial confinement fusion capsule implosions at convergence ratios of 10 to 15, using a new "enhanced emission" technique at the National Ignition Facility [E. M. Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In these experiments, a high spatial resolution Kirkpatrick-Baez microscope was used to image the x-ray emission from the inner surface of a high-density-carbon capsule's shell. The use of a high atomic number dopant in the shell enabled time-resolved observations of shell perturbations penetrating into the hot spot. This allowed the effects of the perturbations and asymmetries on degrading neutron yield to be directly measured. In particular, mix induced radiation losses of ˜400 J from the hot spot resulted in a neutron yield reduction of a factor of ˜2. In a subsequent experiment with a significantly increased level of short-mode initial perturbations, shown through the enhanced imaging technique to be highly organized radially, the neutron yield dropped an additional factor of ˜2.
Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules
NASA Astrophysics Data System (ADS)
Hayes, A. C.; Bradley, P. A.; Grim, G. P.; Jungman, Gerard; Wilhelmy, J. B.
2010-01-01
Analytic calculations and results from computational simulations are presented that suggest that reaction-in-flight (RIF) neutrons can be used to diagnose mixing of the ablator shell material into the fuel in deuterium-tritium (DT) capsules designed for the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. Such mixing processes in NIF capsules are of fundamental physical interest and can have important effects on capsule performance, quenching the total thermonuclear yield. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIF production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to down-scattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.
NASA Astrophysics Data System (ADS)
Chung, Le Xuan; Bertulani, Carlos A.; Egelhof, Peter; Ilieva, Stoyanka; Khoa, Dao T.; Kiselev, Oleg A.
2017-11-01
The momentum distribution of 11Be fragments produced by the breakup of 12Be interacting with a proton target at 700.5 MeV/u energy has been measured at GSI Darmstadt. To obtain the structure information on the anomaly of the N = 8 neutron shell, the momentum distribution of 11Be fragments from the one-neutron knockout 12Be (p , pn) reaction, measured in inverse kinematics, has been analysed in the distorted wave impulse approximation (DWIA) based on a quasi-free scattering scenario. The DWIA analysis shows a surprisingly strong contribution of the neutron 0d5/2 orbital in 12Be to the transverse momentum distribution of the 11Be fragments. The single-neutron 0d5/2 spectroscopic factor deduced from the present knock-out data is 1.39(10), which is significantly larger than that deduced recently from data of 12Be breakup on a carbon target. This result provides a strong experimental evidence for the dominance of the neutron ν(0d5/2) 2 configuration in the ground state of 12Be.
Dynamical onset of superconductivity and retention of magnetic fields in cooling neutron stars
NASA Astrophysics Data System (ADS)
Ho, Wynn C. G.; Andersson, Nils; Graber, Vanessa
2017-12-01
A superconductor of paired protons is thought to form in the core of neutron stars soon after their birth. Minimum energy conditions suggest magnetic flux is expelled from the superconducting region due to the Meissner effect, such that the neutron star core is largely devoid of magnetic fields for some nuclear equation of state and proton pairing models. We show via neutron star cooling simulations that the superconducting region expands faster than flux is expected to be expelled because cooling timescales are much shorter than timescales of magnetic field diffusion. Thus magnetic fields remain in the bulk of the neutron star core for at least 106-107yr . We estimate the size of flux free regions at 107yr to be ≲100 m for a magnetic field of 1011G and possibly smaller for stronger field strengths. For proton pairing models that are narrow, magnetic flux may be completely expelled from a thin shell of approximately the above size after 105yr . This shell may insulate lower conductivity outer layers, where magnetic fields can diffuse and decay faster, from fields maintained in the highly conducting deep core.
Unexpected distribution of ν 1 f 7 / 2 strength in Ca 49
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, H. L.; Macchiavelli, A. O.; Fallon, P.
Here, the calcium isotopes have emerged as a critical testing ground for new microscopically derived shell-model interactions, and a great deal of experimental and theoretical focus has been directed toward this region. We investigate the relative spectroscopic strengths associated with 1f 7/2 neutron hole states in 47,49Ca following one-neutron knockout reactions from 48,50Ca. The observed reduction of strength populating the 7/2 – 1 state in 49Ca, as compared to 47Ca, is inconsistent with shell-model calculations using both phenomenological interactions such as GXPF1, and interactions derived from microscopically based two- and three-nucleon forces. The result suggests a fragmentation of the lmore » = 3 strength to higher-lying states as suggested by the microscopic calculations, but the observed magnitude of the reduction is not reproduced in any shell-model description.« less
NASA Astrophysics Data System (ADS)
Ito, Y.; Schury, P.; Wada, M.; Arai, F.; Haba, H.; Hirayama, Y.; Ishizawa, S.; Kaji, D.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morimoto, K.; Morita, K.; Mukai, M.; Murray, I.; Niwase, T.; Okada, K.; Ozawa, A.; Rosenbusch, M.; Takamine, A.; Tanaka, T.; Watanabe, Y. X.; Wollnik, H.; Yamaki, S.
2018-04-01
The masses of 246Es, 251Fm, and the transfermium nuclei Md-252249 and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N =152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of Md,250249 as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2 n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N =152 neutron shell closure for Md and Lr.
Unexpected distribution of ν 1 f 7 / 2 strength in Ca 49
Crawford, H. L.; Macchiavelli, A. O.; Fallon, P.; ...
2017-06-21
Here, the calcium isotopes have emerged as a critical testing ground for new microscopically derived shell-model interactions, and a great deal of experimental and theoretical focus has been directed toward this region. We investigate the relative spectroscopic strengths associated with 1f 7/2 neutron hole states in 47,49Ca following one-neutron knockout reactions from 48,50Ca. The observed reduction of strength populating the 7/2 – 1 state in 49Ca, as compared to 47Ca, is inconsistent with shell-model calculations using both phenomenological interactions such as GXPF1, and interactions derived from microscopically based two- and three-nucleon forces. The result suggests a fragmentation of the lmore » = 3 strength to higher-lying states as suggested by the microscopic calculations, but the observed magnitude of the reduction is not reproduced in any shell-model description.« less
Effectively-truncated large-scale shell-model calculations and nuclei around 100Sn
NASA Astrophysics Data System (ADS)
Gargano, A.; Coraggio, L.; Itaco, N.
2017-09-01
This paper presents a short overview of a procedure we have recently introduced, dubbed the double-step truncation method, which is aimed to reduce the computational complexity of large-scale shell-model calculations. Within this procedure, one starts with a realistic shell-model Hamiltonian defined in a large model space, and then, by analyzing the effective single particle energies of this Hamiltonian as a function of the number of valence protons and/or neutrons, reduced model spaces are identified containing only the single-particle orbitals relevant to the description of the spectroscopic properties of a certain class of nuclei. As a final step, new effective shell-model Hamiltonians defined within the reduced model spaces are derived by way of a unitary transformation of the original large-scale Hamiltonian. A detailed account of this transformation is given and the merit of the double-step truncation method is illustrated by discussing few selected results for 96Mo, described as four protons and four neutrons outside 88Sr. Some new preliminary results for light odd-tin isotopes from A = 101 to 107 are also reported.
Empirical mass formula with proton-neutron interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tachibana, T.; Uno, M.; Yamada, S.
An atomic mass formula consisting of a gross part, and averge even-odd part and an empirical shell part is studied. The gross part is, apart from a small atomic term, taken to be the sum of nucleon rest masses. Coulomb energies and a polynomial in A/sup 1/3/ and chemically bondN-Zchemically bond/A. The shell part includes, in addition to proton and neutron support of nuclear magicities and the cooperative deformation effect. After the first construction of such a formula, refinements have been made in two respects. One is a separate treatment of Z = N odd-odd nuclei suggested by a quartetmore » model, and the other is an improvement of the proton neutron interaction term. By these refinements the root-mean-square deviation of calculated masses from the 1986 Audi-Wapstra masses has been reduced from 538 keV to 460 keV.« less
Nuclear fusion and carbon flashes on neutron stars
NASA Technical Reports Server (NTRS)
Taam, R. E.; Picklum, R. E.
1978-01-01
This paper reports on detailed calculations of the thermal evolution of the carbon-burning shells in the envelopes of accreting neutron stars for mass-accretion rates of 1 hundred-billionth to 2 billionths of a solar mass per yr and neutron-star masses of 0.56 and 1.41 solar masses. The work of Hansen and Van Horn (1975) is extended to higher densities, and a more detailed treatment of nuclear processing in the hydrogen- and helium-burning regions is included. Results of steady-state calculations are presented, and results of time-dependent computations are examined for accretion rates of 3 ten-billionths and 1 billionth of solar mass per yr. It is found that two evolutionary sequences lead to carbon flashes and that the carbon abundance at the base of the helium shell is a strong function of accretion rate. Upper limits are placed on the accretion rates at which carbon flashes will be important.
Gamma Ray Imaging of Inertial Confinement Fusion Experiments
NASA Astrophysics Data System (ADS)
Wilde, Carl; Volegov, Petr; Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Fittinghoff, David; Grim, Gary; NIF Nuclear Diagnostic Team Team; Advanced Imaging Team Team
2016-10-01
Experiments consisting of an ablatively driven plastic (CH) shell surrounding a deuterium tritium (DT) fuel region are routinely performed at the National Ignition Facility (NIF). Neutrons produced in the burning fuel in-elastically scatter with carbon atoms in the plastic shell producing 4.4 MeV gamma rays. Providing a spatially resolved distribution of the origin of these gammas can inform models of ablator physics and also provide a bounding volume for the cold fuel (un-burned DT fuel) region. Using the NIF neutron imaging system hardware, initial studies have been performed of the feasibility of imaging these gamma rays. A model of the system has been developed to inform under which experimental conditions this measurement can be made. Presented here is an analysis of the prospects for this diagnostic probe and a proposed set of modifications to the NIF neutron imaging line-of-site to efficiently enable this measurement.
NASA Astrophysics Data System (ADS)
Yang, X. F.; Tsunoda, Y.; Babcock, C.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Flanagan, K. T.; Garcia Ruiz, R. F.; Gins, W.; Gorges, C.; Grob, L. K.; Heylen, H.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Otsuka, T.; Papuga, J.; Sánchez, R.; Wraith, C.; Xie, L.; Yordanov, D. T.
2018-04-01
Recently reported nuclear spins and moments of neutron-rich Zn isotopes measured at ISOLDE-CERN [C. Wraith et al., Phys. Lett. B 771, 385 (2017), 10.1016/j.physletb.2017.05.085] show an uncommon behavior of the isomeric state in 73Zn. Additional details relating to the measurement and analysis of the Znm73 hyperfine structure are addressed here to further support its spin-parity assignment 5 /2+ and to estimate its half-life. A systematic investigation of this 5 /2+ isomer indicates that significant collectivity appears due to proton/neutron E 2 excitations across the proton Z = 28 and neutron N = 50 shell gaps. This is confirmed by the good agreement of the observed quadrupole moments with large scale Monte Carlo shell model calculations. In addition, potential energy surface calculations in combination with T plots reveal a triaxial shape for this isomeric state.
NASA Astrophysics Data System (ADS)
Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cikhardt, J.; Fursov, F. I.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Ratakhin, N. A.; Sila, O.; Stodulka, J.
2013-08-01
Experiments with deuterium (D2) triple shell gas puffs were carried out on the GIT-12 generator at a 3 MA current level and microsecond implosion times. The outer, middle and inner nozzle diameters were 160 mm, 80 mm and 30 mm, respectively. The influence of the mass of deuterium shells on neutron emission times, neutron yields and neutron energy spectra was studied. The injected linear mass of deuterium varied between 50 and 255 µg cm-1. Gas puffs imploded onto the axis before the peak of generator current at 700-1100 ns. Most of the neutrons were emitted during the second neutron pulse after the development of instabilities. Despite higher currents, heavier gas puffs produced lower neutron yields. Optimal mass and a short time delay between the valve opening and the generator triggering were more important than the better coincidence of stagnation with peak current. The peak neutron yield from D(d, n)3He reactions reached 3 × 1011 at 2.8 MA current, 90 µg cm-1 injected linear mass and 37 mm anode-cathode gap. In the case of lower mass shots, a large number of 10 MeV neutrons were produced either by secondary DT reactions or by DD reactions of deuterons with energies above 7 MeV. The average neutron yield ratio Y>10 MeV/Y2.5 MeV reached (6 ± 3) × 10-4. Such a result can be explained by a power law distribution for deuterons as \\rmd N_d/\\rmd E_d\\propto E_d^{-3} . The optimization of a D2 gas puff Z-pinch and similarities to a plasma focus and its drive parameter are described.
In-beam γ -ray spectroscopy of Mn 63
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baugher, T.; Gade, A.; Janssens, R. V. F.
2016-01-01
Background: Neutron-rich, even-mass chromium and iron isotopes approaching neutron number N = 40 have been important benchmarks in the development of shell-model effective interactions incorporating the effects of shell evolution in the exotic regime. Odd-mass manganese nuclei have received less attention, but provide important and complementary sensitivity to these interactions. Purpose: We report the observation of two new γ -ray transitions in 63 Mn , which establish the ( 9 / 2 - ) and ( 11 / 2 - ) levels on top of the previously known ( 7 / 2 - ) first-excited state. The lifetime for themore » ( 7 / 2 - ) and ( 9 / 2 - ) excited states were determined for the first time, while an upper limit could be established for the ( 11 / 2 - ) level. Method: Excited states in 63 Mn have been populated in inelastic scattering from a 9 Be target and in the fragmentation of 65 Fe . γ γ coincidence relationships were used to establish the decay level scheme. A Doppler line-shape analysis for the Doppler-broadened ( 7 / 2 - ) → 5 / 2 - , ( 9 / 2 - ) → ( 7 / 2 - ) , and ( 11 / 2 - ) → ( 9 / 2 - ) transitions was used to determine (limits for) the corresponding excited-state lifetimes. Results: The low-lying level scheme and the excited-state lifetimes were compared with large-scale shell-model calculations using different model spaces and effective interactions in order to isolate important aspects of shell evolution in this region of structural change. Conclusions: While the theoretical ( 7 / 2 - ) and ( 9 / 2 - ) excitation energies show little dependence on the model space, the calculated lifetime of the ( 7 / 2 - ) level and calculated energy of the ( 11 / 2 - ) level reveal the importance of including the neutron g 9 / 2 and d 5 / 2 orbitals in the model space. The LNPS effective shell-model interaction provides the best overall agreement with the new data.« less
Structure Functions of Bound Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastian Kuhn
2005-04-01
We describe an experiment measuring electron scattering on a neutron bound in deuterium with coincident detection of a fast, backward-going spectator proton. Our data map out the relative importance of the pure PWIA spectator mechanism and final state interactions in various kinematic regions, and give a first glimpse of the modification of the structure function of a bound neutron as a function of its off-shell mass. We also discuss a new experimental program to study the structure of a free neutron by extending the same technique to much lower spectator momenta.
Enhanced direct-drive implosions with thin high-Z ablation layers.
Mostovych, Andrew N; Colombant, Denis G; Karasik, Max; Knauer, James P; Schmitt, Andrew J; Weaver, James L
2008-02-22
New direct-drive spherical implosion experiments with deuterium filled plastic shells have demonstrated significant and absolute (2x) improvements in neutron yield when the shells are coated with a very thin layer ( approximately 200-400 A) of high-Z material such as palladium. This improvement is interpreted as resulting from increased stability of the imploding shell. These results provide for a possible path to control laser imprint and stability in laser-fusion-energy target designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less
Low-Z shore of the "island of inversion" and the reduced neutron magicity toward 28O
NASA Astrophysics Data System (ADS)
Doornenbal, P.; Scheit, H.; Takeuchi, S.; Utsuno, Y.; Aoi, N.; Li, K.; Matsushita, M.; Steppenbeck, D.; Wang, H.; Baba, H.; Ideguchi, E.; Kobayashi, N.; Kondo, Y.; Lee, J.; Michimasa, S.; Motobayashi, T.; Otsuka, T.; Sakurai, H.; Takechi, M.; Togano, Y.; Yoneda, K.
2017-04-01
The two odd-even fluorine isotopes F,2927 were studied via in-beam γ -ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory. A secondary beam of 30Ne was used to induce one-proton and one-proton-two-neutron removal reactions on carbon and polyethylene targets at midtarget energies of 228 MeV/u . Excited states were observed at 915(12) keV for 27F and at 1080(18) keV for 29F. Both were assigned a 1 /21+ spin and parity. The low transition energy for 29F largely disagrees with shell model predictions restricted to the s d model space. Calculations using effective interactions that include the neutron p f shell indicate that the N =20 gap is quenched for 29F, thus extending the "island of inversion" to isotopes with proton number Z =9 . Variations of the N =20 gap further reveal a strong correlation to the 1 /21+ level energy in 29F and suggest a persistent reduced neutron gap for 28O.
Wang, Taofeng; Li, Guangwu; Zhu, Liping; ...
2016-01-08
The dependence of correlations of neutron multiplicity ν and γ-ray multiplicity M γ in spontaneous fission of 252Cf on fragment mass A* and total kinetic energy (TKE) have been investigated by employing the ratio of M γ/ν and the form of M γ(ν). We show for the first time that M γ and ν have a complex correlation for heavy fragment masses, while there is a positive dependence of Mγ for light fragment masses and for near-symmetric mass splits. The ratio M γ/ν exhibits strong shell effects for neutron magic number N=50 and near doubly magic number shell closure atmore » Z=50 and N=82. The γ-ray multiplicity Mγ has a maximum for TKE=165-170 MeV. Above 170 MeV M γ(TKE) is approximately linear, while it deviates significantly from a linear dependence at lower TKE. The correlation between the average neutron and γ-ray multiplicities can be partly reproduced by model calculations.« less
Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmese, A.; et al.
2017-11-09
We present a study of NGC 4993, the host galaxy of the GW170817 gravitational wave event, the GRB170817A short gamma-ray burst (sGRB) and the AT2017gfo kilonova. We use Dark Energy Camera imaging, AAT spectra and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and merger delay timescales. NGC4993 is a nearby (40 Mpc) early-type galaxy, withmore » $i$$-band S\\'ersic index $$n=4.0$ and low asymmetry ($$A=0.04\\pm 0.01$$). These properties are unusual for sGRB hosts. However, NGC4993 presents shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a star formation burst, but find little to no on-going star formation in either spatially-resolved broadband SED or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as $$R_{NSM}^{gal}= 5.7^{+0.57}_{-3.3} \\times 10^{-6} {\\rm yr}^{-1}$$. If star formation is the only considered BNS formation scenario, the expected number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is $$0.038^{+0.004}_{-0.022}$$, as opposed to $$\\sim 0.5$$ from all galaxy types. Hypothesizing that the binary system formed due to dynamical interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger occurred $$t_{\\rm mer}\\lesssim 200~{\\rm Myr}$$ prior to the BNS coalescence.« less
NASA Astrophysics Data System (ADS)
Chong, Y. K.; Velikovich, A. L.; Thornhil, J. W.; Giuliani, J. L.; Knapp, P.; Jennings, C.
2013-10-01
Over the last few years, numerous 1D and 2D MHD simulation studies of deuterium (D) based double-shell gas-puff Z-pinch implosions driven by the Sandia ZR accelerator have been carried out to assess the Z-pinch as a pulsed thermal fusion neutron source. In these studies, an ad-hoc time-dependent shunt impedance model was used within the external driving circuit model in order to account for the unresolved current loss in the MITL and the load. In this study, we incorporate an improved ZR circuit model recently formulated based on the recent Sandia argon gas-puff experiment circuit data into the multi-material version of the Mach +DDTCRE RMHD code. We reinvestigate the effects of multidimensional structure and nonuniform gradients as well as the outer- and inner-shell material interaction on the implosion physics and dynamics of both D-on-D and argon-on-D Z-pinch loads using the model. Then, we characterize the neutron production performance of the Z-pinch loads as a function of total mass, mass ratio and/or radius toward their optimization as a pulsed thernonuclear neutron source. Work supported by DOE/NNSA. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000.
QRPA plus phonon coupling model and the photoabsorption cross section for 18,20,22O
NASA Astrophysics Data System (ADS)
Colò, G.; Bortignon, P. F.
2001-12-01
We have calculated the electric dipole strength distributions in the unstable neutron-rich oxygen isotopes 18,20,22O, in a model which include up to four quasiparticle-type configurations. The model is the extension, to include the effect of the pairing correlations, of a previous model very successful around closed shell nuclei, and it is based on the quasiparticle-phonon coupling. Low-lying dipole strength is found, which exhausts between 5 and 10% of the Thomas-Reiche-Kuhn (TRK) energy-weighted sum rule (EWSR) below 15 MeV excitation energy, in rather good agreement with recent experimental data. The role of the phonon coupling is shown to be crucial in order to obtain this result.
Core-Shell Magnetic Morphology of Structurally Uniform Magnetite Nanoparticles
NASA Astrophysics Data System (ADS)
Krycka, K. L.; Booth, R. A.; Hogg, C. R.; Ijiri, Y.; Borchers, J. A.; Chen, W. C.; Watson, S. M.; Laver, M.; Gentile, T. R.; Dedon, L. R.; Harris, S.; Rhyne, J. J.; Majetich, S. A.
2010-05-01
A new development in small-angle neutron scattering with polarization analysis allows us to directly extract the average spatial distributions of magnetic moments and their correlations with three-dimensional directional sensitivity in any magnetic field. Applied to a collection of spherical magnetite nanoparticles 9.0 nm in diameter, this enhanced method reveals uniformly canted, magnetically active shells in a nominally saturating field of 1.2 T. The shell thickness depends on temperature, and it disappears altogether when the external field is removed, confirming that these canted nanoparticle shells are magnetic, rather than structural, in origin.
Exploring Closed-Shell Cationic Phenalenyl: From Catalysis to Spin Electronics.
Mukherjee, Arup; Sau, Samaresh Chandra; Mandal, Swadhin K
2017-07-18
The odd alternant hydrocarbon phenalenyl (PLY) can exist in three different forms, a closed-shell cation, an open-shell radical, and a closed-shell anion, using its nonbonding molecular orbital (NBMO). The chemistry of PLY-based molecules began more than five decades ago, and so far, the progress has mainly involved the open-shell neutral radical state. Over the last two decades, we have witnessed the evolution of a range of PLY-based radicals generating an array of multifunctional materials. However, it has been admitted that the practical applications of PLY radicals are greatly challenged by the low stability of the open-shell (radical) state. Recently, we took a different route to establish the utility of these PLY molecules using the closed-shell cationic state. In such a design, the closed-shell unit of PLY can readily accept free electrons, stabilizing in its NBMO upon generation of the open-shell state of the molecule. Thus, one can synthetically avoid the unstable open-shell state but still take advantage of this state by in situ generating the radical through external electron transfer or spin injection into the empty NBMO. It is worth noting that such approaches using closed-shell phenalenyl have been missing in the literature. This Account focuses on our recent developments using the closed-shell cationic state of the PLY molecule and its application in broad multidisciplinary areas spanning from catalysis to spin electronics. We describe how this concept has been utilized to develop a variety of homogeneous catalysts. For example, this concept was used in designing an iron(III) PLY-based electrocatalyst for a single-compartment H 2 O 2 fuel cell, which delivered the best electrocatalytic activity among previously reported iron complexes, organometallic catalysts for various homogeneous organic transformations (hydroamination and polymerization), an organic Lewis acid catalyst for the ring opening of epoxides, and transition-metal-free C-H functionalization catalysts. Moreover, this concept of using the empty NBMO present in the closed-shell cationic state of the PLY moiety to capture electron(s) was further extended to an entirely different area of spin electronics to design a PLY-based spin-memory device, which worked by a spin-filtration mechanism using an organozinc compound based on a PLY backbone deposited over a ferromagnetic substrate. In this Account, we summarize our recent efforts to understand how this unexplored closed-shell state of the phenalenyl molecule, which has been known for over five decades, can be utilized in devising an array of materials that not only are important from an organometallic chemistry or organic chemistry point of view but also provide new understanding for device physics.
Two-nucleon high-spin states, the Bansal-French model and the crude shell model
NASA Astrophysics Data System (ADS)
Chan, Tsan Ung
1987-08-01
Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B2n in the Bansal-French model can be deduced from the A and T linear dependence of Bn and the crude shell model. 7-2 states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.
Reaction-in-flight neutrons as a signature for shell mixing in National Ignition Facility capsules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, A. C.; Bradley, P. A.; Grim, G. P.
2010-01-15
Analytic calculations and results from computational simulations are presented that suggest that reaction-in-flight (RIF) neutrons can be used to diagnose mixing of the ablator shell material into the fuel in deuterium-tritium (DT) capsules designed for the National Ignition Facility (NIF) [J. A. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, Laser Focus World 30, 75 (1994)]. Such mixing processes in NIF capsules are of fundamental physical interest and can have important effects on capsule performance, quenching the total thermonuclear yield. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIFmore » production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to down-scattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.« less
Implosion and heating experiments of fast ignition targets by Gekko-XII and LFEX lasers
NASA Astrophysics Data System (ADS)
Shiraga, H.; Fujioka, S.; Nakai, M.; Watari, T.; Nakamura, H.; Arikawa, Y.; Hosoda, H.; Nagai, T.; Koga, M.; Kikuchi, H.; Ishii, Y.; Sogo, T.; Shigemori, K.; Nishimura, H.; Zhang, Z.; Tanabe, M.; Ohira, S.; Fujii, Y.; Namimoto, T.; Sakawa, Y.; Maegawa, O.; Ozaki, T.; Tanaka, K. A.; Habara, H.; Iwawaki, T.; Shimada, K.; Key, M.; Norreys, P.; Pasley, J.; Nagatomo, H.; Johzaki, T.; Sunahara, A.; Murakami, M.; Sakagami, H.; Taguchi, T.; Norimatsu, T.; Homma, H.; Fujimoto, Y.; Iwamoto, A.; Miyanaga, N.; Kawanaka, J.; Kanabe, T.; Jitsuno, T.; Nakata, Y.; Tsubakimoto, K.; Sueda, K.; Kodama, R.; Kondo, K.; Morio, N.; Matsuo, S.; Kawasaki, T.; Sawai, K.; Tsuji, K.; Murakami, H.; Sarukura, N.; Shimizu, T.; Mima, K.; Azechi, H.
2013-11-01
The FIREX-1 project, the goal of which is to demonstrate fuel heating up to 5 keV by fast ignition scheme, has been carried out since 2003 including construction and tuning of LFEX laser and integrated experiments. Implosion and heating experiment of Fast Ignition targets have been performed since 2009 with Gekko-XII and LFEX lasers. A deuterated polystyrene shell target was imploded with the 0.53- μm Gekko-XII, and the 1.053- μm beam of the LFEX laser was injected through a gold cone attached to the shell to generate hot electrons to heat the imploded fuel plasma. Pulse contrast ratio of the LFEX beam was significantly improved. Also a variety of plasma diagnostic instruments were developed to be compatible with harsh environment of intense hard x-rays (γ rays) and electromagnetic pulses due to the intense LFEX beam on the target. Large background signals around the DD neutron signal in time-of-flight record of neutron detector were found to consist of neutrons via (γ,n) reactions and scattered gamma rays. Enhanced neutron yield was confirmed by carefully eliminating such backgrounds. Neutron enhancement up to 3.5 × 107 was observed. Heating efficiency was estimated to be 10-20% assuming a uniform temperature rise model.
On The Origin Of Two-Shell Supernova Remnants
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2006-08-01
It is known that proper motion of massive stars causes them to explode far from the geometric centers of their wind-driven bubbles and thereby affects the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. 3C 400.2, Cygnus Loop, Kes32, etc.), whose unusual morphology is usually treated in terms of the collision (or superposition) of two separate SNRs or breakout phenomena in a region with a density discontinuity. We propose that a SNR of this type is a natural consequence of an off-centered cavity supernova (SN) explosion of a moving massive star, which ended its evolution near the edge of the main-sequence (MS) wind-driven bubble. Our proposal implies that one of the shells is the former MS bubble reenergized by the SN blast wave. The second shell, however, could originate in two somewhat different ways, depending on the initial mass of the SN progenitor star. It could be a shell swept-up by the SN blast wave expanding through the unperturbed ambient interstellar medium if the massive star ends its evolution as a red supergiant (RSG). Or it could be the remainder of a pre-existing shell (adjacent to the MS bubble) swept-up by the fast progenitor's wind during the late evolutionary phases if after the RSG phase the star evolves through the Wolf-Rayet phase. In both cases the resulting (two-shell) SNR should be associated only with one (young) neutron star (thus one can somewhat improve the statistics of neutron star/SNR associations since the two-shell SNRs are quite numerous). We discuss several criteria to discern the SNRs formed by SN explosion after the RSG or WR phase.
Development of Grazing Incidence Optics for Neutron Imaging and Scattering
NASA Technical Reports Server (NTRS)
Gubarev, M. V.; Khaykovich, B.; Liu, D.; Ramsey, B. D.; Zavlin, V. E.; Kilaru, K.; Romaine, S.; Rosati, R. E.; Bruni, R.; Moncton, D. E.
2012-01-01
Because of their wave nature, thermal and cold neutrons can be reflected from smooth surfaces at grazing incidence angles, be reflected by multilayer coatings or be refracted at boundaries of different materials. The optical properties of materials are characterized by their refractive indices which are slightly less than unity for most elements and their isotopes in the case of cold and thermal neutrons as well as for x-rays. The motivation for the optics use for neutrons as well as for x-rays is to increase the signal rate and, by virtue of the optic's angular resolution, to improve the signal-to-noise level by reducing the background so the efficiency of the existing neutron sources use can be significantly enhanced. Both refractive and reflective optical techniques developed for x-ray applications can be applied to focus neutron beams. Typically neutron sources have lower brilliance compared to conventional x-ray sources so in order to increase the beam throughput the neutron optics has to be capable of capturing large solid angles. Because of this, the replicated optics techniques developed for x-ray astronomy applications would be a perfect match for neutron applications, so the electroformed nickel optics under development at the Marshall Space Flight Center (MSFC) can be applied to focus neutron beams. In this technique, nickel mirror shells are electroformed onto a figured and superpolished nickel-plated aluminum cylindrical mandrel from which they are later released by differential thermal contraction. Cylindrical mirrors with different diameters, but the same focal length, can be nested together to increase the system throughput. The throughput can be increased further with the use of the multilayer coatings deposited on the reflectivr surface of the mirror shells. While the electroformed nickel replication technique needs to be adopted for neutron focusing, the technology to coat the inside of cylindrical mirrors with neutron multilayers has to be developed. The availability of these technologies would bring new capabilities to neutron instrumentation and, hence, lead to new scientific breakthroughs. We have established a program to adopt the electroformed nickel replication optics technique for neutron applications and to develop the neutron multilayer replication technology.
Three-Body Forces and the Limit of Oxygen Isotopes
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Suzuki, Toshio; Holt, Jason D.; Schwenk, Achim; Akaishi, Yoshinori
2010-07-01
The limit of neutron-rich nuclei, the neutron drip line, evolves regularly from light to medium-mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been established in few-body systems. This leads to repulsive contributions to the interactions among excess neutrons that change the location of the neutron drip line from O28 to the experimentally observed O24. Since the mechanism is robust and general, our findings impact the prediction of the most neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.
High-j neutron excitations outside 136Xe
NASA Astrophysics Data System (ADS)
Talwar, R.; Kay, B. P.; Mitchell, A. J.; Adachi, S.; Entwisle, J. P.; Fujita, Y.; Gey, G.; Noji, S.; Ong, H. J.; Schiffer, J. P.; Tamii, A.
2017-08-01
The ν 0 h9 /2 and ν 0 i13 /2 strength at 137Xe, a single neutron outside the N =82 shell closure, has been determined using the 136Xe(α ,3He)137Xe reaction carried out at 100 MeV. We confirm the recent observation of the second 13 /2+ state and reassess previous data on the 9 /2- states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at 133Sn.
The production of transuranium elements by the r-process nucleosynthesis
NASA Astrophysics Data System (ADS)
Goriely, S.; Martínez Pinedo, G.
2015-12-01
The production of super-heavy transuranium elements by stellar nucleosynthesis processes remains an open question. The most promising process that could potentially give rise to the formation of such elements is the so-called rapid neutron-capture process, or r-process, known to be at the origin of approximately half of the A > 60 stable nuclei observed in nature. However, despite important efforts, the astrophysical site of the r-process remains unidentified. Here, we study the r-process nucleosynthesis in material that is dynamically ejected by tidal and pressure forces during the merging of binary neutron stars. Neutron star mergers could potentially be the dominant r-process site in the Galaxy, but also due to the extreme neutron richness found in such environment, could potentially synthesise super-heavy elements. R-process nucleosynthesis during the decompression is known to be largely insensitive to the detailed astrophysical conditions because of efficient fission recycling, producing a composition that closely follows the solar r-abundance distribution for nuclei with mass numbers A > 140. During the neutron irradiation, nuclei up to charge numbers Z ≃ 110 and mass number A ≃ 340 are produced, with a major peak production at the N = 184 shell closure, i.e. around A ≃ 280. Super-heavy nuclei with Z > 110 can hardly be produced due to the efficient fission taking place along those isotopic chains. Long-lived transuranium nuclei are inevitably produced by the r-process. The predictions concerning the production of transuranium nuclei remain however very sensitive to the predictions of fission barrier heights for such super-heavy nuclei. More nuclear predictions within different microscopic approaches are needed.
Use of 41Ar production to measure ablator areal density in NIF beryllium implosions
Wilson, Douglas Carl; Cassata, W. S.; Sepke, S. M.; ...
2017-02-06
For the first time, 41Ar produced by the (n,Υ) reaction from 40Ar in the beryllium shell of a DT filled Inertial Confinement Fusion capsule has been measured. Ar is co-deposited with beryllium in the sputter deposition of the capsule shell. Combined with a measurement of the neutron yield, the radioactive 41Ar then quantifies the areal density of beryllium during the DT neutron production. Here, the measured 1.15 ± 0.17 × 10 +8 atoms of 41Ar are 2.5 times that from the best post-shot calculation, suggesting that the Ar and Be areal densities are correspondingly higher than those calculated. Possible explanationsmore » are that (1) the beryllium shell is compressed more than calculated, (2) beryllium has mixed into the cold DT ice, or more likely (3) less beryllium is ablated than calculated. Since only one DT filled beryllium capsule has been fielded at NIF, these results can be confirmed and expanded in the future.« less
Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the 21+ State in Zn80
NASA Astrophysics Data System (ADS)
van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.
2007-10-01
Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 21+ state in Zn78 could be firmly established and for the first time the 2+→01+ transition in Zn80 was observed at 1492(1) keV. B(E2,21+→01+) values were extracted for Zn74,76,78,80 and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, Zn80 is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus Ni78.
Theory of quasi-spherical accretion in X-ray pulsars
NASA Astrophysics Data System (ADS)
Shakura, N.; Postnov, K.; Kochetkova, A.; Hjalmarsdotter, L.
2012-02-01
A theoretical model for quasi-spherical subsonic accretion on to slowly rotating magnetized neutron stars is constructed. In this model, the accreting matter subsonically settles down on to the rotating magnetosphere forming an extended quasi-static shell. This shell mediates the angular momentum removal from the rotating neutron star magnetosphere during spin-down episodes by large-scale convective motions. The accretion rate through the shell is determined by the ability of the plasma to enter the magnetosphere. The settling regime of accretion can be realized for moderate accretion rates ? g s-1. At higher accretion rates, a free-fall gap above the neutron star magnetosphere appears due to rapid Compton cooling, and accretion becomes highly non-stationary. From observations of the spin-up/spin-down rates (the angular rotation frequency derivative ?, and ? near the torque reversal) of X-ray pulsars with known orbital periods, it is possible to determine the main dimensionless parameters of the model, as well as to estimate the magnetic field of the neutron star. We illustrate the model by determining these parameters for three wind-fed X-ray pulsars GX 301-2, Vela X-1 and GX 1+4. The model explains both the spin-up/spin-down of the pulsar frequency on large time-scales and the irregular short-term frequency fluctuations, which can correlate or anticorrelate with the X-ray flux fluctuations in different systems. It is shown that in real pulsars an almost iso-angular-momentum rotation law with ω˜ 1/R2, due to strongly anisotropic radial turbulent motions sustained by large-scale convection, is preferred.
Statistical theory of light nucleus reactions with 1p-shell light nuclei
NASA Astrophysics Data System (ADS)
Xiaojun, Sun; Jingshang, Zhang
2017-09-01
The 1p-shell light elements (Li, Be, B, C, N, and O) had long been selected as the most important materials for improving neutron economy in thermal and fast fission reactors and in the design of accelerator-driven spallation neutron sources. A statistical theory of light nucleus reactions (STLN) is proposed to describe the double-differential cross sections for both neutron and light charged particle induced nuclear reactions with 1p-shell light nuclei. The dynamics of STLN is described by the unified Hauser-Feshbach and exciton model, in which the angular momentum and parity conservations are strictly considered in equilibrium and pre-equilibrium processes. The Coulomb barriers of the incoming and outgoing charged particles, which significantly influence the open channels of the reaction, can be reasonably considered in incident channel and different outgoing channels. In kinematics, the recoiling effects in various emission processes are strictly taken into account. The analytical energy and angular spectra of the reaction products in sequential and simultaneous emission processes are obtained in terms of the new integral formula proposed in our recent paper. Taking 12C(n, xn), 9Be(n, xn), 16O(n, xn), and 9Be(p,xn) reactions as examples, we had calculated the double-differential cross sections of outgoing neutrons and compared with the experimental data. In addition, we had also calculated the partition and total kerma coefficients for 12C(n, xn) and 16O(n, xn) reactions, respectively. The existing experimental data can be remarkably well reproduced by STLN, which had been used to set up file-6 in CENDL database.
Isotope effect in heavy/light water suspensions of optically active gold nanoparticles
NASA Astrophysics Data System (ADS)
Kutsenko, V. Y.; Artykulnyi, O. P.; Petrenko, V. I.; Avdeev, M. V.; Marchenko, O. A.; Bulavin, L. A.; Snegir, S. V.
2018-04-01
Aqueous suspensions of optically active gold nanoparticles coated with trisodium citrate were synthesized in light (H2O) water and mixture of light and heavy (H2O/D2O) water using the modified Turkevich protocol. The objective of the paper was to verify sensitivity of neutron scattering methods (in particular, neutron reflectometry) to the potential isotope H/D substitution in the stabilizing organic shell around particles in colloidal solutions. First, the isotope effect was studied with respect to the changes in the structural properties of metal particles (size, shape, crystalline morphology) in solutions by electron microscopy including high-resolution transmission electron microscopy from dried systems. The structural factors determining the variation in the adsorption spectra in addition to the change in the optical properties of surrounding medium were discussed. Then, neutron reflectometry was applied to the layered nanoparticles anchored on a silicon wafer via 3-aminopropyltriethoxysilane molecules to reveal the presence of deuterated water molecules in the shell presumably formed by citrate molecules around the metallic core.
NCSP IER 422 CED-3b Documentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchinson, Jesson D.; Cutler, Theresa Elizabeth; Bahran, Rian Mustafa
2017-11-22
A Subcritical Copper-Reflected α-phase Plutonium (SCRαP) integral benchmark experiment has been designed and measured. In this experiment, multiplication is approximated using correlated neutron data from a detector system consisting of 3He tubes inside high density polyethylene (HDPE). Measurements were performed on various subcritical experimental configurations consisting of a weapons-grade plutonium sphere surrounded by different Cu thicknesses. In addition to the proposed base experimental configurations with Cu, additional configurations were performed with the plutonium ball nested in various thicknesses of interleaved HDPE spherical shells mixed in with the Cu shells. The HDPE is intended to provide fast neutron moderation and reflection,more » resulting in additional measurements with differing multiplication, spectra, and nuclear data sensitivity.« less
New nuclear structure data beyond 136Sn
NASA Astrophysics Data System (ADS)
Lozeva, Radomira
2018-05-01
Exotic nuclei beyond the 132Sn double shell-closure are influenced by both the Sn superfluity and the evolving collectivity only few nucleons away. Toward even more neutron-rich nuclei, especially at intermediate mass number, the interplay between single-particle and collective particle-hole excitations competes. In some cases with the extreme addition of neutrons also other effects as the formation of neutron skin, stabilization as sub-shell gaps or orbital crossings may be expected. The knowledge of nuclear ingredients is especially interesting beyond 132Sn and little is known on how the excitation modes develop with the addition of both protons and neutrons and for example systematic prompt and decay studies can be such very sensitive probe. Recently, we have approached this region of nuclei in several experimental measurements following 238U projectile fission on 9Be and n-induced fission on 241Pu and 235U. Consistent data analysis allows to access various spins and excitation energies and provide new input to theory. Examples from these studies on several nuclei in the A 140 region were presented during the conference together with the possible interpretation of the new data. Here, we will illustrate one example on 136I using two complementary data sets.
New low-energy 0 + state and shape coexistence in Ni 70
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokop, C. J.; Crider, B. P.; Liddick, S. N.
2015-12-01
In recent models, the neutron-rich Ni isotopes around N = 40 are predicted to exhibit multiple low-energy excited 0(+) states attributed to neutron and proton excitations across both the N = 40 and Z = 28 shell gaps. In Ni-68, the three observed 0(+) states have been interpreted in terms of triple shape coexistence between spherical, oblate, and prolate deformed shapes. In the present work a new (0(2)(+)) state at an energy of 1567 keV has been discovered in Ni-70 by using beta-delayed, gamma-ray spectroscopy following the decay of Co-70. The precipitous drop in the energy of the prolate-deformed 0(+)more » level between Ni-68 and Ni-70 with the addition of two neutrons compares favorably with results of Monte Carlo shell-model calculations carried out in the large fpg(9/2)d(5/2) model space, which predict a 0(2)(+) state at 1525 keV in Ni-70. The result extends the shape-coexistence picture in the region to Ni-70 and confirms the importance of the role of the tensor component of the monopole interaction in describing the structure of neutron-rich nuclei.« less
Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty.
Baroud, Gamal; Vant, Christianne; Giannitsios, Demetri; Bohner, Marc; Steffen, Thomas
2005-01-01
An experimental biomechanical study conducted on osteoporotic cadaveric vertebrae. 1) To measure the intravertebral shell pressure and injection pressure; and 2) to determine the effect of the vertebral shell on the intravertebral shell pressure and on the injection pressure. Forces that govern cement flow are an essential component of the cement injection process in vertebroplasty. The vertebral shell may play a significant role in confining the flow of cement in the vertebral body and thereby affecting the intravertebral pressure and injection pressure. A small fenestration was created in the left lateral vertebral shell of 14 vertebrae. A valve to open and close the fenestration and a sensor to measure the intravertebral pressure were attached to the opening. A closed fenestration simulated an intact shell, whereas an open fenestration represented a vented shell. Injection pressure and intravertebral pressure at the shell were recorded during a controlled injection. A closed fenestration resulted in a significant increase in the intravertebral pressure at the shell. During the injection, the shell pressure increased on average to approximately 3.54 +/- 2.91 kPa. Conversely, an open fenestration resulted in an instant relaxation of the shell pressure to the ambient pressure of 0 kPa. Additionally, the injection pressure was approximately 97 times higher than the shell pressure. The presence of vertebral shell seems to be important for intravertebral pressure. However, the intravertebral shell pressure adds very little to the injection pressure.
Two-nucleon high-spin states, the Bansal-French model and the crude shell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, T.U.
Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B/sub 2n/ in the Bansal-French model can be deduced from the A and T linear dependence of B/sub n/ and the crude shell model. 7/sub 2//sup -/ states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.
Large-scale shell-model calculations for 32-39P isotopes
NASA Astrophysics Data System (ADS)
Srivastava, P. C.; Hirsch, J. G.; Ermamatov, M. J.; Kota, V. K. B.
2012-10-01
In this work, the structure of 32-39P isotopes is described in the framework of stateof-the-art large-scale shell-model calculations, employing the code ANTOINE with three modern effective interactions: SDPF-U, SDPF-NR and the extended pairing plus quadrupole-quadrupoletype forces with inclusion of monopole interaction (EPQQM). Protons are restricted to fill the sd shell, while neutrons are active in the sd - pf valence space. Results for positive and negative level energies and electromagnetic observables are compared with the available experimental data.
Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieplicka-Oryńczak, N.; Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków; Fornal, B.
2015-10-15
The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility ofmore » testing the calculations involving the core excitations.« less
Tkachenko, S.; Baillie, N.; Kuhn, S. E.; ...
2014-04-24
In this study, much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x. As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x.
One-Neutron Removal Measurement Reveals {sup 24}O as a New Doubly Magic Nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanungo, R.; Perro, C.; Nociforo, C.
The first measurement of the momentum distribution for one-neutron removal from {sup 24}O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99{+-}4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63{+-}7 mb. The results are well explained with a nearly pure 2s{sub 1/2} neutron spectroscopic factor of 1.74{+-}0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that {sup 24}O is a new doubly magic nucleus.
Strong neutron- γ competition above the neutron threshold in the decay of Co 70
Spyrou, A.; Liddick, S. N.; Naqvi, F.; ...
2016-09-29
The β-decay intensity of 70Co was measured for the first time using the technique of total absorption spectroscopy. The large β-decay Q value [12.3(3) MeV] offers a rare opportunity to study β-decay properties in a broad energy range. Two surprising features were observed in the experimental results, namely, the large fragmentation of the β intensity at high energies, as well as the strong competition between γ rays and neutrons, up to more than 2 MeV above the neutron-separation energy. The data are compared to two theoretical calculations: the shell model and the quasiparticle random phase approximation (QRPA). Both models seemmore » to be missing a significant strength at high excitation energies. Possible interpretations of this discrepancy are discussed. The shell model is used for a detailed nuclear structure interpretation and helps to explain the observed γ-neutron competition. The comparison to the QRPA calculations is done as a means to test a model that provides global β-decay properties for astrophysical calculations. Our work demonstrates the importance of performing detailed comparisons to experimental results, beyond the simple half-life comparisons. Finally, a realistic and robust description of the β-decay intensity is crucial for our understanding of nuclear structure as well as of r-process nucleosynthesis.« less
Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.
1987-01-01
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.
1985-09-09
An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.
Fission and Properties of Neutron-Rich Nuclei
NASA Astrophysics Data System (ADS)
Hamilton, Joseph H.; Ramayya, A. V.; Carter, H. K.
2008-08-01
Opening session. Nuclear processes in stellar explosions / M. Wiescher. In-beam [symbol]-ray spectroscopy of neutron-rich nuclei at NSCL / A. Gade -- Nuclear structure I. Shell-model structure of neutron-rich nuclei beyond [symbol]Sn / A. Covello ... [et al.]. Shell structure and evolution of collectivity in nuclei above the [symbol]Sn core / S. Sarkar and M. S. Sarkar. Heavy-ion fusion using density-constrained TDHF / A. S. Umar and V. E. Oberacker. Towards an extended microscopic theory for upper-fp shell nuclei / K. P. Drumev. Properties of the Zr and Pb isotopes near the drip-line / V. N. Tarasov ... [et al.]. Identification of high spin states in [symbol] Cs nuclei and shell model calculations / K. Li ... [et al.]. Recent measurements of spherical and deformed isomers using the Lohengrin fission-fragment spectrometer / G. S. Simpson ... [et al.] -- Nuclear structure II. Nuclear structure investigation with rare isotope spectroscopic investigations at GSI / P. Boutachkov. Exploring the evolution of the shell structures by means of deep inelastic reactions / G. de Anaelis. Probing shell closures in neutron-rich nuclei / R. Krücken for the S277 and REX-ISOLDEMINIBALL collaborations. Structure of Fe isotopes at the limits of the pf-shell / N. Hoteling ... [et al.]. Spectroscopy of K isomers in shell-stabilized trans-fermium nuclei / S. K. Tandel ... [et al.] -- Radioactive ion beam facilities. SPIRAL2 at GANIL: a world leading ISOL facility for the next decade / S. Gales. New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI / I. Augustin ... [et al.]. Radioactive beams from a high powered ISOL system / A. C. Shotter. RlKEN RT beam factory / T. Motobayashi. NSCL - ongoing activities and future perspectives / C. K. Gelbke. Rare isotope beams at Argonne / W. F. Henning. HRIBF: scientific highlights and future prospects / J. R. Beene. Radioactive ion beam research done in Dubna / G. M. Ter-Akopian ... [et al.] -- Fission I. Fission-fragment spectroscopy with STEFF / A. G. Smith ... [et al.]. Gamma ray multiplicity of [symbol]Cf spontaneous fission using LiBerACE / D. L. Bleuel ... [et al.]. Excitation energy dependence of fragment mass and total kinetic energy distributions in proton-induced fission of light actinides / I. Nishinaka ... [et al.]. A dynamical calculation of multi-modal nuclear fission / T. Wada and T. Asano. Structure of fission potential energy surfaces in ten-dimensional spaces / V. V. Pashkevich, Y. K Pyatkov and A. V. Unzhakova. A possible enhancement of nuclear fission in scattering with low energy charged particles / V. Gudkov. Dynamical multi-break processes in the [symbol]Sn + [symbol]Ni system at 35 MeV/Nucleon / M. Papa and ISOSPIN-RE VERSE collaboration -- New experimental techniques. MTOF - a high resolution isobar separator for studies of exotic decays / A. Piechaczek ... [et al.]. Development of ORRUBA: a silicon array for the measurement of transfer reactions in inverse kinematics / S. D. Pain ... [et al.]. Indian national gamma array: present & future / R. K. Bhowmik. Absolute intensities of [symbol] rays emitted in the decay of [symbol]U / H. C. Griffin -- Superheavy elements theory and experiments / M. G. Itkis ... [et al.]. Study of superheavy elements at SHIP / S. Hofinann. Heaviest nuclei from [symbol]Ca-induced reactions / Yu. Ts. Oaanessian. Superheavy nuclei and giant nuclear systems / W. Greiner and V. Zagrebaev. Fission approach to alpha-decay of superheavy nuclei / D.N. Poenaru and W. Greiner. Superheavy elements in the Magic Islands / C. Samanta. Relativistic mean field studies of superheavy nuclei / A. V. Afanas jev. Understanding the synthesis of the heaviest nuclei / W. Loveland -- Mass measurements and g-factors. G factor measurements in neutron-rich [symbol]Cf fission fragments, measured using the gammasphere array / R. Orlandi ... [et al.]. Technique for measuring angular correlations and g-factors in neutron rich nuclei produced by the spontaneous fission of [symbol]Cf / A. V. Daniel ... [et al.]. Magnetic moment measurements in a radioactive beam environment / N. Benczer-Koller and G. Kumbartzki. g-Factor measurements of picosecond states: opportunities and limitations of the recoil-in-vacuum method / N. J. Stone ... [et al.]. Precision mass measurements and trap-assisted spectroscopy of fission products from Ni to Pd / A. Jokinen -- Fission II. Fission research at IRMM / F.-J. Hambsch. Fission yield measurements at the IGISOL facility with JYFLTRAP / H. Penttilä ... [et al.]. Fission of radioactive beams and dissipation in nuclear matter / A. Heinz (for the CHARMS collaboration). Fission of [symbol]U at 80 MeVlu and search for new neutron-rich isotopes / C.M. Folden, III ... [et al.]. Measurement of the average energy and multiplicity of prompt-fission neutrons and gamma rays from [symbol], [symbol], and [symbol] for incident neutron energies of 1 to 200 MeV / R. C. Haight ... [et al.]. Fission measurements with DANCE / M. Jandel ... [et al.]. Measured and calculated neutron-induced fission cross sections of [symbol]Pu / F. Tovesson and T. S. Hill. The fission barrier landscape / L. Phair and L. G. Moretto. Fast neutron-induced fission of some actinides and sub-actinides / A. B. Lautev ... [et al.] -- Fission III/Nuclear structure III. Complex structure in even-odd staggering of fission fragment yields / M. Caamāno and F. Rejmund. The surrogate method: past, present and future / S. R. Lesher ... [et al]. Effects of nuclear incompressibility on heavy-ion fusion / H. Esbensen and Ş. Mişicu. High spin states in [symbol]Pm / A. Dhal ... [et al]. Structure of [symbol]Sm, spherical vibrator versus softly deformed rotor / J. B. Gupta -- Astrophysics. Measuring the astrophysical S-factor in plasmas / A. Bonasera ... [et al.]. Is there shell quenching or shape coexistence in Cd isotopes near N = 82? / J. K. Hwang, A. V. Ramayya and J. H. Hamilton. Spectroscopy of neutron-rich palladium and cadmium isostopes near A= 120 / M. A. Stoyer and W. B. Walters -- Nuclear structure IV. First observation of new neutron-rich magnesium, aluminum and silicon isotopes / A. Stolz ... [et al.]. Spectroscopy of [symbol]Na revolution of shell structure with isospin / V. Tripathi ... [et al.]. Rearrangement of proton single particle orbitals in neutron-rich potassium isotopes - spectroscopy of [symbol]K / W. Królas ... [et al.]. Laser spectroscopy and the nature of the shape transition at N [symbol] 60 / B. Cheal ... [et al.]. Study of nuclei near stability as fission fragments following heavy-ion reactions / N. Fotiadis. [symbol]C and [symbol]N: lifetime measurements of their first-excited states / M. Wiedeking ... [et al.] -- Nuclear astrophysics. Isomer spectroscopy near [symbol]Sn - first observation of excited states in [symbol]Cd / M. Pfitzner ... [et al.]. Nuclear masses and what they imply for the structures of neutron rich nuclei / A. Awahamian and A. Teymurazyan. Multiple nucleosynthesis processes in the early universe / F. Montes. Single-neutron structure of neutron-rich nuclei near N = 50 and N = 82 / J. A. Cizewski ... [et al.]. [symbol]Cadmium: ugly duckling or young swan / W. B. Walters ... [et al.] -- Nuclear structure V. Evidence for chiral doublet bands in [symbol]Ru / Y. X. Luo ... [et al.]. Unusual octupole shape deformation terms and K-mixing / J. O. Rasmussen ... [et al.]. Spin assignments, mixing ratios, and g-factors in neutron rich [symbol]Cf fission products / C. Goodin ... [et al.]. Level structures and double [symbol]-bands in [symbol]Mo, [symbol]Mo and [symbol]Ru / S. J. Zhu ... [et al.] -- Nuclear theory. Microscopic dynamics of shape coexistence phenomena around [symbol]Se and [symbol]Kr / N. Hinohara ... [et al.]. Nuclear structure, double beta decay and test of physics beyond the standard model / A. Faessler. Collective modes in elastic nuclear matter / Ş. Mişicu and S. Bastrukov. From N = Z to neutron rich: magnetic moments of Cu isotopes at and above the [symbol]Ni and [symbol]Ni double shell closures - what next? / N. J. Stone, J. R. Stone and U. Köster -- Nuclear structure VI. Decay studies of nuclei near [symbol]Ni / R. Grzywacz. Weakening of the [symbol]Ni core for Z > 28, N > 50? / J. A. Winger ... [et al.]. Coulomb excitation of the odd-A [symbol]Cu isotopes with MINIBALL and REX-ISOLDE / I. Stefanescu ... [et al.]. Neutron single particle states and isomers in odd mass nickel isotopes near [symbol]Ni / M. M. Raiabali ... [et al.]. [symbol] and [symbol]-delayed neutron decay studies of [symbol]Ch at the HRIBF / S. V. Ilvushkin ... [et al.] -- Posters. Properties of Fe, Ni and Zn isotope chains near the drip-line / V. N. Tarasov ... [et al.]. Probing nuclear structure of [symbol]Xe / J. B. Gupta. Shape coexistence in [symbol]Zr and large deformation in [symbol]Zr / J. K. Hwang ... [et al.]. Digital electronics and their application to beta decay spectroscopy / S. N. Liddick, S. Padgett and R. Grzywacz. Nuclear shape and structure in neutron-rich [symbol]Tc / Y. X. Luo ... [et al.]. Speeding up the r-process. Investigation of first forbidden [symbol] decays in N > 50 isotopes near [symbol]Ni / S. Padgett ... [et al.]. Yields of fission products from various actinide targets / E. H. Sveiewski ... [et al.].
NASA Technical Reports Server (NTRS)
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; Bravo, Eduardo; Williams, Brian J.; Maeda, Keiichi; Nobukawa, Masayoshi; Eriksen, Kristoffer A.; Brickhouse, Nancy S.; Petre, Robert;
2015-01-01
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios - (0.11-0.24 and 0.018-0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only be achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Together with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talmi, Igal
2008-11-11
The discovery of magic numbers led to the shell model. They indicated closure of major shells and are robust: proton magic numbers are rather independent of the occupation of neutron orbits and vice versa. Recently the magic property became less stringent and we hear a lot about the discovery of new magic numbers. These, however, indicate sub-shell closures and strongly depend on occupation numbers and hence, may be called quasi-magic numbers. Some of these have been known for many years and the mechanism for their appearance as well as disappearance, was well understood within the simple shell model. The situationmore » will be illustrated by a few examples which demonstrate the simple features of the shell model. Will this simplicity emerge from the complex computations of nuclear many-body theory?.« less
Precision Mass Measurements of Cr-6358 : Nuclear Collectivity Towards the N =40 Island of Inversion
NASA Astrophysics Data System (ADS)
Mougeot, M.; Atanasov, D.; Blaum, K.; Chrysalidis, K.; Goodacre, T. Day; Fedorov, D.; Fedosseev, V.; George, S.; Herfurth, F.; Holt, J. D.; Lunney, D.; Manea, V.; Marsh, B.; Neidherr, D.; Rosenbusch, M.; Rothe, S.; Schweikhard, L.; Schwenk, A.; Seiffert, C.; Simonis, J.; Stroberg, S. R.; Welker, A.; Wienholtz, F.; Wolf, R. N.; Zuber, K.
2018-06-01
The neutron-rich isotopes
Protein hydration in solution: Experimental observation by x-ray and neutron scattering
Svergun, D. I.; Richard, S.; Koch, M. H. J.; Sayers, Z.; Kuprin, S.; Zaccai, G.
1998-01-01
The structure of the protein–solvent interface is the subject of controversy in theoretical studies and requires direct experimental characterization. Three proteins with known atomic resolution crystal structure (lysozyme, Escherichia coli thioredoxin reductase, and protein R1 of E. coli ribonucleotide reductase) were investigated in parallel by x-ray and neutron scattering in H2O and D2O solutions. The analysis of the protein–solvent interface is based on the significantly different contrasts for the protein and for the hydration shell. The results point to the existence of a first hydration shell with an average density ≈10% larger than that of the bulk solvent in the conditions studied. Comparisons with the results of other studies suggest that this may be a general property of aqueous interfaces. PMID:9482874
Effects of local defect growth in direct-drive cryogenic implosions on OMEGA
NASA Astrophysics Data System (ADS)
Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C.; Meyerhofer, D. D.
2013-08-01
Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.
Empirical p-n interactions, the synchronized filling of Nilsson orbitals, and emergent collectivity
NASA Astrophysics Data System (ADS)
Cakirli, R. B.
2014-09-01
The onset of collectivity and deformation, changes to the single particle energies and magic numbers and so on are strongly influenced by, for example, proton (p) and neutron (n) interactions inside atomic nuclei. Experimentally, using binding energies (or masses), one can extract an average p-n interaction between the last two protons and the last two neutrons, called δVpn. We have studied δVpn values using calculations of spatial overlaps between p and n Nilsson orbitals, considering different deformations, for the Z= 50-82, N= 82-126 shells, and comparison of these theoretical results with experimental δVpn values. Our results show that enhanced valence p-n interactions are closely correlated with the development of collectivity, shape changes, and the saturation of deformation in nuclei. We note that the difference of the Nilsson quantum numbers of the last filled Nilsson p and n orbitals, has a special relation, 0[110], in which they differ by only a single quantum in the z-direction, for those nuclei where δVpn is largest for each Z in medium mass and heavy nuclei. The synchronised filling of such orbital pairs correlates with the emergence of collectivity.
The effects of collision orientation and energy dependence in multinucleon transfer reactions
NASA Astrophysics Data System (ADS)
Li, Jingjing; Li, Cheng; Wen, Peiwei; Zhang, Feng-Shou
2018-05-01
Multinucleon transfer (MNT) reaction 136Xe+208Pb near Coulomb barrier energies are investigated within the dinuclear system (DNS) model. It is found that the collision orientation has an important influence on the mass distributions attributed to the depth of pocket in the driving potential. The calculation results of the isotopic production show that the energy dependence in neutron-deficient side is more sensitive than that in neutron-rich side. The production of the N = 126 isotones are calculated by GRAZING model, DNS+GEMINI model, and ImQMD+GEMINI model, respectively. It demonstrates that MNT reaction is a promising way to produce neutron-rich isotopes in the region of the neutron shell closure N = 126.
Density Functional Calculations for the Neutron Star Matter at Subnormal Density
NASA Astrophysics Data System (ADS)
Kashiwaba, Yu; Nakatsukasa, Takashi
The pasta phases of nuclear matter, whose existence is suggested at low density, may influence observable properties of neutron stars. In order to investigate properties of the neutron star matter, we calculate self-consistent solutions for the ground states of slab-like phase using the microscopic density functional theory with Bloch wave functions. The calculations are performed at each point of fixed average density and proton fraction (\\bar{ρ },Yp), varying the lattice constant of the unit cell. For small Yp values, the dripped neutrons emerge in the ground state, while the protons constitute the slab (crystallized) structure. The shell effect of protons affects the thickness of the slab nuclei.
Mass Measurements beyond the Major r-Process Waiting Point {sup 80}Zn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baruah, S.; Herlert, A.; Schweikhard, L.
2008-12-31
High-precision mass measurements on neutron-rich zinc isotopes {sup 71m,72-81}Zn have been performed with the Penning trap mass spectrometer ISOLTRAP. For the first time, the mass of {sup 81}Zn has been experimentally determined. This makes {sup 80}Zn the first of the few major waiting points along the path of the astrophysical rapid neutron-capture process where neutron-separation energy and neutron-capture Q-value are determined experimentally. The astrophysical conditions required for this waiting point and its associated abundance signatures to occur in r-process models can now be mapped precisely. The measurements also confirm the robustness of the N=50 shell closure for Z=30.
Prediction for a Four-Neutron Resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.
Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.
Prediction for a Four-Neutron Resonance
Shirokov, A. M.; Papadimitriou, G.; Mazur, A. I.; ...
2016-10-28
Here, we utilize various ab initio approaches to search for a low-lying resonance in the four-neutron (4n) system using the JISP16 realistic NN interaction. Our most accurate prediction is obtained using a J-matrix extension of the no-core shell model and suggests a 4n resonant state at an energy near E r = 0.8 MeV with a width of approximately Γ = 1.4 MeV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thirolf, P. G., E-mail: Peter.Thirolf@lmu.de
2015-02-24
High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanismsmore » for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called ‘fission-fusion’, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. ‘Waiting points’ at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in ‘terra incognita’ of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction schemes even at next-generation radioactive beam facilities, underlining the attractive perspectives offered, e.g., by ELI-NP.« less
Quasifree (p ,p N ) scattering of light neutron-rich nuclei near N =14
NASA Astrophysics Data System (ADS)
Díaz Fernández, P.; Alvarez-Pol, H.; Crespo, R.; Cravo, E.; Atar, L.; Deltuva, A.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Cabanelas, P.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Datta Pramanik, U.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fernández-Domínguez, B.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Jurčiukonis, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Moro, A. M.; Movsesyan, A.; Nacher, E.; Najafi, A.; Nikolskii, E.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietras, B.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration
2018-02-01
Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The R 3B collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable 12C beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p ,p n ) and (p ,2 p ) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N =14 to N =15 . Method: The structure of the projectiles 23O, 22O, and 21N has been studied simultaneously via (p ,p n ) and (p ,2 p ) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B -LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p ,p n ) and (p ,2 p ) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p ,p n ) channels, indications of a change in the structure of these nuclei moving from N =14 to N =15 have been observed, i.e., from the 0 d5 /2 shell to the 1 s1 /2 . This supports previous observations of a subshell closure at N =14 for neutron-rich oxygen isotopes and its weakening for the nitrogen isotopes.
Gamow-Teller transitions between proton h11/2 and neutron h9/2 partner orbitals in 140I
NASA Astrophysics Data System (ADS)
Moon, B.; Moon, C.-B.; Odahara, A.; Lozeva, R.; Söderström, P.-A.; Nishimura, S.; Yuan, C.; Hong, B.; for theNP1112-RIBF87 Collaboration
2018-04-01
The excited states of the neutron-rich nucleus 140I were, for the first time, investigated by a β-delayed γ-ray spectroscopy. The parent nuclide 140Te was produced through the in-flight fission of the 238U beam at 345 MeV per nucleon on a 9Be target at the Radioactive Isotope Beam Factory (RIBF), RIKEN in Japan. The half-life of 140Te was measured to be 350(5) ms and the spin-parity of ground state of 140I was found to be 2-. The spin-parities of three levels at 926, 1188, and 1787 keV were assigned as 1+ based on log f t values. These allowed Gamow-Teller (G-T) transition-states could be interpreted as the transformation of a neutron in the h9/2 orbital into a proton in the h11/2 orbital. Systematic features of level structures and G-T transitions are discussed in the frameworks of the large-scale shell model and deformed shell model.
Synthesis reactions and radioactive properties of transactinoid elements
NASA Astrophysics Data System (ADS)
Oganessian, Yu. Ts.
1994-10-01
It is well known that the heaviest elements of the periodic table have been synthesized in the cold fusion of magic nuclei of Pb with Z less than 26 ions. Because of dynamic limitations for fusion under strong Coulomb interaction of nuclei, the cross-sections of cold fusion reactions diminish exponentially with growing compound nucleus atomic number. For element Z = 110 produced in the reaction Pb-208(Ni-62,n)(sub 271)110, the expected cross-section is 10(exp -36) sq cm. In still more asymmetric reactions, when isotopes of actinoid elements irradiated with relatively light ions (Z less than or equal 12) are used as the target material, the compound nuclei possess an excitation energy of approx. 50 MeV. At this energy the nuclear shell effects are strongly suppressed and, as a result, in the case of hot compound nuclei of transactinoid elements the fission barrier is practically absent. The transition of these nuclei into the ground state depends strongly on the dynamic properties of the system with respect to the fission degree of freedom. Experimental studies were going on in two directions: (1) determination of the fission time by measuring the prefission neutrons (of Cf-Fm nuclei) in a wide interval of excitation energies; (2) direct synthesis of known nuclides with Z = 102-105 in reactions with ions of Ne-22, Mg-26, Al-27 and P-31 when final nuclei are produced in the ground state after the evaporation of five or six neutrons from the excited compound nuclei (E(sub x) = 50-60 MeV). The dependence of the reaction cross-section (HI, 5-6n) on the atomic number of the compound nucleus in different target-ion combinations points to the possibility of synthesizing new elements in hot fusion reactions. The advantage of these reactions arises from the use of neutron-rich nuclei like Cm-248 and Cf-249 which allows us to synthesize nuclei close to the deformed shell N = 162, for which a considerable growth of stability against spontaneous fission is predicted. Experimental set-ups and methods of detecting rare events of formation and decay of transactinide nuclei are described.
Mesoscale studies of ionic closed membranes with polyhedral geometries
Olvera de la Cruz, Monica
2016-06-01
Large crystalline molecular shells buckle spontaneously into icosahedra while multicomponent shells buckle into various polyhedra. Continuum elastic theory explains the buckling of closed shells with one elastic component into icosahedra. A generalized elastic model, on the other hand, describes the spontaneous buckling of inhomogeneous shells into regular and irregular polyhedra. By coassembling water-insoluble anionic (–1) amphiphiles with cationic (3+) amphiphiles, we realized ionic vesicles. Results revealed that surface crystalline domains and the unusual shell shapes observed arise from the competition of ionic correlations with charge-regulation. We explain here the mechanism by which these ionic membranes generate a mechanically heterogeneous vesicle.
Small-Angle Neutron Scattering Studies of Magnetic Correlation Lengths in Nanoparticle Assemblies
NASA Astrophysics Data System (ADS)
Majetich, Sara
2009-03-01
Small-angle neutron scattering (SANS) measurements of ordered arrays of surfactant-coated magnetic nanoparticle reveal characteristic length scales associated with interparticle and intraparticle magnetic ordering. The high degree of uniformity in the monodisperse nanoparticle size and spacing leads to a pronounced diffraction peak and allows for a straightforward determination of these length scales [1]. There are notable differences in these length scales depending on the particle moment, which depends on the material (Fe, Co, Fe3O4) and diameter, and also on whether the metal particle core is surrounded by an oxide shell. For 8.5 nm particles containing an Fe core and thick Fe3O4 shell, evidence of a spin flop phase is seen in the magnetite shell when a field is applied , but not when the shell thickness is ˜0.5 nm [2]. 8.0 nm particles with an e-Co core and 0.75 nm CoO shell show no exchange bias effects while similar particles with a 2 nm thick shell so significant training effects below 90 K. Polarized SANS studied of 7 nm Fe3O4 nanoparticle assemblies show the ability to resolve the magnetization components in 3D. [4pt] [1] M. Sachan, C. Bonnoit, S. A. Majetich, Y. Ijiri, P. O. Mensah-Bonsu, J. A. Borchers, and J. J. Rhyne, Appl. Phys. Lett. 92, 152503 (2008). [0pt] [2] Yumi Ijiri, Christopher V. Kelly, Julie A. Borchers, James J. Rhyne, Dorothy F. Farrell, Sara A. Majetich, Appl. Phys. Lett. 86, 243102-243104 (2005). [0pt] [3] K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon, T. Gentile, C. Hogg, Y. Ijiri, M. Laver, B. B. Maranville, S. A. Majetich, J. Rhyne, and S. M. Watson, Physica B (submitted).
Experimental validation of a coupled neutron-photon inverse radiation transport solver
NASA Astrophysics Data System (ADS)
Mattingly, John; Mitchell, Dean J.; Harding, Lee T.
2011-10-01
Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of α-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.
Effect of nanodiamond fluorination on the efficiency of quasispecular reflection of cold neutrons
NASA Astrophysics Data System (ADS)
Nesvizhevsky, V. V.; Dubois, M.; Gutfreund, Ph.; Lychagin, E. V.; Nezvanov, A. Yu.; Zhernenkov, K. N.
2018-02-01
Nanomaterials, which show large reflectivity for external radiation, are of general interest in science and technology. We report a result from our ongoing research on the reflection of low-energy neutrons from powders of detonation diamond nanoparticles. Our previous work showed a large probability for quasispecular reflection of neutrons from this medium. The model of neutron scattering from nanoparticles, which we have developed, suggests two ways to increase the quasispecular reflection probability: (1) the reduction of incoherent scattering by substitution of hydrogen with fluorine inside the nanoparticles, and (2) the sharpening of the neutron optical potential step by removal of amorphous s p2 carbon from the nanoparticle shells. We present experimental results on scattering of slow neutrons from both raw and fluorinated diamond nanoparticles with amorphous s p2 carbon removed by gas-solid fluorination. These results show a clear increase in quasispecular reflection probability.
Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars
NASA Astrophysics Data System (ADS)
Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.
2013-09-01
Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.
Observation of a γ-decaying millisecond isomeric state in 128Cd80
NASA Astrophysics Data System (ADS)
Jungclaus, A.; Grawe, H.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Söderström, P.-A.; Sumikama, T.; Taprogge, J.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Benzoni, G.; Bönig, S.; Chae, K. Y.; Coraggio, L.; Daugas, J.-M.; Drouet, F.; Gadea, A.; Gargano, A.; Ilieva, S.; Itaco, N.; Kondev, F. G.; Kröll, T.; Lane, G. J.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Wendt, A.
2017-09-01
A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2 = 6.3 (8) ms was measured for the new state which was tentatively assigned a spin/parity of (15-). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18+E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in the 0h11/2 and the 0g9/2 orbit, respectively, which is predicted to exist by the shell model.
Thin Shell evolution of NIF capsule with asymmetric drive and the resulting neutron diagnostics
NASA Astrophysics Data System (ADS)
Buchoff, Michael; Hammer, Jim
2015-11-01
One of the major impediments to achieving ignition via ICF is the non-spherical implosion arising from small asymmetries in the drive forcing the collapse of the capsule. Likewise, an experimental diagnostic for quantifying the characteristics of the implosion asymmetry is the final state neutrons, whose number and velocity distributions are not experimentally consistent with the expectation of a spherical implosion. In principle, connecting these initial and final state asymmetries could be solved via hydrodynamic simulations, but due to the multiple scales traversed throughout this process, these calculations are difficult and expensive, leaving much of the potential drive asymmetry profiles unexplored. In this work, we solve the resulting analytic equations from the thin-shell model proposed by Ott et. al. to evolve the capsule over a range of different drive asymmetries from its initial state (when the shell aspect ratio is much greater than 1) to a radius of roughly 250 microns, consisting of a layer of dense CH, a cold layer of dense DT, and a warm core of sparsely distributed DT. At this stage, more tractable hydrodynamical simulations are performed in the ARES code suite, determining the distribution of neutron from thermonuclear yield. These and future results allow for a multitude of tests of asymmetric sources to compare with and potentially guide experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Beta-decay rate and beta-delayed neutron emission probability of improved gross theory
NASA Astrophysics Data System (ADS)
Koura, Hiroyuki
2014-09-01
A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. This work is a result of Comprehensive study of delayed-neutron yields for accurate evaluation of kinetics of high-burn up reactors entrusted to Tokyo Institute of Technology by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Theoretical study of triaxial shapes of neutron-rich Mo and Ru nuclei
Zhang, C. L.; Bhat, G. H.; Nazarewicz, W.; ...
2015-09-10
Here, whether atomic nuclei can possess triaxial shapes at their ground states is still a subject of ongoing debate. According to theory, good prospects for low-spin triaxiality are in the neutron-rich Mo-Ru region. Recently, transition quadrupole moments in rotational bands of even-mass neutron-rich isotopes of molybdenum and ruthenium nuclei have been measured. The new data have provided a challenge for theoretical descriptions invoking stable triaxial deformations. The purpose of this study is to understand experimental data on rotational bands in the neutron-rich Mo-Ru region, we carried out theoretical analysis of moments of inertia, shapes, and transition quadrupole moments of neutron-richmore » even-even nuclei around 110Ru using self-consistent mean-field and shell model techniques. Methods: To describe yrast structures in Mo and Ru isotopes, we use nuclear density functional theory (DFT) with the optimized energy density functional UNEDF0. We also apply triaxial projected shell model (TPSM) to describe yrast and positive-parity, near-yrast band structures. As a result, our self-consistent DFT calculations predict triaxial ground-state deformations in 106,108Mo and 108,110,112Ru and reproduce the observed low-frequency behavior of moments of inertia. As the rotational frequency increases, a negative-gamma structure, associated with the aligned ν(h 11/2) 2 pair, becomes energetically favored. The computed transition quadrupole moments vary with angular momentum, which reflects deformation changes with rotation; those variations are consistent with experiment. The TPSM calculations explain the observed band structures assuming stable triaxial shapes. Lastly, the structure of neutron-rich even-even nuclei around Ru-110 is consistent with triaxial shape deformations. Our DFT and TPSM frameworks provide a consistent and complementary description of experimental data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nag, Somnath; Singh, A. K.; Hagemann, G. B.
In this paper, high-spin states in 124Xe have been populated using the 80Se( 48Ca, 4n) reaction at a beam energy of 207 MeV and high-multiplicity, γ-ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin rotational bands with moments of inertia similar to those observed in neighboring nuclei have been observed. The experimental results are compared with calculations within the framework of the Cranked Nilsson-Strutinsky model. Finally, it is suggested that the configurations of the bands involve excitations of protons across the Z = 50 shell gap coupled to neutrons within the N = 50 - 82 shell ormore » excited across the N = 82 shell closure.« less
NASA Astrophysics Data System (ADS)
Niu, Fei; Chen, Peng-Hui; Guo, Ya-Fei; Ma, Chun-Wang; Feng, Zhao-Qing
2018-03-01
The isospin dissipation dynamics in multinucleon transfer reactions has been investigated within the dinuclear system model. Production cross sections of neutron-rich isotopes around projectile-like and target-like fragments are estimated in collisions of Ni,6458+208Pb and 78.86,91Kr +198Pt near Coulomb barrier energies. The isospin diffusion in the nucleon transfer process is coupled to the dissipation of relative motion energy and angular momentum of colliding system. The available data of projectile-like fragments via multinucleon transfer reactions are nicely reproduced. It is found that the light projectile-like fragments are produced in the neutron-rich region because of the isospin equilibrium in two colliding nuclei. However, the heavy target-like fragments tend to be formed on the neutron-poor side above the β -stability line. The neutron-rich projectiles move the maximal yields of heavy nuclei to the neutron-rich domain and are available for producing the heavy exotic isotopes, in particular around the neutron shell closure of N =126 .
Neutron Spectroscopic Factors from Transfer Reactions
NASA Astrophysics Data System (ADS)
Lee, Jenny; Tsang, M. B.
2007-05-01
We have extracted the ground state to ground state neutron spectroscopic factors for 80 nuclei ranging in Z from 3 to 24 by analyzing the past measurements of the angular distributions from (d,p) and (p,d) reactions. We demonstrate an approach that provides systematic and consistent values with a minimum of assumptions. A three-body model with global optical potentials and standard geometry of n-potential is applied. For the 60 nuclei where modern shell model calculations are available, such analysis reproduces, to within 20%, the experimental spectroscopic factors for most nuclei. If we constraint the nucleon-target optical potential and the geometries of the bound neutron-wave function with the modern Hartree-Fock calculations, our deduced neutron spectroscopic factors are reduced by 30% on average.
Radiation shielding composition
Quapp, William J.; Lessing, Paul A.
2000-12-26
A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.
Radiation shielding composition
Quapp, William J.; Lessing, Paul A.
1998-01-01
A composition for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm.sup.3 and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile.
Landscape of α preformation probability for even-even nuclei in medium mass region
NASA Astrophysics Data System (ADS)
Qian, Yibin; Ren, Zhongzhou
2018-03-01
The behavior of α cluster preformation probability, in α decay, is a rich source of the structural information, such as the clustering, pairing, and shell evolution in heavy nuclei. Meanwhile, the experimental α decay data have been very recently compiled in the newest table NUBASE2016. Through a least square fit to the available experimental data of nuclear charge radii plus the neutron skin thickness, we obtain a new set of parameters for the two-parameter Fermi nucleon density distributions in target nuclei. Subsequently, we make use of these refreshed inputs, involved in the density-dependent cluster model, to extract α preformation factor ({P}α ) for a large range of medium α emitters with N < 126 from the newest data table. Besides checking the supposed smooth pattern of P α in the open-shell region, the special attention has been paid to those exotic α-decaying nuclei around the Z = 50 and N = 82 shell closures. Moreover, the correlation between the α preformation factor and the microscopic correction of nuclear mass, corresponding to the effect of shell and pairing plus deformation, is in particular investigated, to pursue the valuable knowledge of the P α pattern over the nuclide chart. The feature of α preformation factor along with the neutron-proton asymmetry is then detected and discussed to some extent.
High spin structure and intruder configurations in 31P
NASA Astrophysics Data System (ADS)
Ionescu-Bujor, M.; Iordachescu, A.; Napoli, D. R.; Lenzi, S. M.; Mărginean, N.; Otsuka, T.; Utsuno, Y.; Ribas, R. V.; Axiotis, M.; Bazzacco, D.; Bizzeti-Sona, A. M.; Bizzeti, P. G.; Brandolini, F.; Bucurescu, D.; Cardona, M. A.; De Angelis, G.; De Poli, M.; Della Vedova, F.; Farnea, E.; Gadea, A.; Hojman, D.; Kalfas, C. A.; Kröll, Th.; Lunardi, S.; Martínez, T.; Mason, P.; Pavan, P.; Quintana, B.; Alvarez, C. Rossi; Ur, C. A.; Vlastou, R.; Zilio, S.
2006-02-01
The nucleus 31P has been studied in the 24Mg(16O,2αp) reaction with a 70-MeV 16O beam. A complex level scheme extended up to spins 17/2+ and 15/2-, on positive and negative parity, respectively, has been established. Lifetimes for the new states have been investigated by the Doppler shift attenuation method. Two shell-model calculations have been performed to describe the experimental data, one by using the code ANTOINE in a valence space restricted to the sd shell, and the other by applying the Monte Carlo shell model in a valence space including the sd-fp shells. The latter calculation indicates that intruder excitations, involving the promotion of a T=0 proton-neutron pair to the fp shell, play a dominant role in the structure of the positive-parity high-spin states of 31P.
Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers
NASA Astrophysics Data System (ADS)
Tanaka, Masaomi; Kato, Daiji; Gaigalas, Gediminas; Rynkun, Pavel; Radžiūtė, Laima; Wanajo, Shinya; Sekiguchi, Yuichiro; Nakamura, Nobuyuki; Tanuma, Hajime; Murakami, Izumi; Sakaue, Hiroyuki A.
2018-01-01
Ejected material from neutron star mergers gives rise to electromagnetic emission powered by radioactive decays of r-process nuclei, the so-called kilonova or macronova. While properties of the emission are largely affected by opacities in the ejected material, available atomic data for r-process elements are still limited. We perform atomic structure calculations for r-process elements: Se (Z = 34), Ru (Z = 44), Te (Z = 52), Ba (Z = 56), Nd (Z = 60), and Er (Z = 68). We confirm that the opacities from bound–bound transitions of open f-shell, lanthanide elements (Nd and Er) are higher than those of the other elements over a wide wavelength range. The opacities of open s-shell (Ba), p-shell (Se and Te), and d-shell (Ru) elements are lower than those of open f-shell elements, and their transitions are concentrated in the ultraviolet and optical wavelengths. We show that the optical brightness can be different by > 2 mag depending on the element abundances in the ejecta such that post-merger, lanthanide-free ejecta produce brighter and bluer optical emission. Such blue emission from post-merger ejecta can be observed from the polar directions if the mass of the preceding dynamical ejecta in these regions is small. For the ejecta mass of 0.01 {M}ȯ , observed magnitudes of the blue emission will reach 21.0 mag (100 Mpc) and 22.5 mag (200 Mpc) in the g and r bands within a few days after the merger, which are detectable with 1 m or 2 m class telescopes.
Double shell planar experiments on OMEGA
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.
2017-10-01
The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.
Interplay of spherical closed shells and N /Z asymmetry in quasifission dynamics
NASA Astrophysics Data System (ADS)
Mohanto, G.; Hinde, D. J.; Banerjee, K.; Dasgupta, M.; Jeung, D. Y.; Simenel, C.; Simpson, E. C.; Wakhle, A.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; Palshetkar, C. S.; Rafferty, D. C.
2018-05-01
Background: Quasifission (QF) has gained tremendous importance in heavy-ion nuclear physics research because of its strong influence on superheavy-element synthesis. Collisions involving closed-shell nuclei in the entrance channel are found to affect the QF reaction mechanism. Hence, it is important to improve the understanding of their effect on QF. Apart from that, some recent studies show that the difference in N /Z of reaction partners influences the reaction dynamics. Since heavier doubly magic nuclei have different N /Z than lighter doubly magic nuclei, it is important to understand the effect of N /Z mismatch as well as the effect of shell closures. Purpose: To investigate the effect of entrance-channel shell closures and N /Z asymmetry on QF. The reactions were chosen to decouple these effects from the contributions of other entrance-channel parameters. Method: Fission fragment mass-angle distributions were measured using the CUBE fission spectrometer, consisting of two large area position-sensitive multi-wire proportional counters (MWPCs), for five reactions, namely, 50Cr+208Pb , 52Cr+Pb,208206 , 54Cr+Pb,208204 . Result: Two components were observed in the measured fragment mass angle distribution, a fast mass-asymmetric quasifission and a slow mass-symmetric component having a less significant mass-angle correlation. The ratio of these components was found to depend on spherical closed shells in the entrance channel nuclei and the magnitude of the N /Z mismatch between the two reaction partners, as well as the beam energy. Conclusions: Entrance-channel spherical closed shells can enhance compound nucleus formation provided the N /Z asymmetry is small. Increase in the N /Z asymmetry is expected to destroy the effect of entrance-channel spherical closed shells, through nucleon transfer reactions.
Signatures for a nuclear quantum phase transition from E 0 and E 2 observables in Gd isotopes
NASA Astrophysics Data System (ADS)
Wiederhold, J.; Kern, R.; Lizarazo, C.; Pietralla, N.; Werner, V.; Jolos, R. V.; Bucurescu, D.; Florea, N.; Ghita, D.; Glodariu, T.; Lica, R.; Marginean, N.; Marginean, R.; Mihai, C.; Mihai, R.; Mitu, I. O.; Negret, A.; Nita, C.; Olacel, A.; Pascu, S.; Stroe, L.; Toma, S.; Turturica, A.
2018-05-01
Nuclei are complex quantum objects due to complex nucleon-nucleon interactions. They can undergo rather rapid changes in structure as a function of nucleon number. A well known region of such a shape transition is the rare-earth region around N = 90, where accessible nuclei range from spherical nuclei at the closed neutron shell at N = 82 to deformed nuclei. For a better understanding of this phenomenon, it is of interest to study empirical signatures like the E2 transition strength B(E2;{2}1+\\to {0}1+) or the E0 excitation strength {ρ }2(E0;{0}1+\\to {0}2+). The nuclide 152Gd with 88 neutrons is located close to the quantum phase transition at N = 90. The lifetime τ ({0}2+) of 152Gd has been measured using fast electronic scintillation timing (FEST) with an array of HPGe- and LaBr3- detectors. Excited states of 152Gd were populated via an (α,n)-reaction on a gold-backed 149Sm target. The measured lifetime of τ ({0}2+)=96(6)\\text{ps} corresponds to a reduced transition strength of B(E2;{0}2+\\to {2}1+)=111(7) W.u. and an E0 transition strength of ρ 2(E0) = 39(3) · 10‑3 to the ground state. This result provides experimental support for the validity of a correlation between E0 and E2 strengths that is a novel indicator for a quantum phase transition. This work was published as J. Wiederhold et al., Phys. Rev. C 94, 044302 (2016).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Talwar, R.; Kay, B. P.; Mitchell, A. J.
The nu 0h(9/2) and nu 0i(13/2) strength at Xe-137, a single neutron outside the N = 82 shell closure, has been determined using the Xe-136(alpha, He-3)Xe-137 reaction carried out at 100 MeV. We confirm the recent observation of the second 13/2(+) state and reassess previous data on the 9/2(-) states, obtaining spectroscopic factors. These new data provide additional constraints on predictions of the same single-neutron excitations at Sn-133.
Structure of the spatial periphery of the {sup 11}Li and {sup 11}Be isobars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galanina, L. I., E-mail: galan-lidiya@mail.ru; Zelenskaya, N. S.
2016-07-15
On the basis of the shell model with an extended basis, the structure of {sup 9}Li-{sup 9}Be to {sup 11}Li-{sup 11}Be nuclei is examined with allowance for the competition of {sup jj} coupling and Majorana exchange forces via considering the sequential addition of neutrons, and the respective wave functions are determined. A formalism for calculating the spectroscopic factor for a dineutron and for individual neutrons in nuclei whose wave functions incorporate the mixing of shell configurations is developed. The reactions {sup 9}Li(t, p){sup 11}Li and {sup 9}Be(t, p){sup 11}Be treated with allowance for the mechanisms of dineutron stripping and amore » sequential transfer of two neutrons are considered as an indicator of the proposed structure of lithium and berylliumisotopes. The parameters of the optical potentials, the wave functions for the bound states of transferred particles, and the interaction potentials corresponding to them are determined from a comparison of the theoretical angular distribution of protons from the reaction {sup 9}Be(t, p){sup 11}Be with its experimental counterpart. It is shown that a dineutron periphery of size about 6.4 fm is present in the {sup 11}Li nucleus and that a single-neutron periphery of size about 8 fm is present in the {sup 11}Be nucleus.« less
Glass shell manufacturing in space
NASA Technical Reports Server (NTRS)
Downs, R. L.; Ebner, M. A.; Nolen, R. L., Jr.
1981-01-01
Highly-uniform, hollow glass spheres (shells), which are used for inertial confinement fusion targets, were formed from metal-organic gel powder feedstock in a vertical furnace. As a result of the rapid pyrolysis caused by the furnace, the gel is transformed to a shell in five distinct stages: (a) surface closure of the porous gel; (b) generation of a closed-cell foam structure in the gel; (c) spheridization of the gel and further expansion of the foam; (d) coalescence of the closed-cell foam to a single-void shell; and (e) fining of the glass shell. The heat transfer from the furnace to the falling gel particle was modeled to determine the effective heating rate of the gel. The model predicts the temperature history for a particle as a function of mass, dimensions, specific heat, and absorptance as well as furnace temperature profile and thermal conductivity of the furnace gas. A model was developed that predicts the gravity-induced degradation of shell concentricity in falling molten shells as a function of shell characteristics and time.
Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis up to Th and U
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Yoshida, Takashi; Shibagaki, Shota; Kajino, Toshitaka; Otsuka, Takaharu
Beta-decay rates for exotic nuclei with N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard FRDM, are used to study r-process nucleosynthesis in neutrino-driven winds and magneto-hydrodynamic jets of core-collapse supernova explosions as well as in binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. Thorium and uranium are found to be produced more with the shorter shell-model half-lives and their abundances come closer to the observed values in core-collapse supernova explosions, while in case of binary neutron star mergers they are produced as much as the observed values rather independent of the half-lives.
First total-absorption spectroscopy measurement on the neutron-rich Cu isotopes
NASA Astrophysics Data System (ADS)
Naqvi, F.; Spyrou, A.; Liddick, S. N.; Larsen, A. C.; Guttormsen, M.; Bleuel, D. L.; Campo, L. C.; Couture, A.; Crider, B. P.; Dombos, A. C.; Ginter, T.; Lewis, R.; Mosby, S.; Perdikakis, G.; Prokop, C. P.; Quinn, S. J.; Renstrom, T.; Rubio, B.; Siem, S.
2015-10-01
The first beta-decay studies of 73-71Cu isotopes using the Total Absorption Spectroscopy (TAS) will be reported. The Cu isotopes have one proton outside the Z = 28 shell and hence are good candidates to probe the single-particle structure in the region.Theories predict weakening of the Z = 28 shell gap due to the tensor interaction between the valence πν single-particle orbitals. Comparing the beta-decay strength distributions in the daughter Zn isotopes to the theoretical calculations will provide a stringent test of the predictions. The experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) employing the TAS technique with the Summing NaI(Tl) detector, while beta decays were measured in the NSCL beta-counting system. The experimentally obtained total absorption spectra for the neutron-rich Cu isotopes will be presented and the implications of the extracted beta-feeding intensities will be discussed.
Observation of a γ -decaying millisecond isomeric state in 128 Cd 80
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jungclaus, A.; Grawe, H.; Nishimura, S.
2017-09-01
A new high-spin isomer in the neutron-rich nucleus 128Cd was populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN. A half-life of T1/2 = 6.3(8) ms was measured for the new state which was tentatively assigned a spin/parity of (15-). The experimental results are compared to shell model calculations performed using state-of-the-art realistic effective interactions and to the neighbouring nucleus 129Cd. In the present experiment no evidence was found for the decay of a 18 + E6 spin-trap isomer, based on the complete alignment of the two-neutron and two-proton holes in themore » 0h 11/2 and the 0g 9/2 orbit, respectively, which is predicted to exist by the shell model.« less
Effective operators in a single-j orbital
NASA Astrophysics Data System (ADS)
Derbali, E.; Van Isacker, P.; Tellili, B.; Souga, C.
2018-03-01
We present an analysis of effective operators in the shell model with up to three-body interactions in the Hamiltonian and two-body terms in electromagnetic transition operators when the nucleons are either neutrons or protons occupying a single-j orbital. We first show that evidence for an effective three-body interaction exists in the N = 50 isotones and in the lead isotopes but that the separate components of such interaction are difficult to obtain empirically. We then determine higher-order terms on more microscopic grounds. The starting point is a realistic two-body interaction in a large shell-model space together with a standard one-body transition operator, which, after restriction to the dominant orbital and with use of stationary perturbation theory, are transformed into effective versions with higher-order terms. An application is presented for the lead isotopes with neutrons in the 1{g}9/2 orbital.
A test for correction made to spin systematics for coupled band in doubly-odd nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Vinod, E-mail: vinod2.k2@gmail.com
2015-12-15
Systematic Spin Assignments were generally made by using the argument that the energy of levels is a function of neutron number. In the present systematics, the excitation energy of the levels incorporated the effect of nuclear deformation and signature splitting. The nuclear deformation changes toward the mid-shell, therefore a smooth variation in the excitation energy of the levels is observed towards the mid-shell, that intended to make systematics as a function of neutron number towards the mid-shell. Another term “signature splitting” that push the energy of levels for odd- and even-spin sequences up and down, caused the different energy variationmore » pattern for odd- and even-spin sequences. The corrections made in the spin systematics were tested for the known spins of various isotopic chain. In addition, the inconsistency in spin assignments made by the spin systematics and other methods of the configuration πh{sub 11/2} ⊗ νh{sub 11/2} band belonging to {sup 112,114,116}Cs, {sup 126}Pr, and {sup 138}Pr, as an example, was resolved by the correctionmade in the present spin systematics.« less
Shell model description of heavy nuclei and abnormal collective motions
NASA Astrophysics Data System (ADS)
Qi, Chong
2018-05-01
In this contribution I present systematic calculations on the spectroscopy and electromagnetic transition properties of intermediate-mass and heavy nuclei around 100Sn and 208Pb. We employed the large-scale configuration interaction shell model approach with realistic interactions. Those nuclei are the longest isotopic chains that can be studied by the nuclear shell model. I will show that the yrast spectra of Te isotopes show a vibrational-like equally spaced pattern but the few known E2 transitions show rotational-like behaviour. These kinds of abnormal collective behaviors cannot be reproduced by standard collective models and provide excellent background to study the competition of single-particle and various collective degrees of freedom. Moreover, the calculated B(E2) values for neutron-deficient and heavier Te isotopes show contrasting different behaviours along the yrast line, which may be related to the enhanced neutron-proton correlation when approaching N=50. The deviations between theory and experiment concerning the energies and E2 transition properties of low-lying 0+ and 2+ excited states and isomeric states in those nuclei may provide a constraint on our understanding of nuclear deformation and intruder configuration in that region.
Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; ...
2015-03-12
Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less
Tripathi, Vandana; Lubna, R. S.; Abromeit, B.; ...
2017-02-08
Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allmond, James M; Stuchberry, A. E.; Danchev, M.
Radioactive 136Te has two valence protons and two valence neutrons outside of the 132Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon- nucleon interactions. Coulomb excitation of 136Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0more » $$+\\atop{1}$$→ 2$$+\\atop{1}$$ ), Q(2$$+\\atop{1}$$ ), and g(2$$+\\atop{1}$$ ). The results indicate that the first-excited state, 2$$+\\atop{1}$$ , composed of the simple 2p ⊕ 2n system, is prolate deformed, and its wave function is dominated by neutron degrees of freedom, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g(2$$+\\atop{1}$$) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g(2$$+\\atop{1}$$ ) was used to differentiate among several state-of-the-art theoretical calculations. Finally, our results are best described by the most recent shell model calculations.« less
Allmond, James M; Stuchberry, A. E.; Danchev, M.; ...
2017-03-03
Radioactive 136Te has two valence protons and two valence neutrons outside of the 132Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon- nucleon interactions. Coulomb excitation of 136Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0more » $$+\\atop{1}$$→ 2$$+\\atop{1}$$ ), Q(2$$+\\atop{1}$$ ), and g(2$$+\\atop{1}$$ ). The results indicate that the first-excited state, 2$$+\\atop{1}$$ , composed of the simple 2p ⊕ 2n system, is prolate deformed, and its wave function is dominated by neutron degrees of freedom, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g(2$$+\\atop{1}$$) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g(2$$+\\atop{1}$$ ) was used to differentiate among several state-of-the-art theoretical calculations. Finally, our results are best described by the most recent shell model calculations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Vandana; Lubna, R. S.; Abromeit, B.
Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less
New neutron imaging techniques to close the gap to scattering applications
NASA Astrophysics Data System (ADS)
Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.
2017-01-01
Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide.
CAD-based Automatic Modeling Method for Geant4 geometry model Through MCAM
NASA Astrophysics Data System (ADS)
Wang, Dong; Nie, Fanzhi; Wang, Guozhong; Long, Pengcheng; LV, Zhongliang; LV, Zhongliang
2014-06-01
Geant4 is a widely used Monte Carlo transport simulation package. Before calculating using Geant4, the calculation model need be established which could be described by using Geometry Description Markup Language (GDML) or C++ language. However, it is time-consuming and error-prone to manually describe the models by GDML. Automatic modeling methods have been developed recently, but there are some problem existed in most of present modeling programs, specially some of them were not accurate or adapted to specifically CAD format. To convert the GDML format models to CAD format accurately, a Geant4 Computer Aided Design (CAD) based modeling method was developed for automatically converting complex CAD geometry model into GDML geometry model. The essence of this method was dealing with CAD model represented with boundary representation (B-REP) and GDML model represented with constructive solid geometry (CSG). At first, CAD model was decomposed to several simple solids which had only one close shell. And then the simple solid was decomposed to convex shell set. Then corresponding GDML convex basic solids were generated by the boundary surfaces getting from the topological characteristic of a convex shell. After the generation of these solids, GDML model was accomplished with series boolean operations. This method was adopted in CAD/Image-based Automatic Modeling Program for Neutronics & Radiation Transport (MCAM), and tested with several models including the examples in Geant4 install package. The results showed that this method could convert standard CAD model accurately, and can be used for Geant4 automatic modeling.
NASA Astrophysics Data System (ADS)
Müller, Bernhard; Melson, Tobias; Heger, Alexander; Janka, Hans-Thomas
2017-11-01
We study the impact of large-scale perturbations from convective shell burning on the core-collapse supernova explosion mechanism using 3D multigroup neutrino hydrodynamics simulations of an 18M⊙ progenitor. Seed asphericities in the O shell, obtained from a recent 3D model of O shell burning, help trigger a neutrino-driven explosion 330 ms after bounce whereas the shock is not revived in a model based on a spherically symmetric progenitor for at least another 300 ms. We tentatively infer a reduction of the critical luminosity for shock revival by ˜ 20 {per cent} due to pre-collapse perturbations. This indicates that convective seed perturbations play an important role in the explosion mechanism in some progenitors. We follow the evolution of the 18M⊙ model into the explosion phase for more than 2 s and find that the cycle of accretion and mass ejection is still ongoing at this stage. With a preliminary value of 7.7 × 1050 erg for the diagnostic explosion energy, a baryonic neutron star mass of 1.85M⊙, a neutron star kick of ˜ 600 km s^{-1} and a neutron star spin period of ˜ 20 ms at the end of the simulation, the explosion and remnant properties are slightly atypical, but still lie comfortably within the observed distribution. Although more refined simulations and a larger survey of progenitors are still called for, this suggests that a solution to the problem of shock revival and explosion energies in the ballpark of observations is within reach for neutrino-driven explosions in 3D.
Radiation shielding composition
Quapp, W.J.; Lessing, P.A.
1998-07-28
A composition is disclosed for use as a radiation shield. The shield is a concrete product containing a stable uranium aggregate for attenuating gamma rays and a neutron absorbing component, the uranium aggregate and neutron absorbing component being present in the concrete product in sufficient amounts to provide a concrete having a density between about 4 and about 15 grams/cm{sup 3} and which will at a predetermined thickness, attenuate gamma rays and absorb neutrons from a radioactive material of projected gamma ray and neutron emissions over a determined time period. The composition is preferably in the form of a container for storing radioactive materials that emit gamma rays and neutrons. The concrete container preferably comprises a metal liner and/or a metal outer shell. The resulting radiation shielding container has the potential of being structurally sound, stable over a long period of time, and, if desired, readily mobile. 5 figs.
NASA Astrophysics Data System (ADS)
Régis, J.-M.; Jolie, J.; Saed-Samii, N.; Warr, N.; Pfeiffer, M.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; Drouet, F.; Vancraeyenest, A.; de France, G.; Clément, E.; Stezowski, O.; Ur, C. A.; Urban, W.; Regan, P. H.; Podolyák, Zs.; Larijani, C.; Townsley, C.; Carroll, R.; Wilson, E.; Fraile, L. M.; Mach, H.; Paziy, V.; Olaizola, B.; Vedia, V.; Bruce, A. M.; Roberts, O. J.; Smith, J. F.; Scheck, M.; Kröll, T.; Hartig, A.-L.; Ignatov, A.; Ilieva, S.; Lalkovski, S.; Korten, W.; Mǎrginean, N.; Otsuka, T.; Shimizu, N.; Togashi, T.; Tsunoda, Y.
2017-05-01
Lifetimes of low-lying yrast states in neutron-rich 94,96,98Sr have been measured by Germanium-gated γ -γ fast timing with LaBr 3 (Ce ) detectors using the EXILL&FATIMA spectrometer at the Institut Laue-Langevin. Sr fission products were generated using cold-neutron-induced fission of 235U and stopped almost instantaneously within the thick target. The experimental B (E 2 ) values are compared with results of Monte Carlo shell-model calculations made without truncation on the occupation numbers of the orbits spanned by eight proton and eight neutron orbits and show good agreement. Similarly to the Zr isotopes, the abrupt shape transition in the Sr isotopes near neutron number N =60 is identified as being caused by many-proton excitations to its g9 /2 orbit.
Rotational Effects of Nanoparticles for Cooling down Ultracold Neutrons
Tu, Xiaoqing; Sun, Guangai; Gong, Jian; Liu, Lijuan; Ren, Yong; Gao, Penglin; Wang, Wenzhao; Yan, H.
2017-01-01
Due to quantum coherence, nanoparticles have very large cross sections when scattering with very cold or Ultracold Neutrons (UCN). By calculating the scattering cross section quantum mechanically at first, then treating the nanoparticles as classical objects when including the rotational effects, we can derive the associated energy transfer. We find that rotational effects could play an important role in slowing down UCN. In consequence, the slowing down efficiency can be improved by as much as ~40%. Since thermalization of neutrons with the moderator requires typically hundreds of collisions between them, a ~40% increase of the efficiency per collision could have a significant effect. Other possible applications, such as neutrons scattering with nano shells and magnetic particles,and reducing the systematics induced by the geometric phase effect using nanoparticles in the neutron Electric Dipole Moment (nEDM), are also discussed in this paper. PMID:28294116
Simple Interpretation of Proton-Neutron Interactions in Rare Earth Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oktem, Y.; Cakirli, R. B.; Wright Nuclear Structure Laboratory, Yale University, New Haven, CT 06520
2007-04-23
Empirical values of the average interactions of the last two protons and last two neutrons, {delta}Vpn, which can be obtained from double differences of binding energies, provide significant information about nuclear structure. Studies of {delta}Vpn showed striking behavior across major shell gaps and the relation of proton-neutron (p-n) interaction strengths to the increasing collectivity and onset of deformation in nuclei. Here we focus on the strong regularity at the {delta}Vpn values in A{approx}150-180 mass region. Experimentally, for each nucleus, the valence p-n interaction strengths increase systematically against the neutron number and it decreases for the observed last neutron number. Thesemore » experimental results give almost nearly perfect parallel trajectories. A microscopic interpretation with a zero range {delta}-interaction in a Nilsson basis gives reasonable agreement for Er-W but more significant discrepancies appear for Gd and Dy.« less
Search for the invisible decay of neutrons with KamLAND.
Araki, T; Enomoto, S; Furuno, K; Gando, Y; Ichimura, K; Ikeda, H; Inoue, K; Kishimoto, Y; Koga, M; Koseki, Y; Maeda, T; Mitsui, T; Motoki, M; Nakajima, K; Nakamura, K; Ogawa, H; Ogawa, M; Owada, K; Ricol, J-S; Shimizu, I; Shirai, J; Suekane, F; Suzuki, A; Tada, K; Takeuchi, S; Tamae, K; Tsuda, Y; Watanabe, H; Busenitz, J; Classen, T; Djurcic, Z; Keefer, G; Leonard, D S; Piepke, A; Yakushev, E; Berger, B E; Chan, Y D; Decowski, M P; Dwyer, D A; Freedman, S J; Fujikawa, B K; Goldman, J; Gray, F; Heeger, K M; Hsu, L; Lesko, K T; Luk, K-B; Murayama, H; O'Donnell, T; Poon, A W P; Steiner, H M; Winslow, L A; Jillings, C; Mauger, C; McKeown, R D; Vogel, P; Zhang, C; Lane, C E; Miletic, T; Guillian, G; Learned, J G; Maricic, J; Matsuno, S; Pakvasa, S; Horton-Smith, G A; Dazeley, S; Hatakeyama, S; Rojas, A; Svoboda, R; Dieterle, B D; Detwiler, J; Gratta, G; Ishii, K; Tolich, N; Uchida, Y; Batygov, M; Bugg, W; Efremenko, Y; Kamyshkov, Y; Kozlov, A; Nakamura, Y; Karwowski, H J; Markoff, D M; Rohm, R M; Tornow, W; Wendell, R; Chen, M-J; Wang, Y-F; Piquemal, F
2006-03-17
The Kamioka Liquid scintillator Anti-Neutrino Detector is used in a search for single neutron or two-neutron intranuclear disappearance that would produce holes in the -shell energy level of (12)C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (inv), e.g., n--> 3v or nn--> 2v. The deexcitation of the corresponding daughter nucleus results in a sequence of space and time-correlated events observable in the liquid scintillator detector. We report on new limits for one- and two-neutron disappearance: tau(n--> inv) > 5.8 x 10(29) years and tau (nn--> inv) > 1.4 x 10(30) years at 90% C.L. These results represent an improvement of factors of approximately 3 and >10(4) and over previous experiments.
Integral experiments on thorium assemblies with D-T neutron source
NASA Astrophysics Data System (ADS)
Liu, Rong; Yang, Yiwei; Feng, Song; Zheng, Lei; Lai, Caifeng; Lu, Xinxin; Wang, Mei; Jiang, Li
2017-09-01
To validate nuclear data and code in the neutronics design of a hybrid reactor with thorium, integral experiments in two kinds of benchmark thorium assemblies with a D-T fusion neutron source have been performed. The one kind of 1D assemblies consists of polyethylene and depleted uranium shells. The other kind of 2D assemblies consists of three thorium oxide cylinders. The capture reaction rates, fission reaction rates, and (n, 2n) reaction rates in 232Th in the assemblies are measured by ThO2 foils. The leakage neutron spectra from the ThO2 cylinders are measured by a liquid scintillation detector. The experimental uncertainties in all the results are analyzed. The measured results are compared to the calculated ones with MCNP code and ENDF/B-VII.0 library data.
A circumferential crack in a cylindrical shell under tension.
NASA Technical Reports Server (NTRS)
Duncan-Fama, M. E.; Sanders, J. L., Jr.
1972-01-01
A closed cylindrical shell under uniform internal pressure has a slit around a portion of its circumference. Linear shallow shell theory predicts inverse square-root-type singularities in certain of the stresses at the crack tips. This paper reports the computed strength of these singularities for different values of a dimensionless parameter based on crack length, shell radius and shell thickness.
Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons
NASA Astrophysics Data System (ADS)
Hamamoto, Ikuko
2007-11-01
Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly bound neutrons. Compared with Nilsson diagrams in textbooks that are constructed using modified oscillator potentials, we point out a systematic change of the shell structure in connection with both weakly bound and resonant one-particle levels related to small orbital angular momenta ℓ. Then, it is seen that weakly bound neutrons in nuclei such as C15-19 and Mg33-37 may prefer being deformed as a result of the Jahn-Teller effect, due to the near degeneracy of the 1d5/2-2s1/2 levels and the 1f7/2-2p3/2 levels in the spherical potential, respectively. Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in textbooks is illustrated.
Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene
2018-04-18
The characteristics of photons and neutrons produced during the interaction between a monoenergetic (12 and 18 MeV) electron beam and a tungsten scattering foil enclosed into a 10 cm-thick tungsten shell have been determined using Monte Carlo methods. This model was used aiming to represent a linac head working in electron-mode for cancer treatment. Photon and neutron spectra were determined around the scattering foil and to 50 and 100 cm below the electron source. Induced photons are mainly produced along the direction of the incoming electron beam. On the other hand, neutrons are produced in two sites, mainly in the inner surface of the linac head and in less extent in the scattering foil. The neutron spectra are evaporation neutrons which are emitted isotropically from the site where are produced leaking out from the linac head, reaching locations were the patient is allocated. Copyright © 2018 Elsevier Ltd. All rights reserved.
Proton-neutron sdg boson model and spherical-deformed phase transition
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Sugita, Michiaki
1988-12-01
The spherical-deformed phase transition in nuclei is described in terms of the proton-neutron sdg interacting boson model. The sdg hamiltonian is introduced to model the pairing+quadrupole interaction. The phase transition is reproduced in this framework as a function of the boson number in the Sm isotopes, while all parameters in the hamiltonian are kept constant at values reasonable from the shell-model point of view. The sd IBM is derived from this model through the renormalization of g-boson effects.
Winsche, Warren E.; Miles, Francis T.; Powell, James R.
1976-01-01
This invention relates generally to the production of gases, and more particularly to the production of tritium gas in a reliable long operating lifetime systems that employs solid lithium to overcome the heretofore known problems of material compatibility and corrosion, etc., with liquid metals. The solid lithium is irradiated by neutrons inside low activity means containing a positive (+) pressure gas stream for removing and separating the tritium from the solid lithium, and these means are contained in a low activity shell containing a thermal insulator and a neutron moderator.
NASA Astrophysics Data System (ADS)
Morris, Titus; Bogner, Scott
2016-09-01
The In-Medium Similarity Renormalization Group (IM-SRG) has been applied successfully to the ground state of closed shell finite nuclei. Recent work has extended its ability to target excited states of these closed shell systems via equation of motion methods, and also complete spectra of the whole SD shell via effective shell model interactions. A recent alternative method for solving of the IM-SRG equations, based on the Magnus expansion, not only provides a computationally feasible route to producing observables, but also allows for approximate handling of induced three-body forces. Promising results for several systems, including finite nuclei, will be presented and discussed.
Systematic shell-model study on spectroscopic properties from light to heavy nuclei
NASA Astrophysics Data System (ADS)
Yuan, Cenxi
2018-05-01
A systematic shell-model study is performed to study the spectroscopic properties from light to heavy nuclei, such as binding energies, energy levels, electromagnetic properties, and β decays. The importance of cross-shell excitation is shown in the spectroscopic properties of neutron-rich boron, carbon, nitrogen, and oxygen isotopes. A special case is presented for low-lying structure of 14C. The weakly bound effect of proton 1s1/2 orbit is necessary for the description of the mirror energy difference in the nuclei around A=20. Some possible isomers are predicted in the nuclei in the southeast region of 132Sn based on a newly suggested Hamiltonian. A preliminary study on the nuclei around 208Pb are given to show the ability of the shell model in the heavy nuclei.
Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch
NASA Astrophysics Data System (ADS)
Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.
2014-03-01
A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.
Einstein observations of selected close binaries and shell stars
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Koch, R. H.; Plavec, M. J.
1984-01-01
Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.
Nuclear structure studies performed using the (18O,16O) two-neutron transfer reactions
NASA Astrophysics Data System (ADS)
Carbone, D.; Agodi, C.; Cappuzzello, F.; Cavallaro, M.; Ferreira, J. L.; Foti, A.; Gargano, A.; Lenzi, S. M.; Linares, R.; Lubian, J.; Santagati, G.
2018-02-01
Excitation energy spectra and absolute cross section angular distributions were measured for the 13C(18O,16O)15C two-neutron transfer reaction at 84 MeV incident energy. This reaction selectively populates two-neutron configurations in the states of the residual nucleus. Exact finite-range coupled reaction channel calculations are used to analyse the data. Two approaches are discussed: the extreme cluster and the newly introduced microscopic cluster. The latter makes use of spectroscopic amplitudes in the centre of mass reference frame, derived from shell-model calculations using the Moshinsky transformation brackets. The results describe well the experimental cross section and highlight cluster configurations in the involved wave functions.
NASA Astrophysics Data System (ADS)
Shi, Yue
2017-03-01
Background: Recent years have seen considerable effort in associating the shell evolution (SE) for a chain of isotones or isotopes with the underlying nuclear interactions. In particular, it has been fairly well established that the tensor part of the Skyrme interaction is indispensable for understanding certain SE above Z ,N =50 shell closures, as a function of nucleon numbers. Purpose: The purpose of the present work is twofold: (1) to study the effect of deformation due to blocking on the SE above Z ,N =50 shell closures and (2) to examine the optimal parametrizations in the tensor part which gives a proper description of the SE above Z ,N =50 shell closures. Methods: I use the Skyrme-Hartree-Fock-Bogoliubov (SHFB) method to compute the even-even vacua of the Z =50 isotopes and N =50 isotones. For Sb and odd-A Sn isotopes, I perform calculations with a blocking procedure which accounts for the polarization effects, including deformations. Results: The blocking SHFB calculations show that the light odd-A Sb isotopes, with only one valence proton occupying down-sloping Ω =11 /2- and Ω =7 /2+ Nilsson orbits, assume finite oblate deformations. This reduces the energy differences between 11 /2- and 7 /2+ states by about 500 keV for 51Sb56 -66 , bringing the energy-difference curve closer to the experimental one. With une2t1 energy density functional (EDF), which differs from unedf2 parametrization by tensor terms, a better description of the slope of Δ e (π 1 h11 /2-π 1 g7 /2) as a function of neutron number has been obtained. However, the trend of Δ e (π 1 g7 /2-π 2 d5 /2) curve is worse using une2t1 EDF. Δ e (ν 3 s1 /2-ν 2 d5 /2) and Δ e (ν 1 g7 /2-ν 2 d5 /2) curve for N =50 isotones using une2t1 seems to be consistent with experimental data. The neutron SE of Δ e (ν 1 h11 /2-ν 1 g7 /2) and Δ e (ν 1 g7 /2-ν 2 d5 /2) for Sn isotopes are shown to be sensive to αT tensor parameter. Conclusions: Within the Skyrme self-consistent mean-field model, the deformation degree of freedom has to be taken into account for Sb isotopes, N =51 isotones, and odd-A Sn isotopes when discussing variation of quantities like shell gap etc. The tensor terms are important for describing the strong variation of Δ E (Ωπ=11 /2--7 /2+) in Sb isotopes. The SE of 1 /2+ and 7 /2+ states in N =51 isotones may show signature for the existence of tensor interaction. The experimental excitation energies of 11 /2- and 7 /2+ states in odd-A Sn isotopes close to 132Sn give prospects for constraining the αT parameter.
Cross-shell excitations in Si 31
Tai, P. -L.; Tabor, S. L.; Lubna, R. S.; ...
2017-07-28
The Si-31 nucleus was produced through the O-18(18O, an) fusion-evaporation reaction at E-lab = 24 MeV. Evaporated a particles from the reaction were detected and identified in the Microball detector array for channel selection. Multiple gamma-ray coincidence events were detected in Gammasphere. The energy and angle information for the alpha particles was used to determine the Si-31 recoil kinematics on an event-by-event basis for a more accurate Doppler correction. A total of 22 new states and 52 new gamma transitions were observed, including 14 from states above the neutron separation energy. The positive-parity states predicted by the shell-model calculations inmore » the sd model space agree well with experiment. The negative-parity states were compared with shell-model calculations in the psdpf model space with some variations in the N = 20 shell gap. The best agreement was found with a shell gap intermediate between that originally used for A approximate to 20 nuclei and that previously adapted for P-32,P-34. This variation suggests the need for a more universal cross-shell interaction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu
Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less
Tian, Yong-Hui; Sumpter, Bobby G.; Du, Shiyu; ...
2015-06-03
Phenalenyl is an important neutral pi-radical due to its capability to form unconventional pancake pi-pi bonding interactions, whereas its analogues with graphitic boron (B) or nitrogen (N)-doping have been regarded as closed-shell systems and therefore received much less attention. By using high-level quantum chemistry calculations, we also show that the B- and N-doped closed-shell phenalenyls unexpectedly form open-shell singlet pi-dimers with diradicaloid character featuring 2e/all-sites double pi-pi bonding. Moreover, by proper substitutions, the doped phenalenyl derivatives can be made open-shell species that form closed shell singlet pi-dimers bound by stronger 4e/all-sites double pi-pi bonding. Moreover, covalent pi-pi bonding overlap ismore » distributed on all of the atomic sites giving robust and genuine pancake-shaped pi-dimers which, depending on the number of electrons available in the bonding interactions, are equally or more stable than the pi-dimers of the pristine phenalenyl.« less
Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive
NASA Astrophysics Data System (ADS)
Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping
2016-08-01
The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.
Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng
2016-08-15
The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and themore » final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Brad C.; Meilleur, Flora; Myles, Dean A A
2005-01-01
The contribution of H atoms in noncovalent interactions and enzymatic reactions underlies virtually all aspects of biology at the molecular level, yet their 'visualization' is quite difficult. To better understand the catalytic mechanism of Escherichia coli dihydrofolate reductase (ecDHFR), a neutron diffraction study is under way to directly determine the accurate positions of H atoms within its active site. Despite exhaustive investigation of the catalytic mechanism of DHFR, controversy persists over the exact pathway associated with proton donation in reduction of the substrate, dihydrofolate. As the initial step in a proof-of-principle experiment which will identify ligand and residue protonation statesmore » as well as precise solvent structures, a neutron diffraction data set has been collected on a 0.3 mm{sup 3} D{sub 2}O-soaked crystal of ecDHFR bound to the anticancer drug methotrexate (MTX) using the LADI instrument at ILL. The completeness in individual resolution shells dropped to below 50% between 3.11 and 3.48 {angstrom} and the I/{sigma}(I) in individual shells dropped to below 2 at around 2.46 {angstrom}. However, reflections with I/{sigma}(I) greater than 2 were observed beyond these limits (as far out as 2.2 {angstrom}). To our knowledge, these crystals possess one of the largest primitive unit cells (P6{sub 1}, a = b = 92, c = 73 {angstrom}) and one of the smallest crystal volumes so far tested successfully with neutrons.« less
CORRECTIONS ASSOCIATED WITH ON-PHANTOM CALIBRATIONS OF NEUTRON PERSONAL DOSEMETERS.
Hawkes, N P; Thomas, D J; Taylor, G C
2016-09-01
The response of neutron personal dosemeters as a function of neutron energy and angle of incidence is typically measured by mounting the dosemeters on a slab phantom and exposing them to neutrons from an accelerator-based or radionuclide source. The phantom is placed close to the source (75 cm) so that the effect of scattered neutrons is negligible. It is usual to mount several dosemeters on the phantom together. Because the source is close, the source distance and the neutron incidence angle vary significantly over the phantom face, and each dosemeter may receive a different dose equivalent. This is particularly important when the phantom is angled away from normal incidence. With accelerator-produced neutrons, the neutron energy and fluence vary with emission angle relative to the charged particle beam that produces the neutrons, contributing further to differences in dose equivalent, particularly when the phantom is located at other than the straight-ahead position (0° to the beam). Corrections for these effects are quantified and discussed in this article. © Crown copyright 2015.
β -decay of very neutron-rich Pd and Ag nuclei
NASA Astrophysics Data System (ADS)
Smith, Karl; S323 / S410 Collaboration
2013-10-01
The astrophysical origin of about half of the elements heavier than iron have been attributed to the rapid neutron capture process. The modeling of such a process requires not only the correct astrophysical conditions but also reliable nuclear physics. The properties of neutron-rich nuclei in the region just below the N = 82 shell closure are of particular interest as they are responsible for the A = 130 peak in the solar abundance pattern. An experiment to investigate half-lives and β-delayed neutron emission branching ratios of very neutron-rich Pd and Ag isotopes was performed at the GSI projectile FRagment Separator (FRS). The FRS was used to separate products from in-flight fission of a 900 MeV/u 238U beam. Ions of interest were then implanted in the Silicon IMplantation detector and Beta Absorber (SIMBA) array. The high pixelation of the implantation detectors allowed for time-position correlation of the order of several seconds between implants and decays. Neutrons emitted during the decay were detected by the BEta deLayEd Neutron detector (BELEN) which surrounded the SIMBA array. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.
Using gamma-ray emission to measure areal density of inertial confinement fusion capsulesa)
NASA Astrophysics Data System (ADS)
Hoffman, N. M.; Wilson, D. C.; Herrmann, H. W.; Young, C. S.
2010-10-01
Fusion neutrons streaming from a burning inertial confinement fusion capsule generate gamma rays via inelastic nuclear scattering in the ablator of the capsule. The intensity of gamma-ray emission is proportional to the product of the ablator areal density (ρR) and the yield of fusion neutrons, so by detecting the gamma rays we can infer the ablator areal density, provided we also have a measurement of the capsule's total neutron yield. In plastic-shell capsules, for example, C12 nuclei emit gamma rays at 4.44 MeV after excitation by 14.1 MeV neutrons from D+T fusion. These gamma rays can be measured by a new gamma-ray detector under development. Analysis of predicted signals is in progress, with results to date indicating that the method promises to be useful for diagnosing imploded capsules.
Low-energy nuclear spectroscopy in a microscopic multiphonon approach
NASA Astrophysics Data System (ADS)
Lo Iudice, N.; Ponomarev, V. Yu; Stoyanov, Ch; Sushkov, A. V.; Voronov, V. V.
2012-04-01
The low-lying spectra of heavy nuclei are investigated within the quasiparticle-phonon model. This microscopic approach goes beyond the quasiparticle random-phase approximation by treating a Hamiltonian of separable form in a microscopic multiphonon basis. It is therefore able to describe the anharmonic features of collective modes as well as the multiphonon states, whose experimental evidence is continuously growing. The method can be put in close correspondence with the proton-neutron interacting boson model. By associating the microscopic isoscalar and isovector quadrupole phonons with proton-neutron symmetric and mixed-symmetry quadrupole bosons, respectively, the microscopic states can be classified, just as in the algebraic model, according to their phonon content and their symmetry. In addition, these states disclose the nuclear properties which are to be ascribed to genuine shell effects, not included in the algebraic approach. Due to its flexibility, the method can be implemented numerically for systematic studies of spectroscopic properties throughout entire regions of vibrational nuclei. The spectra and multipole transition strengths so computed are in overall good agreement with the experimental data. By exploiting the correspondence of the method with the interacting boson model, it is possible to embed the microscopic states into this algebraic frame and, therefore, face the study of nuclei far from shell closures, not directly accessible to merely microscopic approaches. Here, it is shown how this task is accomplished through systematic investigations of magnetic dipole and, especially, electric dipole modes along paths moving from the vibrational to the transitional regions. The method is very well suited to the study of well-deformed nuclei. It provides reliable descriptions of low-lying magnetic as well as electric multipole modes of nuclei throughout the rare-earth and actinide regions. Attention is focused here on the low-lying 0+ states produced in large abundance in recent experiments. The analysis shows that the quasiparticle-phonon model accounts for the occurrence of so many 0+ levels and discloses their nature.
NASA Technical Reports Server (NTRS)
Hudgins, Douglas M.; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
Density functional theory has been employed to calculate the harmonic frequencies and intensities of a range of PAH cations which explore both size and electronic structure effects on the infrared spectroscopic of these species. The sample extends the size range of PAH species considered to more than 50 carbon atoms and includes several representatives from each of two heretofore unexplored categories of PAH cations: (1) fully benzenoid PAH cations whose carbon skeleton is composed of an odd number of carbon atoms and (2) protonated PAH cations. Unlike the radical electronic structures of the PAH cations that have been the subject of previous theoretical and experimental work, the species in these two classes have a closed-shell electronic configuration. The calculated spectra of circumcoronene, C54H18, in both neutral and (radical) cationic form are also reported and compared to those of the other species. Closed-shell species are inherently less reactive than radical (or open-shell) cations and are known to play a role in combustion chemistry. Since interstellar PAHs are typically exposed to abundant atomic hydrogen and are thought to originate under pseudo-combustion conditions in carbon-rich circumstellar shells, such species may represent an important component of the interstellar PAH population. Furthermore, species larger than 50 carbon atoms are more representative of the size of the typical interstellar PAH. Overall, as has been the case for previous studies of PAH radical cations, the general pattern of band positions and intensities are consistent with that of the interstellar infrared emission spectrum. In addition, the spectra of closed-shell and open-shell cations are found to converge with increasing molecular size and are found to be relatively similar for species containing about 50 carbon atoms.
Non-standard s-process in low metallicity massive rotating stars
NASA Astrophysics Data System (ADS)
Frischknecht, U.; Hirschi, R.; Thielemann, F.-K.
2012-02-01
Context. Rotation is known to have a strong impact on the nucleosynthesis of light elements in massive stars, mainly by inducing mixing in radiative zones. In particular, rotation boosts the primary nitrogen production, and models of rotating stars are able to reproduce the nitrogen observed in low-metallicity halo stars. Aims: Here we present the first grid of stellar models for rotating massive stars at low metallicity, where a full s-process network is used to study the impact of rotation-induced mixing on the neutron capture nucleosynthesis of heavy elements. Methods: We used the Geneva stellar evolution code that includes an enlarged reaction network with nuclear species up to bismuth to calculate 25 M⊙ models at three different metallicities (Z = 10-3,10-5, and 10-7) and with different initial rotation rates. Results: First, we confirm that rotation-induced mixing (shear) between the convective H-shell and He-core leads to a large production of primary 22Ne (0.1 to 1% in mass fraction), which is the main neutron source for the s-process in massive stars. Therefore rotation boosts the s-process in massive stars at all metallicities. Second, the neutron-to-seed ratio increases with decreasing Z in models including rotation, which leads to the complete consumption of all iron seeds at metallicities below Z = 10-3 by the end of core He-burning. Thus at low Z, the iron seeds are the main limitation for this boosted s-process. Third, as the metallicity decreases, the production of elements up to the Ba peak increases at the expense of the elements of the Sr peak. We studied the impact of the initial rotation rate and of the highly uncertain 17O(α,γ) rate (which strongly affects the strength of 16O as a neutron poison) on our results. This study shows that rotating models can produce significant amounts of elements up to Ba over a wide range of Z, which has important consequences for our understanding of the formation of these elements in low-metallicity environments like the halo of our galaxy and globular clusters. Fourth, compared to the He-core, the primary 22Ne production induced by rotation in the He-shell is even higher (greater than 1% in mass fraction at all metallicities), which could open the door for an explosive neutron capture nucleosynthesis in the He-shell, with a primary neutron source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Derbin, A. V., E-mail: derbin@pnpi.spb.r; Fomenko, K. A., E-mail: fomenko@jinr.r
The Pauli exclusion principle was tested for nucleons in the {sup 12}C nucleus by using data from the Borexino detector. The approach used consisted in seeking photons, neutrons, and protons, as well as electrons and positrons, emitted in the Pauli-forbidden transitions of nucleons from the 1P{sub 3/2} shell to the filled 1S{sub 1/2} shell. Owing to a uniquely low background level in the Borexino detector and its large mass, the currently most stringent experimental limits were obtained for the probabilities and relative intensities of Pauli-forbidden transitions for the electromagnetic, strong, and weak channels.
Understanding Laser-Imprint Effects on Plastic-Target Implosions on OMEGA with New Physics Models
NASA Astrophysics Data System (ADS)
Hu, S. X.; Michel, D. T.; Davis, A. K.; Betti, R.; Radha, P. B.; Campbell, E. M.; Froula, D. H.; Stoeckl, C.
2016-10-01
Using the state-of-the-art physics models (nonlocal thermal transport, cross-beam energy transfer, and first-principles equation of state) recently implemented in our two-dimensional hydrocode DRACO, we have performed a systematic study of laser-imprint effects on plastic-target implosions on OMEGA by both simulations and experiments. Through varying the laser picket intensity, the imploding shells were set at different adiabats ranging from α = 2 to α = 6 . As the shell adiabat α decreases, we observed: (1) the measured shell thickness at the hot spot emission becomes larger than the uniform prediction; (2) the hot-spot core emits and neutron burn starts earlier than the corresponding 1-D prediction; and (3) the measured neutron yields are significantly reduced from their 1-D designs. Most of these experimental observations are well reproduced by our DRACO simulations with laser imprints. These studies clearly identify that laser imprint is the major cause for target performance degradation of OMEGA implosions of α <= 3 . Mitigating laser imprints must be an essential effort to improve low- α target performance in direct-drive inertial confinement fusion ignition attempts. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
A Gamma-Ray Burst Model Via Compressional Heating of Binary Neutron Stars
NASA Astrophysics Data System (ADS)
Salmonson, J. D.; Wilson, J. R.; Mathews, G. J.
1998-12-01
We present a model for gamma-ray bursts based on the compression of neutron stars in close binary systems. General relativistic (GR) simulations of close neutron star binaries have found compression of the neutron stars estimated to produce 1053 ergs of thermal neutrinos on a timescale of seconds. The hot neutron stars will emit neutrino pairs which will partially recombine to form 1051 to 1052 ergs of electron-positron (e^-e^+) pair plasma. GR hydrodynamic computational modeling of the e^-e^+ plasma flow and recombination yield a gamma-ray burst in good agreement with general characteristics (duration ~10 seconds, spectrum peak energy ~100 keV, total energy ~1051 ergs) of many observed gamma-ray bursts.
Nonlinear problems of the theory of heterogeneous slightly curved shells
NASA Technical Reports Server (NTRS)
Kantor, B. Y.
1973-01-01
An account if given of the variational method of the solution of physically and geometrically nonlinear problems of the theory of heterogeneous slightly curved shells. Examined are the bending and supercritical behavior of plates and conical and spherical cupolas of variable thickness in a temperature field, taking into account the dependence of the elastic parameters on temperature. The bending, stability in general and load-bearing capacity of flexible isotropic elastic-plastic shells with different criteria of plasticity, taking into account compressibility and hardening. The effect of the plastic heterogeneity caused by heat treatment, surface work hardening and irradiation by fast neutron flux is investigated. Some problems of the dynamic behavior of flexible shells are solved. Calculations are performed in high approximations. Considerable attention is given to the construction of a machine algorithm and to the checking of the convergence of iterative processes.
Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei
DOE R&D Accomplishments Database
Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.
1951-05-01
In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.
Direct-drive DT implosions with Knudsen number variations
Kim, Yong Ho; Herrmann, Hans W.; Hoffman, Nelson M.; ...
2016-05-26
Direct-drive implosions of DT-filled plastic-shells have been conducted at the Omega laser facility, measuring nuclear yields while varying Knudsen numbers (i.e., the ratio of mean free path of fusing ions to the length of fuel region) by adjusting both shell thickness (e.g., 7.5, 15, 20, 30 μm) and fill pressure (e.g., 2, 5, 15 atm). In addition, the fusion reactivity reduction model showed a stronger effect on yield as the Knudsen number increases (or the shell thickness decreases). The Reduced-Ion-Kinetic (RIK) simulation which includes both fusion reactivity reduction and mix model was necessary to provide a better match between themore » observed neutron yields and those simulated.« less
Observation of high-spin bands with large moments of inertia in Xe 124
Nag, Somnath; Singh, A. K.; Hagemann, G. B.; ...
2016-09-07
In this paper, high-spin states in 124Xe have been populated using the 80Se( 48Ca, 4n) reaction at a beam energy of 207 MeV and high-multiplicity, γ-ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin rotational bands with moments of inertia similar to those observed in neighboring nuclei have been observed. The experimental results are compared with calculations within the framework of the Cranked Nilsson-Strutinsky model. Finally, it is suggested that the configurations of the bands involve excitations of protons across the Z = 50 shell gap coupled to neutrons within the N = 50 - 82 shell ormore » excited across the N = 82 shell closure.« less
Open sd-shell nuclei from first principles
Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute; ...
2016-07-05
We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less
Open sd-shell nuclei from first principles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jansen, Gustav R.; Signoracci, Angelo J.; Hagen, Gaute
We extend the ab initio coupled-cluster effective interaction (CCEI) method to open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a nucleon-nucleon and three-nucleon interaction from chiral effective field theory evolved to a lower cutoff via a similarity renormalization group transformation. We find good agreement with experiment for binding energies and spectra, while charge radii of neon isotopes are underestimated. For the deformed nuclei 20Ne and 24Mg we reproduce rotational bands and electric quadrupole transitions within uncertainties estimated from an effective field theory formore » deformed nuclei, thereby demonstrating that collective phenomena in sd-shell nuclei emerge from complex ab initio calculations.« less
Neutron and gamma dose and spectra measurements on the Little Boy replica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoots, S.; Wadsworth, D.
1984-06-01
The radiation-measurement team of the Weapons Engineering Division at Lawrence Livermore National Laboratory (LLNL) measured neutron and gamma dose and spectra on the Little Boy replica at Los Alamos National Laboratory (LANL) in April 1983. This assembly is a replica of the gun-type atomic bomb exploded over Hiroshima in 1945. These measurements support the National Academy of Sciences Program to reassess the radiation doses due to atomic bomb explosions in Japan. Specifically, the following types of information were important: neutron spectra as a function of geometry, gamma to neutron dose ratios out to 1.5 km, and neutron attenuation in themore » atmosphere. We measured neutron and gamma dose/fission from close-in to a kilometer out, and neutron and gamma spectra at 90 and 30/sup 0/ close-in. This paper describes these measurements and the results. 12 references, 13 figures, 5 tables.« less
Isomers and shell evolution in neutron-rich nuclei below the doubly magic nucleus 132Sn
NASA Astrophysics Data System (ADS)
Watanabe, Hiroshi
2018-05-01
The level structures of the very neutron-rich nuclei 128Pd82 and 126Pd80 have been investigated for the first time. A new isomer with a half-life of 5.8(8) μs in 128Pd is proposed to have a spin and parity of 8+ and is associated with a maximally aligned configuration arising from the g9/2Pd proton subshell with seniority υ = 2. The level sequence below the 8+ isomer is similar to that in the N = 82 isotone 130Cd, but the electric quadrupole transition that depopulates the 8+ isomer is more hindered in 128Pd than in 130Cd, as expected in the seniority scheme for a semi-magic, spherical nucleus. For 126Pd, three new isomers with Jπ = (5-), (7-), and (10+) have been identified with half-lives of 0.33(4) μs, 0.44(3) μs, and 23.0(8) ms, respectively. The smaller energy difference between the 10+ and 7- isomers in 126Pd than in the heavier N = 80 isotones can be interpreted as being ascribed to the monopole shift of the h11/2 neutron orbit. The nature of the N = 82 shell closure scrutinized with these characteristic isomers is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, G.; Pai, H.
High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region Amore » = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.« less
NASA Astrophysics Data System (ADS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.; Arens, E. E.
2014-02-01
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.
β -decay studies of very neutron-rich Pd and Ag isotopes
NASA Astrophysics Data System (ADS)
Smith, Karl
2014-03-01
The rapid-neutron capture process (r-process) is attributed as the source of nearly half the elements heavier than iron. To gain insight into the r-process nucleosynthesis, uncertainties such as the nuclear physics involved must be minimized. An experiment was performed to measure properties of neutron-rich nuclei just below the N = 82 shell closure believed to be responsible for production of the A = 130 peak in the solar r-process abundance pattern. β-decay half-lives and neutron branching ratios, Pn values, were measured for Pd and Ag isotopes at the GSI Fragment Separator (FRS). The FRS provided in-flight separation and identification of fission fragments produced by a 900 MeV/u 238U beam. Ions of interest were implanted in the Silicon Implantation detector and Beta Absorber (SIMBA) array. The large pixelation of the array allowed for position-time correlation between implants and the corresponding β-decays. The parent nucleus may decay to an excited state in the daughter, above the neutron separation energy emitting a neutron. These neutrons were moderated and detected in Beta deLayEd Neutron (BELEN) detector surrounding SIMBA. Resulting analysis of half-lives and neutron emission branching ratios including a time-dependent background will be presented.
SANS contrast variation study of magnetoferritin structure at various iron loading
NASA Astrophysics Data System (ADS)
Melnikova, Lucia; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Oleksandr I.; Bulavin, Leonid A.; Garamus, Vasil M.; Almásy, László; Mitroova, Zuzana; Kopcansky, Peter
2015-03-01
Magnetoferritin, a synthetic derivate of iron storage protein - ferritin, has been synthesized with different iron oxide loading values. Small-angle neutron scattering experiments were applied to study the structure of magnetoferritin solutions using contrast variation method by varying the light to heavy water ratio of the solvent. Higher iron loading leads to increase of the neutron scattering length density of magnetoferritin and also to the increase of the polydispersity of complexes. The formation of the magnetic core and the variation of the protein shell structure upon iron loading are concluded.
On the atomic structure of liquid Ni-Si alloys: a neutron diffraction study
NASA Astrophysics Data System (ADS)
Gruner, S.; Marczinke, J.; Hennet, L.; Hoyer, W.; Cuello, G. J.
2009-09-01
The atomic structure of the liquid NiSi and NiSi2 alloys is investigated by means of neutron diffraction experiments with isotopic substitution. From experimental data-sets obtained using four Ni isotopes, partial structure factors and pair correlation functions are obtained by applying a reverse Monte Carlo modelling approach. Both alloys were found to exhibit a strong tendency to hetero-coordination within the first coordination shell. In particular, covalent Si-Si bonds with somewhat greater distances seem to influence the structure of the liquid NiSi alloy.
On the atomic structure of liquid Ni-Si alloys: a neutron diffraction study.
Gruner, S; Marczinke, J; Hennet, L; Hoyer, W; Cuello, G J
2009-09-23
The atomic structure of the liquid NiSi and NiSi(2) alloys is investigated by means of neutron diffraction experiments with isotopic substitution. From experimental data-sets obtained using four Ni isotopes, partial structure factors and pair correlation functions are obtained by applying a reverse Monte Carlo modelling approach. Both alloys were found to exhibit a strong tendency to hetero-coordination within the first coordination shell. In particular, covalent Si-Si bonds with somewhat greater distances seem to influence the structure of the liquid NiSi alloy.
Experimental evidence of impact ignition: 100-fold increase of neutron yield by impactor collision.
Azechi, H; Sakaiya, T; Watari, T; Karasik, M; Saito, H; Ohtani, K; Takeda, K; Hosoda, H; Shiraga, H; Nakai, M; Shigemori, K; Fujioka, S; Murakami, M; Nagatomo, H; Johzaki, T; Gardner, J; Colombant, D G; Bates, J W; Velikovich, A L; Aglitskiy, Y; Weaver, J; Obenschain, S; Eliezer, S; Kodama, R; Norimatsu, T; Fujita, H; Mima, K; Kan, H
2009-06-12
We performed integrated experiments on impact ignition, in which a portion of a deuterated polystyrene (CD) shell was accelerated to about 600 km/s and was collided with precompressed CD fuel. The kinetic energy of the impactor was efficiently converted into thermal energy generating a temperature of about 1.6 keV. We achieved a two-order-of-magnitude increase in the neutron yield by optimizing the timing of the impact collision, demonstrating the high potential of impact ignition for fusion energy production.
Lorusso, G; Nishimura, S; Xu, Z Y; Jungclaus, A; Shimizu, Y; Simpson, G S; Söderström, P-A; Watanabe, H; Browne, F; Doornenbal, P; Gey, G; Jung, H S; Meyer, B; Sumikama, T; Taprogge, J; Vajta, Zs; Wu, J; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Kajino, T; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Li, Z; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Schury, P; Shibagaki, S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yagi, A; Yoshinaga, K
2015-05-15
The β-decay half-lives of 110 neutron-rich isotopes of the elements from _{37}Rb to _{50}Sn were measured at the Radioactive Isotope Beam Factory. The 40 new half-lives follow robust systematics and highlight the persistence of shell effects. The new data have direct implications for r-process calculations and reinforce the notion that the second (A≈130) and the rare-earth-element (A≈160) abundance peaks may result from the freeze-out of an (n,γ)⇄(γ,n) equilibrium. In such an equilibrium, the new half-lives are important factors determining the abundance of rare-earth elements, and allow for a more reliable discussion of the r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs, making the detection of these elements in metal-poor stars of the utmost importance to determine the exact conditions of individual r-process events.
Reordering of Nuclear Quantum States in Rare Isotopes
NASA Astrophysics Data System (ADS)
Flanagan, Kieran
2010-02-01
A key question in modern nuclear physics relates to the ordering of quantum states, and whether the predictions made by the shell model hold true far from stability. Recent innovations in technology and techniques at radioactive beam facilities have allowed access to rare isotopes previously inaccessible to experimentalists. Measurements that have been performed in several regions of the nuclear chart have yielded surprising and dramatic changes in nuclear structure, where level ordering is quite different than expected from previous theoretical descriptions. In order to reconcile the difference between experiment and theory, new shell-model interactions have been proposed, which include the role of the tensor force as part of the monopole term from the expansion of the residual proton-neutron interaction. This has motivated a series of laser spectroscopy experiments that have studied the neutron-rich copper and gallium isotopes at the ISOLDE facility. This work has deduced without nuclear-model dependence the spin, moments and charge radii. The results of this work and their implications for nuclear structure near ^78Ni will be discussed. )
Shell evolution beyond Z = 28 and N = 50: Spectroscopy of 81,82,83,84Zn
NASA Astrophysics Data System (ADS)
Shand, C. M.; Podolyák, Zs.; Górska, M.; Doornenbal, P.; Obertelli, A.; Nowacki, F.; Otsuka, T.; Sieja, K.; Tostevin, J. A.; Tsunoda, Y.; Authelet, G.; Baba, H.; Calvet, D.; Château, A.; Chen, S.; Corsi, A.; Delbart, A.; Gheller, J. M.; Giganon, A.; Gillibert, A.; Isobe, T.; Lapoux, V.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Niikura, M.; Otsu, H.; Paul, N.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Steppenbeck, D.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Ando, T.; Arici, T.; Blazhev, A.; Browne, F.; Bruce, A. M.; Carroll, R. J.; Chung, L. X.; Cortés, M. L.; Dewald, M.; Ding, B.; Dombrádi, Zs.; Flavigny, F.; Franchoo, S.; Giacoppo, F.; Gottardo, A.; Hadyńska-Klęk, K.; Jungclaus, A.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Linh, B. D.; Liu, J.; Liu, Z.; Lizarazo, C.; Louchart, C.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Moschner, K.; Nagamine, M.; Nakatsuka, N.; Nishimura, S.; Nita, C. R.; Nobs, C. R.; Olivier, L.; Ota, S.; Orlandi, R.; Patel, Z.; Regan, P. H.; Rudigier, M.; Şahin, E.; Saito, T.; Söderström, P.-A.; Stefan, I.; Sumikama, T.; Suzuki, D.; Vajta, Zs.; Vaquero, V.; Werner, V.; Wimmer, K.; Wu, J.; Xu, Z. Y.
2017-10-01
We report on the measurement of new low-lying states in the neutron-rich 81,82,83,84Zn nuclei via in-beam γ-ray spectroscopy. These include the 41+ → 21+ transition in 82Zn, the 21+ → 0g.s.+ and 41+ → 21+ transitions in 84Zn, and low-lying states in 81,83Zn were observed for the first time. The reduced E ( 21+) energies and increased E (41+) / E (2+1) ratios at N = 52, 54 compared to those in 80Zn attest that the magicity is confined to the neutron number N = 50 only. The deduced level schemes are compared to three state-of-the-art shell model calculations and a good agreement is observed with all three calculations. The newly observed 2+ and 4+ levels in 84Zn suggest the onset of deformation towards heavier Zn isotopes, which has been incorporated by taking into account the upper sdg orbitals in the Ni78-II and the PFSDG-U models.
NASA Astrophysics Data System (ADS)
Murphy, T. J.; Kyrala, G. A.; Krasheninnikova, N. S.; Bradley, P. A.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Baumgaertel, J. A.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.; Wallace, R. J.; Bhandarkar, S.; Fitzsimmons, P.; Hoppe, M.; Nikroo, A.; McKenty, P.
2016-03-01
Capsules driven with polar drive [1, 2] on the National Ignition Facility [3] are being used [4] to study mix in convergent geometry. In preparation for experiments that will utilize deuterated plastic shells with a pure tritium fill, hydrogen-filled capsules with copper- doped deuterated layers have been imploded on NIF to provide spectroscopic and nuclear measurements of capsule performance. Experiments have shown that the mix region, when composed of shell material doped with about 1% copper (by atom), reaches temperatures of about 2 keV, while undoped mixed regions reach about 3 keV. Based on the yield from these implosions, we estimate the thickness of CD that mixed into the gas as between about 0.25 and 0.43 μm of the inner capsule surface, corresponding to about 5 to 9 μg of material. Using 5 atm of tritium as the fill gas should result in over 1013 DT neutrons being produced, which is sufficient for neutron imaging [5].
Collective systematics in the mass 80 region
NASA Astrophysics Data System (ADS)
Tabor, S. L.
1986-07-01
The deformation of nuclei around A~80 is found to vary systematically as a function of the product of the number of protons and neutrons (or holes) (NpNn) in the shell extending from 28 to 50 particles. A similar result was reported previously for heavier even A nuclei, but this is the first investigation of a region in which neutrons and protons fill the same major shell and the first application of the technique to odd A nuclei. The systematic behavior is seen in both energy level spacings and electromagnetic quadrupole transition strengths and in both even-even and odd A nuclei. These systematics hold for the measures of deformation not involving the positions of the 0+ states, which are strongly affected by the coexistence of weakly and strongly deformed shapes in some A~80 nuclei. A rather surprising result is that the deformations of the odd-Z-even-N nuclei are substantially larger than those of the even-Z-odd-N nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedeking, M.; Krticka, M.; Bernstein, L. A.
2016-02-01
The emission of γ rays from neutron-bound and neutron-unbound states in 95Mo, populated in the 94Mo(d,p) reaction, has been investigated. Charged particles and γ radiation were detected with arrays of annular silicon and Clover-type high-purity Germanium detectors, respectively. Utilizing p-γ and p-γ-γ coincidences, the 95Mo level scheme was greatly enhanced with 102 new transitions and 43 new states. It agrees well with shell model calculations for excitation energies below ≈2 MeV. From p-γ coincidence data, a new method for the determination of spins of discrete levels is proposed. The method exploits the suppression of high-angular momentum neutron emission from levelsmore » with high spins populated in the (d,p) reaction above the neutron separation energy. As a result, spins for almost all 95Mo levels below 2 MeV (and for a few levels above) have been determined with this method.« less
Surface properties of neutron-rich exotic nuclei within relativistic mean field formalisms
NASA Astrophysics Data System (ADS)
Bhuyan, M.; Carlson, B. V.; Patra, S. K.; Zhou, Shan-Gui
2018-02-01
In this theoretical study, we establish a correlation between the neutron skin thickness and the nuclear symmetry energy for the even-even isotopes of Fe, Ni, Zn, Ge, Se, and Kr within the framework of the axially deformed self-consistent relativistic mean field for the nonlinear NL 3* and density-dependent DD-ME1 interactions. The coherent density functional method is used to formulate the symmetry energy, the neutron pressure, and the curvature of finite nuclei as a function of the nuclear radius. We have performed broad studies for the mass dependence on the symmetry energy in terms of the neutron-proton asymmetry for mass 70 ≤A ≤96 . From this analysis, we found a notable signature of a shell closure at N =50 in the isotopic chains of Fe, Ni, Zn, Ge, Se, and Kr nuclei. The present study reveals a interrelationship between the characteristics of infinite nuclear matter and the neutron skin thickness of finite nuclei.
Anomalies in the Charge Yields of Fission Fragments from the U ( n , f ) 238 Reaction
Wilson, J. N.; Lebois, M.; Qi, L.; ...
2017-06-01
Fast-neutron-induced fission of 238U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fissionmore » fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. Finally, this has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.« less
Diffenderfer, Eric S; Ainsley, Christopher G; Kirk, Maura L; McDonough, James E; Maughan, Richard L
2011-11-01
To apply the dual ionization chamber method for mixed radiation fields to an accurate comparison of the secondary neutron dose arising from the use of a tungsten alloy multileaf collimator (MLC) as opposed to a brass collimator system for defining the shape of a therapeutic proton field. Hydrogenous and nonhydrogenous ionization chambers were constructed with large volumes to enable measurements of absorbed doses below 10(-4) Gy in mixed radiation fields using the dual ionization chamber method for mixed-field dosimetry. Neutron dose measurements were made with a nominal 230 MeV proton beam incident on a closed tungsten alloy MLC and a solid brass block. The chambers were cross-calibrated against a (60)Co-calibrated Farmer chamber in water using a 6 MV x-ray beam and Monte Carlo simulations were performed to account for variations in ionization chamber response due to differences in secondary neutron energy spectra. The neutron and combined proton plus γ-ray absorbed doses are shown to be nearly equivalent downstream from either a closed tungsten alloy MLC or a solid brass block. At 10 cm downstream from the distal edge of the collimating material the neutron dose from the closed MLC was (5.3 ± 0.4) × 10(- 5) Gy/Gy. The neutron dose with brass was (6.4 ± 0.7) × 10(- 5) Gy/Gy. Further from the secondary neutron source, at 50 cm, the neutron doses remain close for both the MLC and brass block at (6.9 ± 0.6) × 10(- 6) Gy/Gy and (6.3 ± 0.7) × 10(- 6) Gy/Gy, respectively. The dual ionization chamber method is suitable for measuring secondary neutron doses resulting from proton irradiation. The results of measurements downstream from a closed tungsten alloy MLC and a brass block indicate that, even in an overly pessimistic worst-case scenario, secondary neutron production in a tungsten alloy MLC leads to absorbed doses that are nearly equivalent to those seen from brass collimators. Therefore, the choice of tungsten alloy in constructing the leaves of a proton MLC is appropriate, and does not lead to a substantial increase in the secondary neutron dose to the patient compared to that generated in a brass collimator.
Measurement of the Neutron F2 Structure Function via Spectator Tagging with CLAS
NASA Astrophysics Data System (ADS)
Baillie, N.; Tkachenko, S.; Zhang, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Keppel, C. E.; Kuhn, S. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Arrington, J.; Avakian, H.; Baghdasaryan, H.; Battaglieri, M.; Biselli, A. S.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Djalali, C.; Dodge, G.; Domingo, J.; Doughty, D.; Dupre, R.; Dutta, D.; Ent, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Graham, L.; Guegan, B.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Heddle, D.; Hicks, K.; Holtrop, M.; Hungerford, E.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ispiryan, M.; Isupov, E. L.; Jawalkar, S. S.; Jo, H. S.; Kalantarians, N.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Klimenko, A.; Kubarovsky, V.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; McKinnon, B.; Mineeva, T.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, I.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Pisano, S.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Ungaro, M.; Vineyard, M. F.; Voutier, E.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zana, L.; Zhao, B.
2012-04-01
We report on the first measurement of the F2 structure function of the neutron from the semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≲100MeV/c and their angles to ≳100° relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F2n data collected cover the nucleon-resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65
Measurement of the neutron F 2 structure function via spectator tagging with CLAS
Baillie, N.; Tkachenko, S.; Zhang, J.; ...
2012-04-01
We report on the first measurement of the F 2 structure function of the neutron from semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≈< 100 MeV and their angles to ≈> 100 degrees relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F 2 n data collected cover the nucleon resonance and deep-inelastic regions over a wide range of x for 0.65 < Q 2 < 4.52 GeV 2, with uncertainties from nuclear correctionsmore » estimated to be less than a few percent. These measurements provide the first determination of the neutron to proton structure function ratio F 2 n/F 2 p at 0.2 ≈< x ≈< 0.8, essentially free of nuclear corrections.« less
Direct Observation of Quark-Hadron Duality in the Free Neutron {ital F}{sub 2} Structure Function
Niculescu, I.; Niculescu, G.; Melnitchouk, W.; ...
2015-05-21
Using the recently published data from the BONuS(Barely Off-shell Nucleon Structure) experiment at Jefferson Lab, which utilized a spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F-2 structure function. The data are used to reconstruct the lowest few (N = 2, 4, and 6) moments of F-2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark-hadron duality holds locally for themore » neutron in the second and third resonance regions down to Q(2) approximate to 1 GeV2, with violations possibly up to 20% observed in the first resonance region.« less
Staged Z-pinch Experiments at the 1MA Zebra pulsed-power generator: Neutron measurements
NASA Astrophysics Data System (ADS)
Ruskov, Emil; Darling, T.; Glebov, V.; Wessel, F. J.; Anderson, A.; Beg, F.; Conti, F.; Covington, A.; Dutra, E.; Narkis, J.; Rahman, H.; Ross, M.; Valenzuela, J.
2017-10-01
We report on neutron measurements from the latest Staged Z-pinch experiments at the 1MA Zebra pulsed-power generator. In these experiments a hollow shell of argon or krypton gas liner, injected between the 1 cm anode-cathode gap, compresses a deuterium plasma target of varying density. Axial magnetic field Bz <= 2 kGs, applied throughout the pinch region, stabilizes the Rayleigh-Taylor instability. The standard silver activation diagnostics and 4 plastic scintillator neutron Time of Flight (nTOF) detectors are augmented with a large area ( 1400 cm2) liquid scintillator detector to which fast gatedPhotek photomultipliers are attached. Sample data from these neutron diagnostics systems is presented. Consistently high neutron yields YDD >109 are measured, with highest yield of 2.6 ×109 . A pair of horizontally and vertically placed plastic scintillator nTOFs suggest isotropic i.e. thermonuclear origin of the neutrons produced. nTOF data from the liquid scintillator detector was cross-calibrated with the silver activation detector, and can be used for accurate calculation of the neutron yield. Funded by the Advanced Research Projects Agency - Energy, under Grant Number DE-AR0000569.
Studies of fission fragment yields via high-resolution γ-ray spectroscopy
NASA Astrophysics Data System (ADS)
Wilson, J. N.; Lebois, M.; Qi, L.; Amador-Celdran, P.; Bleuel, D.; Briz, J. A.; Carroll, R.; Catford, W.; Witte, H. De; Doherty, D. T.; Eloirdi, R.; Georgiev, G.; Gottardo, A.; Goasduff, A.; Hadyñska-Klek, K.; Hauschild, K.; Hess, H.; Ingeberg, V.; Konstantinopoulos, T.; Ljungvall, J.; Lopez-Martens, A.; Lorusso, G.; Lozeva, R.; Lutter, R.; Marini, P.; Matea, I.; Materna, T.; Mathieu, L.; Oberstedt, A.; Oberstedt, S.; Panebianco, S.; Podolyak, Zs.; Porta, A.; Regan, P. H.; Reiter, P.; Rezynkina, K.; Rose, S. J.; Sahin, E.; Seidlitz, M.; Serot, O.; Shearman, R.; Siebeck, B.; Siem, S.; Smith, A. G.; Tveten, G. M.; Verney, D.; Warr, N.; Zeiser, F.; Zielinska, M.
2018-03-01
Precise spectroscopic information on the fast neutron induced fission of the 238U(n,f) reaction was recently gained using a new technique which involved coupling of the Miniball high resolution y-ray spectrometer and the LICORNE directional neutron source. The experiment allowed measurement of the isotopic fission yields for around 40 even-even nuclei at an incident neutron energy of around 2 MeV where yield data are very sparse. In addition spectroscopic information on very neutron-rich fission products was obtained. Results were compared to models, both the JEFF-3.1.1 data base and the GEF code, and large discrepancies for the S1 fission mode in the Sn/Mo isotope pair were discovered. This suggests that current models are overestimating the role played by spherical shell effects in fast neutron induced fission. In late 2017 and 2018 the nu-ball hybrid spectrometer will be constructed at the IPN Orsay to perform further experimental investigations with directional neutrons coupled to a powerful hybrid Ge/LaBr3 detector array. This will open up new possibilities for measurements of fission yields for fast-neutron-induced fission using the spectroscopic technique and will be complimentary to other methods being developed.
Direct heating of a laser-imploded core using ultraintense laser LFEX
NASA Astrophysics Data System (ADS)
Kitagawa, Y.; Mori, Y.; Ishii, K.; Hanayama, R.; Nishimura, Y.; Okihara, S.; Nakayama, S.; Sekine, T.; Takagi, M.; Watari, T.; Satoh, N.; Kawashima, T.; Komeda, O.; Hioki, T.; Motohiro, T.; Azuma, H.; Sunahara, A.; Sentoku, Y.; Arikawa, Y.; Abe, Y.; Miura, E.; Ozaki, T.
2017-07-01
A CD shell was preimploded by two counter-propagating green beams from the GEKKO laser system GXII (based at the Institute of Laser Engineering, Osaka University), forming a dense core. The core was predominantly heated by energetic ions driven by the laser for fast-ignition-fusion experiment, an extremely energetic ultrashort pulse laser, that is illuminated perpendicularly to the GXII axis. Consequently, we observed the D(d, n)3 He-reacted neutrons (DD beam-fusion neutrons) at a yield of 5× {{10}8} n/4π sr. The beam-fusion neutrons verified that the ions directly collided with the core plasma. Whereas the hot electrons heated the whole core volume, the energetic ions deposited their energies locally in the core. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with a yield of 6× {{10}7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. The shell-implosion dynamics (including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions) can be explained by the one-dimensional hydrocode STAR 1D. Meanwhile, the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions were well-predicted by the two-dimensional collisional particle-in-cell code. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high-gain fusion.
Applicaton of the Calculating Formula for Mean Neutron Exposure on Barium stars
NASA Astrophysics Data System (ADS)
Zhang, F. H.; Zhang, L.; Cui, W. Y.; Zhang, B.
2017-11-01
Latest studies have shown that, in the s-process nucleosynthesis model for the low-mass asymptotic giant branch (AGB) star with (13C) pocket radiative burning during the interpulse period, the distribution of neutron exposures in the nucleosynthesis region can be regarded as an exponential function, and the relation between the mean neutron exposure (τ0) and the model parameters is (τ0} = - Δ τ/ln [q/(1 - r + q)]), in which (Δ τ) is the exposure value of each neutron irradiation, (r) is the overlap factor, and (q) is the mass ratio of the (13C) shell to the He intershell. In this paper the formula is applied to 26 samples of barium stars to test its reliability, and furthermore the neutron exposure nature in the AGB companion stars of 26 barium stars are analyzed. The results show that, the formula is reliable; in the AGB companion stars of 26 barium stars, at least 8 stars definitely have and 12 stars are highly likely to have exponential distribution of neutron exposures, while 4 stars tend to experience single neutron exposure; most of the AGB companion stars may have experienced fewer times of neutron irradiations before the element abundance distribution of the s-process comes to asymptotic condition.
Project Physics Tests 6, The Nucleus.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 6 are presented in this booklet. Included are 70 multiple-choice and 24 problem-and-essay questions. Nuclear physics fundamentals are examined with respect to the shell model, isotopes, neutrons, protons, nuclides, charge-to-mass ratios, alpha particles, Becquerel's discovery, gamma rays, cyclotrons,…
10 CFR Appendix G to Part 50 - Fracture Toughness Requirements
Code of Federal Regulations, 2010 CFR
2010-01-01
... irradiation. F. Beltline or Beltline region of reactor vessel means the region of the reactor vessel (shell.... Additional evidence of the fracture toughness of the beltline materials after exposure to neutron irradiation... effects of annealing and subsequent irradiation. Table 1—Pressure and Temperature Requirements for the...
10 CFR Appendix G to Part 50 - Fracture Toughness Requirements
Code of Federal Regulations, 2011 CFR
2011-01-01
... irradiation. F. Beltline or Beltline region of reactor vessel means the region of the reactor vessel (shell.... Additional evidence of the fracture toughness of the beltline materials after exposure to neutron irradiation... effects of annealing and subsequent irradiation. Table 1—Pressure and Temperature Requirements for the...
10 CFR Appendix G to Part 50 - Fracture Toughness Requirements
Code of Federal Regulations, 2012 CFR
2012-01-01
... irradiation. F. Beltline or Beltline region of reactor vessel means the region of the reactor vessel (shell.... Additional evidence of the fracture toughness of the beltline materials after exposure to neutron irradiation... effects of annealing and subsequent irradiation. Table 1—Pressure and Temperature Requirements for the...
10 CFR Appendix G to Part 50 - Fracture Toughness Requirements
Code of Federal Regulations, 2013 CFR
2013-01-01
... irradiation. F. Beltline or Beltline region of reactor vessel means the region of the reactor vessel (shell.... Additional evidence of the fracture toughness of the beltline materials after exposure to neutron irradiation... effects of annealing and subsequent irradiation. Table 1—Pressure and Temperature Requirements for the...
10 CFR Appendix G to Part 50 - Fracture Toughness Requirements
Code of Federal Regulations, 2014 CFR
2014-01-01
... irradiation. F. Beltline or Beltline region of reactor vessel means the region of the reactor vessel (shell.... Additional evidence of the fracture toughness of the beltline materials after exposure to neutron irradiation... effects of annealing and subsequent irradiation. Table 1—Pressure and Temperature Requirements for the...
High energy neutrinos from gamma-ray bursts with precursor supernovae.
Razzaque, Soebur; Mészáros, Peter; Waxman, Eli
2003-06-20
The high energy neutrino signature from proton-proton and photo-meson interactions in a supernova remnant shell ejected prior to a gamma-ray burst provides a test for the precursor supernova, or supranova, model of gamma-ray bursts. Protons in the supernova remnant shell and photons entrapped from a supernova explosion or a pulsar wind from a fast-rotating neutron star remnant provide ample targets for protons escaping the internal shocks of the gamma-ray burst to interact and produce high energy neutrinos. We calculate the expected neutrino fluxes, which can be detected by current and future experiments.
The nuclear shell model toward the drip lines
NASA Astrophysics Data System (ADS)
Poves, A.; Caurier, E.; Nowacki, F.; Sieja, K.
2012-10-01
We describe the 'islands of inversion' that occur when approaching the neutron drip line around the magic numbers N=20, N=28 and N=40 in the framework of the interacting shell model in very large valence spaces. We explain these configuration inversions (and the associated shape transitions) as the result of the competition between the spherical mean field (monopole) that favors magicity and the correlations (multipole) that favor deformed intruder states. We also show that the N=20 and N=28 islands are in reality a single one, which for the magnesium isotopes is limited by N=18 and N=32.
Faghih Shojaei, M; Mohammadi, V; Rajabi, H; Darvizeh, A
2012-12-01
In this paper, a new numerical technique is presented to accurately model the geometrical and mechanical features of mollusk shells as a three dimensional (3D) integrated volume. For this purpose, the Newton method is used to solve the nonlinear equations of shell surfaces. The points of intersection on the shell surface are identified and the extra interior parts are removed. Meshing process is accomplished with respect to the coordinate of each point of intersection. The final 3D generated mesh models perfectly describe the spatial configuration of the mollusk shells. Moreover, the computational model perfectly matches with the actual interior geometry of the shells as well as their exterior architecture. The direct generation technique is employed to generate a 3D finite element (FE) model in ANSYS 11. X-ray images are taken to show the close similarity of the interior geometry of the models and the actual samples. A scanning electron microscope (SEM) is used to provide information on the microstructure of the shells. In addition, a set of compression tests were performed on gastropod shell specimens to obtain their ultimate compressive strength. A close agreement between experimental data and the relevant numerical results is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.
Constraints on both the quadratic and quartic symmetry energy coefficients by 2β --decay energies
NASA Astrophysics Data System (ADS)
Wan, Niu; Xu, Chang; Ren, Zhongzhou; Liu, Jie
2018-05-01
In this Rapid Communication, the 2 β- -decay energies Q (2 β-) given in the atomic mass evaluation are used to extract not only the quadratic volume symmetry energy coefficient csymv, but also the quartic one csym,4 v. Based on the modified Bethe-Weizsäcker nuclear mass formula of the liquid-drop model, the decay energy Q (2 β-) is found to be closely related to both the quadratic and quartic symmetry energy coefficients csymv and csym,4 v. There are totally 449 data of decay energies Q (2 β-) used in the present analysis where the candidate nuclei are carefully chosen by fulfilling the following criteria: (1) large neutron-proton number difference N -Z , (2) large isospin asymmetry I , and (3) limited shell effect. The values of csymv and csym,4 v are extracted to be 29.345 and 3.634 MeV, respectively. Moreover, the quadratic surface-volume symmetry energy coefficient ratio is determined to be κ =csyms/csymv=1.356 .
On the search for artificial Dyson-like structures around pulsars
NASA Astrophysics Data System (ADS)
Osmanov, Z.
2016-04-01
Assuming the possibility of existence of a supercivilization we extend the idea of Freeman Dyson considering pulsars instead of stars. It is shown that instead of a spherical shell the supercivilization must use ring-like constructions. We have found that a size of the `ring' should be of the order of (10-4-10-1) AU with temperature interval (300-600) K for relatively slowly rotating pulsars and (10-350) AU with temperature interval (300-700) K for rapidly spinning neutron stars, respectively. Although for the latter the Dyson construction is unrealistically massive and cannot be considered seriously. Analyzing the stresses in terms of the radiation and wind flows it has been argued that they cannot significantly affect the ring construction. On the other hand, the ring in-plane unstable equilibrium can be restored by the energy which is small compared with the energy extracted from the star. This indicates that the search for infrared ring-like sources close to slowly rotating pulsars seems to be quite promising.
Routes to heavy-fermion superconductivity
NASA Astrophysics Data System (ADS)
Steglich, F.; Stockert, O.; Wirth, S.; Geibel, C.; Yuan, H. Q.; Kirchner, S.; Si, Q.
2013-07-01
Superconductivity in lanthanide- and actinide-based heavy-fermion (HF) metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f shell have been proposed. Spin-fluctuation mediated superconductivity in CeCu2Si2 was demonstrated by inelastic neutron scattering to exist in the vicinity of a spin-density-wave (SDW) quantum critical point (QCP). The isostructural HF compound YbRh2Si2 which is prototypical for a Kondo-breakdown QCP has so far not shown any sign of superconductivity down to T ≈ 10 mK. In contrast, results of de-Haas-van-Alphen experiments by Shishido et al. (J. Phys. Soc. Jpn. 74, 1103 (2005)) suggest superconductivity in CeRhIn5 close to an antiferromagnetic QCP beyond the SDW type, at which the Kondo effect breaks down. For the related compound CeCoIn5 however, a field-induced QCP of SDW type is extrapolated to exist inside the superconducting phase.
NASA Astrophysics Data System (ADS)
Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene
2017-10-01
The electron, photon, and neutron spectra produced during the interaction between monoenergetic electron beams (8, 10, 12, 15, and 18 MeV) and a 0.05 cm-thick tungsten scattering foil were estimated using Monte Carlo method. Incoming electrons is a pencil beam that after collide with the foil acquires a broader distribution peaked in the same direction of the incoming electrons. Electron spectra show the influence of the binding energy of electrons in the tungsten shells and the increase of the electron fluence. In the interaction between the electrons in the beam and the tungsten atoms in the foil, bremsstrahlung and characteristic photons are produced. These photons are also peaked in the same direction of the incoming beam, and the electron fluence increases as the energy of the electron beam raises. The electron and photon spectra have particles whose energy is larger than the binding energy of neutron in the nucleus. Thus neutron production was noticed for 10, 12, 15, and 18 MeV electron beam. The neutron fluence becomes larger as the energy of the electron beam increases, the neutron spectra are mainly evaporation neutrons for 10 and 12 MeV, and for 15 and 18 MeV knock-on neutrons are also produced. Neutrons are produced in the foil volume having a quasi-isotropic distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, R. A.; Schweitzer, J. S.; Parsons, A. M.
2014-02-18
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes inmore » two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.« less
The generator coordinate Dirac-Fock method for open-shell atomic systems
NASA Astrophysics Data System (ADS)
Malli, Gulzari L.; Ishikawa, Yasuyuki
1998-11-01
Recently we developed generator coordinate Dirac-Fock and Dirac-Fock-Breit methods for closed-shell systems assuming finite nucleus and have reported Dirac-Fock and Dirac-Fock-Breit energies for the atoms He through Nobelium (Z=102) [see Refs. Reference 10Reference 11Reference 12Reference 13]. In this paper, we generalize our earlier work on closed-shell systems and develop a generator coordinate Dirac-Fock method for open-shell systems. We present results for a number of representative open-shell heavy atoms (with nuclear charge Z>80) including the actinide and superheavy transactinide (with Z>103) atomic systems: Fr (Z=87), Ac (Z=89), and Lr (Z=103) to E113 (eka-thallium, Z=113). The high accuracy obtained in our open-shell Dirac-Fock calculations is similar to that of our closed-shell calculations, and we attribute it to the fact that the representation of the relativistic dynamics of an electron in a spherical ball finite nucleus near the origin in terms of our universal Gaussian basis set is as accurate as that provided by the numerical finite difference method. The DF SCF energies calculated by Desclaux [At. Data. Nucl. Data Tables 12, 311 (1973)] (apart from a typographic error for Fr pointed out here) are higher than those reported here for atoms of some of the superheavy transactinide elements by as much as 5 hartrees (136 eV). We believe that this is due to the use by Desclaux of much larger atomic masses than the currently accepted values for these elements.
Neutron Scattering Studies of the Hydration Structure of Li +
Mason, P. E.; Ansell, S.; Neilson, G. W.; ...
2015-01-05
New results derived from the experimental method of neutron diffraction and isotopic substitution (NDIS) are presented for the hydration structure of the lithium cation (Li +) in aqueous solutions of lithium chloride in heavy water (D 2O) at concentrations of 6, 3 and 1 molal and at 1.5 molal lithium sulphate. By introducing new and more accurate data reduction procedures than in our earlier studies (Howell and Neilson, (1996)), we find in the first hydration shell of Li +,~4.3(2) water molecules at 6 molal, 4.9(3) at 3 molal, 4.8(3) at 1 molal in the LiCl solutions, and 5.0(3) water moleculesmore » in the case of Li 2SO 4 solution. The general form of the first hydration shell is similar in all four solutions, with the correlations for Li-O and Li-D sited at 1.96 (0.02) Å and 2.58 (0.02) Å, respectively. The results resemble those presented in 1996 in terms of ion-water distances and local coordination, but the hydration number is significantly lower for the case at 1 molal than the 6.5 (1.0) given at that time. Thus, experimental and theoretical results now agree that lithium is hydrated by a small number of waters (4-5) in the nearest coordination shell.« less
The limits of hamiltonian structures in three-dimensional elasticity, shells, and rods
NASA Astrophysics Data System (ADS)
Ge, Z.; Kruse, H. P.; Marsden, J. E.
1996-01-01
This paper uses Hamiltonian structures to study the problem of the limit of three-dimensional (3D) elastic models to shell and rod models. In the case of shells, we show that the Hamiltonian structure for a three-dimensional elastic body converges, in a sense made precise, to that for a shell model described by a one-director Cosserat surface as the thickness goes to zero. We study limiting procedures that give rise to unconstrained as well as constrained Cosserat director models. The case of a rod is also considered and similar convergence results are established, with the limiting model being a geometrically exact director rod model (in the framework developed by Antman, Simo, and coworkers). The resulting model may or may not have constraints, depending on the nature of the constitutive relations and their behavior under the limiting procedure. The closeness of Hamiltonian structures is measured by the closeness of Poisson brackets on certain classes of functions, as well as the Hamiltonians. This provides one way of justifying the dynamic one-director model for shells. Another way of stating the convergence result is that there is an almost-Poisson embedding from the phase space of the shell to the phase space of the 3D elastic body, which implies that, in the sense of Hamiltonian structures, the dynamics of the elastic body is close to that of the shell. The constitutive equations of the 3D model and their behavior as the thickness tends to zero dictates whether the limiting 2D model is a constrained or an unconstrained director model. We apply our theory in the specific case of a 3D Saint Venant-Kirchhoff material and derive the corresponding limiting shell and rod theories. The limiting shell model is an interesting Kirchhoff-like shell model in which the stored energy function is explicitly derived in terms of the shell curvature. For rods, one gets (with an additional inextensibility constraint) a one-director Kirchhoff elastic rod model, which reduces to the well-known Euler elastica if one adds an additional single constraint that the director lines up with the Frenet frame.
Quest for consistent modelling of statistical decay of the compound nucleus
NASA Astrophysics Data System (ADS)
Banerjee, Tathagata; Nath, S.; Pal, Santanu
2018-01-01
A statistical model description of heavy ion induced fusion-fission reactions is presented where shell effects, collective enhancement of level density, tilting away effect of compound nuclear spin and dissipation are included. It is shown that the inclusion of all these effects provides a consistent picture of fission where fission hindrance is required to explain the experimental values of both pre-scission neutron multiplicities and evaporation residue cross-sections in contrast to some of the earlier works where a fission hindrance is required for pre-scission neutrons but a fission enhancement for evaporation residue cross-sections.
Integral measurements of neutron and gamma-ray leakage fluxes from the Little Boy replica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muckenthaler, F.J.
This report presents integral measurements of neutron and gamma-ray leakage fluxes from a critical mockup of the Hiroshima bomb Little Boy at Los Alamos National Laobratory with detector systems developed by Oak Ridge National Laboratory. Bonner ball detectors were used to map the neutron fluxes in the horizontal midplane at various distances from the mockup and for selected polar angles, keeping the source-detector separation constant. Gamma-ray energy deposition measurements were made with thermoluminescent detectors at several locations on the iron shell of the source mockup. The measurements were performed as part of a larger progam to provide benchmark data formore » testing the methods used to calculate the radiation released from the Little Boy bomb over Hiroshima. 3 references, 10 figures.« less
Multinucleon transfer reactions – a pathway to new heavy and superheavy nuclei?
NASA Astrophysics Data System (ADS)
Heinz, Sophie
2018-05-01
Recently, we reported the observation of several new neutron-deficient isotopes with proton numbers Z ≥ 92 in collisions of 48Ca + 248Cm at the Coulomb barrier. The peculiarity is that these nuclei were produced in deep inelastic multinucleon transfer reactions, a method which is presently discussed as a possible new pathway to enter so far unknown regions in the upper part of the Chart of Nuclides. Of particular interest are multinucleon transfer reactions as a possible means to produce neutron-rich superheavy nuclei and nuclei along the magic neutron shell N = 126. Based on present-day physical and technical state-of-the art, we will discuss the question how big are our chances to enter these regions by applying multinucleon transfer reactions.
Effect Of N = 40 Shell Closure On Barrier Distributions In 18O+58,60Ni Reactions
NASA Astrophysics Data System (ADS)
Danu, L. S.; Nayak, B. K.; Saxena, A.; Biswas, D. C.; John, B. V.; Thomas, R. G.; Gupta, Y. K.; Choudhury, R. K.
2009-03-01
The quasi-elastic scattering measurements for 18O+58,62Ni systems have been carried out at Θlab = 150° around Coulomb barrier energies to investigate the effect of nuclear shell closure on the barrier distributions. The 18O+58Ni system leads to N = 40 neutron shell closure and 18O+62Ni system is having N = 44 in the compound system. It is observed that target 2+ and 3-, projectile 2+ inelastic and 2n-transfer couplings are required in coupled-channels fusion model (CCFULL) calculations to get good comparison with the experimental barrier distribution of 18O+62Ni system, whereas projectile 2+ inelastic state coupling is not required for 18O+58Ni system. However, the low energy structure observed in the barrier distribution of 18O+58Ni system is not reproduced by coupled-channels calculations. This suggests, a possible additional effect due to N = 40 shell closure in the compound system not accounted for in coupled-channels calculations.
Effect of iron oxide loading on magnetoferritin structure in solution as revealed by SAXS and SANS.
Melníková, L; Petrenko, V I; Avdeev, M V; Garamus, V M; Almásy, L; Ivankov, O I; Bulavin, L A; Mitróová, Z; Kopčanský, P
2014-11-01
Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analysed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ∼150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence. Copyright © 2014 Elsevier B.V. All rights reserved.
Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles
NASA Astrophysics Data System (ADS)
Walton, Nathan I.; Gao, Zhe; Eygeris, Yulia; Ghandehari, Hamidreza; Zharov, Ilya
2018-04-01
Water dispersible boron nanoparticles have great potential as materials for boron neutron capture therapy of cancer and magnetic resonance imaging, if they are prepared on a large scale with uniform size and shape and hydrophilic modifiable surface. We report the first method to prepare spherical, monodisperse, water dispersible boron core silica shell nanoparticles (B@SiO2 NPs) suitable for aforementioned biomedical applications. In this method, 40 nm elemental boron nanoparticles, easily prepared by mechanical milling and carrying 10-undecenoic acid surface ligands, are hydrosilylated using triethoxysilane, followed by base-catalyzed hydrolysis of tetraethoxysilane, which forms a 10-nm silica shell around the boron core. This simple two-step process converts irregularly shaped hydrophobic boron particles into the spherically shaped uniform nanoparticles. The B@SiO2 NPs are dispersible in water and the silica shell surface can be modified with primary amines that allow for the attachment of a fluorophore and, potentially, of targeting moieties. [Figure not available: see fulltext.
Are Pericentric Inversions Reorganizing Wedge Shell Genomes?
García-Souto, Daniel; Pérez-García, Concepción
2017-01-01
Wedge shells belonging to the Donacidae family are the dominant bivalves in exposed beaches in almost all areas of the world. Typically, two or more sympatric species of wedge shells differentially occupy intertidal, sublittoral, and offshore coastal waters in any given locality. A molecular cytogenetic analysis of two sympatric and closely related wedge shell species, Donax trunculus and Donax vittatus, was performed. Results showed that the karyotypes of these two species were both strikingly different and closely alike; whilst metacentric and submetacentric chromosome pairs were the main components of the karyotype of D. trunculus, 10–11 of the 19 chromosome pairs were telocentric in D. vittatus, most likely as a result of different pericentric inversions. GC-rich heterochromatic bands were present in both species. Furthermore, they showed coincidental 45S ribosomal RNA (rRNA), 5S rRNA and H3 histone gene clusters at conserved chromosomal locations, although D. trunculus had an additional 45S rDNA cluster. Intraspecific pericentric inversions were also detected in both D. trunculus and D. vittatus. The close genetic similarity of these two species together with the high degree of conservation of the 45S rRNA, 5S rRNA and H3 histone gene clusters, and GC-rich heterochromatic bands indicate that pericentric inversions contribute to the karyotype divergence in wedge shells. PMID:29215567
Molecular Electronic Terms and Molecular Orbital Configurations.
ERIC Educational Resources Information Center
Mazo, R. M.
1990-01-01
Discussed are the molecular electronic terms which can arise from a given electronic configuration. Considered are simple cases, molecular states, direct products, closed shells, and open shells. Two examples are provided. (CW)
NASA's Hubble Captures the Beating Heart of the Crab Nebula
2017-12-08
Peering deep into the core of the Crab Nebula, this close-up image reveals the beating heart of one of the most historic and intensively studied remnants of a supernova, an exploding star. The inner region sends out clock-like pulses of radiation and tsunamis of charged particles embedded in magnetic fields. The neutron star at the very center of the Crab Nebula has about the same mass as the sun but compressed into an incredibly dense sphere that is only a few miles across. Spinning 30 times a second, the neutron star shoots out detectable beams of energy that make it look like it's pulsating. The NASA Hubble Space Telescope snapshot is centered on the region around the neutron star (the rightmost of the two bright stars near the center of this image) and the expanding, tattered, filamentary debris surrounding it. Hubble's sharp view captures the intricate details of glowing gas, shown in red, that forms a swirling medley of cavities and filaments. Inside this shell is a ghostly blue glow that is radiation given off by electrons spiraling at nearly the speed of light in the powerful magnetic field around the crushed stellar core. The neutron star is a showcase for extreme physical processes and unimaginable cosmic violence. Bright wisps are moving outward from the neutron star at half the speed of light to form an expanding ring. It is thought that these wisps originate from a shock wave that turns the high-speed wind from the neutron star into extremely energetic particles. When this "heartbeat" radiation signature was first discovered in 1968, astronomers realized they had discovered a new type of astronomical object. Now astronomers know it's the archetype of a class of supernova remnants called pulsars - or rapidly spinning neutron stars. These interstellar "lighthouse beacons" are invaluable for doing observational experiments on a variety of astronomical phenomena, including measuring gravity waves. Observations of the Crab supernova were recorded by Chinese astronomers in 1054 A.D. The nebula, bright enough to be visible in amateur telescopes, is located 6,500 light-years away in the constellation Taurus. Credits: NASA and ESA, Acknowledgment: J. Hester (ASU) and M. Weisskopf (NASA/MSFC) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Explaining iPTF14hls as a common-envelope jets supernova
NASA Astrophysics Data System (ADS)
Soker, Noam; Gilkis, Avishai
2018-03-01
We propose a common-envelope jets supernova scenario for the enigmatic supernova iPTF14hls where a neutron star that spirals-in inside the envelope of a massive giant star accretes mass and launches jets that power the ejection of the circumstellar shell and a few weeks later the explosion itself. To account for the kinetic energy of the circumstellar gas and the explosion, the neutron star should accrete a mass of ≈0.3 M⊙. The tens× M⊙ of circumstellar gas that accounts for some absorption lines is ejected, while the neutron star orbits for about one to several weeks inside the envelope of the giant star. In the last hours of the interaction, the neutron star merges with the core, accretes mass, and launches jets that eject the core and the inner envelope to form the explosion itself and the medium where the supernova photosphere resides. The remaining neutron star accretes fallback gas and further powers the supernova. We attribute the 1954 pre-explosion outburst to an eccentric orbit and temporary mass accretion by the neutron star at periastron passage prior to the onset of the common envelope phase.
Investigations of Nuclear Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarantites, Demetrios; Reviol, W.
The proposal addresses studies of nuclear structure at low-energies and development of instrumentation for that purpose. The structure studies deal with features of neutron-rich nuclei with unexplored shapes (football- or pear-shaped nuclei). The regions of interest are: neutron rich nuclei like 132-138Sn, or 48-54Ca, and the Zr, Mo, and Ru isotopes. The tools used can be grouped as follows: either Gammasphere or Gretina multi-gamma detector arrays and auxiliary detectors (Microball, Neutron Shell, and the newly completed Phoswich Wall).The neutron-rich nuclei are accessed by radioactive-beam binary reactions or by 252Cf spontaneous fission. The experiments with heavy radioactive beams aim at excitingmore » the beam nuclei by pick-up or transfer a neutron or a proton from a light target like 13C, 9Be, 11B or 14N .For these binary-reaction studies the Phoswich Wall detector system is essential. It is based on four multi-anode photomultiplier tubes on which CsI and thin fast-timing plastic scintillators are attached. Their signals are digitized with a high density microchip system.« less
Fast-timing study of the l -forbidden 1 /2+→3 /2+ M 1 transition in 129Sn
NASA Astrophysics Data System (ADS)
Licǎ, R.; Mach, H.; Fraile, L. M.; Gargano, A.; Borge, M. J. G.; Mǎrginean, N.; Sotty, C. O.; Vedia, V.; Andreyev, A. N.; Benzoni, G.; Bomans, P.; Borcea, R.; Coraggio, L.; Costache, C.; De Witte, H.; Flavigny, F.; Fynbo, H.; Gaffney, L. P.; Greenlees, P. T.; Harkness-Brennan, L. J.; Huyse, M.; Ibáñez, P.; Judson, D. S.; Konki, J.; Korgul, A.; Kröll, T.; Kurcewicz, J.; Lalkovski, S.; Lazarus, I.; Lund, M. V.; Madurga, M.; Mǎrginean, R.; Marroquín, I.; Mihai, C.; Mihai, R. E.; Morales, A. I.; Nácher, E.; Negret, A.; Page, R. D.; Pakarinen, J.; Pascu, S.; Paziy, V.; Perea, A.; Pérez-Liva, M.; Picado, E.; Pucknell, V.; Rapisarda, E.; Rahkila, P.; Rotaru, F.; Swartz, J. A.; Tengblad, O.; Van Duppen, P.; Vidal, M.; Wadsworth, R.; Walters, W. B.; Warr, N.; IDS Collaboration
2016-04-01
The levels in 129Sn populated from the β- decay of 129In isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 1 /2+ state and the 3 /2+ ground state in 129Sn are expected to have configurations dominated by the neutron s1 /2 (l =0 ) and d3 /2 (l =2 ) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l -forbidden M 1 transition. Using fast-timing spectroscopy we have measured the half-life of the 1 /2+ 315.3-keV state, T1 /2= 19(10) ps, which corresponds to a moderately fast M 1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T1 /2 value by the renormalization of the M 1 effective operator for neutron holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiraga, H.; Nagatomo, H.; Theobald, W.
Here, integrated fast ignition experiments were performed at ILE, Osaka, and LLE, Rochester, in which a nanosecond driver laser implodes a deuterated plastic shell in front of the tip of a hollow metal cone and an intense ultrashort-pulse laser is injected through the cone to heat the compressed plasma. Based on the initial successful results of fast electron heating of cone-in-shell targets, large-energy short-pulse laser beam lines were constructed and became operational: OMEGA-EP at Rochester and LFEX at Osaka. Neutron enhancement due to heating with a ~kJ short-pulse laser has been demonstrated in the integrated experiments at Osaka and Rochester.more » The neutron yields are being analyzed by comparing the experimental results with simulations. Details of the fast electron beam transport and the electron energy deposition in the imploded fuel plasma are complicated and further studies are imperative. The hydrodynamics of the implosion was studied including the interaction of the imploded core plasma with the cone tip. Theory and simulation studies are presented on the hydrodynamics of a high-gain target for a fast ignition point design.« less
Saitow, Masaaki; Becker, Ute; Riplinger, Christoph; Valeev, Edward F; Neese, Frank
2017-04-28
The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N 6 ) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.
NASA Astrophysics Data System (ADS)
Saitow, Masaaki; Becker, Ute; Riplinger, Christoph; Valeev, Edward F.; Neese, Frank
2017-04-01
The Coupled-Cluster expansion, truncated after single and double excitations (CCSD), provides accurate and reliable molecular electronic wave functions and energies for many molecular systems around their equilibrium geometries. However, the high computational cost, which is well-known to scale as O(N6) with system size N, has limited its practical application to small systems consisting of not more than approximately 20-30 atoms. To overcome these limitations, low-order scaling approximations to CCSD have been intensively investigated over the past few years. In our previous work, we have shown that by combining the pair natural orbital (PNO) approach and the concept of orbital domains it is possible to achieve fully linear scaling CC implementations (DLPNO-CCSD and DLPNO-CCSD(T)) that recover around 99.9% of the total correlation energy [C. Riplinger et al., J. Chem. Phys. 144, 024109 (2016)]. The production level implementations of the DLPNO-CCSD and DLPNO-CCSD(T) methods were shown to be applicable to realistic systems composed of a few hundred atoms in a routine, black-box fashion on relatively modest hardware. In 2011, a reduced-scaling CCSD approach for high-spin open-shell unrestricted Hartree-Fock reference wave functions was proposed (UHF-LPNO-CCSD) [A. Hansen et al., J. Chem. Phys. 135, 214102 (2011)]. After a few years of experience with this method, a few shortcomings of UHF-LPNO-CCSD were noticed that required a redesign of the method, which is the subject of this paper. To this end, we employ the high-spin open-shell variant of the N-electron valence perturbation theory formalism to define the initial guess wave function, and consequently also the open-shell PNOs. The new PNO ansatz properly converges to the closed-shell limit since all truncations and approximations have been made in strict analogy to the closed-shell case. Furthermore, given the fact that the formalism uses a single set of orbitals, only a single PNO integral transformation is necessary, which offers large computational savings. We show that, with the default PNO truncation parameters, approximately 99.9% of the total CCSD correlation energy is recovered for open-shell species, which is comparable to the performance of the method for closed-shells. UHF-DLPNO-CCSD shows a linear scaling behavior for closed-shell systems, while linear to quadratic scaling is obtained for open-shell systems. The largest systems we have considered contain more than 500 atoms and feature more than 10 000 basis functions with a triple-ζ quality basis set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strikman, Mark; Weiss, Christian
We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less
NASA Astrophysics Data System (ADS)
Strikman, M.; Weiss, C.
2018-03-01
We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future electron-ion collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation to the tagged DIS cross section contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSIs) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1
Strikman, Mark; Weiss, Christian
2018-03-27
We consider electron-deuteron deep-inelastic scattering (DIS) with detection of a proton in the nuclear fragmentation region ("spectator tagging") as a method for extracting the free neutron structure functions and studying their nuclear modifications. Such measurements could be performed at a future Electron-Ion Collider (EIC) with suitable forward detectors. The measured proton recoil momentum (≲ 100 MeV in the deuteron rest frame) specifies the deuteron configuration during the high-energy process and permits a controlled theoretical treatment of nuclear effects. Nuclear and nucleonic structure are separated using methods of light-front quantum mechanics. The impulse approximation (IA) to the tagged DIS cross sectionmore » contains the free neutron pole, which can be reached by on-shell extrapolation in the recoil momentum. Final-state interactions (FSI) distort the recoil momentum distribution away from the pole. In the intermediate-x region 0.1 < x < 0.5 FSI arise predominantly from interactions of the spectator proton with slow hadrons produced in the DIS process on the neutron (rest frame momenta ≲1 GeV, target fragmentation region). We construct a schematic model describing this effect, using final-state hadron distributions measured in nucleon DIS experiments and low-energy hadron scattering amplitudes. We investigate the magnitude of FSI, their dependence on the recoil momentum (angular dependence, forward/backward regions), their analytic properties, and their effect on the on-shell extrapolation. We comment on the prospects for neutron structure extraction in tagged DIS with EIC. Finally, we discuss possible extensions of the FSI model to other kinematic regions (large/small x). In tagged DIS at x << 0.1 FSI resulting from diffractive scattering on the nucleons become important and require separate treatment.« less
Spectrometers for compact neutron sources
NASA Astrophysics Data System (ADS)
Voigt, J.; Böhm, S.; Dabruck, J. P.; Rücker, U.; Gutberlet, T.; Brückel, T.
2018-03-01
We discuss the potential for neutron spectrometers at novel accelerator driven compact neutron sources. Such a High Brilliance Source (HBS) relies on low energy nuclear reactions, which enable cryogenic moderators in very close proximity to the target and neutron optics at comparably short distances from the moderator compared to existing sources. While the first effect aims at increasing the phase space density of a moderator, the second allows the extraction of a large phase space volume, which is typically requested for spectrometer applications. We find that competitive spectrometers can be realized if (a) the neutron production rate can be synchronized with the experiment repetition rate and (b) the emission characteristics of the moderator can be matched to the phase space requirements of the experiment. MCNP simulations for protons or deuterons on a Beryllium target with a suitable target/moderator design yield a source brightness, from which we calculate the sample fluxes by phase space considerations for different types of spectrometers. These match closely the figures of todays spectrometers at medium flux sources. Hence we conclude that compact neutron sources might be a viable option for next generation neutron sources.
NASA Astrophysics Data System (ADS)
Eurov, Daniil A.; Kurdyukov, Dmitry A.; Kirilenko, Demid A.; Kukushkina, Julia A.; Nashchekin, Alexei V.; Smirnov, Alexander N.; Golubev, Valery G.
2015-02-01
Core-shell nanoparticles with diameters in the range 100-500 nm have been synthesized as monodisperse spherical mesoporous (pore diameter 3 nm) silica particles with size deviation of less than 4 %, filled with gadolinium and europium oxides and coated with a mesoporous silica shell. It is shown that the melt technique developed for filling with gadolinium and europium oxides provides a nearly maximum filling of mesopores in a single-run impregnation, with gadolinium and europium uniformly distributed within the particles and forming no bulk oxides on their surface. The coating with a shell does not impair the monodispersity and causes no coagulation. The coating technique enables controlled variation of the shell thickness within the range 5-100 % relative to the core diameter. The thus produced nanoparticles are easily dispersed in water, have large specific surface area (300 m2 g-1) and pore volume (0.3 cm3 g-1), and are bright solid phosphor with superior stability in aqueous media. The core-shell structured particles can be potentially used for cancer treatment as a therapeutic agent (gadolinium neutron-capture therapy and drug delivery system) and, simultaneously, as a multimodal diagnostic tool (fluorescence and magnetic resonance imaging), thereby serving as a multifunctional theranostic agent.
Tracking the Magnetization Evolution in γ-Fe2O3 / Metallic Fe Core-Shell Nanoparticle Variants
NASA Astrophysics Data System (ADS)
Kons, C.; Nemati, Z.; Srikanth, H.; Phan, M.-H.; Krycka, K.; Borchers, J.; Keavney, D.; Arena, D. A.
Iron-core magnetic nanoparticles (MNPs) with oxide shells exhibit varying magnetic properties due to the different ordering temperatures of the core and shell spins, as well as the coupling across the metal/oxide interface. While spin coupling across two dimensional interfaces has been well explored, less is known about three dimensional interfaces such as those presented in the MNPs. In this work, MNPs were synthesized with a bcc Fe core and γ-Fe2O3 shell and placed in an oxygen rich environment to encourage the transition from cores shell (CS) to core void shell (CVS) to hollow (H) structures. Static magnetic measurements (MvT) and AC magnetometry were performed to explore the magnetic behavior of the various synthesized structures. To further understand the nature of the spin coupling in the MNPs, TEM and conventional magnetometry as well as variable-temperature small angle neutron scattering (SANS), x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) spectroscopy were performed. Modeling of the x-ray spectra and SANS data will enable us to develop a cohesive picture of spin coupling, freezing and frustration along the three-dimensional metal / oxide interface. Supported by Department of Energy award #DE-FG02-07ER46438; NSF Award #DMR-1508249.
NASA Astrophysics Data System (ADS)
Tkachenko, S.; Baillie, N.; Kuhn, S. E.; Zhang, J.; Arrington, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Kalantarians, N.; Keppel, C. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lewis, S.; Livingston, K.; Lu, H.; MacCormick, M.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Strauch, S.; Tang, W.; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zana, L.; Zonta, I.; CLAS Collaboration
2014-04-01
Background: Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x . As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x . Purpose: The Barely Off-shell Nucleon Structure experiment at Jefferson Lab measured the inelastic electron-deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model-independent extraction of the neutron structure function F2(x ,Q2) in the resonance and deep-inelastic regions. Method: A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c and over a nearly 4 π angular range. For the extraction of the free-neutron structure function F2n, spectator protons at backward angles (>100∘ relative to the momentum transfer) and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Lab's CLAS spectrometer, with data taken at beam energies near 2, 4, and 5 GeV. Results: The extracted neutron structure function F2n and its ratio to the inclusive deuteron structure function F2d are presented in both the resonance and the deep-inelastic regions for momentum transfer squared Q2 between 0.7 and 5 GeV2/c2 , invariant mass W between 1 and 2.7 GeV/c2 , and Bjorken x between 0.25 and 0.6 (in the deep-inelastic scattering region). The dependence of the semi-inclusive cross section on the spectator proton momentum and angle is investigated, and tests of the spectator mechanism for different kinematics are performed. Conclusions: Our data set on the structure function ratio F2n/F2d can be used to study neutron resonance excitations, test quark-hadron duality in the neutron, develop more precise parametrizations of structure functions, and investigate binding effects (including possible mechanisms for the nuclear EMC effect) and provide a first glimpse of the asymptotic behavior of d /u at x →1 .
A neutron diagnostic for high current deuterium beams.
Rebai, M; Cavenago, M; Croci, G; Dalla Palma, M; Gervasini, G; Ghezzi, F; Grosso, G; Murtas, F; Pasqualotto, R; Cippo, E Perelli; Tardocchi, M; Tollin, M; Gorini, G
2012-02-01
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45°. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.
A neutron diagnostic for high current deuterium beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebai, M.; Perelli Cippo, E.; Cavenago, M.
2012-02-15
A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thinmore » polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, R.; Goncharov, V. N.; Marshall, F. J.
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Epstein, R.; Goncharov, V. N.; Marshall, F. J.
Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus’kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolvedmore » core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion’s central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.« less
Measurement of the neutron F2 structure function via spectator tagging with CLAS.
Baillie, N; Tkachenko, S; Zhang, J; Bosted, P; Bültmann, S; Christy, M E; Fenker, H; Griffioen, K A; Keppel, C E; Kuhn, S E; Melnitchouk, W; Tvaskis, V; Adhikari, K P; Adikaram, D; Aghasyan, M; Amaryan, M J; Anghinolfi, M; Arrington, J; Avakian, H; Baghdasaryan, H; Battaglieri, M; Biselli, A S; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Cole, P L; Contalbrigo, M; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Dey, B; Djalali, C; Dodge, G; Domingo, J; Doughty, D; Dupre, R; Dutta, D; Ent, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Fradi, A; Gabrielyan, M Y; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Gohn, W; Golovatch, E; Gothe, R W; Graham, L; Guegan, B; Guidal, M; Guler, N; Guo, L; Hafidi, K; Heddle, D; Hicks, K; Holtrop, M; Hungerford, E; Hyde, C E; Ilieva, Y; Ireland, D G; Ispiryan, M; Isupov, E L; Jawalkar, S S; Jo, H S; Kalantarians, N; Khandaker, M; Khetarpal, P; Kim, A; Kim, W; King, P M; Klein, A; Klein, F J; Klimenko, A; Kubarovsky, V; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Markov, N; McKinnon, B; Mineeva, T; Morrison, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Ni, A; Niccolai, S; Niculescu, I; Niculescu, G; Osipenko, M; Ostrovidov, A I; Pappalardo, L; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Pisano, S; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Sharabian, Y G; Sober, D I; Sokhan, D; Stepanyan, S; Stepanyan, S S; Stoler, P; Strauch, S; Taiuti, M; Tang, W; Ungaro, M; Vineyard, M F; Voutier, E; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zana, L; Zhao, B
2012-04-06
We report on the first measurement of the F(2) structure function of the neutron from the semi-inclusive scattering of electrons from deuterium, with low-momentum protons detected in the backward hemisphere. Restricting the momentum of the spectator protons to ≲100 MeV/c and their angles to ≳100° relative to the momentum transfer allows an interpretation of the process in terms of scattering from nearly on-shell neutrons. The F(2)(n) data collected cover the nucleon-resonance and deep-inelastic regions over a wide range of Bjorken x for 0.65
Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target
NASA Astrophysics Data System (ADS)
Cortés, M. L.; Doornenbal, P.; Dupuis, M.; Lenzi, S. M.; Nowacki, F.; Obertelli, A.; Péru, S.; Pietralla, N.; Werner, V.; Wimmer, K.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Louchart, C.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Niikura, M.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Zs.; Franchoo, S.; Giacoppo, F.; Gottardo, A.; Hadynska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Olivier, L.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C. M.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Vajta, Zs.; Wu, J.; Xu, Z.
2018-04-01
Proton inelastic scattering of Ni,7472 and Zn,8076 ions at energies around 235 MeV/nucleon was performed at the Radioactive Isotope Beam Factory and studied using γ -ray spectroscopy. Angular integrated cross sections for direct inelastic scattering to the 21+ and 41+ states were measured. The Jeukenne-Lejeune-Mahaux folding model, extended beyond 200 MeV, was used together with neutron and proton densities stemming from quasiparticle random-phase approximation (QRPA) calculations to interpret the experimental cross sections and to infer neutron to proton matrix element ratios. In addition, coupled-channels calculations with a phenomenological potential were used to determine deformation lengths. For the Ni isotopes, correlations favor neutron excitations, thus conserving the Z =28 gap. A dominance of proton excitation, on the other hand, is observed in the Zn isotopes, pointing to the conservation of the N =50 gap approaching 78Ni. These results are in agreement with QRPA and large-scale shell-model calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawcett, L.R. Jr.; Roberts, R.R. II; Hunter, R.E.
1988-03-01
Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD with an oralloy core irradiated by a central source of 14-MeV neutrons have been calculated and compared with experimental measurements. The experimental assembly consisted of an oralloy sphere surrounded by three solid /sup 6/LiD concentric shells with ampules of /sup 6/LiH and /sup 7/LiH and activation foils located in several positions throughout the assembly. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport throughout the system, tritium production in the ampules, and foil activation. The overall experimentally observed-to-calculated ratiosmore » of tritium production were 0.996 +- 2.5% in /sup 6/Li ampules and 0.903 +- 5.2% in /sup 7/Li ampules. Observed-to-calculated ratios for foil activation are also presented. 11 refs., 4 figs., 7 tabs.« less
Quasielastic small-angle neutron scattering from heavy water solutions of cyclodextrins
NASA Astrophysics Data System (ADS)
Kusmin, André; Lechner, Ruep E.; Saenger, Wolfram
2011-01-01
We present a model for quasielastic neutron scattering (QENS) by an aqueous solution of compact and inflexible molecules. This model accounts for time-dependent spatial pair correlations between the atoms of the same as well as of distinct molecules and includes all coherent and incoherent neutron scattering contributions. The extension of the static theory of the excluded volume effect [A. K. Soper, J. Phys.: Condens. Matter 9, 2399 (1997)] to the time-dependent (dynamic) case allows us to obtain simplified model expressions for QENS spectra in the low Q region in the uniform fluid approximation. The resulting expressions describe the quasielastic small-angle neutron scattering (QESANS) spectra of D _2O solutions of native and methylated cyclodextrins well, yielding in particular translational and rotational diffusion coefficients of these compounds in aqueous solution. Finally, we discuss the full potential of the QESANS analysis (that is, beyond the uniform fluid approximation), in particular, the information on solute-solvent interactions (e.g., hydration shell properties) that such an analysis can provide, in principle.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; ...
2018-01-31
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit
NASA Astrophysics Data System (ADS)
Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold
2018-02-01
Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.
An efficient parallel algorithm for the calculation of unrestricted canonical MP2 energies.
Baker, Jon; Wolinski, Krzysztof
2011-11-30
We present details of our efficient implementation of full accuracy unrestricted open-shell second-order canonical Møller-Plesset (MP2) energies, both serial and parallel. The algorithm is based on our previous restricted closed-shell MP2 code using the Saebo-Almlöf direct integral transformation. Depending on system details, UMP2 energies take from less than 1.5 to about 3.0 times as long as a closed-shell RMP2 energy on a similar system using the same algorithm. Several examples are given including timings for some large stable radicals with 90+ atoms and over 3600 basis functions. Copyright © 2011 Wiley Periodicals, Inc.
Jammed elastic shells - a 3D experimental soft frictionless granular system
NASA Astrophysics Data System (ADS)
Jose, Jissy; Blab, Gerhard A.; van Blaaderen, Alfons; Imhof, Arnout
2015-03-01
We present a new experimental system of monodisperse, soft, frictionless, fluorescent labelled elastic shells for the characterization of structure, universal scaling laws and force networks in 3D jammed matter. The interesting fact about these elastic shells is that they can reversibly deform and therefore serve as sensors of local stress in jammed matter. Similar to other soft particles, like emulsion droplets and bubbles in foam, the shells can be packed to volume fractions close to unity, which allows us to characterize the contact force distribution and universal scaling laws as a function of volume fraction, and to compare them with theoretical predictions and numerical simulations. However, our shells, unlike other soft particles, deform rather differently at large stresses. They deform without conserving their inner volume, by forming dimples at contact regions. At each contact one of the shells buckled with a dimple and the other remained spherical, closely resembling overlapping spheres. We conducted 3D quantitative analysis using confocal microscopy and image analysis routines specially developed for these particles. In addition, we analysed the randomness of the process of dimpling, which was found to be volume fraction dependent.
Multi-Quasiparticle Gamma-Band Structure in Neutron-Deficient Ce and Nd Isotopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheikh, Javid; Bhat, G. H.; Palit, R.
2009-01-01
The newly developed multi-quasiparticle triaxial projected shell-model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce and Nd isotopes. It is observed that gamma bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma oscillation in deformed nuclei based on the ground state to gamma bands built on multi-quasiparticle configurations. This new feature providesmore » an alternative explanation on the observation of two I=10 aligning states in ^{134}Ce and both exhibiting a neutron character.« less
NASA Technical Reports Server (NTRS)
Lahti, G. P.; Mueller, R. A.
1973-01-01
Measurements of MeV neutron were made at the surface of a lithium hydride and depleted uranium shielded reactor. Four shield configurations were considered: these were assembled progressively with cylindrical shells of 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, 13-centimeter-thick lithium hydride, 5-centimeter-thick depleted uranium, and 3-centimeter-thick depleted uranium. Measurements were made with a NE-218 scintillation spectrometer; proton pulse height distributions were differentiated to obtain neutron spectra. Calculations were made using the two-dimensional discrete ordinates code DOT and ENDF/B (version 3) cross sections. Good agreement between measured and calculated spectral shape was observed. Absolute measured and calculated fluxes were within 50 percent of one another; observed discrepancies in absolute flux may be due to cross section errors.
ShellFit: Reconstruction in the MiniCLEAN Detector
NASA Astrophysics Data System (ADS)
Seibert, Stanley
2010-02-01
The MiniCLEAN dark matter experiment is an ultra-low background liquid cryogen detector with a fiducial volume of approximately 150 kg. Dark matter candidate events produce ultraviolet scintillation light in argon at 128 nm and in neon at 80 nm. In order to detect this scintillation light, the target volume is enclosed by acrylic plates forming a spherical shell upon which an organic fluor, tetraphenyl butadiene (TPB), has been applied. TPB absorbs UV light and reemits visible light isotropically which can be detected by photomultiplier tubes. Two significant sources of background events in MiniCLEAN are decays of radon daughters embedded in the acrylic surface and external sources of neutrons, such as the photomultiplier tubes themselves. Both of these backgrounds can be mitigated by reconstructing the origin of the scintillation light and cutting events beyond a particular radius. The scrambling of photon trajectories at the TPB surface makes this task very challenging. The ``ShellFit'' algorithm for reconstructing event position and energy in a detector with a spherical wavelength-shifting shell will be described. The performance of ShellFit will be demonstrated using Monte Carlo simulation of several event types in the MiniCLEAN detector. )
Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; ...
2015-11-02
In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improvesmore » their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO 2 shell.« less
Nonvolatile memory with Co-SiO2 core-shell nanocrystals as charge storage nodes in floating gate
NASA Astrophysics Data System (ADS)
Liu, Hai; Ferrer, Domingo A.; Ferdousi, Fahmida; Banerjee, Sanjay K.
2009-11-01
In this letter, we reported nanocrystal floating gate memory with Co-SiO2 core-shell nanocrystal charge storage nodes. By using a water-in-oil microemulsion scheme, Co-SiO2 core-shell nanocrystals were synthesized and closely packed to achieve high density matrix in the floating gate without aggregation. The insulator shell also can help to increase the thermal stability of the nanocrystal metal core during the fabrication process to improve memory performance.
Multicompartmental Microcapsules from Star Copolymer Micelles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ikjun; Malak, Sidney T.; Xu, Weinan
2013-02-26
We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into themore » LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic components within shells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng,D.; Cabana, J.; Breger, J.
2007-01-01
Several members of the compositional series Li[NixMnxCo(1-2x)]O2 (0.01 = x = 1/3) were synthesized and characterized. X-ray diffraction results confirm the presence of the layered a-NaFeO2-type structure, while X-ray absorption near-edge spectroscopy experiments verify the presence of Ni2+, Mn4+, and Co3+. Their local environment and short-range ordering were investigated by using a combination of 6Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and neutron pair distribution function (PDF) analysis, associated with reverse Monte Carlo (RMC) calculations. The 6Li MAS NMR spectra of compounds with low Ni/Mn contents (x = 0.10) show several well-resolved resonances, which start to mergemore » when the amount of Ni and Mn increases, finally forming a broad resonance at high Ni/Mn contents. Analysis of the 6Li MAS NMR 6Li[Ni0.02Mn0.02Co0.96]O2 spectrum, is consistent with the formation of Ni2+ and Mn4+ clusters within the transition-metal layers, even at these low-doping levels. The oxidation state of Ni in this high Co content sample strongly depends upon the Li/transition metal ratio of the starting materials. Neutron PDF analysis of the highest Ni/Mn content sample Li[Ni1/3Mn1/3Co1/3]O2 shows a tendency for Ni cations to be close to Mn cations in the first coordination shell; however, the Co3+ ions are randomly distributed. Analysis of the intensity of the 'LiCoO2' resonance, arising from Li surrounded by Co3+ in its first two cation coordination shells, for the whole series provides further evidence for a nonrandom distribution of the transition-metal cations. The presence of the insulator-to-metal transition seen in the electrochemical profiles of these materials upon charging correlates strongly with the concentration of the 'LiCoO2' resonance.« less
High-spin structures in the 139Pr nucleus
NASA Astrophysics Data System (ADS)
Yeoh, E. Y.; Zhu, S. J.; Wang, J. G.; Xiao, Z. G.; Zhang, M.; Yan, W. H.; Wang, R. S.; Xu, Q.; Wu, X. G.; He, C. Y.; Li, G. S.; Zheng, Y.; Li, C. B.; Cao, X. P.; Hu, S. P.; Yao, S. H.; Yu, B. B.
2012-06-01
Background: 139Pr is located in a transitional region of neutron number close to the N=82 shell. The study of its high-spin states and collective bands is important for systematically understanding the nuclear structural characteristics in this region.Purpose: To investigate the high-spin levels and to search for oblate bands in 139Pr.Methods: The high-spin states of 139Pr have been studied via the reaction 124Sn(19F,4n) at a beam energy of 80 MeV. The experiment was carried out at the HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). The data analysis was done by using the γ-γ coincidence method.Results: The level scheme of 139Pr has been expanded with spin up to 45/2ℏ. A total of 39 new levels and 45 new transitions are identified. Four collective band structures at high-spin states have been newly established. From systematic analysis, one of the bands is proposed as a double decoupled band; two bands are proposed as oblate bands with γ˜-60∘; another band is suggested as an oblate-triaxial band with γ˜-90∘. The other characteristics for these bands are discussed.Conclusions: A new level scheme in 139Pr has been established and the collective bands at high spin have been identified. The result shows that the strong oblate shape-driving effect is caused by neutrons at the high-spin states in 139Pr.
Schematic interactions with many degeneracies
NASA Astrophysics Data System (ADS)
Kingan, Arun; Quinonez, Michael; Zamick, Larry
In previous works, we examined the spectra for systems of two protons and two neutrons, in a single j shell calculation, by obtaining matrix elements from experiment. More recently, we considered the schematic interactions in the same model space. We continue in this vein here. The present work and the former can be regarded as two bookends on a bookshelf.
Average Nuclear Potentials from Selfconsistent Semiclassical Calculations
NASA Astrophysics Data System (ADS)
Bartel, J.
1999-03-01
Using the selfconsistent semiclassical Extended Thomas-Fermi (ETF) method up to 4th order in connection with Skyrme forces it is demonstrated that the neutron and proton average potentials obtained using the semiclassical functionals τ (ETF)[ρ] and vec {J}(ETF)[ρ] reproduce the corresponding Hartree-Fock fields extremely well, except for shell oscillations in the nuclear center.
Probing the N = 14 subshell closure: g factor of the 26Mg (21+) state
NASA Astrophysics Data System (ADS)
McCormick, B. P.; Stuchbery, A. E.; Kibédi, T.; Lane, G. J.; Reed, M. W.; Eriksen, T. K.; Hota, S. S.; Lee, B. Q.; Palalani, N.
2018-04-01
The first-excited state g factor of 26Mg has been measured relative to the g factor of the 24Mg (21+) state using the high-velocity transient-field technique, giving g = + 0.86 ± 0.10. This new measurement is in strong disagreement with the currently adopted value, but in agreement with the sd-shell model using the USDB interaction. The newly measured g factor, along with E (21+) and B (E 2) systematics, signal the closure of the νd5/2 subshell at N = 14. The possibility that precise g-factor measurements may indicate the onset of neutron pf admixtures in first-excited state even-even magnesium isotopes below 32Mg is discussed and the importance of precise excited-state g-factor measurements on sd shell nuclei with N ≠ Z to test shell-model wavefunctions is noted.
Effect of Symmetry on Performance of Imploding Capsules using the Big Foot Design
NASA Astrophysics Data System (ADS)
Khan, Shahab; Casey, Daniel; Baker, Kevin; Thomas, Cliff; Nora, Ryan; Spears, Brian; Benedetti, Laura; Izumi, Nobuhiko; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; National Ignition Facility Collaboration
2017-10-01
At the National Ignition Facility, several simultaneous designs are investigated for optimizing Inertial Confinement Fusion (ICF) energy gain of indirectly driven imploding fuel capsules. Relatively high neutron yield has been achieved while exhibiting a non-symmetric central core and/or shell. While developing the ``Big Foot'' design, several tuning steps were undertaken to minimize the asymmetry of both the central hot core as well as the shell. Surrogate capsules (symcaps) were utilized in the 2-D Radiography platform to assess both the shell and central core symmetry. The results of the tuning experiments are presented. In addition, a comparison of performance and shape metrics demonstrates that improving symmetry of the implosion can yield better performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-683471.
NASA Astrophysics Data System (ADS)
Liu, Jing-Jing; Liu, Dong-Mei
2018-06-01
Based on the p-f shell-model, we discuss and calculate β--decay half-lives of neutron-rich nuclei, with a consideration of shell and pair effects, the decay energy, and the nucleon numbers. According to the linear response theory model, we study the effect of electron screening on the electron energy, beta-decay threshold energy, and the antineutrino energy loss rate by β--decay of some iron isotopes. We find that the electron screening antineutrino energy loss rates increase by about two orders of magnitude due to the shell effects and the pairing effect. Beta-decay rates with Q-value corrections due to strong electron screening are higher than those without the Q-value corrections by more than two orders of magnitude. Our conclusions may be helpful for the research on numerical simulations of the cooling of stars.
Local Crystalline Structure in an Amorphous Protein Dense Phase
Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.
2015-01-01
Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663
Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes.
Calvo, F; Yurtsever, E
2016-08-28
The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C60 (+) and C70 (+) are close to 49 and 51, respectively, and agree with mass spectrometry experiments.
Solvation of carbonaceous molecules by para-H2 and ortho-D2 clusters. II. Fullerenes
NASA Astrophysics Data System (ADS)
Calvo, F.; Yurtsever, E.
2016-08-01
The coating of various fullerenes by para-hydrogen and ortho-deuterium molecules has been computationally studied as a function of the solvent amount. Rotationally averaged interaction potentials for structureless hydrogen molecules are employed to model their interaction with neutral or charged carbonaceous dopants containing between 20 and 240 atoms, occasionally comparing different fullerenes having the same size but different shapes. The solvation energy and the size of the first solvation shell obtained from path-integral molecular dynamics simulations at 2 K show only minor influence on the dopant charge and on the possible deuteration of the solvent, although the shell size is largest for ortho-D2 coating cationic fullerenes. Nontrivial finite size effects have been found with the shell size varying non-monotonically close to its completion limit. For fullerenes embedded in large hydrogen clusters, the shell size and solvation energy both follow linear scaling with the fullerene size. The shell sizes obtained for C 60+ and C 70+ are close to 49 and 51, respectively, and agree with mass spectrometry experiments.
New Technological Platform for the National Nuclear Energy Strategy Development
NASA Astrophysics Data System (ADS)
Adamov, E. O.; Rachkov, V. I.
2017-12-01
The paper considers the need to update the development strategy of Russia's nuclear power industry and various approaches to the large-scale nuclear power development. Problems of making decisions on fast neutron reactors and closed nuclear fuel cycle (NFC) arrangement are discussed. The current state of the development of fast neutron reactors and closed NFC technologies in Russia is considered and major problems are highlighted.
Nuclear Reactions in the Crusts of Accreting Neutron Stars
NASA Astrophysics Data System (ADS)
Lau, R.; Beard, M.; Gupta, S. S.; Schatz, H.; Afanasjev, A. V.; Brown, E. F.; Deibel, A.; Gasques, L. R.; Hitt, G. W.; Hix, W. R.; Keek, L.; Möller, P.; Shternin, P. S.; Steiner, A. W.; Wiescher, M.; Xu, Y.
2018-05-01
X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density is ρ =2× {10}12 {{g}} {cm}}-3 using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond ρ =2× {10}12 {{g}} {cm}}-3. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. This work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.
Synthesis of fullerene@gold core-shell nanostructures.
Ren, Yupeng; Paira, Priyankar; Nayak, Tapas Ranjan; Ang, Wee Han; Pastorin, Giorgia
2011-07-21
A "direct encapsulation" method was developed for the synthesis of highly stable water-soluble fullerene@gold core-shell nanostructures, with gold nanoshells showing either closed or porous morphology. This gold nano-shell coating formed a "nano-oven", capable of decomposing encapsulated fullerene molecules rapidly when irradiated by laser. We envisaged this being a useful tool for chemical reactions as well as a novel scaffold for nano-material synthesis.
The Oscillations of Coronal Loops Including the Shell
NASA Astrophysics Data System (ADS)
Mikhalyaev, B. B.; Solov'ev, A. A.
2005-04-01
We investigate the MHD waves in a double magnetic flux tube embedded in a uniform external magnetic field. The tube consists of a dense hot cylindrical cord surrounded by a co-axial shell. The plasma and the magnetic field are taken to be uniform inside the cord and also inside the shell. Two slow and two fast magnetosonic modes can exist in the thin double tube. The first slow mode is trapped by the cord, the other is trapped by the shell. The oscillations of the second mode have opposite phases inside the cord and shell. The speeds of the slow modes propagating along the tube are close to the tube speeds inside the cord and the shell. The behavior of the fast modes depends on the magnitude of Alfvén speed inside the shell. If it is less than the Alfvén speed inside the cord and in the environment, then the fast mode is trapped by the shell and the other may be trapped under the certain conditions. In the opposite case when the Alfvén speed in the shell is greater than those inside the cord and in the environment, then the fast mode is radiated by the tube and the other may also be radiated under certain conditions. The oscillation of the cord and the shell with opposite phases is the distinctive feature of the process. The proposed model allows to explain the basic phenomena connected to the coronal oscillations: i) the damping of oscillations stipulated in the double tube model by the radiative loss, ii) the presence of two different modes of perturbations propagating along the loop with close speeds, iii) the opposite phases of oscillations of modulated radio emission, coming from the near coronal sources having sharply different densities.
Diagnostics of deuterium gas-puff z-pinch experiments on the GIT-12 generator
NASA Astrophysics Data System (ADS)
Cikhardt, J.; Klir, D.; Rezac, K.; Kubes, P.; Kravarik, J.; Batobolotova, B.; Sila, O.; Turek, K.; Shishlov, A.; Labetsky, A.; Kokshenev, V.; Chedizov, R.; Ratakhin, N.; Varlachev, V.; Garapatsky, A.; Dudkin, G.; Padalko, V.; GIT-12 Team
2014-10-01
Z-pinch experiments with a deuterium gas-puff and an outer plasma shell generated by plasma guns were carried out on the GIT-12 generator at the IHCE in Tomsk. Using this novel configuration of the load, the neutron yields from the DD reaction were significantly increased from 2×1011 up to 3×1012 neutrons per shot at the current level of about 3 MA. In addition to recent experiments, the threshold activation detectors were used in order to get the information about the energy spectrum of the generated neutrons. The copper, indium, and lead samples were irradiated by the pulse of the neutrons generated during the experimental shot. The decay radiation of the products from the reactions 63Cu(n,2n)62Cu, 115In(n, γ) 116 mIn and 206Pb (n,3n)204mPb was observed using gamma spectrometer. According to the used neutron ToF scintillation detectors, the energy of neutrons reaches up to 20 MeV. The work was supported by the MSMT of the Czech Republic research Programs No. ME090871, No. LG13029, by the GACR Grant No. P205/12/0454, Grant CRA IAEA No. 17088 and RFBR research Project No. 13-08-00479-a.
NASA Astrophysics Data System (ADS)
Chechev, Valerii P.; Kramarovskiĭ, Ya M.
1981-07-01
The theory of the s process of nucleosynthesis has received considerable development during recent years, mainly as the result of more detailed physical and mathematical treatments and also as a result of the accumulation of new observational data on stellar evolution and the abundance of the elements in the solar system, and accumulation of experimental data on neutron-capture cross sections. The exact solution of the s process equations obtained recently by Newman (1978) is discussed. It confirms the correctness of the initial s process theory (Clayton, Fowler, Hull, and Zimmerman, 1961). At the same time for small neutron exposures the exact and initial solutions differ. The influence of branching of the s-process due to competition between β decay and neutron capture is analyzed; it is noted that at a temperature ~3·108 K and a density of free neutrons 1.6·107 cm-3 the s process theory is in good agreement with observational data on the yields of the various nuclides. Models are discussed for the pulsed neutron s process, which leads to formation of heavy elements in the interior of a star as the result of periodic flares of the helium shell and subsequent remixing of the material.
NASA Astrophysics Data System (ADS)
Kim, Y.; Herrmann, H. W.; Hoffman, N. M.; Schmitt, M. J.; Bradley, P. A.; Kagan, G.; Gales, S.; Horsfield, C. J.; Rubery, M.; Leatherland, A.; Gatu Johnson, M.; Glebov, V.; Seka, W.; Marshall, F.; Stoeckl, C.; Church, J.
2014-10-01
Kinetic plasma and turbulent mix effects on inertial confinement fusion have been studied using a series of DT-filled plastic-shell implosions at the OMEGA laser facility. Plastic capsules of 4 different shell thicknesses (7.4, 15, 20, 29 micron) were shot at 2 different fill pressures in order to vary the ion mean free path compared to the size of fuel region (i.e., Knudsen number). We varied the empirical Knudsen number by a factor of 25. Measurements were obtained from the burn-averaged ion temperature and fuel areal density. Preliminary results indicate that as the empirical Knudsen number increases, fusion performances (e.g., neutron yield) increasingly deviate from hydrodynamic simulations unless turbulent mix and ion kinetic terms (e.g., enhanced ion diffusion, viscosity, thermal conduction, as well as Knudsen-layer fusion reactivity reduction) are considered. We are developing two separate simulations: one is a reduced-ion-kinetics model and the other is turbulent mix model. Two simulation results will be compared with the experimental observables.
A coupled-cluster study of photodetachment cross sections of closed-shell anions
NASA Astrophysics Data System (ADS)
Cukras, Janusz; Decleva, Piero; Coriani, Sonia
2014-11-01
We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H-, Li-, Na-, F-, Cl-, and OH-. The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.
A coupled-cluster study of photodetachment cross sections of closed-shell anions.
Cukras, Janusz; Decleva, Piero; Coriani, Sonia
2014-11-07
We investigate the performance of Stieltjes Imaging applied to Lanczos pseudo-spectra generated at the coupled cluster singles and doubles, coupled cluster singles and approximate iterative doubles and coupled cluster singles levels of theory in modeling the photodetachment cross sections of the closed shell anions H(-), Li(-), Na(-), F(-), Cl(-), and OH(-). The accurate description of double excitations is found to play a much more important role than in the case of photoionization of neutral species.
NASA Astrophysics Data System (ADS)
Belostochny, Grigory; Myltcina, Olga
2018-05-01
The paper deals with the main positions of strict continuum model of compositions of shells of revolution smoothly connected with each other. Solutions of singular equations of the membrane conduct thermoelasticity for different species of compositions obtained in a closed form. The ability to eliminate discontinuities of the first kind of one of the tangential force on the lines of the distortion has been proved by using the additional local force impact or temperature.
The crystal acceleration effect for cold neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braginetz, Yu. P., E-mail: aiver@pnpi.spb.ru; Berdnikov, Ya. A.; Fedorov, V. V., E-mail: vfedorov@pnpi.spb.ru
A new mechanism of neutron acceleration is discussed and studied experimentally in detail for cold neutrons passing through the accelerated perfect crystal with the energies close to the Bragg one. The effect arises due to the following reason. The crystal refraction index (neutron-crystal interaction potential) for neutron in the vicinity of the Bragg resonance sharply depends on the parameter of deviation from the exact Bragg condition, i.e. on the crystal-neutron relative velocity. Therefore the neutrons enter into accelerated crystal with one neutron-crystal interaction potential and exit with the other. Neutron kinetic energy cannot vary inside the crystal due to itsmore » homogeneity. So after passage through such a crystal neutrons will be accelerated or decelerated because of the different energy change at the entrance and exit crystal boundaries.« less
Watanabe, H; Lorusso, G; Nishimura, S; Otsuka, T; Ogawa, K; Xu, Z Y; Sumikama, T; Söderström, P-A; Doornenbal, P; Li, Z; Browne, F; Gey, G; Jung, H S; Taprogge, J; Vajta, Zs; Wu, J; Yagi, A; Baba, H; Benzoni, G; Chae, K Y; Crespi, F C L; Fukuda, N; Gernhäuser, R; Inabe, N; Isobe, T; Jungclaus, A; Kameda, D; Kim, G D; Kim, Y K; Kojouharov, I; Kondev, F G; Kubo, T; Kurz, N; Kwon, Y K; Lane, G J; Moon, C-B; Montaner-Pizá, A; Moschner, K; Naqvi, F; Niikura, M; Nishibata, H; Nishimura, D; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Sakurai, H; Schaffner, H; Simpson, G S; Steiger, K; Suzuki, H; Takeda, H; Wendt, A; Yoshinaga, K
2014-07-25
A new isomer with a half-life of 23.0(8) ms has been identified at 2406 keV in (126)Pd and is proposed to have a spin and parity of 10(+) with a maximally aligned configuration comprising two neutron holes in the 1h(11/2) orbit. In addition to an internal-decay branch through a hindered electric octupole transition, β decay from the long-lived isomer was observed to populate excited states at high spins in (126)Ag. The smaller energy difference between the 10(+) and 7(-) isomers in (126)Pd than in the heavier N=80 isotones can be interpreted as being ascribed to the monopole shift of the 1h(11/2) neutron orbit. The effects of the monopole interaction on the evolution of single-neutron energies below (132)Sn are discussed in terms of the central and tensor forces.
Production of C-14 and neutrons in red giants
NASA Technical Reports Server (NTRS)
Cowan, J. J.; Rose, W. K.
1977-01-01
We have examined the effects of mixing various amounts of hydrogen-rich material into the intershell convective region of red giants undergoing helium shell flashes. We find that significant amounts of C-14 can be produced via the N-14(n, p)C-14 reaction. If substantial portions of this intershell region are mixed out into the envelopes of red giants, then C-14 may be detectable in evolved stars. We find a neutron flux many orders of magnitude above the flux required for the classical s-process, and thus an intermediate neutron process (i-process) may operate in evolved red giants. In all cases studied we find substantial enhancements of O-17. These mixing models offer a plausible explanation of the observations of enhanced O-17 in the carbon star IRC 10216. For certain physical conditions we find significant enhancements of N-15 in the intershell region.
Isospin Symmetry Along The N=Z Line In The sd Shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Della Vedova, F.; Lenzi, S. M.; Farnea, E.
2005-04-05
Excited states have been studied in sd-shell nuclei following the 16O (70 MeV) + 24Mg (400 {mu}g/cm2) fusion-evaporation reaction. The GASP spectrometer in conjunction with the charged-particle detector ISIS and the Neutron ring allowed the detection of the {gamma}-rays in coincidence with evaporated light particles. New data on the mirror pairs A=31 and A=35 have been obtained. In particular, the comparison between the level schemes of 35Ar and 35Cl has confirmed the importance of the electromagnetic spin-orbit term, which explains the large Mirror Energy Difference values. Evidence of isospin mixing can be deduced from the E1 transitions.
CONCERNING THE PROBLEM OF THE SYSTEMATIZATION OF $beta$ SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, R.
1956-01-01
S>From data on the energy liberated during KB capture or ing BETA decay, the problem of the construction of a shell model of the nucleus is considered. It is proposed at the BETA transition is carried out by the last particle in the shell. The neutron and proton levels are considered individually. It is stated, that on the basis of the data on topes and the values of the nuclear spins. To obtain agreement with the nuclear binding energies and the data on nuclear reactions, it becomes necessary to propose that the transition of each nucleon causes a lowering ofmore » the bottom of the potentisl well of the nucleus.« less
Probing the Single-Particle Character of Rotational States in F 19 Using a Short-Lived Isomeric Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santiago-Gonzalez, D.; Auranen, K.; Avila, M. L.
2018-03-01
A beam containing a substantial component of both the J(pi) = 5(+), T-1/2 = 162 ns isomeric state of F-18 and its 1(+), 109.77-min ground state is utilized to study members of the ground-state rotational band in F-19 through the neutron transfer reaction (d,p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2(+) band-terminating state. The agreement between shell-model calculations using an interaction constructed within the sd shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.
A new LiNbO{sub 3}-type polar oxide with closed-shell cations: ZnPbO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Runze, E-mail: yu.r.aa@m.titech.ac.jp, E-mail: mazuma@msl.titech.ac.jp; Hojo, Hajime; Azuma, Masaki, E-mail: yu.r.aa@m.titech.ac.jp, E-mail: mazuma@msl.titech.ac.jp
2015-09-07
A new lithium-niobate (LiNbO{sub 3})-type polar compound, namely, ZnPbO{sub 3} (a = 5.41605(7) Å and c = 14.33151(3) Å), with closed-shell ions only was synthesized under high pressure and high temperature (8 GPa and 1273 K). A point-charge-model calculation based on atomic positions refined by Rietveld analysis of synchrotron X-ray diffraction data gave an electrical ionic polarization of 77 μC/cm{sup 2} along the hexagonal c-axis. Detailed structural analysis indicated that the contribution of Pb{sup 4+} in ZnPbO{sub 3} to the polarization was almost twice as large as that of Sn{sup 4+} in ZnSnO{sub 3}. Transport measurement showed metallic behavior of ZnPbO{sub 3} from room temperature to lowmore » temperature despite the fact that both cations are closed-shell ions.« less
Switchable Opening and Closing of a Liquid Marble via Ultrasonic Levitation.
Zang, Duyang; Li, Jun; Chen, Zhen; Zhai, Zhicong; Geng, Xingguo; Binks, Bernard P
2015-10-27
Liquid marbles have promising applications in the field of microreactors, where the opening and closing of their surfaces plays a central role. We have levitated liquid water marbles using an acoustic levitator and, thereby, achieved the manipulation of the particle shell in a controlled manner. Upon increasing the sound intensity, the stable levitated liquid marble changes from a quasi-sphere to a flattened ellipsoid. Interestingly, a cavity on the particle shell can be produced on the polar areas, which can be completely healed when decreasing the sound intensity, allowing it to serve as a microreactor. The integral of the acoustic radiation pressure on the part of the particle surface protruding into air is responsible for particle migration from the center of the liquid marble to the edge. Our results demonstrate that the opening and closing of the liquid marble particle shell can be conveniently achieved via acoustic levitation, opening up a new possibility to manipulate liquid marbles coated with non-ferromagnetic particles.
Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Yoshida, Takashi; Wanajo, Shinya; Kajino, Toshitaka; Otsuka, Takaharu
Beta-decay rates for exotic nuclei at N = 126 relevant to r-process nucleosynthesis are studied by shell-model calculations. The half-lives obtained are used to study r-process nucleosynthesis in core-collapse supernova explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to uranium.
A beachhead on the island of stability
Oganessian, Yuri Ts.; Rykaczewski, Krzysztof P.
2015-01-01
Remember learning the periodic table of elements in high school? Our chemistry teachers explained that the chemical properties of elements come from the electronic shell structure of atoms. Furthermore, our physics teachers enriched that picture of the atomic world by introducing us to isotopes and the Segrè chart of nuclides, which arranges them by proton number Z and neutron number N.
Large-scale configuration interaction description of the structure of nuclei around 100Sn and 208Pb
NASA Astrophysics Data System (ADS)
Qi, Chong
2016-08-01
In this contribution I would like to discuss briefly the recent developments of the nuclear configuration interaction shell model approach. As examples, we apply the model to calculate the structure and decay properties of low-lying states in neutron-deficient nuclei around 100Sn and 208Pb that are of great experimental and theoretical interests.
Probable alpha and 14C cluster emission from hyper Ac nuclei
NASA Astrophysics Data System (ADS)
Santhosh, K. P.
2013-10-01
A systematic study on the probability for the emission of 4He and 14C cluster from hyper {Λ/207-234}Ac and non-strange normal 207-234Ac nuclei are performed for the first time using our fission model, the Coulomb and proximity potential model (CPPM). The predicted half lives show that hyper {Λ/207-234}Ac nuclei are unstable against 4He emission and 14C emission from hyper {Λ/217-228}Ac are favorable for measurement. Our study also show that hyper {Λ/207-234}Ac are stable against hyper {Λ/4}He and {Λ/14}C emission. The role of neutron shell closure ( N = 126) in hyper {Λ/214}Fr daughter and role of proton/neutron shell closure ( Z ≈ 82, N = 126) in hyper {Λ/210}Bi daughter are also revealed. As hyper-nuclei decays to normal nuclei by mesonic/non-mesonic decay and since most of the predicted half lives for 4He and 14C emission from normal Ac nuclei are favourable for measurement, we presume that alpha and 14C cluster emission from hyper Ac nuclei can be detected in laboratory in a cascade (two-step) process.
Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers
NASA Astrophysics Data System (ADS)
Wraith, C.; Yang, X. F.; Xie, L.; Babcock, C.; Bieroń, J.; Billowes, J.; Bissell, M. L.; Blaum, K.; Cheal, B.; Filippin, L.; Garcia Ruiz, R. F.; Gins, W.; Grob, L. K.; Gaigalas, G.; Godefroid, M.; Gorges, C.; Heylen, H.; Honma, M.; Jönsson, P.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Nowacki, F.; Otsuka, T.; Papuga, J.; Sánchez, R.; Tsunoda, Y.; Yordanov, D. T.
2017-08-01
Collinear laser spectroscopy was performed on Zn (Z = 30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N = 33- 49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N = 50. Exactly one long-lived (>10 ms) isomeric state has been established in each 69-79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell-model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ = 1 /2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N = 43, while the progression towards 79Zn points to the stability of the Z = 28 and N = 50 shell gaps, supporting the magicity of 78Ni.
First-excited state g factor of Te 136 by the recoil in vacuum method
Stuchbery, A. E.; Allmond, J. M.; Danchev, M.; ...
2017-07-27
The g factor of the first 2 + state of radioactive 136Te with two valence protons and two valence neutrons beyond double-magic 132Sn has been measured by the recoil in vacuum (RIV) method. The lifetime of this state is an order of magnitude longer than the lifetimes of excited states recently measured by the RIV method in Sn and Te isotopes, requiring a new evaluation of the free-ion hyperfine interactions and methodology used to determine the g factor. In this paper, the calibration data are reported and the analysis procedures are described in detail. The resultant g factor has amore » similar magnitude to the g factors of other nuclei with an equal number of valence protons and neutrons in the major shell. However, an unexpected trend is found in the g factors of the N = 84 isotones, which decrease from 136Te to 144Nd. Finally, shell model calculations with interactions derived from the CD Bonn potential show good agreement with the g factors and E2 transition rates of 2 + states around 132Sn, confirming earlier indications that 132Sn is a good doubly magic core.« less
First-excited state g factor of Te 136 by the recoil in vacuum method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stuchbery, A. E.; Allmond, J. M.; Danchev, M.
The g factor of the first 2 + state of radioactive 136Te with two valence protons and two valence neutrons beyond double-magic 132Sn has been measured by the recoil in vacuum (RIV) method. The lifetime of this state is an order of magnitude longer than the lifetimes of excited states recently measured by the RIV method in Sn and Te isotopes, requiring a new evaluation of the free-ion hyperfine interactions and methodology used to determine the g factor. In this paper, the calibration data are reported and the analysis procedures are described in detail. The resultant g factor has amore » similar magnitude to the g factors of other nuclei with an equal number of valence protons and neutrons in the major shell. However, an unexpected trend is found in the g factors of the N = 84 isotones, which decrease from 136Te to 144Nd. Finally, shell model calculations with interactions derived from the CD Bonn potential show good agreement with the g factors and E2 transition rates of 2 + states around 132Sn, confirming earlier indications that 132Sn is a good doubly magic core.« less
Progress Toward Ignition on the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffman, R L
2011-10-17
The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays formore » symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimization. The experimental Ignition Threshold Factor (ITFX) is a measure of the progress toward ignition. ITFX is analogous to the Lawson Criterion in Magnetic Fusion. Implosions have improved by over a factor of 50 since the first cryogenic layered experiments were done in September 2010. This increase is a measure of the progress made toward the ignition goal in the past year. Optimization experiments are planned in the coming year for continued improvement in implosion performance to achieve the ignition goal. In summary, NIF has made significant progress toward ignition in the 30 months since project completion. Diagnostics and all of the supporting equipment are in place for ignition experiments. The Ignition Campaign is under way as a national collaborative effort of all the National Nuclear Security Administration (NNSA) science laboratories as well as international partners.« less
Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle
NASA Astrophysics Data System (ADS)
Shishodia, Manmohan Singh; Juneja, Soniya
2016-05-01
Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. The theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.
Self-Assembled Layering of Magnetic Nanoparticles in a Ferrofluid on Silicon Surfaces.
Theis-Bröhl, Katharina; Vreeland, Erika C; Gomez, Andrew; Huber, Dale L; Saini, Apurve; Wolff, Max; Maranville, Brian B; Brok, Erik; Krycka, Kathryn L; Dura, Joseph A; Borchers, Julie A
2018-02-07
This article describes the three-dimensional self-assembly of monodisperse colloidal magnetite nanoparticles (NPs) from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure on the applied field. The NPs assemble into close-packed layers on the surface followed by more loosely packed ones. The magnetic field-dependent magnetization of the individual NP layers depends on both the rotational freedom of the layer and the magnetization of the adjacent layers. For layers in which the NPs are more free to rotate, the easy axis of the NP can readily orient along the field direction. In more dense packing, free rotation of the NPs is hampered, and the NP ensembles likely build up quasi-domain states to minimize energy, which leads to lower magnetization in those layers. Detailed analysis of polarized neutron reflectometry data together with model calculations of the arrangement of the NPs within the layers and input from small-angle scattering measurements provide full characterization of the core/shell NP dimensions, degree of chaining, arrangement of the NPs within the different layers, and magnetization depth profile.
NASA Astrophysics Data System (ADS)
Möller, Peter; Pfeiffer, Bernd; Kratz, Karl-Ludwig
2003-05-01
Recent compilations of experimental gross β-decay properties, i.e., half-lives (T1/2) and neutron-emission probabilities (Pn), are compared to improved global macroscopic-microscopic model predictions. The model combines calculations within the quasiparticle (QP) random-phase approximation for the Gamow-Teller (GT) part with an empirical spreading of the QP strength and the gross theory for the first-forbidden part of β- decay. Nuclear masses are either taken from the 1995 data compilation of Audi et al., when available, otherwise from the finite-range droplet model. Especially for spherical and neutron-(sub-)magic isotopes a considerable improvement compared to our earlier predictions for pure GT decay (ADNDT, 1997) is observed. T1/2 and Pn values up to the neutron drip line have been used in r-process calculations within the classical “waiting-point” approximation. With the new nuclear-physics input, a considerable speeding-up of the r-matter flow is observed, in particular at those r-abundance peaks which are related to magic neutron-shell closures.
Buchanan, Piers; Soper, Alan K; Thompson, Helen; Westacott, Robin E; Creek, Jefferson L; Hobson, Greg; Koh, Carolyn A
2005-10-22
Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.
Reanalysis of tritium production in a sphere of /sup 6/LiD irradiated by 14-MeV neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawcett, L.R. Jr.
1985-08-01
Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD irradiated by a central source of 14-MeV neutrons has been reanalyzed. The /sup 6/LiD sphere consisted of 10 solid hemispherical nested shells with ampules of /sup 6/LiH, /sup 7/LiH, and activation foils located 2.2, 5, 7.7, 12.6, 20, and 30 cm from the center. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport through the /sup 6/LiD, tritium production in the ampules, and foil activation. The MCNP input model was three-dimensional and employed ENDF/B-V cross sections for transport, tritiummore » production, and (where available) foil activation. The reanalyzed experimentally observed-to-calculated values of tritium production were 1.053 +- 2.1% in /sup 6/LiH and 0.999 +- 2.1% in /sup 7/LiH. The recalculated foil activation observed-to-calculated ratios were not generally improved over those reported in the original analysis.« less
MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package
Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...
2015-11-28
MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less
Strain distribution of confined Ge/GeO2 core/shell nanoparticles engineered by growth environments
NASA Astrophysics Data System (ADS)
Wei, Wenyan; Yuan, Cailei; Luo, Xingfang; Yu, Ting; Wang, Gongping
2016-02-01
The strain distributions of Ge/GeO2 core/shell nanoparticles confined in different host matrix grown by surface oxidation are investigated. The simulated results by finite element method demonstrated that the strains of the Ge core and the GeO2 shell strongly depend on the growth environments of the nanoparticles. Moreover, it can be found that there is a transformation of the strain on Ge core from tensile to compressive strain during the growth of Ge/GeO2 core/shell nanoparticles. And, the transformation of the strain is closely related with the Young's modulus of surrounding materials of Ge/GeO2 core/shell nanoparticles.
Design of cemented tungsten carbide and boride-containing shields for a fusion power plant
NASA Astrophysics Data System (ADS)
Windsor, C. G.; Marshall, J. M.; Morgan, J. G.; Fair, J.; Smith, G. D. W.; Rajczyk-Wryk, A.; Tarragó, J. M.
2018-07-01
Results are reported on cemented tungsten carbide (cWC) and boride-containing composite materials for the task of shielding the centre column of a superconducting tokamak power plant. The shield is based on five concentric annular shells consisting of cWC and water layers of which the innermost cWC shield can be replaced with boride composites. Sample materials have been fabricated changing the parameters of porosity P, binder alloy fraction f binder and boron weight fraction f boron. For the fabricated materials, and other hypothetical samples with chosen parameters, Monte Carlo studies are made of: (i) the power deposition into the superconducting core, (ii) the fast neutron and gamma fluxes and (iii) the attenuation coefficients through the shield for the deposited power and neutron and gamma fluxes. It is shown that conventional Co-based cWC binder alloy can be replaced with a Fe–Cr alloy (92 wt.% Fe, 8 wt.% Cr), which has lower activation than cobalt with minor changes in shield performance. Boride-based composite materials have been prepared and shown to give a significant reduction in power deposition and flux, when placed close to the superconducting core. A typical shield of cemented tungsten carbide with 10 wt.% of Fe–8Cr binder and 0.1% porosity has a power reduction half-length of 0.06 m. It is shown that the power deposition increases by 4.3% for every 1% additional porosity, and 1.7% for every 1 wt.% additional binder. Power deposition decreased by 26% for an initial 1 wt.% boron addition, but further increases in f boron showed only a marginal decrease. The dependences of power deposited in the core, the maximum neutron and gamma fluxes on the core surface, and the half attenuation distances through the shield have been fitted to within a fractional percentage error by analytic functions of the porosity, metallic binder alloy and boron weight fractions.
Recent advances in laser-driven neutron sources
NASA Astrophysics Data System (ADS)
Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.
2016-11-01
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.
Constraining neutron guide optimizations with phase-space considerations
NASA Astrophysics Data System (ADS)
Bertelsen, Mads; Lefmann, Kim
2016-09-01
We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.
Vertical Electron Detachment Energies for Octahedral Closed-Shell Multiply Charged Anions
1994-04-22
however, at low theoretical levels, motivating us to extend the investigations to: a) higher levels of theory, b) analogous closed-shell singly- and...hundredths of an eV. This further supports our choice of SBKJ+diff as the basis set for the production runs. The SCF relaxation energies for F- and Cl...intensities for the product molecules ML 5(’)" (D3h) and ML 4 (n-2 )" 15 (Td) were determined at the SCF/SBKJ level and are reported in Table V
Dass, Amala
2009-08-26
The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).
Nuclear Reactions in the Crusts of Accreting Neutron Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Rita; Beard, Mary; Gupta, Sanjib S.
X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density ismore » $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$ using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. As a result, this work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.« less
Nuclear Reactions in the Crusts of Accreting Neutron Stars
Lau, Rita; Beard, Mary; Gupta, Sanjib S.; ...
2018-05-24
X-ray observations of transiently accreting neutron stars during quiescence provide information about the structure of neutron star crusts and the properties of dense matter. Interpretation of the observational data requires an understanding of the nuclear reactions that heat and cool the crust during accretion and define its nonequilibrium composition. We identify here in detail the typical nuclear reaction sequences down to a depth in the inner crust where the mass density ismore » $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$ using a full nuclear reaction network for a range of initial compositions. The reaction sequences differ substantially from previous work. We find a robust reduction of crust impurity at the transition to the inner crust regardless of initial composition, though shell effects can delay the formation of a pure crust somewhat to densities beyond $$\\rho =2\\times {10}^{12}\\,{\\rm{g}}\\,{\\mathrm{cm}}^{-3}$$. This naturally explains the small inner crust impurity inferred from observations of a broad range of systems. The exception are initial compositions with A ≥ 102 nuclei, where the inner crust remains impure with an impurity parameter of Q imp ≈ 20 owing to the N = 82 shell closure. In agreement with previous work, we find that nuclear heating is relatively robust and independent of initial composition, while cooling via nuclear Urca cycles in the outer crust depends strongly on initial composition. As a result, this work forms a basis for future studies of the sensitivity of crust models to nuclear physics and provides profiles of composition for realistic crust models.« less
NASA Astrophysics Data System (ADS)
Febbraro, M.; Becchetti, F. D.; Torres-Isea, R. O.; Riggins, J.; Lawrence, C. C.; Kolata, J. J.; Howard, A. M.
2017-08-01
The (d ,n ) reaction has been studied with targets of 9Be, 11B, 13C, N,1514, and 19F at Ed=16 MeV using a deuterated liquid-scintillator array. Advanced spectral unfolding techniques with accurately measured scintillator response functions were employed to extract neutron energy spectra without the need for long-path neutron time-of-flight. An analysis of the proton-transfer data at forward angles to the ground states of the final nuclei, using finite-range distorted-wave Born approximation analysis with common bound-state, global, and local optical-model parameter sets, yields a set of self-consistent spectroscopic factors. These are compared with the results of several previous time-of-flight measurements, most done many years ago for individual nuclei at lower energy and often analyzed using zero-range transfer codes. In contrast to some of the earlier published data, our data generally compare well with simple shell-model predictions, with little evidence for uniform quenching (reduction from shell-model values) that has previously been reported from analysis of nucleon knock-out reactions. Data for low-lying excited states in 14N from 13C(d ,n ) also is analyzed and spectroscopic information relevant to nuclear astrophysics obtained. A preliminary study of the radioactive ion beam induced reaction 7Be(d ,n ) , E (7Be)=30 MeV was carried out and indicates further improvements are needed for such measurements, which require detection of neutrons with En<2 MeV .
NASA Astrophysics Data System (ADS)
Hardacre, Christopher; Holbrey, John D.; Mullan, Claire L.; Youngs, Tristan G. A.; Bowron, Daniel T.
2010-08-01
The presence of local anisotropy in the bulk, isotropic, and ionic liquid phases—leading to local mesoscopic inhomogeneity—with nanoscale segregation and expanding nonpolar domains on increasing the length of the cation alkyl-substituents has been proposed on the basis of molecular dynamics (MD) simulations. However, there has been little conclusive experimental evidence for the existence of intermediate mesoscopic structure between the first/second shell correlations shown by neutron scattering on short chain length based materials and the mesophase structure of the long chain length ionic liquid crystals. Herein, small angle neutron scattering measurements have been performed on selectively H/D-isotopically substituted 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with butyl, hexyl, and octyl substituents. The data show the unambiguous existence of a diffraction peak in the low-Q region for all three liquids which moves to longer distances (lower Q), sharpens, and increases in intensity with increasing length of the alkyl substituent. It is notable, however, that this peak occurs at lower values of Q (longer length scale) than predicted in any of the previously published MD simulations of ionic liquids, and that the magnitude of the scattering from this peak is comparable with that from the remainder of the amorphous ionic liquid. This strongly suggests that the peak arises from the second coordination shells of the ions along the vector of alkyl-chain substituents as a consequence of increasing the anisotropy of the cation, and that there is little or no long-range correlated nanostructure in these ionic liquids.
Packed rod neutron shield for fast nuclear reactors
Eck, John E.; Kasberg, Alvin H.
1978-01-01
A fast neutron nuclear reactor including a core and a plurality of vertically oriented neutron shield assemblies surrounding the core. Each assembly includes closely packed cylindrical rods within a polygonal metallic duct. The shield assemblies are less susceptible to thermal stresses and are less massive than solid shield assemblies, and are cooled by liquid coolant flow through interstices among the rods and duct.
Preliminary Analysis of the Multisphere Neutron Spectrometer
NASA Technical Reports Server (NTRS)
Goldhagen, P.; Kniss, T.; Wilson, J. W.; Singleterry, R. C.; Jones, I. W.; VanSteveninck, W.
2003-01-01
Crews working on present-day jet aircraft are a large occupationally exposed group with a relatively high average effective dose from galactic cosmic radiation. Crews of future high-speed commercial aircraft flying at higher altitudes would be even more exposed. To help reduce the significant uncertainties in calculations of such exposures, the Atmospheric Ionizing Radiation (AIR) Project, an international collaboration of 15 laboratories, made simultaneous radiation measurements with 14 instruments on five flights of a NASA ER-2 high-altitude aircraft. The primary AIR instrument was a highly sensitive extended-energy multisphere neutron spectrometer with lead and steel shells placed within the moderators of two of its 14 detectors to enhance response at high energies. Detector responses were calculated for neutrons and charged hadrons at energies up to 100 GeV using MCNPX. Neutron spectra were unfolded from the measured count rates using the new MAXED code. We have measured the cosmic-ray neutron spectrum (thermal to greater than 10 GeV), total neutron fluence rate, and neutron effective dose and dose equivalent rates and their dependence on altitude and geomagnetic cutoff. The measured cosmic-ray neutron spectra have almost no thermal neutrons, a large "evaporation" peak near 1 MeV and a second broad peak near 100 MeV which contributes about 69% of the neutron effective dose. At high altitude, geomagnetic latitude has very little effect on the shape of the spectrum, but it is the dominant variable affecting neutron fluence rate, which was 8 times higher at the northernmost measurement location than it was at the southernmost. The shape of the spectrum varied only slightly with altitude from 21 km down to 12 km (56 - 201 grams per square centimeter atmospheric depth), but was significantly different on the ground. In all cases, ambient dose equivalent was greater than effective dose for cosmic-ray neutrons.
New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars
NASA Astrophysics Data System (ADS)
Kumar, Bharat; Patra, S. K.; Agrawal, B. K.
2018-04-01
We carry out the study of finite nuclei, infinite nuclear matter, and neutron star properties with the newly developed relativistic force, the Institute of Physics Bhubaneswar-I (IOPB-I). Using this force, we calculate the binding energies, charge radii, and neutron-skin thickness for some selected nuclei. From the ground-state properties of superheavy nuclei (Z =120 ), it is noticed that considerable shell gaps appear at neutron numbers N =172 , 184, and 198, manifesting the magicity at these numbers. The low-density behavior of the equation of state for pure neutron matter is compatible with other microscopic models. Along with the nuclear symmetry energy, its slope and curvature parameters at the saturation density are consistent with those extracted from various experimental data. We calculate the neutron star properties with the equation of state composed of nucleons and leptons in β -equilibrium, which are in good agreement with the x-ray observations by Steiner [Astrophys. J. 722, 33 (2010), 10.1088/0004-637X/722/1/33] and Nättilä [Astron. Astrophys. 591, A25 (2016), 10.1051/0004-6361/201527416]. Based on the recent observation of GW170817 with a quasi-universal relation, Rezzolla et al. [Astrophys. J. Lett. 852, L25 (2018), 10.3847/2041-8213/aaa401] have set a limit for the maximum mass that can be supported against gravity by a nonrotating neutron star in the range 2.01 ±0.04 ≲M (M⊙)≲2.16 ±0.03 . We find that the maximum mass of the neutron star for the IOPB-I parametrization is 2.15 M⊙ . The radius and tidal deformability of a canonical neutron star of mass 1.4 M⊙ are 13.2 km and 3.9 ×1036g cm2s2 , respectively.
White dwarf models for type 1 supernovae and quiet supernovae, and presupernova evolution
NASA Technical Reports Server (NTRS)
Nomoto, K.
1980-01-01
Supernova mechanisms in accreting white dwarfs are considered with emphasis on deflagration as a plausible mechanism for producing Type I supernovae and electron captures to form quiet supernovae leaving neutron stars. These outcomes depend on accretion rate of helium, initial mass and composition of the white dwarf. The various types of hydrogen shell burning in the presupernova stage are also discussed.
Statistical mechanics of shell models for two-dimensional turbulence
NASA Astrophysics Data System (ADS)
Aurell, E.; Boffetta, G.; Crisanti, A.; Frick, P.; Paladin, G.; Vulpiani, A.
1994-12-01
We study shell models that conserve the analogs of energy and enstrophy and hence are designed to mimic fluid turbulence in two-dimensions (2D). The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager [Nuovo Cimento Suppl. 6, 279 (1949)], Hopf [J. Rat. Mech. Anal. 1, 87 (1952)], and Lee [Q. Appl. Math. 10, 69 (1952)]. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. This is clear evidence that the simplest shell models are not adequate to reproduce the main features of two-dimensional turbulence. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy and from one branch of the formal statistical equilibrium coincide in these shell models in contrast to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence has previously led to the mistaken conclusion that shell models exhibit a forward cascade of enstrophy. We also study the dynamical properties of the models and the growth of perturbations.
In-medium similarity renormalization group for closed and open-shell nuclei
NASA Astrophysics Data System (ADS)
Hergert, H.
2017-02-01
We present a pedagogical introduction to the in-medium similarity renormalization group (IMSRG) framework for ab initio calculations of nuclei. The IMSRG performs continuous unitary transformations of the nuclear many-body Hamiltonian in second-quantized form, which can be implemented with polynomial computational effort. Through suitably chosen generators, it is possible to extract eigenvalues of the Hamiltonian in a given nucleus, or drive the Hamiltonian matrix in configuration space to specific structures, e.g., band- or block-diagonal form. Exploiting this flexibility, we describe two complementary approaches for the description of closed- and open-shell nuclei: the first is the multireference IMSRG (MR-IMSRG), which is designed for the efficient calculation of nuclear ground-state properties. The second is the derivation of non-empirical valence-space interactions that can be used as input for nuclear shell model (i.e., configuration interaction (CI)) calculations. This IMSRG+shell model approach provides immediate access to excitation spectra, transitions, etc, but is limited in applicability by the factorial cost of the CI calculations. We review applications of the MR-IMSRG and IMSRG+shell model approaches to the calculation of ground-state properties for the oxygen, calcium, and nickel isotopic chains or the spectroscopy of nuclei in the lower sd shell, respectively, and present selected new results, e.g., for the ground- and excited state properties of neon isotopes.
Haines, Brian Michael; Grim, Gary P.; Fincke, James R.; ...
2016-07-29
Here, we present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employmore » any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, Brian M., E-mail: bmhaines@lanl.gov; Fincke, James R.; Shah, Rahul C.
We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ anymore » adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haines, Brian Michael; Grim, Gary P.; Fincke, James R.
Here, we present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a “CD Mixcap,” is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employmore » any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.« less
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Grim, Gary P.; Fincke, James R.; Shah, Rahul C.; Forrest, Chad J.; Silverstein, Kevin; Marshall, Frederic J.; Boswell, Melissa; Fowler, Malcolm M.; Gore, Robert A.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Klein, Andreas; Rundberg, Robert S.; Steinkamp, Michael J.; Wilhelmy, Jerry B.
2016-07-01
We present results from the comparison of high-resolution three-dimensional (3D) simulations with data from the implosions of inertial confinement fusion capsules with separated reactants performed on the OMEGA laser facility. Each capsule, referred to as a "CD Mixcap," is filled with tritium and has a polystyrene (CH) shell with a deuterated polystyrene (CD) layer whose burial depth is varied. In these implosions, fusion reactions between deuterium and tritium ions can occur only in the presence of atomic mix between the gas fill and shell material. The simulations feature accurate models for all known experimental asymmetries and do not employ any adjustable parameters to improve agreement with experimental data. Simulations are performed with the RAGE radiation-hydrodynamics code using an Implicit Large Eddy Simulation (ILES) strategy for the hydrodynamics. We obtain good agreement with the experimental data, including the DT/TT neutron yield ratios used to diagnose mix, for all burial depths of the deuterated shell layer. Additionally, simulations demonstrate good agreement with converged simulations employing explicit models for plasma diffusion and viscosity, suggesting that the implicit sub-grid model used in ILES is sufficient to model these processes in these experiments. In our simulations, mixing is driven by short-wavelength asymmetries and longer-wavelength features are responsible for developing flows that transport mixed material towards the center of the hot spot. Mix material transported by this process is responsible for most of the mix (DT) yield even for the capsule with a CD layer adjacent to the tritium fuel. Consistent with our previous results, mix does not play a significant role in TT neutron yield degradation; instead, this is dominated by the displacement of fuel from the center of the implosion due to the development of turbulent instabilities seeded by long-wavelength asymmetries. Through these processes, the long-wavelength asymmetries degrade TT yield more than the DT yield and thus bring DT/TT neutron yield ratios into agreement with experiment. Finally, we present a detailed comparison of the flows in 2D and 3D simulations.
Expanding relativistic shells and gamma-ray burst temporal structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fenimore, E.E.; Madras, C.D.; Nayakshin, S.
1996-12-01
Many models of gamma-ray bursts (GRBs) involve a shell expanding at extreme relativistic speeds. The shell of material expands in a photon-quiet phase for a period {ital t}{sub 0} and then becomes gamma-ray active, perhaps due to inhomogeneities in the interstellar medium or the generation of shocks. Based on kinematics, we relate the envelope of the emission of the event to the characteristics of the photon-quiet and photon-active phases. We initially assume local spherical symmetry wherein, on average, the same conditions prevail over the shell`s surface within angles the order of {Gamma}{sup {minus}1}, where {Gamma} is the Lorentz factor formore » the bulk motion. The contribution of the curvature to the temporal structure is comparable to the contribution from the overall expansion. As a result, GRB time histories from a shell should have an envelope similar to {open_quotes}FRED{close_quotes} (fast rise, exponential decay) events in which the rise time is related to the duration of the photon-active phase and the fall time is related to the duration of the photon-quiet phase. This result depends only on local spherical symmetry and, since most GRBs do not have such envelopes, we introduce the {open_quotes}shell symmetry{close_quotes} problem: the observed time history envelopes of most GRBs do not agree with that expected for a relativistic expanding shell. Although FREDs have the signature of a relativistic shell, they may not be due to a single shell, as required by some cosmological models. Some FREDs have precursors in which the peaks are separated by more than the expansion time required to explain FRED shape. Such a burst is most likely explained by a central engine; that is, the separation of the multiple peaks occurs because the central site produced multiple releases of energy on timescales comparable to the duration of the event. (Abstract Truncated)« less
QPO Constraints on Neutron Stars
NASA Technical Reports Server (NTRS)
Miller, M. Coleman
2005-01-01
The kilohertz frequencies of QPOs from accreting neutron star systems imply that they are generated in regions of strong gravity, close to the star. This suggests that observations of the QPOs can be used to constrain the properties of neutron stars themselves, and in particular to inform us about the properties of cold matter beyond nuclear densities. Here we discuss some relatively model-insensitive constraints that emerge from the kilohertz QPOs, as well as recent developments that may hint at phenomena related to unstable circular orbits outside neutron stars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Bao-An; Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing 100875; Di, Yao-Min
2007-01-15
The systematics of g factor of the first excited 2{sup +} state vs neutron number N is studied by the projected shell model. The study covers the even-even nuclei of all isotopic chains from Gd to Pt. g factors are calculated by using the many-body wave functions that well reproduce the energy levels and B(E2)s of the ground-state bands. For Gd to W isotopes the characteristic feature of the g factor data along an isotopic chain is described by the present model. Deficiency of the model in the g factor description for the heavier Os and Pt isotopes is discussed.
Probing the Single-Particle Character of Rotational States in
NASA Astrophysics Data System (ADS)
Santiago-Gonzalez, D.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Carpenter, M. P.; Chen, J.; Deibel, C. M.; Hood, A. A.; Hoffman, C. R.; Janssens, R. V. F.; Jiang, C. L.; Kay, B. P.; Kuvin, S. A.; Lauer, A.; Schiffer, J. P.; Sethi, J.; Talwar, R.; Wiedenhöver, I.; Winkelbauer, J.; Zhu, S.
2018-03-01
A beam containing a substantial component of both the Jπ=5+ , T1 /2=162 ns isomeric state of
Neutron Particle Effects on a Quad-Redundant Flight Control Computer
NASA Technical Reports Server (NTRS)
Eure, Kenneth; Belcastro, Celeste M.; Gray, W Steven; Gonzalex, Oscar
2003-01-01
This paper describes a single-event upset experiment performed at the Los Alamos National Laboratory. A closed-loop control system consisting of a Quad-Redundant Flight Control Computer (FCC) and a B737 simulator was operated while the FCC was exposed to a neutron beam. The purpose of this test was to analyze the effects of neutron bombardment on avionics control systems operating at altitudes where neutron strikes are probable. The neutron energy spectrum produced at the Los Alamos National Laboratory is similar in shape to the spectrum of atmospheric neutrons but much more intense. The higher intensity results in accelerated life tests that are representative of the actual neutron radiation that a FCC may receive over a period of years.
1p3/2 proton-hole state in 132Sn and the shell structure along N = 82.
Taprogge, J; Jungclaus, A; Grawe, H; Nishimura, S; Doornenbal, P; Lorusso, G; Simpson, G S; Söderström, P-A; Sumikama, T; Xu, Z Y; Baba, H; Browne, F; Fukuda, N; Gernhäuser, R; Gey, G; Inabe, N; Isobe, T; Jung, H S; Kameda, D; Kim, G D; Kim, Y-K; Kojouharov, I; Kubo, T; Kurz, N; Kwon, Y K; Li, Z; Sakurai, H; Schaffner, H; Steiger, K; Suzuki, H; Takeda, H; Vajta, Zs; Watanabe, H; Wu, J; Yagi, A; Yoshinaga, K; Benzoni, G; Bönig, S; Chae, K Y; Coraggio, L; Covello, A; Daugas, J-M; Drouet, F; Gadea, A; Gargano, A; Ilieva, S; Kondev, F G; Kröll, T; Lane, G J; Montaner-Pizá, A; Moschner, K; Mücher, D; Naqvi, F; Niikura, M; Nishibata, H; Odahara, A; Orlandi, R; Patel, Z; Podolyák, Zs; Wendt, A
2014-04-04
A low-lying state in 131In82, the one-proton hole nucleus with respect to double magic 132Sn, was observed by its γ decay to the Iπ=1/2- β-emitting isomer. We identify the new state at an excitation energy of Ex=1353 keV, which was populated both in the β decay of 131Cd83 and after β-delayed neutron emission from 132Cd84, as the previously unknown πp3/2 single-hole state with respect to the 132Sn core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N=82 isotones below 132Sn. The results evidence a surprising absence of proton subshell closures along the chain of N=82 isotones. The consequences of this finding for the evolution of the N=82 shell gap along the r-process path are discussed.
NASA Astrophysics Data System (ADS)
Das, Avik; Sen, D.; Mazumder, S.; Ghosh, A. K.
2017-05-01
A novel nano-composite spherical micro-granule has been synthesized using a facile technique of solvent evaporation induced assembly of nanoparticles for potential application in water filtration. The spherical micro-granule is comprised of nano-structured shell of hydrophilic silica encapsulating a hydrophobic mesoporous carbon at the core. Hierarchical structure of such core-shell micro-granules has been rigorously characterized using small-angle neutron and X-ray scattering techniques and complemented with scanning electron microscopy. The hydrophilic silica envelope around the carbon core helps in incorporation of such granules into the hydrophilic polymeric ultra-filtration membrane. The interstitial micro-pores present in the silica shell can serve as water transport channels and the mesoporus carbon core enhances the separation performance due its well adsorption characteristics. It has been found that the incorporation of such granules inside the ultra-filtration membrane indeed enhances the water permeability as well as the separation performance in a significant way.
Positron Radiography of Ignition-Relevant ICF Capsules
NASA Astrophysics Data System (ADS)
Williams, Jackson; Chen, Hui; Field, John; Landen, Nino; Strozzi, David
2017-10-01
X-ray and neutron radiography are currently used to infer residual ICF shell and fuel asymmetries and areal density non-uniformities near and at peak compression that can impede ignition. Charged particles offer an alternative probe source that, in principle, are capable of radiographing the shell shape and areal density at arbitrary times, even in the presence of large x-ray self-emission. Laser-generated positrons are evaluated as a source to radiograph ICF capsules where current ultraintense laser facilities are capable of producing 2 ×1012 relativistic positrons in a narrow energy bandwidth and short duration. Monte Carlo simulations suggest that both the areal density and shell radius can be reconstructed for ignition-relevant capsules conditions between 0.002-2 g/cm2, and that this technique might be better suited to direct-drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD Program under project tracking code 17-ERD-010.
NASA Astrophysics Data System (ADS)
Chatterjee, Sourav; Karam, Tony; Rosu, Cornelia; Li, Xin; Do, Changwoo; Youm, Sang Gil; Haber, Louis; Russo, Paul; Nesterov, Evgueni
Controlled Kumada catalyst-transfer polymerization occurring by chain-growth mechanism was developed for the synthesis of conjugated polymers and block copolymers from the surface of inorganic substrates such as silica nanoparticles. Although synthesis of conjugated polymers via Kumada polymerization became an established method for solution polymerization, carrying out the same reaction in heterogeneous conditions to form monodisperse polymer chains still remains a challenge. We developed and described a simple and efficient approach to the preparation of surface-immobilized layer of catalytic Ni(II) initiator, and demonstrated using it to prepare polymers and block copolymers on silica nanoparticle. The structure of the resulting hybrid nanostructures was thoroughly studied using small-angle neutron and X-ray scattering, thermal analysis, and optical spectroscopy. The photoexcitation energy transfer processes in the conjugated polymer shell were studied via steady-state and time resolved transient absorption spectroscopy. This study uncovered important details of the energy transfer, which will be discussed in this presentation.
A passively-safe fusion reactor blanket with helium coolant and steel structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crosswait, Kenneth Mitchell
1994-04-01
Helium is attractive for use as a fusion blanket coolant for a number of reasons. It is neutronically and chemically inert, nonmagnetic, and will not change phase during any off-normal or accident condition. A significant disadvantage of helium, however, is its low density and volumetric heat capacity. This disadvantage manifests itself most clearly during undercooling accident conditions such as a loss of coolant accident (LOCA) or a loss of flow accident (LOFA). This thesis describes a new helium-cooled tritium breeding blanket concept which performs significantly better during such accidents than current designs. The proposed blanket uses reduced-activation ferritic steel asmore » a structural material and is designed for neutron wall loads exceeding 4 MW/m{sup 2}. The proposed geometry is based on the nested-shell concept developed by Wong, but some novel features are used to reduce the severity of the first wall temperature excursion. These features include the following: (1) A ``beryllium-joint`` concept is introduced, which allows solid beryllium slabs to be used as a thermal conduction path from the first wall to the cooler portions of the blanket. The joint concept allows for significant swelling of the beryllium (10 percent or more) without developing large stresses in the blanket structure. (2) Natural circulation of the coolant in the water-cooled shield is used to maintain shield temperatures below 100 degrees C, thus maintaining a heat sink close to the blanket during the accident. This ensures the long-term passive safety of the blanket.« less
Response of six neutron survey meters in mixed fields of fast and thermal neutrons.
Kim, S I; Kim, B H; Chang, I; Lee, J I; Kim, J L; Pradhan, A S
2013-10-01
Calibration neutron fields have been developed at KAERI (Korea Atomic Energy Research Institute) to study the responses of commonly used neutron survey meters in the presence of fast neutrons of energy around 10 MeV. The neutron fields were produced by using neutrons from the (241)Am-Be sources held in a graphite pile and a DT neutron generator. The spectral details and the ambient dose equivalent rates of the calibration fields were established, and the responses of six neutron survey meters were evaluated. Four single-moderator-based survey meters exhibited an under-responses ranging from ∼9 to 55 %. DINEUTRUN, commonly used in fields around nuclear reactors, exhibited an over-response by a factor of three in the thermal neutron field and an under-response of ∼85 % in the mixed fields. REM-500 (tissue-equivalent proportional counter) exhibited a response close to 1.0 in the fast neutron fields and an under-response of ∼50 % in the thermal neutron field.
Sound Transmission through Two Concentric Cylindrical Sandwich Shells
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.
1996-01-01
This paper solves the problem of sound transmission through a system of two infinite concentric cylindrical sandwich shells. The shells are surrounded by external and internal fluid media and there is fluid (air) in the annular space between them. An oblique plane sound wave is incident upon the surface of the outer shell. A uniform flow is moving with a constant velocity in the external fluid medium. Classical thin shell theory is applied to the inner shell and first-order shear deformation theory is applied to the outer shell. A closed form for transmission loss is derived based on modal analysis. Investigations have been made for the impedance of both shells and the transmission loss through the shells from the exterior into the interior. Results are compared for double sandwich shells and single sandwich shells. This study shows that: (1) the impedance of the inner shell is much smaller than that of the outer shell so that the transmission loss is almost the same in both the annular space and the interior cavity of the shells; (2) the two concentric sandwich shells can produce an appreciable increase of transmission loss over single sandwich shells especially in the high frequency range; and (3) design guidelines may be derived with respect to the noise reduction requirement and the pressure in the annular space at a mid-frequency range.
Observation of new neutron-rich Mn, Fe, Co, Ni, and Cu isotopes in the vicinity of 78Ni
NASA Astrophysics Data System (ADS)
Sumikama, T.; Nishimura, S.; Baba, H.; Browne, F.; Doornenbal, P.; Fukuda, N.; Franchoo, S.; Gey, G.; Inabe, N.; Isobe, T.; John, P. R.; Jung, H. S.; Kameda, D.; Kubo, T.; Li, Z.; Lorusso, G.; Matea, I.; Matsui, K.; Morfouace, P.; Mengoni, D.; Napoli, D. R.; Niikura, M.; Nishibata, H.; Odahara, A.; Sahin, E.; Sakurai, H.; Söderström, P.-A.; Stefan, G. I.; Suzuki, D.; Suzuki, H.; Takeda, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Watanabe, H.; Werner, V.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yoshinaga, K.
2017-05-01
Neutron-rich nuclei in the vicinity of 78Ni were produced using a 238U beam at the RIKEN Radioactive Isotope Beam Factory. The particle-identification plot for the in-flight fission fragments highlights the first observation of eight new isotopes: 73Mn, 76Fe, Co,7877, 80,81,82Ni, and 83Cu. Although the β -decay half-lives of 77Co and 80Ni were recently reported by Xu et al. [Phys. Rev. Lett. 113, 032505 (2014)], 10.1103/PhysRevLett.113.032505 using data from the same experiment, the current work provides the first direct, quantitative evidence for the existence of these isotopes. The experimental production cross sections are reproduced in a satisfactory manner by theoretical predictions. An odd-even staggering of the cross sections was observed, and the effect appears to become more pronounced for the most exotic nuclei that were investigated. The staggering effect was interpreted as an increase of the neutron-evaporation probability for odd-N isotopes, owing to the decrease of the neutron-separation energy, Sn. The predicted cross section for 80Ni is significantly overestimated, which may be related to a weak binding of the neutron pair above the N =50 shell closure.
A relativistic neutron fireball from a supernova explosion as a possible source of chiral influence.
Gusev, G A; Saito, T; Tsarev, V A; Uryson, A V
2007-06-01
We elaborate on a previously proposed idea that polarized electrons produced from neutrons, released in a supernova (SN) explosion, can cause chiral dissymmetry of molecules in interstellar gas-dust clouds. A specific physical mechanism of a relativistic neutron fireball with Lorentz factor of the order of 100 is assumed for propelling a great number of free neutrons outside the dense SN shell. A relativistic chiral electron-proton plasma, produced from neutron decays, is slowed down owing to collective effects in the interstellar plasma. As collective effects do not involve the particle spin, the electrons can carry their helicities to the cloud. The estimates show high chiral efficiency of such electrons. In addition to this mechanism, production of circularly polarized ultraviolet photons through polarized-electron bremsstrahlung at an early stage of the fireball evolution is considered. It is shown that these photons can escape from the fireball plasma. However, for an average density of neutrals in the interstellar medium of the order of 0.2 cm(-3) and at distances of the order of 10 pc from the SN, these photons will be absorbed with a factor of about 10(-7) due to the photoeffect. In this case, their chiral efficiency will be about five orders of magnitude less than that for polarized electrons.
NASA Astrophysics Data System (ADS)
Bewicz, Anna; Musiał, Monika; Kucharski, Stanisław A.
2017-11-01
The equation-of-motion coupled-cluster method for electron affinity calculations has been used to study potential energy curves (PECs) for the Na+2 molecular ion. Although the studied molecule represents the open shell system the applied approach employs the closed shell Na+ 22 ion as the reference. In addition the Na+ 22 system dissociates into the closed shell fragments; hence, the restricted Hartree-Fock scheme can be used within the whole range of interatomic distances, from 2 to 45 Å. We used large basis set engaging 268 basis functions with all 21 electrons correlated. The relativistic effects are included via second-order Douglas-Kroll method. The computed PECs, spectroscopic molecular constants and vibrational energy levels agree well with experimental values if the latter are available or with other theoretical data.
Cross-shell excitations from the f p shell: Lifetime measurements in 61Zn
NASA Astrophysics Data System (ADS)
Queiser, M.; Vogt, A.; Seidlitz, M.; Reiter, P.; Togashi, T.; Shimizu, N.; Utsuno, Y.; Otsuka, T.; Honma, M.; Petkov, P.; Arnswald, K.; Altenkirch, R.; Birkenbach, B.; Blazhev, A.; Braunroth, T.; Dewald, A.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Karayonchev, V.; Kaya, L.; Lewandowski, L.; Müller-Gatermann, C.; Régis, J.-M.; Rosiak, D.; Schneiders, D.; Siebeck, B.; Steinbach, T.; Wolf, K.; Zell, K.-O.
2017-10-01
Lifetimes of excited states in the neutron-deficient nucleus 61Zn were measured employing the recoil-distance Doppler-shift (RDDS) and the electronic fast-timing methods at the University of Cologne. The nucleus of interest was populated as an evaporation residue in 40Ca(24Mg,n 2 p )61Zn and 58Ni(α ,n )61Zn reactions at 67 and 19 MeV, respectively. Five lifetimes were measured for the first time, including the lifetime of the 5 /21- isomer at 124 keV. Short lifetimes from the RDDS analysis are corrected for Doppler-shift attenuation (DSA) in the target and stopper foils. Ambiguous observations in previous measurements were resolved. The obtained lifetimes are compared to predictions from different sets of shell-model calculations in the f p , f5 /2p g9 /2 , and multishell f p -g9 /2d5 /2 model spaces. The band built on the 9 /21+ state exhibits a prolate deformation with β ≈0.24 . Especially, the inclusion of cross-shell excitation into the 1 d5 /2 orbital is found to be decisive for the description of collectivity in the first excited positive-parity band.
Is seniority a partial dynamic symmetry in the first νg9/2 shell?
NASA Astrophysics Data System (ADS)
Morales, A. I.; Benzoni, G.; Watanabe, H.; de Angelis, G.; Nishimura, S.; Coraggio, L.; Gargano, A.; Itaco, N.; Otsuka, T.; Tsunoda, Y.; Van Isacker, P.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Valiente-Dobón, J. J.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Bruce, A. M.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Lalkovski, S.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoybjor, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Podolyák, Zs.; Regan, P. H.; Sakurai, H.; Sahin, E.; Sohler, D.; Schaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Wieland, O.; Yalcinkaya, M.
2018-06-01
The low-lying structures of the midshell νg9/2 Ni isotopes 72Ni and 74Ni have been investigated at the RIBF facility in RIKEN within the EURICA collaboration. Previously unobserved low-lying states were accessed for the first time following β decay of the mother nuclei 72Co and 74Co. As a result, we provide a complete picture in terms of the seniority scheme up to the first (8+) levels for both nuclei. The experimental results are compared to shell-model calculations in order to define to what extent the seniority quantum number is preserved in the first neutron g9/2 shell. We find that the disappearance of the seniority isomerism in the (81+) states can be explained by a lowering of the seniority-four (6+) levels as predicted years ago. For 74Ni, the internal de-excitation pattern of the newly observed (62+) state supports a restoration of the normal seniority ordering up to spin J = 4. This property, unexplained by the shell-model calculations, is in agreement with a dominance of the single-particle spherical regime near 78Ni.
Prado, A C M; Pazianotto, M T; Gonçalez, O L; Dos Santos, L R; Caldeira, A D; Pereira, H H C; Hubert, G; Federico, C A
2017-11-01
This article report the measurements on-board a small aircraft at the same altitude and around the same geographic coordinates. The measurements of Ambient Dose Equivalent Rate (H*(10)) were performed in several positions inside the aircraft, close and far from the pilot location and the discrimination between neutron and non-neutron components. The results show that the neutrons are attenuated close to fuel depots and the non-neutron component appears to have the opposite behavior inside the aircraft. These experimental results are also confronted with results from Monte Carlo simulation, obtained with the MCNPX code, using a simplified model of the Learjet-type aircraft and a modeling of the standard atmosphere, which reproduces the real energy and angular distribution of the particles. The Monte Carlo simulation agreed with the experimental measurements and shows that the total H*(10) presents small variation (around 1%) between the positions inside aircraft, although the neutron spectra present significant variations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pygmy dipole mode in deformed neutron-rich Mg isotopes close to the drip line
NASA Astrophysics Data System (ADS)
Yoshida, Kenichi
2009-10-01
We investigate the microscopic structure of the low-lying isovector-dipole excitation mode in neutron-rich Mg36,38,40 close to the drip line by means of the deformed quasiparticle random-phase approximation employing the Skyrme and the local pairing energy-density functionals. It is found that the low-lying bump structure above the neutron emission-threshold energy develops when the drip line is approached, and that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule in Mg40. We obtained the collective dipole modes at around 8-10 MeV in Mg isotopes, that consist of many two-quasiparticle excitations of the neutron. The transition density clearly shows an oscillation of the neutron skin against the isoscalar core. We found significant coupling effects between the dipole and octupole excitation modes due to the nuclear deformation. It is also found that the responses for the compressional dipole and isoscalar octupole excitations are much enhanced in the lower energy region.
Predicting neutron damage using TEM with in situ ion irradiation and computer modeling
NASA Astrophysics Data System (ADS)
Kirk, Marquis A.; Li, Meimei; Xu, Donghua; Wirth, Brian D.
2018-01-01
We have constructed a computer model of irradiation defect production closely coordinated with TEM and in situ ion irradiation of Molybdenum at 80 °C over a range of dose, dose rate and foil thickness. We have reexamined our previous ion irradiation data to assign appropriate error and uncertainty based on more recent work. The spatially dependent cascade cluster dynamics model is updated with recent Molecular Dynamics results for cascades in Mo. After a careful assignment of both ion and neutron irradiation dose values in dpa, TEM data are compared for both ion and neutron irradiated Mo from the same source material. Using the computer model of defect formation and evolution based on the in situ ion irradiation of thin foils, the defect microstructure, consisting of densities and sizes of dislocation loops, is predicted for neutron irradiation of bulk material at 80 °C and compared with experiment. Reasonable agreement between model prediction and experimental data demonstrates a promising direction in understanding and predicting neutron damage using a closely coordinated program of in situ ion irradiation experiment and computer simulation.
Does the 4f-shell contribute to bonding in tetravalent lanthanide halides?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Wen-Xin; School of Chemistry and Chemical Engineering, Ningxia University, 750015 Yinchuan; Xu, Wei
2014-12-28
Lanthanide tetrahalide molecules LnX{sub 4} (Ln = Ce, Pr, Tb; X = F, Cl, Br, I) have been investigated by density functional theory at the levels of the relativistic Zero Order Regular Approximation and the relativistic energy-consistent pseudopotentials, using frozen small- and medium-cores. The calculated bond lengths and vibrational frequencies are close to the experimental data. Our calculations indicate 4f shell contributions to bonding in LnX{sub 4}, in particular for the early lanthanides, which show significant overlap between the Ln 4f-shell and the halogen np-shells. The 4f shells contribute to Ln-X bonding in LnX{sub 4} about one third more thanmore » in LnX{sub 3}.« less
On the shape and orientation control of an orbiting shallow spherical shell structure
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Reddy, A. S. S. R.
1982-01-01
The dynamics of orbiting shallow flexible spherical shell structures under the influence of control actuators was studied. Control laws are developed to provide both attitude and shape control of the structure. The elastic modal frequencies for the fundamental and lower modes are closely grouped due to the effect of the shell curvature. The shell is gravity stabilized by a spring loaded dumbbell type damper attached at its apex. Control laws are developed based on the pole clustering techniques. Savings in fuel consumption can be realized by using the hybrid shell dumbbell system together with point actuators. It is indicated that instability may result by not including the orbital and first order gravity gradient effects in the plant prior to control law design.
THERMALLY SHIELDED MOISTURE REMOVAL DEVICE
Miller, O.E.
1958-08-26
An apparatus is presented for removing moisture from the air within tanks by condensation upon a cartridge containing liquid air. An insulating shell made in two halves covers the cartridge within the evacuated system. The shell halves are hinged together and are operated by a system of levers from outside the tank with the motion translated through a sylphon bellows to cover and uncover the cartridge. When the condensation of moisture is in process, the insulative shell is moved away from the liquid air cartridge, and during that part of the process when there is no freezing out of moisture, the shell halves are closed on the cell so thnt the accumulated frost is not evaporated. This insulating shell greatly reduces the consumption of liquid air in this condensation process.
Gigax, Jonathan G.; Kim, Hyosim; Aydogan, Eda; ...
2017-05-16
Although accelerator-based ion irradiation has been widely accepted to simulate neutron damage, neutron-atypical features need to be carefully investigated. In this study, we have shown that Coulomb force drag by ion beams can introduce significant amounts of carbon, nitrogen, and oxygen into target materials even under ultra-high vacuum conditions. The resulting compositional and microstructural changes dramatically suppress void swelling. By applying a beam-filtering technique, introduction of vacuum contaminants is greatly minimized and the true swelling resistance of the alloys is revealed and matches neutron behavior closely. These findings are a significant step toward developing standardized procedures for emulating neutron damage.
On the illumination of neutron star accretion discs
NASA Astrophysics Data System (ADS)
Wilkins, D. R.
2018-03-01
The illumination of the accretion disc in a neutron star X-ray binary by X-rays emitted from (or close to) the neutron star surface is explored through general relativistic ray tracing simulations. The applicability of the canonical suite of relativistically broadened emission line models (developed for black holes) to discs around neutron stars is evaluated. These models were found to describe well emission lines from neutron star accretion discs unless the neutron star radius is larger than the innermost stable orbit of the accretion disc at 6 rg or the disc is viewed at high inclination, above 60° where shadowing of the back side of the disc becomes important. Theoretical emissivity profiles were computed for accretion discs illuminated by hotspots on the neutron star surfaces, bands of emission and emission by the entirety of the hot, spherical star surface and in all cases, the emissivity profile of the accretion disc was found to be well represented by a single power law falling off slightly steeper than r-3. Steepening of the emissivity index was found where the emission is close to the disc plane and the disc can appear truncated when illuminated by a hotspot at high latitude. The emissivity profile of the accretion disc in Serpens X-1 was measured and found to be consistent with a single unbroken power law with index q=3.5_{-0.4}^{+0.3}, suggestive of illumination by the boundary layer between the disc and neutron star surface.
Simulating Self-Assembly with Simple Models
NASA Astrophysics Data System (ADS)
Rapaport, D. C.
Results from recent molecular dynamics simulations of virus capsid self-assembly are described. The model is based on rigid trapezoidal particles designed to form polyhedral shells of size 60, together with an atomistic solvent. The underlying bonding process is fully reversible. More extensive computations are required than in previous work on icosahedral shells built from triangular particles, but the outcome is a high yield of closed shells. Intermediate clusters have a variety of forms, and bond counts provide a useful classification scheme
NASA Technical Reports Server (NTRS)
Woosley, S. E.; Hartmann, D. H.; Hoffman, R. D.; Haxton, W. C.
1990-01-01
As the core of a massive star collapses to form a neutron star, the flux of neutrinos in the overlying shells of heavy elements becomes so great that, despite the small cross section, substantial nuclear transmutation is induced. Neutrinos excite heavy elements and even helium to particle unbound levels. The evaporation of a single neutron or proton, and the back reaction of these nucleons on other species present, significantly alters the outcome of traditional nucleosynthesis calculations leading to a new process: nu-nucleosynthesis. Modifications to traditional hydrostatic and explosive varieties of helium, carbon, neon, oxygen, and silicon burning are considered. The results show that a large number of rare isotopes, including many of the odd-Z nuclei from boron through copper, owe much of their present abundance in nature to this process.
The puzzling spectrum of HD 94509. Sounding out the extremes of Be shell star spectral morphology
NASA Astrophysics Data System (ADS)
Cowley, C. R.; Przybilla, N.; Hubrig, S.
2015-06-01
Context. The spectral features of HD 94509 are highly unusual, adding an extreme to the zoo of Be and shell stars. The shell dominates the spectrum, showing lines typical for spectral types mid-A to early-F, while the presence of a late/mid B-type central star is indicated by photospheric hydrogen line wings and helium lines. Numerous metallic absorption lines have broad wings but taper to narrow cores. They cannot be fit by Voigt profiles. Aims: We describe and illustrate unusual spectral features of this star, and make rough calculations to estimate physical conditions and abundances in the shell. Furthermore, the central star is characterized. Methods: We assume mean conditions for the shell. An electron density estimate is made from the Inglis-Teller formula. Excitation temperatures and column densities for Fe i and Fe ii are derived from curves of growth. The neutral H column density is estimated from high Paschen members. The column densities are compared with calculations made with the photoionization code Cloudy. Atmospheric parameters of the central star are constrained employing non-LTE spectrum synthesis. Results: Overall chemical abundances are close to solar. Column densities of the dominant ions of several elements, as well as excitation temperatures and the mean electron density are well accounted for by a simple model. Several features, including the degree of ionization, are less well described. Conclusions: HD 94509 is a Be star with a stable shell, close to the terminal-age main sequence. The dynamical state of the shell and the unusually shaped, but symmetric line profiles, require a separate study.
Localized surface plasmon mediated energy transfer in the vicinity of core-shell nanoparticle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishodia, Manmohan Singh, E-mail: manmohan@gbu.ac.in; Juneja, Soniya
2016-05-28
Multipole spectral expansion based theory of energy transfer interactions between a donor and an acceptor molecule in the vicinity of a core-shell (nanoshell or core@shell) based plasmonic nanostructure is developed. In view of the diverse applications and rich plasmonic features such as tuning capability of surface plasmon (SP) frequencies, greater sensitivity to the change of dielectric environment, controllable redirection of electromagnetic radiation, closed form expressions for Energy Transfer Rate Enhancement Factor (ETREF) near core-shell particle are reported. The dependence of ETREF on different parameters is established through fitting equations, perceived to be of key importance for developing appropriate designs. Themore » theoretical approach developed in the present work is capable of treating higher order multipoles, which, in turn, are also shown to play a crucial role in the present context. Moreover, closed form expressions derived in the present work can directly be used as formula, e.g., for designing SP based biosensors and estimating energy exchange between proteins and excitonic interactions in quantum dots.« less
Wu, Jishan; Feng, Jiaqi; Gopalakrishna, Tullimilli Y; Phan, Hoa
2018-04-19
We report a star-shaped hexaquinocyclohexane molecule 4c, which turns out to be a closed-shell extended [6]radialene with a twisted-boat conformation according to X-ray crystallographic analysis. It was formed by an unusually slow decay of its in situ generated open-shell valence isomer, the hexa-radicaloid 4o, with a half-life time of about 156 min at room temperature. Reaction progress kinetic analysis revealed a large energy barrier of about 95.5 ± 4.3 kJ/mol at room temperature from the hexa-radical form 4o to the contorted [6]radialene form 4c, because the transformation need overcome large steric repulsion between the neighbouring phenoxyl units. Compound 4c can be chemically reduced to radical anion and dianion, and the dianion is actually a diradical dianion, with a calculated diradical character of 71.9%. This study demonstrated the unique chemical bonding nature of contorted quinoidal π-conjugated molecules and a very unusual valence isomerization process. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improvement of the prompt-gamma neutron activation facility at Brookhaven National Laboratory.
Dilmanian, F A; Lidofsky, L J; Stamatelatos, I; Kamen, Y; Yasumura, S; Vartsky, D; Pierson, R N; Weber, D A; Moore, R I; Ma, R
1998-02-01
The prompt-gamma neutron activation facility at Brookhaven National Laboratory was upgraded to improve both the precision and accuracy of its in vivo determinations of total body nitrogen. The upgrade, guided by Monte Carlo simulations, involved elongating and modifying the source collimator and its shielding, repositioning the system's two NaI(Tl) detectors, and improving the neutron and gamma shielding of these detectors. The new source collimator has a graphite reflector around the 238PuBe neutron source to enhance the low-energy region of the neutron spectrum incident on the patient. The gamma detectors have been relocated from positions close to the upward-emerging collimated neutron beam to positions close to and at the sides of the patient. These modifications substantially reduced spurious counts resulting from the capture of small-angle scattered neutrons in the NaI detectors. The pile-up background under the 10.8 MeV 14N(n, gamma)15N spectral peak has been reduced so that the nitrogen peak-to-background ratio has been increased by a factor of 2.8. The resulting reduction in the coefficient of variation of the total body nitrogen measurements from 3% to 2.2% has improved the statistical significance of the results possible for any given number of patient measurements. The new system also has a more uniform composite sensitivity.
Grusell, E; Condé, H; Larsson, B; Rönnqvist, T; Sornsuntisook, O; Crawford, J; Reist, H; Dahl, B; Sjöstrand, N G; Russel, G
1990-01-01
Spallation is induced in a heavy material by 72-MeV protons. The resulting neutrons can be characterized by an evaporation spectrum with a peak energy of less than 2 MeV. The neutrons are moderated in two steps: first in iron and then in carbon. Results from neutron fluence measurements in a perspex phantom placed close to the moderator are presented. Monte Carlo calculations of neutron fluence in a water phantom are also presented under some chosen configurations of spallation source and moderator. The calculations and measurements are in good agreement and show that, for proton currents of less than 0.5 mA, useful thermal-neutron fluences are attainable in the depth of the brain. However, the dose contribution from the unavoidable gamma background component has not been included in the present investigation.
NASA Astrophysics Data System (ADS)
Mercan, Kadir; Demir, Çiǧdem; Civalek, Ömer
2016-01-01
In the present manuscript, free vibration response of circular cylindrical shells with functionally graded material (FGM) is investigated. The method of discrete singular convolution (DSC) is used for numerical solution of the related governing equation of motion of FGM cylindrical shell. The constitutive relations are based on the Love's first approximation shell theory. The material properties are graded in the thickness direction according to a volume fraction power law indexes. Frequency values are calculated for different types of boundary conditions, material and geometric parameters. In general, close agreement between the obtained results and those of other researchers has been found.
Lakshmanan, Shyam; Murugesan, Thanapalan
2016-12-01
Activated carbon from coconut shell was used to investigate the adsorption of chlorate from a chlor-alkali plant's brine stream. The effect of pH, flowrate, chlorate and chloride concentration on the breakthrough curves were studied in small-scale column trials. The results obtained show enhanced adsorption at low flowrates, higher chlorate concentrations, and at a pH of 10. These studies show that introducing an activated carbon adsorption column just before the saturator would remove sufficient quantities of chlorate to allow more of the chlor-alkali plant's brine stream to be reused. From column dynamic studies, the Thomas model showed close approximation when the chlorate in the effluent was higher than breakthrough concentrations and there was close correlation at high influent concentration. The q o (maximum adsorption capacity) values were close to those obtained experimentally, indicating close representation of the breakthrough curve by the Thomas model.
Method for Monitoring of Neutron Fields near High-Energy Accelerators
NASA Astrophysics Data System (ADS)
Beskrovnaia, L. G.; Guseva, S. V.; Timoshenko, G. N.
2018-05-01
The monitoring of neutron radiation from high-energy accelerators cannot fully rely on the standard dosimeters and radiometers manufactured in Russia, since these are sensitive only to neutrons with energies below some 10 MeV. This is because neutrons of higher energies can significantly contribute to the personnel doses both close to the accelerator shield and in the neutron multiscattered field around the shield. In this paper, we propose to measure the ambient neutron dose in energy range 10-2 MeV to 1 GeV with a device consisting of two polyethylene balls with diameters of 3 and 10 in. housing slow-neutron detectors. The larger ball also comprises a lead converter (10'' + Pb). This device can be implemented in zonal radiation monitoring in the near-accelerator area.
Mass measurement in the fp-shell using the TOFI spectrometer
NASA Astrophysics Data System (ADS)
Bai, Y.; Vieira, D. J.; Seifert, H. L.; Wouters, J. M.
1998-12-01
The masses of 48 neutron-rich nuclei extending from 55Sc to 75Cu have been determined from the final set of data to be acquired with the time-of-flight-isochronous (TOFI) spectrometer. The masses of eight isotopes (68Fe, 70,71Co, 73Ni, and 72-75Cu) are reported for the first time. The resulting masses now tie in neatly with the masses of previously measured neutron-rich Zn and Ga isotopes determined from fission product β-endpoint measurements. A careful evaluation of the calibration sensitivity is made with respect to inclusion or exclusion of these heavy known species and excellent calibration stability is found. Contrasting these results with previous TOFI measurements, we find that these new results fall between the results of Tu et al. (1) which trend to slightly less bound masses as one proceeds to the most neutron-rich species and Seifert et al. (2) which shows the opposite trend. Good agreement with the predictions of several mass models and Audi-Wapstra systematics are found.
NASA Astrophysics Data System (ADS)
Savchenkov, P. S.; Alekseev, P. A.; Podlesnyak, A.; Kolesnikov, A. I.; Nemkovski, K. S.
2018-02-01
Magnetic neutron scattering data for Sm (SmB6, Sm(Y)S) and Eu (EuCu2Si2-x Ge x ) intermediate-valence compounds have been analysed in terms of a generalized model of the intermediate-radius exciton. Special attention is paid to the correlation between the average ion’s valence and parameters of the low-energy excitation in the neutron spectra, such as the resonance mode, including its magnetic form factor. Along with specific features of the formation of the intermediate-valence state for Sm and Eu ions, common physical mechanisms have been revealed for systems based on these elements from the middle of the rare-earth series. A consistent description of the existing experimental data has been obtained by using the concept of a loosely bound hole for the Eu f-electron shell in the intermediate-valence state, in analogy with the previously established loosely bound electron model for the Sm ion.
pi-eta mixing and charge symmetry violating NN potential in matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Subhrajyoti; Roy, Pradip; Dutt-Mazumder, Abhee K.
2010-06-15
We construct density-dependent class III charge symmetry violating (CSV) potential caused by the mixing of pi-eta mesons with off-shell corrections. The density dependence enters through the nonvanishing pi-eta mixing driven by both the neutron-proton mass difference and their asymmetric density distribution. The contribution of density-dependent mixing to the CSV potential is found to be appreciably larger than that of the vacuum part.
Spin-dependent evolution of collectivity in 112Te
NASA Astrophysics Data System (ADS)
Doncel, M.; Bäck, T.; Qi, C.; Cullen, D. M.; Hodge, D.; Cederwall, B.; Taylor, M. J.; Procter, M.; Giles, M.; Auranen, K.; Grahn, T.; Greenlees, P. T.; Jakobsson, U.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.; Uusitalo, J.
2017-11-01
The evolution of collectivity with spin along the yrast line in the neutron-deficient nucleus 112Te has been studied by measuring the reduced transition probability of excited states in the yrast band. In particular, the lifetimes of the 4+ and 6+ excited states have been determined by using the recoil distance Doppler-shift method. The results are discussed using both large-scale shell-model and total Routhian surface calculations.
Transition probabilities in neutron-rich Se,8280 and the role of the ν g9 /2 orbital
NASA Astrophysics Data System (ADS)
Litzinger, J.; Blazhev, A.; Dewald, A.; Didierjean, F.; Duchêne, G.; Fransen, C.; Lozeva, R.; Verney, D.; de Angelis, G.; Bazzacco, D.; Birkenbach, B.; Bottoni, S.; Bracco, A.; Braunroth, T.; Cederwall, B.; Corradi, L.; Crespi, F. C. L.; Désesquelles, P.; Eberth, J.; Ellinger, E.; Farnea, E.; Fioretto, E.; Gernhäuser, R.; Goasduff, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hackstein, M.; Hess, H.; Ibrahim, F.; Jolie, J.; Jungclaus, A.; Kolos, K.; Korten, W.; Leoni, S.; Lunardi, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovic, T.; Million, B.; Möller, O.; Modamio, V.; Montagnoli, G.; Montanari, D.; Morales, A. I.; Napoli, D. R.; Niikura, M.; Pietralla, N.; Pollarolo, G.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Theisen, Ch.; Valiente-Dobón, J. J.; Vandone, V.; Vogt, A.
2018-04-01
Transition probabilities of intermediate-spin yrast and non-yrast excitations in Se,8280 were investigated in a recoil distance Doppler-shift (RDDS) experiment performed at the Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro. The Cologne Plunger device for deep inelastic scattering was used for the RDDS technique and was combined with the AGATA Demonstrator array for the γ -ray detection and coupled to the PRISMA magnetic spectrometer for an event-by-event particle identification. In 80Se, the level lifetimes of the yrast (61+) and (81+) states and of a non-yrast band feeding the yrast 41+ state are determined. A spin and parity assignment of the head of this sideband is discussed based on the experimental results and supported by large-scale shell-model calculations. In 82Se, the level lifetimes of the yrast 61+ state and the yrare 42+ state and lifetime limits of the yrast (101+) state and of the 51- state are determined. Although the experimental results contain large uncertainties, they are interpreted with care in terms of large-scale shell-model calculations using the effective interactions JUN45 and jj44b. The excited states' wave functions are investigated and discussed with respect to the role of the neutron g9 /2 orbital.
Transition probabilities in neutron-rich Se,8684
NASA Astrophysics Data System (ADS)
Litzinger, J.; Blazhev, A.; Dewald, A.; Didierjean, F.; Duchêne, G.; Fransen, C.; Lozeva, R.; Sieja, K.; Verney, D.; de Angelis, G.; Bazzacco, D.; Birkenbach, B.; Bottoni, S.; Bracco, A.; Braunroth, T.; Cederwall, B.; Corradi, L.; Crespi, F. C. L.; Désesquelles, P.; Eberth, J.; Ellinger, E.; Farnea, E.; Fioretto, E.; Gernhäuser, R.; Goasduff, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hackstein, M.; Hess, H.; Ibrahim, F.; Jolie, J.; Jungclaus, A.; Kolos, K.; Korten, W.; Leoni, S.; Lunardi, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovic, T.; Million, B.; Möller, O.; Modamio, V.; Montagnoli, G.; Montanari, D.; Morales, A. I.; Napoli, D. R.; Niikura, M.; Pollarolo, G.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Theisen, Ch.; Valiente Dobón, J. J.; Vandone, V.; Vogt, A.
2015-12-01
Reduced quadrupole transition probabilities for low-lying transitions in neutron-rich Se,8684 are investigated with a recoil distance Doppler shift (RDDS) experiment. The experiment was performed at the Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Legnaro using the Cologne Plunger device for the RDDS technique and the AGATA Demonstrator array for the γ -ray detection coupled to the PRISMA magnetic spectrometer for an event-by-event particle identification. In 86Se the level lifetime of the yrast 21+ state and an upper limit for the lifetime of the 41+ state are determined for the first time. The results of 86Se are in agreement with previously reported predictions of large-scale shell-model calculations using Ni78-I and Ni78-II effective interactions. In addition, intrinsic shape parameters of lowest yrast states in 86Se are calculated. In semimagic 84Se level lifetimes of the yrast 41+ and 61+ states are determined for the first time. Large-scale shell-model calculations using effective interactions Ni78-II, JUN45, jj4b, and jj4pna are performed. The calculations describe B (E 2 ;21+→01+) and B (E 2 ;61+→41+) fairly well and point out problems in reproducing the experimental B (E 2 ;41+→21+) .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossa, Riccardo; Universite Libre de Bruxelles; Borella, Alessandro
2015-07-01
The Self-Interrogation Neutron Resonance Densitometry (SINRD) is a passive neutron technique that aims at a direct quantification of {sup 239}Pu in spent fuel assemblies by measuring the attenuation of the neutron flux in the energy region close to the 0.3 eV resonance of {sup 239}Pu. The {sup 239}Pu mass is estimated by calculating the SINRD signature, that is the ratio between the neutron counts in the fast energy region and around the 0.3 eV resonance region. The SINRD measurement approach in this study consisted in introducing a small neutron detector in the central guide tube of a PWR 17x17 fuelmore » assembly. In order to measure the neutron flux in the energy regions defined in the SINRD signature, different detector types were used. The response of a bare {sup 238}U fission chamber is considered for the determination of the fast neutron flux, while other thermal-epithermal detectors wrapped in neutron absorbers are envisaged to measure the neutron flux around the resonance region. This paper provides an estimation of the total neutron counts that can be achieved with the detector types proposed for the SINRD measurement. In the first section a set of detectors are evaluated in terms of total neutron counts and sensitivity to the {sup 239}Pu content, in order to identify the optimal measurement configuration for each detector type. Then a study is performed to increase the total neutron counts by increasing the detector size. The study shows that the highest total neutron counts are achieved by using either {sup 3}He or {sup 10}B proportional counters because of the high neutron efficiency of these detectors. However, the calculations indicate that the biggest contribution to the measurement uncertainty is due to the measurement of the fast neutron flux. Finally, similar sensitivity to the {sup 239}Pu content is obtained by using the different detector types for the measurement of the neutron flux close to the resonance region. Therefore, the total neutron counts associated to each detector type will play a major role in the selection of the detector types used for the SINRD measurement. (authors)« less
The response of a bonner sphere spectrometer to charged hadrons.
Agosteo, S; Dimovasili, E; Fassò, A; Silari, M
2004-01-01
Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n,xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semi-thick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors were found to have a significant response to the charged hadron component accompanying the neutrons emitted from the target. Conventional polyethylene moderators show a similar behaviour but less pronounced. These secondary hadrons interact with the moderator and generate neutrons, which are in turn detected by the counter. To investigate this effect and determine a correction factor to be applied to the unfolding procedure, a series of Monte Carlo simulations were performed with the FLUKA code. These simulations aimed at determining the response of the BSS to charged hadrons under the specific experimental situation. Following these results, a complete response matrix of the extended BSS to charged pions and protons was calculated with FLUKA. An experimental verification was carried out with a 120 GeV per c hadron beam at the CERF facility at CERN.
New K isomers in the neutron-rich N =100 isotones 162Sm, 163Eu, and 164Gd
NASA Astrophysics Data System (ADS)
Yokoyama, R.; Go, S.; Kameda, D.; Kubo, T.; Inabe, N.; Fukuda, N.; Takeda, H.; Suzuki, H.; Yoshida, K.; Kusaka, K.; Tanaka, K.; Yanagisawa, Y.; Ohtake, M.; Sato, H.; Shimizu, Y.; Baba, H.; Kurokawa, M.; Nishimura, D.; Ohnishi, T.; Iwasa, N.; Chiba, A.; Yamada, T.; Ideguchi, E.; Fujii, T.; Nishibata, H.; Ieki, K.; Murai, D.; Momota, S.; Sato, Y.; Hwang, J. W.; Kim, S.; Tarasov, O. B.; Morrissey, D. J.; Sherrill, B. M.; Simpson, G.; Praharaj, C. R.
2017-03-01
Very neutron-rich Z ˜60 isotopes produced by in-flight fission of a 345 MeV/nucleon 238U beam at the RI Beam Factory, RIKEN Nishina Center, have been studied by delayed γ -ray spectroscopy. New isomers were discovered in the neutron-rich N =100 isotones 162Sm, 163Eu, and 164Gd. Half-lives, γ -ray energies, and relative intensities of these isomers were obtained. Level schemes were proposed for these nuclei and the first 2+ and 4+ states were assigned for the even-even nuclei. The first 2+ and 4+ state energies decrease as the proton numbers get smaller. The energies and the half-lives of the new isomers are very similar to those of 4- isomers known in less neutron-rich N =100 isotones 168Er and 170Yb. A deformed Hartree-Fock with angular momentum projection model suggests Kπ=4- two-quasiparticle states with ν 7 /2 [633 ]⊗ν 1 /2 [521 ] configurations with similar excitation energy. The results suggest that neutron-rich N =100 nuclei are well deformed and the deformation gets larger as Z decreases to 62. The onset of K isomers with the same configuration at almost the same energy in N =100 isotones indicates that the neutron single-particle structures of neutron-rich isotones down to Z =62 do not change significantly from those of the Z =70 stable nuclei. Systematics of the excitation energies of new isomers can be explained without the predicted N =100 shell gap.
NASA Astrophysics Data System (ADS)
Zhang, F. H.; Zhang, L.; Cui, W. Y.; Zhang, B.
2017-09-01
Recent studies have shown that, for the current s-process nucleosynthesis model for the low-mass asymptotic giant branch (AGB) stars with (13C) pocket radiative burning during the interpulse period, the neutron exposure distribution in the nucleosynthesis region can be regarded as an exponential function, and the relation between the mean neutron exposure (τ0) and the model parameters is τ0 = - Δ τ/ln [q/(1 - r + q)]), in which (Δ τ) is the exposure value of each neutron irradiation, (r) is the overlap factor, and (q) is the mass ratio of the (13C) shell to the He intershell. Using the published data resulted from fitting the observed abundances of neutron-capture elements in 20 CEMP (Carbon-Enhanced Metal-Poor)-s and CEMP-s/r stars with the parametric AGB stellar s-process model, the reliability of the derived formula is tested, and further more the application of the formula in the s-process nucleosynthesis study is explored preliminarily. Our results show that, under the radiative s-process nucleosynthesis mechanism, the formula is suitable for CEMP stars experiencing recurrent neutron exposures. Combined with the parametric AGB nucleosynthesis model, the formula could be regarded as an effective tool to screen the CEMP stars with a single neutron exposure or a special type. Considering the uncertainty of the (13C) pocket, the role of this formula in understanding the physical conditions necessary to reproduce the observed s-process abundances in CEMP stars needs further study.
Inspection of the objects on the sea floor by using 14 MeV tagged neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valkovic, V.; Sudac, D.; Obhodas, J.
2011-07-01
Variety of objects found on the sea floor needs to be inspected for the presence of materials which represent the threat to the environment and to the safety of humans. We have demonstrated that the sealed tube 14 MeV neutron generator with the detection of associated alpha particles can be used underwater when mounted inside ROV equipped with the hydraulic legs and variety of sensors for the inspection of such objects for the presence of threat materials. Such a system is performing the measurement by using the NaI gamma detector and an API-120 neutron generator which could be rotated inmore » order to maximize the inspected target volume. The neutron beam intensity during the 10-30 min. measurements is usually 1 x 10{sup 7} n/s in 4{pi}. In this report the experimental results for some of commonly found objects containing TNT explosive or its simulant are presented. The measured gamma spectra are dominant by C, O and Fe peaks enabling the determination of the presence of explosives inside the ammunition shell. Parameters influencing the C/O ratio are discussed in some details. (authors)« less
Structure Of Neutron-Rich Nuclei In A˜100 Region Observed In Fusion-Fission Reactions
NASA Astrophysics Data System (ADS)
Wu, C. Y.; Hua, H.; Cline, D.; Hayes, A. B.; Teng, R.; Clark, R. M.; Fallon, P.; Görgen, A.; Macchiavelli, A. O.; Vetter, K.
2003-03-01
Neutron-rich nuclei around A˜100 were populated as fission fragments produced by the 238U(α,f) fusion-fission reaction. The deexcitation γ rays were detected by Gammasphere in coincidence with the detection of both fission fragments by the Rochester 4π heavy-ion detector array, CHICO. This technique allows Doppler-shift corrections to be applied for the observed γ rays on an event-by-event basis thus establishing the origin of γ rays from either fission fragment. In addition, it allows observation of γ-ray transitions from states with short lifetimes and offers the opportunity to study nuclear species beyond the reach of the spontaneous fission process. With these advantages, one can extend the spectroscopic study to higher spins than those derived using the thick-target technique, and to more neutron-rich nuclei than those derived from spontaneous fissions. Among the new and interesting phenomena identified in this rapid shape-changing region, the most distinct result is the evidence for a prolate-to-oblate shape transition occurring at 116Pd, which may have important implications to our understanding of the shell structure for neutron-rich nuclei.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridier, Karl; Gillon, Béatrice; André, Gilles
2015-09-21
Prussian blue analogues magnetic nanoparticles (of radius R{sub 0} = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA{sup +} (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A newmore » length scale R{sup * }≈ 3R{sub 0}, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA{sup +}, electrostatic interactions play a crucial role and lead to a dense layer of CTA{sup +} around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA{sup +} are best described by a core-shell model without visible inter-particle structure factor.« less
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1996-01-01
Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.
NASA Technical Reports Server (NTRS)
Livingston, R. A.; Schweitzer, J. S.; Parsons, Ann M.; Arens, Ellen E.
2010-01-01
The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Th ere is evidence that some of the perlite has compacted over time, com promising the thermal performance and possibly also structural integr ity of the tanks. Therefore an Non-destructive Testing (NDT) method for measuring the perlite density or void fraction is urgently needed. Methods based on neutrons are good candidates because they can readil y penetrate through the 1.75 cm outer steel shell and through the ent ire 120 cm thickness of the perlite zone. Neutrons interact with the nuclei of materials to produce characteristic gamma rays which are the n detected. The gamma ray signal strength is proportional to the atom ic number density. Consequently, if the perlite is compacted then the count rates in the individual peaks in the gamma ray spectrum will i ncrease. Perlite is a feldspathic volcanic rock made up of the major elements Si, AI, Na, K and 0 along with some water. With commercially available portable neutron generators it is possible to produce simul taneously fluxes of neutrons in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scatt ering which is sensitive to Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA) and this is sensitive to Si, AI, Na, Kand H. Thus the two energy ranges produce complementary information. The R&D program has three phases: numerical simulations of neutron and gamma ray transport with MCNP s oftware, evaluation of the system in the laboratory on test articles and finally mapping of the perlite density in the cryogenic tanks at KSC. The preliminary MCNP calculations have shown that the fast/therma l neutron NDT method is capable of distinguishing between expanded an d compacted perlite with excellent statistics.
The relativistic theory of the chemical shift
NASA Astrophysics Data System (ADS)
Pyper, N. C.
1983-04-01
A relativistic theory of the NMR chemical shift for a closed-shell system is presented. The final expression for the shielding, derived by, applying two Gordon decompositions to the Dirac current operator, closely parallels the Ramsey non-relativistic result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czubek, J.A.; Drozdowicz, K.; Gabanska, B.
Czubek`s method of measurement of the thermal neutron macroscopic absorption cross section of small samples has been developed at the Henryk Niewodniczanski Institute of Nuclear Physics in Krakow, Poland. Theoretical principles of the method have been elaborated in the one-velocity diffusion approach in which the thermal neutron parameters used have been averaged over a modified Maxwellian. In consecutive measurements the investigated sample is enveloped in shells of a known moderator of varying thickness and irradiated with a pulsed beam of fast neutrons. The neutrons are slowed-down in the system and a die-away rate of escaping thermal neutrons is measured. Themore » decay constant vs. thickness of the moderator creates the experimental curve. The absorption cross section of the unknown sample is found from the intersection of this curve with the theoretical one. The theoretical curve is calculated for the case when the dynamic material buckling of the inner sample is zero. The method does not use any reference absorption standard and is independent of the transport cross section of the measured sample. The volume of the sample is form of fluid or crushed material is about 170 cm{sup 3}. The standard deviation for the measured mass absorption cross section of rock samples is in the range of 4 divided by 20% of the measured value and for brines is of the order of 0.5%.« less
Long-range versus short-range correlations in the two-neutron transfer reaction 64Ni(18O,16O)66Ni
NASA Astrophysics Data System (ADS)
Paes, B.; Santagati, G.; Vsevolodovna, R. Magana; Cappuzzello, F.; Carbone, D.; Cardozo, E. N.; Cavallaro, M.; García-Tecocoatzi, H.; Gargano, A.; Ferreira, J. L.; Lenzi, S. M.; Linares, R.; Santopinto, E.; Vitturi, A.; Lubian, J.
2017-10-01
Recently, various two-neutron transfer studies using the (18O,16O) reaction were performed with a large success. This was achieved because of a combined use of the microscopic quantum description of the reaction mechanism and of the nuclear structure. In the present work we use this methodology to study the two-neutron transfer reaction of the 18O+64Ni system at 84 MeV incident energy, to the ground and first 2+ excited state of the residual 66Ni nucleus. All the experimental data were measured by the large acceptance MAGNEX spectrometer at the Instituto Nazionale di Fisica Nucleare -Laboratori Nazionali del Sud (Italy). We have performed exact finite range cross section calculations using the coupled channel Born approximation (CCBA) and coupled reaction channel (CRC) method for the sequential and direct two-neutron transfers, respectively. Moreover, this is the first time that the formalism of the microscopic interaction boson model (IBM-2) was applied to a two-neutron transfer reaction. From our results we conclude that for two-neutron transfer to the ground state of 66Ni, the direct transfer is the dominant reaction mechanism, whereas for the transfer to the first excited state of 66Ni, the sequential process dominates. A competition between long-range and short-range correlations is discussed, in particular, how the use of two different models (Shell model and IBM's) help to disentangle long- and short-range correlations.
NASA Astrophysics Data System (ADS)
Pignatari, Marco; Hoppe, Peter; Trappitsch, Reto; Fryer, Chris; Timmes, F. X.; Herwig, Falk; Hirschi, Raphael
2018-01-01
Carbon-rich presolar grains are found in primitive meteorites, with isotopic measurements to date suggesting a core-collapse supernovae origin site for some of them. This holds for about 1-2% of presolar silicon carbide (SiC) grains, so-called Type X and C grains, and about 30% of presolar graphite grains. Presolar SiC grains of Type X show anomalous isotopic signatures for several elements heavier than iron compared to the solar abundances: most notably for strontium, zirconium, molybdenum, ruthenium and barium. We study the nucleosynthesis of zirconium and molybdenum isotopes in the He-shell of three core-collapse supernovae models of 15, 20 and 25 M⊙ with solar metallicity, and compare the results to measurements of presolar grains. We find the stellar models show a large scatter of isotopic abundances for zirconium and molybdenum, but the mass averaged abundances are qualitatively similar to the measurements. We find all models show an excess of 96Zr relative to the measurements, but the model abundances are affected by the fractionation between Sr and Zr since a large contribution to 90Zr is due to the radiogenic decay of 90Sr. Some supernova models show excesses of 95,97Mo and depletion of 96Mo relative to solar. The mass averaged distribution from these models shows an excess of 100Mo, but this may be alleviated by very recent neutron-capture cross section measurements. We encourage future explorations to assess the impact of the uncertainties in key neutron-capture reaction rates that lie along the n-process path.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hua.
1989-01-01
One of the most elusive quantum system in nature is the nucleus, which is a strongly interacting many body system. In the hadronic (a la neutrons and protons) phase, the primary concern of this thesis, the nucleus' single particle excitations are intertwined with their various collective excitations. Although the underpinning of the nucleus is the spherical shell model, it is rendered powerless without a severe, but intelligent truncation of the infinite Hilbert space. The recently proposed Fermion Dynamical Symmetry Model (FDSM) is precisely such a truncation scheme and in which a symmetry-dictated truncation scheme is introduced in nuclear physics formore » the first time. In this thesis, extensions and explorations of the FDSM are made to specifically study the odd mass (where the most intricate mixing of the single particle and the collective excitations are observed) and the neutron-proton systems. In particular, the author finds that the previously successful phenomenological particle-rotor-model of the Copenhagen school can now be well understood microscopically via the FDSM. Furthermore, the well known Coriolis attenuation and variable moment of inertia effects are naturally understood from the model as well. A computer code FDUO was written by one of us to study, for the first time, the numerical implications of the FDSM. Several collective modes were found even when the system does not admit a group chain description. In addition, the code is most suitable to study the connection between level statistical behavior (a at Gaussian Orthogonal Ensemble) and dynamical symmetry. It is found that there exist critical region of the interaction parameter space were the system behaves chaotically. This information is certainly crucial to understanding quantum chaotic behavior.« less
King, Andrew
2007-05-15
I consider various possibilities for making gamma-ray bursts, particularly from close binaries. In addition to the much-studied neutron star+neutron star and black hole+neutron star cases usually considered good candidates for short-duration bursts, there are also other possibilities. In particular, neutron star+massive white dwarf has several desirable features. These systems are likely to produce long-duration gamma-ray bursts (GRBs), in some cases definitely without an accompanying supernova, as observed recently. This class of burst would have a strong correlation with star formation and occur close to the host galaxy. However, rare members of the class need not be near star-forming regions and could have any type of host galaxy. Thus, a long-duration burst far from any star-forming region would also be a signature of this class. Estimates based on the existence of a known progenitor suggest that this type of GRB may be quite common, in agreement with the fact that the absence of a supernova can only be established in nearby bursts.
Progress in FMIT test assembly development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opperman, E.K.; Vogel, M.A.; Shen, E.J.
Research and development supporting the completed design of the Fusion Materials Irradiation Test (FMIT) Facility is continuing at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The FMIT, a deuteron accelerator based (d + Li) neutron source, will produce an intense flux of high energy neutrons for use in radiation damage studies of fusion reactor materials. The most intense flux magnitude of greater than 10/sup 15/ n/cm/sup 2/-s is located close to the neutron producing lithium target and is distributed within a volume about the size of an American football. The conceptual design and development of FMIT experiments calledmore » Test Assemblies has progressed over the past five years in parallel with the design of the FMIT. The paper will describe the recent accomplishments made in developing test assemblies appropriate for use in the limited volume close to the FMIT target where high neutron flux and heating rates and the associated spacial gradients significantly impact design considerations.« less
Shape coexistence close to N = 50 in the neutron-rich isotope 80Ge investigated by IBM-2
NASA Astrophysics Data System (ADS)
Zhang, Da-Li; Mu, Cheng-Fu
2018-02-01
The properties of the low-lying states, especially the relevant shape coexistence in 80Ge, close to one of most neutron-rich doubly magic nuclei at N = 50 and Z = 28, have been investigated within the framework of the proton-neutron interacting model (IBM-2). Based on the fact that the relative energy of the d neutron boson is different from that of the proton boson, the calculated energy levels of low-lying states and E2 transition strengths can reproduce the experimental data very well. Particularly, the first excited state {0}2+, which is intimately related to the shape coexistence phenomenon, is reproduced quite nicely. The {ρ }2(E0,{0}2+\\to {0}1+) transition strength is also predicted. The experimental data and theoretical results indicate that both collective spherical and γ-soft vibration structures coexist in 80Ge. Supported by National Natural Science Foundation of China (11475062, 11647306, 11147148)
Design of an Ada expert system shell for the VHSIC avionic modular flight processor
NASA Technical Reports Server (NTRS)
Fanning, F. Jesse
1992-01-01
The Embedded Computer System Expert System Shell (ES Shell) is an Ada-based expert system shell developed at the Avionics Laboratory for use on the VHSIC Avionic Modular Processor (VAMP) running under the Ada Avionics Real-Time Software (AARTS) Operating System. The ES Shell provides the interface between the expert system and the avionics environment, and controls execution of the expert system. Testing of the ES Shell in the Avionics Laboratory's Integrated Test Bed (ITB) has demonstrated its ability to control a non-deterministic software application executing on the VAMP's which can control the ITB's real-time closed-loop aircraft simulation. The results of these tests and the conclusions reached in the design and development of the ES Shell have played an important role in the formulation of the requirements for a production-quality expert system inference engine, an ingredient necessary for the successful use of expert systems on the VAMP embedded avionic flight processor.
NASA Astrophysics Data System (ADS)
Zhang, X. F.; Hu, S. D.; Tzou, H. S.
2014-12-01
Converting vibration energy to useful electric energy has attracted much attention in recent years. Based on the electromechanical coupling of piezoelectricity, distributed piezoelectric zero-curvature type (e.g., beams and plates) energy harvesters have been proposed and evaluated. The objective of this study is to develop a generic linear and nonlinear piezoelectric shell energy harvesting theory based on a double-curvature shell. The generic piezoelectric shell energy harvester consists of an elastic double-curvature shell and piezoelectric patches laminated on its surface(s). With a current model in the closed-circuit condition, output voltages and energies across a resistive load are evaluated when the shell is subjected to harmonic excitations. Steady-state voltage and power outputs across the resistive load are calculated at resonance for each shell mode. The piezoelectric shell energy harvesting mechanism can be simplified to shell (e.g., cylindrical, conical, spherical, paraboloidal, etc.) and non-shell (beam, plate, ring, arch, etc.) distributed harvesters using two Lamé parameters and two curvature radii of the selected harvester geometry. To demonstrate the utility and simplification procedures, the generic linear/nonlinear shell energy harvester mechanism is simplified to three specific structures, i.e., a cantilever beam case, a circular ring case and a conical shell case. Results show the versatility of the generic linear/nonlinear shell energy harvesting mechanism and the validity of the simplification procedures.
West, Kelly; Cohen, Andrew
1996-04-01
Gastropod shells from Lake Tanganyika, with their heavy calcification, coarse noded ribbing, spines, apertural lip thickening and repair scars, resemble marine shells more closely than they resemble other lacustrine shells. This convergence between Tanganyikan and marine gastropod shells, however, is not just superficial. Scanning electron microscope (SEM) studies reveal that the Tanganyikan shells are primarily layers of crossed-lamellar crystal architecture (that is, needle-like aragonite crystals arranged into laths that are packed into sheets such that the aragonite needles of adjacent laths are never parallel). The number of crossed-lamellar layers can vary from one to four between different Tanganyikan gastropod species. In species with two or more crossed-lamellar layers, the orientation of the lamellae is offset by approximately 90° between the different layers. The number of crossed-lamellar layers in the shell wall is positively correlated with shell strength and with predation resistance. Three and four crossed-lamellar layers in the shell wall evolved several times independently within the endemic thiarid gastropod radiation in Lake Tanganyika. Repeated origins of three and four crossed-lamellar layers suggest that they may be specific adaptations by Tanganyikan gastropods to strengthen their shells as a defense against shell-crushing predators. © 1996 The Society for the Study of Evolution.
MHD Waves in Coronal Loops with a Shell
NASA Astrophysics Data System (ADS)
Mikhalyaev, B. B.; Solov'ev, A. A.
2004-04-01
We consider a model of a coronal loop in the form of a cord surrounded by a coaxial shell. Two slow magnetosonic waves longitudinally propagate within a thin flux tube on the m = 0 cylindrical mode with velocities close to the tube velocities in the cord and the shell. One wave propagates inside the cord, while the other propagates inside the shell. A peculiar feature of the second wave is that the plasma in the cord and the shell oscillates with opposite phases. There are two fast magnetosonic waves on each of the cylindrical modes with m > 0. If the plasma density in the shell is lower than that in the surrounding corona, then one of the waves is radiated into the corona, which causes the loop oscillations to be damped, while the other wave is trapped by the cord, but can also be radiated out under certain conditions. If the plasma density in the shell is higher than that in the cord, then one of the waves is trapped by the shell, while the other wave can also be trapped by the shell under certain conditions. In the wave trapped by the shell and the wave radiated by the tube, the plasma in the cord and the shell oscillates with opposite phases.
NASA Technical Reports Server (NTRS)
Tang, Yvette Y.; Silcox, Richard J.; Robinson, Jay H.
1996-01-01
This paper examines sound transmission into two concentric cylindrical sandwich shells subject to turbulent flow on the exterior surface of the outer shell. The interior of the shells is filled with fluid medium and there is an airgap between the shells in the annular space. The description of the pressure field is based on the cross-spectral density formulation of Corcos, Maestrello, and Efimtsov models of the turbulent boundary layer. The classical thin shell theory and the first-order shear deformation theory are applied for the inner and outer shells, respectively. Modal expansion and the Galerkin approach are used to obtain closed-form solutions for the shell displacements and the radiation and transmission pressures in the cavities including both the annular space and the interior. The average spectral density of the structural responses and the transmitted interior pressures are expressed explicitly in terms of the summation of the cross-spectral density of generalized force induced by the boundary layer turbulence. The effects of acoustic and hydrodynamic coincidences on the spectral density are observed. Numerical examples are presented to illustrate the method for both subsonic and supersonic flows.
A Simple Correlation for Neutron Capture Rates from Nuclear Masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couture, Aaron Joseph
Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In anmore » astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.« less
Neutron Multiplicity: LANL W Covariance Matrix for Curve Fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendelberger, James G.
2016-12-08
In neutron multiplicity counting one may fit a curve by minimizing an objective function, χmore » $$2\\atop{n}$$. The objective function includes the inverse of an n by n matrix of covariances, W. The inverse of the W matrix has a closed form solution. In addition W -1 is a tri-diagonal matrix. The closed form and tridiagonal nature allows for a simpler expression of the objective function χ$$2\\atop{n}$$. Minimization of this simpler expression will provide the optimal parameters for the fitted curve.« less
Buckling of circular cylindrical shells under dynamically applied axial loads
NASA Technical Reports Server (NTRS)
Tulk, J. D.
1972-01-01
A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.
Influence of an asymmetric ring on the modeling of an orthogonally stiffened cylindrical shell
NASA Technical Reports Server (NTRS)
Rastogi, Naveen; Johnson, Eric R.
1994-01-01
Structural models are examined for the influence of a ring with an asymmetrical cross section on the linear elastic response of an orthogonally stiffened cylindrical shell subjected to internal pressure. The first structural model employs classical theory for the shell and stiffeners. The second model employs transverse shear deformation theories for the shell and stringer and classical theory for the ring. Closed-end pressure vessel effects are included. Interacting line load intensities are computed in the stiffener-to-skin joints for an example problem having the dimensions of the fuselage of a large transport aircraft. Classical structural theory is found to exaggerate the asymmetric response compared to the transverse shear deformation theory.