Closed time like curves enable perfect state distinguishability
Harrington, James William; Wilde, Mark M; Brun, Todd A
2008-01-01
The causal self-consistency condition for closed timelike curves can give rise to nonlinear interactions on chronology-respecting qubits. We demonstrate that particular unitary interactions between closed timelike curve qubits and chronology-respecting qubits allow perfect distinguishability of nonorthogonal states, and provide a constructive proof for an arbitrary number of nonorthogonal states. This has a number of highly significant consequences. For example, an adversary with access to closed timelike curves can break the B92, BB84, and SARG04 quantum key distribution protocols, or any prepare-and-measure quantum key distribution scheme. Our result also implies that a party with access to closed timelike curves can violate the Holevo bound by accessing more than log(N) bits of information from an N-dimensional quantum state. In principle, he can transmit an arbitrarily large amount of classical information with a quantum system of fixed size. We discuss the implications of this for quantum cloning.
Quantum field theory in spaces with closed time-like curves
NASA Astrophysics Data System (ADS)
Boulware, D. G.
Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27(pi). A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.
Simulations of Closed Timelike Curves
NASA Astrophysics Data System (ADS)
Brun, Todd A.; Wilde, Mark M.
2017-03-01
Proposed models of closed timelike curves (CTCs) have been shown to enable powerful information-processing protocols. We examine the simulation of models of CTCs both by other models of CTCs and by physical systems without access to CTCs. We prove that the recently proposed transition probability CTCs (T-CTCs) are physically equivalent to postselection CTCs (P-CTCs), in the sense that one model can simulate the other with reasonable overhead. As a consequence, their information-processing capabilities are equivalent. We also describe a method for quantum computers to simulate Deutschian CTCs (but with a reasonable overhead only in some cases). In cases for which the overhead is reasonable, it might be possible to perform the simulation in a table-top experiment. This approach has the benefit of resolving some ambiguities associated with the equivalent circuit model of Ralph et al. Furthermore, we provide an explicit form for the state of the CTC system such that it is a maximum-entropy state, as prescribed by Deutsch.
Cosmic string lensing and closed timelike curves
NASA Astrophysics Data System (ADS)
Shlaer, Benjamin; Tye, S.-H. Henry
2005-08-01
In an analysis of the gravitational lensing by two relativistic cosmic strings, we argue that the formation of closed timelike curves proposed by Gott is unstable in the presence of particles (e.g. the cosmic microwave background radiation). Because of the attractorlike behavior of the closed timelike curve, we argue that this instability is very generic. A single graviton or photon in the vicinity, no matter how soft, is sufficient to bend the strings and prevent the formation of closed timelike curves. We also show that the gravitational lensing due to a moving cosmic string is enhanced by its motion, not suppressed.
Experimental simulation of closed timelike curves.
Ringbauer, Martin; Broome, Matthew A; Myers, Casey R; White, Andrew G; Ralph, Timothy C
2014-06-19
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein's field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved, leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into nonlinearities and the emergence of causal structures in quantum mechanics--essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the nonlinear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction and the influence of decoherence.
Experimental simulation of closed timelike curves
NASA Astrophysics Data System (ADS)
Ringbauer, Martin; Broome, Matthew A.; Myers, Casey R.; White, Andrew G.; Ralph, Timothy C.
2014-06-01
Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein’s field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved, leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into nonlinearities and the emergence of causal structures in quantum mechanics—essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the nonlinear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction and the influence of decoherence.
Quantum fields on closed timelike curves
Pienaar, J. L.; Myers, C. R.; Ralph, T. C.
2011-12-15
Recently, there has been much interest in the evolution of quantum particles on closed timelike curves (CTCs). However, such models typically assume pointlike particles with only two degrees of freedom; a very questionable assumption given the relativistic setting of the problem. We show that it is possible to generalize the Deutsch model of CTCs to fields using the equivalent circuit formalism. We give examples for coherent, squeezed, and single-photon states interacting with the CTC via a beamsplitter. The model is then generalized further to account for the smooth transition to normal quantum mechanics as the CTC becomes much smaller than the size of the modes interacting on it. In this limit, we find that the system behaves like a standard quantum-mechanical feedback loop.
Microorganism billiards in closed plane curves
NASA Astrophysics Data System (ADS)
Krieger, Madison
Recent experiments and numerical simulations have demonstrated that many species of microorganisms reflect aspecularly from a solid surface -- due to steric and hydrodynamic interactions with the wall, their outgoing angle is fixed and independent of the angle of incidence. Motivated by these results, we discuss theory and computation of the ``aspecular billiard'', a modification of the classical billiard in which the outgoing angle is constant. We restrict our attention to closed plane curves, focusing on three canonical examples: the ellipse, the Bunimovich stadium, and the Sinai billiard. These systems can have a rich array of orbits, and the Lyapunov exponent is shown to be dependent on the billiard geometry and the outgoing angle. We apply these results to the design of tunable passive sorting mechanisms.
Quantum computational complexity in the presence of closed timelike curves
Bacon, Dave
2004-09-01
Quantum computation with quantum data that can traverse closed timelike curves represents a new physical model of computation. We argue that a model of quantum computation in the presence of closed timelike curves can be formulated which represents a valid quantification of resources given the ability to construct compact regions of closed timelike curves. The notion of self-consistent evolution for quantum computers whose components follow closed timelike curves, as pointed out by Deutsch [Phys. Rev. D 44, 3197 (1991)], implies that the evolution of the chronology respecting components which interact with the closed timelike curve components is nonlinear. We demonstrate that this nonlinearity can be used to efficiently solve computational problems which are generally thought to be intractable. In particular we demonstrate that a quantum computer which has access to closed timelike curve qubits can solve NP-complete problems with only a polynomial number of quantum gates.
Microorganism billiards in closed plane curves.
Krieger, Madison S
2016-12-01
Recent experiments have shown that many species of microorganisms leave a solid surface at a fixed angle determined by steric interactions and near-field hydrodynamics. This angle is completely independent of the incoming angle. For several collisions in a closed body this determines a unique type of billiard system, an aspecular billiard in which the outgoing angle is fixed for all collisions. We analyze such a system using numerical simulation of this billiard for varying tables and outgoing angles, and also utilize the theory of one-dimensional maps and wavefront dynamics. When applicable we cite results from and compare our system to similar billiard systems in the literature. We focus on examples from three broad classes: the ellipse, the Bunimovich billiards, and the Sinai billiards. The effect of a noisy outgoing angle is also discussed.
On some Closed Magnetic Curves on a 3-torus
NASA Astrophysics Data System (ADS)
Munteanu, Marian Ioan; Nistor, Ana Irina
2017-06-01
We consider two magnetic fields on the 3-torus obtained from two different contact forms on the Euclidean 3-space and we study when their corresponding normal magnetic curves are closed. We obtain periodicity conditions analogues to those for the closed geodesics on the torus.
Closed Timelike Curves in Type II Non-Vacuum Spacetime
NASA Astrophysics Data System (ADS)
Ahmed, Faizuddin
2017-02-01
Here we present a cyclicly symmetric non-vacuum spacetime, admitting closed timelike curves (CTCs) which appear after a certain instant of time, i.e., a time-machine spacetime. The spacetime is asymptotically flat, free-from curvature singularities and a four-dimensional extension of the Misner space in curved spacetime. The spacetime is of type II in the Petrov classification scheme and the matter field pure radiation satisfy the energy condition.
Close view of the central pavilion in the curving east ...
Close view of the central pavilion in the curving east facade to show paired columns and pediment with sculpture by Adolph Alexander Weinman entitled "The Spirit of Progress and Civilization" - New Post Office Building, Twelfth Street and Pennsylvania Avenue, Washington, District of Columbia, DC
Closed timelike curves in asymmetrically warped brane universes
Paes, Heinrich; Pakvasa, Sandip; Dent, James; Weiler, Thomas J.
2009-08-15
In asymmetrically-warped spacetimes different warp factors are assigned to space and to time. We discuss causality properties of these warped brane universes and argue that scenarios with two extra dimensions may allow for timelike curves which can be closed via paths in the extra-dimensional bulk. In particular, necessary and sufficient conditions on the metric for the existence of closed timelike curves are presented. We find a six-dimensional warped metric which satisfies the CTC conditions, and where the null, weak and dominant energy conditions are satisfied on the brane (although only the former remains satisfied in the bulk). Such scenarios are interesting, since they open the possibility of experimentally testing the chronology protection conjecture by manipulating on our brane initial conditions of gravitons or hypothetical gauge-singlet fermions (''sterile neutrinos'') which then propagate in the extra dimensions.
(2+1)-dimensional spacetimes containing closed timelike curves
NASA Astrophysics Data System (ADS)
Headrick, Matthew P.; Gott, J. Richard, III
1994-12-01
We investigate the global geometries of (2+1)-dimensional spacetimes as characterized by the transformations undergone by tangent spaces upon parallel transport around closed curves. We critically discuss the use of the term ``total energy-momentum'' as a label for such parallel-transport transformations, pointing out several problems with it. We then investigate parallel-transport transformations in the known (2+1)-dimensional spacetimes containing closed timelike curves (CTC's), and introduce a few new such spacetimes. Using the more specific concept of the holonomy of a closed curve, applicable in simply connected spacetimes, we emphasize that Gott's two-particle CTC-containing spacetime does not have a tachyonic geometry. Finally, we prove the following modified version of Kabat's conjecture: if a CTC is deformable to spacelike or null infinity while remaining a CTC, then its parallel-transport transformation cannot be a rotation; therefore its holonomy, if defined, cannot be a rotation other than through a multiple of 2π.
Bayesian Multiscale Modeling of Closed Curves in Point Clouds.
Gu, Kelvin; Pati, Debdeep; Dunson, David B
2014-10-01
Modeling object boundaries based on image or point cloud data is frequently necessary in medical and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to the classification of organisms based on their structural information. In low-contrast images or sparse and noisy point clouds, there is often insufficient data to recover local segments of the boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly diverse 2D objects in the form of closed curves. The model is based on a novel multiscale deformation process. By relating multiple objects through a hierarchical formulation, we can successfully recover missing boundaries by borrowing structural information from similar objects at the appropriate scale. Furthermore, the model's latent parameters help interpret the population, indicating dimensions of significant structural variability and also specifying a 'central curve' that summarizes the collection. Theoretical properties of our prior are studied in specific cases and efficient Markov chain Monte Carlo methods are developed, evaluated through simulation examples and applied to panorex teeth images for modeling teeth contours and also to a brain tumor contour detection problem.
Closed timelike curves in measurement-based quantum computation
Dias da Silva, Raphael; Galvao, Ernesto F.; Kashefi, Elham
2011-01-15
Many results have been recently obtained regarding the power of hypothetical closed timelike curves (CTCs) in quantum computation. Here we show that the one-way model of measurement-based quantum computation encompasses in a natural way the CTC model proposed by Bennett, Schumacher, and Svetlichny. We identify a class of CTCs in this model that can be simulated deterministically and point to a fundamental limitation of Deutsch's CTC model which leads to predictions conflicting with those of the one-way model.
Bayesian Multiscale Modeling of Closed Curves in Point Clouds
Gu, Kelvin; Pati, Debdeep; Dunson, David B.
2014-01-01
Modeling object boundaries based on image or point cloud data is frequently necessary in medical and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to the classification of organisms based on their structural information. In low-contrast images or sparse and noisy point clouds, there is often insufficient data to recover local segments of the boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly diverse 2D objects in the form of closed curves. The model is based on a novel multiscale deformation process. By relating multiple objects through a hierarchical formulation, we can successfully recover missing boundaries by borrowing structural information from similar objects at the appropriate scale. Furthermore, the model’s latent parameters help interpret the population, indicating dimensions of significant structural variability and also specifying a ‘central curve’ that summarizes the collection. Theoretical properties of our prior are studied in specific cases and efficient Markov chain Monte Carlo methods are developed, evaluated through simulation examples and applied to panorex teeth images for modeling teeth contours and also to a brain tumor contour detection problem. PMID:25544786
Quantum field theory in spaces with closed timelike curves
NASA Astrophysics Data System (ADS)
Boulware, David G.
1992-11-01
Gott spacetime has closed timelike curves, but no locally anomalous stress energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 2π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the noncausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the noncausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.
Closing the loop of the soil water retention curve
Lu, Ning; Alsherif, N; Wayllace, Alexandra; Godt, Jonathan W.
2015-01-01
The authors, to their knowledge for the first time, produced two complete principal soil water retention curves (SWRCs) under both positive and negative matric suction regimes. An innovative testing technique combining the transient water release and imbibition method (TRIM) and constant flow method (CFM) was used to identify the principal paths of SWRC in the positive pore-water pressure regime under unsaturated conditions. A negative matric suction of 9.8 kPa is needed to reach full saturation or close the loop of the SWRC for a silty soil. This work pushes the understanding of the interaction of soil and water into new territory by quantifying the boundaries of the SWRC over the entire suction domain, including both wetting and drying conditions that are relevant to field conditions such as slope wetting under heavy rainfall or rapid groundwater table rise in earthen dams or levees.
On Closed Timelike Curves and Warped Brane World Models
NASA Astrophysics Data System (ADS)
Slagter, Reinoud Jan
2013-09-01
At first glance, it seems possible to construct in general relativity theory causality violating solutions. The most striking one is the Gott spacetime. Two cosmic strings, approaching each other with high velocity, could produce closed timelike curves. It was quickly recognized that this solution violates physical boundary conditions. The effective one particle generator becomes hyperbolic, so the center of mass is tachyonic. On a 5-dimensional warped spacetime, it seems possible to get an elliptic generator, so no obstruction is encountered and the velocity of the center of mass of the effective particle has an overlap with the Gott region. So a CTC could, in principle, be constructed. However, from the effective 4D field equations on the brane, which are influenced by the projection of the bulk Weyl tensor on the brane, it follows that no asymptotic conical space time is found, so no angle deficit as in the 4D counterpart model. This could also explain why we do not observe cosmic strings.
Testing causality violation on spacetimes with closed timelike curves
NASA Astrophysics Data System (ADS)
Rosenberg, Seth
1998-03-01
Generalized quantum mechanics is used to examine a simple two-particle scattering experiment in which there is a bounded region of closed timelike curves (CTCs) in the experiment's future. The transitional probability is shown to depend on the existence and distribution of the CTCs. The effect is therefore acausal, since the CTCs are in the experiment's causal future. The effect is due to the nonunitary evolution of the pre- and postscattering particles as they pass through the region of CTCs. We use the time-machine spacetime developed by Politzer, in which CTCs are formed due to the identification of a single spatial region at one time with the same region at another time. For certain initial data, the total cross section of a scattering experiment is shown to deviate from the standard value (the value predicted if no CTCs existed). It is shown that if the time machines are small, sparsely distributed, or far away, then the deviation in the total cross section may be negligible as compared to the experimental error of even the most accurate measurements of cross sections. For a spacetime with CTCs at all points, or one where microscopic time machines pervade the spacetime in the final moments before the big crunch, the total cross section is shown to agree with the standard result (no CTCs) due to a cancellation effect.
Dallaston, Michael C.
2016-01-01
Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior. PMID:26997898
Dallaston, Michael C; McCue, Scott W
2016-01-01
Motivated by a problem from fluid mechanics, we consider a generalization of the standard curve shortening flow problem for a closed embedded plane curve such that the area enclosed by the curve is forced to decrease at a prescribed rate. Using formal asymptotic and numerical techniques, we derive possible extinction shapes as the curve contracts to a point, dependent on the rate of decreasing area; we find there is a wider class of extinction shapes than for standard curve shortening, for which initially simple closed curves are always asymptotically circular. We also provide numerical evidence that self-intersection is possible for non-convex initial conditions, distinguishing between pinch-off and coalescence of the curve interior.
Quantum interactions with closed timelike curves and superluminal signaling
NASA Astrophysics Data System (ADS)
Bub, Jeffrey; Stairs, Allen
2014-02-01
There is now a significant body of results on quantum interactions with closed timelike curves (CTCs) in the quantum information literature, for both the Deutsch model of CTC interactions (D-CTCs) and the projective model (P-CTCs). As a consequence, there is a prima facie argument exploiting entanglement that CTC interactions would enable superluminal and, indeed, effectively instantaneous signaling. In cases of spacelike separation between the sender of a signal and the receiver, whether a receiver measures the local part of an entangled state or a disentangled state to access the signal can depend on the reference frame. We propose a consistency condition that gives priority to either an entangled perspective or a disentangled perspective in spacelike-separated scenarios. For D-CTC interactions, the consistency condition gives priority to frames of reference in which the state is disentangled, while for P-CTC interactions the condition selects the entangled state. Using the consistency condition, we show that there is a procedure that allows Alice to signal to Bob in the past via relayed superluminal communications between spacelike-separated Alice and Clio, and spacelike-separated Clio and Bob. This opens the door to time travel paradoxes in the classical domain. Ralph [T. C. Ralph, arXiv:1107.4675 [quant-ph].] first pointed this out for P-CTCs, but we show that Ralph's procedure for a "radio to the past" is flawed. Since both D-CTCs and P-CTCs allow classical information to be sent around a spacetime loop, it follows from a result by Aaronson and Watrous [S. Aaronson and J. Watrous, Proc. R. Soc. A 465, 631 (2009), 10.1098/rspa.2008.0350] for CTC-enhanced classical computation that a quantum computer with access to P-CTCs would have the power of PSPACE, equivalent to a D-CTC-enhanced quantum computer.
Replicating the benefits of Deutschian closed timelike curves without breaking causality
NASA Astrophysics Data System (ADS)
Yuan, Xiao; Assad, Syed M.; Thompson, Jayne; Haw, Jing Yan; Vedral, Vlatko; Ralph, Timothy C.; Lam, Ping Koy; Weedbrook, Christian; Gu, Mile
2015-11-01
In general relativity, closed timelike curves can break causality with remarkable and unsettling consequences. At the classical level, they induce causal paradoxes disturbing enough to motivate conjectures that explicitly prevent their existence. At the quantum level such problems can be resolved through the Deutschian formalism, however this induces radical benefits—from cloning unknown quantum states to solving problems intractable to quantum computers. Instinctively, one expects these benefits to vanish if causality is respected. Here we show that in harnessing entanglement, we can efficiently solve NP-complete problems and clone arbitrary quantum states—even when all time-travelling systems are completely isolated from the past. Thus, the many defining benefits of Deutschian closed timelike curves can still be harnessed, even when causality is preserved. Our results unveil a subtle interplay between entanglement and general relativity, and significantly improve the potential of probing the radical effects that may exist at the interface between relativity and quantum theory.
Transit light curve and inner structure of close-in planets
NASA Astrophysics Data System (ADS)
Correia, Alexandre C. M.
2014-10-01
Planets orbiting very close to their host stars have been found, some of them on the verge of tidal disruption. The ellipsoidal shape of these planets can significantly differ from a sphere, which modifies the transit light curves. Here we present an easy method for taking the effect of the tidal bulge into account in the transit photometric observations. We show that the differences in the light curve are greater than previously thought. When detectable, these differences provide an estimation of the fluid Love number, which is invaluable information on the internal structure of close-in planets. We also derive a simple analytical expression to correct the bulk density of these bodies, that can be 20% smaller than current estimates obtained assuming a spherical radius. Appendix A is available in electronic form at http://www.aanda.org
Formation of closed timelike curves in a composite vacuum/dust asymptotically flat spacetime
Ori, Amos
2007-08-15
We present a new asymptotically flat time-machine model made solely of vacuum and dust. The spacetime evolves from a regular spacelike initial hypersurface S and subsequently develops closed timelike curves. The initial hypersurface S is asymptotically flat and topologically trivial. The chronology violation occurs in a compact manner; namely, the first closed causal curves form at the boundary of the future domain of dependence of a compact region in S (the core). This central core is empty, and so is the external asymptotically flat region. The intermediate region surrounding the core (the envelope) is made of dust with positive energy density. This model trivially satisfies the weak, dominant, and strong energy conditions. Furthermore, it is governed by a well-defined system of field equations which possesses a well-posed initial-value problem.
NASA Astrophysics Data System (ADS)
Guo, Kongming; Jiang, Jun; Xu, Yalan
2016-09-01
In this paper, a simple but accurate semi-analytical method to approximate probability density function of stochastic closed curve attractors is proposed. The expression of distribution applies to systems with strong nonlinearities, while only weak noise condition is needed. With the understanding that additive noise does not change the longitudinal distribution of the attractors, the high-dimensional probability density distribution is decomposed into two low-dimensional distributions: the longitudinal and the transverse probability density distributions. The longitudinal distribution can be calculated from the deterministic systems, while the probability density in the transverse direction of the curve can be approximated by the stochastic sensitivity function method. The effectiveness of this approach is verified by comparing the expression of distribution with the results of Monte Carlo numerical simulations in several planar systems.
Closed timelike curves produced by pairs of moving cosmic strings - Exact solutions
NASA Technical Reports Server (NTRS)
Gott, J. Richard, III
1991-01-01
Exact solutions of Einstein's field equations are presented for the general case of two moving straight cosmic strings that do not intersect. The solutions for parallel cosmic strings moving in opposite directions show closed timelike curves (CTCs) that circle the two strings as they pass, allowing observers to visit their own past. Similar results occur for nonparallel strings, and for masses in (2+1)-dimensional spacetime. For finite string loops the possibility that black-hole formation may prevent the formation of CTCs is discussed.
Closed Timelike Curves via Postselection: Theory and Experimental Test of Consistency
NASA Astrophysics Data System (ADS)
Lloyd, Seth; Maccone, Lorenzo; Garcia-Patron, Raul; Giovannetti, Vittorio; Shikano, Yutaka; Pirandola, Stefano; Rozema, Lee A.; Darabi, Ardavan; Soudagar, Yasaman; Shalm, Lynden K.; Steinberg, Aephraim M.
2011-01-01
Closed timelike curves (CTCs) are trajectories in spacetime that effectively travel backwards in time: a test particle following a CTC can interact with its former self in the past. A widely accepted quantum theory of CTCs was proposed by Deutsch. Here we analyze an alternative quantum formulation of CTCs based on teleportation and postselection, and show that it is inequivalent to Deutsch’s. The predictions or retrodictions of our theory can be simulated experimentally: we report the results of an experiment illustrating how in our particular theory the “grandfather paradox” is resolved.
Interactive 3D medical data cutting using closed curve with arbitrary shape.
Ning, Hai; Yang, Rongqian; Ma, Amin; Wu, Xiaoming
2015-03-01
Interactive 3D cutting is widely used as a flexible manual segmentation tool to extract medical data on regions of interest. A novel method for clipping 3D medical data is proposed to reveal the interior of volumetric data. The 3D cutting method retains or clips away selected voxels projected inside an arbitrary-shaped closed curve which is clipping geometry constructed by interactive tool to make cutting operation more flexible. Transformation between the world and screen coordinate frames is studied to project voxels of medical data onto the screen frame and avoid computing intersection of clipping geometry and volumetric data in 3D space. For facilitating the decision on whether the voxels should be retained, voxels through coordinate transformation are all projected onto a binary mask image on screen frame which the closed curve is also projected onto to conveniently obtain the voxels of intersection. The paper pays special attention to optimization algorithm of cutting process. The optimization algorithm that mixes octree with quad-tree decomposition is introduced to reduce computation complexity, save computation time, and match real time. The paper presents results obtained from raw and segmented medical volume datasets and the process time of cutting operation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Light curves of the latest FUor: Indication of a close binary
NASA Astrophysics Data System (ADS)
Hackstein, M.; Haas, M.; Kóspál, Á.; Hambsch, F.-J.; Chini, R.; Ábrahám, P.; Moór, A.; Pozo Nuñez, F.; Ramolla, M.; Westhues, Ch.; Kaderhandt, L.; Fein, Ch.; Barr Domínguez, A.; Hodapp, K.-W.
2015-10-01
We monitored the recent FUor 2MASS J06593158-0405277 (V960 Mon) since November 2009 at various observatories and multiple wavelengths. After the outburst by nearly 2.9 mag in r around September 2014 the brightness gently fades until April 2015 by nearly 1 mag in U and 0.5 mag in z. Thereafter the brightness at λ> 5000 Å was constant until June 2015 while the shortest wavelengths (U,B) indicate a new rise, similar to that seen for the FUor V2493 Cyg (HBC722). Our near-infrared (NIR) monitoring between December 2014 and April 2015 shows a smaller outburst amplitude (~2 mag) and a smaller (0.2-0.3 mag) post-outburst brightness decline. Optical and NIR color-magnitude diagrams indicate that the brightness decline is caused by growing extinction. The post-outburst light curves are modulated by an oscillating color-neutral pattern with a period of about 17 days and an amplitude declining from ~0.08 mag in October 2014 to ~0.04 mag in May 2015. The properties of the oscillating pattern lead us to suggest the presence of a close binary with eccentric orbit. The light curve Table is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/L12
Quantum Fluctuations and Thermodynamic Processes in the Presence of Closed Timelike Curves
NASA Astrophysics Data System (ADS)
Tanaka, Tsunefumi
1997-10-01
A closed timelike curve (CTC) is a closed loop in spacetime whose tangent vector is everywhere timelike. A spacetime which contains CTC's will allow time travel. One of these spacetimes is Grant space. It can be constructed from Minkowski space by imposing periodic boundary conditions in spatial directions and making the boundaries move toward each other. If Hawking's chronology protection conjecture is correct, there must be a physical mechanism preventing the formation of CTC's. Currently the most promising candidate for the chronology protection mechanism is the back reaction of the metric to quantum vacuum fluctuations. In this thesis the quantum fluctuations for a massive scalar field, a self-interacting field, and for a field at nonzero temperature are calculated in Grant space. The stress-energy tensor is found to remain finite everywhere in Grant space for the massive scalar field with sufficiently large field mass. Otherwise it diverges on chronology horizons like the stress-energy tensor for a massless scalar field. If CTC's exist they will have profound effects on physical processes. Causality can be protected even in the presence of CTC's if the self-consistency condition is imposed on all processes. Simple classical thermodynamic processes of a box filled with ideal gas in the presence of CTC's are studied. If a system of boxes is closed, its state does not change as it travels through a region of spacetime with CTC's. But if the system is open, the final state will depend on the interaction with the environment. The second law of thermodynamics is shown to hold for both closed and open systems. A similar problem is investigated at a statistical level for a gas consisting of multiple selves of a single particle in a spacetime with CTC's.
Perfect State Distinguishability and Computational Speedups with Postselected Closed Timelike Curves
NASA Astrophysics Data System (ADS)
Brun, Todd A.; Wilde, Mark M.
2012-03-01
Bennett and Schumacher's postselected quantum teleportation is a model of closed timelike curves (CTCs) that leads to results physically different from Deutsch's model. We show that even a single qubit passing through a postselected CTC (P-CTC) is sufficient to do any postselected quantum measurement with certainty, and we discuss an important difference between "Deutschian" CTCs (D-CTCs) and P-CTCs in which the future existence of a P-CTC might affect the present outcome of an experiment. Then, based on a suggestion of Bennett and Smith, we explicitly show how a party assisted by P-CTCs can distinguish a set of linearly independent quantum states, and we prove that it is not possible for such a party to distinguish a set of linearly dependent states. The power of P-CTCs is thus weaker than that of D-CTCs because the Holevo bound still applies to circuits using them, regardless of their ability to conspire in violating the uncertainty principle. We then discuss how different notions of a quantum mixture that are indistinguishable in linear quantum mechanics lead to dramatically differing conclusions in a nonlinear quantum mechanics involving P-CTCs. Finally, we give explicit circuit constructions that can efficiently factor integers, efficiently solve any decision problem in the intersection of NP and coNP, and probabilistically solve any decision problem in NP. These circuits accomplish these tasks with just one qubit traveling back in time, and they exploit the ability of postselected closed timelike curves to create grandfather paradoxes for invalid answers.
NASA Astrophysics Data System (ADS)
Calzetta, E.; Hu, B. L.
1987-01-01
We discuss the generalization to curved spacetime of a path-integral formalism of quantum field theory based on the sum over paths first going forward in time in the presence of one external source from an in vacuum to a state defined on a hypersurface of constant time in the future, and then backwards in time in the presence of a different source to the same in vacuum. This closed-time-path formalism which generalizes the conventional method based on in-out vacuum persistence amplitudes yields real and causal effective actions, field equations, and expectation values. We apply this method to two problems in semiclassical cosmology. First we study the back reaction of particle production in a radiation-filled Bianchi type-I universe with a conformal scalar field. Unlike the in-out formalism which yields complex geometries the real and causal effective action here yields equations for real effective geometries, with more readily interpretable results. It also provides a clear identification of particle production as a dissipative process in semiclassical theories. In the second problem we calculate the vacuum expectation value of the stress-energy tensor for a nonconformal massive λφ4 theory in a Robertson-Walker universe. This study serves to illustrate the use of Feynman diagrams and higher-loop calculations in this formalism. It also demonstrates the economy of this method in the calculation of expectation values over the mode-sum Bogolubov transformation methods ordinarily applied to matrix elements calculated in the conventional in-out approach. The capability of the closed-time-path formalism of dealing with Feynman, causal, and correlation functions on the same footing makes it a potentially powerful and versatile technique for treating nonequilibrium statistical properties of dynamical systems as in early-Universe quantum processes.
Exact string theory model of closed timelike curves and cosmological singularities
NASA Astrophysics Data System (ADS)
Johnson, Clifford V.; Svendsen, Harald G.
2004-12-01
We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios.
Exact string theory model of closed timelike curves and cosmological singularities
Johnson, Clifford V.; Svendsen, Harald G.
2004-12-15
We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of {alpha}{sup '} corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios.
NASA Astrophysics Data System (ADS)
Wallman, Joel J.; Bartlett, Stephen D.
2012-05-01
There has been considerable recent interest in the consequences of closed timelike curves (CTCs) for the dynamics of quantum mechanical systems. A vast majority of research into this area makes use of the dynamical equations developed by Deutsch, which were developed from a consistency condition that assumes that mixed quantum states uniquely describe the physical state of a system. We criticize this choice of consistency condition from an epistemic perspective, i.e., a perspective in which the quantum state represents a state of knowledge about a system. We demonstrate that directly applying Deutsch's condition when mixed states are treated as representing an observer's knowledge of a system can conceal time travel paradoxes from the observer, rather than resolving them. To shed further light on the appropriate dynamics for quantum systems traversing CTCs, we make use of a toy epistemic theory with a strictly classical ontology due to Spekkens and show that, in contrast to the results of Deutsch, many of the traditional paradoxical effects of time travel are present.
Mixedness and entanglement in the presence of localized closed timelike curves
NASA Astrophysics Data System (ADS)
Jung, Eylee; Park, DaeKil
2016-07-01
We examine mixedness and entanglement of the chronology-respecting (CR) system assuming that quantum mechanical closed timelike curves (CTCs) exist in nature. In order to discuss these two issues analytically, we introduce the qubit system and apply the general controlled operations between CR and CTC systems. We use the magnitude of Bloch vector as a measure of mixedness. While Deutschian-CTC (D-CTC) either preserves or decreases the magnitude, postselected-CTC (P-CTC) can increase it. Non-intuitively, even the completely mixed CR qubit can be converted into a pure state after CTC qubit travels around the P-CTC. It is also shown that while D-CTC cannot increase the entanglement of CR system, P-CTC can increase it. This means that any partially entangled state can be maximally entangled pure state if P-CTC exists. Thus, distillation of P-CTC-assisted entanglement can be easily achieved without preparing the multiple copies of the partially entangled state.
Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve
Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.
2007-01-30
An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.
Quantum Physics, Fields and Closed Timelike Curves: The D-CTC Condition in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Tolksdorf, Jürgen; Verch, Rainer
2017-07-01
The D-CTC condition has originally been proposed by David Deutsch as a condition on states of a quantum communication network that contains "backward time-steps" in some of its branches. It has been argued that this is an analogue for quantum processes in the presence of closed timelike curves (CTCs). The unusual properties of states of quantum communication networks that fulfill the D-CTC condition have been discussed extensively in recent literature. In this work, the D-CTC condition is investigated in the framework of quantum field theory in the local, operator-algebraic approach due to Haag and Kastler. It is shown that the D-CTC condition cannot be fulfilled in states that are analytic in the energy, or satisfy the Reeh-Schlieder property, for a certain class of processes and initial conditions. On the other hand, if a quantum field theory admits sufficiently many uncorrelated states across acausally related spacetime regions (as implied by the split property), then the D-CTC condition can always be fulfilled approximately to arbitrary precision. As this result pertains to quantum field theory on globally hyperbolic spacetimes where CTCs are absent, one may conclude that interpreting the D-CTC condition as characteristic for quantum processes in the presence of CTCs could be misleading, and should be regarded with caution. Furthermore, a construction of the quantized massless Klein-Gordon field on the Politzer spacetime, often viewed as spacetime analogue for quantum communication networks with backward time-steps, is proposed in this work.
Universal rescaling of flow curves for yield-stress fluids close to jamming
NASA Astrophysics Data System (ADS)
Dinkgreve, M.; Paredes, J.; Michels, M. A. J.; Bonn, D.
2015-07-01
The experimental flow curves of four different yield-stress fluids with different interparticle interactions are studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems, master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are compared with much of the available literature data for yield-stress systems.
McCauley, S R; Hannay, H J; Swank, P R
2001-05-01
Rapid rate of recovery has been associated with better outcome following closed-head injuries, but few studies have compellingly demonstrated this. This study used growth curve analyses of Disability Rating Scale (DRS) scores at acute hospitalization discharge, 1, 3, and 6 months post injury in a sample of 55 patients with a closed-head injury. Six month post-injury outcome measures were taken from significant other (SO) responses on the NYU Head Injury Family Interview (NYU-HIFI) including severity and burden ratings of affective/neurobehavioral disturbance, cognitive deficits, and physical/dependency status. Rate of recovery (linear and curvilinear recovery curve components) was significantly related to the level of affective/neurobehavioral severity, and the severity and burden of SO-perceived cognitive deficits. Only the intercept of the DRS recovery curve was associated with the SO-perceived severity and burden of physical/dependency status. Growth curve modeling is a meaningful and powerful tool in predicting head injury outcome.
The spaces of non-contractible closed curves in compact space forms
NASA Astrophysics Data System (ADS)
Taimanov, I. A.
2016-10-01
The rational equivariant cohomology of noncontractible loop spaces is calculated for compact space forms. It is also shown how to use these calculations to establish the existence of closed geodesics. Bibliography: 18 titles.
NASA Astrophysics Data System (ADS)
Hirano, Teruyuki; Sato, Bun'ei; Masuda, Kento; Benomar, Othman Michel; Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki
2015-08-01
Tidal interactions are a key process to understand the evolution history of close-in exoplanets. But tidal interactions still have a large uncertainty in their prediction for the damping timescales of stellar obliquity and semi-major axis (e.g., Winn et al. 2010). In the past year, we have worked on a search for (transiting) giant planets around evolved stars, for which few close-in planets were discovered. It has been reported that evolved stars lack close-in planets, which is often attributed to the tidal evolution and/or engulfment of close-in planets by the hosts. Meanwhile, Kepler spacecraft has detected a significant fraction of transiting planet candidates around evolved stars. Confirming the planetary nature for these candidates is especially important in the sense that the comparion between the occurence rates of close-in planets around main sequence stars and evolved stars provides a unique opportunity to discuss the final stage of close-in planets, including tidal evolutions.In this presentation, we review our effort to search for close-in planets around evolved stars. With the aim of confirming KOI planet candidates around evolved stars, we measured precision radial velocities (RVs) for evoloved stars with transiting planet candidates using Subaru/HDS. We also developed a new code which simultaneously models and fits the observed RVs and phase-curve variations in the Kepler light curve data (e.g., transits, stellar ellipsoidal variations, and planet emission/reflected light). As a result of applying the global fit to KOI giants/subgiants, we confirmed a few giant planets around evolved stars (Kepler-91 and KOI-1894), as well as revealed that KOI-977 is more likely a false positive.
NASA Astrophysics Data System (ADS)
Hirano, Teruyuki; Sato, Bun'ei; Masuda, Kento; Benomar, Othman Michel; Takeda, Yoichi; Omiya, Masashi; Harakawa, Hiroki
2016-10-01
Tidal interactions are a key process to understand the evolution history of close-in exoplanets. But tidals still have a large uncertainty in their prediction for the damping timescales of stellar obliquity and semi-major axis. We have worked on a search for transiting giant planets around evolved stars, for which few close-in planets were discovered. It has been reported that evolved stars lack close-in planets, which is often attributed to the tidal evolution and/or engulfment of close-in planets by the hosts. Meanwhile, Kepler has detected a certain fraction of transiting planet candidates around evolved stars. Confirming the planetary nature for these candidates is especially important since the comparison between the occurrence rates of close-in planets around main sequence stars and evolved stars provides a unique opportunity to discuss the final stage of close-in planets. With the aim of confirming KOI planet candidates around evolved stars, we measured precision radial velocities (RVs) for evolved stars with transiting planet candidates using Subaru/HDS. We also developed a new code which simultaneously models and fits the observed RVs and phase-curve variations in the Kepler data (e.g., transits, stellar ellipsoidal variations, and planet emission/reflected light). As a result of applying the global fit to KOI giants/subgiants, we confirmed two giant planets around evolved stars (Kepler-91 and KOI-1894), as well as revealed that KOI-977 is more likely a false positive.
NASA Astrophysics Data System (ADS)
Sadegh, M.; Vrugt, J. A.; Gupta, H. V.; Xu, C.
2016-04-01
The flow duration curve is a signature catchment characteristic that depicts graphically the relationship between the exceedance probability of streamflow and its magnitude. This curve is relatively easy to create and interpret, and is used widely for hydrologic analysis, water quality management, and the design of hydroelectric power plants (among others). Several mathematical expressions have been proposed to mimic the FDC. Yet, these efforts have not been particularly successful, in large part because available functions are not flexible enough to portray accurately the functional shape of the FDC for a large range of catchments and contrasting hydrologic behaviors. Here, we extend the work of Vrugt and Sadegh (2013) and introduce several commonly used models of the soil water characteristic as new class of closed-form parametric expressions for the flow duration curve. These soil water retention functions are relatively simple to use, contain between two to three parameters, and mimic closely the empirical FDCs of 430 catchments of the MOPEX data set. We then relate the calibrated parameter values of these models to physical and climatological characteristics of the watershed using multivariate linear regression analysis, and evaluate the regionalization potential of our proposed models against those of the literature. If quality of fit is of main importance then the 3-parameter van Genuchten model is preferred, whereas the 2-parameter lognormal, 3-parameter GEV and generalized Pareto models show greater promise for regionalization.
A revised historical light curve of Eta Carinae and the timing of close periastron encounters
NASA Astrophysics Data System (ADS)
Smith, Nathan; Frew, David J.
2011-08-01
The historical light curve of the 19th century 'Great Eruption' of η Carinae provides a striking record of the violent instabilities encountered by massive stars. In this paper, we report and analyse newly uncovered historical estimates of the visual brightness of η Car during its eruption, and we correct some mistakes in the original record. The revised historical light curve looks substantially different from previous accounts; it shows two brief precursor eruptions in 1838 and 1843 that resemble modern supernova impostors, while the final brightening in 1844 December marks the time when η Car reached its peak brightness. We consider the timing of brightening events as they pertain to the binary system in η Car. (1) The brief 1838 and 1843 events rose to peak brightness within weeks of periastron passages if the pre-1845 orbital period was ˜5 per cent shorter than that at present due to the mass-loss of the eruption. Each event lasted only ˜100 d. (2) The main brightening at the end of 1844 has no conceivable association with periastron, beginning suddenly more than 1.5 yr after periastron. It lasted ˜10 yr, with no obvious influence of periastron encounters during that time. (3) The 1890 eruption began to brighten at periastron, but took over 1 yr to reach maximum brightness and remained there for almost 10 yr. A second periastron passage mid-way through the 1890 eruption had no visible effect. While the evidence for a link between periastron encounters and the two brief precursor events is compelling, the differences between the three cases above make it difficult to explain all three phenomena with the same mechanism.
Gadyl'shin, R R
2000-06-30
In this article the two-dimensional Dirichlet boundary-value problem is considered for the Helmholtz operator with boundary conditions on an almost closed curve {gamma}{sub {epsilon}} where {epsilon}<<1 is the distance between the end-points of the curve. A complete asymptotic expression is constructed for a pole of the analytic continuation of the Green's function of this problem as the pole converges to a simple eigenfrequency of the limiting interior problem in the case when the corresponding eigenfunction of the limiting problem has a second-order zero at the centre of contraction of the gap. The influence of symmetry of the gap on the absolute value of the imaginary parts of the poles is investigated.
NASA Astrophysics Data System (ADS)
Kuznetsov, V. L.; Zilberberg, I. L.; Butenko, Yu. V.; Chuvilin, A. L.; Segall, B.
1999-07-01
In recent high resolution transmission electron microscopic studies we have found that high temperature vacuum annealing (1200-1800 K) of ultradispersed (2-5 nm) and micron size diamond produces fullerene-like graphitic species, namely, onion-like carbon and closed curved graphite structures (multilayer nanotubes and nanofolds), respectively. Here we undertake theoretical studies to help in the understanding of the experimental data for these systems. (1) Calculations of cluster models by a standard semiempirical method (MNDO a software package) are used to explain the preferential exfoliation of {111} planes over other low index diamond planes. (2) The same approach suggests the likelihood that the graphitization is initiated by a significant thermal displacement of a single carbon atom at temperatures close to the Debye temperature. (3) At the diamond-graphite interface we have observed the formation of two curved graphitic sheets from three diamond {111} planes. We suggest that the evolution of this interface proceeds by a "zipper"-like migration mechanism with the carbon atoms of the middle diamond layer being distributed equally between the two growing graphitic sheets. (4) The observed mosaic packaging of closed curved graphite structures during the diamond surface graphitization is suggested to be a self-assembling process. This process is explained in terms of the "stretching" of a bowed graphite hexagonal network. The stretch is due to the fact that, if relaxed, the network would be smaller than the initially transformed hexagonal diamond (111), and to the increased separation between the separated sheet and the surface. The initial phase of the process is studied quantitatively using a molecular mechanics simulation.
NASA Astrophysics Data System (ADS)
Jex, Michal; Lotoreichik, Vladimir
2016-02-01
Let Λ ⊂ ℝ2 be a non-closed piecewise-C1 curve, which is either bounded with two free endpoints or unbounded with one free endpoint. Let u±|Λ ∈ L2(Λ) be the traces of a function u in the Sobolev space H1(ℝ2∖Λ) onto two faces of Λ. We prove that for a wide class of shapes of Λ the Schrödinger operator Hω Λ with δ'-interaction supported on Λ of strength ω ∈ L∞(Λ; ℝ) associated with the quadratic form H 1 ( R 2 ∖ Λ ) ∋ u ↦ ∫ R 2 |" separators=" ∇ u | 2 d x - ∫ Λ ω |" separators=" u + | Λ - u - | Λ | 2 d s has no negative spectrum provided that ω is pointwise majorized by a strictly positive function explicitly expressed in terms of Λ. If, additionally, the domain ℝ2∖Λ is quasi-conical, we show that σ ( Hω Λ ) = [ 0 , + ∞ ) . For a bounded curve Λ in our class and non-varying interaction strength ω ∈ ℝ, we derive existence of a constant ω∗ > 0 such that σ ( Hω Λ ) = [ 0 , + ∞ ) for all ω ∈ (-∞, ω∗]; informally speaking, bound states are absent in the weak coupling regime.
Proton Form Factors Measurements in the Time-Like Region
Anulli, F.; /Frascati
2007-10-22
I present an overview of the measurement of the proton form factors in the time-like region. BABAR has recently measured with great accuracy the e{sup +}e{sup -} {yields} p{bar p} reaction from production threshold up to an energy of {approx} 4.5 GeV, finding evidence for a ratio of the electric to magnetic form factor greater than unity, contrary to expectation. In agreement with previous measurements, BABAR confirmed the steep rise of the magnetic form factor close to the p{bar p} mass threshold, suggesting the possible presence of an under-threshold N{bar N} vector state. These and other open questions related to the nucleon form factors both in the time-like and space-like region, wait for more data with different experimental techniques to be possibly solved.
Ruzsinszky, Adrienn; Perdew, John P; Csonka, Gábor I
2005-12-08
Binding or potential energy curves have been calculated for the ground-state diatomics H(2)(+), He(2)(+), LiH(+), H(2), N(2), and C(2), for the transition state H(3), and for the triplet first excited state of H(2) using the nonempirical density functionals from the first three rungs of a ladder of approximations: the local spin density (LSD) approximation, the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and the Tao-Perdew-Staroverov-Scuseria (TPSS) meta GGA. Good binding energy curves in agreement with coupled cluster or configuration interaction calculations are found from the PBE GGA and especially from the TPSS meta GGA. Expected exceptions are the symmetric radicals H(2)(+) and He(2)(+), where the functionals suffer from self-interaction error, and the exotically bonded C(2). Although the energy barrier for the reaction H(2) + H --> H + H(2) is better in PBE than in TPSS, the transition state H(3) is a more properly positioned and curved saddle point of the energy surface in TPSS. The triplet first excited state of H(2) obeys the Aufbau principle and thus is one of the exceptional excited states that are computable in principle from the ground-state functional. The PBE GGA and TPSS meta GGA are useful not only for chemical applications but also for the construction of higher-rung nonempirical functionals that can further improve the binding energy curves.
NASA Astrophysics Data System (ADS)
Steinmoeller, D. T.; Stastna, M.; Lamb, K. G.
2016-11-01
Discontinuous Galerkin methods offer a promising methodology for treating nearly hyperbolic systems such as dispersion-modified shallow water equations in complicated basins. Use of straight-edged triangular elements can lead to the generation of spurious eddies when wave fronts propagate around sharp, re-entrant obstacles such as headlands. While these eddies may be removed by adding strong artificial dissipation (e.g., eddy viscosity), for nearly inviscid simulations that focus on wave phenomena this approach is not reasonable. We demonstrate that the moderate order Discontinuous Galerkin methodology may be extended to curved triangular elements provided that the integral formulations are computed with high-order quadrature and cubature rules. Simulations with the new technique do not exhibit spurious eddy generation in idealized complex domains or real-world basins as exemplified by Pinehurst Lake, Alberta, Canada.
NASA Astrophysics Data System (ADS)
Echeverria, Fernando
I study three different topics in general relativity. The first study investigates the accuracy with which the mass and angular momentum of a black hole can be determined by measurements of gravitational waves from the hole, using a gravitational-wave detector. The black hole is assumed to have been strongly perturbed and the detector measures the waves produced by its resulting vibration and ring-down. The uncertainties in the measured parameters arise from the noise present in the detector. It is found that the faster the hole rotates, the more accurate the measurements will be, with the uncertainty in the angular momentum decreasing rapidly with increasing rotation speed. The second study is an analysis of the gravitational collapse of an infinitely long, cylindrical dust shell, an idealization of more realistic, finite-length bodies. It is found that the collapse evolves into a naked singularity in finite time. Analytical expressions for the variables describing the collapse are found at late times, near the singularity. The collapse is also followed, with a numerical simulation, from the start until very close to the singularity. The singularity is found to be strong, in the sense that an observer riding on the shell will be infinitely stretched in one direction and infinitely compressed in another. The gravitational waves emitted from the collapse are also analyzed. The last study focuses on the consequences of the existence of closed time like curves in a worm hole space time. One might expect that such curves might cause a system with apparently well-posed initial conditions to have no self-consistent evolution. We study the case of a classical particle with a hard-sphere potential, focusing attention on initial conditions for which the evolution, if followed naively, is self-inconsistent: the ball travels to the past through the worm hole colliding with its younger self, preventing itself from entering the worm hole. We find, surprisingly, that for all
Ragab, Marwa A A; EL-Kimary, Eman I
2014-11-01
A spectrofluorimetric method was used for the estimation of closely related fluorescent reaction products, Fluoxetine and Olanzapine, in their mixture after derivatization of both drugs using 4-chloro-7- nitrobenzo - 2 -oxa-1,3 - diazole (NBD-Cl) in borate buffered medium (pH 9.5) to form highly fluorescent products. The method based on the use of first and second derivative ratio of the emission data along with their convolution using 8-points sin x i or cos x i polynomials (discrete Fourier functions). The proposed method facilitates their simultaneous determination despite the presence of a minor component (Olanzapine) and strong overlapped spectra of the two NBD-Cl fluorescent products of fluoxetine and olanzapine. The accurate and precise estimation of the minor component was achieved after the convolution of the derivative ratio curves. Moreover, the obtained data were subjected to non-parametric linear regression analysis (Theil's method). The work combines the advantages of convolution of derivative ratio curves using discrete Fourier functions together with the reliability and efficacy of the non-parametric analysis of data.
NASA Astrophysics Data System (ADS)
Nieto, P. J. García; del Coz Díaz, J. J.; Vilán, J. A. Vilán; Placer, C. Casqueiro
2009-08-01
In this paper, an evaluation of distribution of the air pressure is determined throughout the laterally closed industrial buildings with curved metallic roofs due to the wind effect by the finite element method (FEM). The non-linearity is due to Reynolds-averaged Navier-Stokes (RANS) equations that govern the turbulent flow. The Navier-Stokes equations are non-linear partial differential equations and this non-linearity makes most problems difficult to solve and is part of the cause of turbulence. The RANS equations are time-averaged equations of motion for fluid flow. They are primarily used while dealing with turbulent flows. Turbulence is a highly complex physical phenomenon that is pervasive in flow problems of scientific and engineering concern like this one. In order to solve the RANS equations a two-equation model is used: the standard k-ɛ model. The calculation has been carried out keeping in mind the following assumptions: turbulent flow, an exponential-like wind speed profile with a maximum velocity of 40 m/s at 10 m reference height, and different heights of the building ranging from 6 to 10 meters. Finally, the forces and moments are determined on the cover, as well as the distribution of pressures on the same one, comparing the numerical results obtained with the Spanish CTE DB SE-AE, Spanish NBE AE-88 and European standard rules, giving place to the conclusions that are exposed in the study.
Studying Null and Time-Like Geodesics in the Classroom
ERIC Educational Resources Information Center
Muller, Thomas; Frauendiener, Jorg
2011-01-01
In a first course of general relativity, it is usually quite difficult for students to grasp the concept of a geodesic. It is supposed to be straight (auto-parallel) and yet it "looks" curved. In these situations, it is very useful to have some explicit examples available which show the different behaviour of geodesics. In this paper, we present…
Studying Null and Time-Like Geodesics in the Classroom
ERIC Educational Resources Information Center
Muller, Thomas; Frauendiener, Jorg
2011-01-01
In a first course of general relativity, it is usually quite difficult for students to grasp the concept of a geodesic. It is supposed to be straight (auto-parallel) and yet it "looks" curved. In these situations, it is very useful to have some explicit examples available which show the different behaviour of geodesics. In this paper, we present…
Studying time-like baryonic transitions with HADES
NASA Astrophysics Data System (ADS)
Ramstein, B.
2016-05-01
Recent results of the HADES collaboration are presented with emphasis on the e+e- production in elementary reactions. Via the Dalitz decay of baryonic resonances (R →Ne+e-), access is given to the time-like electromagnetic structure of baryonic transitions. This process could be measured for the first time for Δ(1232) in pp reactions at 1.25 GeV. At higher energies, the sensitivity of e+e- emission to transition form factors of the Vector Dominance type has been demonstrated. Very recently, experiments with the GSI pion beam started, allowing for more direct studies of baryonic resonances Dalitz decays. In addition, the measurement of hadronic channels provides a new data base for baryon spectroscopy issues, in particular in the 2πN channel.
Probing Proton Strangeness with Time-Like Virtual Compton Scattering
Stephen R. Cotanch; Robert A. Williams
2002-05-01
We document that p(gamma,e+e-)p measurements will yield new, important information about the off-shell time-like nucleon form factors, especially in the phi meson region (q{sup 2} = M{sup 2}{sub {phi}}) governing the phi N couplings g{sup V,T}{sub {phi}NN}. Calculations for p(gamma,e+e-)p, utilizing vector meson dominance, predict measurable phi enhancements at high |t| compared to the expected phi background production from pi, eta and Pomeron exchange. The phi form factor contribution generates a novel experimental signature for OZI violation and the proton strangeness content. The phi N couplings are determined independently from a combined analysis of the neutron electric form factor and recent high |t| phi photoproduction. The pi, eta and Pomeron transition form factors are also predicted and the observed pi and eta transition moments are reproduced.
Fertitta, E.; Paulus, B.; Barcza, G.; Legeza, Ö.
2015-09-21
The method of increments (MoI) has been employed using the complete active space formalism in order to calculate the dissociation curve of beryllium ring-shaped clusters Be{sub n} of different sizes. Benchmarks obtained through different quantum chemical methods including the ab initio density matrix renormalization group were used to verify the validity of the MoI truncation which showed a reliable behavior for the whole dissociation curve. Moreover we investigated the size dependence of the correlation energy at different interatomic distances in order to extrapolate the values for the periodic chain and to discuss the transition from a metal-like to an insulator-like behavior of the wave function through quantum chemical considerations.
Fertitta, E; Paulus, B; Barcza, G; Legeza, Ö
2015-09-21
The method of increments (MoI) has been employed using the complete active space formalism in order to calculate the dissociation curve of beryllium ring-shaped clusters Be(n) of different sizes. Benchmarks obtained through different quantum chemical methods including the ab initio density matrix renormalization group were used to verify the validity of the MoI truncation which showed a reliable behavior for the whole dissociation curve. Moreover we investigated the size dependence of the correlation energy at different interatomic distances in order to extrapolate the values for the periodic chain and to discuss the transition from a metal-like to an insulator-like behavior of the wave function through quantum chemical considerations.
Curved Finite Elements and Curve Approximation
NASA Technical Reports Server (NTRS)
Baart, M. L.
1985-01-01
The approximation of parameterized curves by segments of parabolas that pass through the endpoints of each curve segment arises naturally in all quadratic isoparametric transformations. While not as popular as cubics in curve design problems, the use of parabolas allows the introduction of a geometric measure of the discrepancy between given and approximating curves. The free parameters of the parabola may be used to optimize the fit, and constraints that prevent overspill and curve degeneracy are introduced. This leads to a constrained optimization problem in two varibles that can be solved quickly and reliably by a simple method that takes advantage of the special structure of the problem. For applications in the field of computer-aided design, the given curves are often cubic polynomials, and the coefficient may be calculated in closed form in terms of polynomial coefficients by using a symbolic machine language so that families of curves can be approximated with no further integration. For general curves, numerical quadrature may be used, as in the implementation where the Romberg quadrature is applied. The coefficient functions C sub 1 (gamma) and C sub 2 (gamma) are expanded as polynomials in gamma, so that for given A(s) and B(s) the integrations need only be done once. The method was used to find optimal constrained parabolic approximation to a wide variety of given curves.
NASA Astrophysics Data System (ADS)
Dias, Marcelo A.; Santangelo, Christian D.
2011-03-01
Despite an almost two thousand year history, origami, the art of folding paper, remains a challenge both artistically and scientifically. Traditionally, origami is practiced by folding along straight creases. A whole new set of shapes can be explored, however, if, instead of straight creases, one folds along arbitrary curves. We present a mechanical model for curved fold origami in which the energy of a plastically-deformed crease is balanced by the bending energy of developable regions on either side of the crease. Though geometry requires that a sheet buckle when folded along a closed curve, its shape depends on the elasticity of the sheet. NSF DMR-0846582.
Echeverria, F.
1993-01-01
In this thesis the author studies three different topics in General Relativity. The first study investigates the accuracy with which the mass and angular momentum of a black hole can be determined by measurements of gravitational waves from the hole, using a gravitational-wave detector. The black hole is assumed to have been strongly perturbed and the detector measures the waves produced by its resulting vibration and ring-down. The uncertainties in the measured parameters arise from the noise present in the detector. It is found that the faster the hole rotates, the more accurate the measurements will be, with the uncertainty in the angular momentum decreasing rapidly with increasing rotation speed. The second study is an analysis of the gravitational collapse of an infinitely long, cylindrical dust shell. It is found that the collapse evolves into a naked singularity in finite time. Analytical expressions for the variables describing the collapse are found at late times near the singularity. The collapse is also followed, with a numerical simulation, from the start until very close to the singularity. The singularity is found to be strong, in the sense that an observer riding on the shell is infinitely stretched in one direction and infinitely compressed in another. The gravitational waves emitted from the collapse are also analyzed. The last study focuses on the consequences of the existence of closed timelike curves in a wormhole spacetime. Such curves might cause a system with apparently well-posed initial conditions to have no self-consistent evolution. The author studies the case of a classical particle with a hard-sphere potential, focusing attention on initial conditions for which the evolution, if followed naively, is self-inconsistent: The ball travels to the past through the wormhole, colliding with its younger self, preventing itself from entering the wormhole. For all such initial conditions, there are an infinite number of self-consistent solutions.
ERIC Educational Resources Information Center
Rousseau, Ronald
1994-01-01
Discussion of informetric distributions shows that generalized Leimkuhler functions give proper fits to a large variety of Bradford curves, including those exhibiting a Groos droop or a rising tail. The Kolmogorov-Smirnov test is used to test goodness of fit, and least-square fits are compared with Egghe's method. (Contains 53 references.) (LRW)
Shape Preserving Interpolation by Curves
2001-07-01
curves Given data 1i E R2 , i = 0,..., N, we consider a curve r : [a, b] -- R2 satisfying r(ti) = Ii , i = 0,..., N, (3.1) for values a = to < tj...tN = b. For a closed curve the situation is extended periodically so that Ii +N =10, ti+N =ti, i E Z, r(t+b-a) =r(t), tc R. 3.1 Desirable properties...para- meterisation). When all vi = 0, r will reduce to the usual C2 cubic spline interpolant. As vi --+ oc, the curve is ’pulled tight’ at Ii and as
Feasibility studies on time-like proton electromagnetic form factors at PANDA-FAIR
NASA Astrophysics Data System (ADS)
Zimmermann, Iris; Dbeyssi, Alaa; Khaneft, Dmitry
2016-05-01
This contribution reports on the latest status of the feasibility studies for the measurement of time-like proton electromagnetic form factors (FF's) at the PANDA experiment [1] at FAIR (Germany). Electromagnetic FF's are fundamental quantities parameterizing the electric and magnetic structure of hadrons. In the time-like region proton FF's can be accessed experimentally through the annihilation processes p ¯p → l+l- (l = e, μ), assuming that the interaction takes place through the exchange of one virtual photon. Due to the low luminosity available at colliders in the past, an individual determination of the time-like electric and magnetic proton FF's was not feasible. The statistical precision, at which the proton FF's will be determined at PANDA, is estimated for both signal processes p ¯p → l+l- (l = e, μ) using the PandaRoot software, which encompasses full detector simulation and event reconstruction. The signal identification and suppression of the main background process (p ¯p → π+π-) is studied. Different methods have been used to generate and analyze the processes of interest. The results from the different analyses show that time-like electromagnetic FF's can be measured at PANDA with unprecedented statistical accuracy.
Boyer, H.E.
1986-01-01
This Atlas was developed to serve engineers who are looking for fatigue data on a particular metal or alloy. Having these curves compiled in a single book will also facilitate the computerization of the involved data. It is pointed out that plans are under way to make the data in this book available in ASCII files for analysis by computer programs. S-N curves which typify effects of major variables are considered along with low-carbon steels, medium-carbon steels, alloy steels, HSLA steels, high-strength alloy steels, heat-resisting steels, stainless steels, maraging steels, cast irons, and heat-resisting alloys. Attention is also given to aluminum alloys, copper alloys, magnesium alloys, molybdenum, tin alloys, titanium and titanium alloys, zirconium, steel castings, closed-die forgings, powder metallurgy parts, composites, effects of surface treatments, and test results for component parts.
Twisted Lorentzian manifolds: a characterization with torse-forming time-like unit vectors
NASA Astrophysics Data System (ADS)
Mantica, Carlo Alberto; Molinari, Luca Guido
2017-04-01
Robertson-Walker and generalized Robertson-Walker spacetimes may be characterized by the existence of a time-like unit torse-forming vector field, with other constrains. We show that Twisted manifolds may still be characterized by the existence of such (unique) vector field, with no other constrain. Twisted manifolds generalize RW and GRW spacetimes by admitting a scale function that depends both on time and space. We obtain the Ricci tensor, corresponding to the stress-energy tensor of an imperfect fluid.
ERIC Educational Resources Information Center
Yates, Robert C.
This volume, a reprinting of a classic first published in 1952, presents detailed discussions of 26 curves or families of curves, and 17 analytic systems of curves. For each curve the author provides a historical note, a sketch or sketches, a description of the curve, a discussion of pertinent facts, and a bibliography. Depending upon the curve,…
YNOGKM: Time-like geodesics in the Kerr-Newmann Spacetime calculations
NASA Astrophysics Data System (ADS)
Yang, Xiao-lin; Wang, Jian-cheng
2014-03-01
YNOGKM (Yun-Nan observatories geodesic in a Kerr-Newman spacetime for massive particles) performs fast calculation of time-like geodesics in the Kerr-Newman (K-N) spacetime; it is a direct extension of YNOGK (Yun-Nan observatories geodesic Kerr) calculating null geodesics in a Kerr spacetime. The four Boyer-Lindquis coordinates and proper time are expressed as functions of a parameter p semi-analytically by using the Weierstrass' and Jacobi's elliptic functions and integrals. The elliptic integrals are computed by Carlson's elliptic integral method, which guarantees the fast speed of the code. The source Fortran file ynogkm.f90 contains three modules: constants, rootfind, ellfunction, and blcoordinates.
The ρ-meson time-like form factors in sub-leading pQCD
NASA Astrophysics Data System (ADS)
de Melo, J. P. B. C.; Ji, Chueng-Ryong; Frederico, T.
2016-12-01
The annihilation/production process e+ +e- →ρ+ +ρ- is studied with respect to the universal perturbative QCD (pQCD) predictions. Sub-leading contributions are considered together with the universal leading pQCD amplitudes such that the matrix elements of the ρ-meson electromagnetic current satisfy the constraint from the light-front angular condition. The data from the BaBar collaboration for the time-like ρ-meson form factors at √{ s} = 10.58 GeV puts a stringent test to the onset of asymptotic pQCD behavior. The e+ +e- →ρ+ +ρ- cross-section for s between 60 GeV2 and 160 GeV2 is predicted where the sub-leading contributions are still considerable.
The time-like electromagnetic form factors of proton and charged kaon at high energies
NASA Astrophysics Data System (ADS)
Anulli, Fabio
2016-05-01
The Initial State Radiation method in the BABAR experiment has been used to measure the time-like electromagnetic form factors at the momentum transfer from 9 to 42 (GeV/c)2 for proton and from 7 to 56 (GeV/c)2 for charged kaon. The obtained data show the tendency to approach the QCD asymptotic prediction for kaons and space-like form factor values for proton. The BABAR data have been used together with data from other experiments, to perform a model-independent determination of the relative phases between the single-photon and the three-gluon amplitudes in ψ → KK ¯ decays. The values of the branching fractions measured in the reaction e+e- → K+ K- are shifted due to interference of resonant and nonresonant amplitudes. We have determined the absolute values of the shifts to be 5% for J/ψ and 15% for ψ(2S) decays.
The [Formula: see text] transition form factor from space- and time-like experimental data.
Escribano, R; Masjuan, P; Sanchez-Puertas, P
The [Formula: see text] transition form factor is analyzed for the first time in both space- and time-like regions at low and intermediate energies in a model-independent approach through the use of rational approximants. The [Formula: see text] experimental data provided by the A2 Collaboration in the very low-energy region of the dielectron invariant mass distribution allows for the extraction of the most precise up-to-date slope and curvature parameters of the form factors as well as their values at zero and infinity. The impact of these new results on the mixing parameters of the [Formula: see text]-[Formula: see text] system, together with the role played by renormalization dependent effects, and on the determination of the [Formula: see text] couplings from [Formula: see text] and [Formula: see text] radiative decays is also discussed.
Change in Hamiltonian general relativity from the lack of a time-like Killing vector field
NASA Astrophysics Data System (ADS)
Pitts, J. Brian
2014-08-01
In General Relativity in Hamiltonian form, change has seemed to be missing, defined only asymptotically, or otherwise obscured at best, because the Hamiltonian is a sum of first-class constraints and a boundary term and thus supposedly generates gauge transformations. Attention to the gauge generator G of Rosenfeld, Anderson, Bergmann, Castellani et al., a specially tuned sum of first-class constraints, facilitates seeing that a solitary first-class constraint in fact generates not a gauge transformation, but a bad physical change in electromagnetism (changing the electric field) or General Relativity. The change spoils the Lagrangian constraints, Gauss's law or the Gauss-Codazzi relations describing embedding of space into space-time, in terms of the physically relevant velocities rather than auxiliary canonical momenta. While Maudlin and Healey have defended change in GR much as G. E. Moore resisted skepticism, there remains a need to exhibit the technical flaws in the no-change argument. Insistence on Hamiltonian-Lagrangian equivalence, a theme emphasized by Mukunda, Castellani, Sugano, Pons, Salisbury, Shepley and Sundermeyer among others, holds the key. Taking objective change to be ineliminable time dependence, one recalls that there is change in vacuum GR just in case there is no time-like vector field ξα satisfying Killing's equation £ξgμν = 0, because then there exists no coordinate system such that everything is independent of time. Throwing away the spatial dependence of GR for convenience, one finds explicitly that the time evolution from Hamilton's equations is real change just when there is no time-like Killing vector. The inclusion of a massive scalar field is simple. No obstruction is expected in including spatial dependence and coupling more general matter fields. Hence change is real and local even in the Hamiltonian formalism. The considerations here resolve the Earman-Maudlin standoff over change in Hamiltonian General Relativity: the
Time-like nucleon form factor measurements at overline{textbf{P}}textbf{ANDA}
NASA Astrophysics Data System (ADS)
Sudoł, Małgorzata
2009-11-01
The electromagnetic probe is an excellent tool to investigate the structure of the nucleon. The nearly 4 π detector PANDA, to be installed on the FAIR accelerator complex at Darmstadt, will allow to make a precise determination of the electromagnetic form factors of the proton in the time-like (TL) region with unprecedented precision. In the framework of the one-photon exchange, the center of mass unpolarized differential cross section of the reaction overline{p} p rightarrow e^+ e^- is a linear combination of the squared moduli of the electric Gp_E and magnetic Gp_M proton form factors. The precise measurement of the angular distribution over almost full angular range then directly gives these quantities. Only two experiments have provided the ratio R = {|Gp_E|/|Gp_M|} but with very large statistical uncertainties. Within PANDA, there is a unique opportunity to measure separately the moduli of these two proton form factors Gp_E and Gp_M in good conditions, up to around q 2 = 14 GeV2.
Large Deformation Diffeomorphic Metric Curve Mapping
Glaunès, Joan; Miller, Michael I.; Younes, Laurent
2010-01-01
We present a matching criterion for curves and integrate it into the large deformation diffeomorphic metric mapping (LDDMM) scheme for computing an optimal transformation between two curves embedded in Euclidean space ℝd. Curves are first represented as vector-valued measures, which incorporate both location and the first order geometric structure of the curves. Then, a Hilbert space structure is imposed on the measures to build the norm for quantifying the closeness between two curves. We describe a discretized version of this, in which discrete sequences of points along the curve are represented by vector-valued functionals. This gives a convenient and practical way to define a matching functional for curves. We derive and implement the curve matching in the large deformation framework and demonstrate mapping results of curves in ℝ2 and ℝ3. Behaviors of the curve mapping are discussed using 2D curves. The applications to shape classification is shown and experiments with 3D curves extracted from brain cortical surfaces are presented. PMID:20419045
From principal curves to granular principal curves.
Zhang, Hongyun; Pedrycz, Witold; Miao, Duoqian; Wei, Zhihua
2014-06-01
Principal curves arising as an essential construct in dimensionality reduction and data analysis have recently attracted much attention from theoretical as well as practical perspective. In many real-world situations, however, the efficiency of existing principal curves algorithms is often arguable, in particular when dealing with massive data owing to the associated high computational complexity. A certain drawback of these constructs stems from the fact that in several applications principal curves cannot fully capture some essential problem-oriented facets of the data dealing with width, aspect ratio, width change, etc. Information granulation is a powerful tool supporting processing and interpreting massive data. In this paper, invoking the underlying ideas of information granulation, we propose a granular principal curves approach, regarded as an extension of principal curves algorithms, to improve efficiency and achieve a sound accuracy-efficiency tradeoff. First, large amounts of numerical data are granulated into C intervals-information granules developed with the use of fuzzy C-means clustering and the two criteria of information granulation, which significantly reduce the amount of data to be processed at the later phase of the overall design. Granular principal curves are then constructed by determining the upper and the lower bounds of the interval data. Finally, we develop an objective function using the criteria of information confidence and specificity to evaluate the granular output formed by the principal curves. We also optimize the granular principal curves by adjusting the level of information granularity (the number of clusters), which is realized with the aid of the particle swarm optimization. A number of numeric studies completed for synthetic and real-world datasets provide a useful quantifiable insight into the effectiveness of the proposed algorithm.
A time like our own? Radioisotopic calibration of the Ordovician greenhouse to icehouse transition
NASA Astrophysics Data System (ADS)
Smith, M. Elliot; Singer, Brad S.; Simo, Toni
2011-11-01
Tiered interpolation, a new timescale methodology, was used to construct the first radioisotopically-calibrated composite δ 13C curve for the Ordovician period using sanidine 40Ar/ 39Ar age determinations and existing U-Pb geochronology and biostratigraphic zonation. Tiered interpolation intercalates and temporally scales the numerical age of lithostratigraphic horizons by conducting a series of nested projections between hierarchical temporal control points. For primary control points, new 40Ar/ 39Ar ages and legacy U-Pb geochronology were screened to avoid analyses affected by inheritance and daughter loss and calibrated to reflect modern decay constants and standard values. Ages for secondary, tertiary, etc.… control points are obtained via linear interpolation of between higher order control points. In scaling the Ordovician δ 13C composite, the following control point order was applied: (1) radioisotopic ages (2) graptolite Zones, (3) index taxa-based on speciation events (North Atlantic conodont Zones), (4) North American Mid-continent conodont zones, and (5) stratal thicknesses at δ 13C sampled sections. The resulting timescale utilizes the highest resolution of each component, is internally consistent, and is re-scalable as more precise radioisotopic ages become available. It provides a robust framework for independently assessing the accuracy of biostratigraphic composite timescales because it does not rely an assumption of quasi-continuous sediment accumulation and/or speciation. To better calibrate the Late Ordovician and resolve a discrepancy between U-Pb and 40Ar/ 39Ar ages, three new 40Ar/ 39Ar ages were determined via the laser fusion of multiple single sanidine phenocrysts from three bentonitic ash beds from the Late Ordovician marine strata of the upper Mississippi valley where the record of Taconic volcanism is most complete. Fusions of 275 individual sanidine crystals from the Millbrig, Dygerts, and Rifle Hill bentonites yield largely
Boyer, H.E.
1986-01-01
This book contains more than 500 fatigue curves for industrial ferrous and nonferrous alloys. It also includes a thorough explanation of fatigue testing and interpretation of test results. Each curve is presented independently and includes an explanation of its particular importance. The curves are titled by standard industrial designations (AISI, CDA, AA, etc.) of the metals, and a complete reference is given to the original source to facilitate further research. The collection includes standard S-N curves, curves showing effect of surface hardening on fatigue strength, crack growth-rate curves, curves comparing the fatigue strengths of various alloys, effect of variables (i,e, temperature, humidity, frequency, aging, environment, etc.) and much, much more. This one volume consolidates the fatigue data in a single source.
ERIC Educational Resources Information Center
Boyles, Nancy
2013-01-01
"A significant body of research links the close reading of complex text--whether the student is a struggling reader or advanced--to significant gains in reading proficiency and finds close reading to be a key component of college and career readiness" (Partnership for Assessment of Readiness for College and Careers, 2011, p. 7). When the author…
Daykin, C. D.
1997-01-01
Closing remarks to Human genetics - uncertainties and the financial implications ahead. A Discussion held at the Royal Society on 25 and 26 September 1996, and organized and edited by R. M. Anderson.
Analysis of Exoplanet Light Curves
NASA Astrophysics Data System (ADS)
Erdem, A.; Budding, E.; Rhodes, M. D.; Püsküllü, Ç.; Soydugan, F.; Soydugan, E.; Tüysüz, M.; Demircan, O.
2015-07-01
We have applied the close binary system analysis package WINFITTER to a variety of exoplanet transiting light curves taken both from the NASA Exoplanet Archive and our own ground-based observations. WINFitter has parameter options for a realistic physical model, including gravity brightening and structural parameters derived from Kopal's applications of the relevant Radau equation, and it includes appropriate tests for determinacy and adequacy of its best fitting parameter sets. We discuss a number of issues related to empirical checking of models for stellar limb darkening, surface maculation, Doppler beaming, microvariability, and transit time variation (TTV) effects. The Radau coefficients used in the light curve modeling, in principle, allow structural models of the component stars to be tested.
Topology of the Space of Nondegenerate Curves
NASA Astrophysics Data System (ADS)
Shapiro, M. Z.
1994-04-01
A curve on a sphere or on a projective space is called nondegenerate if it has a nondegenerate moving frame at every point. The number of homotopy classes of closed nondegenerate curves immersed in the sphere or projective space is computed. In the case of the sphere Sn, this turns out to be 4 for odd n>=3 and 6 for even n>=2 in the case of the projective space Pn, 10 for odd n>=3 and 3 for even n>=2.
ERIC Educational Resources Information Center
Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio
2017-01-01
In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.
ERIC Educational Resources Information Center
Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio
2017-01-01
In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.
ERIC Educational Resources Information Center
Nordmark, Arne; Essen, Hanno
2007-01-01
The equilibrium of a flexible inextensible string, or chain, in the centrifugal force field of a rotating reference frame is investigated. It is assumed that the end points are fixed on the rotation axis. The shape of the curve, the skipping rope curve or "troposkien", is given by the Jacobi elliptic function sn. (Contains 3 figures.)
Simulating Supernova Light Curves
Even, Wesley Paul; Dolence, Joshua C.
2016-05-05
This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.
Searcy, James Kincheon
1959-01-01
The flow-duration curve is a cumulative frequency curve that shows the percent of time specified discharges were equaled or exceeded during a given period. It combines in one curve the flow characteristics of a stream throughout the range of discharge, without regard to the sequence of occurrence. If the period upon which the curve is based represents the long-term flow of a stream, the curve may be used to predict the distribution of future flows for water- power, water-supply, and pollution studies. This report shows that differences in geology affect the low-flow ends of flow-duration curves of streams in adjacent basins. Thus, duration curves are useful in appraising the geologic characteristics of drainage basins. A method for adjusting flow-duration curves of short periods to represent long-term conditions is presented. The adjustment is made by correlating the records of a short-term station with those of a long-term station.
ERIC Educational Resources Information Center
Nordmark, Arne; Essen, Hanno
2007-01-01
The equilibrium of a flexible inextensible string, or chain, in the centrifugal force field of a rotating reference frame is investigated. It is assumed that the end points are fixed on the rotation axis. The shape of the curve, the skipping rope curve or "troposkien", is given by the Jacobi elliptic function sn. (Contains 3 figures.)
Anodic Polarization Curves Revisited
ERIC Educational Resources Information Center
Liu, Yue; Drew, Michael G. B.; Liu, Ying; Liu, Lin
2013-01-01
An experiment published in this "Journal" has been revisited and it is found that the curve pattern of the anodic polarization curve for iron repeats itself successively when the potential scan is repeated. It is surprising that this observation has not been reported previously in the literature because it immediately brings into…
CURVES: curve evolution for vessel segmentation.
Lorigo, L M; Faugeras, O D; Grimson, W E; Keriven, R; Kikinis, R; Nabavi, A; Westin, C F
2001-09-01
The vasculature is of utmost importance in neurosurgery. Direct visualization of images acquired with current imaging modalities, however, cannot provide a spatial representation of small vessels. These vessels, and their branches which show considerable variations, are most important in planning and performing neurosurgical procedures. In planning they provide information on where the lesion draws its blood supply and where it drains. During surgery the vessels serve as landmarks and guidelines to the lesion. The more minute the information is, the more precise the navigation and localization of computer guided procedures. Beyond neurosurgery and neurological study, vascular information is also crucial in cardiovascular surgery, diagnosis, and research. This paper addresses the problem of automatic segmentation of complicated curvilinear structures in three-dimensional imagery, with the primary application of segmenting vasculature in magnetic resonance angiography (MRA) images. The method presented is based on recent curve and surface evolution work in the computer vision community which models the object boundary as a manifold that evolves iteratively to minimize an energy criterion. This energy criterion is based both on intensity values in the image and on local smoothness properties of the object boundary, which is the vessel wall in this application. In particular, the method handles curves evolving in 3D, in contrast with previous work that has dealt with curves in 2D and surfaces in 3D. Results are presented on cerebral and aortic MRA data as well as lung computed tomography (CT) data.
ERIC Educational Resources Information Center
Saccomano, Doreen
2014-01-01
Close Reading is a strategy that can be used when reading challenging text. This strategy requires teachers to provide scaffolding, and create opportunities for think-alouds and rereading of text in order to help students become active readers who focus on finding text-based support for their answers. In addition, teachers must also be aware of…
ERIC Educational Resources Information Center
Muscat, Jean-Paul
1992-01-01
Uses LOGO to enhance the applicability of curve stitching in the mathematics curriculum. Presents the formulas and computer programs for the construction of parabolas, concentric circles, and epicycloids. Diagrams of constructed figures are provided. (MDH)
Crystallography on Curved Surfaces
NASA Astrophysics Data System (ADS)
Vitelli, Vincenzo; Lucks, Julius; Nelson, David
2007-03-01
We present a theoretical and numerical study of the static and dynamical properties that distinguish two dimensional curved crystals from their flat space counterparts. Experimental realizations include block copolymer mono-layers on lithographically patterned substrates and self-assembled colloidal particles on a curved interface. At the heart of our approach lies a simple observation: the packing of interacting spheres constrained to lie on a curved surface is necessarily frustrated even in the absence of defects. As a result, whenever lattice imperfections or topological defects are introduced in the curved crystal they couple to the pre-stress of geometric frustration giving rise to elastic potentials. These geometric potentials are non-local functions of the Gaussian curvature and depend on the position of the defects. They play an important role in stress relaxation dynamics, elastic instabilities and melting.
1984-11-01
the Mahalanobis distance defined in terms of t. In particular when 9 is diagonal the procedure amounts to finding the line that minimizes the weighted...the m~a~l of apj dimensional’ data set. They mhinima, the distance from the poinsa, and provide a mom-linear summary of the data. The carves awe moe...project there. The zmain theorems proms thaprincipal curves mre critical values of the expected squared distance between the points and the curve
Highly curved microchannel plates
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.
1990-01-01
Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.
Highly curved microchannel plates
NASA Technical Reports Server (NTRS)
Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.
1990-01-01
Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.
NASA Astrophysics Data System (ADS)
Vassiliou, Peter J.
2009-10-01
Cartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group G. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the G-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equivariant method of Fels and Olver. Next, the contact geometry of curves in general Riemannian manifolds (M,g) is described. For the special case in which the isometries of (M,g) act transitively, it is shown that the contact geometry provides an explicit algorithmic construction of the differential invariants for curves in M. The inputs required for the construction consist only of the metric g and a parametrisation of structure group SO(n); the group action is not required and no integration is involved. To illustrate the algorithm we explicitly construct complete sets of differential invariants for curves in the Poincaré half-space H3 and in a family of constant curvature 3-metrics. It is conjectured that similar results are possible in other Cartan geometries.
Leslie, Mark; Holloway, Charles A
2006-01-01
When a company launches a new product into a new market, the temptation is to immediately ramp up sales force capacity to gain customers as quickly as possible. But hiring a full sales force too early just causes the firm to burn through cash and fail to meet revenue expectations. Before it can sell an innovative product efficiently, the entire organization needs to learn how customers will acquire and use it, a process the authors call the sales learning curve. The concept of a learning curve is well understood in manufacturing. Employees transfer knowledge and experience back and forth between the production line and purchasing, manufacturing, engineering, planning, and operations. The sales learning curve unfolds similarly through the give-and-take between the company--marketing, sales, product support, and product development--and its customers. As customers adopt the product, the firm modifies both the offering and the processes associated with making and selling it. Progress along the manufacturing curve is measured by tracking cost per unit: The more a firm learns about the manufacturing process, the more efficient it becomes, and the lower the unit cost goes. Progress along the sales learning curve is measured in an analogous way: The more a company learns about the sales process, the more efficient it becomes at selling, and the higher the sales yield. As the sales yield increases, the sales learning process unfolds in three distinct phases--initiation, transition, and execution. Each phase requires a different size--and kind--of sales force and represents a different stage in a company's production, marketing, and sales strategies. Adjusting those strategies as the firm progresses along the sales learning curve allows managers to plan resource allocation more accurately, set appropriate expectations, avoid disastrous cash shortfalls, and reduce both the time and money required to turn a profit.
Escudero, Carlos
2009-08-15
Stochastic growth phenomena on curved interfaces are studied by means of stochastic partial differential equations. These are derived as counterparts of linear planar equations on a curved geometry after a reparametrization invariance principle has been applied. We examine differences and similarities with the classical planar equations. Some characteristic features are the loss of correlation through time and a particular behavior of the average fluctuations. Dependence on the metric is also explored. The diffusive model that propagates correlations ballistically in the planar situation is particularly interesting, as this propagation becomes nonuniversal in the new regime.
Improved capacitive melting curve measurements
NASA Astrophysics Data System (ADS)
Sebedash, Alexander; Tuoriniemi, Juha; Pentti, Elias; Salmela, Anssi
2009-02-01
Sensitivity of the capacitive method for determining the melting pressure of helium can be enhanced by loading the empty side of the capacitor with helium at a pressure nearly equal to that desired to be measured and by using a relatively thin and flexible membrane in between. This way one can achieve a nanobar resolution at the level of 30 bar, which is two orders of magnitude better than that of the best gauges with vacuum reference. This extends the applicability of melting curve thermometry to lower temperatures and would allow detecting tiny anomalies in the melting pressure, which must be associated with any phenomena contributing to the entropy of the liquid or solid phases. We demonstrated this principle in measurements of the crystallization pressure of isotopic helium mixtures at millikelvin temperatures by using partly solid pure 4He as the reference substance providing the best possible universal reference pressure. The achieved sensitivity was good enough for melting curve thermometry on mixtures down to 100 μK. Similar system can be used on pure isotopes by virtue of a blocked capillary giving a stable reference condition with liquid slightly below the melting pressure in the reference volume. This was tested with pure 4He at temperatures 0.08-0.3 K. To avoid spurious heating effects, one must carefully choose and arrange any dielectric materials close to the active capacitor. We observed some 100 pW loading at moderate excitation voltages.
ERIC Educational Resources Information Center
Horton, Dawn M.
2001-01-01
This article reviews the history of the bell curve and its application to gifted education and suggests rejection of this paradigm in favor of a focus on criteria rather than norms and a better understanding of the distribution and structure of intelligence. (Contains references.) (DB)
ERIC Educational Resources Information Center
Bausell, R. Barker
1995-01-01
This editorial provides an informal review of "The Bell Curve" (Herrnstein and Murray, 1994). The book, packaged as scientific writing, is an attack on affirmative action and on government attempts to foster egalitarianism. It is a political treatise that assumes that racial differences in intelligence are valid and genetic. (SLD)
ERIC Educational Resources Information Center
Lawes, Jonathan F.
2013-01-01
Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…
Textbook Factor Demand Curves.
ERIC Educational Resources Information Center
Davis, Joe C.
1994-01-01
Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)
ERIC Educational Resources Information Center
Harper, Suzanne R.; Driskell, Shannon
2005-01-01
Graphic tips for using the Geometer's Sketchpad (GSP) are described. The methods to import an image into GSP, define a coordinate system, plot points and curve fit the function using a graphical calculator are demonstrated where the graphic features of GSP allow teachers to expand the use of the technology application beyond the classroom.
ERIC Educational Resources Information Center
Harper, Suzanne R.; Driskell, Shannon
2005-01-01
Graphic tips for using the Geometer's Sketchpad (GSP) are described. The methods to import an image into GSP, define a coordinate system, plot points and curve fit the function using a graphical calculator are demonstrated where the graphic features of GSP allow teachers to expand the use of the technology application beyond the classroom.
Textbook Factor Demand Curves.
ERIC Educational Resources Information Center
Davis, Joe C.
1994-01-01
Maintains that teachers and textbook graphics follow the same basic pattern in illustrating changes in demand curves when product prices increase. Asserts that the use of computer graphics will enable teachers to be more precise in their graphic presentation of price elasticity. (CFR)
ERIC Educational Resources Information Center
Hunter, Walter M.
This document contains detailed directions for constructing a device that mechanically produces the three-dimensional shape resulting from the rotation of any algebraic line or curve around either axis on the coordinate plant. The device was developed in response to student difficulty in visualizing, and thus grasping the mathematical principles…
Straightening Out Learning Curves
ERIC Educational Resources Information Center
Corlett, E. N.; Morecombe, V. J.
1970-01-01
The basic mathematical theory behind learning curves is explained, together with implications for clerical and industrial training, evaluation of skill development, and prediction of future performance. Brief studies of textile worker and typist training are presented to illustrate such concepts as the reduction fraction (a consistent decrease in…
ERIC Educational Resources Information Center
Paulton, Richard J. L.
1991-01-01
A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)
Timelike curves can increase entanglement with LOCC
NASA Astrophysics Data System (ADS)
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-11-01
We study the nature of entanglement in presence of Deutschian closed timelike curves (D-CTCs) and open timelike curves (OTCs) and find that existence of such physical systems in nature would allow us to increase entanglement using local operations and classical communication (LOCC). This is otherwise in direct contradiction with the fundamental definition of entanglement. We study this problem from the perspective of Bell state discrimination, and show how D-CTCs and OTCs can unambiguously distinguish between four Bell states with LOCC, that is otherwise known to be impossible.
Timelike curves can increase entanglement with LOCC
Moulick, Subhayan Roy; Panigrahi, Prasanta K.
2016-01-01
We study the nature of entanglement in presence of Deutschian closed timelike curves (D-CTCs) and open timelike curves (OTCs) and find that existence of such physical systems in nature would allow us to increase entanglement using local operations and classical communication (LOCC). This is otherwise in direct contradiction with the fundamental definition of entanglement. We study this problem from the perspective of Bell state discrimination, and show how D-CTCs and OTCs can unambiguously distinguish between four Bell states with LOCC, that is otherwise known to be impossible. PMID:27897219
North side, closeup of projecting pavilion and curved structure in ...
North side, close-up of projecting pavilion and curved structure in CO-172-BR-10. - Fitzsimons General Hospital, Infirmary, Northwest Corner of East Bushnell Avenue & South Page Street, Aurora, Adams County, CO
Probing exoplanet clouds with optical phase curves.
Muñoz, Antonio García; Isaak, Kate G
2015-11-03
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve--from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4-0.5.
Site index curves for unmanaged stands of California black oak
Robert F. Powers
1972-01-01
California black oak (Quercus kelloggii Newb.) is a potentially valuable species of wide distribution in California and southern Oregon. Site index curves related to slope aspect and to the site index of a close associate-ponderosa pine have been developed, and are reported for the first time in this Note. The curves should be useful in estimating...
NASA Astrophysics Data System (ADS)
Brandenburg, J. P.
2013-08-01
Fault-propagation folds form an important trapping element in both onshore and offshore fold-thrust belts, and as such benefit from reliable interpretation. Building an accurate geologic interpretation of such structures requires palinspastic restorations, which are made more challenging by the interplay between folding and faulting. Trishear (Erslev, 1991; Allmendinger, 1998) is a useful tool to unravel this relationship kinematically, but is limited by a restriction to planar fault geometries, or at least planar fault segments. Here, new methods are presented for trishear along continuously curved reverse faults defining a flat-ramp transition. In these methods, rotation of the hanging wall above a curved fault is coupled to translation along a horizontal detachment. Including hanging wall rotation allows for investigation of structures with progressive backlimb rotation. Application of the new algorithms are shown for two fault-propagation fold structures: the Turner Valley Anticline in Southwestern Alberta, and the Alpha Structure in the Niger Delta.
NASA Astrophysics Data System (ADS)
Vo, Martin
2017-08-01
Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.
Schulz, Douglas A.
2007-10-08
A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.
NASA Astrophysics Data System (ADS)
Frønsdal, Christian; Kontsevich, Maxim
2007-02-01
Deformation quantization on varieties with singularities offers perspectives that are not found on manifolds. The Harrison component of Hochschild cohomology, vanishing on smooth manifolds, reflects information about singularities. The Harrison 2-cochains are symmetric and are interpreted in terms of abelian *-products. This paper begins a study of abelian quantization on plane curves over mathbb{C}, being algebraic varieties of the form {mathbb{C}}^2/R, where R is a polynomial in two variables; that is, abelian deformations of the coordinate algebra mathbb{C}[x,y]/(R). To understand the connection between the singularities of a variety and cohomology we determine the algebraic Hochschild (co)homology and its Barr Gerstenhaber Schack decomposition. Homology is the same for all plane curves mathbb{C}[x,y]/R, but the cohomology depends on the local algebra of the singularity of R at the origin. The Appendix, by Maxim Kontsevich, explains in modern mathematical language a way to calculate Hochschild and Harrison cohomology groups for algebras of functions on singular planar curves etc. based on Koszul resolutions.
Mathematical design of a highway exit curve
NASA Astrophysics Data System (ADS)
Pakdemirli, Mehmet
2016-01-01
A highway exit curve is designed under the assumption that the tangential and normal components of the acceleration of the vehicle remain constant throughout the path. Using fundamental principles of physics and calculus, the differential equation determining the curve function is derived. The equation and initial conditions are cast into a dimensionless form first for universality of the results. It is found that the curves are effected by only one dimensionless parameter which is the ratio of the tangential acceleration to the normal acceleration. For no tangential acceleration, the equation can be solved analytically yielding a circular arc solution as expected. For nonzero tangential acceleration, the function is complicated and no closed-form solutions exist for the differential equation. The equation is solved numerically for various acceleration ratios. Discussions for applications to highway exits are given.
ynogkm: A new public code for calculating time-like geodesics in the Kerr-Newman spacetime
NASA Astrophysics Data System (ADS)
Yang, Xiao-Lin; Wang, Jian-Cheng
2014-01-01
In this paper, we present a new public code, named ynogkm (Yun-Nan observatories geodesic in a Kerr-Newman spacetime for massive particles), for the fast calculation of time-like geodesics in the Kerr-Newman (K-N) spacetime, which is a direct extension of ynogk (Yun-Nan observatories geodesic Kerr) calculating null geodesics in a Kerr spacetime. Following the strategies used in ynogk, we also solve the equations of motion analytically and semi-analytically by using Weierstrass' and Jacobi's elliptic functions and integrals in which the Boyer-Lidquist (B-L) coordinates r, θ, φ, t and the proper time σ are expressed as functions of an independent variable p (Mino time). All of the elliptic integrals are computed by Carlson's elliptic integral method, which guarantees the fast speed of the code. Finally, the code is applied to a couple of toy problems. The current version of the code is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A127
NASA Astrophysics Data System (ADS)
Sudoł, M.; Mora Espí, M. C.; Becheva, E.; Boucher, J.; Hennino, T.; Kunne, R.; Marchand, D.; Ong, S.; Ramstein, B.; van de Wiele, J.; Zerguerras, T.; Maas, F.; Kopf, B.; Pelizaeus, M.; Steinke, M.; Zhong, J.; Tomasi-Gustafsson, E.
2010-06-01
The possibility of measuring the proton electromagnetic form factors in the time-like region at FAIR with the overline{{P}}ANDA detector is discussed. Detailed simulations on signal efficiency for the annihilation of bar{{p}} + p into a lepton pair as well as for the most important background channels have been performed. It is shown that precise measurements of the differential cross-section of the reaction bar{{p}} + p rightarrow e - + e + can be obtained in a wide kinematical range. The determination of the ratio R of the moduli of the electric and magnetic proton form factors will be possible up to a value of momentum transfer squared of q 2 ≃ 14 (GeV/ c)^2 with absolute precision from 0.01 to 0.5 (for R ˜ 1 . The total bar{{p}} + p rightarrow e - + e + cross-section will be measured up to q 2 ≃ 28 (GeV/ c)^2. The results obtained from simulated events are compared to the existing data. Sensitivity to the two-photon exchange mechanism is also investigated.
Curved PVDF airborne transducer.
Wang, H; Toda, M
1999-01-01
In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.
Magnetism in curved geometries
Streubel, Robert; Fischer, Peter; Kronast, Florian; ...
2016-08-17
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. Asmore » a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. Finally, these recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.« less
Magnetism in curved geometries
Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys
2016-08-17
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii–Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. Finally, these recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.
Magnetism in curved geometries
NASA Astrophysics Data System (ADS)
Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys
2016-09-01
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.
NASA Astrophysics Data System (ADS)
Kalnajs, Agris J.
One can obtain a fairly good understanding of the relation between axially symmetric mass distributions and the rotation curves they produce without resorting to calculations. However it does require a break with tradition. The first step consists of replacing quantities such as surface density, volume density, and circular velocity with the mass in a ring, mass in a spherical shell, and the square of the circular velocity, or more precisely with 2 pi G r mu(r), 4 pi G r^2 rho(r), and Vc^2 (r). These three quantities all have the same dimensions, and are related to each other by scale-free linear operators. The second step consists of introducing ln(r) as the coordinate. On the log scale the scale-free operators becomes the more familiar convolution operations. Convolutions are easily handled by Fourier techniques and a surface density can be converted into a rotation curve or volume density in a small fraction of a second. A simple plot of 2 pi G r mu(r) as a function of ln(r) reveals the relative contributions of different radii to Vc^2(r). Such a plot also constitutes a sanity test for the fitting of various laws to photometric data. There are numerous examples in the literature of excellent fits to the tails that lack data or are poor fits around the maximum of 2 pi G r mu(r). I will discuss some exact relations between the above three quantities as well as some empirical observations such as the near equality of the maxima of 2 pi G r mu(r) and Vc^2 (r) curves for flat mass distributions.
Complementary Curves of Descent
2012-11-16
provision of law , no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid...curves of descent 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) US Naval Academy,Physics Department,Annapolis,MD,21402-1363 8. PERFORMING ORGANIZATION
Probing exoplanet clouds with optical phase curves
Muñoz, Antonio García; Isaak, Kate G.
2015-01-01
Kepler-7b is to date the only exoplanet for which clouds have been inferred from the optical phase curve—from visible-wavelength whole-disk brightness measurements as a function of orbital phase. Added to this, the fact that the phase curve appears dominated by reflected starlight makes this close-in giant planet a unique study case. Here we investigate the information on coverage and optical properties of the planet clouds contained in the measured phase curve. We generate cloud maps of Kepler-7b and use a multiple-scattering approach to create synthetic phase curves, thus connecting postulated clouds with measurements. We show that optical phase curves can help constrain the composition and size of the cloud particles. Indeed, model fitting for Kepler-7b requires poorly absorbing particles that scatter with low-to-moderate anisotropic efficiency, conclusions consistent with condensates of silicates, perovskite, and silica of submicron radii. We also show that we are limited in our ability to pin down the extent and location of the clouds. These considerations are relevant to the interpretation of optical phase curves with general circulation models. Finally, we estimate that the spherical albedo of Kepler-7b over the Kepler passband is in the range 0.4–0.5. PMID:26489652
Transforming Curves into Curves with the Same Shape.
ERIC Educational Resources Information Center
Levine, Michael V.
Curves are considered to have the same shape when they are related by a similarity transformation of a certain kind. This paper extends earlier work on parallel curves to curves with the same shape. Some examples are given more or less explicitly. A generalization is used to show that the theory is ordinal and to show how the theory may be applied…
Commission 42: Close Binary Stars
NASA Astrophysics Data System (ADS)
Ribas, Ignasi; Richards, Mercedes T.; Rucinski, Slavek; Bradstreet, David H.; Harmanec, Petr; Kaluzny, Janusz; Mikolajewska, Joanna; Munari, Ulisse; Niarchos, Panagiotis; Olah, Katalin; Pribulla, Theodor; Scarfe, Colin D.; Torres, Guillermo
2012-04-01
The present report covers the main developments in the field of close binaries during the triennium 2009-2012. In addition to scientific publications, there have been several opportunities for direct interaction of researchers working on close binaries. A number of meetings focused on more or less specific topics have taken place during this past years but the highlight for Commission 42 is arguably IAU Symposium 282 held in 2011 in Slovakia. The meeting exploited a strong connection in the methodology and tools used by close binary studies and the rapidly advancing field of exoplanet research. After all, exoplanetary systems are mostly discovered and studied using techniques employed by analyses of close binaries for decades. Modelling of exoplanet radial velocity curves and transiting planet light curves are just particular cases of single-lined and eclipsing binary systems, respectively, with very unequal component properties. As shown by IAU Symposium 282, the synergies between the two fields are strong and potentially very useful. Found below is a summary of the main scientific topics and conclusions from this very successful Symposium.
The Characteristic Curves of Water
NASA Astrophysics Data System (ADS)
Neumaier, Arnold; Deiters, Ulrich K.
2016-09-01
In 1960, E. H. Brown defined a set of characteristic curves (also known as ideal curves) of pure fluids, along which some thermodynamic properties match those of an ideal gas. These curves are used for testing the extrapolation behaviour of equations of state. This work is revisited, and an elegant representation of the first-order characteristic curves as level curves of a master function is proposed. It is shown that Brown's postulate—that these curves are unique and dome-shaped in a double-logarithmic p, T representation—may fail for fluids exhibiting a density anomaly. A careful study of the Amagat curve (Joule inversion curve) generated from the IAPWS-95 reference equation of state for water reveals the existence of an additional branch.
Multipulse phase resetting curves
NASA Astrophysics Data System (ADS)
Krishnan, Giri P.; Bazhenov, Maxim; Pikovsky, Arkady
2013-10-01
In this paper, we introduce and study systematically, in terms of phase response curves, the effect of dual-pulse excitation on the dynamics of an autonomous oscillator. Specifically, we test the deviations from linear summation of phase advances resulting from two small perturbations. We analytically derive a correction term, which generally appears for oscillators whose intrinsic dimensionality is >1. The nonlinear correction term is found to be proportional to the square of the perturbation. We demonstrate this effect in the Stuart-Landau model and in various higher dimensional neuronal models. This deviation from the superposition principle needs to be taken into account in studies of networks of pulse-coupled oscillators. Further, this deviation could be used in the verification of oscillator models via a dual-pulse excitation.
Quantum relative Lorenz curves
NASA Astrophysics Data System (ADS)
Buscemi, Francesco; Gour, Gilad
2017-01-01
The theory of majorization and its variants, including thermomajorization, have been found to play a central role in the formulation of many physical resource theories, ranging from entanglement theory to quantum thermodynamics. Here we formulate the framework of quantum relative Lorenz curves, and show how it is able to unify majorization, thermomajorization, and their noncommutative analogs. In doing so, we define the family of Hilbert α divergences and show how it relates with other divergences used in quantum information theory. We then apply these tools to the problem of deciding the existence of a suitable transformation from an initial pair of quantum states to a final one, focusing in particular on applications to the resource theory of athermality, a precursor of quantum thermodynamics.
Titration Curves: Fact and Fiction.
ERIC Educational Resources Information Center
Chamberlain, John
1997-01-01
Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…
ERIC Educational Resources Information Center
Khonsari, Michael M.; Horn, Douglas
1990-01-01
An algorithm is described for generating smooth curves of first-order continuity. The algorithm is composed of several cubic Bezier curves joined together at the user defined control points. Introduced is a tension control parameter which can be set thus providing additional flexibility in the design of free-form curves. (KR)
Titration Curves: Fact and Fiction.
ERIC Educational Resources Information Center
Chamberlain, John
1997-01-01
Discusses ways in which datalogging equipment can enable titration curves to be measured accurately and how computing power can be used to predict the shape of curves. Highlights include sources of error, use of spreadsheets to generate titration curves, titration of a weak acid with a strong alkali, dibasic acids, weak acid and weak base, and…
Understanding Guyton's venous return curves
Feigl, Eric O.
2011-01-01
Based on observations that as cardiac output (as determined by an artificial pump) was experimentally increased the right atrial pressure decreased, Arthur Guyton and coworkers proposed an interpretation that right atrial pressure represents a back pressure restricting venous return (equal to cardiac output in steady state). The idea that right atrial pressure is a back pressure limiting cardiac output and the associated idea that “venous recoil” does work to produce flow have confused physiologists and clinicians for decades because Guyton's interpretation interchanges independent and dependent variables. Here Guyton's model and data are reanalyzed to clarify the role of arterial and right atrial pressures and cardiac output and to clearly delineate that cardiac output is the independent (causal) variable in the experiments. Guyton's original mathematical model is used with his data to show that a simultaneous increase in arterial pressure and decrease in right atrial pressure with increasing cardiac output is due to a blood volume shift into the systemic arterial circulation from the systemic venous circulation. This is because Guyton's model assumes a constant blood volume in the systemic circulation. The increase in right atrial pressure observed when cardiac output decreases in a closed circulation with constant resistance and capacitance is due to the redistribution of blood volume and not because right atrial pressure limits venous return. Because Guyton's venous return curves have generated much confusion and little clarity, we suggest that the concept and previous interpretations of venous return be removed from educational materials. PMID:21666119
Automated reasoning about cubic curves.
Padmanabhan, R.; McCune, W.; Mathematics and Computer Science; Univ. of Manitoba
1995-01-01
It is well known that the n-ary morphisms defined on projective algebraic curves satisfy some strong local-to-global equational rules of derivation not satisfied in general by universal algebras. For example, every rationally defined group law on a cubic curve must be commutative. Here we extract from the geometry of curves a first order property (gL) satisfied by all morphisms defined on these curves such that the equational consequences known for projective curves can be derived automatically from a set of six rules (stated within the first-order logic with equality). First, the rule (gL) is implemented in the theorem-proving program Otter. Then we use Otter to automatically prove some incidence theorems on projective curves without any further reference to the underlying geometry or topology of the curves.
NASA Astrophysics Data System (ADS)
Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.
2016-12-01
Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first
Open timelike curves violate Heisenberg's uncertainty principle.
Pienaar, J L; Ralph, T C; Myers, C R
2013-02-08
Toy models for quantum evolution in the presence of closed timelike curves have gained attention in the recent literature due to the strange effects they predict. The circuits that give rise to these effects appear quite abstract and contrived, as they require nontrivial interactions between the future and past that lead to infinitely recursive equations. We consider the special case in which there is no interaction inside the closed timelike curve, referred to as an open timelike curve (OTC), for which the only local effect is to increase the time elapsed by a clock carried by the system. Remarkably, circuits with access to OTCs are shown to violate Heisenberg's uncertainty principle, allowing perfect state discrimination and perfect cloning of coherent states. The model is extended to wave packets and smoothly recovers standard quantum mechanics in an appropriate physical limit. The analogy with general relativistic time dilation suggests that OTCs provide a novel alternative to existing proposals for the behavior of quantum systems under gravity.
Closed loop electrostatic levitation system
NASA Technical Reports Server (NTRS)
Rhim, W. K.; Saffren, M. M.; Elleman, D. D. (Inventor)
1985-01-01
An electrostatic levitation system is described, which can closely control the position of objects of appreciable size. A plurality of electrodes surround the desired position of an electrostatically charged object, the position of the objects is monitored, and the voltages applied to the electrodes are varied to hold the object at a desired position. In one system, the object is suspended above a plate-like electrode which has a concave upper face to urge the object toward the vertical axis of the curved plate. An upper electrode that is also curved can be positioned above the object, to assure curvature of the field at any height above the lower plate. In another system, four spherical electrodes are positioned at the points of a tetrahedron, and the voltages applied to the electrodes are varied in accordance with the object position as detected by two sensors.
Birational maps that send biquadratic curves to biquadratic curves
NASA Astrophysics Data System (ADS)
Roberts, John A. G.; Jogia, Danesh
2015-02-01
Recently, many papers have begun to consider so-called non-Quispel-Roberts-Thompson (QRT) birational maps of the plane. Compared to the QRT family of maps which preserve each biquadratic curve in a fibration of the plane, non-QRT maps send a biquadratic curve to another biquadratic curve belonging to the same fibration or to a biquadratic curve from a different fibration of the plane. In this communication, we give the general form of a birational map derived from a difference equation that sends a biquadratic curve to another. The necessary and sufficient condition for such a map to exist is that the discriminants of the two biquadratic curves are the same (and hence so are the j-invariants). The result allows existing examples in the literature to be better understood and allows some statements to be made concerning their generality.
The wavelength dependence of Triton's light curve
NASA Technical Reports Server (NTRS)
Hillier, J.; Veverka, J.; Helfenstein, P.; Mcewen, A.
1991-01-01
Using Voyager observations, it is demonstrated that Triton's orbital light curve is strongly wavelength-dependent, a characteristic which readily explains some of the apparent discrepancies among pre-Voyager telescopic measurements. Specifically, a light curve amplitude (peak to peak) is found that decreases systematically with increasing wavelength from about 0.08 magnitude (peak to peak) near 200 nm to less than 0.02 magnitude near 1000 nm. Peak brightness occurs near 90 deg orbital longitude (leading hemisphere). The brightness variation across this hemisphere is close to sinusoidal; the variation across the darker hemisphere is more complex. The decrease in light curve amplitude with increasing wavelength appears to be due to a decrease in contrast among surface markings, rather than to atmospheric obscuration. The model also explains the observed decrease in the amplitude of Triton's light curve at visible wavelengths over the past decade, a decrease related to the current migration of the subsolar latitude toward the south pole; it is predicted that this trend will continue into the 1990s.
Curved butterfly bileaflet prosthetic cardiac valve
McQueen, David M.; Peskin, Charles S.
1991-06-25
An annular valve body having a central passageway for the flow of blood therethrough with two curved leaflets each of which is pivotally supported on an accentric positioned axis in the central passageway for moving between a closed position and an open position. The leaflets are curved in a plane normal to the eccentric axis and positioned with the convex side of the leaflets facing each other when the leaflets are in the open position. Various parameters such as the curvature of the leaflets, the location of the eccentric axis, and the maximum opening angle of the leaflets are optimized according to the following performance criteria: maximize the minimum peak velocity through the valve, maximize the net stroke volume, and minimize the mean forward pressure difference, thereby reducing thrombosis and improving the hemodynamic performance.
NASA Astrophysics Data System (ADS)
Baldini, Rinaldo; Bini, Cesare; Gauzzi, Paolo; Mirazita, Marco; Negrini, Matteo; Pacetti, Simone
2005-06-01
Recent experimental data on the space-like and time-like form factors of the proton are analyzed by means of a dispersive procedure. Both the space-like data, from Jlab and the time-like ones from FENICE at ADONE, DM2 at DCI and E835 at Fermilab are unexpected, for instance all these results are inconsistent with the low energy scaling. In light of these good and bad news, we try to gain some information about the properties of the ratio GEp(q)/GMp(q), by using a dispersive approach.
Singularities and Closed String Tachyons
Silverstein, Eva; /SLAC /Stanford U., Phys. Dept.
2006-03-17
A basic problem in gravitational physics is the resolution of spacetime singularities where general relativity breaks down. The simplest such singularities are conical singularities arising from orbifold identifications of flat space, and the most challenging are spacelike singularities inside black holes (and in cosmology). Topology changing processes also require evolution through classically singular spacetimes. I briefly review how a phase of closed string tachyon condensate replaces, and helps to resolve, basic singularities of each of these types. Finally I discuss some interesting features of singularities arising in the small volume limit of compact negatively curved spaces and the emerging zoology of spacelike singularities.
Langevin Equation on Fractal Curves
NASA Astrophysics Data System (ADS)
Satin, Seema; Gangal, A. D.
2016-07-01
We analyze random motion of a particle on a fractal curve, using Langevin approach. This involves defining a new velocity in terms of mass of the fractal curve, as defined in recent work. The geometry of the fractal curve, plays an important role in this analysis. A Langevin equation with a particular model of noise is proposed and solved using techniques of the Fα-Calculus.
Beam-beam deflection and signature curves for elliptic beams
Ziemann, V.
1990-10-22
In this note we will present closed expressions for the beam-beam deflection angle for arbitrary elliptic beams including tilt. From these expressions signature curves, i.e., systematic deviations from the round beam deflection curve due to ellipticity or tilt are derived. In the course of the presentation we will prove that it is generally impossible to infer individual beam sizes from beam-beam deflection scans. 3 refs., 2 figs.
Recession curve analysis for groundwater levels: case study in Latvia
NASA Astrophysics Data System (ADS)
Gailuma, A.; VÄ«tola, I.; Abramenko, K.; Lauva, D.; Vircavs, V.; Veinbergs, A.; Dimanta, Z.
2012-04-01
Recession curve analysis is powerful and effective analysis technique in many research areas related with hydrogeology where observations have to be made, such as water filtration and absorption of moisture, irrigation and drainage, planning of hydroelectric power production and chemical leaching (elution of chemical substances) as well as in other areas. The analysis of the surface runoff hydrograph`s recession curves, which is performed to conceive the after-effects of interaction of precipitation and surface runoff, has approved in practice. The same method for analysis of hydrograph`s recession curves can be applied for the observations of the groundwater levels. There are manually prepared hydrograph for analysis of recession curves for observation wells (MG2, BG2 and AG1) in agricultural monitoring sites in Latvia. Within this study from the available monitoring data of groundwater levels were extracted data of declining periods, splitted by month. The drop-down curves were manually (by changing the date) moved together, until to find the best match, thereby obtaining monthly drop-down curves, representing each month separately. Monthly curves were combined and manually joined, for obtaining characterizing drop-down curves of the year for each well. Within the process of decreased recession curve analysis, from the initial curve was cut out upward areas, leaving only the drops of the curve, consequently, the curve is transformed more closely to the groundwater flow, trying to take out the impact of rain or drought periods from the curve. Respectively, the drop-down curve is part of the data, collected with hydrograph, where data with the discharge dominates, without considering impact of precipitation. Using the recession curve analysis theory, ready tool "A Visual Basic Spreadsheet Macro for Recession Curve Analysis" was used for selection of data and logarithmic functions matching (K. Posavec et.al., GROUND WATER 44, no. 5: 764-767, 2006), as well as
Reflection of curved shock waves
NASA Astrophysics Data System (ADS)
Mölder, S.
2017-09-01
Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.
Reflection of curved shock waves
NASA Astrophysics Data System (ADS)
Mölder, S.
2017-03-01
Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.
A "chaos" of Phanerozoic eustatic curves
NASA Astrophysics Data System (ADS)
Ruban, Dmitry A.
2016-04-01
The knowledge of eustasy has changed during the past two decades. Although there is not any single global sea-level curve for the entire Phanerozoic, new curves have been proposed for all periods. For some geological time intervals, there are two and more alternative reconstructions, from which it is difficult to choose. A significant problem is the available eustatic curves are justified along different geological time scales (sometimes without proper explanations), which permits to correlate eustatic events with the possible error of 1-3 Ma. This degree of error permits to judge about only substage- or stage-order global sea-level changes. Close attention to two geological time slices, namely the late Cambrian (Epoch 3‒Furongian) and the Late Cretaceous, implies that only a few eustatic events (6 events in the case of the late Cambrian and 9 events in the case of the Late Cretaceous) appear on all available alternative curves for these periods, and different (even opposite) trends of eustatic fluctuations are shown on these curves. This reveals significant uncertainty in our knowledge of eustasy that restricts our ability to decipher factors responsible for regional transgressions and regressions and relative sea-level changes. A big problem is also inadequate awareness of the geological research community of the new eustatic developments. Generally, the situation with the development and the use of the Phanerozoic eustatic reconstructions seems to be ;chaotic;. The example of the shoreline shifts in Northern Africa during the Late Cretaceous demonstrates the far-going consequences of this situation. The practical recommendations to avoid this ;chaos; are proposed. Particularly, these claim for good awareness of all eustatic developments, their critical discussion, and clear explanation of the employed geological time scale.
The extended polar writhe: a tool for open curves mechanics
NASA Astrophysics Data System (ADS)
Prior, Christopher B.; Neukirch, Sébastien
2016-05-01
A measure of the writhing of a curve is introduced and is used to extend the Călugăreanu decomposition for closed curves, as well as the polar decomposition for curves bound between planes. The new writhe measure is also shown to be able to assess changes in linking due to belt-trick and knotting type deformations, and further its utility is illustrated on examples taken from elastic rod parameter-continuation studies. Finally C++ and mathematica codes are made available and shown to be faster than existing algorithms for the numerical computation of the writhe.
Neutron Multiplicity: LANL W Covariance Matrix for Curve Fitting
Wendelberger, James G.
2016-12-08
In neutron multiplicity counting one may fit a curve by minimizing an objective function, χ$2\\atop{n}$. The objective function includes the inverse of an n by n matrix of covariances, W. The inverse of the W matrix has a closed form solution. In addition W^{-1} is a tri-diagonal matrix. The closed form and tridiagonal nature allows for a simpler expression of the objective function χ$2\\atop{n}$. Minimization of this simpler expression will provide the optimal parameters for the fitted curve.
Learning curves in health care.
Waldman, J Deane; Yourstone, Steven A; Smith, Howard L
2003-01-01
This article explores the uses of learning curve theory in medicine. Though effective application of learning curve theory in health care can result in higher quality and lower cost, it is seldom methodically applied in clinical practice. Fundamental changes are necessary in the corporate culture of medicine in order to capitalize maximally on the benefits of learning.
More Unusual Light Curves from Kepler
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
-main-sequence stars ever obtained.In these light curves, Stauffer and collaborators found a set of 23 very low-mass, mid-to-late-type M dwarfs with unusual variability in their light curves. The variability is consistent with the stars rotation period where measured which suggests that whatever causes the dips in the light curve, its orbiting at the same rate as the star spins.Causes of Variability?These plots show how the properties of these 23 stars compare to those of the rest of the stars in their cluster (click for a closer look!). For all but the rotation rate, they are typical. But the stars with scallop-shaped light curves have among the shortest periods in Upper Sco, with somenear the theoretical break-up for stars of their age. [Stauffer et al. 2017]The authors categorize the 23 stars into two main groups.The first group consists of 19 stars with short periods; more than half of them rotate within a factor of two of their predicted breakup period! Many of these show sudden changes in their light-curve morphology, often after a stellar flare. The authors propose that the variability in these light curves might be caused by warm coronal gas clouds that are organized into a structured toroidal shape around the star.The second group consists of the remaining four stars, which have slightly longer periods. The light curves show a single short-duration flux dip with highly variable depth and shape superposed on normal, spotted-star light curves. The authors best guess for these four stars is that there are clouds of dusty debris circling the star, possibly orbiting a close-in planet or resulting from a recent collisional event.Stauffer and collaborators are currently developing more detailed models for these stars based on the possible variability scenarios. The next step, they state, is to determine if the gas in these structures have properties necessary to generate the light-curve features we see.CitationJohn Stauffer et al 2017 AJ 153 152. doi:10.3847/1538-3881/aa5eb9
Turbulence measurements in curved wall jets
NASA Astrophysics Data System (ADS)
Rodman, L. C.; Wood, N. J.; Roberts, L.
1987-01-01
Accurate turbulence measurements taken in wall jet flows are difficult to obtain, due to high intensity turbulence and problems in achieving two-dimensionality. The problem is compounded when streamwise curvature of the flow is introduced, since the jet entrainment and turbulence levels are greatly increased over the equivalent planar values. In this experiment, two-dimensional plane and curved wall jet flows are simulated by having a jet blow axially over a cylinder. In the plane case the cylinder has constant transverse radius, and in the curved cases the cylinder has a varying transverse radius. Although the wall jet in these cases is axisymmetric, adequate 'two-dimensional' flow can be obtained as long as the ratio of the jet width to the cylinder radius is small. The annular wall jet has several advantages over wall jets issuing from finite rectangular slots. Since the slot has no ends, three-dimensional effects caused by the finite length of the slot and side wall interference are eliminated. Also, the transverse curvature of the wall allows close optical access to the surface using a Laser Doppler Velocimetry (LDV) system. Hot wire measurements and some LDV measurements are presented for plane and curved wall jet flows. An integral analysis is used to assess the effects of transverse curvature on the turbulent shear stress. The analysis and the data show that the effects of transverse curvature on both the mean flow and the shear stress are small enough for two-dimensional flow to be approximately satisfactorily.
Spectral curve fitting of dielectric constants
NASA Astrophysics Data System (ADS)
Ruzi, M.; Ennis, C.; Robertson, E. G.
2017-01-01
Optical constants are important properties governing the response of a material to incident light. It follows that they are often extracted from spectra measured by absorbance, transmittance or reflectance. One convenient method to obtain optical constants is by curve fitting. Here, model curves should satisfy Kramer-Kronig relations, and preferably can be expressed in closed form or easily calculable. In this study we use dielectric constants of three different molecular ices in the infrared region to evaluate four different model curves that are generally used for fitting optical constants: (1) the classical damped harmonic oscillator, (2) Voigt line shape, (3) Fourier series, and (4) the Triangular basis. Among these, only the classical damped harmonic oscillator model strictly satisfies the Kramer-Kronig relation. If considering the trade-off between accuracy and speed, Fourier series fitting is the best option when spectral bands are broad while for narrow peaks the classical damped harmonic oscillator and the Triangular basis fitting model are the best choice.
Analyzing Exoplanet Phase Curve Information Content: Toward Optimized Observing Strategies
NASA Astrophysics Data System (ADS)
Placek, Ben; Angerhausen, Daniel; Knuth, Kevin H.
2017-10-01
Secondary eclipses and phase curves reveal information about the reflectivity and heat distribution in exoplanet atmospheres. The phase curve is composed of a combination of reflected and thermally emitted light from the planet, and for circular orbits the phase curve peaks during the secondary eclipse or at an orbital phase of 0.5. Physical mechanisms have been discovered that shift the phase curve maximum of tidally locked close-in planets to the right, or left, of the secondary eclipse. These mechanisms include cloud formations and atmospheric superrotation, both of which serve to shift the thermally bright hot-spot or highly reflective bright spot of the atmosphere away from the sub-stellar point. Here, we present a methodology for optimizing observing strategies for both secondary eclipses and phase curves with the goal of maximizing the information gained about the planetary atmosphere while minimizing the (assumed) continuous observation time. We show that we can increase the duty cycle of observations aimed at the measurements of phase curve characteristics (amplitude, phase offset) by up to 50% for future platforms such as CHaracterising ExOPlanets Satellite (CHEOPS) and JWST. We apply this methodology to the test cases of the Spitzer phase curve of 55-Cancri-e, which displays an eastward shift in its phase curve maximum as well as model-generated observations of an ultra-short period planet observed with CHEOPS.
NASA Astrophysics Data System (ADS)
Kuo, Ju-Nan; Chen, Kuan-Yu
2010-11-01
In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.
Polish spaces of causal curves
NASA Astrophysics Data System (ADS)
Miller, Tomasz
2017-06-01
We propose and study a new approach to the topologization of spaces of (possibly not all) future-directed causal curves in a stably causal spacetime. It relies on parametrizing the curves ;in accordance; with a chosen time function. Thus obtained topological spaces of causal curves are separable and completely metrizable, i.e. Polish. The latter property renders them particularly useful in the optimal transport theory. To illustrate this fact, we explore the notion of a causal time-evolution of measures in globally hyperbolic spacetimes and discuss its physical interpretation.
Accelerating Around an Unbanked Curve
2006-02-01
FEB 2006 2. REPORT TYPE 3. DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Accelerating Around an Unbanked Curve 5a. CONTRACT...December 2004 issue of TPT presented a problem concerning how a car should acceler-ate around an unbanked curve of constant radius r starting from rest...Accelerating Around an Unbanked Curve Carl E. Mungan, U.S. Naval Academy, Annapolis, MD 100 THE PHYSICS TEACHER ◆ Vol. 44, February 2006 The shapes
Curved conveyor section guide assembly
Truszczinski, H.
1981-02-03
A guide assembly for a curved conveyor section of a scraperchain conveyor guides the scraper assembly from a first straight conveyor portion round the curved conveyor section to a second straight conveyor portion. This guiding is accomplished by a pair of independently rotatable pulley wheels. A further pair of independently rotatable pulley wheels are provided to guide the drive chain of a plough round the curved conveyor section. This enables the plough to be driven to and fro along the first straight conveyor portion by a drive station attached to the second straight conveyor portion adjacent to the guide assembly.
Predictiveness curves in virtual screening.
Empereur-Mot, Charly; Guillemain, Hélène; Latouche, Aurélien; Zagury, Jean-François; Viallon, Vivian; Montes, Matthieu
2015-01-01
In the present work, we aim to transfer to the field of virtual screening the predictiveness curve, a metric that has been advocated in clinical epidemiology. The literature describes the use of predictiveness curves to evaluate the performances of biological markers to formulate diagnoses, prognoses and assess disease risks, assess the fit of risk models, and estimate the clinical utility of a model when applied to a population. Similarly, we use logistic regression models to calculate activity probabilities related to the scores that the compounds obtained in virtual screening experiments. The predictiveness curve can provide an intuitive and graphical tool to compare the predictive power of virtual screening methods. Similarly to ROC curves, predictiveness curves are functions of the distribution of the scores and provide a common scale for the evaluation of virtual screening methods. Contrarily to ROC curves, the dispersion of the scores is well described by predictiveness curves. This property allows the quantification of the predictive performance of virtual screening methods on a fraction of a given molecular dataset and makes the predictiveness curve an efficient tool to address the early recognition problem. To this last end, we introduce the use of the total gain and partial total gain to quantify recognition and early recognition of active compounds attributed to the variations of the scores obtained with virtual screening methods. Additionally to its usefulness in the evaluation of virtual screening methods, predictiveness curves can be used to define optimal score thresholds for the selection of compounds to be tested experimentally in a drug discovery program. We illustrate the use of predictiveness curves as a complement to ROC on the results of a virtual screening of the Directory of Useful Decoys datasets using three different methods (Surflex-dock, ICM, Autodock Vina). The predictiveness curves cover different aspects of the predictive power of
OPTICAL PHASE CURVES OF KEPLER EXOPLANETS
Esteves, Lisa J.; De Mooij, Ernst J. W.; Jayawardhana, Ray E-mail: demooij@astro.utoronto.ca
2013-07-20
We conducted a comprehensive search for optical phase variations of all close-in (a/R{sub *} < 10) planet candidates in 15 quarters of Kepler space telescope data. After correcting for systematics, we found eight systems that show secondary eclipses as well as phase variations. Of these, five (Kepler-5, Kepler-6, Kepler-8, KOI-64, and KOI-2133) are new and three (TrES-2, HAT-P-7, and KOI-13) have published phase curves, albeit with many fewer observations. We model the full phase curve of each planet candidate, including the primary and secondary transits, and derive their albedos, dayside and nightside temperatures, ellipsoidal variations, and Doppler beaming. We find that KOI-64 and KOI-2133 have nightside temperatures well above their equilibrium values (while KOI-2133 also has an albedo, >1), so we conclude that they are likely to be self-luminous objects rather than planets. The other six candidates have characteristics consistent with their being planets with low geometric albedos (<0.3). For TrES-2 and KOI-13, the Kepler bandpass appears to probe atmospheric layers hotter than the planet's equilibrium temperature. For KOI-13, we detect a never-before-seen third cosine harmonic with an amplitude of 6.7 {+-} 0.3 ppm and a phase shift of -1.1 {+-} 0.1 rad in the phase curve residual, possibly due to its spin-orbit misalignment. We report derived planetary parameters for all six planets, including masses from ellipsoidal variations and Doppler beaming, and compare our results to published values when available. Our results nearly double the number of Kepler exoplanets with measured phase curve variations, thus providing valuable constraints on the properties of hot Jupiters.
Optical Phase Curves of Kepler Exoplanets
NASA Astrophysics Data System (ADS)
Esteves, Lisa J.; De Mooij, Ernst J. W.; Jayawardhana, Ray
2013-07-01
We conducted a comprehensive search for optical phase variations of all close-in (a/R sstarf < 10) planet candidates in 15 quarters of Kepler space telescope data. After correcting for systematics, we found eight systems that show secondary eclipses as well as phase variations. Of these, five (Kepler-5, Kepler-6, Kepler-8, KOI-64, and KOI-2133) are new and three (TrES-2, HAT-P-7, and KOI-13) have published phase curves, albeit with many fewer observations. We model the full phase curve of each planet candidate, including the primary and secondary transits, and derive their albedos, dayside and nightside temperatures, ellipsoidal variations, and Doppler beaming. We find that KOI-64 and KOI-2133 have nightside temperatures well above their equilibrium values (while KOI-2133 also has an albedo, >1), so we conclude that they are likely to be self-luminous objects rather than planets. The other six candidates have characteristics consistent with their being planets with low geometric albedos (<0.3). For TrES-2 and KOI-13, the Kepler bandpass appears to probe atmospheric layers hotter than the planet's equilibrium temperature. For KOI-13, we detect a never-before-seen third cosine harmonic with an amplitude of 6.7 ± 0.3 ppm and a phase shift of -1.1 ± 0.1 rad in the phase curve residual, possibly due to its spin-orbit misalignment. We report derived planetary parameters for all six planets, including masses from ellipsoidal variations and Doppler beaming, and compare our results to published values when available. Our results nearly double the number of Kepler exoplanets with measured phase curve variations, thus providing valuable constraints on the properties of hot Jupiters.
SPOTTED STAR LIGHT CURVES WITH ENHANCED PRECISION
Wilson, R. E.
2012-09-15
The nearly continuous timewise coverage of recent photometric surveys is free of the large gaps that compromise attempts to follow starspot growth and decay as well as motions, thereby giving incentive to improve computational precision for modeled spots. Due to the wide variety of star systems in the surveys, such improvement should apply to light/velocity curve models that accurately include all the main phenomena of close binaries and rotating single stars. The vector fractional area (VFA) algorithm that is introduced here represents surface elements by small sets of position vectors so as to allow accurate computation of circle-triangle overlap by spherical geometry. When computed by VFA, spots introduce essentially no noticeable scatter in light curves at the level of one part in 10,000. VFA has been put into the Wilson-Devinney light/velocity curve program and all logic and mathematics are given so as to facilitate entry into other such programs. Advantages of precise spot computation include improved statistics of spot motions and aging, reduced computation time (intrinsic precision relaxes needs for grid fineness), noise-free illustration of spot effects in figures, and help in guarding against false positives in exoplanet searches, where spots could approximately mimic transiting planets in unusual circumstances. A simple spot growth and decay template quantifies time profiles, and specifics of its utilization in differential corrections solutions are given. Computational strategies are discussed, the overall process is tested in simulations via solutions of synthetic light curve data, and essential simulation results are described. An efficient time smearing facility by Gaussian quadrature can deal with Kepler mission data that are in 30 minute time bins.
Nonlinear mechanics of rigidifying curves
NASA Astrophysics Data System (ADS)
Al Mosleh, Salem; Santangelo, Christian
2017-07-01
Thin shells are characterized by a high cost of stretching compared to bending. As a result isometries of the midsurface of a shell play a crucial role in their mechanics. In turn, curves on the midsurface with zero normal curvature play a critical role in determining the number and behavior of isometries. In this paper, we show how the presence of these curves results in a decrease in the number of linear isometries. Paradoxically, shells are also known to continuously fold more easily across these rigidifying curves than other curves on the surface. We show how including nonlinearities in the strain can explain these phenomena and demonstrate folding isometries with explicit solutions to the nonlinear isometry equations. In addition to explicit solutions, exact geometric arguments are given to validate and guide our analysis in a coordinate-free way.
Flow over riblet curved surfaces
NASA Astrophysics Data System (ADS)
Loureiro, J. B. R.; Silva Freire, A. P.
2011-12-01
The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).
Line constrained between two curves
NASA Astrophysics Data System (ADS)
Ahmad, Afida; Ali, Jamaludin Md.
2013-04-01
In this paper, the method of finding the line constrained between two quadratic Bezier curves and also finding the line constrained between a quadratic Bezier curve and a circle is presented. The application of the line constrained can be used in the construction of railway tracks between any obstacle or rolling a ball to the other side of a wall in a way that it just touches the wall. The method used is by using equal root properties of a quadratic equation in order to find one point where the line touches the curve. The work examples involved different curve orientations and different circle positions. Mathematica software is used to compute the solutions for the line constrained and present the solutions graphically. By using the method proposed, the number of intersection points obtained is used to determine the number of lines constrained between two curves and between a curve and a circle. The conclusion on whether all lines are acceptable to be considered as the line constrained are depending on the application of the line.
Curve Boxplot: Generalization of Boxplot for Ensembles of Curves.
Mirzargar, Mahsa; Whitaker, Ross T; Kirby, Robert M
2014-12-01
In simulation science, computational scientists often study the behavior of their simulations by repeated solutions with variations in parameters and/or boundary values or initial conditions. Through such simulation ensembles, one can try to understand or quantify the variability or uncertainty in a solution as a function of the various inputs or model assumptions. In response to a growing interest in simulation ensembles, the visualization community has developed a suite of methods for allowing users to observe and understand the properties of these ensembles in an efficient and effective manner. An important aspect of visualizing simulations is the analysis of derived features, often represented as points, surfaces, or curves. In this paper, we present a novel, nonparametric method for summarizing ensembles of 2D and 3D curves. We propose an extension of a method from descriptive statistics, data depth, to curves. We also demonstrate a set of rendering and visualization strategies for showing rank statistics of an ensemble of curves, which is a generalization of traditional whisker plots or boxplots to multidimensional curves. Results are presented for applications in neuroimaging, hurricane forecasting and fluid dynamics.
On curve veering and flutter of rotating blades
NASA Technical Reports Server (NTRS)
Afolabi, Dare; Mehmed, Oral
1993-01-01
The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to 'curve veering'), or attract each other (leading to 'frequency coalescence'). Our results are reached by using standard arguments from algebraic geometry--the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.
Maturity assessment and curve progression in girls with idiopathic scoliosis.
Sanders, James O; Browne, Richard H; McConnell, Sharon J; Margraf, Susan A; Cooney, Timothy E; Finegold, David N
2007-01-01
Scoliosis progression during adolescence is closely related to patient maturity. Maturity has various indicators, including chronological age, height and weight changes, and skeletal and sexual maturation. It is not certain which of these indicators correlates most strongly with scoliosis progression. The purpose of the present study was to evaluate various maturity measurements and how they relate to scoliosis progression. Physically immature girls with idiopathic scoliosis were evaluated every six months through their growth spurt with serial spinal radiographs; hand skeletal ages; Oxford pelvic scores; Risser sign determinations; height; weight; sexual staging; and serologic studies of the levels of selected growth factors, estradiol, bone-specific alkaline phosphatase, and osteocalcin. These measurements were then correlated with the curve-acceleration phase. The period and pattern of curve acceleration began during Risser stage 0 for all patients. Skeletal maturation scores derived with the use of the Tanner-Whitehouse-III RUS method, particularly those for the metacarpals and phalanges, were superior to all other indicators of maturity. Regression of the scores provided good estimates of maturity relative to the period of curve progression (Pearson r = 0.93). The initiation of this period occurred simultaneously with digital changes from Tanner-Whitehouse-III stage F to G. At this stage, curves also separated into rapid, moderate, and low-acceleration patterns, with specific curve types in the rapid and moderate-acceleration groups. The low-acceleration group was not confined to a specific curve type. The curve-acceleration phase separates curves into various types of curve progression. The Tanner-Whitehouse-III RUS scores are highly correlated with timing relative to the curve-acceleration phase and provide better maturity determination and prognosis determination during adolescence than the other parameters tested. Accurate skeletal maturity determination
Cochlear microphonic broad tuning curves
NASA Astrophysics Data System (ADS)
Ayat, Mohammad; Teal, Paul D.; Searchfield, Grant D.; Razali, Najwani
2015-12-01
It is known that the cochlear microphonic voltage exhibits much broader tuning than does the basilar membrane motion. The most commonly used explanation for this is that when an electrode is inserted at a particular point inside the scala media, the microphonic potentials of neighbouring hair cells have different phases, leading to cancelation at the electrodes location. In situ recording of functioning outer hair cells (OHCs) for investigating this hypothesis is exceptionally difficult. Therefore, to investigate the discrepancy between the tuning curves of the basilar membrane and those of the cochlear microphonic, and the effect of phase cancellation of adjacent hair cells on the broadness of the cochlear microphonic tuning curves, we use an electromechanical model of the cochlea to devise an experiment. We explore the effect of adjacent hair cells (i.e., longitudinal phase cancellation) on the broadness of the cochlear microphonic tuning curves in different locations. The results of the experiment indicate that active longitudinal coupling (i.e., coupling with active adjacent outer hair cells) only slightly changes the broadness of the CM tuning curves. The results also demonstrate that there is a π phase difference between the potentials produced by the hair bundle and the soma near the place associated with the characteristic frequency based on place-frequency maps (i.e., the best place). We suggest that the transversal phase cancellation (caused by the phase difference between the hair bundle and the soma) plays a far more important role than longitudinal phase cancellation in the broadness of the cochlear microphonic tuning curves. Moreover, by increasing the modelled longitudinal resistance resulting the cochlear microphonic curves exhibiting sharper tuning. The results of the simulations suggest that the passive network of the organ of Corti determines the phase difference between the hair bundle and soma, and hence determines the sharpness of the
School Closings in Philadelphia
ERIC Educational Resources Information Center
Jack, James; Sludden, John
2013-01-01
In 2012, the School District of Philadelphia closed six schools. In 2013, it closed 24. The closure of 30 schools has occurred amid a financial crisis, headlined by the district's $1.35 billion deficit. School closures are one piece of the district's plan to cut expenditures and close its budget gap. The closures are also intended to make…
Phenomenological analysis of the clotting curve.
De Cristofaro, R; Di Cera, E
1991-10-01
A model-independent (phenomenological) characterization of the clotting curve is proposed. Three parameters are used to encapsulate the main features of the increase in absorbance observed at 350 nm due to the reaction of thrombin with fibrinogen that leads to clot formation: (1) the maximum increase in absorbance per unit time, delta Am, at the inflection point of the clotting curve; (2) the time needed to reach the maximum increase in absorbance, tm; and (3) the clotting time, tc, obtained from extrapolation of the slope at tm to the zero absorbance baseline. Clotting curves at low fibrinogen concentrations (0.125 divided by 0.250 microM), well below the Km, where thrombin amidase activity is rate-limiting with respect to the subsequent aggregation process, have been measured under a wide variety of experimental conditions, (i.e., as a function of thrombin concentration, pH and temperature) in order to explore the basic response of each parameter to changes in solution conditions. Under all conditions examined in this study we have observed that tm and tc are linked through a linear relationship that appears to be an important invariant property of the clotting curve, regardless of experimental conditions. No such clear relationship exists between delta Am and tc, with tc being associated with several possible values of delta Am and vice versa, depending upon solution conditions. It is proposed that tc is strictly dependent on thrombin amidase activity, while delta Am reflects properties of the aggregation process leading to clot formation. The clotting time shows a pH and temperature dependence that closely resembles that of Km/Vm for synthetic amide substrates. Furthermore, tc changes linearly with either the inverse thrombin concentration and the concentration of competitive inhibitors of fibrinogen binding to thrombin, as expected for the ratio Km/Vm. We show how the analysis of clotting curves obtained at different thrombin and inhibitor concentrations
Relative Locality in Curved Spacetime
NASA Astrophysics Data System (ADS)
Kowalski-Glikman, Jerzy; Rosati, Giacomo
2013-07-01
In this paper we construct the action describing dynamics of the particle moving in curved spacetime, with a nontrivial momentum space geometry. Curved momentum space is the core feature of theories where relative locality effects are present. So far aspects of nonlinearities in momentum space have been studied only for flat or constantly expanding (de Sitter) spacetimes, relying on their maximally symmetric nature. The extension of curved momentum space frameworks to arbitrary spacetime geometries could be relevant for the opportunities to test Planck-scale curvature/deformation of particles momentum space. As a first example of this construction we describe the particle with κ-Poincaré momentum space on a circular orbit in Schwarzschild spacetime, where the contributes of momentum space curvature turn out to be negligible. The analysis of this problem relies crucially on the solution of the soccer ball problem.
Phase nucleation in curved space
NASA Astrophysics Data System (ADS)
Gómez, Leopoldo; García, Nicolás; Vitelli, Vincenzo; Lorenzana, José; Daniel, Vega
Nucleation and growth is the dominant relaxation mechanism driving first-order phase transitions. In two-dimensional flat systems, nucleation has been applied to a wide range of problems in physics, chemistry and biology. Here we study nucleation and growth of two-dimensional phases lying on curved surfaces and show that curvature modifies both critical sizes of nuclei and paths towards the equilibrium phase. In curved space, nucleation and growth becomes inherently inhomogeneous and critical nuclei form faster on regions of positive Gaussian curvature. Substrates of varying shape display complex energy landscapes with several geometry-induced local minima, where initially propagating nuclei become stabilized and trapped by the underlying curvature (Gómez, L. R. et al. Phase nucleation in curved space. Nat. Commun. 6:6856 doi: 10.1038/ncomms7856 (2015).).
Supply curves of conserved energy
NASA Astrophysics Data System (ADS)
Meier, A. K.
1982-05-01
Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes.
Curve Fit Technique for a Smooth Curve Using Gaussian Sections.
1983-08-01
curve-fitting. Furthermore, the algorithm that does the fitting is simple enough to be used on a programmable calculator . 8 -I.F , A X i 4. Y-14 .4. - -* F.J OR;r IF 17 r*~~ , ac ~J ’a vt. . S ~ :.. *~All, a-4k .16’.- a1 1, t
Active particles on curved surfaces
NASA Astrophysics Data System (ADS)
Fily, Yaouen; Baskaran, Aparna; Hagan, Michael
Active systems have proved to be very sensitive to the geometry of their environment. This is often achieved by spending significant time at the boundary, probing its shape by gliding along it. I will discuss coarse graining the microscopic dynamics of self-propelled particles on a general curved surface to predict the way the density profile on the surface depends on its geometry. Beyond confined active particles, this formalism is a natural starting point to study objects that cannot leave the boundary at all, such as cells crawling on a curved substrate, animals running on uneven ground, or active colloids trapped at an interface.
Harmonic Measure of Critical Curves
Bettelheim, E.; Rushkin, I.; Gruzberg, I.A.; Wiegmann, P.
2005-10-21
Fractal geometry of critical curves appearing in 2D critical systems is characterized by their harmonic measure. For systems described by conformal field theories with central charge c{<=}1, scaling exponents of the harmonic measure have been computed by Duplantier [Phys. Rev. Lett. 84, 1363 (2000)] by relating the problem to boundary two-dimensional gravity. We present a simple argument connecting the harmonic measure of critical curves to operators obtained by fusion of primary fields and compute characteristics of the fractal geometry by means of regular methods of conformal field theory. The method is not limited to theories with c{<=}1.
Shock detachment from curved wedges
NASA Astrophysics Data System (ADS)
Mölder, S.
2017-03-01
Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.
Shock detachment from curved wedges
NASA Astrophysics Data System (ADS)
Mölder, S.
2017-09-01
Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.
NEXT Performance Curve Analysis and Validation
NASA Technical Reports Server (NTRS)
Saripalli, Pratik; Cardiff, Eric; Englander, Jacob
2016-01-01
Performance curves of the NEXT thruster are highly important in determining the thruster's ability in performing towards mission-specific goals. New performance curves are proposed and examined here. The Evolutionary Mission Trajectory Generator (EMTG) is used to verify variations in mission solutions based on both available thruster curves and the new curves generated. Furthermore, variations in BOL and EOL curves are also examined. Mission design results shown here validate the use of EMTG and the new performance curves.
Coexistence Curve of Perfluoromethylcyclohexane-Isopropyl Alcohol
NASA Technical Reports Server (NTRS)
Jacobs, D. T.; Kuhl, D. E.; Selby, C. E.
1996-01-01
The coexistence curve of the binary fluid mixture perfluoromethylcyclohexane-isopropyl alcohol was determined by precisely measuring the refractive index both above and below its upper critical consolute point. Sixty-seven two-phase data points were obtained over a wide range of reduced temperatures, 10(exp -5) less than t less than 2.5 x 10(exp -1), to determine the location of the critical point: critical temperature=89.901 C, and critical composition = 62.2% by volume perfluoromethylcyclohexane. These data were analyzed to determine the critical exponent 8 close to the critical point, the amplitude B, and the anomaly in the diameter. The volume-fraction coexistence curve is found to be as symmetric as any composition like variable. Correction to scaling is investigated as well as the need for a crossover theory. A model is proposed that describes the asymptotic approach to zero of the effective exponent Beta, which allows an estimation of the temperature regime free of crossover effects.
High speed curved position sensitive detector
Hendricks, Robert W.; Wilson, Jack W.
1989-01-01
A high speed curved position sensitive porportional counter detector for use in x-ray diffraction, the detection of 5-20 keV photons and the like. The detector employs a planar anode assembly of a plurality of parallel metallic wires. This anode assembly is supported between two cathode planes, with at least one of these cathode planes having a serpentine resistive path in the form of a meander having legs generally perpendicular to the anode wires. This meander is produced by special microelectronic fabrication techniques whereby the meander "wire" fans outwardly at the cathode ends to produce the curved aspect of the detector, and the legs of the meander are small in cross-section and very closely spaced whereby a spatial resolution of about 50 .mu.m can be achieved. All of the other performance characteristics are about as good or better than conventional position sensitive proportional counter type detectors. Count rates of up to 40,000 counts per second with 0.5 .mu.s shaping time constants are achieved.
Principal Curves on Riemannian Manifolds.
Hauberg, Soren
2016-09-01
Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.
Archaeomagnetic SV curve for Belgium
NASA Astrophysics Data System (ADS)
Ech-chakrouni, Souad; Hus, Jozef
2017-04-01
Archaeomagnetic secular variation curves have been established for different countries in Europe, especially when different archeological sites are more or less uniformly distributed in time are available. The disadvantage in that case is that data had to be relocated to a single reference site. The proximity of the reference locality Paris to Belgium makes that we used the French archaeomagnetic SV curve for the last three millennia up to the present for archaeomagnetic dating undated baked structures. In total, 85 baked structures have been examined, unearthed in 24 archaeological sites of the territory of Belgium. The ChRM of each sample was obtained by principal component analysis for at least three demagnetisation steps (Kirschvink 1980). Except for some outliers, the ChRM directions are very coherent with a high confidence factor (α95< 5°) and high concentration factor. The average field directions recorded in the fired materials in most sites satisfy the international criteria used in archaeomagnetism. At present, only six baked structures were dated radiometrically and may be considered as reference data for a limited area about 30500 km2 in Western Europe. The ultimate aim is to construct an archaeomagnetic SV curve for Belgium with Uccle as reference locality, where the first measurement of the geomagnetic field was done in 1895. This curve would include all the available reference data in a radius of about 500 km around Uccle. Keywords: secular variation, archaeomagnetic dating, Belgium.
Interpolation and Polynomial Curve Fitting
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2014-01-01
Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…
Variability among polysulphone calibration curves
NASA Astrophysics Data System (ADS)
Casale, G. R.; Borra, M.; Colosimo, A.; Colucci, M.; Militello, A.; Siani, A. M.; Sisto, R.
2006-09-01
Within an epidemiological study regarding the correlation between skin pathologies and personal ultraviolet (UV) exposure due to solar radiation, 14 field campaigns using polysulphone (PS) dosemeters were carried out at three different Italian sites (urban, semi-rural and rural) in every season of the year. A polysulphone calibration curve for each field experiment was obtained by measuring the ambient UV dose under almost clear sky conditions and the corresponding change in the PS film absorbance, prior and post exposure. Ambient UV doses were measured by well-calibrated broad-band radiometers and by electronic dosemeters. The dose-response relation was represented by the typical best fit to a third-degree polynomial and it was parameterized by a coefficient multiplying a cubic polynomial function. It was observed that the fit curves differed from each other in the coefficient only. It was assessed that the multiplying coefficient was affected by the solar UV spectrum at the Earth's surface whilst the polynomial factor depended on the photoinduced reaction of the polysulphone film. The mismatch between the polysulphone spectral curve and the CIE erythemal action spectrum was responsible for the variability among polysulphone calibration curves. The variability of the coefficient was related to the total ozone amount and the solar zenith angle. A mathematical explanation of such a parameterization was also discussed.
Supply Curves of Conserved Energy
Meier, Alan Kevin
1982-05-01
Supply curves of conserved energy provide an accounting framework that expresses the potential for energy conservation. The economic worthiness of a conservation measure is expressed in terms of the cost of conserved energy, and a measure is considered economical when the cost of conserved energy is less than the price of the energy it replaces. A supply curve of conserved energy is independent of energy prices; however, the economical reserves of conserved energy will depend on energy prices. Double-counting of energy savings and error propagation are common problems when estimating conservation potentials, but supply curves minimize these difficulties and make their consequences predictable. The sensitivity of the cost of conserved energy is examined, as are variations in the optimal investment strategy in response to changes in inputs. Guidelines are presented for predicting the consequences of such changes. The conservation supply curve concept can be applied to peak power, water, pollution, and other markets where consumers demand a service rather than a particular good.
Interpolation and Polynomial Curve Fitting
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2014-01-01
Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…
Breakpoint chlorination curves of greywater.
March, J G; Gual, M
2007-08-01
A study on chlorination of raw greywater with hypochlorite is reported in this paper. Samples were chlorinated in a variety of conditions, and residual chlorine (Cl2) was measured spectrophotometrically. For each sample, the chlorination curve (chlorine residuals versus chlorine dose) was obtained. Curves showed the typical hump-and-dip profile attributable to the formation and destruction of chloramines. It was observed that, after reactions with strong reductants and chloramines-forming compounds, the remaining organic matter exerted a certain demand of chlorine. The evolution of chlorination curves with addition of ammonia and dodecylbencene sulfonate sodium salt and with dilution of the greywater sample were studied. In addition, chlorination curves at several contact times have been obtained, resulting in slower chlorine decay in the hump zone than in the dip zone. In addition, the decay of coliforms in chlorinated samples was also investigated. It was found that, for a chlorination dosage corresponding to the maximum of the hump zone (average 8.9 mg Cl2/ L), samples were negative in coliforms after 10 to 30 minutes of contact time. After-growth was not observed within 3 days after chlorination. Implications in chlorination treatments of raw greywater can be derived from these results.
Particle filtering for dispersion curve tracking in ocean acoustics.
Zorych, Ivan; Michalopoulou, Zoi-Heleni
2008-08-01
A particle filtering method is developed for dispersion curve extraction from spectrograms of broadband acoustic signals propagating in underwater media. The goal is to obtain accurate representation of modal dispersion which can be employed for source localization and geoacoustic inversion. Results are presented from the application of the method to synthetic data, demonstrating the potential of the approach for accurate estimation of waveguide dispersion characteristics. The method outperforms simple time-frequency analysis providing estimates that are very close to numerically calculated dispersion curves. The method also provides uncertainty information on modal arrival time estimates, typically unavailable when traditional methods are used.
Friction Stir Welding of Curved Plates
NASA Technical Reports Server (NTRS)
Sanchez, Nestor
1999-01-01
Friction stir welding (FSW) is a remarkable technology for making butt and lap joints in aluminum alloys. The process operates by passing a rotating tool between two closely butted plates. This process generates heat and the heated material is stirred from both sides of the plates to generate a high quality weld. Application of this technique has a very broad field for NASA. In particular, NASA is interested in using this welding process to manufacture tanks and curved elements. Therefore, this research has been oriented to the study the FSW of curved plates. The study has covered a number of topics that are important in the model development and to uncover the physical process involve in the welding itself. The materials used for the experimental welds were as close to each other as we could possibly find, aluminum 5454-0 and 5456-0 with properties listed at http://matweb.com. The application of FSW to curved plates needs to consider the behavior that we observed in this study. There is going to be larger force in the normal direction (Fz) as the curvature of the plate increases. A particular model needs to be derived for each material and thickness. A more complete study should also include parameters such as spin rate, tool velocity, and power used. The force in the direction of motion (Fx) needs to be reconsidered to make sure of its variability with respect to other parameters such as velocity, thickness, etc. It seems like the curvature does not play a role in this case. Variations in temperature were found with respect to the curvature. However, these changes seem to be smaller than the effect on Fz. The temperatures were all below the melting point. We understand now that the process of FSW produces a three dimensional flow of material that takes place during the weld. This flow needs to be study in a more detailed way to see in which directions the flow of material is stronger. It could be possible to model the flow using a 2-dimensional model in the
Soft parametric curve matching in scale-space
NASA Astrophysics Data System (ADS)
Avants, Brian B.; Gee, James C.
2002-05-01
We develop a softassign method for application to curve matching. Softassign uses deterministic annealing to iteratively optimize the parameters of an energy function. It also incorporates outlier rejection by converting the energy into a stochastic matrix with entries for rejection probability. Previous applications of the method focused on finding transformations between unordered point sets. Thus, no topological constraints were required. In our application, we must consider the topology of the matching between the reference and the target curve. Our energy function also depends upon the rotation and scaling between the curves. Thus, we develop a topologically correct algorithm to update the arc length correspondence, which is then used to update the similarity transformation. We further enhance robustness by using a scale-space description of the curves. This results in a curve-matching tool that, given an approximate initialization, is invariant to similarity transformations. We demonstrate the reliability of the technique by applying it to open and closed curves extracted from real patient images (cortical sulci in three dimensions and corpora callosa in two dimensions). The set of transformations is then used to compute anatomical atlases.
Delamination failure in a unidirectional curved composite laminate
NASA Technical Reports Server (NTRS)
Martin, Roderick H.
1990-01-01
Delamination failure in a unidirectional curved composite laminate was investigated. The curved laminate failed unstably by delaminations developing around the curved region of the laminate at different depths through the thickness until virtually all bending stiffness was lost. Delamination was assumed to initiate at the location of the highest radial stress in the curved region. A closed form curved beam elasticity solution and a 2-D finite element analysis (FEA) were conducted to determine this location. The variation in the strain energy release rate, G, with delamination growth was then determined using the FEA. A strength-based failure criteria adequately predicted the interlaminar tension failure which caused initial delamination onset. Using the G analysis the delamination was predicted to extend into the arm and leg of the laminate, predominantly in mode I. As the initial delamination grew arould the curved region, the maximum radial stress in the newly formed inner sublaminate increased to a level sufficient to cause a new delamination to initiate in the sublaminate with no increase in applied load. This failure progression was observed experimentally.
Comparison of Two Algebraic Methods for Curve/curve Intersection
NASA Technical Reports Server (NTRS)
Demontaudouin, Y.; Tiller, W.
1985-01-01
Most geometric modeling systems use either polynomial or rational functions to represent geometry. In such systems most computational problems can be formulated as systems of polynomials in one or more variables. Classical elimination theory can be used to solve such systems. Here Cayley's method of elimination is summarized and it is shown how it can best be used to solve the curve/curve intersection problem. Cayley's method was found to be a more straightforward approach. Furthermore, it is computationally simpler, since the elements of the Cayley matrix are one variable instead of two variable polynomials. Researchers implemented and tested both methods and found Cayley's to be more efficient. Six pairs of curves, representing mixtures of lines, circles, and cubic arcs were used. Several examples had multiple intersection points. For all six cases Cayley's required less CPU time than the other method. The average time ratio of method 1 to method 2 was 3.13:1, the least difference was 2.33:1, and the most dramatic was 6.25:1. Both of the above methods can be extended to solve the surface/surface intersection problem.
Biological growth functions describe published site index curves for Lake States timber species.
Allen L. Lundgren; William A. Dolid
1970-01-01
Two biological growth functions, an exponential-monomolecular function and a simple monomolecular function, have been fit to published site index curves for 11 Lake States tree species: red, jack, and white pine, balsam fir, white and black spruce, tamarack, white-cedar, aspen, red oak, and paper birch. Both functions closely fit all published curves except those for...
ERIC Educational Resources Information Center
Jeon, Mihyon
2003-01-01
This study investigates closing patterns for an institutional conversation in an ELP (English Language Program) at a university in the United States, noting the relationship between the closing patterns of the participants and their level of proficiency in English. By indicating that ESL learners, especially beginners, face difficulty in closing…
ERIC Educational Resources Information Center
De Witt, Peter M.; Moccia, Josephine
2011-01-01
When a beloved school closes, community emotions run high. De Witt and Moccia, administrators in the Averill Park School District in upstate New York, describe how their district navigated through parents' anger and practical matters in closing a small neighborhood elementary school and transferring all its students to another school. With a group…
The learning curve in revision cholesteatoma surgery.
Stankovic, Milan
2013-01-01
To review the results of revision surgery for cholesteatoma. Retrospective review of patient's records. Tertiary referral center. A retrospective study of patients operated for acquired middle ear cholesteatoma during the period 1990-2002 was performed. A total of 758 patients were divided into two groups according to surgical experience, and followed during short-term and long-term period. The cholesteatoma was divided according to location, age of patients, status of auditory ossicles, and bilaterality of disease. The patients were treated with single canal wall up or wall down, according to the propagation of disease and condition of middle ear. The indications for the reoperations were: recurrent or residual cholesteatoma, resuppuration, and AB gap more than 20 dB. Type of surgical therapy, localization of cholesteatoma, age of patients, revisions, bilaterality of disease, damage of auditory ossicles and learning curve were analyzed. The number of revision operations was reduced in the second period (from totally 24.3% to 16.4%). Closed technique gave a significantly lower rate of failure. For attic cholesteatoma, adults, bilateral disease, and ossicular damage the rate of revisions was significantly lower with surgical experience. Surgical experience was important for reduction of reoperation rate for attic and sinus cholesteatoma, adults, bilateral cholesteatoma, and when closed technique is used. Copyright © 2013 Elsevier Inc. All rights reserved.
Duality concept in curve and surface modelling
NASA Astrophysics Data System (ADS)
Kmetova, Maria; Kmet, Tibor
2012-09-01
The paper deals with projective construction of envelope conic section, line conic and its corresponding point conic and generally, with dual Bézier curve and its corresponding point curve. Also, the role of dual Bézier curves in surface modelling is studied. Duality concept is useful in both; special plane curve modelling and developable surface modelling.
Analysis of the pentafecta learning curve for laparoscopic radical prostatectomy.
Good, D W; Stewart, G D; Stolzenburg, J U; McNeill, S A
2014-10-01
Laparoscopic radical prostatectomy (LRP) has a long learning curve; however, little is known about the pentafecta learning curve for LRP. We analysed the learning curve for a fellowship trained surgeon with regard to the pentafecta with up to 6-year follow-up. A retrospective review was performed in 550 cases, by dividing these cases into 11 groups of 50 patients. Outcomes analysed were the following: (1) the pentafecta (complication rate, positive surgical margin (PSM) rate, continence, potency and biochemical recurrence); (2) operative time and blood loss; and (3) overall pentafecta attainment. The mean complication rate for the entire series was 9 %; this plateaued after 150 cases. The overall PSM rate for the series was 23.5 %, 16.3 % for pT2 and 40.5 % for pT3. PSM plateaued after 200 cases. Excluding the first 100 cases, the overall PSM rate for pT2 was 10.9 % and 37.8 % for pT3. The continence rate stabilised after approximately 250 cases. The rate of male sling/artificial urinary sphincter plateaued after 200 cases. The potency learning curve continues to improve after 250 cases of nerve-sparing (ns) endoscopic extraperitoneal radical prostatectomy (EERPE) as does the pentafecta learning curve which closely follows the pattern of the potency learning curve. The last group of nsEERPE achieved pentafecta in 63 %. This study shows multiple learning curves: an initial for peri-operative outcomes, then stabilisation of oncologic outcomes and the final for stabilisation of functional outcomes. In this series over 250 cases were required to achieve the learning curve.
Infinite swapping in curved spaces
NASA Astrophysics Data System (ADS)
Curotto, E.; Mella, Massimo
2014-01-01
We develop an extension of the infinite swapping and partial infinite swapping techniques [N. Plattner, J. D. Doll, P. Dupuis, H. Wang, Y. Liu, and J. E. Gubernatis, J. Chem. Phys. 135, 134111 (2011)] to curved spaces. Furthermore, we test the performance of infinite swapping and partial infinite swapping in a series of flat spaces characterized by the same potential energy surface model. We develop a second order variational algorithm for general curved spaces without the extended Lagrangian formalism to include holonomic constraints. We test the new methods by carrying out NVT classical ensemble simulations on a set of multidimensional toroids mapped by stereographic projections and characterized by a potential energy surface built from a linear combination of decoupled double wells shaped purposely to create rare events over a range of temperatures.
Optical conductivity of curved graphene.
Chaves, A J; Frederico, T; Oliveira, O; de Paula, W; Santos, M C
2014-05-07
We compute the optical conductivity for an out-of-plane deformation in graphene using an approach based on solutions of the Dirac equation in curved space. Different examples of periodic deformations along one direction translates into an enhancement of the optical conductivity peaks in the region of the far- and mid-infrared frequencies for periodicities ∼100 nm. The width and position of the peaks can be changed by dialling the parameters of the deformation profiles. The enhancement of the optical conductivity is due to intraband transitions and the translational invariance breaking in the geometrically deformed background. Furthermore, we derive an analytical solution of the Dirac equation in a curved space for a general deformation along one spatial direction. For this class of geometries, it is shown that curvature induces an extra phase in the electron wave function, which can also be explored to produce interference devices of the Aharonov-Bohm type.
NASA Astrophysics Data System (ADS)
Smith, Jeffrey C.; morris, robert; Bryson, Steve; Jenkins, Jon Michael; Caldwell, Douglas
2015-08-01
The K2 mission is now generating light curves for its ecliptic-field campaigns. Producing good photometry for K2 is more challenging than for Kepler’s prime mission because periodic thruster firings are used to compensate for the loss of two reaction wheels. These firings, referred to as "roll tweaks", result in spacecraft rotation along the barrel axis and high corresponding image motion. The resulting motion-dominated systematic errors are dramatically different than the focus-dominated systematic errors experienced during the prime mission. They also make it challenging to properly identify and remove flux from background objects present in the optimal apertures. We summarize these challenges and describe the resulting modifications to the Kepler pipeline for the processing of K2 data. The quality of the K2 mission light curves is characterized.
Infinite swapping in curved spaces.
Curotto, E; Mella, Massimo
2014-01-07
We develop an extension of the infinite swapping and partial infinite swapping techniques [N. Plattner, J. D. Doll, P. Dupuis, H. Wang, Y. Liu, and J. E. Gubernatis, J. Chem. Phys. 135, 134111 (2011)] to curved spaces. Furthermore, we test the performance of infinite swapping and partial infinite swapping in a series of flat spaces characterized by the same potential energy surface model. We develop a second order variational algorithm for general curved spaces without the extended Lagrangian formalism to include holonomic constraints. We test the new methods by carrying out NVT classical ensemble simulations on a set of multidimensional toroids mapped by stereographic projections and characterized by a potential energy surface built from a linear combination of decoupled double wells shaped purposely to create rare events over a range of temperatures.
Optimal designs for comparing curves
Dette, Holger; Schorning, Kirsten
2016-01-01
We consider the optimal design problem for a comparison of two regression curves, which is used to establish the similarity between the dose response relationships of two groups. An optimal pair of designs minimizes the width of the confidence band for the difference between the two regression functions. Optimal design theory (equivalence theorems, efficiency bounds) is developed for this non standard design problem and for some commonly used dose response models optimal designs are found explicitly. The results are illustrated in several examples modeling dose response relationships. It is demonstrated that the optimal pair of designs for the comparison of the regression curves is not the pair of the optimal designs for the individual models. In particular it is shown that the use of the optimal designs proposed in this paper instead of commonly used “non-optimal” designs yields a reduction of the width of the confidence band by more than 50%. PMID:27340305
Accelerating Around an Unbanked Curve
NASA Astrophysics Data System (ADS)
Mungan, Carl E.
2006-02-01
The December 2004 issue of TPT presented a problem concerning how a car should accelerate around an unbanked curve of constant radius r starting from rest if it is to avoid skidding. Interestingly enough, two solutions were proffered by readers.2 The purpose of this note is to compare and contrast the two approaches. Further experimental investigation of various turning strategies using a remote-controlled car and overhead video analysis could make for an interesting student project.
1992-12-16
12 = (K,, + )- (29) K 2 (see [3]). The parameter KM represents the amplitude of the periodic curva - ture function and sm denotes the value at which K...Additamentum De curvis elasticis. Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Ser. 1., Vol. 24, Lausanne 1744. 17 [10...Mathematical Theory of Elasticity. 4th. ed., Cambridge University Press, 1927. [12] G. Nielson. Bernstein/ Bezier Curves and Splines on Spheres based upon
A curved resonant flexoelectric actuator
NASA Astrophysics Data System (ADS)
Zhang, Shuwen; Liu, Kaiyuan; Xu, Minglong; Shen, Shengping
2017-08-01
Flexoelectricity is an electro-mechanical coupling effect that exists in all dielectrics and has the potential to replace piezoelectric actuating on the microscale. In this letter, a curved flexoelectric actuator with non-polarized polyvinylidene fluoride is presented and shown to exhibit good electro-mechanical properties. This provides experimental support for a body of theoretical research into converse flexoelectricity in polymeric materials. In addition, this work demonstrates the feasibility of lead-free microscale actuating without piezoelectricity.
Damage prediction in cross-plied curved composite laminates
NASA Technical Reports Server (NTRS)
Martin, Roderick H.; Jackson, Wade C.
1991-01-01
Analytical and experimental work is detailed which is required to predict delamination onset and growth in a curved cross plied composite laminate subjected to static and fatigue loads. The composite used was AS4/3501/6, graphite/epoxy. Analytically, a closed form stress analysis and 2-D and 3-D finite element analyses were conducted to determine the stress distribution in an undamaged curved laminate. The finite element analysis was also used to determine values of strain energy release rate at a delamination emanating from a matrix crack in a 90 deg ply. Experimentally, transverse tensile strength and fatigue life were determined from flat 90 deg coupons. The interlaminar tensile strength and fatigue life were determined from double cantilevered beam specimens. Cross plied curved laminates were tested statically and in fatigue to give a comparison to the analytical predictions. A comparison of the fracture mechanics life prediction technique and the strength based prediction technique is given.
2013-12-03
NASA Dawn spacecraft will be getting an up-close look at the dwarf planet Ceres starting in late March or the beginning of April 2015. This graphic shows the science-gathering orbits planned for the spacecraft.
Atmospheric Science Data Center
2013-04-19
article title: Closed Large Cell Clouds in the South Pacific ... unperturbed by cyclonic or frontal activity. When the cell centers are cloudy and the main sinking motion is concentrated at cell ...
2015-12-08
NASA Cassini spacecraft spied details on the pockmarked surface of Saturn moon Prometheus 86 kilometers, or 53 miles across during a moderately close flyby on Dec. 6, 2015. This is one of Cassini highest resolution views of Prometheus.
Hamilton-Jacobi method for curved domain walls and cosmologies
NASA Astrophysics Data System (ADS)
Skenderis, Kostas; Townsend, Paul K.
2006-12-01
We use Hamiltonian methods to study curved domain walls and cosmologies. This leads naturally to first-order equations for all domain walls and cosmologies foliated by slices of maximal symmetry. For Minkowski and AdS-sliced domain walls (flat and closed FLRW cosmologies) we recover a recent result concerning their (pseudo)supersymmetry. We show how domain-wall stability is consistent with the instability of AdS vacua that violate the Breitenlohner-Freedman bound. We also explore the relationship to Hamilton-Jacobi theory and compute the wave-function of a 3-dimensional closed universe evolving towards de Sitter spacetime.
ERIC Educational Resources Information Center
Caglayan, Günhan
2016-01-01
A Steiner chain is defined as the sequence of n circles that are all tangent to two given non-intersecting circles. A closed chain, in particular, is one in which every circle in the sequence is tangent to the previous and next circles of the chain. In a closed Steiner chain the first and the "n"th circles of the chain are also tangent…
ERIC Educational Resources Information Center
Caglayan, Günhan
2016-01-01
A Steiner chain is defined as the sequence of n circles that are all tangent to two given non-intersecting circles. A closed chain, in particular, is one in which every circle in the sequence is tangent to the previous and next circles of the chain. In a closed Steiner chain the first and the "n"th circles of the chain are also tangent…
NLINEAR - NONLINEAR CURVE FITTING PROGRAM
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1994-01-01
A common method for fitting data is a least-squares fit. In the least-squares method, a user-specified fitting function is utilized in such a way as to minimize the sum of the squares of distances between the data points and the fitting curve. The Nonlinear Curve Fitting Program, NLINEAR, is an interactive curve fitting routine based on a description of the quadratic expansion of the chi-squared statistic. NLINEAR utilizes a nonlinear optimization algorithm that calculates the best statistically weighted values of the parameters of the fitting function and the chi-square that is to be minimized. The inputs to the program are the mathematical form of the fitting function and the initial values of the parameters to be estimated. This approach provides the user with statistical information such as goodness of fit and estimated values of parameters that produce the highest degree of correlation between the experimental data and the mathematical model. In the mathematical formulation of the algorithm, the Taylor expansion of chi-square is first introduced, and justification for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations are derived, which are solved by matrix algebra. To achieve convergence, the algorithm requires meaningful initial estimates for the parameters of the fitting function. NLINEAR is written in Fortran 77 for execution on a CDC Cyber 750 under NOS 2.3. It has a central memory requirement of 5K 60 bit words. Optionally, graphical output of the fitting function can be plotted. Tektronix PLOT-10 routines are required for graphics. NLINEAR was developed in 1987.
NLINEAR - NONLINEAR CURVE FITTING PROGRAM
NASA Technical Reports Server (NTRS)
Everhart, J. L.
1994-01-01
A common method for fitting data is a least-squares fit. In the least-squares method, a user-specified fitting function is utilized in such a way as to minimize the sum of the squares of distances between the data points and the fitting curve. The Nonlinear Curve Fitting Program, NLINEAR, is an interactive curve fitting routine based on a description of the quadratic expansion of the chi-squared statistic. NLINEAR utilizes a nonlinear optimization algorithm that calculates the best statistically weighted values of the parameters of the fitting function and the chi-square that is to be minimized. The inputs to the program are the mathematical form of the fitting function and the initial values of the parameters to be estimated. This approach provides the user with statistical information such as goodness of fit and estimated values of parameters that produce the highest degree of correlation between the experimental data and the mathematical model. In the mathematical formulation of the algorithm, the Taylor expansion of chi-square is first introduced, and justification for retaining only the first term are presented. From the expansion, a set of n simultaneous linear equations are derived, which are solved by matrix algebra. To achieve convergence, the algorithm requires meaningful initial estimates for the parameters of the fitting function. NLINEAR is written in Fortran 77 for execution on a CDC Cyber 750 under NOS 2.3. It has a central memory requirement of 5K 60 bit words. Optionally, graphical output of the fitting function can be plotted. Tektronix PLOT-10 routines are required for graphics. NLINEAR was developed in 1987.
Fracture toughness curve shift method
Nanstad, R.K.; Sokolov, M.A.; McCabe, D.E.
1995-10-01
The purpose of this task is to examine the technical basis for the currently accepted methods for shifting fracture toughness curves to account for irradiation damage, and to work through national codes and standards bodies to revise those methods, if a change is warranted. During this reporting period, data from all the relevant HSSI Programs were acquired and stored in a database and evaluated. The results from that evaluation have been prepared in a draft letter report and are summarized here. A method employing Weibull statistics was applied to analyze fracture toughness properties of unirradiated and irradiated pressure vessel steels. Application of the concept of a master curve for irradiated materials was examined and used to measure shifts of fracture toughness transition curves. It was shown that the maximum likelihood approach gave good estimations of the reference temperature, T{sub o}, determined by rank method and could be used for analyzing of data sets where application of the rank method did not prove to be feasible. It was shown that, on average, the fracture toughness shifts generally exceeded the Charpy 41-J shifts; a linear least-squares fit to the data set yielded a slope of 1.15. The observed dissimilarity was analyzed by taking into account differences in effects of irradiation on Charpy impact and fracture toughness properties. Based on these comparisons, a procedure to adjust Charpy 41-J shifts for achieving a more reliable correlation with the fracture toughness shifts was evaluated. An adjustment consists of multiplying the 41-J energy level by the ratio of unirradiated to irradiated Charpy upper shelves to determine an irradiated transition temperature, and then subtracting the unirradiated transition temperature determined at 41 J. For LUS welds, however, an unirradiated level of 20 J (15 ft-1b) was used for the corresponding adjustment for irradiated material.
Dirac's aether in curved spacetime.
Oliveira; Teixeira
2000-06-01
Proca's equations for two types of fields in a Dirac's aether with electric conductivity sigma are solved exactly. The Proca electromagnetic fields are assumed with cylindrical symmetry. The background is a static, curved spacetime whose spatial section is homogeneous and has the topology of either the three-sphere S 3 or the projective three-space P 3. Simple relations between the range of Proca field lambda, the Universe radius R, the limit of photon rest mass mgamma and the conductivity sigma are written down.
Sound propagation over curved barriers
NASA Technical Reports Server (NTRS)
Pierce, Allan D.; Main, Geoffrey L.; Kearns, James A.; Hsieh, H.-A.
1986-01-01
Wide barriers with curved tops are studied with emphasis placed on circumstances whereby the local radius of curvature R of the barrier is continuous along the surface and is large compared to a wavelength. Results analogous to those given by Hayek et al. (1978) are reviewed and extended to cases where the radius of curvature and the surface impedance may vary with position. Circumstances not easily interpreted within the framework of the model proposed by Keller (1956) and Hayek et al. are also considered.
Sound propagation over curved barriers
NASA Astrophysics Data System (ADS)
Pierce, Allan D.; Main, Geoffrey L.; Kearns, James A.; Hsieh, H.-A.
Wide barriers with curved tops are studied with emphasis placed on circumstances whereby the local radius of curvature R of the barrier is continuous along the surface and is large compared to a wavelength. Results analogous to those given by Hayek et al. (1978) are reviewed and extended to cases where the radius of curvature and the surface impedance may vary with position. Circumstances not easily interpreted within the framework of the model proposed by Keller (1956) and Hayek et al. are also considered.
Curved microchannels and bacterial streamers
NASA Astrophysics Data System (ADS)
Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard
2010-03-01
Bacterial biofilms are commonly identified as microbial communities attached to a surface and encased in a self-secreted extracellular matrix. Due to their increased resistance to antimicrobial agents, biofilms have an enormous impact on health and medicine (e.g., wound healing, implant-associated infections, disease transmission). On the other hand, they constitute a major component of the stream ecosystem by increasing transport of nutrients and retention of suspended particles. In this talk, we present an experimental study of bacterial biofilm development in a microfluidic device. In particular, we show the formation of filamentous structures, or streamers, in curved channels and how these suspended biofilms are linked to the underlying hydrodynamics.
Compression of contour data through exploiting curve-to-curve dependence
NASA Technical Reports Server (NTRS)
Yalabik, N.; Cooper, D. B.
1975-01-01
An approach to exploiting curve-to-curve dependencies in order to achieve high data compression is presented. One of the approaches to date of along curve compression through use of cubic spline approximation is taken and extended by investigating the additional compressibility achievable through curve-to-curve structure exploitation. One of the models under investigation is reported on.
Fourie-Mukai partners of singular genus one curves
NASA Astrophysics Data System (ADS)
López Martín, Ana Cristina
2014-09-01
The objective of the paper is to prove that, as it happens for smooth elliptic curves, any Fourie-Mukai partner of a projective reduced Gorenstein curve of genus one and trivial dualizing sheaf, is isomorphic to itself. either to a Kodaira curve (always with locally planar singularities), that is, a smooth elliptic curve; a rational curve with one node (following Kodaira's notation, that is a curve of type I1); a rational curve with one cusp (a curve of type I2); a cycle of N rational smooth curves (a curve of type IN) with N≥2; two rational smooth curves forming a tacnode curve (a curve of type II); or three concurrent rational smooth curves in the plane (a curve of type IV); or to a curve consisting of N≥4 rational smooth curves meeting at a point x where the tangents to the branches are linearly dependent, but any (N-1) of them are independent. Note that, by results of Kodaira and Miranda, the curves in (1) are exactly all the possible reduced fibers appearing in a smooth elliptic surface or in a smooth elliptic threefold. This explains why they are called Kodaira curves.The theorem was just known for smooth elliptic curves. In this case, it was proved by Hille and Van den Bergh in [2]. For the integral singular curves in the above list, that is, for X a rational curve with one node or a cusp, Burban and Kreußler study in [3] the derived category Dcb(X) and its group Aut(Dcb(X) of autoequivalences, but they do not tackle the question of Fourie-Mukai partners. Thus our contribution is to pass from the classical case of a smooth elliptic curve to the singular case generalizing the result to all singular curves of Catanese's list.In 1998, Bridgeland computes all Fourie-Mukai partners of a smooth elliptic surface. He proves in [4] that the partners of relatively minimal smooth elliptic surfaces are certain relative compactified Jacobians. Some recent works [5,6] are concerned about higher dimensional elliptic fibrations. But, for the moment there is not a
Optimal vibration control of curved beams using distributed parameter models
NASA Astrophysics Data System (ADS)
Liu, Fushou; Jin, Dongping; Wen, Hao
2016-12-01
The design of linear quadratic optimal controller using spectral factorization method is studied for vibration suppression of curved beam structures modeled as distributed parameter models. The equations of motion for active control of the in-plane vibration of a curved beam are developed firstly considering its shear deformation and rotary inertia, and then the state space model of the curved beam is established directly using the partial differential equations of motion. The functional gains for the distributed parameter model of curved beam are calculated by extending the spectral factorization method. Moreover, the response of the closed-loop control system is derived explicitly in frequency domain. Finally, the suppression of the vibration at the free end of a cantilevered curved beam by point control moment is studied through numerical case studies, in which the benefit of the presented method is shown by comparison with a constant gain velocity feedback control law, and the performance of the presented method on avoidance of control spillover is demonstrated.
The universal rotation curve of dwarf disc galaxies
NASA Astrophysics Data System (ADS)
Karukes, E. V.; Salucci, P.
2017-03-01
We use the concept of the spiral rotation curves universality to investigate the luminous and dark matter properties of the dwarf disc galaxies in the local volume (size ∼11 Mpc). Our sample includes 36 objects with rotation curves carefully selected from the literature. We find that, despite the large variations of our sample in luminosities (∼2 of dex), the rotation curves in specifically normalized units, look all alike and lead to the lower mass version of the universal rotation curve of spiral galaxies found in Persic et al. We mass model the double normalized universal rotation curve V(R/Ropt)/Vopt of dwarf disc galaxies: the results show that these systems are totally dominated by dark matter whose density shows a core size between 2 and 3 stellar disc scalelengths. Similar to galaxies of different Hubble types and luminosities, the core radius r0 and the central density ρ0 of the dark matter halo of these objects are related by ρ0r0 ∼ 100 M⊙ pc-2. The structural properties of the dark and luminous matter emerge very well correlated. In addition, to describe these relations, we need to introduce a new parameter, measuring the compactness of light distribution of a (dwarf) disc galaxy. These structural properties also indicate that there is no evidence of abrupt decline at the faint end of the baryonic to halo mass relation. Finally, we find that the distributions of the stellar disc and its dark matter halo are closely related.
Characterizing time series via complexity-entropy curves
NASA Astrophysics Data System (ADS)
Ribeiro, Haroldo V.; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K.
2017-06-01
The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q -complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.
Characterizing time series via complexity-entropy curves.
Ribeiro, Haroldo V; Jauregui, Max; Zunino, Luciano; Lenzi, Ervin K
2017-06-01
The search for patterns in time series is a very common task when dealing with complex systems. This is usually accomplished by employing a complexity measure such as entropies and fractal dimensions. However, such measures usually only capture a single aspect of the system dynamics. Here, we propose a family of complexity measures for time series based on a generalization of the complexity-entropy causality plane. By replacing the Shannon entropy by a monoparametric entropy (Tsallis q entropy) and after considering the proper generalization of the statistical complexity (q complexity), we build up a parametric curve (the q-complexity-entropy curve) that is used for characterizing and classifying time series. Based on simple exact results and numerical simulations of stochastic processes, we show that these curves can distinguish among different long-range, short-range, and oscillating correlated behaviors. Also, we verify that simulated chaotic and stochastic time series can be distinguished based on whether these curves are open or closed. We further test this technique in experimental scenarios related to chaotic laser intensity, stock price, sunspot, and geomagnetic dynamics, confirming its usefulness. Finally, we prove that these curves enhance the automatic classification of time series with long-range correlations and interbeat intervals of healthy subjects and patients with heart disease.
Theory and experiments on Peano and Hilbert curve RFID tags
NASA Astrophysics Data System (ADS)
McVay, John; Hoorfar, Ahmad; Engheta, Nader
2006-05-01
Recently, there has been considerable interest in the area of Radio Frequency Identification (RFID) and Radio Frequency Tagging (RFTAG). This emerging area of interest can be applied for inventory control (commercial) as well as friend/foe identification (military) to name but a few. The current technology can be broken down into two main groups, namely passive and active RFID tags. Utilization of Space-Filling Curve (SFC) geometries, such as the Peano and Hilbert curves, has been recently investigated for use in completely passive RFID applications [1, 2]. In this work, we give an overview of our work on the space-filling curves and the potential for utilizing the electrically small, resonant characteristics of these curves for use in RFID technologies with an emphasis on the challenging issues involved when attempting to tag conductive objects. In particular, we investigate the possible use of these tags in conjunction with high impedance ground-planes made of Hilbert or Peano curve inclusions [3, 4] to develop electrically small RFID tags that may also radiate efficiently, within close proximity of large conductive objects [5].
An equational characterization of the conic construction of cubic curves
McCune, W.; Padmanabhan, R.
1995-05-17
An n-ary Steiner law f(x{sub 1},x{sub 2},{hor_ellipsis},x{sub n}) on a projective curve {Gamma} over an algebraically closed field k is a totally symmetric n-ary morphism f from {Gamma}{sup n} to {Gamma} satisfying the universal identity f(x{sub 1},x{sub 2},{hor_ellipsis},x{sub n-1}, f(x{sub 1},x{sub 2},{hor_ellipsis},x{sub n})) = x{sub n}. An element e in {Gamma} is called an idempotent for f if f(e,e,{hor_ellipsis},e) = e. The binary morphism x * y of the classical chord-tangent construction on a nonsingular cubic curve is an example of a binary Steiner law on the curve, and the idempotents of * are precisely the inflection points of the curve. In this paper, the authors prove that if f and g are two 5-ary Steiner laws on an elliptic curve {Gamma} sharing a common idempotent, then f = g. They use a new rule of inference rule =(gL){implies}, extracted from a powerful local-to-global principal in algebraic geometry. This rule is implemented in the theorem-proving program OTTER. Then they use OTTER to automatically prove the uniqueness of the 5-ary Steiner law on an elliptic curve. Very much like the binary case, this theorem provides an algebraic characterization of a geometric construction process involving conics and cubics. The well-known theorem of the uniqueness of the group law on such a curve is shown to be a consequence of this result.
2008-01-01
Hip resurfacing is an attractive concept because it preserves rather than removes the femoral head and neck. Most early designs had high failure rates, but one unique design had a femoral stem. Because that particular device appeared to have better implant survival, this study assessed the clinical outcome and long-term survivorship of a hip resurfacing prosthesis. Four hundred forty-five patients (561 hips) were retrospectively reviewed after a minimum of 20 years’ followup or until death; 23 additional patients were lost to followup. Patients received a metal femoral prosthesis with a small curved stem. Three types of acetabular reconstructions were used: (1) cemented polyurethane; (2) metal-on-metal; and (3) polyethylene secured with cement or used as the liner of a two-piece porous-coated implant. Long-term results were favorable with the metal-on-metal combination only. The mean overall Harris hip score was 92 at 2 years of followup. None of the 121 patients (133 hips) who received metal-on-metal articulation experienced failure. The failure rate with polyurethane was 100%, and the failure rate with cemented polyethylene was 41%. Hip resurfacing with a curved-stem femoral component had a durable clinical outcome when a metal-on-metal articulation was used. Level of Evidence: Level IV, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18338217
Miniature curved artificial compound eyes.
Floreano, Dario; Pericet-Camara, Ramon; Viollet, Stéphane; Ruffier, Franck; Brückner, Andreas; Leitel, Robert; Buss, Wolfgang; Menouni, Mohsine; Expert, Fabien; Juston, Raphaël; Dobrzynski, Michal Karol; L'Eplattenier, Geraud; Recktenwald, Fabian; Mallot, Hanspeter A; Franceschini, Nicolas
2013-06-04
In most animal species, vision is mediated by compound eyes, which offer lower resolution than vertebrate single-lens eyes, but significantly larger fields of view with negligible distortion and spherical aberration, as well as high temporal resolution in a tiny package. Compound eyes are ideally suited for fast panoramic motion perception. Engineering a miniature artificial compound eye is challenging because it requires accurate alignment of photoreceptive and optical components on a curved surface. Here, we describe a unique design method for biomimetic compound eyes featuring a panoramic, undistorted field of view in a very thin package. The design consists of three planar layers of separately produced arrays, namely, a microlens array, a neuromorphic photodetector array, and a flexible printed circuit board that are stacked, cut, and curved to produce a mechanically flexible imager. Following this method, we have prototyped and characterized an artificial compound eye bearing a hemispherical field of view with embedded and programmable low-power signal processing, high temporal resolution, and local adaptation to illumination. The prototyped artificial compound eye possesses several characteristics similar to the eye of the fruit fly Drosophila and other arthropod species. This design method opens up additional vistas for a broad range of applications in which wide field motion detection is at a premium, such as collision-free navigation of terrestrial and aerospace vehicles, and for the experimental testing of insect vision theories.
Wrinkling Crystallography on Curved Surfaces
NASA Astrophysics Data System (ADS)
Reis, Pedro; Brojan, Miha; Terwagne, Denis; Lagrange, Romain
2014-03-01
We present results on an experimental analysis of the morphology of wrinkling patterns on curved surfaces. Our experimental hemispherical samples are fabricated using rapid prototyping and consist of a thin-stiff shell adhered to a soft-thick substrate, both made out of silicone-based rubbers. Pressurizing an inner spherical air cavity enables compression of the samples, thereby morphing the outer thin shell from its initially smooth configuration into a wrinkled state. A variety of patterns with different morphologies can be observed depending on the combination of the sample's geometric and material properties. We focus our attention on the specific pattern mode of hexagonal-like dimples, which we characterize by analyzing their surface profile using a digital 3D scanner. Through digital image processing, we skeletonize these patterns by identifying both the location of the ridges and determining the positions of the dimples. We give emphasis to the effect of curvature on the morphology and topology of these wrinkled patterns and focus on the tiling of the wrinkling units and their statistics of defects. Our results are contrasted with other crystalline planar and curved systems.
Grafts in "closed" rhinoplasty.
Scattolin, A; D'Ascanio, L
2013-06-01
Rhinoplasty is a fascinating and complex surgical procedure aiming at attaining a well-functioning and aesthetically pleasant nose. The use of grafts is of the utmost importance for the nasal surgeon to achieve such results. However, the philosophy and technical use of nasal grafts are different in "closed" and "open" rhinoplasty. The aim of this paper is not detailed description of the numerous grafts reported in the literature; we will describe the main principles of grafts use in "closed" rhinoplasty derived from our experience, with special reference to the philosophical and technical differences in their employment between "closed" and "open" rhinoplasty. Some cases are reported as an example of graft use in "endonasal" approach rhinoplasty.
Closed flexor tendon ruptures.
Netscher, David T; Badal, Justin J
2014-11-01
We review different causes, diagnoses, and treatment options of closed flexor tendon disruptions in the hand. A classification of closed tendon ruptures based on their mechanism includes traumatic tendon avulsion, spontaneous midsubstance rupture, attrition rupture, infiltrative tenosynovial rupture, and iatrogenic. Certain conditions result in tendon disruption inflicted by more than 1 of these etiologies. In rheumatoid arthritis, tendon rupture may result from attrition on an exposed rough surface, proliferative tenosynovial tendon infiltration, or steroid use. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Close-in Blast Waves from Spherical Charges*
NASA Astrophysics Data System (ADS)
Howard, William; Kuhl, Allen
2011-06-01
We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.
ERIC Educational Resources Information Center
California Integrated Waste Management Board, Sacramento.
Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…
ERIC Educational Resources Information Center
Environment, 1972
1972-01-01
Two views of prominent biologists are presented side-by-side. Focal point is Barry Commoner's book, The Closing Circle, with a subsequent review by Paul Ehrlich. Growth of population, increases in affluence, and increased pollution from products of technology are considered. (BL)
Closed Captioning: Students' Responses.
ERIC Educational Resources Information Center
Weasenforth, Donald L.
A study investigated the attitudes of adult university students of English as a Second Language (ESL) toward use of closed captioned television (CCTV) as an instructional tool. Students at the intermediate (n=51) and advanced (n=55) levels of ESL study in classes using CCTV were administered a questionnaire concerning their perceptions of the…
... around the incision increases or becomes thick, tan, green, or yellow, or smells bad (pus). Also call if your temperature is above 100°F (37.7°C) for more than 4 hours. Alternative Names Surgical incision care; Closed wound care References Leong M, Phillips LG. ...
Atmospheric Science Data Center
2013-04-19
... (right) The structure of tightly packed "closed cells" in a layer of marine stratocumulus over the southeastern Pacific Ocean ... into interesting structures such as those shown here. These cells are notably small, with diameters ranging from 10-15 kilometers, instead ...
ERIC Educational Resources Information Center
Riggins, Cheryl G.
2002-01-01
Describes how the principal of a K-2, 400-student suburban elementary school near Flint, Michigan, worked with her staff and superintendent to develop and implement a strategic plan to close the student achievement gap. Reports significant improvement in reading and math scores after 1 year. (PKP)
ERIC Educational Resources Information Center
California Integrated Waste Management Board, Sacramento.
Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…
ERIC Educational Resources Information Center
Riggins, Cheryl G.
2002-01-01
Describes how the principal of a K-2, 400-student suburban elementary school near Flint, Michigan, worked with her staff and superintendent to develop and implement a strategic plan to close the student achievement gap. Reports significant improvement in reading and math scores after 1 year. (PKP)
ERIC Educational Resources Information Center
Banta, Trudy W.; Blaich, Charles
2011-01-01
Accreditors, speakers at assessment conferences, and campus leaders all decry the fact that too few faculty are closing the loop--that is, studying assessment findings to see what improvements might be suggested and taking the appropriate steps to make them. This is difficult enough with locally developed measures; adding the need to interpret…
ERIC Educational Resources Information Center
Environment, 1972
1972-01-01
Two views of prominent biologists are presented side-by-side. Focal point is Barry Commoner's book, The Closing Circle, with a subsequent review by Paul Ehrlich. Growth of population, increases in affluence, and increased pollution from products of technology are considered. (BL)
Parametrizations of elliptic curves by Shimura curves and by classical modular curves
Ribet, Kenneth A.; Takahashi, Shuzo
1997-01-01
Fix an isogeny class 𝒜 of semistable elliptic curves over Q. The elements of 𝒜 have a common conductor N, which is a square-free positive integer. Let D be a divisor of N which is the product of an even number of primes—i.e., the discriminant of an indefinite quaternion algebra over Q. To D we associate a certain Shimura curve X0D(N/D), whose Jacobian is isogenous to an abelian subvariety of J0(N). There is a unique A ∈ 𝒜 for which one has a nonconstant map πD : X0D(N/D) → A whose pullback A → Pic0(X0D(N/D)) is injective. The degree of πD is an integer δD which depends only on D (and the fixed isogeny class 𝒜). We investigate the behavior of δD as D varies. PMID:11607751
Laser-induced magnetization curve
NASA Astrophysics Data System (ADS)
Takayoshi, Shintaro; Sato, Masahiro; Oka, Takashi
2014-12-01
We propose an all optical ultrafast method to highly magnetize general quantum magnets using a circularly polarized terahertz laser. The key idea is to utilize a circularly polarized laser and its chirping. Through this method, one can obtain magnetization curves of a broad class of quantum magnets as a function of time even without any static magnetic field. We numerically demonstrate the laser-induced magnetization process in realistic quantum spin models and find a condition for the realization. The onset of magnetization can be described by a many-body version of Landau-Zener mechanism. In a particular model, we show that a plateau state with topological properties can be realized dynamically.
Bacterial streamers in curved microchannels
NASA Astrophysics Data System (ADS)
Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard
2009-11-01
Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.
Curved film cooling admission tube
NASA Technical Reports Server (NTRS)
Graham, R. W.; Papell, S. S. (Inventor)
1980-01-01
Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.
Cubic spline functions for curve fitting
NASA Technical Reports Server (NTRS)
Young, J. D.
1972-01-01
FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.
The Aggregate Demand Curve: A Reply.
ERIC Educational Resources Information Center
Hansen, Richard B.; And Others
1987-01-01
Responds to claims about the instructional value of the downward-sloping aggregate demand curve in teaching principles of macroeconomics. Examines the effects of interest-rates and the role of money on demand curves. Concludes by arguing against the use of downward-sloping aggregate demand curves in textbooks. (RKM)
The Writhing Number of a Space Curve
Fuller, F. Brock
1971-01-01
A geometric invariant of a space curve, the writhing number, is defined and studied. For the central curve of a twisted cord the writhing number measures the extent to which coiling of the central curve has relieved local twisting of the cord. This study originated in response to questions that arise in the study of supercoiled double-stranded DNA rings. PMID:5279522
Cubic spline functions for curve fitting
NASA Technical Reports Server (NTRS)
Young, J. D.
1972-01-01
FORTRAN cubic spline routine mathematically fits curve through given ordered set of points so that fitted curve nearly approximates curve generated by passing infinite thin spline through set of points. Generalized formulation includes trigonometric, hyperbolic, and damped cubic spline fits of third order.
Caloric curve of star clusters.
Casetti, Lapo; Nardini, Cesare
2012-06-01
Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results.
AKLSQF - LEAST SQUARES CURVE FITTING
NASA Technical Reports Server (NTRS)
Kantak, A. V.
1994-01-01
The Least Squares Curve Fitting program, AKLSQF, computes the polynomial which will least square fit uniformly spaced data easily and efficiently. The program allows the user to specify the tolerable least squares error in the fitting or allows the user to specify the polynomial degree. In both cases AKLSQF returns the polynomial and the actual least squares fit error incurred in the operation. The data may be supplied to the routine either by direct keyboard entry or via a file. AKLSQF produces the least squares polynomial in two steps. First, the data points are least squares fitted using the orthogonal factorial polynomials. The result is then reduced to a regular polynomial using Sterling numbers of the first kind. If an error tolerance is specified, the program starts with a polynomial of degree 1 and computes the least squares fit error. The degree of the polynomial used for fitting is then increased successively until the error criterion specified by the user is met. At every step the polynomial as well as the least squares fitting error is printed to the screen. In general, the program can produce a curve fitting up to a 100 degree polynomial. All computations in the program are carried out under Double Precision format for real numbers and under long integer format for integers to provide the maximum accuracy possible. AKLSQF was written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler. It has been implemented under DOS 3.2.1 using 23K of RAM. AKLSQF was developed in 1989.
Caloric curve of star clusters
NASA Astrophysics Data System (ADS)
Casetti, Lapo; Nardini, Cesare
2012-06-01
Self-gravitating systems, such as globular clusters or elliptical galaxies, are the prototypes of many-body systems with long-range interactions, and should be the natural arena in which to test theoretical predictions on the statistical behavior of long-range-interacting systems. Systems of classical self-gravitating particles can be studied with the standard tools of equilibrium statistical mechanics, provided the potential is regularized at small length scales and the system is confined in a box. The confinement condition looks rather unphysical in general, so that it is natural to ask whether what we learn with these studies is relevant to real self-gravitating systems. In order to provide an answer to this question, we consider a basic, simple, yet effective model of globular clusters: the King model. This model describes a self-consistently confined system, without the need of any external box, but the stationary state is a nonthermal one. In particular, we consider the King model with a short-distance cutoff on the interactions, and we discuss how such a cutoff affects the caloric curve, i.e., the relation between temperature and energy. We find that the cutoff stabilizes a low-energy phase, which is absent in the King model without cutoff; the caloric curve of the model with cutoff turns out to be very similar to that of previously studied confined and regularized models, but for the absence of a high-energy gaslike phase. We briefly discuss the possible phenomenological as well as theoretical implications of these results.
Stiefel-Whitney classes of curve covers
NASA Astrophysics Data System (ADS)
Selander, Björn
2016-10-01
Let D be a Dedekind scheme with the characteristic of all residue fields not equal to 2. To every tame cover Cto D with only odd ramification we associate a second Stiefel-Whitney class in the second cohomology with mod 2 coefficients of a certain tame orbicurve [D] associated to D. This class is then related to the pull-back of the second Stiefel-Whitney class of the push-forward of the line bundle of half of the ramification divisor. This shows (indirectly) that our Stiefel-Whitney class is the pull-back of a sum of cohomology classes considered by Esnault, Kahn and Viehweg in `Coverings with odd ramification and Stiefel-Whitney classes'. Perhaps more importantly, in the case of a proper and smooth curve over an algebraically closed field, our Stiefel-Whitney class is shown to be the pull-back of an invariant considered by Serre in `Revêtements à ramification impaire et thêta-caractéristiques', and in this case our arguments give a new proof of the main result of that article.
Quantifying the safety effects of horizontal curves on two-way, two-lane rural roads.
Gooch, Jeffrey P; Gayah, Vikash V; Donnell, Eric T
2016-07-01
The objective of this study is to quantify the safety performance of horizontal curves on two-way, two-lane rural roads relative to tangent segments. Past research is limited by small samples sizes, outdated statistical evaluation methods, and unreported standard errors. This study overcomes these drawbacks by using the propensity scores-potential outcomes framework. The impact of adjacent curves on horizontal curve safety is also explored using a cross-sectional regression model of only horizontal curves. The models estimated in the present study used eight years of crash data (2005-2012) obtained from over 10,000 miles of state-owned two-lane rural roads in Pennsylvania. These data included information on roadway geometry (e.g., horizontal curvature, lane width, and shoulder width), traffic volume, roadside hazard rating, and the presence of various low-cost safety countermeasures (e.g., centerline and shoulder rumble strips, curve and intersection warning pavement markings, and aggressive driving pavement dots). Crash prediction is performed by means of mixed effects negative binomial regression using the explanatory variables noted previously, as well as attributes of adjacent horizontal curves. The results indicate that both the presence of a horizontal curve and its degree of curvature must be considered when predicting the frequency of total crashes on horizontal curves. Both are associated with an increase in crash frequency, which is consistent with previous findings in the literature. Mixed effects negative binomial regression models for total crash frequency on horizontal curves indicate that the distance to adjacent curves is not statistically significant. However, the degree of curvature of adjacent curves in close proximity (within 0.75 miles) was found to be statistically significant and negatively correlated with crash frequency on the subject curve. This is logical, as drivers exiting a sharp curve are likely to be driving slower and with more
Light curves of light rays passing through a wormhole
NASA Astrophysics Data System (ADS)
Tsukamoto, Naoki; Harada, Tomohiro
2017-01-01
Gravitational lensing is a good probe into the topological structure of dark gravitating celestial objects. In this paper, we investigate the light curve of a light ray that passes through the throat of an Ellis wormhole, the simplest example of traversable wormholes. The method developed here is also applicable to other traversable wormholes. To study whether the light curve of a light ray that passes through a wormhole throat is distinguishable from that which does not, we also calculate light curves without the passage of a throat for an Ellis wormhole, a Schwarzschild black hole, and an ultrastatic wormhole with the spatial geometry identical to that of the Schwarzschild black hole in the following two cases: (i) "microlensing," where the source, lens, and observer are almost aligned in this order and the light ray starts at the source, refracts in the weak gravitational field of the lens with a small deflection angle, and reaches the observer; and (ii) "retrolensing," where the source, observer, and lens are almost aligned in this order, and the light ray starts at the source, refracts in the vicinity of the light sphere of the lens with a deflection angle very close to π , and reaches the observer. We find that the light curve of the light ray that passes through the throat of the Ellis wormhole is clearly distinguishable from that by the microlensing but not from that by the retrolensing. This is because the light curve of a light ray that passes by a light sphere of a lens with a large deflection angle has common characters, irrespective of the details of the lens object. This implies that the light curves of the light rays that pass through the throat of more general traversable wormholes are qualitatively the same as that of the Ellis wormhole.
Close Quarters Combat Shooting
2010-04-14
1994.at the Palm Beach Community College Criminal Justice Institute ofLakeworth, Florida to the more dynamic force-on-force, realistic scenario...Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC...Shooting is the Superior Method for Close Quarters Combat 5b. GRANT NUMBER Shooting" N/A Sc. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR( S ) Sd. PROJECT
2000-10-01
the pay gap has been narrowed, hut only to just under 10 percent. And current military compensation legislation does not close the gap until 2026. There...will continue to be a pay gap until 2026 unless the next administration and the next Congress provide more for pay above the 1999 legislated ramp- up...of .5 percent (one half of one percent) per year to attain pay equality . That means that soldiers, sailors, airmen, marines and Coast Guardsmen
On the equivalence between semiempirical fracture analyses and R-curves
NASA Technical Reports Server (NTRS)
Orange, T. W.
1979-01-01
The relationships between several semiempirical fracture analyses (Brockrath and Glassco, 1974; Newman, 1973; Kuhn, 1968; Orange, 1971; Feddersen, 1971) and the R-curve concept of fracture mechanics are examined. Some characteristics of the R-curve concept when applied to finite-width specimens are reviewed, and conditions for equivalence between a semiempirical analysis (SEFA) and an R-curve are derived. The relationship between R-curves and SEFAs is studied for a hypothetical material. It is shown that for each SEFA there is an equivalent R-curve, the magnitude and shape of which are determined by the SEFA formulation and parameters, and which predicts precisely the same relationship between fracture stress and original crack length. A given SEFA correlates residual strength data closely if its equivalent R-curve closely matches the actual R-curve of the material studied. The SEFA given by Newman is found to yield best results for the hypothetical case considered. Equivalent R-curves for real materials are developed using data from the literature.
Closed Timelike Curves in (2+1)-AdS Gravity
NASA Astrophysics Data System (ADS)
Valtancoli, P.
We build the (2+1)-AdS gravity generalization of the Gott time machine using a first-order formalism for solving the scattering of point sources. The two-body dynamics is solved by two invariant masses, whose difference is simply related to the total angular momentum of the system. We show how to build a time machine when at least one of the two invariant masses is no more real but acquires an imaginary part.
Reply to ''Comment on 'Information flow of quantum states interacting with closed timelike curves'''
Ralph, T. C.; Myers, C. R.
2011-11-15
We respond to the comment by Klobus et al.[Phys. Rev. A 84, 056301 (2011)] by emphasizing that the equivalent circuit, once constructed, obeys the standard rules of quantum mechanics--hence there is no ambiguity in how to choose initial states in our model. We discuss the distinction between correlated ensembles produced nonlocally via measurements on entangled states and those produced via local preparation.
Liquid-vapor isotherm in a closed single-component system with curved interfaces.
Lago, Marcelo; Martin, Rafael; Araujo, Mariela
2003-11-15
A thermodynamic model to obtain the radius of bubbles or droplets in a single-component system for a given temperature, total volume, and phase distribution is developed. The general formulation of the model includes bubbles or droplets in the form of spheres, truncated spheres on a flat solid surface or inside conical walls. In these three geometries the liquid-vapor curvature radius is positive but in the case of conical walls it can be also negative. States with different dispersed-phase distributions are compared using the total free energy of the system. When the curvature radius is positive, it has a minimum nonvanishing value and the occurrence of the Ostwald ripening is energetically favorable. On the other hand, when the curvature radius is negative, it is energetically more favorable to find the dispersed phase even in the expected single-phase region, and the occurrence of an anti-ripening phenomenon. The PV isotherms obtained from the model and the applicability of the results to the nucleation process are discussed.
Learning curve of speech recognition.
Kauppinen, Tomi A; Kaipio, Johanna; Koivikko, Mika P
2013-12-01
Speech recognition (SR) speeds patient care processes by reducing report turnaround times. However, concerns have emerged about prolonged training and an added secretarial burden for radiologists. We assessed how much proofing radiologists who have years of experience with SR and radiologists new to SR must perform, and estimated how quickly the new users become as skilled as the experienced users. We studied SR log entries for 0.25 million reports from 154 radiologists and after careful exclusions, defined a group of 11 experienced radiologists and 71 radiologists new to SR (24,833 and 122,093 reports, respectively). Data were analyzed for sound file and report lengths, character-based error rates, and words unknown to the SR's dictionary. Experienced radiologists corrected 6 characters for each report and for new users, 11. Some users presented a very unfavorable learning curve, with error rates not declining as expected. New users' reports were longer, and data for the experienced users indicates that their reports, initially equally lengthy, shortened over a period of several years. For most radiologists, only minor corrections of dictated reports were necessary. While new users adopted SR quickly, with a subset outperforming experienced users from the start, identification of users struggling with SR will help facilitate troubleshooting and support.
Is the tautochrone curve unique?
NASA Astrophysics Data System (ADS)
Terra, Pedro; de Melo e Souza, Reinaldo; Farina, C.
2016-12-01
We show that there are an infinite number of tautochrone curves in addition to the cycloid solution first obtained by Christiaan Huygens in 1658. We begin by reviewing the inverse problem of finding the possible potential energy functions that lead to periodic motions of a particle whose period is a given function of its mechanical energy. There are infinitely many such solutions, called "sheared" potentials. As an interesting example, we show that a Pöschl-Teller potential and the one-dimensional Morse potentials are sheared relative to one another for negative energies, clarifying why they share the same oscillation periods for their bounded solutions. We then consider periodic motions of a particle sliding without friction over a track around its minimum under the influence of a constant gravitational field. After a brief historical survey of the tautochrone problem we show that, given the oscillation period, there is an infinity of tracks that lead to the same period. As a bonus, we show that there are infinitely many tautochrones.
Differentialless geometry of plane curves
NASA Astrophysics Data System (ADS)
Latecki, Longin J.; Rosenfeld, Azriel
1997-10-01
We introduce a class of planar arcs and curves, called tame arcs, which is general enough to describe the boundaries of planar real objects. A tame arc can have smooth parts as well as sharp corners; thus a polygonal arc is tame. On the other hand, this class of arcs is restrictive enough to rule out pathological arcs which have infinitely many inflections or which turn infinitely often: a tame arc can have only finitely many inflections, and its total absolute turn must be finite. In order to relate boundary properties of discrete objects obtained by segmenting digital images to the corresponding properties of their continuous originals, the theory of tame arcs is based on concepts that can be directly transferred from the continuous to the discrete domain. A tame arc is composed of a finite number of supported arcs. We define supported digital arcs and motivate their definition by the fact that hey can be obtained by digitizing continuous supported arcs. Every digital arc is tame, since it contains a finite number of points, and therefore it can be decomposed into a finite number of supported digital arcs.
Page curves for tripartite systems
NASA Astrophysics Data System (ADS)
Hwang, Junha; Lee, Deok Sang; Nho, Dongju; Oh, Jeonghun; Park, Hyosub; Yeom, Dong-han; Zoe, Heeseung
2017-07-01
We investigate information flow and Page curves for tripartite systems. We prepare a tripartite system (say, A, B, and C) of a given number of states and calculate information and entropy contents by assuming random states. Initially, every particle was in A (this means a black hole), and as time goes on, particles move to either B (this means Hawking radiation) or C (this means a broadly defined remnant, including a non-local transport of information, the last burst, an interior large volume, or a bubble universe, etc). If the final number of states of the remnant is smaller than that of Hawking radiation, then information will be stored by both the radiation and the mutual information between the radiation and the remnant, while the remnant itself does not contain information. On the other hand, if the final number of states of the remnant is greater than that of Hawking radiation, then the radiation contains negligible information, while the remnant and the mutual information between the radiation and the remnant contain information. Unless the number of states of the remnant is large enough compared to the entropy of the black hole, Hawking radiation must contain information; and we meet the menace of black hole complementarity again. Therefore, this contrasts the tension between various assumptions and candidates of the resolution of the information loss problem.
Diagnosis of breast tumor using thermal tomography q - r curve
NASA Astrophysics Data System (ADS)
Shi, Guilian; Wang, Lin; Han, Fei; Liang, Chengwen; Li, Kaiyang
2015-06-01
Metabolic heat, the product following the metabolism of cells, is closely related to the pathological information of living organisms, which means there are strong connections between the heat distribution and the pathological state of the living organism. The mathematical function δ is introduced in the classical Pennes bioheat transfer equation as a point heat source, and by simplifying the boundary condition, a bioheat transfer model is established. Based on the temperature distribution of the human body surface, the q-r curve of heat intensity q varying with depth r is acquired while combining the fitting method of the Lorentz curve. According to 34,977 clinical confirmed cases and the corresponding classified statistics, diagnostic criteria (for breast diseases) for judging diseases by the q-r curve are proposed. The P-value of our statistics is <0.05, which means our classified statistics are reliable. Six typical clinical examinations are performed, and the diagnosis results are very consistent with those of B-ultrasonic images, molybdenum target x-ray, and pathological examination, which suggests that the method of diagnosing diseases with a q-r curve has very good prospects for application. It is radiation free and noninvasive to the human body.
3D flyable curves for an autonomous aircraft
NASA Astrophysics Data System (ADS)
Bestaoui, Yasmina
2012-11-01
The process of conducting a mission for an autonomous aircraft includes determining the set of waypoints (flight planning) and the path for the aircraft to fly (path planning). The autonomous aircraft is an under-actuated system, having less control inputs than degrees of freedom and has two nonholonomic (non integrable) kinematic constraints. Consequently, the set of feasible trajectories will be restricted and the problem of trajectory generation becomes more complicated than a simple interpolation. Care must be taken in the selection of the basic primitives to respect the kinematic and dynamic limitations. The topic of this paper is trajectory generation using parametric curves. The problem can be formulated as follows: to lead the autonomous aircraft from an initial configuration qi to a final configuration qf in the absence of obstacles, find a trajectory q(t) for 0 ≤t ≤ T. The trajectory can be broken down into a geometric path q(s), s being the curvilinear abscissa and s=s(t) a temporal function. In 2D the curves fall into two categories: • Curves whose coordinates have a closed form expressions, for example B-splines, quintic polynomials or polar splines. • Curves whose curvature is a function of their arc length for example clothoids, cubic spirals, quintic or intrinsic splines. Some 3D solutions will be presented in this paper and their effectiveness discussed towards the problem in hand.
NEW ULTRAVIOLET EXTINCTION CURVES FOR INTERSTELLAR DUST IN M31
Clayton, Geoffrey C.; Gordon, Karl D.; Bohlin, R. C.; Bianchi, Luciana C.; Massa, Derck L.; Wolff, Michael J.; Fitzpatrick, Edward L. E-mail: bohlin@stsci.edu E-mail: bianchi@jhu.edu E-mail: edward.fitzpatrick@villanova.edu
2015-12-10
New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with the Hubble Space Telescope/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher signal-to-noise ratio than previous studies. Direct measurements of N(H i) were made using the Lyα absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5–14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from solar to 1.5 solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program, finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-solar.
McGreevy, John Austen; /Stanford U., Phys. Dept.
2005-07-06
This thesis is a study of D-branes in string compactifications. In this context, D-branes are relevant as an important component of the nonperturbative spectrum, as an incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge interactions. In the first part of the thesis, we discuss half-BPS D-branes in compactifications of type II string theory on Calabi-Yau threefolds. The results we describe for these objects are pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects. In particular, we determine couplings of these branes to the moduli determining the closed-string geometry, both perturbatively and non-perturbatively in the worldsheet expansion. We provide a local model for transitions in moduli space where the BPS spectrum jumps, and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case when D-branes are present. The next section is an interlude which provides some applications of D-branes to other curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in which fundamental strings moving through background Ramond-Ramond fields dissolve into large spherical D3-branes. This mechanism is used to explain a previously-mysterious fact discovered via the AdS-CFT correspondence. Next, we make a connection between type IIA string vacua of the type discussed in the first section and M-theory compactifications on manifolds of G{sub 2} holonomy. Finally we discuss constructions of string vacua which do not have large radius limits. In the final part of the thesis, we develop techniques for studying the worldsheets of open strings ending on the curved D-branes studied in the first section. More precisely, we formulate a large class of massive two-dimensional gauge theories coupled to boundary matter, which flow in the infrared to the relevant boundary conformal field theories. Along with many other applications, these techniques are used to describe
12. A CLOSE UP VIEW OF THE IRON SUPERSTRUCTURE OF ...
12. A CLOSE UP VIEW OF THE IRON SUPERSTRUCTURE OF THIS CAMELBACK TRUSS BRIDGE. THIS PHOTO SHOWS A DETAIL OF THE LATTICE WORK, AND AN INTERESTING CURVED BRACE MEMBER. - Freedom Bridge, Spanning West Fork of White River at County Road 590 South, Freedom, Owen County, IN
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
Weve recently discovered narrow sets of rings around two minor planets orbiting in our solar system. How did these rings form? A new study shows that they could be a result of close encounters between the minor planets and giants like Jupiter or Neptune.Unexpected Ring SystemsPositions of the centaurs in our solar system (green). Giant planets (red), Jupiter trojans (grey), scattered disk objects (tan) and Kuiper belt objects (blue) are also shown. [WilyD]Centaurs are minor planets in our solar system that orbit between Jupiter and Neptune. These bodies of which there are roughly 44,000 with diameters larger than 1 km have dynamically unstable orbits that cross paths with those of one or more giant planets.Recent occultation observations of two centaurs, 10199 Chariklo and 2060 Chiron, revealed that these bodies both host narrow ring systems. Besides our four giant planets, Chariklo and Chiron are the only other bodies in the solar system known to have rings. But how did these rings form?Scientists have proposed several models, implicating collisions, disruption of a primordial satellite, or dusty outgassing. But a team of scientists led by Ryuki Hyodo (Paris Institute of Earth Physics, Kobe University) has recently proposed an alternative scenario: what if the rings were formed from partial disruption of the centaur itself, after it crossed just a little too close to a giant planet?Tidal Forces from a GiantHyodo and collaborators first used past studies of centaur orbits to estimate that roughly 10% of centaurs experience close encounters (passing within a distance of ~2x the planetary radius) with a giant planet during their million-year lifetime. The team then performed a series of simulations of close encounters between a giant planet and a differentiated centaur a body in which the rocky material has sunk to form a dense silicate core, surrounded by an icy mantle.Some snapshots of simulation outcomes (click for a closer look!) for different initial states of
Evaluation of lung elastic recoil by exponential curve analysis.
Knudson, R J; Kaltenborn, W T
1981-10-01
Static deflation pressure-volume curves for the lungs of 104 subjects were satisfactorily fitted to an exponential function, V = Vmax - Ae-kP (where Vmax is volume V extrapolated to infinite transpulmonary pressure P, and A and k are constants). Subjects included 48 who met rigorous criteria defining normal, 35 were PiM phenotype for alpha-1-antitrypsin deficiency and 21 were PiMZ phenotype. The shape constant k was significantly related to age, whereas an index of curve position was not. Values for k corresponded closely to the data of other investigators suggesting that it was independent of size and insensitive to differences in experimental technique. Elevated values of k, indicative of emphysema, were no more prevalent among PiMZ subjects than among subjects with no alpha-1-anti-trypsin deficiency. The natural logarithm (1n) of k, rather than k itself, appears to provide a useful, normally distributed, expression of lung distensibility.
NASA Technical Reports Server (NTRS)
Giersch, Louis R.; Knarr, Kevin
2010-01-01
Structures capable of deployment into complex, three-dimensional trusses have well known space technology applications such as the support of spacecraft payloads, communications antennas, radar reflectors, and solar concentrators. Such deployable trusses could also be useful in terrestrial applications such as the rapid establishment of structures in military and emergency service situations, in particular with regard to the deployment of enclosures for habitat or storage. To minimize the time required to deploy such an enclosure, a single arch-shaped truss is preferable to multiple straight trusses arranged vertically and horizontally. To further minimize the time required to deploy such an enclosure, a synchronous deployment with a single degree of freedom is also preferable. One method of synchronizing deployment of a truss is the use of a series of gears; this makes the deployment sequence predictable and testable, allows the truss to have a minimal stowage volume, and the deployed structure exhibits the excellent stiffness-to-mass and strength-to-mass ratios characteristic of a truss. A concept for using gears with varying ratios to deploy a truss into a curved shape has been developed and appears to be compatible with both space technology applications as well as potential use in terrestrial applications such as enclosure deployment. As is the case with other deployable trusses, this truss is formed using rigid elements (e.g., composite tubes) along the edges, one set of diagonal elements composed of either cables or folding/hinged rigid members, and the other set of diagonal elements formed by a continuous cable that is tightened by a motor or hand crank in order to deploy the truss. Gears of varying ratios are used to constrain the deployment to a single degree of freedom, making the deployment synchronous, predictable, and repeatable. The relative sizes of the gears and the relative dimensions of the diagonal elements determine the deployed geometry (e
Photovoltaic 1-5 curve measurement techniques
NASA Astrophysics Data System (ADS)
Cox, C. H., III; Warner, T. H.
1982-08-01
Performance evaluation of photovoltaic (PV) arrays under actual field conditions provides important feedback to the module design process. One of the principal methods for assessing an array's performance is to plot its current, I, versus voltage, V, curve. Following a brief review of techniques for measuring the I-V curve, a new, capacitive-based approach is presented. It use a rapid sweep of the I-V curve that substantially reduced the average power transfer between array and load, and in turn, substantially reduced the size and weight of the curve tracer. Both theoretical and practical aspects of the approach are presented for a 10-kW unit. Performance is verified by comparison with I-V curves obtained by using a conventional load. The agreement is found to be excellent. Approximately an order of magnitude reduction in size, weight and power consumption over conventional units was realized with the experimental I-V curve tracer.
Finite transformers for construction of fractal curves
Lisovik, L.P.
1995-01-01
In this paper we continue the study of infinite R{sup n}-transformers that can be used to define real functions and three-dimensional curves. An R{sup n}-transformer A generates an output n-tuple A(x) = (Y{sub 1},...,Y{sub n}), consisting of output binary representations. We have previously shown that finite R{sup n}-transformers with n = 1, 2 can be used to define a continuous, nowhere differentiable function and a Peano curve. Curves of this kind are objects of fractal geometry. Here we show that some other fractal curves, which are analogs of the Koch curve and the Sierpinski napkin, can be defined by finite R{sup 2}-transformers. R{sup n}-transformers (and also finite R{sup n}-transformers) thus provide a convenient tool for definition of fractal curves.
Order and Jamming on Curved Surfaces
NASA Astrophysics Data System (ADS)
Burke, Christopher J.
Geometric frustration occurs when a physical system's preferred ordering (e.g. spherical particles packing in a hexagonal lattice) is incompatible with the system's geometry. An example of this occurs in arrested relaxation in Pickering emulsions. Pickering emulsions are emulsions (e.g. mixtures of oil and water) with colloidal particles mixed in. The particles tend to lie at an oil-water interface, and can coat the surface of droplets within the emulsion (e.g. an oil droplet surrounded by water.) If a droplet is deformed from its spherical ground state, more particles adsorb at the surface, and the droplet is allowed to relax, then the particles on the surface can become close packed and prevent further relaxation, arresting the droplet in a non-spherical shape. The resulting structures tend to be relatively well ordered with regions of highly hexagonal packings; however, the curvature of the surface prevents perfect ordering and defects in the packing are required. These defects may influence the stability of these structures, making it important to understand how to predict and control them for applications in the food, cosmetic, oil, and medical industries. In this work, we use simulations to study the ordering and stability of sphere packings on arrested emulsions droplets. We first isolate the role of surface geometry by creating packings on a static ellipsoidal surface. Next we perform simulations which include dynamic effects that are present in the experimental Pickering emulsion system. Packings are created by evolving an ellipsoidal surface towards a spherical shape at fixed volume; the effects of relaxation rate, interparticle attraction, and gravity are determined. Finally, we study jamming on curved surfaces. Packings of hard particles are used to study marginally stable packings and the role curvature plays in constraining them. We also study packings of soft particles, compressed beyond marginal stability, and find that geometric frustration plays
Dissociative Recombination without a Curve Crossing
NASA Technical Reports Server (NTRS)
Guberman, Steven L.
1994-01-01
Ab initio calculations show that a curve crossing is not always needed for a high dissociative- recombination cross section. For HeH(+), in which no neutral states cross the ion potential curve, dissociative recombination is driven by the nuclear kinetic-energy operator on adiabatic potential curves. The kinetic-energy derivative operator allows for capture into repulsive curves that are outside of the classical turning points for the nuclear motion. The dominant dissociative route is the C (2)Sigma(+) state leading to H(n = 2) atoms. An analogous mechanism is proposed for the dissociative recombination of H3(+).
Craniofacial Reconstruction Using Rational Cubic Ball Curves
Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan
2015-01-01
This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632
Optimal strategies for adaptive curve lighting.
Sivak, Michael; Schoettle, Brandon; Flannagan, Michael J; Minoda, Takako
2005-01-01
Conventional low beams headlamps do not provide sufficient illumination for nighttime visibility on curves. This analytical study evaluated the advantages and disadvantages of several curve-lighting strategies that involve moving one or both low beams by various amounts. Two curve radii were examined for both curve directions, using representative tungsten-halogen and high-intensity discharge low-beam patterns. The dependent variable was the maximum distance of 3-lux illumination (combined from both lamps) at a plane 0.25 m above the roadway for seven lateral positions. For short-radius, left and right curves, moving both lamps in parallel should substantially increase the visibility of objects in one's lane of travel, in several additional lanes of travel to the left and right, and off the road. Because of the lateral trade-offs of advantages and disadvantages for large-radius curves, additional research is needed to better understand the desirable approach for these types of curves. Moving both lamps in parallel into the curve is recommended for small-radius curves.
A kill curve for Phanerozoic marine species
NASA Technical Reports Server (NTRS)
Raup, D. M.
1991-01-01
A kill curve for Phanerozoic species is developed from an analysis of the stratigraphic ranges of 17,621 genera, as compiled by Sepkoski. The kill curve shows that a typical species' risk of extinction varies greatly, with most time intervals being characterized by very low risk. The mean extinction rate of 0.25/m.y. is thus a mixture of long periods of negligible extinction and occasional pulses of much higher rate. Because the kill curve is merely a description of the fossil record, it does not speak directly to the causes of extinction. The kill curve may be useful, however, to li inverted question markmit choices of extinction mechanisms.
A kill curve for Phanerozoic marine species
NASA Technical Reports Server (NTRS)
Raup, D. M.
1991-01-01
A kill curve for Phanerozoic species is developed from an analysis of the stratigraphic ranges of 17,621 genera, as compiled by Sepkoski. The kill curve shows that a typical species' risk of extinction varies greatly, with most time intervals being characterized by very low risk. The mean extinction rate of 0.25/m.y. is thus a mixture of long periods of negligible extinction and occasional pulses of much higher rate. Because the kill curve is merely a description of the fossil record, it does not speak directly to the causes of extinction. The kill curve may be useful, however, to li inverted question markmit choices of extinction mechanisms.
Position Paper on School Closings.
ERIC Educational Resources Information Center
Twenty-First Century School Fund, Washington, DC.
A position paper addresses the current round of school closings in the District of Columbia arguing that these closings are not within the context of the 10-year educational facilities plan that included community input, and valid criteria for closing decisions being consistently and objectively applied. Current closings decisions are viewed as…
Dassau, E; Atlas, E; Phillip, M
2011-02-01
Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging
Computer programs for plotting curves with various dashed-line sequences
NASA Technical Reports Server (NTRS)
Desmarais, R. N.; Bennett, R. M.
1972-01-01
Two FORTRAN-callable subprograms have been written to draw a smooth curve through a set of input points as a solid line or as a general sequence of long and short dashes. Subroutine LINSEQ draws conventional curves whereas subroutine CONSEQ draws smooth closed curves (contours). The subprograms are based on an approximate calculation of the arc length along the curve and spline interpolation along the arc length. Options are provided for smoothing of the input data and for offsetting the plotted curve from the input data points. The method of calculation of the arc length and the generation of the line sequence are described.Usage descriptions of the main subprograms, sample calling programs illustrating the various features of the subprograms, and sample plots are given. The subroutines should be readily adaptable to almost any computer-driven incremental plotter.
Do closed universes recollapse?
NASA Astrophysics Data System (ADS)
Tipler, Frank J.
The conditions for recollapse in universes with compact maximal hypersurfaces are investigated theoretically, reviewing the results of recent investigations. The importance of recollapse for observational astrophysics is briefly discussed, and particular attention is given to the implications of maximal hypersurfaces and to recollapse in S3 Friedmann universes. It is conjectured that all globally hyperbolic C2 maximally extended spatially homogeneous closed universes with S3 or S2 x S1 topology and with stress-energy tensors obeying the strong-energy, positive-pressure, dominant-energy, and matter-regularity conditions do expand from an all-encompassing initial singularity to a maximal hypersurface and then recollapse to an all-encompassing final singularity.
Mass-transfer in close binary and their companions
NASA Astrophysics Data System (ADS)
Liao, Wenping; Qian, Shengbang; Zhu, Liying; Li, Linjia
2016-07-01
Secular and/or cyclical orbital period variations of close binaries can be derived by analyzing the (O-C) diagram. The secular variations are usually explained as mass transfer between components, while the most plausible explanation of the cyclic period changes is the light-travel time effect (LTTE) through the presence of a third body. Mass transfer and additional companions in close binary systems are important for understanding the formation and evolution of the systems. Here, UV light curves of several close binaries based on the Lunar-based Ultraviolet Telescope (LUT) observations are presented and analyzed with the Wilson-Devinney (W-D) method. Then, based on those light-curve solutions and new analysis of the orbital period variations, the multiplicity, geometrical structure and evolution state of targets are discussed.
Measuring Model Rocket Engine Thrust Curves
ERIC Educational Resources Information Center
Penn, Kim; Slaton, William V.
2010-01-01
This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…
Measuring Model Rocket Engine Thrust Curves
ERIC Educational Resources Information Center
Penn, Kim; Slaton, William V.
2010-01-01
This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a…
Parallel Curves: Getting There and Getting Back
ERIC Educational Resources Information Center
Agnew, A. F.; Mathews, J. H.
2006-01-01
This note takes up the issue of parallel curves while illustrating the utility of "Mathematica" in computations. This work complements results presented earlier. The presented treatment, considering the more general case of parametric curves, provides an analysis of the appearance of cusp singularities, and emphasizes the utility of symbolic…
Electrical-Discharge Machining Of Curved Passages
NASA Technical Reports Server (NTRS)
Guirguis, Kamal S.
1993-01-01
Electrical-discharge machining (EDM) used to cut deep hole with bends. EDM process done with articulating segmented electrode. Originally straight, electrode curved as it penetrates part, forming long, smoothly curving hole. After hole cut, honed with slurry to remove thin layer of recast metal created by EDM. Breakage of tools, hand deburring, and drilling debris eliminated.
Single curved fiber sedimentation under gravity
Xiaoying Rong; Dewei Qi; Guowei He; Jun Yong Zhu; Tim Scott
2008-01-01
Dynamics of single curved fiber sedimentation under gravity are simulated by using the lattice Boltzmann method. The results of migration and rotation of the curved fiber at different Reynolds numbers are reported. The results show that the rotation and migration processes are sensitive to the curvature of the fiber.
Single curved fiber sedimentation under gravity
Xiaoying Rong; Dewei Qi; Junyong Zhu
2005-01-01
Dynamics of single curved fiber sedimentation under the gravity are simulated by using lattice Boltzmann method. The results of migration and rotation of the curved fiber at different Reynolds numbers are reported. The results show that the rotation and migration processes are sensitive to the curvature of the fiber.
Mixture Modeling of Individual Learning Curves
ERIC Educational Resources Information Center
Streeter, Matthew
2015-01-01
We show that student learning can be accurately modeled using a mixture of learning curves, each of which specifies error probability as a function of time. This approach generalizes Knowledge Tracing [7], which can be viewed as a mixture model in which the learning curves are step functions. We show that this generality yields order-of-magnitude…
Forces in the complex octonion curved space
NASA Astrophysics Data System (ADS)
Weng, Zi-Hua
2016-04-01
The paper aims to extend major equations in the electromagnetic and gravitational theories from the flat space into the complex octonion curved space. Maxwell applied simultaneously the quaternion analysis and vector terminology to describe the electromagnetic theory. It inspires subsequent scholars to study the electromagnetic and gravitational theories with the complex quaternions/octonions. Furthermore Einstein was the first to depict the gravitational theory by means of tensor analysis and curved four-space-time. Nowadays some scholars investigate the electromagnetic and gravitational properties making use of the complex quaternion/octonion curved space. From the orthogonality of two complex quaternions, it is possible to define the covariant derivative of the complex quaternion curved space, describing the gravitational properties in the complex quaternion curved space. Further it is possible to define the covariant derivative of the complex octonion curved space by means of the orthogonality of two complex octonions, depicting simultaneously the electromagnetic and gravitational properties in the complex octonion curved space. The result reveals that the connection coefficient and curvature of the complex octonion curved space will exert an influence on the field strength and field source of the electromagnetic and gravitational fields, impacting the linear momentum, angular momentum, torque, energy, and force and so forth.
Forgetting Curves: Implications for Connectionist Models
ERIC Educational Resources Information Center
Sikstrom, Sverker
2002-01-01
Forgetting in long-term memory, as measured in a recall or a recognition test, is faster for items encoded more recently than for items encoded earlier. Data on forgetting curves fit a power function well. In contrast, many connectionist models predict either exponential decay or completely flat forgetting curves. This paper suggests a…
Parallel Curves: Getting There and Getting Back
ERIC Educational Resources Information Center
Agnew, A. F.; Mathews, J. H.
2006-01-01
This note takes up the issue of parallel curves while illustrating the utility of "Mathematica" in computations. This work complements results presented earlier. The presented treatment, considering the more general case of parametric curves, provides an analysis of the appearance of cusp singularities, and emphasizes the utility of symbolic…
Forgetting Curves: Implications for Connectionist Models
ERIC Educational Resources Information Center
Sikstrom, Sverker
2002-01-01
Forgetting in long-term memory, as measured in a recall or a recognition test, is faster for items encoded more recently than for items encoded earlier. Data on forgetting curves fit a power function well. In contrast, many connectionist models predict either exponential decay or completely flat forgetting curves. This paper suggests a…
Cost Curves and How They Relate.
ERIC Educational Resources Information Center
Mixon, J. Wilson; Tohemy, Soumaya M.
2002-01-01
Describes a Web site that contains Microsoft Excel workbooks that draft consistent short-run and long-run cost curves and the text describing them. Details a common error in representing the curves. Reports that the Web site also presents revenues and profits for a price taker and a price maker. (JEH)
Electrical-Discharge Machining Of Curved Passages
NASA Technical Reports Server (NTRS)
Guirguis, Kamal S.
1993-01-01
Electrical-discharge machining (EDM) used to cut deep hole with bends. EDM process done with articulating segmented electrode. Originally straight, electrode curved as it penetrates part, forming long, smoothly curving hole. After hole cut, honed with slurry to remove thin layer of recast metal created by EDM. Breakage of tools, hand deburring, and drilling debris eliminated.
Mixtures of Receiver Operating Characteristic Curves
Gönen, Mithat
2014-01-01
Rationale and Objectives ROC curves are ubiquitous in the analysis of imaging metrics as markers of both diagnosis and prognosis. While empirical estimation of ROC curves remains the most popular method, there are several reasons to consider smooth estimates based on a parametric model. Materials and Methods A mixture model is considered for modeling the distribution of the marker in the diseased population motivated by the biological observation that there is more heterogeneity in the diseased population than there is in the normal one. It is shown that this model results in an analytically tractable ROC curve which is itself a mixture of ROC curves. Results The use of CK-BB isoenzyme in diagnosis of severe head trauma is used as an example. ROC curves are fit using the direct binormal method, ROCKIT and the Box-Cox transformation as well as the proposed mixture model. The mixture model generates an ROC curve that is much closer to the empirical one than the other methods considered. Conclusions Mixtures of ROC curves can be helpful in fitting smooth ROC curves in datasets where the diseased population has higher variability than can be explained by a single distribution. PMID:23643788
Curved and conformal high-pressure vessel
Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping
2016-10-25
A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The first inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.
Remote sensing used for power curves
NASA Astrophysics Data System (ADS)
Wagner, R.; Jørgensen, H. E.; Paulsen, U. S.; Larsen, T. J.; Antoniou, I.; Thesbjerg, L.
2008-05-01
: Power curve measurement for large wind turbines requires taking into account more parameters than only the wind speed at hub height. Based on results from aerodynamic simulations, an equivalent wind speed taking the wind shear into account was defined and found to reduce the power standard deviation in the power curve significantly. Two LiDARs and a SoDAR are used to measure the wind profile in front of a wind turbine. These profiles are used to calculate the equivalent wind speed. The comparison of the power curves obtained with the three instruments to the traditional power curve, obtained using a cup anemometer measurement, confirms the results obtained from the simulations. Using LiDAR profiles reduces the error in power curve measurement, when these are used as relative instrument together with a cup anemometer. Results from the SoDAR do not show such promising results, probably because of noisy measurements resulting in distorted profiles.
Froment, Antoine; Gillet, Philippe
2007-07-01
Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)
A new stellarator coil design tool using space curves
NASA Astrophysics Data System (ADS)
Zhu, Caoxiang; Hudson, Stuart; Breslau, Joshua; Lazerson, Samuel; Song, Yuntao; Wan, Yuanxi
2016-10-01
Finding easy-to-build coils has always been critical for stellarator design. Conventional approaches assume a toroidal ``winding'' surface. Either a surface current potential is constructed using a Green's function; or a discrete set of filamentary coils lying on the winding surface is non-linearly optimized. The winding surface concept ensures that the coils are separated from the plasma surface; however, requiring the coils lie on a given winding surface may overly constrain the coil optimization process. In this work, we investigate whether a winding surface is required. Our starting point is to represent each discrete coil as an arbitrary closed curve embedded in 3D space. From the Fundamental Theorem for Curves, such curves are uniquely described by the curvature and torsion functions. Our representation does not need a winding surface and can allow coils to evolve arbitrarily. We have constructed different penalty functions, F, that incorporate both the `physics' and `engineering' constraints. The first and second derivatives of F with respect to the parameters describing the coils are constructed analytically and are exploited to enable fast optimization algorithms for finding minima. Illustrations of coils for W7X and other stellarators will be presented. China Scholarship Council.
NASA Astrophysics Data System (ADS)
2007-11-01
Today, a new ALMA outreach and educational book was publicly presented to city officials of San Pedro de Atacama in Chile, as part of the celebrations of the anniversary of the Andean village. ESO PR Photo 50a/07 ESO PR Photo 50a/07 A Useful Tool for Schools Entitled "Close to the sky: Biological heritage in the ALMA area", and edited in English and Spanish by ESO in Chile, the book collects unique on-site observations of the flora and fauna of the ALMA region performed by experts commissioned to investigate it and to provide key initiatives to protect it. "I thank the ALMA project for providing us a book that will surely be a good support for the education of children and youngsters of San Pedro de Atacama. Thanks to this publication, we expect our rich flora and fauna to be better known. I invite teachers and students to take advantage of this educational resource, which will be available in our schools", commented Ms. Sandra Berna, the Mayor of San Pedro de Atacama, who was given the book by representatives of the ALMA global collaboration project. Copies of the book 'Close to the sky' will be donated to all schools in the area, as a contribution to the education of students and young people in northern Chile. "From the very beginning of the project, ALMA construction has had a firm commitment to environment and local culture, protecting unique flora and fauna species and preserving old estancias belonging to the Likan Antai culture," said Jacques Lassalle, who represented ALMA at the hand-over. "Animals like the llama, the fox or the condor do not only live in the region where ALMA is now being built, but they are also key elements of the ancient Andean constellations. In this sense they are part of the same sky that will be explored by ALMA in the near future." ESO PR Photo 50c/07 ESO PR Photo 50c/07 Presentation of the ALMA book The ALMA Project is a giant, international observatory currently under construction on the high-altitude Chajnantor site in Chile
Three-body choreographies in given curves
NASA Astrophysics Data System (ADS)
Ozaki, Hiroshi; Fukuda, Hiroshi; Fujiwara, Toshiaki
2009-10-01
As shown by Johannes Kepler in 1609, in the two-body problem, the shape of the orbit, a given ellipse, and a given non-vanishing constant angular momentum determine the motion of the planet completely. Even in the three-body problem, in some cases, the shape of the orbit, conservation of the center of mass and a constant of motion (the angular momentum or the total energy) determine the motion of the three bodies. We show, by a geometrical method, that choreographic motions, in which equal mass three bodies chase each other around the same curve, will be uniquely determined for the following two cases. (i) Convex curves that have point symmetry and non-vanishing angular momentum are given. (ii) Eight-shaped curves which are similar to the curve for the figure-eight solution and the energy constant are given. The reality of the motion should be tested whether the motion satisfies an equation of motion or not. Extensions of the method for generic curves are shown. The extended methods are applicable to generic curves which do not have point symmetry. Each body may have its own curve and its own non-vanishing masses.
Investigation of learning and experience curves
Krawiec, F.; Thornton, J.; Edesess, M.
1980-04-01
The applicability of learning and experience curves for predicting future costs of solar technologies is assessed, and the major test case is the production economics of heliostats. Alternative methods for estimating cost reductions in systems manufacture are discussed, and procedures for using learning and experience curves to predict costs are outlined. Because adequate production data often do not exist, production histories of analogous products/processes are analyzed and learning and aggregated cost curves for these surrogates estimated. If the surrogate learning curves apply, they can be used to estimate solar technology costs. The steps involved in generating these cost estimates are given. Second-generation glass-steel and inflated-bubble heliostat design concepts, developed by MDAC and GE, respectively, are described; a costing scenario for 25,000 units/yr is detailed; surrogates for cost analysis are chosen; learning and aggregate cost curves are estimated; and aggregate cost curves for the GE and MDAC designs are estimated. However, an approach that combines a neoclassical production function with a learning-by-doing hypothesis is needed to yield a cost relation compatible with the historical learning curve and the traditional cost function of economic theory.
Generating artificial light curves: revisited and updated
NASA Astrophysics Data System (ADS)
Emmanoulopoulos, D.; McHardy, I. M.; Papadakis, I. E.
2013-08-01
The production of artificial light curves with known statistical and variability properties is of great importance in astrophysics. Consolidating the confidence levels during cross-correlation studies, understanding the artefacts induced by sampling irregularities, establishing detection limits for future observatories are just some of the applications of simulated data sets. Currently, the widely used methodology of amplitude and phase randomization is able to produce artificial light curves which have a given underlying power spectral density (PSD) but which are strictly Gaussian distributed. This restriction is a significant limitation, since the majority of the light curves, e.g. active galactic nuclei, X-ray binaries, gamma-ray bursts, show strong deviations from Gaussianity exhibiting `burst-like' events in their light curves yielding long-tailed probability density functions (PDFs). In this study, we propose a simple method which is able to precisely reproduce light curves which match both the PSD and the PDF of either an observed light curve or a theoretical model. The PDF can be representative of either the parent distribution or the actual distribution of the observed data, depending on the study to be conducted for a given source. The final artificial light curves contain all of the statistical and variability properties of the observed source or theoretical model, i.e. the same PDF and PSD, respectively. Within the framework of Reproducible Research, the code and the illustrative example used in this paper are both made publicly available in the form of an interactive MATHEMATICA notebook.
Statistical aspects of modeling the labor curve.
Zhang, Jun; Troendle, James; Grantz, Katherine L; Reddy, Uma M
2015-06-01
In a recent review by Cohen and Friedman, several statistical questions on modeling labor curves were raised. This article illustrates that asking data to fit a preconceived model or letting a sufficiently flexible model fit observed data is the main difference in principles of statistical modeling between the original Friedman curve and our average labor curve. An evidence-based approach to construct a labor curve and establish normal values should allow the statistical model to fit observed data. In addition, the presence of the deceleration phase in the active phase of an average labor curve was questioned. Forcing a deceleration phase to be part of the labor curve may have artificially raised the speed of progression in the active phase with a particularly large impact on earlier labor between 4 and 6 cm. Finally, any labor curve is illustrative and may not be instructive in managing labor because of variations in individual labor pattern and large errors in measuring cervical dilation. With the tools commonly available, it may be more productive to establish a new partogram that takes the physiology of labor and contemporary obstetric population into account. Copyright © 2015 Elsevier Inc. All rights reserved.
Phonon transport across nano-scale curved thin films
NASA Astrophysics Data System (ADS)
Mansoor, Saad B.; Yilbas, Bekir S.
2016-12-01
Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.
Close Reading in Elementary Schools
ERIC Educational Resources Information Center
Fisher, Douglas; Frey, Nancy
2012-01-01
Close reading is a recommended instructional approach to meet the challenges of teaching complex texts. But close readings are more common in high school and college than in elementary schools. In this article, we identify the components of close reading that were developed after a group of elementary school teachers observed their colleges in…
Intersection of Paschen's curves for argon
NASA Astrophysics Data System (ADS)
Fu, Yangyang; Yang, Shuo; Zou, Xiaobing; Luo, Haiyun; Wang, Xinxin
2016-09-01
The intersection of Paschen's curves for argon with a same gap length but a different electrode radius was observed. While the breakdown voltage increases with the increase of the nonuniformity in the electric field of the gap at lower pressures, it decreases at higher pressures. The reason for the intersection of Paschen's curves was given based on the mean free path length of the electrons inversely proportional to the gas pressure and the electron impact ionization coefficient exponentially increasing with the electric field. The intersection of the Paschen's curves was qualitatively reproduced by a numerical simulation.
Approximation of Dynamical System's Separatrix Curves
NASA Astrophysics Data System (ADS)
Cavoretto, Roberto; Chaudhuri, Sanjay; De Rossi, Alessandra; Menduni, Eleonora; Moretti, Francesca; Rodi, Maria Caterina; Venturino, Ezio
2011-09-01
In dynamical systems saddle points partition the domain into basins of attractions of the remaining locally stable equilibria. This problem is rather common especially in population dynamics models, like prey-predator or competition systems. In this paper we construct programs for the detection of points lying on the separatrix curve, i.e. the curve which partitions the domain. Finally, an efficient algorithm, which is based on the Partition of Unity method with local approximants given by Wendland's functions, is used for reconstructing the separatrix curve.
Optoacoustic endoscopy in curved scanning mode
NASA Astrophysics Data System (ADS)
He, Hailong; Buehler, Andreas; Ntziachristos, Vasilis
2016-03-01
Optoacoustic technique has been shown to resolve anatomical, functional and molecular features at depths that go beyond the reach of epi-illumination optical microscopy offering new opportunities for endoscopic imaging. Herein, we interrogate the merits of optoacoustic endoscopy implemented by translating a sound detector in linear or curved geometries. The linear and curved detection geometries are achieved by employing an intravascular ultrasound transducer (IVUS) within a plastic guide shaped to a line or a curve. This concept could be used together with optical endoscopes to yield hybrid optical and optoacoustic imaging.
Growth curves for twins in Slovenia.
Bricelj, Katja; Blickstein, Isaac; Bržan-Šimenc, Gabrijela; Janša, Vid; Lučovnik, Miha; Verdenik, Ivan; Trojner-Bregar, Andreja; Tul, Nataša
2017-02-01
Abnormalities of fetal growth are more common in twins. We introduce the growth curves for monitoring fetal growth in twin pregnancies in Slovenia. Slovenian National Perinatal Information System for the period between 2002 and 2010 was used to calculate birth weight percentiles for all live born twins for each week from 22nd to 40th week. The calculated percentiles of birth weight for all live-born twins in Slovenia served as the basis for drawing 'growth' curves. The calculated growth curves for twins will help accurately diagnose small or large twin fetuses for their gestational age in the native central European population.
Linear instability of curved free shear layers
NASA Technical Reports Server (NTRS)
Liou, William W.
1993-01-01
The linear inviscid hydrodynamic stability of slightly curved free mixing layers is studied in this paper. The disturbance equation is solved numerically using a shooting technique. Two mean velocity profiles that represent stably and unstably curved free mixing layers are considered. Results are shown for cases of five curvature Richardson numbers. The stability characteristics of the shear layer are found to vary significantly with the introduction of the curvature effects. The results also indicate that, in a manner similar to the Goertler vortices observed in a boundary layer along a concave wall, instability modes of spatially developing streamwise vortex pairs may appear in centrifugally unstable curved mixing layers.
NASA Astrophysics Data System (ADS)
Greywall, Dennis S.; Busch, Paul A.
1982-03-01
Precise measurements of the P-T relation along the melting curve of3He have been made for 8≲ T≲330 mK. The results are in excellent agreement with other precise data for temperatures near the extremes of this range. A best-fit relation is provided which describes the melting curve to within ±1 mbar between the superfluid A transition and the pressure minimum. Detailed descriptions of the melting curve and magnetic thermometers used for the calibration are also given.
Shaped curve by blending two circular arcs
NASA Astrophysics Data System (ADS)
Zakaria, Wan Zafira Ezza Wan; Ali, Jamaludin Md
2014-07-01
Segments of two given circular arcs can be blended to produce a segment of a new curve. The new curve that been produced which also known as blending curve is form in a C-shape. That's mean the two circular arcs are blend at the same endpoints. Bezier Curve refer to [1] is the main application in this construction of blending curve. As the two circular arcs are create using the Rational Bezier Curve for the shape refer to [2]. First degree of Bezier Curve is use in blending function along with functionH(t). Blending can provide a smooth transition from one curve to another and can give various degrees of smoothness at the endpoints of the blend, where the smoothness is measured analogously to parametric continuity, Cn and geometric continuity, Gn. The accuracy of the approximation to a best blending curve obtained by different blending formulas is compared via analysis. Two types of blending formula introduced, which are Blend A and B. Blend A which involve only parametric continuity, C0, C1 and C2 Blend A. Next, new blending formula known as Blend B which actually a correction to the C0 Blend A. So, some correction term are added to the blending function in C0 Blend A for obtaining parametric continuity, C1 and C2 Blend B. Then, geometric continuity use for Blend B by increasing the smoothness of blending curve that result in parametric continuity. Some free parameter are added to the original blending function of C1 and C2 Blend B and secure to be G1 and G2 Blend B. Finally, the curvature which measures how quickly a tangent line turns on a curve is applied. So, appropriate result of blending curve can be obtained through the observation of the shape which lies within the convex hull of their control points and its curvature value at the start and end points equal to the curvature of the two circular arcs that are being blended.
Are Driving and Overtaking on Right Curves More Dangerous than on Left Curves?
Othman, Sarbaz; Thomson, Robert; Lannér, Gunnar
2010-01-01
It is well known that crashes on horizontal curves are a cause for concern in all countries due to the frequency and severity of crashes at curves compared to road tangents. A recent study of crashes in western Sweden reported a higher rate of crashes in right curves than left curves. To further understand this result, this paper reports the results of novel analyses of the responses of vehicles and drivers during negotiating and overtaking maneuvers on curves for right hand traffic. The overall objectives of the study were to find road parameters for curves that affect vehicle dynamic responses, to analyze these responses during overtaking maneuvers on curves, and to link the results with driver behavior for different curve directions. The studied road features were speed, super-elevation, radius and friction including their interactions, while the analyzed vehicle dynamic factors were lateral acceleration and yaw angular velocity. A simulation program, PC-Crash, has been used to simulate road parameters and vehicle response interaction in curves. Overtaking maneuvers have been simulated for all road feature combinations in a total of 108 runs. Analysis of variances (ANOVA) was performed, using two sided randomized block design, to find differences in vehicle responses for the curve parameters. To study driver response, a field test using an instrumented vehicle and 32 participants was reviewed as it contained longitudinal speed and acceleration data for analysis. The simulation results showed that road features affect overtaking performance in right and left curves differently. Overtaking on right curves was sensitive to radius and the interaction of radius with road condition; while overtaking on left curves was more sensitive to super-elevation. Comparisons of lateral acceleration and yaw angular velocity during these maneuvers showed different vehicle response configurations depending on curve direction and maneuver path. The field test experiments also showed
Are driving and overtaking on right curves more dangerous than on left curves?
Othman, Sarbaz; Thomson, Robert; Lannér, Gunnar
2010-01-01
It is well known that crashes on horizontal curves are a cause for concern in all countries due to the frequency and severity of crashes at curves compared to road tangents. A recent study of crashes in western Sweden reported a higher rate of crashes in right curves than left curves. To further understand this result, this paper reports the results of novel analyses of the responses of vehicles and drivers during negotiating and overtaking maneuvers on curves for right hand traffic. The overall objectives of the study were to find road parameters for curves that affect vehicle dynamic responses, to analyze these responses during overtaking maneuvers on curves, and to link the results with driver behavior for different curve directions. The studied road features were speed, super-elevation, radius and friction including their interactions, while the analyzed vehicle dynamic factors were lateral acceleration and yaw angular velocity. A simulation program, PC-Crash, has been used to simulate road parameters and vehicle response interaction in curves. Overtaking maneuvers have been simulated for all road feature combinations in a total of 108 runs. Analysis of variances (ANOVA) was performed, using two sided randomized block design, to find differences in vehicle responses for the curve parameters. To study driver response, a field test using an instrumented vehicle and 32 participants was reviewed as it contained longitudinal speed and acceleration data for analysis. The simulation results showed that road features affect overtaking performance in right and left curves differently. Overtaking on right curves was sensitive to radius and the interaction of radius with road condition; while overtaking on left curves was more sensitive to super-elevation. Comparisons of lateral acceleration and yaw angular velocity during these maneuvers showed different vehicle response configurations depending on curve direction and maneuver path. The field test experiments also showed
2004-06-09
The Cassini spacecraft is closing in fast on its first target of observation in the Saturn system: the small, mysterious moon Phoebe, only 220 kilometers (137 miles) across. The three images shown here, the latest of which is twice as good as any image returned by the Voyager 2 spacecraft in 1981, were captured in the past week on approach to this outer moon of Saturn. Phoebe's surface is already showing a great deal of contrast, most likely indicative of topography, such as tall sunlit peaks and deep shadowy craters, as well as genuine variation in the reflectivity of its surface materials. Left to right, the three views were captured at a phase (Sun-Saturn-spacecraft) angle of 87 degrees between June 4 and June 7, from distances ranging from 4.1 million kilometers (2.6 million miles) to 2.5 million kilometers (1.5 million miles). The image scale ranges from 25 to 15 kilometers per pixel. Phoebe rotates once every nine hours and 16 minutes; each of these images shows a different region on Phoebe. Phoebe was the discovered in 1898. It has a very dark surface. Cassini's powerful cameras will provide the best-ever look at this moon on Friday, June 11, when the spacecraft will streak past Phoebe at a distance of only about 2,000 kilometers (1,240 miles) from the moon's surface. The current images, and the presence of large craters, promise a heavily cratered surface which will come into sharp view over the next few days when image scales should get as small as a few tens of meters. Phoebe orbits Saturn in a direction opposite to that of the larger interior Saturnian moons. Because of its small size and retrograde orbit Phoebe is believed to be a body from the distant outer solar system, perhaps one of the building blocks of the outer planets that were captured into orbit around Saturn. If true, the little moon will provide information about these primitive pieces of material. http://photojournal.jpl.nasa.gov/catalog/PIA06062
2017-01-18
The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small moon obtained yet. Daphnis (5 miles or 8 kilometers across) orbits within the 42-kilometer (26-mile) wide Keeler Gap. Cassini's viewing angle causes the gap to appear narrower than it actually is, due to foreshortening. The little moon's gravity raises waves in the edges of the gap in both the horizontal and vertical directions. Cassini was able to observe the vertical structures in 2009, around the time of Saturn's equinox (see PIA11654). Like a couple of Saturn's other small ring moons, Atlas and Pan, Daphnis appears to have a narrow ridge around its equator and a fairly smooth mantle of material on its surface -- likely an accumulation of fine particles from the rings. A few craters are obvious at this resolution. An additional ridge can be seen further north that runs parallel to the equatorial band. Fine details in the rings are also on display in this image. In particular, a grainy texture is seen in several wide lanes which hints at structures where particles are clumping together. In comparison to the otherwise sharp edges of the Keeler Gap, the wave peak in the gap edge at left has a softened appearance. This is possibly due to the movement of fine ring particles being spread out into the gap following Daphnis' last close approach to that edge on a previous orbit. A faint, narrow tendril of ring material follows just behind Daphnis (to its left). This may have resulted from a moment when Daphnis drew a packet of material out of the ring, and now that packet is spreading itself out. The image was taken in visible (green) light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image
CRITICAL CURVES AND CAUSTICS OF TRIPLE-LENS MODELS
Daněk, Kamil; Heyrovský, David E-mail: heyrovsky@utf.mff.cuni.cz
2015-06-10
Among the 25 planetary systems detected up to now by gravitational microlensing, there are two cases of a star with two planets, and two cases of a binary star with a planet. Other, yet undetected types of triple lenses include triple stars or stars with a planet with a moon. The analysis and interpretation of such events is hindered by the lack of understanding of essential characteristics of triple lenses, such as their critical curves and caustics. We present here analytical and numerical methods for mapping the critical-curve topology and caustic cusp number in the parameter space of n-point-mass lenses. We apply the methods to the analysis of four symmetric triple-lens models, and obtain altogether 9 different critical-curve topologies and 32 caustic structures. While these results include various generic types, they represent just a subset of all possible triple-lens critical curves and caustics. Using the analyzed models, we demonstrate interesting features of triple lenses that do not occur in two-point-mass lenses. We show an example of a lens that cannot be described by the Chang–Refsdal model in the wide limit. In the close limit we demonstrate unusual structures of primary and secondary caustic loops, and explain the conditions for their occurrence. In the planetary limit we find that the presence of a planet may lead to a whole sequence of additional caustic metamorphoses. We show that a pair of planets may change the structure of the primary caustic even when placed far from their resonant position at the Einstein radius.
Solid-state curved focal plane arrays
NASA Technical Reports Server (NTRS)
Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)
2010-01-01
The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.
Modeling Type IIn Supernova Light Curves
NASA Astrophysics Data System (ADS)
De La Rosa, Janie; Roming, Peter; Fryer, Chris
2016-01-01
We present near-by Type IIn supernovae observed with Swift's Ultraviolet/Optical Telescope (UVOT). Based on the diversity of optical light curve properties, this Type II subclass is commonly referred to as heterogeneous. At the time of discovery, our IIn sample is ~ 2 magnitudes brighter at ultraviolet wavelengths than at optical wavelengths, and ultraviolet brightness decays faster than the optical brightness. We use a semi-analytical supernova (SN) model to better understand our IIn observations, and focus on matching specific observed light curves features, i.e peak luminosity and decay rate. The SN models are used to study the effects of initial SN conditions on early light curves, and to show the extent of the "uniqueness" problem in SN light curves. We gratefully acknowledge the contributions from members of the Swift UVOT team, the NASA astrophysics archival data analysis program, and the NASA Swift guest investigator program.
Aluminized fiberglass insulation conforms to curved surfaces
NASA Technical Reports Server (NTRS)
1966-01-01
Layers of fiber glass with outer reflective films of vacuum-deposited aluminum or other reflective metal, provide thermal insulation which conforms to curved surfaces. This insulation has good potential for cryogenic systems.
Classification of ASKAP Vast Radio Light Curves
NASA Technical Reports Server (NTRS)
Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.
2012-01-01
The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.
Curve of calcium deoxidation of iron
NASA Astrophysics Data System (ADS)
Kotel'nikov, G. I.; Zubarev, K. A.; Movenko, D. A.; Pavlov, A. V.; Semin, A. E.
2016-06-01
The experimental data reflecting the thermodynamic features of deoxidation of liquid iron with metallic calcium are analyzed. A correction technique is proposed for a metallic melt-deoxidizer deoxidation curve according to the standard state by Henry's law.
Bounded Population Growth: A Curve Fitting Lesson.
ERIC Educational Resources Information Center
Mathews, John H.
1992-01-01
Presents two mathematical methods for fitting the logistic curve to population data supplied by the U.S. Census Bureau utilizing computer algebra software to carry out the computations and plot graphs. (JKK)
Classification of ASKAP Vast Radio Light Curves
NASA Technical Reports Server (NTRS)
Rebbapragada, Umaa; Lo, Kitty; Wagstaff, Kiri L.; Reed, Colorado; Murphy, Tara; Thompson, David R.
2012-01-01
The VAST survey is a wide-field survey that observes with unprecedented instrument sensitivity (0.5 mJy or lower) and repeat cadence (a goal of 5 seconds) that will enable novel scientific discoveries related to known and unknown classes of radio transients and variables. Given the unprecedented observing characteristics of VAST, it is important to estimate source classification performance, and determine best practices prior to the launch of ASKAP's BETA in 2012. The goal of this study is to identify light curve characterization and classification algorithms that are best suited for archival VAST light curve classification. We perform our experiments on light curve simulations of eight source types and achieve best case performance of approximately 90% accuracy. We note that classification performance is most influenced by light curve characterization rather than classifier algorithm.
Asymmetry Dependence of the Nuclear Caloric Curve
NASA Astrophysics Data System (ADS)
McIntosh, A. B.; Bonasera, A.; Cammarata, P.; Hagel, K.; Heilborn, L.; Kohley, Z.; Mabiala, J.; May, L. W.; Marini, P.; Raphelt, A.; Souliotis, G. A.; Wuenschel, S.; Zarrella, A.; Yennello, S. J.
2013-03-01
A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A = 50. Two independent thermometers, the momentum quadrupole fluctuation thermometer and the Albergo yield ratio thermometer, are used to extract the caloric curve. For both methods, the caloric curve extracted shows that the temperature varies linearly with quasi-projectile asymmetry For the momentum quadrupole fluctuation thermometer, an increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei.
Transmission of wave energy in curved ducts
NASA Technical Reports Server (NTRS)
Rostafinski, W.
1973-01-01
A formation of wave energy flow was developed for motion in curved ducts. A parametric study over a range of frequencies determined the ability of circular bends to transmit energy for the case of perfectly rigid walls.
Estimating power curves of flying vertebrates.
Rayner, J M
1999-12-01
The power required for flight in any flying animal is a function of flight speed. The power curve that describes this function has become an icon of studies of flight mechanics and physiology because it encapsulates the accessible animal's flight performance. The mechanical or aerodynamic power curve, describing the increase in kinetic energy of the air due to the passage of the bird, is necessarily U-shaped, for aerodynamic reasons, and can be estimated adequately by lifting-line theory. Predictions from this and related models agree well with measured mechanical work in flight and with results from flow visualization experiments. The total or metabolic power curve also includes energy released by the animal as heat, and is more variable in shape. These curves may be J-shaped for smaller birds and bats, but are difficult to predict theoretically owing to uncertainty about internal physiological processes and the efficiency of the flight muscles. The limitations of some existing models aiming to predict metabolic power curves are considered. The metabolic power curve can be measured for birds or bats flying in wind tunnels at controlled speeds. Simultaneous determination in European starlings Sturnus vulgaris of oxygen uptake, total metabolic rate (using labelled isotopes), aerodynamic power output and heat released (using digital video thermography) enable power curves to be determined with confidence; flight muscle efficiency is surprisingly low (averaging 15-18 %) and increases moderately with flight speed, so that the metabolic power curve is shallower than predicted by models. Accurate knowledge of the power curve is essential since extensive predictions of flight behaviour have been based upon it. The hypothesis that the power curve may not in fact exist, in the sense that the cost of flight may not be perceived by a bird as a continuous smooth function of air speed, is advanced but has not yet formally been tested. This hypothesis is considered together with
TS - Dean interactions in curved channel flow
NASA Technical Reports Server (NTRS)
Singer, Bart A.; Zang, Thomas A.; Erlebacher, Gordon
1990-01-01
A weakly nonlinear theory is developed to study the interaction of TS waves and Dean vortices in curved channel flow. The prediction obtained from the theory agree well with results obtained from direct numerical simulations of curved channel flow, especially for low amplitude disturbances. At low Reynolds numbers the wave interaction is generally stabilizing to both disturbances, though as the Reynolds number increases, many linearly unstable TS waves are further destabilized by the presence of Dean vortices.
Anomalies in curved spacetime at finite temperature
Boschi-Filho, H. Departamento de Fisica e Quimica, Universidade Estadual Paulista, Campus de Guaratingueta, 12500 Guaratingueta, Caixa Postal 205 Sao Paulo ); Natividade, C.P. )
1992-12-15
We discuss the problem of the breakdown of conformal and gauge symmetries at finite temperature in curved-spacetime background, when the changes in the background are gradual, in order to have a well-defined quantum field theory at finite temperature. We obtain the expressions for Seeley's coefficients and the heat-kernel expansion in this regime. As applications, we consider the self-interacting [lambda][phi][sup 4] and chiral Schwinger models in curved backgrounds at finite temperature.
Meteor light curves: the relevant parameters
NASA Astrophysics Data System (ADS)
Brosch, N.; Helled, Ravit; Polishook, D.; Almoznino, E.; David, N.
2004-11-01
We investigate a uniform sample of 113 light curves of meteors collected at the Wise Observatory in 2002 November during a campaign to observe the Leonid meteor shower. We use previously defined descriptors, such as the classical skewness parameter F and a recently defined pointedness variable P, along with a number of other measurable or derived quantities, in order to explore the parameter space in search of meaningful light curve descriptors. In comparison with previous publications, we make extensive use of statistical techniques to reveal links among the various parameters and to understand their relative importance. In particular, we show that meteors with long-duration trails rise slowly to their maximal brightness and also decay slowly from the peak, while showing milder flaring than other meteors. Early skewed meteors, with their peak brightness in the first half of the light curve, show a fast rise to the peak. We show that the duration of the luminous phase of the meteor is the most important variable differentiating among the 2002 meteor trails. The skewness parameter F, which is widely used in meteor light curve analyses, appears only as the second or third in order of importance in explaining the variance among the observed light curves, with the most important parameter being related to the duration of the meteor light-producing phase. We suggest that the pointedness parameter P could possibly be useful in describing differences among meteor showers, perhaps by being related to the different compositions of meteoroids, and also in comparing observations to model light curves. We compare the derived characteristics of the 2002 meteors with model predictions and conclude that more work is required to define a consistent set of measurable and derived light-curve parameters that would characterize the light production from meteors. We suggest that meteor observers should consider publishing more characterizing parameters from the light curves they
Isentropic fluid dynamics in a curved pipe
NASA Astrophysics Data System (ADS)
Colombo, Rinaldo M.; Holden, Helge
2016-10-01
In this paper we study isentropic flow in a curved pipe. We focus on the consequences of the geometry of the pipe on the dynamics of the flow. More precisely, we present the solution of the general Cauchy problem for isentropic fluid flow in an arbitrarily curved, piecewise smooth pipe. We consider initial data in the subsonic regime, with small total variation about a stationary solution. The proof relies on the front-tracking method and is based on [1].
Deformability curve for K18 steel
Pospiech, J.
1999-12-01
The problem of the best utilization of plasticity in plastic working processes of metals, at low resistance to deformation and maximum utilization of capacity of installations has gained great importance, especially in recent years. Determination of plasticity of materials by the method of Kolmogorow is described. Variation of the stress factor for several plastic working processes is also described. Tests to plot the deformability curve (also referred to as reserve of plasticity curve) were selected and proved.
NASA Astrophysics Data System (ADS)
Smak, J.
2017-03-01
Light curves of AM CVn are analyzed by decomposing them into their Fourier components. The amplitudes of the fundamental mode and overtones of the three components: the superhumps, the negative superhumps and the orbital variations, are found to be variable. This implies that variations in the shape of the observed light curve of AM CVn are not only due to the interference between those components, but also due to the intrinsic variability within these components.
Learning curves in health professions education.
Pusic, Martin V; Boutis, Kathy; Hatala, Rose; Cook, David A
2015-08-01
Learning curves, which graphically show the relationship between learning effort and achievement, are common in published education research but are not often used in day-to-day educational activities. The purpose of this article is to describe the generation and analysis of learning curves and their applicability to health professions education. The authors argue that the time is right for a closer look at using learning curves-given their desirable properties-to inform both self-directed instruction by individuals and education management by instructors.A typical learning curve is made up of a measure of learning (y-axis), a measure of effort (x-axis), and a mathematical linking function. At the individual level, learning curves make manifest a single person's progress towards competence including his/her rate of learning, the inflection point where learning becomes more effortful, and the remaining distance to mastery attainment. At the group level, overlaid learning curves show the full variation of a group of learners' paths through a given learning domain. Specifically, they make overt the difference between time-based and competency-based approaches to instruction. Additionally, instructors can use learning curve information to more accurately target educational resources to those who most require them.The learning curve approach requires a fine-grained collection of data that will not be possible in all educational settings; however, the increased use of an assessment paradigm that explicitly includes effort and its link to individual achievement could result in increased learner engagement and more effective instructional design.
Neutron cross sections: Book of curves
McLane, V.; Dunford, C.L.; Rose, P.F.
1988-01-01
Neuton Cross Sections: Book of Curves represents the fourth edition of what was previously known as BNL-325, Neutron Cross Sections, Volume 2, CURVES. Data is presented only for (i.e., intergrated) reaction cross sections (and related fission parameters) as a function of incident-neutron energy for the energy range 0.01 eV to 200 MeV. For the first time, isometric state production cross sections have been included. 11 refs., 4 figs.
Single-shot curved slice imaging.
Jochimsen, Thies H; Norris, David G
2002-03-01
The feasibility of imaging a curved slice with a single-shot technique so that the reconstructed image shows an un-warping of the slice is examined. This could be of practical importance when the anatomical structures of interest can be more efficiently covered with curved slices than with a series of flat planes. One possible example of such a structure is the cortex of the human brain. Functional imaging would especially benefit from this technique because several planar images can be replaced by a few curved slice images. A method is introduced that is based on multidimensional pulses to excite the desired curved slice profile. A GRASE imaging sequence is then applied that is tailored to the k-space representation of the curved slice. This makes it possible to capture the in-plane information of the slice with a single-shot technique. The method presented is limited to slices that are straight along one axis and can be approximated by a polygon. Reconstruction is performed using a simple numeric Fourier integration along the curved slice. This leads to an image that shows the desired un-warped representation of the slice. Experimental results obtained with this method from healthy volunteers are presented and demonstrate the feasibility of the proposed technique.
Effectivizing the geometry of the curve complex
NASA Astrophysics Data System (ADS)
Aougab, Tarik
This thesis is devoted to understanding how the geometry of the curve complex of a surface S, the Teichmuller space of S, and of the mapping class group of S explicitly depend on the underlying topology of S. Moreover, this thesis demonstrates that the geometry of the mapping class group, and the tools used to study this geometry such as Masur and Minsky's celebrated distance formula, can be used to answer basic, but surprisingly challenging questions related to the combinatorial properties of curves on surfaces. In particular, we prove that all curve graphs are uniformly hyperbolic, independent of the topology of the underlying surface. We also give effective versions of several results regarding train track splitting sequences, and the subset of the curve graph corresponding to curves which bound disks in a handlebody. Finally, we study the local geometry of a family of curve graphs all related to the same surface, and specifically we give upper and lower bounds on the maximum size of a complete subgraph for these graphs.
Tutorial: using confidence curves in medical research.
Bender, Ralf; Berg, Gabriele; Zeeb, Hajo
2005-04-01
Confidence intervals represent a routinely used standard method to document the uncertainty of estimated effects. In most cases, for the calculation of confidence intervals the conventional fixed 95% confidence level is used. Confidence curves represent a graphical illustration of confidence intervals for confidence levels varying between 0 and 100%. Although such graphs have been repeatedly proposed under different names during the last 40 years, confidence curves are rarely used in medical research. In this paper, we introduce confidence curves and present a short historical review. We draw attention to the different interpretation of one- and two-sided statistical inference. It is shown that these two options also have influence on the plotting of appropriate confidence curves. We illustrate the use of one- and two-sided confidence curves and explain their correct interpretation. In medical research more emphasis on the choice between the one- and two-sided approaches should be given. One- and two-sided confidence curves are useful complements to the conventional methods of presenting study results.
GPU accelerated curve fitting with IDL
NASA Astrophysics Data System (ADS)
Galloy, M.
2012-12-01
Curve fitting is a common mathematical calculation done in all scientific areas. The Interactive Data Language (IDL) is also widely used in this community for data analysis and visualization. We are creating a general-purpose, GPU accelerated curve fitting library for use from within IDL. We have developed GPULib, a library of routines in IDL for accelerating common scientific operations including arithmetic, FFTs, interpolation, and others. These routines are accelerated using modern GPUs using NVIDIA's CUDA architecture. We will add curve fitting routines to the GPULib library suite, making curve fitting much faster. In addition, library routines required for efficient curve fitting will also be generally useful to other users of GPULib. In particular, a GPU accelerated LAPACK implementation such as MAGMA is required for the Levenberg-Marquardt curve fitting and is commonly used in many other scientific computations. Furthermore, the ability to evaluate custom expressions at runtime necessary for specifying a function model will be useful for users in all areas.
Geometric Observers for Dynamically Evolving Curves
Niethammer, Marc; Vela, Patricio A.; Tannenbaum, Allen
2009-01-01
This paper proposes a deterministic observer design for visual tracking based on nonparametric implicit (level-set) curve descriptions. The observer is continuous discrete with continuous-time system dynamics and discrete-time measurements. Its state-space consists of an estimated curve position augmented by additional states (e.g., velocities) associated with every point on the estimated curve. Multiple simulation models are proposed for state prediction. Measurements are performed through standard static segmentation algorithms and optical-flow computations. Special emphasis is given to the geometric formulation of the overall dynamical system. The discrete-time measurements lead to the problem of geometric curve interpolation and the discrete-time filtering of quantities propagated along with the estimated curve. Interpolation and filtering are intimately linked to the correspondence problem between curves. Correspondences are established by a Laplace-equation approach. The proposed scheme is implemented completely implicitly (by Eulerian numerical solutions of transport equations) and thus naturally allows for topological changes and subpixel accuracy on the computational grid. PMID:18421113
Piecewise power laws in individual learning curves.
Donner, Yoni; Hardy, Joseph L
2015-10-01
The notion that human learning follows a smooth power law (PL) of diminishing gains is well-established in psychology. This characteristic is observed when multiple curves are averaged, potentially masking more complex dynamics underpinning the curves of individual learners. Here, we analyzed 25,280 individual learning curves, each comprising 500 measurements of cognitive performance taken from four cognitive tasks. A piecewise PL (PPL) model explained the individual learning curves significantly better than a single PL, controlling for model complexity. The PPL model allows for multiple PLs connected at different points in the learning process. We also explored the transition dynamics between PL curve component pieces. Performance in later pieces typically surpassed that in earlier pieces, after a brief drop in performance at the transition point. The transition rate was negatively associated with age, even after controlling for overall performance. Our results suggest at least two processes at work in individual learning curves: locally, a gradual, smooth improvement, with diminishing gains within a specific strategy, which is modeled well as a PL; and globally, a discrete sequence of strategy shifts, in which each strategy is better in the long term than the ones preceding it. The piecewise extension of the classic PL of practice has implications for both individual skill acquisition and theories of learning.
ERIC Educational Resources Information Center
Shin, Tacksoo; Davison, Mark L.; Long, Jeffrey D.; Chan, Chi-Keung; Heistad, David
2013-01-01
Using four-wave longitudinal reading and mathematics data (4th to 7th grades) from a large urban school district, growth curve modeling was used as a tool for examining three research questions: Are achievement gaps closing in reading and mathematics? What are the associations between prior-achievement and growth across the reading and mathematics…
ERIC Educational Resources Information Center
Shin, Tacksoo; Davison, Mark L.; Long, Jeffrey D.; Chan, Chi-Keung; Heistad, David
2013-01-01
Using four-wave longitudinal reading and mathematics data (4th to 7th grades) from a large urban school district, growth curve modeling was used as a tool for examining three research questions: Are achievement gaps closing in reading and mathematics? What are the associations between prior-achievement and growth across the reading and mathematics…
Unemployment Rates and Starting Salaries: Are Australian Graduates at the Whim of the Wage Curve?
ERIC Educational Resources Information Center
Carroll, David
2011-01-01
The existence of an inverse relationship between wage levels and regional unemployment rates, commonly referred to as the wage curve, is well established in the economic literature and was described by Card (1995) as being "close to an empirical law of economics". This microeconomic wage-unemployment relationship, first identified by…
Signatures of strong gravity in the light curves of tidal disruption events
NASA Astrophysics Data System (ADS)
Oriol, Júlia Alsina; Bogdanovic, Tamara
2017-01-01
A star whose orbit takes it on a sufficiently close approach to a massive black hole (MBH) will be shredded by the black hole’s tides. Accretion of stellar debris on the MBH gives rise to a characteristic light curve which has been used as a smoking gun in observational searches for tidal disruption events (TDEs) in the past 20 years. Disruptive encounters that occur very close to the MBHs are subject to relativistic effects, leading to an intriguing possibility that information about the space-time of an MBH can be encoded in the light curve of a TDE. We explore the effect on the fallback rate of the general relativistic precession of the debris deep in the potential well of a Schwarzschild MBH. We investigate the distribution of orbital energy and angular momentum of the debris in such scenarios and use it to assess the magnitude of relativistic effects that may be imprinted in the light curves of TDEs.
A comparison among five equations of state in predicting the inversion curve of some fluids
NASA Astrophysics Data System (ADS)
Haghighi, Behzad; Laee, Mohammad Reza; Seyed Matin, Naser
2003-07-01
Five equations of state, modified Peng-Robinson by Danesh et al. (MPR1), modified SRK equation of state by Mathias and Copeman (MSRK), Vdw11, Harmens-Knapp (HK) and modified Peng-Robinson equation of state by Ruzy (MPR2) were compared in predicting of the inversion curve of some fluids. This enable us to judge the accuracy of the results obtained from different equations of state. MSRK and HK equations of state give good prediction of the low-temperatures branch of the inversion curve and are closely matched with the experimental inversion curve. As a corollary to the present study, we have perceived that the agreement of the MPR2 and Vdw11 equations of state with the inversion curve are inadequate. We also calculated maximum inversion temperature and maximum inversion pressure for every component used in this work.
Development of the curve of Spee.
Marshall, Steven D; Caspersen, Matthew; Hardinger, Rachel R; Franciscus, Robert G; Aquilino, Steven A; Southard, Thomas E
2008-09-01
Ferdinand Graf von Spee is credited with characterizing human occlusal curvature viewed in the sagittal plane. This naturally occurring phenomenon has clinical importance in orthodontics and restorative dentistry, yet we have little understanding of when, how, or why it develops. The purpose of this study was to expand our understanding by examining the development of the curve of Spee longitudinally in a sample of untreated subjects with normal occlusion from the deciduous dentition to adulthood. Records of 16 male and 17 female subjects from the Iowa Facial Growth Study were selected and examined. The depth of the curve of Spee was measured on their study models at 7 time points from ages 4 (deciduous dentition) to 26 (adult dentition) years. The Wilcoxon signed rank test was used to compare changes in the curve of Spee depth between time points. For each subject, the relative eruption of the mandibular teeth was measured from corresponding cephalometric radiographs, and its contribution to the developing curve of Spee was ascertained. In the deciduous dentition, the curve of Spee is minimal. At mean ages of 4.05 and 5.27 years, the average curve of Spee depths are 0.24 and 0.25 mm, respectively. With change to the transitional dentition, corresponding to the eruption of the mandibular permanent first molars and central incisors (mean age, 6.91 years), the curve of Spee depth increases significantly (P < 0.0001) to a mean maximum depth of 1.32 mm. The curve of Spee then remains essentially unchanged until eruption of the second molars (mean age, 12.38 years), when the depth increases (P < 0.0001) to a mean maximum depth of 2.17 mm. In the adolescent dentition (mean age, 16.21 years), the depth decreases slightly (P = 0.0009) to a mean maximum depth of 1.98 mm, and, in the adult dentition (mean age 26.98 years), the curve remains unchanged (P = 0.66), with a mean maximum depth of 2.02 mm. No significant differences in curve of Spee development were found between
Reification and the Closed Mind
ERIC Educational Resources Information Center
Rockwell, Mark
2012-01-01
What does it mean to have an open mind? Is it desirable? Are we therefore to avoid its opposite, a closed mind? How shall we proceed in producing an open mind or avoiding its opposite a closed mind? The terms open and closed are commonly used as if the meanings of the terms were clear and the expectant goods associated with being open preferred.…
Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop★
NASA Astrophysics Data System (ADS)
Valenti, S.; Sand, D.; Stritzinger, M.; Howell, D. A.; Arcavi, I.; McCully, C.; Childress, M. J.; Hsiao, E. Y.; Contreras, C.; Morrell, N.; Phillips, M. M.; Gromadzki, M.; Kirshner, R. P.; Marion, G. H.
2015-04-01
We present multiband ultraviolet and optical light curves, as well as visual-wavelength and near-infrared spectroscopy of the Type II linear (IIL) supernova (SN) 2013by. We show that SN 2013by and other SNe IIL in the literature, after their linear decline phase that start after maximum, have a sharp light-curve decline similar to that seen in SNe IIP. This light-curve feature has rarely been observed in other SNe IIL due to their relative rarity and the intrinsic faintness of this particular phase of the light curve. We suggest that the presence of this drop could be used as a physical parameter to distinguish between subclasses of SNe II, rather than their light-curve decline rate shortly after peak. Close inspection of the spectra of SN 2013by indicate asymmetric line profiles and signatures of high-velocity hydrogen. Late (˜90 d after explosion) near-infrared spectra of SN 2013by exhibit oxygen lines, indicating significant mixing within the ejecta. From the late-time light curve, we estimate that 0.029 M⊙ of 56Ni was synthesized during the explosion. It is also shown that the V-band light-curve slope is responsible for part of the scatter in the luminosity (V magnitude 50 d after explosion) versus 56Ni relation. Our observations of SN 2013by and other SNe IIL through the onset of the nebular phase indicate that their progenitors are similar to those of SNe IIP.
Optical phase curves of exoplanets at small and large phase angles
NASA Astrophysics Data System (ADS)
García Muñoz, Antonio
2016-10-01
Phase curves and secondary eclipses provide key information on exoplanet atmospheres. Indeed, recent work on close-in giant planets observed by Kepler has shown that it is possible to constrain various reflecting, dynamical and thermal properties of their atmospheres from the analysis of the planets' phase curves. This presentation discusses new diagnostic possibilities for the characterization of exoplanet atmospheres with optical phase curves. These possibilities benefit from the fact that at optical wavelengths the signal from the planet is either partly or mostly determined by scattering of starlight within its atmosphere, which entails that the structure of the planet's phase curve mimics to some extent the optical properties of the atmospheric medium. In particular, we will show how cloud properties such as the particle size or the atmospheric scale height might be constrained through observations at small (i.e. near transit) and large (i.e. near occultation) phase angles. We will emphasize how the interpretation of optical phase curves differs from the interpretation of phase curves obtained at longer wavelengths. The conclusions are relevant to the study of Kepler planets, but also to the investigation of phase curves to be delivered by upcoming space missions such as CHEOPS, JWST, PLATO and TESS.
Vectorial moments of curves in Euclidean 3-space
NASA Astrophysics Data System (ADS)
Tunçer, Yılmaz
In this study, we introduced the vectorial moments as a new curves as w-dual curve, where w ∈{T(s),N(s),B(s)}, constructed by the Frenet vectors of a regular curve in Euclidean 3-space and we gave the Frenet apparatus of w-dual curves and also we applied to helices and curve pairs of constant breadth.
Gottschlich, Carsten
2012-04-01
Gabor filters (GFs) play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved GFs that locally adapt their shape to the direction of flow. These curved GFs enable the choice of filter parameters that increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved GFs are applied to the curved ridge and valley structures of low-quality fingerprint images. First, we combine two orientation-field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation. Subsequently, these curved regions are used for estimating the local ridge frequency. Finally, curved GFs are defined based on curved regions, and they apply the previously estimated orientations and ridge frequencies for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004 databases show improvements of this approach in comparison with state-of-the-art enhancement methods.
Tracing personalized health curves during infections.
Schneider, David S
2011-09-01
It is difficult to describe host-microbe interactions in a manner that deals well with both pathogens and mutualists. Perhaps a way can be found using an ecological definition of tolerance, where tolerance is defined as the dose response curve of health versus parasite load. To plot tolerance, individual infections are summarized by reporting the maximum parasite load and the minimum health for a population of infected individuals and the slope of the resulting curve defines the tolerance of the population. We can borrow this method of plotting health versus microbe load in a population and make it apply to individuals; instead of plotting just one point that summarizes an infection in an individual, we can plot the values at many time points over the course of an infection for one individual. This produces curves that trace the course of an infection through phase space rather than over a more typical timeline. These curves highlight relationships like recovery and point out bifurcations that are difficult to visualize with standard plotting techniques. Only nine archetypical curves are needed to describe most pathogenic and mutualistic host-microbe interactions. The technique holds promise as both a qualitative and quantitative approach to dissect host-microbe interactions of all kinds.
Multiwavelength light curve parameters of Cepheid variables
NASA Astrophysics Data System (ADS)
Bhardwaj, Anupam; Kanbur, Shashi M.; Marconi, Marcella; Rejkuba, Marina; Singh, Harinder P.; Ngeow, Chow-Choong
2017-09-01
We present a comparative analysis of theoretical and observed light curves of Cepheid variables using Fourier decomposition. The theoretical light curves at multiple wavelengths are generated using stellar pulsation models for chemical compositions representative of Cepheids in the Galaxy and Magellanic Clouds. The observed light curves at optical (VI), near-infrared (JHKs) and mid-infrared (3.6 & 4.5-μm) bands are compiled from the literature. We discuss the variation of light curve parameters as a function of period, wavelength and metallicity. Theoretical and observed Fourier amplitude parameters decrease with increase in wavelength while the phase parameters increase with wavelength. We find that theoretical amplitude parameters obtained using canonical mass-luminosity levels exhibit a greater offset with respect to observations when compared to non-canonical relations. We also discuss the impact of variation in convective efficiency on the light curve structure of Cepheid variables. The increase in mixing length parameter results in a zero-point offset in bolometric mean magnitudes and reduces the systematic large difference in theoretical amplitudes with respect to observations.
Tracing Personalized Health Curves during Infections
Schneider, David S.
2011-01-01
It is difficult to describe host–microbe interactions in a manner that deals well with both pathogens and mutualists. Perhaps a way can be found using an ecological definition of tolerance, where tolerance is defined as the dose response curve of health versus parasite load. To plot tolerance, individual infections are summarized by reporting the maximum parasite load and the minimum health for a population of infected individuals and the slope of the resulting curve defines the tolerance of the population. We can borrow this method of plotting health versus microbe load in a population and make it apply to individuals; instead of plotting just one point that summarizes an infection in an individual, we can plot the values at many time points over the course of an infection for one individual. This produces curves that trace the course of an infection through phase space rather than over a more typical timeline. These curves highlight relationships like recovery and point out bifurcations that are difficult to visualize with standard plotting techniques. Only nine archetypical curves are needed to describe most pathogenic and mutualistic host–microbe interactions. The technique holds promise as both a qualitative and quantitative approach to dissect host–microbe interactions of all kinds. PMID:21957398
Updated U.S. Geothermal Supply Curve
Augustine, C.; Young, K. R.; Anderson, A.
2010-02-01
This paper documents the approach used to update the U.S. geothermal supply curve. The analysis undertaken in this study estimates the supply of electricity generation potential from geothermal resources in the United States and the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs associated with developing these geothermal resources. Supply curves were developed for four categories of geothermal resources: identified hydrothermal (6.4 GWe), undiscovered hydrothermal (30.0 GWe), near-hydrothermal field enhanced geothermal systems (EGS) (7.0 GWe) and deep EGS (15,900 GWe). Two cases were considered: a base case and a target case. Supply curves were generated for each of the four geothermal resource categories for both cases. For both cases, hydrothermal resources dominate the lower cost range of the combined geothermal supply curve. The supply curves indicate that the reservoir performance improvements assumed in the target case could significantly lower EGS costs and greatly increase EGS deployment over the base case.
Closed cellular materials for smart materials
NASA Astrophysics Data System (ADS)
Kishimoto, Satoshi
2008-11-01
New methods to fabricate a metallic closed cellular material for smart materials using an isostatic pressing, spark plasma sintering (SPS) method and penetrating method are introduced. Powder particles of polymer or ceramics coated with a metal layer using electro-less plating were pressed into pellets and sintered at high temperatures by sintering at high temperature. Also these powder particles were sintered by spark plasma sintering (SPS) method. Also a many kinds of closed cellular materials with different materials of cell walls and different materials inside of the cell were tried to fabricate. The physical, mechanical and thermal properties of this material were measured. The results of the compressive tests show that this material has the different stress-strain curves among the specimens that have different thickness of the cell walls and the sintering temperatures of the specimens affect the compressive strength of each specimen. Also, the results of the compressive tests show that this material has high-energy absorption and Young's modulus of this material depends on the thickness of the cell walls and sintering conditions. The internal friction of this material was measured and the results show that this internal friction is same as that of pure aluminum.
Fabrication methods of micrometallic closed cellular materials
NASA Astrophysics Data System (ADS)
Kishimoto, Satoshi; Shinya, Norio
2006-03-01
A method to fabricate the metallic closed cellular material has been developed. Powder particles of polymer coated with a nickel-phosphorus alloy layer using electro-less plating were pressed into pellets and sintered at high temperatures by a furnace and a spark plasma sintering (SPS) system. A metallic closed cellular material containing different materials from that of cell walls was then fabricated. The mechanical properties of this material were measured. The results of the compressive tests show that this material has the different stress-strain curves among the specimens that have different thickness of the cell walls and the sintering temperatures of the specimens affect the compressive strength of each specimen. Also, it seems that the results of the compressive tests show that this material has high-energy absorption and Young's modulus of this material depends on the thickness of the cell walls and the sintering temperature. These obtained results emphasize that this material can be utilized as energy absorbing material and passive damping material.
Paleomagnetic analysis of curved thrust belts reproduced by physical models
NASA Astrophysics Data System (ADS)
Costa, Elisabetta; Speranza, Fabio
2003-12-01
This paper presents a new methodology for studying the evolution of curved mountain belts by means of paleomagnetic analyses performed on analogue models. Eleven models were designed aimed at reproducing various tectonic settings in thin-skinned tectonics. Our models analyze in particular those features reported in the literature as possible causes for peculiar rotational patterns in the outermost as well as in the more internal fronts. In all the models the sedimentary cover was reproduced by frictional low-cohesion materials (sand and glass micro-beads), which detached either on frictional or on viscous layers. These latter were reproduced in the models by silicone. The sand forming the models has been previously mixed with magnetite-dominated powder. Before deformation, the models were magnetized by means of two permanent magnets generating within each model a quasi-linear magnetic field of intensity variable between 20 and 100 mT. After deformation, the models were cut into closely spaced vertical sections and sampled by means of 1×1-cm Plexiglas cylinders at several locations along curved fronts. Care was taken to collect paleomagnetic samples only within virtually undeformed thrust sheets, avoiding zones affected by pervasive shear. Afterwards, the natural remanent magnetization of these samples was measured, and alternating field demagnetization was used to isolate the principal components. The characteristic components of magnetization isolated were used to estimate the vertical-axis rotations occurring during model deformation. We find that indenters pushing into deforming belts from behind form non-rotational curved outer fronts. The more internal fronts show oroclinal-type rotations of a smaller magnitude than that expected for a perfect orocline. Lateral symmetrical obstacles in the foreland colliding with forward propagating belts produce non-rotational outer curved fronts as well, whereas in between and inside the obstacles a perfect orocline forms
Modernization of Closed Bomb Testing for Acceptance of Single Base Propellant
1976-05-01
These ar. more complex in design than the as they allow a variable volume (not vented vessel) and appru._Ych the actual gun pressure curve more closely...degree in measurements at each installations at differ- ent times. All installations used the same recorder, transducer, and vessel design . Readings...gnitor of gun- powder G12. ix LIST OF ILLUSTRATIONS Figure Title 1 Radford Closed Bombs . ............................. 2 2 Closed Bomb Design
Statistics from dynamics in curved spacetime
Parker, L.; Wang, Y.
1989-06-15
We consider quantum fields of spin 0, 1/2, 1,3/2, and 2 with a nonzero mass in curved spacetime. We show thatthe dynamical Bogolubov transformations associated with gravitationally inducedparticle creation imply the connection between spin and statistics: Byembedding two flat regions in a curved spacetime, we find that only when oneimposes Bose-Einstein statistics for an integer-spin field and Fermi-Diracstatistics for a half-integer-spin field in the first flat region is the sametype of statistics propagated from the first to the second flat region. Thisderivation of the flat-spacetime spin-statistics theorem makes use ofcurved-spacetime dynamics and does not reduce to any proof given in flatspacetime. We also show in the same manner that parastatistics, up to thefourth order, are consistent with the dynamical evolution of curved spacetime.
Energy dissipation in flows through curved spaces
Debus, J.-D.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2017-01-01
Fluid dynamics in intrinsically curved geometries is encountered in many physical systems in nature, ranging from microscopic bio-membranes all the way up to general relativity at cosmological scales. Despite the diversity of applications, all of these systems share a common feature: the free motion of particles is affected by inertial forces originating from the curvature of the embedding space. Here we reveal a fundamental process underlying fluid dynamics in curved spaces: the free motion of fluids, in the complete absence of solid walls or obstacles, exhibits loss of energy due exclusively to the intrinsic curvature of space. We find that local sources of curvature generate viscous stresses as a result of the inertial forces. The curvature- induced viscous forces are shown to cause hitherto unnoticed and yet appreciable energy dissipation, which might play a significant role for a variety of physical systems involving fluid dynamics in curved spaces. PMID:28195148
Mapping curved spacetimes into Dirac spinors
Sabín, Carlos
2017-01-01
We show how to transform a Dirac equation in a curved static spacetime into a Dirac equation in flat spacetime. In particular, we show that any solution of the free massless Dirac equation in a 1 + 1 dimensional flat spacetime can be transformed via a local phase transformation into a solution of the corresponding Dirac equation in a curved static background, where the spacetime metric is encoded into the phase. In this way, the existing quantum simulators of the Dirac equation can naturally incorporate curved static spacetimes. As a first example we use our technique to obtain solutions of the Dirac equation in a particular family of interesting spacetimes in 1 + 1 dimensions. PMID:28074908
Waveguide finite elements for curved structures
NASA Astrophysics Data System (ADS)
Finnveden, Svante; Fraggstedt, Martin
2008-05-01
A waveguide finite element formulation for the analysis of curved structures is introduced. The formulation is valid for structures that along one axis have constant properties. It is based on a modified Hamilton's principle valid for general linear viscoelastic motion, which is derived here. Using this principle, material properties such as losses may be distributed in the system and may vary with frequency. Element formulations for isoparametric solid elements and deep shell elements are presented for curved waveguides as well as for straight waveguides. In earlier works, the curved elements have successfully been used to model a passenger car tyre. Here a simple validation example and convergence study is presented, which considers a finite length circular cylinder and all four elements presented are used, in turn, to model this structure. Calculated results compare favourably to those in the literature.
The genus curve of the Abell clusters
NASA Technical Reports Server (NTRS)
Rhoads, James E.; Gott, J. Richard, III; Postman, Marc
1994-01-01
We study the topology of large-scale structure through a genus curve measurement of the recent Abell catalog redshift survey of Postman, Huchra, and Geller (1992). The structure is found to be spongelike near median density and to exhibit isolated superclusters and voids at high and low densities, respectively. The genus curve shows a slight shift toward 'meatball' topology, but remains consistent with the hypothesis of Gaussian random phase initial conditions. The amplitude of the genus curve corresponds to a power-law spectrum with index n = 0.21(sub -0.47 sup +0.43) on scales of 48/h Mpc or to a cold dark matter power spectrum with omega h = 0.36(sub -0.17 sup +0.46).
Plasticity and rectangularity in survival curves
NASA Astrophysics Data System (ADS)
Weon, Byung Mook; Je, Jung Ho
2011-09-01
Living systems inevitably undergo a progressive deterioration of physiological function with age and an increase of vulnerability to disease and death. To maintain health and survival, living systems should optimize survival strategies with adaptive interactions among molecules, cells, organs, individuals, and environments, which arises plasticity in survival curves of living systems. In general, survival dynamics in a population is mathematically depicted by a survival rate, which monotonically changes from 1 to 0 with age. It would be then useful to find an adequate function to describe complicated survival dynamics. Here we describe a flexible survival function, derived from the stretched exponential function by adopting an age-dependent shaping exponent. We note that the exponent is associated with the fractal-like scaling in cumulative mortality rate. The survival function well depicts general features in survival curves; healthy populations exhibit plasticity and evolve towards rectangular-like survival curves, as examples in humans or laboratory animals.
Energy dissipation in flows through curved spaces
NASA Astrophysics Data System (ADS)
Debus, J.-D.; Mendoza, M.; Succi, S.; Herrmann, H. J.
2017-02-01
Fluid dynamics in intrinsically curved geometries is encountered in many physical systems in nature, ranging from microscopic bio-membranes all the way up to general relativity at cosmological scales. Despite the diversity of applications, all of these systems share a common feature: the free motion of particles is affected by inertial forces originating from the curvature of the embedding space. Here we reveal a fundamental process underlying fluid dynamics in curved spaces: the free motion of fluids, in the complete absence of solid walls or obstacles, exhibits loss of energy due exclusively to the intrinsic curvature of space. We find that local sources of curvature generate viscous stresses as a result of the inertial forces. The curvature- induced viscous forces are shown to cause hitherto unnoticed and yet appreciable energy dissipation, which might play a significant role for a variety of physical systems involving fluid dynamics in curved spaces.
Mapping curved spacetimes into Dirac spinors.
Sabín, Carlos
2017-01-11
We show how to transform a Dirac equation in a curved static spacetime into a Dirac equation in flat spacetime. In particular, we show that any solution of the free massless Dirac equation in a 1 + 1 dimensional flat spacetime can be transformed via a local phase transformation into a solution of the corresponding Dirac equation in a curved static background, where the spacetime metric is encoded into the phase. In this way, the existing quantum simulators of the Dirac equation can naturally incorporate curved static spacetimes. As a first example we use our technique to obtain solutions of the Dirac equation in a particular family of interesting spacetimes in 1 + 1 dimensions.
Age at onset curves of retinitis pigmentosa.
Tsujikawa, Motokazu; Wada, Yuko; Sukegawa, Marie; Sawa, Miki; Gomi, Fumi; Nishida, Kohji; Tano, Yasuo
2008-03-01
To calculate age at onset curves of retinitis pigmentosa (RP) to resolve the difficulty in calculating the recurrence risk in a family. Retinitis pigmentosa is a common hereditary retinal disease that leads to blindness. It is a slow-onset disease, and family members of patients sometimes develop RP later. We studied 370 patients with typical RP. The age at onset was defined as when the patient's RP was diagnosed by an ophthalmologist. After confirmation that the age at onset came from normal distribution, we drew the age at onset curves. The average age when patients were diagnosed with RP was 35.1 years, and the median age was 36.5. The onset ratio straightly increased with age until 65 years, so the onset ratio was relatively low at young ages. The age at onset curves are quite simple and useful tools that facilitate counseling at an RP clinic. Without them, the recurrence risk would be misleading.
Geometric Mechanics of Curved Crease Origami
NASA Astrophysics Data System (ADS)
Dias, Marcelo A.; Dudte, Levi H.; Mahadevan, L.; Santangelo, Christian D.
2012-09-01
Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold, and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations that allow us to generalize our analysis to study structures with multiple curved creases.
Geometric mechanics of curved crease origami.
Dias, Marcelo A; Dudte, Levi H; Mahadevan, L; Santangelo, Christian D
2012-09-14
Folding a sheet of paper along a curve can lead to structures seen in decorative art and utilitarian packing boxes. Here we present a theory for the simplest such structure: an annular circular strip that is folded along a central circular curve to form a three-dimensional buckled structure driven by geometrical frustration. We quantify this shape in terms of the radius of the circle, the dihedral angle of the fold, and the mechanical properties of the sheet of paper and the fold itself. When the sheet is isometrically deformed everywhere except along the fold itself, stiff folds result in creases with constant curvature and oscillatory torsion. However, relatively softer folds inherit the broken symmetry of the buckled shape with oscillatory curvature and torsion. Our asymptotic analysis of the isometrically deformed state is corroborated by numerical simulations that allow us to generalize our analysis to study structures with multiple curved creases.
Surface growth kinematics via local curve evolution.
Moulton, Derek E; Goriely, Alain
2014-01-01
A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process.
Plasticity and rectangularity in survival curves
Weon, Byung Mook; Je, Jung Ho
2011-01-01
Living systems inevitably undergo a progressive deterioration of physiological function with age and an increase of vulnerability to disease and death. To maintain health and survival, living systems should optimize survival strategies with adaptive interactions among molecules, cells, organs, individuals, and environments, which arises plasticity in survival curves of living systems. In general, survival dynamics in a population is mathematically depicted by a survival rate, which monotonically changes from 1 to 0 with age. It would be then useful to find an adequate function to describe complicated survival dynamics. Here we describe a flexible survival function, derived from the stretched exponential function by adopting an age-dependent shaping exponent. We note that the exponent is associated with the fractal-like scaling in cumulative mortality rate. The survival function well depicts general features in survival curves; healthy populations exhibit plasticity and evolve towards rectangular-like survival curves, as examples in humans or laboratory animals. PMID:22355622
Asymmetry dependence of the nuclear caloric curve
NASA Astrophysics Data System (ADS)
McIntosh, A. B.; Bonasera, A.; Cammarata, P.; Hagel, K.; Heilborn, L.; Kohley, Z.; Mabiala, J.; May, L. W.; Marini, P.; Raphelt, A.; Souliotis, G. A.; Wuenschel, S.; Zarrella, A.; Yennello, S. J.
2013-02-01
A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron-proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A = 50. The caloric curve extracted with the momentum quadrupole fluctuation thermometer shows that the temperature varies linearly with quasi-projectile asymmetry N-Z/A. An increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei.
School Closings Policy. Issue Brief
ERIC Educational Resources Information Center
Research For Action, 2013
2013-01-01
The nation's largest school districts have increasingly turned to building closures to address budget deficits, demographic shifts, and the movement of students to charter schools. Over the past decade, 70 large or mid-sized cities closed schools--averaging 11 buildings per closure. This trend shows no signs of slowing. Washington, D.C. closed 23…
Lightweight Valve Closes Duct Quickly
NASA Technical Reports Server (NTRS)
Fournier, Walter L.; Burgy, N. Frank
1991-01-01
Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.
Lightweight Valve Closes Duct Quickly
NASA Technical Reports Server (NTRS)
Fournier, Walter L.; Burgy, N. Frank
1991-01-01
Expanding balloon serves as lightweight emergency valve to close wide duct. Uninflated balloon stored in housing of duct. Pad resting on burst diaphragm protects balloon from hot gases in duct. Once control system triggers valve, balloon inflates rapidly to block duct. Weighs much less than does conventional butterfly, hot-gas, or poppet valve capable of closing duct of equal diameter.
Postdivorce Father-Adolescent Closeness
ERIC Educational Resources Information Center
Scott, Mindy E.; Booth, Alan; King, Valarie; Johnson, David R.
2007-01-01
Research indicates that closeness of the father-child bond following parental divorce is associated with better outcomes for children and adolescents. Unlike other investigations, this study takes a long-term developmental approach to understanding stability and change in postdivorce father-adolescent relationship closeness. Drawing on Add Health…
Linear Titration Curves of Acids and Bases.
Joseph, N R
1959-05-29
The Henderson-Hasselbalch equation, by a simple transformation, becomes pH - pK = pA - pB, where pA and pB are the negative logarithms of acid and base concentrations. Sigmoid titration curves then reduce to straight lines; titration curves of polyelectrolytes, to families of straight lines. The method is applied to the titration of the dipeptide glycyl aminotricarballylic acid, with four titrable groups. Results are expressed as Cartesian and d'Ocagne nomograms. The latter is of a general form applicable to polyelectrolytes of any degree of complexity.
Solitons in curved space of constant curvature
Batz, Sascha; Peschel, Ulf
2010-05-15
We consider spatial solitons as, for example, self-confined optical beams in spaces of constant curvature, which are a natural generalization of flat space. Due to the symmetries of these spaces we are able to define respective dynamical parameters, for example, velocity and position. For positively curved space we find stable multiple-hump solitons as a continuation from the linear modes. In the case of negatively curved space we show that no localized solution exists and a bright soliton will always decay through a nonlinear tunneling process.
Multivariate curve-fitting in GAUSS
Bunck, C.M.; Pendleton, G.W.
1988-01-01
Multivariate curve-fitting techniques for repeated measures have been developed and an interactive program has been written in GAUSS. The program implements not only the one-factor design described in Morrison (1967) but also includes pairwise comparisons of curves and rates, a two-factor design, and other options. Strategies for selecting the appropriate degree for the polynomial are provided. The methods and program are illustrated with data from studies of the effects of environmental contaminants on ducklings, nesting kestrels and quail.
A PANOPLY OF CEPHEID LIGHT CURVE TEMPLATES
Yoachim, Peter; McCommas, Les P.; Dalcanton, Julianne J.; Williams, Benjamin F.
2009-06-15
We have generated accurate V and I template light curves using a combination of Fourier decomposition and principal component analysis for a large sample of Cepheid light curves. Unlike previous studies, we include short-period Cepheids and stars pulsating in the first overtone mode in our analysis. Extensive Monte Carlo simulations show that our templates can be used to precisely measure Cepheid magnitudes and periods, even in cases where there are few observational epochs. These templates are ideal for characterizing serendipitously discovered Cepheids and can be used in conjunction with surveys such as Pan-Starrs and LSST where the observational sampling may not be optimized for Cepheids.
Computing Riemann matrices of algebraic curves
NASA Astrophysics Data System (ADS)
Deconinck, Bernard; van Hoeij, Mark
2001-05-01
A black-box program for the explicit calculation of Riemann matrices of arbitrary compact connected Riemann surfaces is presented. All such Riemann surfaces are represented as plane algebraic curves. These algebraic curves are allowed to have arbitrary singularities. The method of calculation of the Riemann matrix is essentially its definition: we numerically integrate the holomorphic differentials of the Riemann surface over the cycles of a canonical basis of the homology of the Riemann surface. Both the holomorphic differentials and the canonical basis of the homology of the Riemann surface are obtained exactly through symbolic calculations. This program is included in Maple 6, as part of the algcurves package.
Relativistic rotation curve for cosmological structures
NASA Astrophysics Data System (ADS)
Razbin, Mohammadhosein; Firouzjaee, Javad T.; Mansouri, Reza
2014-08-01
Using a general relativistic exact model for spherical structures in a cosmological background, we have put forward an algorithm to calculate the test particle geodesics within such cosmological structures in order to obtain the velocity profile of stars or galaxies. The rotation curve thus obtained is based on a density profile and is independent of any mass definition which is not unique in general relativity. It is then shown that this general relativistic rotation curves for a toy model and a NFW density profile are almost identical to the corresponding Newtonian one, although the general relativistic masses may be quite different.
Cellinoid shape model for multiple light curves
NASA Astrophysics Data System (ADS)
Lu, Xiao-Ping; Ip, Wing-Huen
2015-04-01
Extended from the ellipsoid shape, cellinoid shape model consists of eight octants from eight different ellipsoids with the constraint that the adjacent octants have the same semi-axes in common. With the asymmetric shape, cellinoid shape model could be adopted in simulating the irregular shapes of asteroids. In this article, we attempt to apply cellinoid shape model to multiple light curves observed in various geometries and present some techniques to make the whole inverse process more efficient. Finally numerical experiments confirm that cellinoid shape model could derive the physical parameters of asteroids from both of synthetic and real light curves.
On Addition Formulae for Sigma Functions of Telescopic Curves
NASA Astrophysics Data System (ADS)
Ayano, Takanori; Nakayashiki, Atsushi
2013-06-01
A telescopic curve is a certain algebraic curve defined by m-1 equations in the affine space of dimension m, which can be a hyperelliptic curve and an (n,s) curve as a special case. We extend the addition formulae for sigma functions of (n,s) curves to those of telescopic curves. The expression of the prime form in terms of the derivative of the sigma function is also given.
The image-charge correction for curved field emitters
NASA Astrophysics Data System (ADS)
Biswas, Debabrata; Ramachandran, Rajasree
2017-07-01
The image-charge potential plays a key role in field emission by lowering the potential barrier, thereby leading to an increase in current density by orders of magnitude. The classical image-charge potential is however strictly applicable to planar emitters rather than the curved protrusions characteristic of field emission sites. Using recent results [Jensen et al., J. Vac. Sci. Technol. B 35, 02C101 (2017)] for a hyperboloid emitting surface, we show that for a charge close to the emitter surface, the image charge magnitude and location are well approximated by replacing the surface locally by a sphere having the same radius of curvature. Corrections to the image-charge potential under this approximation are calculated and found to be significant for field emission when the radius of curvature is in the nanometer regime. In such cases, there is reduced electron emission and the effect is more pronounced at lower external field strengths.
Notions of the ergodic hierarchy for curved statistical manifolds
NASA Astrophysics Data System (ADS)
Gomez, Ignacio S.
2017-10-01
We present an extension of the ergodic, mixing, and Bernoulli levels of the ergodic hierarchy for statistical models on curved manifolds, making use of elements of the information geometry. This extension focuses on the notion of statistical independence between the microscopical variables of the system. Moreover, we establish an intimately relationship between statistical models and families of probability distributions belonging to the canonical ensemble, which for the case of the quadratic Hamiltonian systems provides a closed form for the correlations between the microvariables in terms of the temperature of the heat bath as a power law. From this, we obtain an information geometric method for studying Hamiltonian dynamics in the canonical ensemble. We illustrate the results with two examples: a pair of interacting harmonic oscillators presenting phase transitions and the 2 × 2 Gaussian ensembles. In both examples the scalar curvature results a global indicator of the dynamics.
Fermion wave-mechanical operators in curved space-time
Cocke, W.J.; Lloyd-Hart, M. )
1990-09-15
In the context of a general wave-mechanical formalism, we derive explicit forms for the Hamiltonian, kinetic energy, and momentum operators for a massive fermion in curved space-time. In the two-spinor representation, the scalar products of state vectors are conserved under the Dirac equation, but the time-development Hamiltonian is in general not Hermitian for a nonstatic metric. A geodesic normal coordinate system provides an economical framework in which to interpret the results. We apply the formalism to a closed Robertson-Walker metric, for which we find the eigenvalues and eigenfunctions of the kinetic energy density. The angular momentum parts turn out to be simpler than in the usual four-spinor representation, and the radial parts involve Jacobi polynomials.
Generic buckling curves for specially orthotropic rectangular plates
NASA Technical Reports Server (NTRS)
Brunnelle, E. J.; Oyibo, G. A.
1983-01-01
Using a double affine transformation, the classical buckling equation for specially orthotropic plates and the corresponding virtual work theorem are presented in a particularly simple fashion. These dual representations are characterized by a single material constant, called the generalized rigidity ratio, whose range is predicted to be the closed interval from 0 to 1 (if this prediction is correct then the numerical results using a ratio greater than 1 in the specially orthotropic plate literature are incorrect); when natural boundary conditions are considered a generalized Poisson's ratio is introduced. Thus the buckling results are valid for any specially orthotropic material; hence the curves presented in the text are generic rather than specific. The solution trends are twofold; the buckling coefficients decrease with decreasing generalized rigidity ratio and, when applicable, they decrease with increasing generalized Poisson's ratio. Since the isotropic plate is one limiting case of the above analysis, it is also true that isotropic buckling coefficients decrease with increasing Poission's ratio.
Understanding the shape and diversity of dwarf galaxy rotation curves in ΛCDM
NASA Astrophysics Data System (ADS)
Read, J. I.; Iorio, G.; Agertz, O.; Fraternali, F.
2016-11-01
The shape and diversity of dwarf galaxy rotation curves is at apparent odds with dark matter halos in a Λ Cold Dark Matter (ΛCDM) cosmology. We use mock data from isolated dwarf galaxy simulations to show that this owes to three main effects. Firstly, stellar feedback heats dark matter, leading to a `CORENFW' dark matter density profile with a slowly rising rotation curve. Secondly, if close to a recent starburst, large H I bubbles push the rotation curve out of equilibrium, deforming the rotation curve shape. Thirdly, when galaxies are viewed near face-on, their best fit inclination is biased high. This can lead to a very shallow rotation curve that falsely implies a large dark matter core. All three problems can be avoided, however, by a combination of improved mass models and a careful selection of target galaxies. Fitting our CORENFW model to mock rotation curve data, we show that we can recover the rotation curve shape, dark matter halo mass M200 and concentration parameter c within our quoted uncertainties. We fit our CORENFW model to real data for four isolated dwarf irregulars, chosen to span a wide range of rotation curve shapes. We obtain an excellent fit for NGC 6822 and WLM, with tight constraints on M200, and c consistent with ΛCDM. However, IC 1613 and DDO 101 give a poor fit. For IC 1613, we show that this owes to disequilibria and its uncertain inclination i; for DDO 101, it owes to its uncertain distance D. If we assume iIC1613 ˜ 15° and DDDO101 ˜ 12 Mpc, consistent with current uncertainties, we are able to fit both galaxies very well. We conclude that ΛCDM appears to give an excellent match to dwarf galaxy rotation curves.
Graphical interpretation of confidence curves in rankit plots.
Hyltoft Petersen, Per; Blaabjerg, Ole; Andersen, Marianne; Jørgensen, Lone G M; Schousboe, Karoline; Jensen, Esther
2004-01-01
A well-known transformation from the bell-shaped Gaussian (normal) curve to a straight line in the rankit plot is investigated, and a tool for evaluation of the distribution of reference groups is presented. It is based on the confidence intervals for percentiles of the calculated Gaussian distribution and the percentage of cumulative points exceeding these limits. The process is to rank the reference values and plot the cumulative frequency points in a rankit plot with a logarithmic (In=log(e)) transformed abscissa. If the distribution is close to In-Gaussian the cumulative frequency points will fit to the straight line describing the calculated In-Gaussian distribution. The quality of the fit is evaluated by adding confidence intervals (CI) to each point on the line and calculating the percentage of points outside the hyperbola-like CI-curves. The assumption was that the 95% confidence curves for percentiles would show 5% of points outside these limits. However, computer simulations disclosed that approximate 10% of the series would have 5% or more points outside the limits. This is a conservative validation, which is more demanding than the Kolmogorov-Smirnov test. The graphical presentation, however, makes it easy to disclose deviations from In-Gaussianity, and to make other interpretations of the distributions, e.g., comparison to non-Gaussian distributions in the same plot, where the cumulative frequency percentage can be read from the ordinate. A long list of examples of In-Gaussian distributions of subgroups of reference values from healthy individuals is presented. In addition, distributions of values from well-defined diseased individuals may show up as In-Gaussian. It is evident from the examples that the rankit transformation and simple graphical evaluation for non-Gaussianity is a useful tool for the description of sub-groups.
Neutral versus charged defect patterns in curved crystals.
Azadi, Amir; Grason, Gregory M
2016-07-01
Characterizing the complex spectrum of topological defects in ground states of curved crystals is a long-standing problem with wide implications, from the mathematical Thomson problem to diverse physical realizations, including fullerenes and particle-coated droplets. While the excess number of "topologically charged" fivefold disclinations in a closed, spherical crystal is fixed, here we study the elementary transition from defect-free, flat crystals to curved crystals possessing an excess of "charged" disclinations in their bulk. Specifically, we consider the impact of topologically neutral patterns of defects-in the form of multidislocation chains or "scars" stable for small lattice spacing-on the transition from neutral to charged ground-state patterns of a crystalline cap bound to a spherical surface. Based on the asymptotic theory of caps in continuum limit of vanishing lattice spacing, we derive the morphological phase diagram of ground-state defect patterns, spanned by surface coverage of the sphere and forces at the cap edge. For the singular limit of zero edge forces, we find that scars reduce (by half) the threshold surface coverage for excess disclinations. Even more significant, scars flatten the geometric dependence of excess disinclination number on Gaussian curvature, leading to a transition between stable "charged" and "neutral" patterns that is, instead, critically sensitive to the compressive vs tensile nature of boundary forces on the cap.
Neutral versus charged defect patterns in curved crystals
NASA Astrophysics Data System (ADS)
Azadi, Amir; Grason, Gregory M.
2016-07-01
Characterizing the complex spectrum of topological defects in ground states of curved crystals is a long-standing problem with wide implications, from the mathematical Thomson problem to diverse physical realizations, including fullerenes and particle-coated droplets. While the excess number of "topologically charged" fivefold disclinations in a closed, spherical crystal is fixed, here we study the elementary transition from defect-free, flat crystals to curved crystals possessing an excess of "charged" disclinations in their bulk. Specifically, we consider the impact of topologically neutral patterns of defects—in the form of multidislocation chains or "scars" stable for small lattice spacing—on the transition from neutral to charged ground-state patterns of a crystalline cap bound to a spherical surface. Based on the asymptotic theory of caps in continuum limit of vanishing lattice spacing, we derive the morphological phase diagram of ground-state defect patterns, spanned by surface coverage of the sphere and forces at the cap edge. For the singular limit of zero edge forces, we find that scars reduce (by half) the threshold surface coverage for excess disclinations. Even more significant, scars flatten the geometric dependence of excess disinclination number on Gaussian curvature, leading to a transition between stable "charged" and "neutral" patterns that is, instead, critically sensitive to the compressive vs tensile nature of boundary forces on the cap.
Scaling of Flow Duration Curves Across the Contiguous United States
NASA Astrophysics Data System (ADS)
Rahnamay Naeini, M.; Vrugt, J. A.; Sadegh, M.; Gomes, G. J. C.
2015-12-01
The scaling method has been used extensively in vadose zone hydrology to analyze the spatial variability of the soil hydraulic properties. This method relies on the similar media concept of Miller and Miller (1955) and coalesces a set of functional relationships into a single reference curve using so-called scaling factors that relate the hydraulic properties at a given location to the mean properties at an arbitrary reference point. In this talk, we will adapt the scaling method to surface hydrology and characterize the spatial variability of the flow duration curve (FDC) across the contiguous United States. Scaling factors are derived numerically by fitting closed-form parametric expressions of the FDC (Vrugt and Sadegh, 2013; Sadegh et al., 2015) to multi-year discharge data of the MOPEX data set. Results show that the FDC scaling factor exhibits a strong geographic trend with spatial patterns similar to those observed in the US soil and precipitation maps. Spatio-temporal kriging of the scaling factor can be used to predict the FDC of an ungauged watershed.
Preliminary Investigation of Curved Liner Sample in the NASA LaRC Curved Duct Test Rig
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.
2007-01-01
This viewgraph presentation reviews the preliminary investigation of the curved liner sample in the NASA LaRC Curved Duct Test Rig (CDTR). It reviews the purpose of the Curved Duct Test Rig. Its purpose is to develop capability to investigate acoustic and aerodynamic properties in ducts. It has several features to accomplish that purpose: (1) Large scale (2) Flow rate to M = 0.275 (3) Higher order mode control (4) Curved flow path (5) Adaptable test section (6) Flexible test configurations. The liner has minimal effect on turbulence or boundary layer growth in duct. The curved duct sample attenuation is affected by mode scattering. In conclusion, the CDTR is valid tool for aerodynamic and acoustic evaluation of duct treatment
A synthetic light curve solution of the OAO-2 ultraviolet light curves of u Herculis
NASA Technical Reports Server (NTRS)
Eaton, J. A.
1978-01-01
OAO 2 ultraviolet photometry of the eclipsing binary u Her is reported and interpreted. The light curve of u Her is found to be intrinsically variable, the variable light curve is rectified, and the adjusted light and color curves are plotted. A simultaneous solution to three adjusted OAO 2 light curves (at respective wavelengths of 3320, 1910, and 1550 A) is obtained by using the Roche model. The results indicate that the system is semidetached if the gravity darkening of the secondary is not significantly larger than expected. It is suggested that the primary is responsible for the variable light curve, that the monochromatic albedo of the secondary is very low at short wavelengths, and that the depth of primary eclipse is strongly dependent on the primary's limb darkening.
To Close or Not to Close: Guantanamo Bay
2009-04-01
world will be the least of our worries. 15 Closing it Down Like any controversial issue, there are also arguments on the side of the... waterboarding is an acceptable interrogation technique to coerce information from detainees. He specifically mentioned his approval of this method on Khalid...weakening its influence and effectives throughout the international community. President Obama shared this sentiment and made the closing of
Serial Position Curves in Free Recall
ERIC Educational Resources Information Center
Laming, Donald
2010-01-01
The scenario for free recall set out in Laming (2009) is developed to provide models for the serial position curves from 5 selected sets of data, for final free recall, and for multitrial free recall. The 5 sets of data reflect the effects of rate of presentation, length of list, delay of recall, and suppression of rehearsal. Each model…
Light extraction block with curved surface
Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.
2016-03-22
Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.
Nonlinear Growth Curves in Developmental Research
ERIC Educational Resources Information Center
Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki
2011-01-01
Developmentalists are often interested in understanding change processes, and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and…
Serial Position Curves in Free Recall
ERIC Educational Resources Information Center
Laming, Donald
2010-01-01
The scenario for free recall set out in Laming (2009) is developed to provide models for the serial position curves from 5 selected sets of data, for final free recall, and for multitrial free recall. The 5 sets of data reflect the effects of rate of presentation, length of list, delay of recall, and suppression of rehearsal. Each model…
Measuring Systematic Error with Curve Fits
ERIC Educational Resources Information Center
Rupright, Mark E.
2011-01-01
Systematic errors are often unavoidable in the introductory physics laboratory. As has been demonstrated in many papers in this journal, such errors can present a fundamental problem for data analysis, particularly when comparing the data to a given model. In this paper I give three examples in which my students use popular curve-fitting software…
Least-squares fitting Gompertz curve
NASA Astrophysics Data System (ADS)
Jukic, Dragan; Kralik, Gordana; Scitovski, Rudolf
2004-08-01
In this paper we consider the least-squares (LS) fitting of the Gompertz curve to the given nonconstant data (pi,ti,yi), i=1,...,m, m≥3. We give necessary and sufficient conditions which guarantee the existence of the LS estimate, suggest a choice of a good initial approximation and give some numerical examples.
Estimating Johnson Curve Population Distributions in MULTILOG
ERIC Educational Resources Information Center
van den Oord, Edwin J. C. G.
2005-01-01
The shape of the latent trait distribution can be of considerable theoretical and methodological importance. A simulation study was performed to examine the distribution of the likelihood ratio statistic that was used to test for normality via Johnson curves, the power to detect deviations from normality, and the estimation properties of the item…
A Class Inquiry into Newton's Cooling Curve
ERIC Educational Resources Information Center
Bartholow, Martin
2007-01-01
Newton's cooling curve was chosen for the four-part laboratory inquiry into conditions affecting temperature change. The relationship between time and temperature is not foreseen by the average high school student before the first session. However, during several activities students examine the classic relationship, T = A exp[superscript -Ct] + B…
Is the Water Heating Curve as Described?
ERIC Educational Resources Information Center
Riveros, H. G.; Oliva, A. I.
2008-01-01
We analysed the heating curve of water which is described in textbooks. An experiment combined with some simple heat transfer calculations is discussed. The theoretical behaviour can be altered by changing the conditions under which the experiment is modelled. By identifying and controlling the different parameters involved during the heating…
Growth Curves for Girls with Turner Syndrome
Bertapelli, Fabio; Barros-Filho, Antonio de Azevedo; Antonio, Maria Ângela Reis de Góes Monteiro; Barbeta, Camila Justino de Oliveira; de Lemos-Marini, Sofia Helena Valente
2014-01-01
The objective of this study was to review the growth curves for Turner syndrome, evaluate the methodological and statistical quality, and suggest potential growth curves for clinical practice guidelines. The search was carried out in the databases Medline and Embase. Of 1006 references identified, 15 were included. Studies constructed curves for weight, height, weight/height, body mass index, head circumference, height velocity, leg length, and sitting height. The sample ranged between 47 and 1,565 (total = 6,273) girls aged 0 to 24 y, born between 1950 and 2006. The number of measures ranged from 580 to 9,011 (total = 28,915). Most studies showed strengths such as sample size, exclusion of the use of growth hormone and androgen, and analysis of confounding variables. However, the growth curves were restricted to height, lack of information about selection bias, limited distributional properties, and smoothing aspects. In conclusion, we observe the need to construct an international growth reference for girls with Turner syndrome, in order to provide support for clinical practice guidelines. PMID:24949463
Flying Off a Frictionless Curved Ramp
2015-06-01
point along a descending curved track that a particle (such as a marble or model car) loses contact with the surface, in the absence of dissipation of...tracks of definite shapes. Another approach is to look for general solutions of Equation (5). However, that equation only specifies a relationship
Mass Distributions Implying Flat Galactic Rotation Curves
ERIC Educational Resources Information Center
Keeports, David
2010-01-01
The rotational speeds of stars in the disc of a spiral galaxy are virtually independent of the distances of the stars from the centre of the galaxy. In common parlance, the stellar speed versus distance plot known as a galactic rotation curve is by observation typically nearly flat. This observation provides strong evidence that most galactic…
The Landau Problem for Motions on Curves.
1977-11-01
Among all motions f(t) on a curve Gamma such that abs . value of F’(t) or = A for all t, there is just one, called f-bar(t), that maximizes the speed abs . value of f’ at each point of Gamma. (Author)
Jet flow on ribbed curved surfaces
NASA Astrophysics Data System (ADS)
Lashkov, Iu. A.; Sokolova, I. N.; Shumilkina, E. A.
1992-02-01
The objective of the study was to investigate the possibility of using microribbing to reduce turbulent friction in Coanda flows over curved surfaces. It is shown that ribs make it possible to reduce the effect of a jet impinging on an obstacle and to prevent the Coanda effect when jet attachment is undesirable. The optimal rib parameters are determined.
Liquefaction probability curves for surficial geologic deposits
Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.
2011-01-01
Liquefaction probability curves that predict the probability of surface manifestations of earthquake-induced liquefaction are developed for 14 different types of surficial geologic units. The units consist of alluvial fan, beach ridge, river delta topset and foreset beds, eolian dune, point bar, flood basin, natural river and alluvial fan levees, abandoned river channel, deep-water lake, lagoonal, sandy artificial fill, and valley train deposits. Probability is conditioned on earthquake magnitude and peak ground acceleration. Curves are developed for water table depths of 1.5 and 5.0 m. Probabilities are derived from complementary cumulative frequency distributions of the liquefaction potential index (LPI) that were computed from 927 cone penetration tests. For natural deposits with a water table at 1.5 m and subjected to a M7.5 earthquake with peak ground acceleration (PGA) = 0.25g, probabilities range from 0.5 for beach ridge, point bar, and deltaic deposits. The curves also were used to assign ranges of liquefaction probabilities to the susceptibility categories proposed previously for different geologic deposits. For the earthquake described here, probabilities for susceptibility categories have ranges of 0–0.08 for low, 0.09–0.30 for moderate, 0.31–0.62 for high, and 0.63–1.00 for very high. Retrospective predictions of liquefaction during historical earthquakes based on the curves compare favorably to observations.
The Window Dressing Behind "The Bell Curve."
ERIC Educational Resources Information Center
Richardson, Tina Q.
1995-01-01
Critiques the conceptual framework of "The Bell Curve: Intelligence and Class Structure in American Life." Concludes evidence is grounded in the classical tradition, which may be the case for some of their data, but conclusions and policy recommendations are based on assumptions and not grounded in data. Discusses limitations of scientific…
Is the Water Heating Curve as Described?
ERIC Educational Resources Information Center
Riveros, H. G.; Oliva, A. I.
2008-01-01
We analysed the heating curve of water which is described in textbooks. An experiment combined with some simple heat transfer calculations is discussed. The theoretical behaviour can be altered by changing the conditions under which the experiment is modelled. By identifying and controlling the different parameters involved during the heating…
Mass Distributions Implying Flat Galactic Rotation Curves
ERIC Educational Resources Information Center
Keeports, David
2010-01-01
The rotational speeds of stars in the disc of a spiral galaxy are virtually independent of the distances of the stars from the centre of the galaxy. In common parlance, the stellar speed versus distance plot known as a galactic rotation curve is by observation typically nearly flat. This observation provides strong evidence that most galactic…
Spline curve matching with sparse knot sets
Sang-Mook Lee; A. Lynn Abbott; Neil A. Clark; Philip A. Araman
2004-01-01
This paper presents a new curve matching method for deformable shapes using two-dimensional splines. In contrast to the residual error criterion, which is based on relative locations of corresponding knot points such that is reliable primarily for dense point sets, we use deformation energy of thin-plate-spline mapping between sparse knot points and normalized local...
The Ultimate Spitzer Phase Curve Survey
NASA Astrophysics Data System (ADS)
Stevenson, Kevin; Bean, Jacob; Deming, Drake; Desert, Jean-Michel; Feng, Y. Katherina; Fortney, Jonathan; Kataria, Tiffany; Kempton, Eliza; Lewis, Nikole; Line, Michael; Morley, Caroline; Rauscher, Emily; Showman, Adam
2016-08-01
Exoplanet phase curves are sure to be one of the main enduring legacies of Spitzer. They provide a wealth of information about exoplanet atmospheres, including longitudinal constraints on atmospheric composition, thermal structure, and energy transport, that will continue to open new doors of scientific inquiry and propel future investigations for years to come. The measured heat redistribution efficiency (or ability to transport energy from a planet's highly-irradiated dayside to its eternally-dark nightside) shows considerable variation between exoplanets. Theoretical models predict a correlation between heat redistribution efficiency and planet temperature; however, the latest results are inconsistent with current predictions. Instead, a new potential trend is emerging, one that connects heat redistribution efficiency with planet rotation rate. We will test this hypothesis by performing Spitzer phase curve observations of seven exoplanets with physical properties that span the parameter space. We have identified high-contrast targets with short orbital periods around bright host stars to ensure the observations reveal robust phase curve results. Spitzer is uniquely suited for this program because we can achieve our primary goals using broadband photometry. Part of the phase curve legacy will be to combine our archived Spitzer data with transmission and dayside emission spectra from HST and JWST. Adding energy transport and cloud coverage constraints to the measured dayside abundances and thermal profiles will yield a fundamental understanding of these exoplanets' atmospheres that can be leveraged into new avenues of investigation.
Dual kinetic curves in reversible electrochemical systems
Hankins, Michael J.; Yablonsky, Gregory S.
2017-01-01
We introduce dual kinetic chronoamperometry, in which reciprocal relations are established between the kinetic curves of electrochemical reactions that start from symmetrical initial conditions. We have performed numerical and experimental studies in which the kinetic curves of the electron-transfer processes are analyzed for a reversible first order reaction. Experimental tests were done with the ferrocyanide/ferricyanide system in which the concentrations of each component could be measured separately using the platinum disk/gold ring electrode. It is shown that the proper ratio of the transient kinetic curves obtained from cathodic and anodic mass transfer limited regions give thermodynamic time invariances related to the reaction quotient of the bulk concentrations. Therefore, thermodynamic time invariances can be observed at any time using the dual kinetic curves for reversible reactions. The technique provides a unique possibility to extract the non-steady state trajectory starting from one initial condition based only on the equilibrium constant and the trajectory which starts from the symmetrical initial condition. The results could impact battery technology by predicting the concentrations and currents of the underlying non-steady state processes in a wide domain from thermodynamic principles and limited kinetic information. PMID:28358881
Curved apparent motion induced by amodal completion
Feldman, Jacob; Singh, Manish
2012-01-01
We investigated whether amodal completion can bias apparent motion (AM) to deviate from its default straight path toward a longer curved path, which would violate the well-established principle that AM follows the shortest possible path. Observers viewed motion sequences of two alternating rectangular tokens positioned at the ends of a semicircular occluder, with varying interstimulus intervals (ISIs; 100–500 ms). At short ISIs, observers tended to report simple straight-path motion—that is, outside the occluder. But at long ISIs, they became increasingly likely to report a curved-path motion behind the occluder. This tendency toward reporting curved-path motion was influenced by the shape of tokens, display orientation, the gap between tokens and the occluder, and binocular depth cues. Our results suggest that the visual system tends to minimize unexplained absence of a moving object, as well as its path length, such that AM deviates from the shortest path when amodal integration of motion trajectory behind the curved occluder can account for the objective invisibility of the object during the ISI. PMID:22069082
A Class Inquiry into Newton's Cooling Curve
ERIC Educational Resources Information Center
Bartholow, Martin
2007-01-01
Newton's cooling curve was chosen for the four-part laboratory inquiry into conditions affecting temperature change. The relationship between time and temperature is not foreseen by the average high school student before the first session. However, during several activities students examine the classic relationship, T = A exp[superscript -Ct] + B…
Nonlinear Growth Curves in Developmental Research
ERIC Educational Resources Information Center
Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki
2011-01-01
Developmentalists are often interested in understanding change processes, and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and…
Curve Numbers for Golf Course Watersheds
USDA-ARS?s Scientific Manuscript database
Storm event runoff is a critical component to the environmental and structural design related to hydrology. The curve number (CN) method is a robust and accepted method for determining excess rainfall. Measured CNs for golf course watersheds and for that matter hydrologic data from golf course wate...
Akhawayni and the first fever curve.
Sajadi, Mohammad M; Bonabi, Reza; Sajadi, Mohamad-Reza M; Mackowiak, Philip A
2012-10-01
By the time of Hippocrates the typical paroxysmal fever patterns of tertian (every 48 hours) and quartan (every 72 hours) fevers caused by malaria were known. Through the ensuing centuries, ancient Greek, Roman, and Persian physicians made additional contributions to the understanding of fevers. By the end of that era, there was a working definition of what constitutes a fever, the distinction between fever as a symptom and fever as a disease, an elaborate classification scheme for multiple types of fever, hypotheses as to the causes of fever, and methods for diagnosing and treating fevers. Based on the definition of fever at that time, the 10th century ce Persian physician Akhawaynī created fever curves hundreds of years before they were routinely used in the clinical setting. In Hidāyat al-Muta'allimīn fī al-Tibb, Akhawaynī describes a system for fever curves and draws fever curves for tertian and quartan Fevers, as well as the double tertian, double quartan, and triple quartan fevers. In this work we examine the history of fevers in the ancient world and the first description of the fever curve.
Tumor Static Concentration Curves in Combination Therapy.
Cardilin, Tim; Almquist, Joachim; Jirstrand, Mats; Sostelly, Alexandre; Amendt, Christiane; El Bawab, Samer; Gabrielsson, Johan
2017-03-01
Combination therapies are widely accepted as a cornerstone for treatment of different cancer types. A tumor growth inhibition (TGI) model is developed for combinations of cetuximab and cisplatin obtained from xenograft mice. Unlike traditional TGI models, both natural cell growth and cell death are considered explicitly. The growth rate was estimated to 0.006 h(-1) and the natural cell death to 0.0039 h(-1) resulting in a tumor doubling time of 14 days. The tumor static concentrations (TSC) are predicted for each individual compound. When the compounds are given as single-agents, the required concentrations were computed to be 506 μg · mL(-1) and 56 ng · mL(-1) for cetuximab and cisplatin, respectively. A TSC curve is constructed for different combinations of the two drugs, which separates concentration combinations into regions of tumor shrinkage and tumor growth. The more concave the TSC curve is, the lower is the total exposure to test compounds necessary to achieve tumor regression. The TSC curve for cetuximab and cisplatin showed weak concavity. TSC values and TSC curves were estimated that predict tumor regression for 95% of the population by taking between-subject variability into account. The TSC concept is further discussed for different concentration-effect relationships and for combinations of three or more compounds.
Pleats in crystals on curved surfaces.
Irvine, William T M; Vitelli, Vincenzo; Chaikin, Paul M
2010-12-16
Hexagons can easily tile a flat surface, but not a curved one. Introducing heptagons and pentagons (defects with topological charge) makes it easier to tile curved surfaces; for example, soccer balls based on the geodesic domes of Buckminster Fuller have exactly 12 pentagons (positive charges). Interacting particles that invariably form hexagonal crystals on a plane exhibit fascinating scarred defect patterns on a sphere. Here we show that, for more general curved surfaces, curvature may be relaxed by pleats: uncharged lines of dislocations (topological dipoles) that vanish on the surface and play the same role as fabric pleats. We experimentally investigate crystal order on surfaces with spatially varying positive and negative curvature. On cylindrical capillary bridges, stretched to produce negative curvature, we observe a sequence of transitions-consistent with our energetic calculations-from no defects to isolated dislocations, which subsequently proliferate and organize into pleats; finally, scars and isolated heptagons (previously unseen) appear. This fine control of crystal order with curvature will enable explorations of general theories of defects in curved spaces. From a practical viewpoint, it may be possible to engineer structures with curvature (such as waisted nanotubes and vaulted architecture) and to develop novel methods for soft lithography and directed self-assembly.
"The Bell Curve": Review of Reviews.
ERIC Educational Resources Information Center
Parker, Franklin; Parker, Betty J.
This paper reviews the book "The Bell Curve" by Harvard psychologist Richard J. Herrnstein and political scientist Charles Alan Murray. The paper asserts as the book's main points and implications: (1) one's socioeconomic place in life is now determined by IQ rather than family wealth and influence; (2) ruling white elites, who have…
Nonadiabatic transitions at potential curve crossings
Nakamura, Hiroki; Zhu, Chaoyuan
1996-12-31
Recently, the Landau-Zener-Stueckelberg problems have been completely solved in a form convenient for various applications. A summary of the results will be reported. Other related subjects such as multi-level curve crossing and conical intersection problems will also be briefly touched upon.
Residual Structures in Latent Growth Curve Modeling
ERIC Educational Resources Information Center
Grimm, Kevin J.; Widaman, Keith F.
2010-01-01
Several alternatives are available for specifying the residual structure in latent growth curve modeling. Two specifications involve uncorrelated residuals and represent the most commonly used residual structures. The first, building on repeated measures analysis of variance and common specifications in multilevel models, forces residual variances…
Focus on Physics: The Delightful Catenary Curve
ERIC Educational Resources Information Center
Hewitt, Paul G.
2017-01-01
When teaching how "tension" and "compression" relate to geometrical structures such as bridges, arches, and domes, The author shows a picture of the Notre Dame Cathedral in Paris, completed in the 14th century, and presents a lesson on using the curve called a catenary to explain how he teaches about tension and compression…
Modeling and Fitting Exoplanet Transit Light Curves
NASA Astrophysics Data System (ADS)
Millholland, Sarah; Ruch, G. T.
2013-01-01
We present a numerical model along with an original fitting routine for the analysis of transiting extra-solar planet light curves. Our light curve model is unique in several ways from other available transit models, such as the analytic eclipse formulae of Mandel & Agol (2002) and Giménez (2006), the modified Eclipsing Binary Orbit Program (EBOP) model implemented in Southworth’s JKTEBOP code (Popper & Etzel 1981; Southworth et al. 2004), or the transit model developed as a part of the EXOFAST fitting suite (Eastman et al. in prep.). Our model employs Keplerian orbital dynamics about the system’s center of mass to properly account for stellar wobble and orbital eccentricity, uses a unique analytic solution derived from Kepler’s Second Law to calculate the projected distance between the centers of the star and planet, and calculates the effect of limb darkening using a simple technique that is different from the commonly used eclipse formulae. We have also devised a unique Monte Carlo style optimization routine for fitting the light curve model to observed transits. We demonstrate that, while the effect of stellar wobble on transit light curves is generally small, it becomes significant as the planet to stellar mass ratio increases and the semi-major axes of the orbits decrease. We also illustrate the appreciable effects of orbital ellipticity on the light curve and the necessity of accounting for its impacts for accurate modeling. We show that our simple limb darkening calculations are as accurate as the analytic equations of Mandel & Agol (2002). Although our Monte Carlo fitting algorithm is not as mathematically rigorous as the Markov Chain Monte Carlo based algorithms most often used to determine exoplanetary system parameters, we show that it is straightforward and returns reliable results. Finally, we show that analyses performed with our model and optimization routine compare favorably with exoplanet characterizations published by groups such as the
Trend analyses with river sediment rating curves
Warrick, Jonathan A.
2015-01-01
Sediment rating curves, which are fitted relationships between river discharge (Q) and suspended-sediment concentration (C), are commonly used to assess patterns and trends in river water quality. In many of these studies it is assumed that rating curves have a power-law form (i.e., C = aQb, where a and b are fitted parameters). Two fundamental questions about the utility of these techniques are assessed in this paper: (i) How well to the parameters, a and b, characterize trends in the data? (ii) Are trends in rating curves diagnostic of changes to river water or sediment discharge? As noted in previous research, the offset parameter, a, is not an independent variable for most rivers, but rather strongly dependent on b and Q. Here it is shown that a is a poor metric for trends in the vertical offset of a rating curve, and a new parameter, â, as determined by the discharge-normalized power function [C = â (Q/QGM)b], where QGM is the geometric mean of the Q values sampled, provides a better characterization of trends. However, these techniques must be applied carefully, because curvature in the relationship between log(Q) and log(C), which exists for many rivers, can produce false trends in â and b. Also, it is shown that trends in â and b are not uniquely diagnostic of river water or sediment supply conditions. For example, an increase in â can be caused by an increase in sediment supply, a decrease in water supply, or a combination of these conditions. Large changes in water and sediment supplies can occur without any change in the parameters, â and b. Thus, trend analyses using sediment rating curves must include additional assessments of the time-dependent rates and trends of river water, sediment concentrations, and sediment discharge.
Curved bones: An adaptation to habitual loading.
Milne, Nick
2016-10-21
Why are long bones curved? It has long been considered a paradox that many long bones supporting mammalian bodies are curved, since this curvature results in the bone undergoing greater bending, with higher strains and so greater fracture risk under load. This study develops a theoretical model wherein the curvature is a response to bending strains imposed by the requirements of locomotion. In particular the radioulna of obligate quadrupeds is a lever operated by the triceps muscle, and the bending strains induced by the triceps muscle counter the bending resulting from longitudinal loads acting on the curved bone. Indeed the theoretical model reverses this logic and suggests that the curvature is itself a response to the predictable bending strains induced by the triceps muscle. This, in turn, results in anatomical arrangements of bone, muscle and tendon that create a simple physiological mechanism whereby the bone can resist the bending due to the action of triceps in supporting and moving the body. The model is illustrated by contrasting the behaviour of a finite element model of a llama radioulna to that of a straightened version of the same bone. The results show that longitudinal and flexor muscle forces produce bending strains that effectively counter strains due to the pull of the triceps muscle in the curved but not in the straightened model. It is concluded that the curvature of these and other curved bones adds resilience to the skeleton by acting as pre-stressed beams or strainable pre-buckled struts. It is also proposed that the cranial bending strains that result from triceps, acting on the lever that is the radioulna, can explain the development of the curvature of such bones. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Visualizing Nonlinear Narratives with Story Curves.
Kim, Nam Wook; Bach, Benjamin; Im, Hyejin; Schriber, Sasha; Gross, Markus; Pfister, Hanspeter
2017-08-29
In this paper, we present story curves, a visualization technique for exploring and communicating nonlinear narratives in movies. A nonlinear narrative is a storytelling device that portrays events of a story out of chronological order, e.g., in reverse order or going back and forth between past and future events. Many acclaimed movies employ unique narrative patterns which in turn have inspired other movies and contributed to the broader analysis of narrative patterns in movies. However, understanding and communicating nonlinear narratives is a difficult task due to complex temporal disruptions in the order of events as well as no explicit records specifying the actual temporal order of the underlying story. Story curves visualize the nonlinear narrative of a movie by showing the order in which events are told in the movie and comparing them to their actual chronological order, resulting in possibly meandering visual patterns in the curve. We also present Story Explorer, an interactive tool that visualizes a story curve together with complementary information such as characters and settings. Story Explorer further provides a script curation interface that allows users to specify the chronological order of events in movies. We used Story Explorer to analyze 10 popular nonlinear movies and describe the spectrum of narrative patterns that we discovered, including some novel patterns not previously described in the literature. Feedback from experts highlights potential use cases in screenplay writing and analysis, education and film production. A controlled user study shows that users with no expertise are able to understand visual patterns of nonlinear narratives using story curves.
A Novel Representation for Riemannian Analysis of Elastic Curves in ℝn
Joshi, Shantanu H.; Klassen, Eric; Srivastava, Anuj; Jermyn, Ian
2011-01-01
We propose a novel representation of continuous, closed curves in ℝn that is quite efficient for analyzing their shapes. We combine the strengths of two important ideas - elastic shape metric and path-straightening methods -in shape analysis and present a fast algorithm for finding geodesics in shape spaces. The elastic metric allows for optimal matching of features while path-straightening provides geodesics between curves. Efficiency results from the fact that the elastic metric becomes the simple 2 metric in the proposed representation. We present step-by-step algorithms for computing geodesics in this framework, and demonstrate them with 2-D as well as 3-D examples. PMID:21311729
One-Dimensional Projective Structures, Convex Curves and the Ovals of Benguria and Loss
NASA Astrophysics Data System (ADS)
Bernstein, Jacob; Mettler, Thomas
2015-06-01
Benguria and Loss have conjectured that, amongst all smooth closed curves in of length 2 π, the lowest possible eigenvalue of the operator is 1. They observed that this value was achieved on a two-parameter family, , of geometrically distinct ovals containing the round circle and collapsing to a multiplicity-two line segment. We characterize the curves in as absolute minima of two related geometric functionals. We also discuss a connection with projective differential geometry and use it to explain the natural symmetries of all three problems.
NASA Technical Reports Server (NTRS)
1994-01-01
A close-up view of a Space Shuttle Main Engine during a test at the John C. Stennis Space Center shows how the engine is gimballed, or rotated, to evaluate the performance of its components under simulated flight conditions.
A new methodology for free wake analysis using curved vortex elements
NASA Technical Reports Server (NTRS)
Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.
1987-01-01
A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.
Closed loop spray cooling apparatus
NASA Technical Reports Server (NTRS)
Alger, D. L.; Schwab, W. B.; Furman, E. R. (Inventor)
1979-01-01
A closed loop apparatus for jet spraying coolant against the back of a radiation target is described. The coolant is circulated through a closed loop with a bubble of inert gas being maintained around the spray. Mesh material is disposed between the bubble and the surface of the liquid coolant which is below the bubble at a predetermined level. In a second arrangement no inert gas is used, the bubble consists of vapor produced when the coolant is sprayed against the target.
Modal vector estimation for closely spaced frequency modes
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.; Chung, Y. T.; Blair, M.
1982-01-01
Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.
The rotation curve of a point particle in stringy gravity
NASA Astrophysics Data System (ADS)
Ko, Sung Moon; Park, Jeong-Hyuck; Suh, Minwoo
2017-06-01
Double Field Theory suggests to view the whole massless sector of closed strings as the gravitational unity. The fundamental symmetries therein, including the O(D,D) covariance, can determine unambiguously how the Standard Model as well as a relativistic point particle should couple to the closed string massless sector. The theory also refines the notion of singularity. We consider the most general, spherically symmetric, asymptotically flat, static vacuum solution to D=4 Double Field Theory, which contains three free parameters and consequently generalizes the Schwarzschild geometry. Analyzing the circular geodesic of a point particle in string frame, we obtain the orbital velocity as a function of R/(M∞G) which is the dimensionless radial variable normalized by mass. The rotation curve generically features a maximum and thus non-Keplerian over a finite range, while becoming asymptotically Keplerian at infinity, R/(M∞G)→ ∞. The adoption of the string frame rather than Einstein frame is the consequence of the fundamental symmetry principle. Our result opens up a new scheme to solve the dark matter/energy problems by modifying General Relativity at 'short' range of R/(M∞G).
A New Method Based on the F-Curve for Characterizing Fluid Flow in Continuous Casting Tundishes
NASA Astrophysics Data System (ADS)
Li, Dongxia; Cui, Heng; Liu, Yang; Tian, Enhua; Du, Jianxin
2016-04-01
"Combined Model" is often applied to characterize the fluid flow in tundishes. There are different ways to manage the calculation of this model, while the most recently used is introduced by SAHAI and EMI. But this approach may lead to incorrect results in some special cases. In this paper, a new method based on the F-Curve is proposed to analyze the fluid flow in tundishes, and the relationship between E-Curve and F-Curve is concerned. In the end, their application to tundish fluid flow has been outlined. The dead volume calculated by the new method is much close to the results of dye experiment and the numerical simulation.
Radio light curves of V471 Tauri
NASA Technical Reports Server (NTRS)
Patterson, Joseph; Caillault, Jean-Pierre; Skillman, David R.
1993-01-01
We have acquired light curves at a wavelength of 6 cm of the eclipsing binary V471 Tauri around the orbit, in order to determine the geometrical location of the radio emission in the binary. Each light curve shows a broad minimum near the time of optical eclipse, suggesting that the radio luminosity originates between the two stars. Other observations at X-ray, UV, and visual wavelengths are also supportive of the idea of a gas cloud more or less permanently located between the stars. This could be explained if the radio emission arises from the interaction of the magnetic fields of the secondary and the white dwarf near the line of centers.
Measuring Model Rocket Engine Thrust Curves
NASA Astrophysics Data System (ADS)
Penn, Kim; Slaton, William V.
2010-12-01
This paper describes a method and setup to quickly and easily measure a model rocket engine's thrust curve using a computer data logger and force probe. Horst describes using Vernier's LabPro2 and force probe to measure the rocket engine's thrust curve; however, the method of attaching the rocket to the force probe is not discussed. We show how a simple engine holder can be constructed and used with Vernier's LabPro and force probe to record data that students can use to compare to sample data from the rocket manufacturer or the National Association of Rocketry's3 engine certification sheets, calculate total impulse, and make predictions for model rocket launches. PASCO markets a rocket engine test bracket4 that mounts to its PASPORT force sensor for similar measurements. The engine holder described here is very economical, and all the parts can be obtained from a local hardware store or home center.
Free Vibration of Curved Layered Composite Beams
NASA Astrophysics Data System (ADS)
Yavuz, Mustafa; Ergzgüven, M. Ertaç
In practice, fibrous and layered composite beams have periodically and locally curved layers because of the design considerations and manufacturing processes. In this study, the effect of these curvatures and composite material properties to the natural frequencies of the beams is investigated. The periodically curved layered composite material of the considered beam is modelled with the use of the continuum theory proposed by Akbarov and Guz. The free vibration problems are solved by employing the finite element method. Obtained natural frequencies of the beams are presented for the different parameters of the curvature, modulus of elasticity and support condition of the beams. For the case that the ratio of the modulus of elasticity of the layers equals to one and the parameter of the curvature equals to zero, the results converge to natural frequencies of a classical Euler-Bernoulli beam. Results are in good agreement with the literature.
Modeling Light Curves for Improved Classification
NASA Astrophysics Data System (ADS)
Faraway, Julian; Mahabal, Ashish; Sun, Jiayang; Wang, Xiaofeng; Yi; Zhang, Lingsong
2016-02-01
Many synoptic surveys are observing large parts of the sky multiple times. The resulting lightcurves provide a wonderful window to the dynamic nature of the universe. However, there are many significant challenges in analyzing these light curves. These include heterogeneity of the data, irregularly sampled data, missing data, censored data, known but variable measurement errors, and most importantly, the need to classify in astronomical objects in real time using these imperfect light curves. We describe a modeling-based approach using Gaussian process regression for generating critical measures representing features for the classification of such lightcurves. We demonstrate that our approach performs better by comparing it with past methods. Finally, we provide future directions for use in sky-surveys that are getting even bigger by the day.
Tilting train smooths out the curves
O'Connor, L.
1993-02-01
This article describes a Swedish train that leans into curves and speed around them safely at more than 100 miles per hour and is being tested on a tortuous railroad corridor in the Northeast United States. If the test proves successful, the train--the X2000--could become a fixture in the country's rail system. The train has flexible steering that allows the wheels to hug the rail and permits it to drive around turns faster than most other trains, according to Amtrak. Further, all of the train, expect the locomotive, tilts as it winds its way around the curves. The tilting compensates for the centrifugal force on passengers at high speeds. The X2000 is one of several train systems under consideration by railroads in the United States to improve the rail system in the country. Among the others are Germany's Inter-City Express (ICE) and France's Train a Grande Vitesse (TGV), built by GEC Alshthom (Paris).
Light curves of rotating, oscillating neutron stars
NASA Technical Reports Server (NTRS)
Strohmayer, T. E.
1992-01-01
A technique has been developed for computing the light curve produced by a rotating, oscillating neutron star that emits radiation from circular polar cap regions, as are thought to exist in pulsars, X-ray binaries, and perhaps X-ray bursters. Several examples of light curves produced by single, low-order (l = 1, 2) oscillation modes are given. A Gaussian beaming function is used to simulate typical radio pulsar beam widths in order to investigate a neutron star oscillation model for subpulse drift in pulsars. X-ray bursts and X-ray pulsars have also been simulated to assess the possibility of detecting such oscillations in these sources with XTE and AXAF.
Curved contours and the associative response.
Zusne, L
1975-02-01
72 random polygons and their curvilinear transformations were exposed for 3 sec. to 40 subjects who produced written associations during a 10-sec. interval. The number of associations varied, in general, directly with the amount of curved contour as well as with the degree of contour dispersion. The amount of variance accounted for by these two variables was small, however. Differences in curvature produced much greater differences in the content of the associations, greater degrees of curvature evoking more associations that were curved, man-made objects or living things and fewer associations that were straight-edged, man-made objects. A significant and inverse relationship was also established between contour dispersion and associations that were non-living, natural objects. It is concluded that physical form dimensions, especially curvature, affect less the association value (connotative meaning) of visual forms and much more their denotative meaning.
Type-2 fuzzy Bezier curve modeling
NASA Astrophysics Data System (ADS)
Zakaria, Rozaimi; Wahab, Abd Fatah; Gobithaasan, R. U.
2013-04-01
In this paper, the development of type-2 fuzzy set theory (T2FST) in geometric modeling which type-2 fuzzy Bezier curve is discussed. This theory development is the extension from type-1 fuzzy set theory (T1FST) which was adapted in Bezier curve modeling. Point's data that have the complex uncertainty behave is defined based on type-2 fuzzy number (T2FN) concepts which constructed from the T2FST. Then, the alpha-cut operation is applied towards type-2 fuzzy data (T2FD) to obtain an interval fuzzy solution. Also, type-reduction method is discussed, which is used to reduce T2FD to become type-1 fuzzy data (T1FD). Then, the defuzzification process is carried out for finding the crisp fuzzy solution of data points.
Correlation functions on a curved background
NASA Astrophysics Data System (ADS)
Knorr, Benjamin; Lippoldt, Stefan
2017-09-01
We investigate gravitational correlation functions in a curved background with the help of nonperturbative renormalization group methods. Beta functions for eleven couplings are derived, two of which correspond to running gauge parameters. A unique ultraviolet fixed point is found, suitable for a UV completion in the sense of Asymptotic Safety. To arrive at a well-behaved flow in a curved background, the regularization must be chosen carefully. We provide two admissible choices to solve this issue in the present approximation. We further demonstrate by an explicit calculation that the Landau limit is a fixed point also for quantum gravity, and additionally show that in this limit, the gauge parameter β does not flow.
Symmetric algorithms for curves and surfaces
NASA Astrophysics Data System (ADS)
Seidel, Hans-Peter
1990-08-01
Using the concept of synmietric algorithms, we construct a new patch representation for bivariate polynomials: the B-patch. B-patches share many properties with B-spline segments: They are characterized by their control points and by a 3-parameter family of knots. If the knots in each family coincide, we obtain the Bezier representation of a hivariate polynomial over a triangle. Therefore B-patches are a generalization of Bezier patches. B-patches have a de Boor-like evaluation algorithm, and, as in the case of B-spline curves, the control points of a B-patch can be expressed by simpy inserting a sequence of knots into the corresponding polar form. B-patches can be joined smoothly and they have an algorithm for knot insertion that is completely similar to Boehm's algorithm for curves.
Potential Energy Curves of Hydrogen Fluoride
NASA Technical Reports Server (NTRS)
Fallon, Robert J.; Vanderslice, Joseph T.; Mason, Edward A.
1960-01-01
Potential energy curves for the X(sup 1)sigma+ and V(sup 1)sigma+ states of HF and DF have been calculated by the Rydberg-Klein-Rees method. The results calculated from the different sets of data for HF and DF are found to be in very good agreement. The theoretical results of Karo are compared to the experimental results obtained here.
Operators and higher genus mirror curves
NASA Astrophysics Data System (ADS)
Codesido, Santiago; Gu, Jie; Mariño, Marcos
2017-02-01
We perform further tests of the correspondence between spectral theory and topological strings, focusing on mirror curves of genus greater than one with nontrivial mass parameters. In particular, we analyze the geometry relevant to the SU(3) relativistic Toda lattice, and the resolved C{^3}/Z_6 orbifold. Furthermore, we give evidence that the correspondence holds for arbitrary values of the mass parameters, where the quantization problem leads to resonant states. We also explore the relation between this correspondence and cluster integrable systems.
Perfect bell nozzle parametric and optimization curves
NASA Technical Reports Server (NTRS)
Tuttle, J. L.; Blount, D. H.
1983-01-01
Nozzle contour data for untruncated Bell nozzles with expansion area ratios to 6100 and a specific heat ratio of 1.2 are provided. Curves for optimization of nozzles for maximum thrust coefficient within a given length, surface area, or area ratio are included. The nozzles are two dimensional axisymmetric and calculations were performed using the method of characteristics. Drag due to wall friction was included in the final thrust coefficient.
The Astral Curved Disc of Chevroches (France)
NASA Astrophysics Data System (ADS)
Devevey, F. Rousseau, A.
2009-08-01
The excavation of the unexplored secondary agglomeration in Chevroches (Nièvre), from 2001 to 2002, directed by F. Devevey (INRAP), has led to the discovery of an astrological bronze curved disc of a type unknown in the ancient world; it is inscribed with three lines in Greek transcribing Egyptian an Roman months, and the twelve signs of the zodiac. This article presents the first observations.
Generalized duality in curved string backgrounds
NASA Astrophysics Data System (ADS)
Giveon, Amit; Roček, Martin
1992-08-01
The elements of O(d, d, Z) are shown to be discrete symmetries of the space of curved string backgrounds that are independent of d coordinates. The explicit action of the symmetries on the backgrounds is described. Particular attention is paid to the dilaton transformation. Such symmetries identify different cosmological solutions and other (possibly) singular backgrounds; for example, it is shown that a compact black string is dual to a charged black hole. The extension to the heterotic string is discussed.
Delamination Analysis Of Composite Curved Bars
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1990-01-01
Classical anisotropic elasticity theory used to construct "multilayer" composite semicircular curved bar subjected to end forces and end moments. Radial location and intensity of open-mode delamination stress calculated and compared with results obtained from anisotropic continuum theory and from finite element method. Multilayer theory gave more accurate predictions of location and intensity of open-mode delamination stress. Currently being applied to predict open-mode delamination stress concentrations in horse-shoe-shaped composite test coupons.
TS - Dean Interactions in Curved Channel Flow
1990-01-01
4] Finlay, Warren H .; Keller, Joseph B.; and Ferziger , Joel H . 1988: Instability and Tran- sition in Curved Channel Flow, J. Fluid Mech. 194: pp...Erlebacher Contract No. NAS1-18605 January 1990 Institute for Computer Applications in Science and Engineering NASA Langley Research Center Hampton...Hampton, VA 23665 Gordon Erlebacher * Institute for Computer Applications in Science and Engineering NASA Langley Research Center, Hampton, VA 23665 i
Delamination Analysis Of Composite Curved Bars
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1990-01-01
Classical anisotropic elasticity theory used to construct "multilayer" composite semicircular curved bar subjected to end forces and end moments. Radial location and intensity of open-mode delamination stress calculated and compared with results obtained from anisotropic continuum theory and from finite element method. Multilayer theory gave more accurate predictions of location and intensity of open-mode delamination stress. Currently being applied to predict open-mode delamination stress concentrations in horse-shoe-shaped composite test coupons.
Icarus: Stellar binary light curve synthesis tool
NASA Astrophysics Data System (ADS)
Breton, Rene
2016-11-01
Icarus is a stellar binary light curve synthesis tool that generates a star, given some basic binary parameters, by solving the gravitational potential equation, creating a discretized stellar grid, and populating the stellar grid with physical parameters, including temperature and surface gravity. Icarus also evaluates the outcoming flux from the star given an observer's point of view (i.e., orbital phase and orbital orientation).
NASA Astrophysics Data System (ADS)
Tewes, Malte
2015-09-01
PyCS is a software toolbox to estimate time delays between multiple images of strongly lensed quasars, from resolved light curves such as obtained by the COSMOGRAIL monitoring program. The pycs package defines a collection of classes and high level functions, that you can script in a flexible way. PyCS makes it easy to compare different point estimators (including your own) without much code integration. The package heavily depends on numpy, scipy, and matplotlib.
SS433 Trek 2: light curve analysis.
NASA Astrophysics Data System (ADS)
Fukue, J.; Obana, Y.; Okugami, M.
The authors have calculated theoretical light curves of SS433 during eclipse and precession, using a model in which SS433 consists of a geometrically thick torus around a compact star and a companion star filling the Roche lobe. The favorite combination is that the mass ratio is about 2 (a compact star is a black hole) and the surface temperature of the companion is around 17000K.
Science 101: What Makes a Curveball Curve?
ERIC Educational Resources Information Center
Robertson, William C.
2009-01-01
Ah, springtime, and young people's thoughts turn to... baseball, of course. But this column is not about "how" to throw a curveball, so you'll have to look that up on your own. Here, the focus is on the "why" of the curveball. There are two different things that cause a spinning ball to curve. One is known as the "Bernoulli effect" and the other…
Making Internal Molds Of Long, Curved Tubes
NASA Technical Reports Server (NTRS)
Burley, Richard K.
1989-01-01
Mold material carried to internal weld joint and removed after impression taken. Remotely operated device makes impression mold of interior surface of tube at weld joint. Mold provides indication of extent of mismatch between members at joint. Maneuvered to weld inspected through curved tube 3 in. in diameter by 50 in. long. Readily adapted to making molds to measure depth of corrosion in boiler tubes or other pipes.
Analysis of light curve of LP Camelopardalis
NASA Astrophysics Data System (ADS)
Prudil, Z.; Skarka, M.; Zejda, M.
2016-05-01
We present photometric analysis of the RRab type pulsating star LP Cam. The star was observed at Brno Observatory and Planetarium during nine nights. Measurements were calibrated to the Johnson photometric system. Four captured and thirteen previously published maxima timings allowed us to refine the pulsation period and the zero epoch. The light curve was Fourier decomposed to estimate physical parameters using empirical relations. Our results suggest that LP Cam is a common RR Lyrae star with high, almost solar metallicity.
Making Internal Molds Of Long, Curved Tubes
NASA Technical Reports Server (NTRS)
Burley, Richard K.
1989-01-01
Mold material carried to internal weld joint and removed after impression taken. Remotely operated device makes impression mold of interior surface of tube at weld joint. Mold provides indication of extent of mismatch between members at joint. Maneuvered to weld inspected through curved tube 3 in. in diameter by 50 in. long. Readily adapted to making molds to measure depth of corrosion in boiler tubes or other pipes.
Infrared Light Curves of Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Friedman, Andrew Samuel
2012-05-01
This thesis presents the CfAIR2 data set, which includes over 4000 near-Infrared (NIR) JHK8-band measurements of 104 Type Ia Supernovae (SN Ia) observed from 2005-2011 using PAIRITEL, the 1.3-m Peters Automated InfraRed Imaging TELescope at the Fred Lawrence Whipple Observatory (FLWO) on Mount Hopkins, Arizona. While the discovery of dark energy and most subsequent supernova cosmology has been performed using optical and Ultraviolet wavelength observations of SN Ia, a growing body of evidence suggests that NIR SN Ia observations will be crucial for future cosmological studies. Whereas SN Ia observed at optical wavelengths have been shown to be excellent standardizeable candles, using empirical correlations between luminosity, light curve shape, and color, the CfAIR2 data set strengthens the evidence that SN Ia at NIR wavelengths are essentially standard candles, even without correction for light-curve shape or for reddening. CfAIR2 was obtained as part of the CfA Supernova Program, an ongoing multi-wavelength follow-up effort at FLWO designed to observe high-quality, densely sampled light curves and spectra of hundreds of low-redshift SN Ia. CfAIR2 is the largest homogeneously observed and processed NIR data set of its kind to date, nearly tripling the number of individual JHK8-band observations and nearly doubling the set of SN Ia with published NIR light curves in the literature. Matched only by the recently published Carnegie Supernova Project sample, CfAIR2 complements the large and growing set of low-redshift optical and NIR SN Ia observations obtained by the CfA and other programs, making this data set a unique and particularly valuable local universe anchor for future supernova cosmology.
Science 101: What Makes a Curveball Curve?
ERIC Educational Resources Information Center
Robertson, William C.
2009-01-01
Ah, springtime, and young people's thoughts turn to... baseball, of course. But this column is not about "how" to throw a curveball, so you'll have to look that up on your own. Here, the focus is on the "why" of the curveball. There are two different things that cause a spinning ball to curve. One is known as the "Bernoulli effect" and the other…
Least-Squares Curve-Fitting Program
NASA Technical Reports Server (NTRS)
Kantak, Anil V.
1990-01-01
Least Squares Curve Fitting program, AKLSQF, easily and efficiently computes polynomial providing least-squares best fit to uniformly spaced data. Enables user to specify tolerable least-squares error in fit or degree of polynomial. AKLSQF returns polynomial and actual least-squares-fit error incurred in operation. Data supplied to routine either by direct keyboard entry or via file. Written for an IBM PC X/AT or compatible using Microsoft's Quick Basic compiler.
Lower extremity kinematics of athletics curve sprinting.
Alt, Tobias; Heinrich, Kai; Funken, Johannes; Potthast, Wolfgang
2015-01-01
Curve running requires the generation of centripetal force altering the movement pattern in comparison to the straight path run. The question arises which kinematic modulations emerge while bend sprinting at high velocities. It has been suggested that during curve sprints the legs fulfil different functions. A three-dimensional motion analysis (16 high-speed cameras) was conducted to compare the segmental kinematics of the lower extremity during the stance phases of linear and curve sprints (radius: 36.5 m) of six sprinters of national competitive level. Peak joint angles substantially differed in the frontal and transversal plane whereas sagittal plane kinematics remained unchanged. During the prolonged left stance phase (left: 107.5 ms, right: 95.7 ms, straight: 104.4 ms) the maximum values of ankle eversion (left: 12.7°, right: 2.6°, straight: 6.6°), hip adduction (left: 13.8°, right: 5.5°, straight: 8.8°) and hip external rotation (left: 21.6°, right: 12.9°, straight: 16.7°) were significantly higher. The inside leg seemed to stabilise the movement in the frontal plane (eversion-adduction strategy) whereas the outside leg provided and controlled the motion in the horizontal plane (rotation strategy). These results extend the principal understanding of the effects of curve sprinting on lower extremity kinematics. This helps to increase the understanding of nonlinear human bipedal locomotion, which in turn might lead to improvements in athletic performance and injury prevention.
Random Matrix Theory and Elliptic Curves
2014-11-24
related to the intervals of prime numbers. 15. SUBJECT TERMS EOARD, Random Matrix theory, Riemann Hypothesis, Elliptic Curves 16. SECURITY...range of quantities of fundamental importance in number theory. In the cases of the Riemann zeta function and Dirichlet L-functions, this information...investigation using analytic techniques. As an indication of their significance, two of the Clay Millennium Prize Problems, the Riemann Hypothesis and the
The approximation of generalized Log-aesthetic curves using Quintic Bezier curves
NASA Astrophysics Data System (ADS)
Albayari, Diya’ J.; Gobithaasan, R. U.; Miura, Kenjiro T.
2017-09-01
Generalized Log Aesthetic Curve segments (GLAC) are aesthetic curves that have monotonic curvature profile and hence they are considered fair. In the field of Computer-Aided Design (CAD), there exists a demand to construct fair curves for various design intent. However, we cannot implement GLAC in CAD system partly due to its transcendental form. A viable solution is to approximate GLACs using a quintic polynomial curve in the form of Bezier using curvature error measure. The problem of this approach is that it requires a formidable size of computations due to arc length reparametrization. In this paper, we introduce a new method of calculating curvature error measure using natural spline interpolation function to minimize computation effort while preserving the accuracy. The final section shows numerical examples depicting the proposed approximation of two types of the GLAC, which clearly indicate the efficiency of proposed method.
Evaluation of the labor curve in nulliparous Japanese women.
Suzuki, Ritsuko; Horiuchi, Shigeko; Ohtsu, Hiroshi
2010-09-01
We sought to compare Japanese nulliparous labor progression with Friedman's classic 1955 curve and Zhang's 2002 curve. We developed a labor curve using retrospective record reviews of 2369 Japanese nulliparas, at term, spontaneous labor onset and singleton vertex deliveries of normal birth weight infants. The new Japanese Suzuki-Horiuchi labor curve with slower cervical dilation in the active phase was like Zhang's and differed from Friedman's curve. Labor length was approximately 5 hours occurring between 4-10 cm compared with Friedman's 2.5 hours and Zhang's 5.5 hours. Even at 10-cm dilation, labor lasted >2 hours at the 95th percentile of time interval. Similar to Zhang's curve, the Suzuki-Horiuchi curve was smooth and more gradually sloped than Friedman's curve. Appraise "arrested or protracted labor" with these slower labor curves in mind using Friedman's curve cautiously. Copyright 2010 Mosby, Inc. All rights reserved.
Piecewise quartic polynomial curves with a local shape parameter
NASA Astrophysics Data System (ADS)
Han, Xuli
2006-10-01
Piecewise quartic polynomial curves with a local shape parameter are presented in this paper. The given blending function is an extension of the cubic uniform B-splines. The changes of a local shape parameter will only change two curve segments. With the increase of the value of a shape parameter, the curves approach a corresponding control point. The given curves possess satisfying shape-preserving properties. The given curve can also be used to interpolate locally the control points with GC2 continuity. Thus, the given curves unify the representation of the curves for interpolating and approximating the control polygon. As an application, the piecewise polynomial curves can intersect an ellipse at different knot values by choosing the value of the shape parameter. The given curve can approximate an ellipse from the both sides and can then yield a tight envelope for an ellipse. Some computing examples for curve design are given.
Modeling Patterns of Activities using Activity Curves.
Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen
2016-06-01
Pervasive computing offers an unprecedented opportunity to unobtrusively monitor behavior and use the large amount of collected data to perform analysis of activity-based behavioral patterns. In this paper, we introduce the notion of an activity curve, which represents an abstraction of an individual's normal daily routine based on automatically-recognized activities. We propose methods to detect changes in behavioral routines by comparing activity curves and use these changes to analyze the possibility of changes in cognitive or physical health. We demonstrate our model and evaluate our change detection approach using a longitudinal smart home sensor dataset collected from 18 smart homes with older adult residents. Finally, we demonstrate how big data-based pervasive analytics such as activity curve-based change detection can be used to perform functional health assessment. Our evaluation indicates that correlations do exist between behavior and health changes and that these changes can be automatically detected using smart homes, machine learning, and big data-based pervasive analytics.
The biology behind lichenometric dating curves.
Loso, Michael G; Doak, Daniel F
2006-03-01
Lichenometry is used to date late-Holocene terminal moraines that record glacier fluctuations. Traditionally, it relies upon dating curves that relate diameters of the largest lichens in a population to surface ages. Although widely used, the technique remains controversial, in part because lichen biology is poorly understood. We use size-frequency distributions of lichens growing on well-dated surfaces to fit demographic models for Rhizocarpon geographicum and Pseudophebe pubescens, two species commonly used for lichenometry. We show that both species suffer from substantial mortality of 2-3% per year, and grow slowest when young-trends that explain a long-standing contradiction between the literatures of lichenometry and lichen biology. Lichenometrists interpret the shape of typical dating curves to indicate a period of rapid juvenile "great growth," contrary to the growth patterns expected by biologists. With a simulation, we show how the "great growth" pattern can be explained by mortality alone, which ensures that early colonists are rarely found on the oldest surfaces. The consistency of our model predictions with biological theory and observations, and with dozens of lichenometric calibration curves from around the world, suggests opportunities to assess quantitatively the accuracy and utility of this common dating technique.
A learning curve for solar thermal power
NASA Astrophysics Data System (ADS)
Platzer, Werner J.; Dinter, Frank
2016-05-01
Photovoltaics started its success story by predicting the cost degression depending on cumulated installed capacity. This so-called learning curve was published and used for predictions for PV modules first, then predictions of system cost decrease also were developed. This approach is less sensitive to political decisions and changing market situations than predictions on the time axis. Cost degression due to innovation, use of scaling effects, improved project management, standardised procedures including the search for better sites and optimization of project size are learning effects which can only be utilised when projects are developed. Therefore a presentation of CAPEX versus cumulated installed capacity is proposed in order to show the possible future advancement of the technology to politics and market. However from a wide range of publications on cost for CSP it is difficult to derive a learning curve. A logical cost structure for direct and indirect capital expenditure is needed as the basis for further analysis. Using derived reference cost for typical power plant configurations predictions of future cost have been derived. Only on the basis of that cost structure and the learning curve levelised cost of electricity for solar thermal power plants should be calculated for individual projects with different capacity factors in various locations.