Sample records for closed-loop life support

  1. Human life support during interplanetary travel and domicile. III - Mars expedition system trade study

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1991-01-01

    Several alternative configurations of life-support systems (LSSs) for a Mars missions are compared analytically on a quantitative basis in terms of weight, volume, and power. A baseline technology set is utilized for the illustrations of systems including totally open loop, carbon dioxide removal only, partially closed loop, and totally closed loop. The analytical model takes advantage of a modular, top-down hierarchical breakdown of LSS subsystems into functional elements that represent individual processing technologies. The open-loop systems are not competitive in terms of weight for both long-duration orbiters and short-duration lander vehicles, and power demands are lowest with the open loop and highest with the closed loop. The closed-loop system can reduce vehicle weight by over 70,000 lbs and thereby overcome the power penalty of 1600 W; the closed-loop variety is championed as the preferred system for a Mars expedition.

  2. Advanced physical-chemical life support systems research

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.

    1988-01-01

    A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.

  3. Design of biomass management systems and components for closed loop life support systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The goal of the EGM 4000/1 Design class was to investigate a Biomass Management System (BMS) and design, fabricate, and test components for biomass management in a closed-loop life support system (CLLSS). The designs explored were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center. Designs included a sectored plant growth unit, a container and transfer mechanism, and an air curtain system for fugitive particle control. The work performed by the class members is summarized.

  4. Recycling and source reduction for long duration space habitation

    NASA Technical Reports Server (NTRS)

    Hightower, T. M.

    1992-01-01

    A direct mathematical approach has been established for characterizing the performance of closed-loop life support systems. The understanding that this approach gives clearly illustrates the options available for increasing the performance of a life support system by changing various parameters. New terms are defined and utilized, such as Segregation Factor, Resource Recovery Efficiency, Overall Reclamation Efficiency, Resupply Reduction Factor, and Life Support Extension Factor. The effects of increases in expendable system supplies required due to increases in life support system complexity are shown. Minimizing resupply through increased recycling and source reduction is illustrated. The effects of recycling upon resupply launch cost is also shown. Finally, material balance analyses have been performed based on quantity and composition data for both supplies and wastes, to illustrate the use of this approach by comparing ten different closed-loop life support system cases.

  5. ARC-1978-AC78-0330-4

    NASA Image and Video Library

    1978-04-18

    Artist: Rick Guidice Space Colonization regenerative life support systems. This concept from a summer study done in 1977 depicts a closed loop life support system for long duration space settlements or space industrialization.

  6. Space life sciences: Programs and projects

    NASA Technical Reports Server (NTRS)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  7. Space Life Support Engineering Program

    NASA Technical Reports Server (NTRS)

    Seagrave, Richard C.

    1993-01-01

    This report covers the second year of research relating to the development of closed-loop long-term life support systems. Emphasis was directed toward concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis in an effort to begin optimizing the system needed for water purification. Four appendices are attached. The first covers the ASPEN modeling of the closed loop Environmental Control Life Support System (ECLSS) and its thermodynamic analysis. The second is a report on the dynamic model development for water regulation in humans. The third regards the development of an interactive computer-based model for determining exercise limitations. The fourth attachment is an estimate of the second law thermodynamic efficiency of the various units comprising an ECLSS.

  8. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Kwert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2010-01-01

    Exploration Life Support (ELS) is a current project under NASA's Exploration Systems Mission Directorate. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for long duration missions, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and how progress in the development of ELS technologies can help answer them. The ELS Project includes the following Elements: Atmosphere Revitalization Systems, Water Recovery Systems, Waste Management Systems, Habitation Engineering, Systems Integration, Modeling and Analysis, and Validation and Testing, which includes the Sub-Elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize overall mission architectures by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements. Systems analysis will be validated through the data gathered from integrated testing, which will demonstrate the interfaces of a closed loop life support system. By applying a systematic process for defining, sorting and answering critical life support questions, the ELS project is preparing for a variety of future human space missions

  9. Closed-loop Habitation Air Revitalization Model for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1991-01-01

    The primary function of any life support system is to keep the crew alive by providing breathable air, potable water, edible food, and for disposal of waste. In a well-balanced or regenerative life support system, the various components are each using what is available and producing what is needed by other components so that there will always be enough chemicals in the form in which they are needed. Humans are not just users, but also one of the participating parts of the system. If a system could continuously recycle the original chemicals, this would make it virtually a Closed-loop Habitation (CH). Some difficulties in trying to create a miniature version of a CH are briefly discussed. In a miniature CH, a minimal structure must be provided and the difference must be made up by artificial parts such as physicochemical systems that perform the conversions that the Earth can achieve naturally. To study the interactions of these parts, a computer model was designed that simulates a miniature CH with emphasis on the air revitalization part. It is called the Closed-loop Habitation Air Revitalization Model (CHARM).

  10. Approaches to lunar base life support

    NASA Technical Reports Server (NTRS)

    Brown, M. F.; Edeen, M. A.

    1990-01-01

    Various approaches to reliable, low maintenance, low resupply regenerative long-term life support for lunar base application are discussed. The first approach utilizes Space Station Freedom physiochemical systems technology which has closed air and water loops with approximately 99 and 90 percent closure respectively, with minor subsystem changes to the SSF baseline improving the level of water resupply for the water loop. A second approach would be a physiochemical system, including a solid waste processing system and improved air and water loop closure, which would require only food and nitrogen for resupply. A hybrid biological/physiochemical life support system constitutes the third alternative, incorporating some level of food production via plant growth into the life support system. The approaches are described in terms of mass, power, and resupply requirements; and the potential evolution of a small, initial outpost to a large, self-sustaining base is discussed.

  11. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  12. The Physical/Chemical Closed-Loop Life Support Research Project

    NASA Technical Reports Server (NTRS)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  13. Biological Life Support Systems

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session MP2 includes short reports on: (1) Crew Regenerative Life Support in Long Duration Space Missions; (2) Bioconversion Systems for Food and Water on Long Term Space Missions; (3) Novel Laboratory Approaches to Multi-purpose Aquatic Biogenerative Closed-Loop Food Production Systems; and (4) Artificial Neural Network Derived Plant Growth Models.

  14. Regenerative life support system research and concepts

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Life support systems that involve recycling of atmospheres, water, food and waste are so complex that models incorporating all the interactions and relationships are vital to design, development, simulations, and ultimately to control of space qualified systems. During early modeling studies, FORTRAN and BASIC programs were used to obtain numerical comparisons of the performance of different regenerative concepts. Recently, models were made by combining existing capabilities with expert systems to establish an Intelligent Design Support Environment for simpliflying user interfaces and to address the need for the engineering aspects. Progress was also made toward modeling and evaluating the operational aspects of closed loop life support systems using Time-step and Dynamic simulations over a period of time. Example models are presented which show the status and potential of developed modeling techniques. For instance, closed loop systems involving algae systeMs for atmospheric purification and food supply augmentation, plus models employing high plants and solid waste electrolysis are described and results of initial evaluations are presented.

  15. Closure of regenerative life support systems: results of the Lunar-Mars Life Support Test Project

    NASA Astrophysics Data System (ADS)

    Barta, D.; Henninger, D.; Edeen, M.; Lewis, J.; Smith, F.; Verostko, C.

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass reduce dependency on resupply and increase the level of mission self sufficiency Such systems may be based on the integration of biological and physiocochemical processes to produce potable water breathable atmosphere and nutritious food from metabolic and other mission wastes Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration Johnson Space Center to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads Named the Lunar-Mars Life Support Test Project LMLSTP four integrated human tests were conducted with increasing duration complexity and closure The first test LMLSTP Phase I was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere A single crew member spent 15 days within an atmospherically closed chamber containing 11 2 square meters of actively growing wheat Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems During the second and third tests LMLSTP Phases II IIa four crew members spent 30 days and 60 days respectively in a larger sealed chamber Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water

  16. Human Support Technology Research, Development and Demonstration

    NASA Technical Reports Server (NTRS)

    Joshi, Jitendra; Trinh, Eugene

    2004-01-01

    The Human Support Technology research, development, and demonstration program address es the following areas at TRL: Advanced Power and Propulsion. Cryogenic fluid management. Closed-loop life support and Habitability. Extravehicular activity systems. Scientific data collection and analysis. and Planetary in-situ resource utilization.

  17. Space life support engineering program

    NASA Technical Reports Server (NTRS)

    Seagrave, Richard C.

    1991-01-01

    This report covers the first six months of work performed under the NASA University Grant awarded to Iowa State University to perform research on two topics relating to the development of closed-loop long-term life support systems. A comprehensive study to develop software to simulate the dynamic operation of water reclamation systems in long-term closed-loop life support systems is being carried out as part of an overall program for the design of systems for a Mars voyage. This project is being done in parallel with a similar effort in the Department of Chemistry to develop durable accurate low-cost sensors for monitoring of trace chemical and biological species in recycled water supplies. Aspen-Plus software is being used on a group of high-performance workstations to develop the steady state descriptions for a number of existing technologies. Following completion, a dynamic simulation package will be developed for determining the response of such systems to changes in the metabolic needs of the crew and to upsets in system hardware performance.

  18. Advanced life support study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Summary reports on each of the eight tasks undertaken by this contract are given. Discussed here is an evaluation of a Closed Ecological Life Support System (CELSS), including modeling and analysis of Physical/Chemical Closed Loop Life Support (P/C CLLS); the Environmental Control and Life Support Systems (ECLSS) evolution - Intermodule Ventilation study; advanced technologies interface requirements relative to ECLSS; an ECLSS resupply analysis; the ECLSS module addition relocation systems engineering analysis; an ECLSS cost/benefit analysis to identify rack-level interface requirements of the alternate technologies evaluated in the ventilation study, with a comparison of these with the rack level interface requirements for the baseline technologies; advanced instrumentation - technology database enhancement; and a clean room survey and assessment of various ECLSS evaluation options for different growth scenarios.

  19. Insects at low pressure: applications to artificial ecosystems and implications for global windborne distribution

    NASA Technical Reports Server (NTRS)

    Cockell, C.; Catling, D.; Waites, H.

    1999-01-01

    Insects have a number of potential roles in closed-loop life support systems. In this study we examined the tolerance of a range of insect orders and life stages to drops in atmospheric pressure using a terrestrial atmosphere. We found that all insects studied could tolerate pressures down to 100 mb. No effects on insect respiration were noted down to 500 mb. Pressure toleration was not dependent on body volume. Our studies demonstrate that insects are compatible with plants in low-pressure artificial and closed-loop ecosystems. The results also have implications for arthropod colonization and global distribution on Earth.

  20. Human life support during interplanetary travel and domicile. II - Generic Modular Flow Schematic modeling

    NASA Technical Reports Server (NTRS)

    Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.

    1991-01-01

    This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.

  1. An Approach for Hydrogen Recycling in a Closed-loop Life Support Architecture to Increase Oxygen Recovery Beyond State-of-the-Art

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee; Greenwood, Zachary; Alvarez, Giraldo

    2014-01-01

    State-of-the-art atmosphere revitalization life support technology on the International Space Station is theoretically capable of recovering 50% of the oxygen from metabolic carbon dioxide via the Carbon Dioxide Reduction Assembly (CRA). When coupled with a Plasma Pyrolysis Assembly (PPA), oxygen recovery increases dramatically, thus drastically reducing the logistical challenges associated with oxygen resupply. The PPA decomposes methane to predominantly form hydrogen and acetylene. Because of the unstable nature of acetylene, a down-stream separation system is required to remove acetylene from the hydrogen stream before it is recycled to the CRA. A new closed-loop architecture that includes a PPA and downstream Hydrogen Purification Assembly (HyPA) is proposed and discussed. Additionally, initial results of separation material testing are reported.

  2. Clearing the Air: New Approaches to Life Support in Outer Space

    NASA Technical Reports Server (NTRS)

    Knox, J.; Howard, D.

    2008-01-01

    This article reports on research into atmospheric revitalization systems for long-term space travel and the use ofCOMSOL Multiphysics to understand how structured sorbents can be used to improve the performance of adsorption processes via thermal management. We are developing the next generation of atmosphere revitalization systems, which will reach for new levels of resource conservation via a high percentage of loop closure. For example, a high percentage of carbon dioxide, exhaled by crew, can be converted via reaction to drinking water, closing the loop from human metabolic waste to supply. Adsorption processes play a lead role in these new/closed loop systems.

  3. BLSS: A Contribution to Future Life Support

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.

    1985-01-01

    The problem of the supply of basic life supporting ingredients was analyzed. Storage volume and launch weight of water, oxygen and food in a conventional nonregenerable life support system are directly proportional to the crew size and the length of the mission. Because of spacecraft payload limitations this requires that the carbon, or food, recycling loop, the third and final part in the life support system, be closed to further reduce logistics cost. Advanced life support systems need to be developed in which metabolic waste products are regenerated and food is produced. Biological life support systems (BLSS) satisfy the space station environmental control functions and close the food cycle. Numerous scientific space experiments were delineated, the results of which are applicable to the support of BLSS concepts. Requirements and concepts are defined and the feasibility of BLSS for space application are analyzed. The BLSS energy mass relation, and the possibilities to influence it to achieve advantages for the BLSS are determined. A program for the development of BLSS is proposed.

  4. Atmosphere Resource Recovery and Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Howard, David

    2015-01-01

    Atmosphere Resource Recovery and Environmental Monitoring (ARREM) is a project focused on evolving existing and maturing emerging 'closed loop' atmosphere revitalization (AR) life support systems that produce clean, breathable air for crewmembers, and developing a suite of low mass, low power environmental monitors to detect and measure air- and waterborne constituents and contaminants. The objective is to improve reliability and efficiency, reduce mass and volume, and increase recovery of oxygen from carbon dioxide created by human metabolism from 43% to greater than 90%. The technology developments under ARREM are vital to extending human space missions from low-Earth orbit like the International Space Station to destinations deeper into space such as Mars where dependency on Earth for resupply of maintenance items and critical life support elements such as water and oxygen is not possible. The primary goal of the ARREM project is to demonstrate that systems meet the more stringent performance parameters for deep space exploration and are compatible with other systems within closed loop life support through a series of integrated tests performed in an environmental test chamber capable of simulating human metabolic activities and measuring systems outputs.

  5. Design of Sensors for Control of Closed Loop Life Support Systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A brief summary is presented of a Engineering Design sequence, a cooperation between NASA-Kennedy and the University of Florida on the Controlled Environmental Life Support System (CELSS) program. Part of the class was devoted to learning general principles and techniques of design. The next portion of the class was devoted to learning to design, actually fabricating and testing small components and subsystems of a CELSS.

  6. Exploration Life Support Critical Questions for Future Human Space Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Barta, Daniel J.; McQuillan, Jeff

    2009-01-01

    Exploration Life Support (ELS) is a project under NASA s Exploration Technology Development Program. The ELS Project plans, coordinates and implements the development of advanced life support technologies for human exploration missions in space. Recent work has focused on closed loop atmosphere and water systems for a lunar outpost, including habitats and pressurized rovers. But, what are the critical questions facing life support system developers for these and other future human missions? This paper explores those questions and discusses how progress in the development of ELS technologies can help answer them. The ELS Project includes Atmosphere Revitalization Systems (ARS), Water Recovery Systems (WRS), Waste Management Systems (WMS), Habitation Engineering, Systems Integration, Modeling and Analysis (SIMA), and Validation and Testing, which includes the sub-elements Flight Experiments and Integrated Testing. Systems engineering analysis by ELS seeks to optimize the overall mission architecture by considering all the internal and external interfaces of the life support system and the potential for reduction or reuse of commodities. In particular, various sources and sinks of water and oxygen are considered along with the implications on loop closure and the resulting launch mass requirements.

  7. Closed-ecology life support systems /CELSS/ for long-duration, manned missions

    NASA Technical Reports Server (NTRS)

    Modell, M.; Spurlock, J. M.

    1979-01-01

    Studies were conducted to scope the principal areas of technology that can contribute to the development of closed-ecology life support systems (CELSS). Such systems may be required for future space activities, such as space stations, manufacturing facilities, or colonies. A major feature of CELSS is the regeneration of food from carbon in waste materials. Several processes, using biological and/or physico-chemical components, have been postulated for closing the recycle loop. At the present time, limits of available technical information preclude the specification of an optimum scheme. Nevertheless, the most significant technical requirements can be determined by way of an iterative procedure of formulating, evaluating and comparing various closed-system scenario. The functions features and applications of this systems engineering procedure are discussed.

  8. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  9. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    NASA Astrophysics Data System (ADS)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  10. Mathematical Modeling Of Life-Support Systems

    NASA Technical Reports Server (NTRS)

    Seshan, Panchalam K.; Ganapathi, Balasubramanian; Jan, Darrell L.; Ferrall, Joseph F.; Rohatgi, Naresh K.

    1994-01-01

    Generic hierarchical model of life-support system developed to facilitate comparisons of options in design of system. Model represents combinations of interdependent subsystems supporting microbes, plants, fish, and land animals (including humans). Generic model enables rapid configuration of variety of specific life support component models for tradeoff studies culminating in single system design. Enables rapid evaluation of effects of substituting alternate technologies and even entire groups of technologies and subsystems. Used to synthesize and analyze life-support systems ranging from relatively simple, nonregenerative units like aquariums to complex closed-loop systems aboard submarines or spacecraft. Model, called Generic Modular Flow Schematic (GMFS), coded in such chemical-process-simulation languages as Aspen Plus and expressed as three-dimensional spreadsheet.

  11. Integrated Evaluation of Closed Loop Air Revitalization System Components

    NASA Technical Reports Server (NTRS)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  12. A Review: Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    NASA Technical Reports Server (NTRS)

    McCoy, LaShelle E.

    2013-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing. and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and carbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes.

  13. Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems

    NASA Technical Reports Server (NTRS)

    McCoy, LaShelle E.

    2012-01-01

    The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified .. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and cbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes. Issues such as carbon sequestration and subsequent carbon balance of the closed system and identifying ideal process methods to achieve the highest quality products, whilst being energy friendly, will also be addressed.

  14. A closed-loop air revitalization process technology demonstrator

    NASA Astrophysics Data System (ADS)

    Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark

    Demonstrating a sustainable, reliable life support system process design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop air revitalization system process technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, process technologies for capturing metabolic CO2 from air, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these processes either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of process technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a process technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual air revitalization system process design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual process design incorporates low power CO2 removal, process gas drying, and advanced engineered adsorbents being developed by NASA and industry.

  15. Life Support System Technologies for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2007-01-01

    The Lunar Mars Life Support Test series successfully demonstrated integration and operation of advanced technologies for closed-loop life support systems, including physicochemical and biological subsystems. Increased closure was obtained when targeted technologies, such as brine dewatering subsystems, were added to further process life support system byproducts to recover resources. Physicochemical and biological systems can be integrated satisfactorily to achieve desired levels of closure. Imbalances between system components, such as differences in metabolic quotients between human crews and plants, must be addressed. Each subsystem or component that is added to increase closure will likely have added costs, ranging from initial launch mass, power, thermal, crew time, byproducts, etc., that must be factored into break even analysis. Achieving life support system closure while maintaining control of total mass and system complexity will be a challenge.

  16. Simulation of the MELiSSA closed loop system as a tool to define its integration strategy

    NASA Astrophysics Data System (ADS)

    Poughon, Laurent; Farges, Berangere; Dussap, Claude-Gilles; Godia, Francesc; Lasseur, Christophe

    Inspired from a terrestrial ecosystem, MELiSSA (Micro Ecological Life Support System Alternative) is a project of closed life support system future long-term manned missions (Moon and Mars bases). Started on ESA in 1989, this 5 compartments concept has evolved following a mechanistic engineering approach for acquiring both theoretical and technical knowledge. In its current state of development the project can now start to demonstrate the MELiSSA loop concept at a pilot scale. Thus an integration strategy for a MELiSSA Pilot Plant (MPP) was defined, describing the different phases for tests and connections between compartments. The integration steps should be started in 2008 and be completed with a complete operational loop in 2015, which final objective is to achieve a closed liquid and gas loop with 100 Although the integration logic could start with the most advanced processes in terms of knowledge and hardware development, this logic needs to be completed by high politic of simulation. Thanks to this simulation exercise, the effective demonstrations of each independent process and its progressive coupling with others will be performed in operational conditions as close as possible to the final configuration. The theoretical approach described in this paper is based on mass balance models of each of the MELiSSA biological compartments which are used to simulate each integration step and the complete MPP loop itself. These simulations will help to identify criticalities of each integration steps and to check the consistencies between objectives, flows, recycling efficiencies and sizing of the pilot reactors. A MPP scenario compatible with the current knowledge of the operation of the pilot reactors was investigated and the theoretical performances of the system compared to the objectives of the MPP. From this scenario the most important milestone steps in the integration are highlighted and their behaviour can be simulated.

  17. Design and implementation of sensor systems for control of a closed-loop life support system

    NASA Technical Reports Server (NTRS)

    Alnwick, Leslie; Clark, Amy; Debs, Patricia; Franczek, Chris; Good, Tom; Rodrigues, Pedro

    1989-01-01

    The sensing and controlling needs for a Closed-Loop Life Support System (CLLSS) were investigated. The sensing needs were identified in five particular areas and the requirements were defined for workable sensors. The specific areas of interest were atmosphere and temperature, nutrient delivery, plant health, plant propagation and support, and solids processing. The investigation of atmosphere and temperature control focused on the temperature distribution within the growth chamber as well as the possibility for sensing other parameters such as gas concentration, pressure, and humidity. The sensing needs were studied for monitoring the solution level in a porous membrane material along with the requirements for measuring the mass flow rate in the delivery system. The causes and symptoms of plant disease were examined and the various techniques for sensing these health indicators were explored. The study of sensing needs for plant propagation and support focused on monitoring seed viability and measuring seed moisture content as well as defining the requirements for drying and storing the seeds. The areas of harvesting, food processing, and resource recycling, were covered with a main focus on the sensing possibilities for regulating the recycling process.

  18. Life Support Requirements and Challenges for NASA's Constellation Program

    NASA Technical Reports Server (NTRS)

    Carasquillo, Robyn

    2007-01-01

    NASA's Constellation Program, which includes the mission objectives of establishing a permanently-manned lunar Outpost, and the exploration of Mars, poses new and unique challenges for human life support systems that will require solutions beyond the Shuttle and International Space Station state of the art systems. In particular, the requirement to support crews for 210 days duration at the lunar outpost with limited resource resupply capability wilt require closed-loop regenerative life support systems with minimal expendables. Planetary environmental conditions such as lunar dust and extreme temperatures, as well as the capability to support frequent and extended-duration EVA's will be particularly challenging. This presentation will summarize the key program and mission life support requirements for the Constellation Program and the unique challenges they present for technology and architecture development.

  19. A closed life-support system for space colonies

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.; Jebens, H. J.; Sweet, H. C.

    1977-01-01

    In 1975, a system design study was performed to examine a completely self-contained system for a permanent colony of 10,000 inhabitants in space. Fundamental to this design was the life support system. Since resupply from earth is prohibitive in transportation costs, it was decided to use a closed system with the initial supply of oxygen coming from processing of lunar ores, and the supply of carbon, nitrogen and hydrogen from earth. The problem of life support was treated starting with the nutritional and metabolic requirements for the human population, creating a food and water chain sufficient to supply these demands, adding the additional requirements for the animal and plant sources in the food chain, feeding back useful waste products, supplying water as required from different sources, and closing the loop by processing organic wastes into CO2. This concept places the burden of the system upon plants for O2 generation and waste processing the CO2 generation.

  20. Extraction of mineral elements from inedible wastes of biological components of a life-support system and their utilization for plant nutrition

    NASA Astrophysics Data System (ADS)

    Gribovskaya, I. V.; Gladchenko, I. A.; Zinenko, G. K.

    Two methods of extracting mineral elements from otherwise deadlock products of a life-support system are presented. We describe first optimum conditions for recovering elements by water extraction from dry wastes of plants, biomass ash, and solid human wastes after passing them through the catalytic furnace; and, second, we describe acid extracts of biogenous elements by 1N and 2N HNO_3 from these products. Ways to use the extracts of elements in plant nutrition are considered in order to increase the extent to which the mineral loop of a life-support system can be closed.

  1. Design of biomass management systems and components for closed loop life support systems

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1991-01-01

    The design of a biomass management system (BMS) for use in a closed loop support system is presented by University of Florida students as the culmination of two design courses. The report is divided into two appendixes, each presenting the results of one of the design courses. The first appendix discusses the preliminary design of the biomass management system and is subdivided into five subsystems: (1) planting and harvesting, (2) food management, (3) resource recovery, (4) refurbishing, and (5) transport. Each subsystem is investigated for possible solutions to problems, and recommendations and conclusions for an integrated BMS are discussed. The second appendix discusses the specific design of components for the BMS and is divided into three sections: (1) a sectored plant growth unit with support systems, (2) a container and receiving mechanism, and (3) an air curtain system for fugitive particle control. In this section components are designed, fabricated, and tested.

  2. Waste streams in a crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Golub, M. A.

    1991-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  3. The possibility of aromorphosis in further development of closed human life support systems using genetically modified organisms

    NASA Astrophysics Data System (ADS)

    Gitelson, Josef

    Creation of closed systems that would be able to support human life outside the biosphere for extended periods of time (CES) was started after humans went into outer space. The last fifty years have seen the construction of experimental variants of the CES in Russia, USA, and Japan. The "MELISSA" project of the European Space Agency is being prepared to be launched. Much success has been achieved in closing material loops in the CES. An obstacle to constructing a fully closed ecosystem is significant imbalance in material exchange between the producing components and the decomposing ones in the CES. The spectrum of metabolites released by humans does not fully correspond to the requirements of the main producer of the CES -plants. However, this imbalance can be corrected by rather simple physicochemical processes that can be used in the CES without unclosing the system. The major disagreement that prevents further improvement of human life support systems (LSS) is that the spectrum of products of photosynthesis in the CES does not correspond to human food requirements qual-itatively, quantitatively, or in terms of diversity. In the normal, physiologically sound, human diet, this discrepancy is resolved by adding animal products. However, there are technical, technological, and hygienic obstacles to including animals in the closed human life support systems, and if higher animals are considered, there are also ethical arguments. If between the photoautotrophic link, plants, and the heterotrophic link, the human, there were one more heterotrophic link, farm animals, the energy requirements of the system would be increased by nearly an order of magnitude, decreasing its efficiency and making it heavier and bulkier. Is there another way to close loops in human life support systems? In biology, such "findings" of evolution, which open up new perspectives and offer ample opportunities for possible adapta-tions, are termed aromorphoses (Schmalhausen, 1948). In further evolution of the CES, the use of the advantages offered by genetically modified organisms produced by modern biotechnology can be regarded as aromorphosis. If the genetic program of biosyntheses performed by plants in-cludes the new genes that will program the synthesis of all molecules necessary for humans, the plants, both unicellular and higher, will produce the whole range of food substances perfectly corresponding to the requirements of the human body. This is a long way, but the investment of resources and time will be justified not only by the creation of an LSS for long-distance space missions and colonization of planets that will contain as many closed loops as possible and be energy efficient. This will also be a convenient and safest instrument to study and justify the wide use of products of genetically modified plants on Earth. Today, humanity is extremely wary of this idea because of its novelty. As experimental human life support ecosystems are closed systems, they provide the most reliable and safest instrument for studying issues related to GMO and preparing scientifically based suggestions for their practical use. The report will contain data on the spectra of mismatches between vegetable foods produced in BIOS-3 and human requirements, and the objectives of correcting the biosynthesis programs in the CES.

  4. A Model for Developing Clinical Analytics Capacity: Closing the Loops on Outcomes to Optimize Quality.

    PubMed

    Eggert, Corinne; Moselle, Kenneth; Protti, Denis; Sanders, Dale

    2017-01-01

    Closed Loop Analytics© is receiving growing interest in healthcare as a term referring to information technology, local data and clinical analytics working together to generate evidence for improvement. The Closed Loop Analytics model consists of three loops corresponding to the decision-making levels of an organization and the associated data within each loop - Patients, Protocols, and Populations. The authors propose that each of these levels should utilize the same ecosystem of electronic health record (EHR) and enterprise data warehouse (EDW) enabled data, in a closed-loop fashion, with that data being repackaged and delivered to suit the analytic and decision support needs of each level, in support of better outcomes.

  5. Closing the Loop on Critical Care Life Support for Military en route Care Environments

    DTIC Science & Technology

    2004-09-01

    pig’s blood volume. Resuscitation was then initiated by turning on the autocontrol software which ran on an external computer which was receiving mean...that initiated the occlusion alarm. When the occlusion was released, the autocontrol resumed automatically and restored the blood pressure once again

  6. CO2 Removal and Atmosphere Revitalization Systems for Next Generation Space Flight

    NASA Technical Reports Server (NTRS)

    Luna, Bernadette; Mulloth, Lila M.; Varghese, Mini M.; Hogan, John Andrew

    2010-01-01

    Removal of metabolic CO2 from breathing air is a vital process for life support in all crewed space missions. A CO2 removal processor called the Low Power CO2 Removal (LPCOR) system is being developed in the Bioengineering Branch at NASA Ames Research Center. LPCOR utilizes advanced adsorption and membrane gas separation processes to achieve substantial power and mass reduction when compared to the state-of-the-art carbon dioxide removal assembly (CORA) of the US segment of the International Space Station (ISS). LPCOR is an attractive alternative for use in commercial spacecraft for short-duration missions and can easily be adapted for closed-loop life support applications. NASA envisions a next-generation closed-loop atmosphere revitalization system that integrates advanced CO2 removal, O2 recovery, and trace contaminant control processes to improve overall system efficiency. LPCOR will serve as the front end to such a system. LPCOR is a reliable air revitalization technology that can serve both the near-term and long-term human space flight needs of NASA and its commercial partners.

  7. Generation rates and chemical compositions of waste streams in a typical crewed space habitat

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore; Golub, Morton A.

    1990-01-01

    A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.

  8. The development of the MELiSSA Pilot Plant Facility

    NASA Astrophysics Data System (ADS)

    Godia, Francesc; Dussap, Claude-Gilles; Dixon, Mike; Peiro, Enrique; Fossen, Arnaud; Lamaze, Brigitte; Brunet, Jean; Demey, Dries; Mas-Albaigès, Joan L.

    MELiSSA (Micro-Ecological Life Support System Alternative) is a closed artificial ecosystem intended as a tool for the development of a bio-regenerative life support system for longterm manned missions. The MELiSSA loop is formed by five interconnected compartments, organized in three different loops (solid, liquid and gas). This compartments are microbial bioreactors and higher plant chambers. The MELiSSA Pilot Plant facility has been designed to achieve the preliminary terrestrial demonstration of the MELiSSA concept at pilot scale, using animals as a model for the crew compartent. The experience gained in the operation of such a facility will be highly relevant for planning future life support systems in Space. In this communication, the latests developments in the MELiSSA Pilot Plant will be reported. Particularly, the completion of the design phase and instalation of all the different compartments will be discussed in detail. Each of the compartments had to be designed and constructed according to very specific characteristics, associated to the biological systems to be cultured, as part of the complete MELiSSA loop (anerobic, oxygenic, thermophilic, heterotrophic, autotrophic, axenic, photosynthetic, etc.). Additionally, the sizing of each reactor (ranging from 8 to 100 Liters, depending of each particular compartment) should compile with the global integration scenario proposed, and with the final goal of connection of all compartments to provide a demonstration of the MELiSSA concept, and generate data for the design and operation of future biological life support systems.

  9. Development and Testing of a Temperature-swing Adsorption Compressor for Carbon Dioxide in Closed-loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Wang, Yuan

    2005-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby dosing the air-loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low- pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. This paper discusses the design and testing of a TSAC for carbon dioxide that has application in the ISS and future spacecraft for closing the air revitalization loop.

  10. Preliminary approach of the MELiSSA loop energy balance

    NASA Astrophysics Data System (ADS)

    Poulet, Lucie; Lamaze, Brigitte; Lebrun, Jean

    Long duration missions, such as the establishment of permanent bases on the lunar surface or the travel to Mars, require a huge amount of life support consumables (e.g. food, water and oxygen). Current rockets are at the moment unable to launch such a mass from Earth. Consequently Regenerative Life Support Systems are necessary to sustain long-term manned space mission to increase recycling rates and so reduce the launched mass. Thus the European and Canadian research has been concentrating on the MELiSSA (Micro-Ecological Life Support System Alternative) project over the last 20 years. MELiSSA is an Environmental Controlled Life Support System (ECLSS), i.e. a closed regenerative loop inspired of a lake ecosystem. Using light as a source of energy, MELiSSA's goal is the recovery of food, water and oxygen from CO2 and organic wastes, using microorganisms and higher plants. The architecture of a ECLSS depends widely on the mission scenario. To compare several ECLSS architectures and in order to be able to evaluate them, ESA is developing a multi criteria evaluation tool: ALISSE (Advanced LIfe Support System Evaluator). One of these criteria is the energy needed to operate the ECLSS. Unlike other criteria like the physical mass, the energy criterion has not been investigated yet and needs hence a detailed analysis. It will consequently be the focus of this study. The main objective of the work presented here is to develop a dynamic tool able to estimate the energy balance for several configurations of the MELiSSA loop. The first step consists in establishing the energy balance using concrete figures from the MELiSSA Pilot Plant (MPP). This facility located at the Universitat Autonoma de Barcelona (UAB) is aimed at the ground demonstration of the MELiSSA loop. The MELiSSA loop is structured on several subsystems; each of them is characterized by supplies, exhausts and process reactions. For the purpose of this study (i.e. a generic tool) the solver EES (Engineering Equation Solver) is used. As a result, several configurations of the MELiSSA loop are studied. The main issues in terms of energy costs are identified and in the meantime improvement opportunities, i.e. reduction of energy consumption, are diagnosed.

  11. Environmental Control and Life Support System (ECLSS) System Engineering Workshop

    NASA Technical Reports Server (NTRS)

    Peterson, Laurie J.

    2009-01-01

    This slide presentation begins with a recap on a previous lecture on the ECLSS subsystems, and the various types (i.e., Non-regenerative vs Regenerative, open loop vs closed loop, and physical-chemical vs bioregenerative) It also recaps the Equivalent system mass (ESM) metric. The presentation continues with a review of the ECLSS of the various NASA manned space exploration programs from Mercury, to the current planned Altair lunar landing, and Lunar base operations. There is also a team project to establish the ESM of two conceptualized missions.

  12. Adaptive support ventilation: State of the art review

    PubMed Central

    Fernández, Jaime; Miguelena, Dayra; Mulett, Hernando; Godoy, Javier; Martinón-Torres, Federico

    2013-01-01

    Mechanical ventilation is one of the most commonly applied interventions in intensive care units. Despite its life-saving role, it can be a risky procedure for the patient if not applied appropriately. To decrease risks, new ventilator modes continue to be developed in an attempt to improve patient outcomes. Advances in ventilator modes include closed-loop systems that facilitate ventilator manipulation of variables based on measured respiratory parameters. Adaptive support ventilation (ASV) is a positive pressure mode of mechanical ventilation that is closed-loop controlled, and automatically adjust based on the patient's requirements. In order to deliver safe and appropriate patient care, clinicians need to achieve a thorough understanding of this mode, including its effects on underlying respiratory mechanics. This article will discuss ASV while emphasizing appropriate ventilator settings, their advantages and disadvantages, their particular effects on oxygenation and ventilation, and the monitoring priorities for clinicians. PMID:23833471

  13. Space Life Support Technology Applications to Terrestrial Environmental Problems

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Sleeper, Howard L.

    1993-01-01

    Many of the problems now facing the human race on Earth are, in fact, life support issues. Decline of air Quality as a result of industrial and automotive emissions, pollution of ground water by organic pesticides or solvents, and the disposal of solid wastes are all examples of environmental problems that we must solve to sustain human life. The technologies currently under development to solve the problems of supporting human life for advanced space missions are extraordinarily synergistic with these environmental problems. The development of these technologies (including both physicochemical and bioregenerative types) is increasingly focused on closing the life support loop by removing and recycling contaminants and wastes to produce the materials necessary to sustain human life. By so doing, this technology development effort also focuses automatically on reducing resupply logistics requirements and increasing crew safety through increased self-sufficiency. This paper describes several technologies that have been developed to support human life in space and illustrates the applicability of the technologies to environmental problems including environmental remediation and pollution prevention.

  14. Long-Duration Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Rosen, Micha; Mulloth, Lila; Varghese, Mini

    2005-01-01

    This paper describes the results of long-duration testing of a temperature-swing adsorption compressor that has application in the International Space Station (ISS) and future spacecraft for closing the air revitalization loop. The air revitalization system of the ISS operates in an open loop mode and relies on the resupply of oxygen and other consumables from Earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. The TSAC was developed and its operation was successfully verified in integration tests with the flight-like Carbon Dioxide Removal Assembly (CDRA) at Marshall Space Flight Center prior to the long-duration tests. Long-duration tests reveal the impacts of repeated thermal cycling on the compressor components and the adsorbent material.

  15. Human life support during interplanetary travel and domicile. IV - Mars expedition technology trade study

    NASA Technical Reports Server (NTRS)

    Rohatgi, Naresh K.; Ferrall, Joseph F.; Seshan, P. K.

    1991-01-01

    Results of trading processing technologies in a closed-loop configuration, in terms of power and weight for the Mars Expedition Mission, are presented. The technologies were traded and compared to a baseline set for functional elements that include CO2 removal, H2O electrolysis, potable H2O cleanup, and hygiene H2O cleanup. These technologies were selected from those being considered for Space Station Freedom and represent only chemical/physical technologies. Attention is given to the technology trade calculation scheme, technology data and selection, the generic modular flow schematic, and life support system specifications.

  16. [Design of medical devices management system supporting full life-cycle process management].

    PubMed

    Su, Peng; Zhong, Jianping

    2014-03-01

    Based on the analysis of the present status of medical devices management, this paper optimized management process, developed a medical devices management system with Web technologies. With information technology to dynamic master the use of state of the entire life-cycle of medical devices. Through the closed-loop management with pre-event budget, mid-event control and after-event analysis, improved the delicacy management level of medical devices, optimized asset allocation, promoted positive operation of devices.

  17. A Tale of Two Chambers: Iterative Approaches and Lessons Learned from Life Support Systems Testing in Altitude Chambers

    NASA Technical Reports Server (NTRS)

    Callini, Gianluca

    2016-01-01

    The drive for the journey to Mars is in a higher gear than ever before. We are developing new spacecraft and life support systems to take humans to the Red Planet. The journey that development hardware takes before its final incarnation in a fully integrated spacecraft can take years, as is the case for the Orion environmental control and life support system (ECLSS). Through the Pressure Integrated Suit Test (PIST) series, NASA personnel at Johnson Space Center have been characterizing the behavior of a closed loop ECLSS in the event of cabin depressurization. This kind of testing - one of the most hazardous activities performed at JSC - requires an iterative approach, increasing in complexity and hazards). The PIST series, conducted in the Crew and Thermal Systems Division (CTSD) 11-ft Chamber, started with unmanned test precursors before moving to a human-in-the-loop phase, and continues to evolve with the eventual goal of a qualification test for the final system that will be installed on Orion. Meanwhile, the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) program is an effort to research and develop technologies that will work in concert to support habitation on Mars. September 2015 marked the first unmanned HESTIA test, with the goal of characterizing how ECLSS technologies work together in a closed environment. HESTIA will culminate in crewed testing, but it can benefit from the lessons learned from another test that is farther ahead in its development and life cycle. Discussing PIST and HESTIA, this paper illustrates how we approach testing, the kind of information that facility teams need to ensure efficient collaborations and successful testing, and how we can apply what we learn to execute future tests.

  18. Review article: closed-loop systems in anesthesia: is there a potential for closed-loop fluid management and hemodynamic optimization?

    PubMed

    Rinehart, Joseph; Liu, Ngai; Alexander, Brenton; Cannesson, Maxime

    2012-01-01

    Closed-loop (automated) controllers are encountered in all aspects of modern life in applications ranging from air-conditioning to spaceflight. Although these systems are virtually ubiquitous, they are infrequently used in anesthesiology because of the complexity of physiologic systems and the difficulty in obtaining reliable and valid feedback data from the patient. Despite these challenges, closed-loop systems are being increasingly studied and improved for medical use. Two recent developments have made fluid administration a candidate for closed-loop control. First, the further description and development of dynamic predictors of fluid responsiveness provides a strong parameter for use as a control variable to guide fluid administration. Second, rapid advances in noninvasive monitoring of cardiac output and other hemodynamic variables make goal-directed therapy applicable for a wide range of patients in a variety of clinical care settings. In this article, we review the history of closed-loop controllers in clinical care, discuss the current understanding and limitations of the dynamic predictors of fluid responsiveness, and examine how these variables might be incorporated into a closed-loop fluid administration system.

  19. Closing the Loop Sampler.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…

  20. Potential and benefits of closed loop ECLS systems on the ISS.

    PubMed

    Raatschen, W; Preiss, H

    2001-01-01

    To close open loops for long manned missions in space is a big challenge for aeronautic engineers throughout the world. The paper's focus is on the oxygen reclamation from carbon dioxide within a space habitat. A brief description of the function principle of a fixed alkaline electrolyzer, a solid amine carbon dioxide concentrator and a Sabatier reactor is given. By combining these devices to an air revitalization system the technical and economical benefits are explained. Astrium's Air Revitalization System (ARES) as a potential future part of the International Space Station's Environmental Control and Life Support System would close the oxygen loop. The amount of oxygen, needed for an ISS crew of seven astronauts could be provided by ARES. The upload of almost 1500 kg of water annually for oxygen generation through the onboard electrolyzer would be reduced by more than 1000 kg, resulting in savings of more than 30M$ per year. Additionally, the payload capacity of supply flights would be increased by this amount of mass. Further possibilities are addressed to combine ECLS mass flows with those of the power, propulsion and attitude control systems. Such closed loop approaches will contribute to ease long time missions (e. g. Mars, Moon) from a cost and logistic point of view. The hardware realization of Astrium's space-sized operating ARES is shown and test results of continuous and intermittent closed chamber tests are presented. c2001 Astrium GmbH. Published by Elsevier Science Ltd.

  1. Challenges for Life Support Systems in Space Environments, Including Food Production

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2012-01-01

    Environmental Control and Life Support Systems (ECLSS) refer to the technologies needed to sustain human life in space environments. Histor ically these technologies have focused on providing a breathable atmo sphere, clean water, food, managing wastes, and the associated monitoring capabilities. Depending on the space agency or program, ELCSS has sometimes expanded to include other aspects of managing space enviro nments, such as thermal control, radiation protection, fire detection I suppression, and habitat design. Other times, testing and providing these latter technologies have been associated with the vehicle engi neering. The choice of ECLSS technologies is typically driven by the mission profile and their associated costs and reliabilities. These co sts are largely defined by the mass, volume, power, and crew time req uirements. For missions close to Earth, e.g., low-Earth orbit flights, stowage and resupply of food, some 0 2, and some water are often the most cost effective option. But as missions venture further into spa ce, e.g., transit missions to Mars or asteroids, or surface missions to Moon or Mars, the supply line economics change and the need to clos e the loop on life support consumables increases. These are often ref erred to as closed loop or regenerative life support systems. Regardless of the technologies, the systems must be capable of operating in a space environment, which could include micro to fractional g setting s, high radiation levels, and tightly closed atmospheres, including perhaps reduced cabin pressures. Food production using photosynthetic o rganisms such as plants by nature also provides atmospheric regenerat ion (e.g., CO2 removal and reduction, and 0 2 production), yet to date such "bioregenerative" technologies have not been used due largely t o the high power requirements for lighting. A likely first step in te sting bioregenerative capabilities will involve production of small a mounts of fresh foods to supplement to crew's diet. As humans venture further into space, regenerative life support technologies will becom e more important, and gathering accurate data on their performance an d reliabilities will require long lead times. As we learn more about sustainable living in space, we almost certainly learn more about sust ainable living on Earth.

  2. Perception as a closed-loop convergence process

    PubMed Central

    Ahissar, Ehud; Assa, Eldad

    2016-01-01

    Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception. DOI: http://dx.doi.org/10.7554/eLife.12830.001 PMID:27159238

  3. Virtual grasping: closed-loop force control using electrotactile feedback.

    PubMed

    Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario

    2014-01-01

    Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.

  4. BLSS: a contribution to future life support.

    PubMed

    Skoog, A I

    1984-01-01

    For extended duration missions in space the supply of basic life-supporting ingredients represents a formidable logistics problem. Storage volume and launch weight of water, oxygen and food in a conventional non-regenerable life support system are directly proportional to the crew size and the length of the mission. In view of spacecraft payload limitations this will require that the carbon, or food, recycling loop, the third and final part in the life support system, be closed to further reduce logistics cost. This will be practical only if advanced life support systems can be developed in which metabolic waste products are regenerated and food is produced. Biological Life Support Systems (BLSS) satisfy the space station environmental control functions and close the food cycle. A Biological Life Support System has to be a balanced ecological system, biotechnical in nature and consisting of some combination of human beings, animals, plants and microorganisms integrated with mechanical and physico-chemical hardware. Numerous scientific space experiments have been delineated in recent years, the results of which are applicable to the support of BLSS concepts. Furthermore ecological life support systems have become subject to intensified studies and experiments both in the U.S. and the U.S.S.R. The Japanese have also conducted detailed preliminary studies. Dornier System has in recent years undertaken an effort to define requirements and concepts and to analyse the feasibility of BLSS for space applications. Analyses of the BLSS energy-mass relation have been performed, and the possibilities to influence it to achieve advantages for the BLSS (compared with physico-chemical systems) have been determined. The major problem areas which need immediate attention have been defined, and a programme for the development of BLSS has been proposed.

  5. Biological life support systems for a Mars mission planetary base: Problems and prospects

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Kovaleva, N. P.; Lamaze, B.; Lobo, M.; Lasseur, Ch.

    The study develops approaches to designing biological life support systems for the Mars mission - for the flight conditions and for a planetary base - using experience of the Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences (IBP SB RAS) with the Bios-3 system and ESA's experience with the MELISSA program. Variants of a BLSS based on using Chlorella and/or Spirulina and higher plants for the flight period of the Mars mission are analyzed. It is proposed constructing a BLSS with a closed-loop material cycle for gas and water and for part of human waste. A higher-plant-based BLSS with the mass exchange loop closed to various degrees is proposed for a Mars planetary base. Various versions of BLSS configuration and degree of closure of mass exchange are considered, depending on the duration of the Mars mission, the diet of the crew, and some other conditions. Special consideration is given to problems of reliability and sustainability of material cycling in BLSS, which are related to production of additional oxygen inside the system. Technologies of constructing BLSS of various configurations are proposed and substantiated. Reasons are given for using physicochemical methods in BLSS as secondary tools both during the flight and the stay on Mars.

  6. The Martian and extraterrestrial UV radiation environment--1. Biological and closed-loop ecosystem considerations.

    PubMed

    Cockell, C S; Andrady, A L

    1999-01-01

    The Martian surface is exposed to both UVC radiation (<280 nm) and higher doses of UVB (280-315 nm) compared to the surface of the Earth. Terrestrial organisms have not evolved to cope with such high levels of UVC and UVB and thus any attempts to introduce organisms to Mars, particularly in closed-loop life support systems that use ambient sunlight, must address this problem. Here we examine the UV radiation environment of Mars with respect to biological systems. Action spectra and UV surface fluxes are used to estimate the UV stress that both DNA and chloroplasts would experience. From this vantage point it is possible to consider appropriate measures to address the problem of the Martian UV environment for future long term human exploration and settlement strategies. Some prospects for improving the UV tolerance of organisms are also discussed. Existing artificial ecosystems such as Biosphere 2 can provide some insights into design strategies pertinent to high UV environments. Some prospects for improving the UV tolerance of organisms are also discussed. The data also have implications for the establishment of closed-loop ecosystems using natural sunlight on the lunar surface and elsewhere in the Solar System.

  7. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    NASA Astrophysics Data System (ADS)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  8. The Utilization of Urine Processing for the Advancement of Life Support Technologies

    NASA Technical Reports Server (NTRS)

    Grossi-Soyster, Elysse; Hogan, John; Flynn, Michael

    2014-01-01

    The success of long-duration missions will depend on resource recovery and the self-sustainability of life support technologies. Current technologies used on the International Space Station (ISS) utilize chemical and mechanical processes, such as filtration, to recover potable water from urine produced by crewmembers. Such technologies have significantly reduced the need for water resupply through closed-loop resource recovery and recycling. Harvesting the important components of urine requires selectivity, whether through the use of membranes or other physical barriers, or by chemical or biological processes. Given the chemical composition of urine, the downstream benefits of urine processing for resource recovery will be critical for many aspects of life support, such as food production and the synthesis of biofuels. This paper discusses the beneficial components of urine and their potential applications, and the challenges associated with using urine for nutrient recycling for space application.

  9. Systems analysis of a closed loop ECLSS using the ASPEN simulation tool. Thermodynamic efficiency analysis of ECLSS components. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chatterjee, Sharmista

    1993-01-01

    Our first goal in this project was to perform a systems analysis of a closed loop Environmental Control Life Support System (ECLSS). This pertains to the development of a model of an existing real system from which to assess the state or performance of the existing system. Systems analysis is applied to conceptual models obtained from a system design effort. For our modelling purposes we used a simulator tool called ASPEN (Advanced System for Process Engineering). Our second goal was to evaluate the thermodynamic efficiency of the different components comprising an ECLSS. Use is made of the second law of thermodynamics to determine the amount of irreversibility of energy loss of each component. This will aid design scientists in selecting the components generating the least entropy, as our penultimate goal is to keep the entropy generation of the whole system at a minimum.

  10. Design and Development of an air-cooled Temperature-Swing Adsorption Compressor for Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.

    2003-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no wearing parts. This paper discusses the design features of a TSAC hardware that uses air as the cooling medium and has Space Station application.

  11. Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.

  12. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2004-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30,60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  13. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized information from psychological and medical testing, data on the knowledge, experience and skills of the applicants, and team building exercises. The design, development, buildup and operation of test hardware and documentation followed the established NASA processes and requirements for test buildup and operation.

  14. An Environmental for Hardware-in-the-Loop Formation Navigation and Control

    NASA Technical Reports Server (NTRS)

    Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.

  15. MELiSSA Pilot Plant: A facility for ground demonstration of a closed life support system

    NASA Astrophysics Data System (ADS)

    Godia, Francesc; Fossen, Arnaud; Peiro, Enrique; Gerbi, Olivier; Dussap, Gilles; Leys, Natalie; Arnau, Carolina; Milian, Ernest

    MELiSSA (Micro Ecological Life Support System Alternative) is an international collaborative effort focused on the development of a Life Support System for long-term Space missions. The goals of the MELiSSA loop are the recovery of food, water and oxygen from wastes, i.e. CO2 and organic wastes, using light as a source of energy. It is conceived as a series of compartments, each one performing a specific function within this cycle, inspired in the terrestrial ecological systems. Each one of the compartments is colonized with specific bacteria or higher plants depending on its dedicated function. Therefore, its design and operational conditions should guarantee that only a given specific biological activity takes place in each compartment. Moreover, this has to be done in a controlled manner, both at the subsystems level (i.e., compartments) and at the overall system level (i.e., complete loop). In order to achieve the complete operation of such a Closed Ecological System, in a first step each compartment has to be developed at individual level, and its operation demonstrated under its associated control law. In a second step, the complete loop needs to be integrated by the connection of the different compartments in the gas, loop and solid phases. An extensive demonstration of MELiSSA loop under terrestrial conditions is a mandatory step in the process of its adaptation to space. This is the main goal of the MPP. The demonstration scenario for the MPP is the respiration equivalent of a human being, and production of 20 percent of the diet of one person. To serve this goal, the different compartments of the MELiSSA loop have been designed and sized at the pilot scale level, and further characterized. Nowadays, the focus of the MELiSSA Pilot Plant is on the integration of its compartments. To this end, the integration challenge is concentrated in three compartments devoted to the following functions: nitrification (Compartment 3, an axenic co-culture of Nitrosomonas europaea and Nitrobacter winogradskyi), edible biomass and oxygen production (Compartment 4a, an axenic co-culture of Arthrospira platensis) and oxygen consumers (Compartment 5, rats isolator). The presentation will focus on all the necessary elements to achieve this integration, particularly in the start-up of continuous operation of the bioreactors and on the key challenges addressed in the integration of the gas phase of two compartments, 4a and 5, one producing O2 and one consuming it. The design of the integration conditions to ensure the functionality of all the elements will also be discussed. Keywords:, MELiSSA, Pilot Plant, Integration, Arthrospira platensis, Nitrosomonas europaea, Nitrobacter winogradskyi

  16. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback

    PubMed Central

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone. PMID:29342146

  17. A theory of how active behavior stabilises neural activity: Neural gain modulation by closed-loop environmental feedback.

    PubMed

    Buckley, Christopher L; Toyoizumi, Taro

    2018-01-01

    During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone.

  18. Lunar and Mars missions - Challenges for advanced life support

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.

    1988-01-01

    The development of a suite of scenarios is a prerequisite to the studies that will enable an informed decision by the United States on a program to meet the recently announced space policy goal to expand human presence beyond earth orbit. NASA's Office of Exploration is currently studying a range of initiative options that would extend the sphere of human activity in space to Mars and include permanent bases or outposts on the moon and on Mars. This paper describes the evolutionary lunar base and the Mars expedition scenarios in some detail so that an evaluation can be made from the point of view of human support and opportunities. Alternative approaches in the development of lunar outposts are outlined along with Mars expeditionary scenarios. Human environmental issues are discussed, including: closed loop life support systems; EVA systems; mobility systems; and medical support, physiological deconditioning, and psychological effects associated with long-duration missions.

  19. Probing the closed-loop model of mRNA translation in living cells

    PubMed Central

    Archer, Stuart K; Shirokikh, Nikolay E; Hallwirth, Claus V; Beilharz, Traude H; Preiss, Thomas

    2015-01-01

    The mRNA closed-loop, formed through interactions between the cap structure, poly(A) tail, eIF4E, eIF4G and PAB, features centrally in models of eukaryotic translation initiation, although direct support for its existence in vivo is not well established. Here, we investigated the closed-loop using a combination of mRNP isolation from rapidly cross-linked cells and high-throughput qPCR. Using the interaction between these factors and the opposing ends of mRNAs as a proxy for the closed-loop, we provide evidence that it is prevalent for eIF4E/4G-bound but unexpectedly sparse for PAB1-bound mRNAs, suggesting it primarily occurs during a distinct phase of polysome assembly. We observed mRNA-specific variation in the extent of closed-loop formation, consistent with a role for polysome topology in the control of gene expression. PMID:25826658

  20. Photocatalytic post-treatment in waste water reclamation systems

    NASA Technical Reports Server (NTRS)

    Cooper, Gerald; Ratcliff, Matthew A.; Verostko, Charles E.

    1989-01-01

    A photocatalytic water purification process is described which effectively oxidizes organic impurities common to reclaimed waste waters and humidity condensates to carbon dioxide at ambient temperatures. With this process, total organic carbon concentrations below 500 ppb are readily achieved. The temperature dependence of the process is well described by the Arrhenius equation and an activation energy barrier of 3.5 Kcal/mole. The posttreatment approach for waste water reclamation described here shows potential for integration with closed-loop life support systems.

  1. The spinning artificial gravity environment: A design project

    NASA Technical Reports Server (NTRS)

    Pignataro, Robert; Crymes, Jeff; Marzec, Tom; Seibert, Joe; Walker, Gary

    1987-01-01

    The SAGE, or Spinning Artificial Gravity Environment, design was carried out to develop an artificial gravity space station which could be used as a platform for the performance of medical research to determine the benefits of various, fractional gravity levels for astronauts normally subject to zero gravity. Desirable both for its medical research mission and a mission for the study of closed loop life-support and other factors in prolonged space flight, SAGE was designed as a low Earth orbiting, solar powered, manned space station.

  2. Closed-Loop Life Support and Habitability: 2000-2004

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This custom bibliography from the NASA Scientific and Technical Information Program lists a sampling of records found in the NASA Aeronautics and Space Database. The scope of this topic includes technologies for the recycling of oxygen, carbon dioxide, and water for long-duration human presence in space. This area of focus is one of the enabling technologies as defined by NASA s Report of the President s Commission on Implementation of United States Space Exploration Policy, published in June 2004.

  3. NASA Johnson Space Center's Energy and Sustainability Efforts

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.

    2008-01-01

    This viewgraph presentation reviews the efforts that NASA is making to assure a sustainable environment and energy savings at the Johnson Space Center. Sustainability is defined as development that meets the needs of present generations without compromising the ability of future generations to meet their own needs. The new technologies that are required for sustainable closed loop life support for space exploration have uses on the ground to reduce energy, greenhouse gas emissions, and water use. Some of these uses are reviewed.

  4. An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation

    NASA Technical Reports Server (NTRS)

    Burns, Rich

    2004-01-01

    Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.

  5. The Life Cycle Evaluation Model of External Diseconomy of Open-loop Supply Chain

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Hu, Tianjun

    2017-08-01

    In recent years, with the continuous deterioration of pollution, resource space is gradually narrowed, the number of waste items increased, people began to use the method of recycling on waste products to ease the pressure on the environment. This paper adopted the external diseconomy of open-loop supply chain as the research object and constructed the model by the life cycle evaluation method, comparative analysis through the case. This paper also concludes that the key to solving the problem is to realize the closed-loop supply chain and building reverse logistics system is of great significance.

  6. Study of the Open Loop and Closed Loop Oscillator Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imel, George R.; Baker, Benjamin; Riley, Tony

    This report presents the progress and completion of a five-year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques.The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this report we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign tomore » measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems.« less

  7. Study of the open loop and closed loop oscillator techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Benjamin; Riley, Tony; Langbehn, Adam

    This paper presents some aspects of a five year study undertaken at Idaho State University of the measurement of very small worth reactivity samples comparing open and closed loop oscillator techniques. The study conclusively demonstrated the equivalency of the two techniques with regard to uncertainties in reactivity values, i.e., limited by reactor noise. As those results are thoroughly documented in recent publications, in this paper we will concentrate on the support work that was necessary. For example, we describe in some detail the construction and calibration of a pilot rod for the closed loop system. We discuss the campaign tomore » measure the required reactor parameters necessary for inverse-kinetics. Finally, we briefly discuss the transfer of the open loop technique to other reactor systems. (authors)« less

  8. NASA Advanced Explorations Systems: 2017 Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Schneider, Walter F.; Shull, Sarah A.

    2017-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on four are-as-architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the International Space Station (ISS) LSS systems as a point of departure where applicable, the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2016 and provides additional details on the progress made since that paper was published with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment, the CO2 removal technology development tasks, and the work investigating the impacts of dormancy on LSS systems.

  9. Space Station environmental control and life support system distribution and loop closure studies

    NASA Technical Reports Server (NTRS)

    Humphries, William R.; Reuter, James L.; Schunk, Richard G.

    1986-01-01

    The NASA Space Station's environmental control and life support system (ECLSS) encompasses functional elements concerned with temperature and humidity control, atmosphere control and supply, atmosphere revitalization, fire detection and suppression, water recovery and management, waste management, and EVA support. Attention is presently given to functional and physical module distributions of the ECLSS among these elements, with a view to resource requirements and safety implications. A strategy of physical distribution coupled with functional centralization is for the air revitalization and water reclamation systems. Also discussed is the degree of loop closure desirable in the initial operational capability status Space Station's oxygen and water reclamation loops.

  10. Efforts to Reduce International Space Station Crew Maintenance Time in the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    NASA Technical Reports Server (NTRS)

    Etter,David; Rector, Tony; Boyle, robert; Zande, Chris Vande

    2012-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR - Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post- Shuttle 6-year service life.

  11. Efforts to Reduce International Space Station Crew Maintenance for the Management of the Extravehicular Mobility Unit Transport Loop Water Quality

    NASA Technical Reports Server (NTRS)

    Steele, John W.; Etter, David; Rector, Tony; Boyle, Robert; Vandezande, Christopher

    2013-01-01

    The EMU (Extravehicular Mobility Unit) contains a semi-closed-loop re-circulating water circuit (Transport Loop) to absorb heat into a LCVG (Liquid Coolant and Ventilation Garment) worn by the astronaut. A second, single-pass water circuit (Feed-water Loop) provides water to a cooling device (Sublimator) containing porous plates, and that water sublimates through the porous plates to space vacuum. The cooling effect from the sublimation of this water translates to a cooling of the LCVG water that circulates through the Sublimator. The quality of the EMU Transport Loop water is maintained through the use of a water processing kit (ALCLR Airlock Cooling Loop Remediation) that is used to periodically clean and disinfect the water circuit. Opportunities to reduce crew time associated with on-orbit ALCLR operations include a detailed review of the historical water quality data for evidence to support an extension to the implementation cycle. Furthermore, an EMU returned after 2-years of use on the ISS (International Space Station) is being used as a test bed to evaluate the results of extended and repeated ALCLR implementation cycles. Finally, design, use and on-orbit location enhancements to the ALCLR kit components are being considered to allow the implementation cycle to occur in parallel with other EMU maintenance and check-out activities, and to extend the life of the ALCLR kit components. These efforts are undertaken to reduce the crew-time and logistics burdens for the EMU, while ensuring the long-term health of the EMU water circuits for a post-Shuttle 6-year service life.

  12. Development of a complex experimental system for controlled ecological life support technique

    NASA Astrophysics Data System (ADS)

    Guo, S.; Tang, Y.; Zhu, J.; Wang, X.; Feng, H.; Ai, W.; Qin, L.; Deng, Y.

    A complex experimental system for controlled ecological life support technique can be used as a test platform for plant-man integrated experiments and material close-loop experiments of the controlled ecological life support system CELSS Based on lots of plan investigation plan design and drawing design the system was built through the steps of processing installation and joined debugging The system contains a volume of about 40 0m 3 its interior atmospheric parameters such as temperature relative humidity oxygen concentration carbon dioxide concentration total pressure lighting intensity photoperiod water content in the growing-matrix and ethylene concentration are all monitored and controlled automatically and effectively Its growing system consists of two rows of racks along its left-and-right sides separately and each of which holds two up-and-down layers eight growing beds hold a total area of about 8 4m 2 and their vertical distance can be adjusted automatically and independently lighting sources consist of both red and blue light-emitting diodes Successful development of the test platform will necessarily create an essential condition for next large-scale integrated study of controlled ecological life support technique

  13. Space life support engineering program

    NASA Technical Reports Server (NTRS)

    Seagrave, Richard C.

    1992-01-01

    A comprehensive study to develop software to simulate the dynamic operation of water reclamation systems in long-term closed-loop life support systems is being carried out as part of an overall program for the design of systems for a moon station or a Mars voyage. This project is being done in parallel with a similar effort in the Department of Chemistry to develop durable accurate low-cost sensors for monitoring of trace chemical and biological species in recycled water supplies. Aspen-Plus software is being used on a group of high-performance work stations to develop the steady state descriptions for a number of existing technologies. Following completion, a dynamic simulation package will be developed for determining the response of such systems to changes in the metabolic needs of the crew and to upsets in system hardware performance.

  14. Closed Loop Experiment Manager (CLEM)-An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments.

    PubMed

    Hazan, Hananel; Ziv, Noam E

    2017-01-01

    There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level.

  15. Closed Loop Experiment Manager (CLEM)—An Open and Inexpensive Solution for Multichannel Electrophysiological Recordings and Closed Loop Experiments

    PubMed Central

    Hazan, Hananel; Ziv, Noam E.

    2017-01-01

    There is growing need for multichannel electrophysiological systems that record from and interact with neuronal systems in near real-time. Such systems are needed, for example, for closed loop, multichannel electrophysiological/optogenetic experimentation in vivo and in a variety of other neuronal preparations, or for developing and testing neuro-prosthetic devices, to name a few. Furthermore, there is a need for such systems to be inexpensive, reliable, user friendly, easy to set-up, open and expandable, and possess long life cycles in face of rapidly changing computing environments. Finally, they should provide powerful, yet reasonably easy to implement facilities for developing closed-loop protocols for interacting with neuronal systems. Here, we survey commercial and open source systems that address these needs to varying degrees. We then present our own solution, which we refer to as Closed Loop Experiments Manager (CLEM). CLEM is an open source, soft real-time, Microsoft Windows desktop application that is based on a single generic personal computer (PC) and an inexpensive, general-purpose data acquisition board. CLEM provides a fully functional, user-friendly graphical interface, possesses facilities for recording, presenting and logging electrophysiological data from up to 64 analog channels, and facilities for controlling external devices, such as stimulators, through digital and analog interfaces. Importantly, it includes facilities for running closed-loop protocols written in any programming language that can generate dynamic link libraries (DLLs). We describe the application, its architecture and facilities. We then demonstrate, using networks of cortical neurons growing on multielectrode arrays (MEA) that despite its reliance on generic hardware, its performance is appropriate for flexible, closed-loop experimentation at the neuronal network level. PMID:29093659

  16. Closure of Regenerative Life Support Systems: Results of the Lunar-Mars Life Support Test Project

    NASA Technical Reports Server (NTRS)

    Barta, Daniel; Henninger, D.; Edeen, M.; Lewis, J.; Smth, F.; Verostko, C.

    2006-01-01

    Future long duration human exploration missions away from Earth will require closed-loop regenerative life support systems to reduce launch mass, reduce dependency on resupply and increase the level of mission self sufficiency. Such systems may be based on the integration of biological and physiocochemical processes to produce potable water, breathable atmosphere and nutritious food from metabolic and other mission wastes. Over the period 1995 to 1998 a series of ground-based tests were conducted at the National Aeronautics and Space Administration, Johnson Space Center, to evaluate the performance of advanced closed-loop life support technologies with real human metabolic and hygiene loads. Named the Lunar-Mars Life Support Test Project (LMLSTP), four integrated human tests were conducted with increasing duration, complexity and closure. The first test, LMLSTP Phase I, was designed to demonstrate the ability of higher plants to revitalize cabin atmosphere. A single crew member spent 15 days within an atmospherically closed chamber containing 11.2 square meters of actively growing wheat. Atmospheric carbon dioxide and oxygen levels were maintained by control of the rate of photosynthesis through manipulation of light intensity or the availability of carbon dioxide and included integrated physicochemical systems. During the second and third tests, LMLSTP Phases II & IIa, four crew members spent 30 days and 60 days, respectively, in a larger sealed chamber. Advanced physicochemical life support hardware was used to regenerate the atmosphere and produce potable water from wastewater. Air revitalization was accomplished by using a molecular sieve and a Sabatier processor for carbon dioxide absorption and reduction, respectively, with oxygen generation performed by water hydrolysis. Production of potable water from wastewater included urine treatment (vapor compression distillation), primary treatment (ultrafiltration/reverse osmosis and multi-filtration) and post processing. For the Phase II test the water recovery rate ranged from 95 to 98%, depending on the processor. LMLSTP Phase III, the fourth test of the series, had a duration of 91 days and included four crew members. The test demonstrated an integration of physicochemical and biological technologies for air revitalization, water recovery and waste processing. Wheat supplemented the physicochemical air revitalization systems by providing approximately 25% of the oxygen required for the 4-person crew. The water recovery system included immobilized cell and trickling filter bioreactors for primary water treatment, reverse osmosis and air evaporation systems for secondary water treatment, followed by post processing. The 8 day initial supply of water was recycled through the chamber and crew 10 times over the course of the test. Grain from the wheat together with fresh lettuce from a small growth chamber within the crew chamber provided supplementation to the stored food system, but at a level less than 5% of the crew s caloric requirement. An incinerator was used to demonstrate mineralization of the crew s solid waste, with the combustion products (mainly carbon dioxide) returned to the wheat for conversion to oxygen.

  17. High Impulse Gun Airborne Demonstration. GAU-13/A Weapon, Feed System, Gun Drive and Electronic Controls.

    DTIC Science & Technology

    1981-05-01

    made to provide mounting bosses for the closed loop conveyor chute . Ten small round bosses were welded onto the housing to provide this support...became necessary to depart from previous closed loop feeder designs . The original feed system consisted of a series of conveyor elements in a flexible...The flexible chuting has been replaced with rigid chuting forming a loop around the gun housing. This design affords the maximum stiffness and hence

  18. Facility for generating crew waste water product for ECLSS testing

    NASA Technical Reports Server (NTRS)

    Buitekant, Alan; Roberts, Barry C.

    1990-01-01

    An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.

  19. Trade Spaces in Crewed Spacecraft Atmosphere Revitalization System Development

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Bagdigian, Robert M.; Carrasquillo, Robyn L.

    2010-01-01

    Developing the technological response to realizing an efficient atmosphere revitalization system for future crewed spacecraft and space habitats requires identifying and describing functional trade spaces. Mission concepts and requirements dictate the necessary functions; however, the combination and sequence of those functions possess significant flexibility. Us-ing a closed loop environmental control and life support (ECLS) system architecture as a starting basis, a functional unit operations approach is developed to identify trade spaces. Generalized technological responses to each trade space are discussed. Key performance parameters that apply to functional areas are described.

  20. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation.

    PubMed

    Grant, Peadar F; Lowery, Madeleine M

    2013-07-01

    A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.

  1. Comparison between solar utilization of a closed microalgae-based bio-loop and that of a stand-alone photovoltaic system.

    PubMed

    Jin, Qiang; Chen, Lei; Li, Aimin; Liu, Fuqiang; Long, Chao; Shan, Aidang; Borthwick, Alistair G L

    2015-05-01

    This study compared the solar energy utilization of a closed microalgae-based bio-loop for energy efficient production of biogas with fertilizer recovery against that of a stand-alone photovoltaic (PV) system. The comparison was made from the perspective of broad life cycle assessment, simultaneously taking exergy to be the functional unit. The results indicated that the bio-loop was more environmentally competitive than an equivalent stand-alone PV system, but had higher economic cost due to high energy consumption during the operational phase. To fix the problem, a patented, interior pressurization scheduling method was used to operate the bio-loop, with microalgae and aerobic bacterial placed together in the same reactor. As a result, the overall environmental impact and total investment were respectively reduced by more than 75% and 84%, a vast improvement on the bio-loop. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Much Lower Launch Costs Make Resupply Cheaper than Recycling for Space Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    The development of commercial launch vehicles by SpaceX has greatly reduced the cost of launching mass to Low Earth Orbit (LEO). Reusable launch vehicles may further reduce the launch cost per kilogram. The new low launch cost makes open loop life support much cheaper than before. Open loop systems resupply water and oxygen in tanks for crew use and provide disposable lithium hydroxide (LiOH) in canisters to remove carbon dioxide. Short human space missions such as Apollo and shuttle have used open loop life support, but the long duration International Space Station (ISS) recycles water and oxygen and removes carbon dioxide with a regenerative molecular sieve. These ISS regenerative and recycling life support systems have significantly reduced the total launch mass needed for life support. But, since the development cost of recycling systems is much higher than the cost of tanks and canisters, the relative cost savings have been much less than the launch mass savings. The Life Cycle Cost (LCC) includes development, launch, and operations. If another space station was built in LEO, resupply life support would be much cheaper than the current recycling systems. The mission most favorable to recycling would be a long term lunar base, since the resupply mass would be large, the proximity to Earth would reduce the need for recycling reliability and spares, and the launch cost would be much higher than for LEO due to the need for lunar transit and descent propulsion systems. For a ten-year lunar base, the new low launch costs make resupply cheaper than recycling systems similar to ISS life support.

  3. Axiomatic Design of Space Life Support Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.

    2017-01-01

    Systems engineering is an organized way to design and develop systems, but the initial system design concepts are usually seen as the products of unexplained but highly creative intuition. Axiomatic design is a mathematical approach to produce and compare system architectures. The two axioms are:- Maintain the independence of the functional requirements.- Minimize the information content (or complexity) of the design. The first axiom generates good system design structures and the second axiom ranks them. The closed system human life support architecture now implemented in the International Space Station has been essentially unchanged for fifty years. In contrast, brief missions such as Apollo and Shuttle have used open loop life support. As mission length increases, greater system closure and increased recycling become more cost-effective.Closure can be gradually increased, first recycling humidity condensate, then hygiene wastewater, urine, carbon dioxide, and water recovery brine. A long term space station or planetary base could implement nearly full closure, including food production. Dynamic systems theory supports the axioms by showing that fewer requirements, fewer subsystems, and fewer interconnections all increase system stability. If systems are too complex and interconnected, reliability is reduced and operations and maintenance become more difficult. Using axiomatic design shows how the mission duration and other requirements determine the best life support system design including the degree of closure.

  4. Intraoperative stroke volume optimization using stroke volume, arterial pressure, and heart rate: closed-loop (learning intravenous resuscitator) versus anesthesiologists.

    PubMed

    Rinehart, Joseph; Chung, Elena; Canales, Cecilia; Cannesson, Maxime

    2012-10-01

    The authors compared the performance of a group of anesthesia providers to closed-loop (Learning Intravenous Resuscitator [LIR]) management in a simulated hemorrhage scenario using cardiac output monitoring. A prospective cohort study. In silico simulation. University hospital anesthesiologists and the LIR closed-loop fluid administration system. Using a patient simulator, a 90-minute simulated hemorrhage protocol was run, which included a 1,200-mL blood loss over 30 minutes. Twenty practicing anesthesiology providers were asked to manage this scenario by providing fluids and vasopressor medication at their discretion. The simulation program was also run 20 times with the LIR closed-loop algorithm managing fluids and an additional 20 times with no intervention. Simulated patient weight, height, heart rate, mean arterial pressure, and cardiac output (CO) were similar at baseline. The mean stroke volume, the mean arterial pressure, CO, and the final CO were higher in the closed-loop group than in the practitioners group, and the coefficient of variance was lower. The closed-loop group received slightly more fluid (2.1 v 1.9 L, p < 0.05) than the anesthesiologist group. Despite the roughly similar volumes of fluid given, the closed-loop maintained more stable hemodynamics than the practitioners primarily because the fluid was given earlier in the protocol and CO optimized before the hemorrhage began, whereas practitioners tended to resuscitate well but only after significant hemodynamic change indicated the need. Overall, these data support the potential usefulness of this closed-loop algorithm in clinical settings in which dynamic predictors are not available or applicable. Published by Elsevier Inc.

  5. The effects of spaceflight on open-loop and closed-loop postural control mechanisms: human neurovestibular studies on SLS-2

    NASA Technical Reports Server (NTRS)

    Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)

    1995-01-01

    Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.

  6. Control of a flexible link by shaping the closed loop frequency response function through optimised feedback filters

    NASA Astrophysics Data System (ADS)

    Del Vescovo, D.; D'Ambrogio, W.

    1995-01-01

    A frequency domain method is presented to design a closed-loop control for vibration reduction flexible mechanisms. The procedure is developed on a single-link flexible arm, driven by one rotary degree of freedom servomotor, although the same technique may be applied to similar systems such as supports for aerospace antennae or solar panels. The method uses the structural frequency response functions (FRFs), thus avoiding system identification, that produces modeling uncertainties. Two closed-loops are implemented: the inner loop uses acceleration feedback with the aim of making the FRF similar to that of an equivalent rigid link; the outer loop feeds back displacements to achieve a fast positioning response and null steady state error. In both cases, the controller type is established a priori, while actual characteristics are defined by an optimisation procedure in which the relevant FRF is constrained into prescribed bounds and stability is taken into account.

  7. Planner-Based Control of Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Muscettola, Nicola; Kortenkamp, David; Fry, Chuck; Bell, Scott

    2005-01-01

    The paper describes an approach to the integration of qualitative and quantitative modeling techniques for advanced life support (ALS) systems. Developing reliable control strategies that scale up to fully integrated life support systems requires augmenting quantitative models and control algorithms with the abstractions provided by qualitative, symbolic models and their associated high-level control strategies. This will allow for effective management of the combinatorics due to the integration of a large number of ALS subsystems. By focusing control actions at different levels of detail and reactivity we can use faster: simpler responses at the lowest level and predictive but complex responses at the higher levels of abstraction. In particular, methods from model-based planning and scheduling can provide effective resource management over long time periods. We describe reference implementation of an advanced control system using the IDEA control architecture developed at NASA Ames Research Center. IDEA uses planning/scheduling as the sole reasoning method for predictive and reactive closed loop control. We describe preliminary experiments in planner-based control of ALS carried out on an integrated ALS simulation developed at NASA Johnson Space Center.

  8. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes

    NASA Astrophysics Data System (ADS)

    Clauwaert, Peter; Muys, Maarten; Alloul, Abbas; De Paepe, Jolien; Luther, Amanda; Sun, Xiaoyan; Ilgrande, Chiara; Christiaens, Marlies E. R.; Hu, Xiaona; Zhang, Dongdong; Lindeboom, Ralph E. F.; Sas, Benedikt; Rabaey, Korneel; Boon, Nico; Ronsse, Frederik; Geelen, Danny; Vlaeminck, Siegfried E.

    2017-05-01

    In order to sustain human life in an isolated environment, an efficient conversion of wasted nutrients to food might become mandatory. This is particularly the case for space missions where resupply from earth or in-situ resource utilization is not possible or desirable. A combination of different technologies is needed to allow full recycling of e.g. nitrogenous compounds in space. In this review, an overview is given of the different essential processes and technologies that enable closure of the nitrogen cycle in Bioregenerative Life Support Systems (BLSS). Firstly, a set of biological and physicochemical refinery stages ensures efficient conversion of waste products into the building blocks, followed by the production of food with a range of biological methods. For each technology, bottlenecks are identified. Furthermore, challenges and outlooks are presented at the integrated system level. Space adaptation and integration deserve key attention to enable the recovery of nitrogen for the production of nutritional food in space, but also in closed loop systems on earth.

  9. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  10. Novel sensors to enable closed-loop active clearance control in gas turbine engines

    NASA Astrophysics Data System (ADS)

    Geisheimer, Jonathan; Holst, Tom

    2014-06-01

    Active clearance control within the turbine section of gas turbine engines presents and opportunity within aerospace and industrial applications to improve operating efficiencies and the life of downstream components. Open loop clearance control is currently employed during the development of all new large core aerospace engines; however, the ability to measure the gap between the blades and the case and close down the clearance further presents as opportunity to gain even greater efficiencies. The turbine area is one of the harshest environments for long term placement of a sensor in addition to the extreme accuracy requirements required to enable closed loop clearance control. This paper gives an overview of the challenges of clearance measurements within the turbine as well as discusses the latest developments of a microwave sensor designed for this application.

  11. Molecular dynamics and mutational analysis of the catalytic and translocation cycle of RNA polymerase

    PubMed Central

    2012-01-01

    Background During elongation, multi-subunit RNA polymerases (RNAPs) cycle between phosphodiester bond formation and nucleic acid translocation. In the conformation associated with catalysis, the mobile “trigger loop” of the catalytic subunit closes on the nucleoside triphosphate (NTP) substrate. Closing of the trigger loop is expected to exclude water from the active site, and dehydration may contribute to catalysis and fidelity. In the absence of a NTP substrate in the active site, the trigger loop opens, which may enable translocation. Another notable structural element of the RNAP catalytic center is the “bridge helix” that separates the active site from downstream DNA. The bridge helix may participate in translocation by bending against the RNA/DNA hybrid to induce RNAP forward movement and to vacate the active site for the next NTP loading. The transition between catalytic and translocation conformations of RNAP is not evident from static crystallographic snapshots in which macromolecular motions may be restrained by crystal packing. Results All atom molecular dynamics simulations of Thermus thermophilus (Tt) RNAP reveal flexible hinges, located within the two helices at the base of the trigger loop, and two glycine hinges clustered near the N-terminal end of the bridge helix. As simulation progresses, these hinges adopt distinct conformations in the closed and open trigger loop structures. A number of residues (described as “switch” residues) trade atomic contacts (ion pairs or hydrogen bonds) in response to changes in hinge orientation. In vivo phenotypes and in vitro activities rendered by mutations in the hinge and switch residues in Saccharomyces cerevisiae (Sc) RNAP II support the importance of conformational changes predicted from simulations in catalysis and translocation. During simulation, the elongation complex with an open trigger loop spontaneously translocates forward relative to the elongation complex with a closed trigger loop. Conclusions Switching between catalytic and translocating RNAP forms involves closing and opening of the trigger loop and long-range conformational changes in the atomic contacts of amino acid side chains, some located at a considerable distance from the trigger loop and active site. Trigger loop closing appears to support chemistry and the fidelity of RNA synthesis. Trigger loop opening and limited bridge helix bending appears to promote forward nucleic acid translocation. PMID:22676913

  12. Interplanetary travel: Is gravity needed to close the loop

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, Joan

    1988-01-01

    Evidence has been accumulating from spaceflight and ground simulation studies suggesting that the normal relationship between neuroendocrine driving mechanisms and their respective target organs may become uncoupled; and that the sensitivity of the various components of the closed-loop systems may be altered. Changes in the regulation of the pituitary-adrenal system and the angioten-sinaldosterone system is discussed in support of this thesis.

  13. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  14. Closed loop problems in biomechanics. Part II--an optimization approach.

    PubMed

    Vaughan, C L; Hay, J G; Andrews, J G

    1982-01-01

    A closed loop problem in biomechanics may be defined as a problem in which there are one or more closed loops formed by the human body in contact with itself or with an external system. Under certain conditions the problem is indeterminate--the unknown forces and torques outnumber the equations. Force transducing devices, which would help solve this problem, have serious drawbacks, and existing methods are inaccurate and non-general. The purposes of the present paper are (1) to develop a general procedure for solving closed loop problems; (2) to illustrate the application of the procedure; and (3) to examine the validity of the procedure. A mathematical optimization approach is applied to the solution of three different closed loop problems--walking up stairs, vertical jumping and cartwheeling. The following conclusions are drawn: (1) the method described is reasonably successful for predicting horizontal and vertical reaction forces at the distal segments although problems exist for predicting the points of application of these forces; (2) the results provide some support for the notion that the human neuromuscular mechanism attempts to minimize the joint torques and thus, to a certain degree, the amount of muscular effort; (3) in the validation procedure it is desirable to have a force device for each of the distal segments in contact with a fixed external system; and (4) the method is sufficiently general to be applied to all classes of closed loop problems.

  15. Closed-loop for type 1 diabetes - an introduction and appraisal for the generalist.

    PubMed

    Bally, Lia; Thabit, Hood; Hovorka, Roman

    2017-01-23

    Rapid progress over the past decade has been made with the development of the 'Artificial Pancreas', also known as the closed-loop system, which emulates the feedback glucose-responsive functionality of the pancreatic beta cell. The recent FDA approval of the first hybrid closed-loop system makes the Artificial Pancreas a realistic therapeutic option for people with type 1 diabetes. In anticipation of its advent into clinical care, we provide a primer and appraisal of this novel therapeutic approach in type 1 diabetes for healthcare professionals and non-specialists in the field. Randomised clinical studies in outpatient and home settings have shown improved glycaemic outcomes, reduced risk of hypoglycaemia and positive user attitudes. User input and interaction with existing closed-loop systems, however, are still required. Therefore, management of user expectations, as well as training and support by healthcare providers are key to ensure optimal uptake, satisfaction and acceptance of the technology. An overview of closed-loop technology and its clinical implications are discussed, complemented by our extensive hands-on experience with closed-loop system use during free daily living. The introduction of the artificial pancreas into clinical practice represents a milestone towards the goal of improving the care of people with type 1 diabetes. There remains a need to understand the impact of user interaction with the technology, and its implication on current diabetes management and care.

  16. INTESTINAL OBSTRUCTION

    PubMed Central

    Whipple, G. H.; Stone, H. B.; Bernheim, B. M.

    1913-01-01

    Closed duodenal loops may be made in dogs by ligatures placed just below the pancreatic duct and just beyond the duodenojejunal junction, together with a posterior gastro-enterostomy. These closed duodenal loop dogs die with symptoms like those of patients suffering from volvulus or high intestinal obstruction. This duodenal loop may simulate closely a volvulus in which there has been no vascular disturbance. Dogs with closed duodenal loops which have been washed out carefully survive a little longer on the average than animals with unwashed loops. The duration of life in the first instance is one to three days, with an average of about forty-eight hours. The dogs usually lose considerable fluid by vomiting and diarrhea. A weak pulse, low blood pressure and temperature are usually conspicuous in the last stages. Autopsy shows more or less splanchnic congestion which may be most marked in the mucosa of the upper small intestine. The peritoneum is usually clear and the closed loop may be distended with thin fluid, or collapsed, and contain only a small amount of pasty brown material. The mucosa of the loop may show ulceration and even perforation, but in the majority of cases it is intact and exhibits only a moderate congestion. Simple intestinal obstruction added to a closed duodenal loop does not modify the result in any manner, but it may hasten the fatal outcome. The liver plays no essential role as a protective agent against this poison, for a dog with an Eck fistula may live three days with a closed loop. A normal dog reacts to intraportal injection and to intravenous injection of the toxic substance in an identical manner. Drainage of this loop under certain conditions may not interfere with the general health over a period of weeks or months. Excision of the part of the duodenum included in this loop causes no disturbance. The material from the closed duodenal loops contains no bile, pancreatic juice, gastric juice, or split products from the food. It can be formed in no other way than by the activity of the intestinal mucosa and the growth of the intestinal bacteria. This material after dilution, autolysis, sterilization, and filtration produces a characteristic effect when introduced intravenously. When in toxic doses it causes a profound drop in blood pressure, general collapse, drop in temperature, salivation, vomiting, and profuse diarrhea, which is often blood-stained. Splanchnic congestion is the conspicuous feature at autopsy and shows especially in the villi of the duodenal and jejunal mucosæ. Adrenalin, during this period of low blood pressure and splanchnic congestion, will cause the usual reaction when given intravenously, but applied locally or given intravenously it causes no bleaching of the engorged intestinal mucosa. Secretin is not found in the duodenal loop fluid, and the loop material does not influence the pancreatic secretion. Intraportal injection of the toxic material gives a reaction similar to intravenous injection. Intraperitoneal and subcutaneous injections produce a relatively slow reaction which closely resembles the picture seen in the closed duodenal loop dog. In both cases there is a relatively slow absorption, but the splanchnic congestion and other findings, though less intense, are present in both groups. There seems, therefore, to be no escape from the conclusion that a poisonous substance is formed in this closed duodenal loop which is absorbed from it and causes intoxication and death. Injection of this toxic substance into a normal dog gives intoxication and a reaction more intense but similar to that developing in a closed-loop dog. PMID:19867644

  17. Space Life-Support Engineering Program

    NASA Technical Reports Server (NTRS)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  18. Design and implementation of a vegetarian food system for a closed chamber test.

    PubMed

    Kloeris, V; Vodovotz, Y; Bye, L; Stiller, C Q; Lane, E

    1998-01-01

    The National Aeronautics and Space Administration (NASA) is conducting a series of closed chamber environmental tests, called the Lunar Mars Life Support Test Project (LMLSTP), which is designed to provide data for the development of surface habitats for the Moon and Mars. These surface habitats will be closed loop environmental systems that will recycle air and water and will grow crops to provide food for crew members. In conjunction with these tests, the Food Systems Engineering Facility at the Johnson Space Center (JSC) tested a 10-day vegetarian menu based on items that can be made from the projected crop list for these habitats. The planned menu met most of the nutritional requirements of the four crew members and was found highly acceptable. Automation of the food preparation and processing equipment was strongly recommended because the preparation time was judged excessive. The waste generated was largely due to leftovers.

  19. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes

    PubMed Central

    Trevitt, Sara; Simpson, Sue; Wood, Annette

    2015-01-01

    Background: Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. Methods: A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Results: Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. Conclusions: There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. PMID:26589628

  20. Melissa: The European project of a closed life support system

    NASA Astrophysics Data System (ADS)

    Lasseur, Christophe

    The MELISSA (Micro-Ecological Life Support Alternative) project was initiated in 1989. It is intended as a tool to gain understanding of closed life support, as well as the development of the technology for a future life support system for long term manned space missions, e.g. a lunar base or a mission to Mars. The collaboration was established through a Memorandum of Understanding and is managed by ESA. It involves several independent organisations: Ghent University, EPAS, SCK, VITO (B), University of Clermont-Ferrand, SHERPA (F), University Autonoma of Barcelona (E), University of Guelph (CND). It is co-funded by ESA, the MELISSA partners, the Belgian, the Spanish and the Canadian authorities. The driving element of MELISSA is the production of food, water and oxygen from organic waste (inedible biomass, CO2, faeces, urea). Inspired by the principle of an "aquatic" ecosystem, MELISSA process comprises several sub-processes, called compartments, from the anoxygenic fermentor up to the photosynthetic units (i.e. algae and higher plants). The choice of this compartmentalised structure is required by the very high level of safety requirements and justified by the need of an engineering approach and to build deterministic control strategy. During the past 19 years of research and development, a very progressive approach has been developed to understand and control the MELISSA loop. This approach starts from the selection of processes, their characterisation and mathematical modelling, the validation of the control strategy, up to the demonstration on Earth, at pilot scale. The project is organised in 5 phases: Basic Research and Development, Preliminary flight experiment, Ground and space demonstration, Terrestrial transfer, Education and communication.

  1. Behavioral Informatics and Computational Modeling in Support of Proactive Health Management and Care

    PubMed Central

    Jimison, Holly B.; Korhonen, Ilkka; Gordon, Christine M.; Saranummi, Niilo

    2016-01-01

    Health-related behaviors are among the most significant determinants of health and quality of life. Improving health behavior is an effective way to enhance health outcomes and mitigate the escalating challenges arising from an increasingly aging population and the proliferation of chronic diseases. Although it has been difficult to obtain lasting improvements in health behaviors on a wide scale, advances at the intersection of technology and behavioral science may provide the tools to address this challenge. In this paper, we describe a vision and an approach to improve health behavior interventions using the tools of behavioral informatics, an emerging transdisciplinary research domain based on system-theoretic principles in combination with behavioral science and information technology. The field of behavioral informatics has the potential to optimize interventions through monitoring, assessing, and modeling behavior in support of providing tailored and timely interventions. We describe the components of a closed-loop system for health interventions. These components range from fine grain sensor characterizations to individual-based models of behavior change. We provide an example of a research health coaching platform that incorporates a closed-loop intervention based on these multiscale models. Using this early prototype, we illustrate how the optimized and personalized methodology and technology can support self-management and remote care. We note that despite the existing examples of research projects and our platform, significant future research is required to convert this vision to full-scale implementations. PMID:26441408

  2. A Methodology to Assess the Capability of Engine Designs to Meet Closed-Loop Performance and Operability Requirements

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Csank, Jeffrey

    2015-01-01

    Designing a closed-loop controller for an engine requires balancing trade-offs between performance and operability of the system. One such trade-off is the relationship between the 95 percent response time and minimum high-pressure compressor (HPC) surge margin (SM) attained during acceleration from idle to takeoff power. Assuming a controller has been designed to meet some specification on response time and minimum HPC SM for a mid-life (nominal) engine, there is no guarantee that these limits will not be violated as the engine ages, particularly as it reaches the end of its life. A characterization for the uncertainty in this closed-loop system due to aging is proposed that defines elliptical boundaries to estimate worst-case performance levels for a given control design point. The results of this characterization can be used to identify limiting design points that bound the possible controller designs yielding transient results that do not exceed specified limits in response time or minimum HPC SM. This characterization involves performing Monte Carlo simulation of the closed-loop system with controller constructed for a set of trial design points and developing curve fits to describe the size and orientation of each ellipse; a binary search procedure is then employed that uses these fits to identify the limiting design point. The method is demonstrated through application to a generic turbofan engine model in closed-loop with a simplified controller; it is found that the limit for which each controller was designed was exceeded by less than 4.76 percent. Extension of the characterization to another trade-off, that between the maximum high-pressure turbine (HPT) entrance temperature and minimum HPC SM, showed even better results: the maximum HPT temperature was estimated within 0.76 percent. Because of the accuracy in this estimation, this suggests another limit that may be taken into consideration during design and analysis. It also demonstrates the extension of the characterization to other attributes that contribute to the performance or operability of the engine. Metrics are proposed that, together, provide information on the shape of the trade-off between response time and minimum HPC SM, and how much each varies throughout the life cycle, at the limiting design points. These metrics also facilitate comparison of the expected transient behavior for multiple engine models.

  3. A Methodology to Assess the Capability of Engine Designs to Meet Closed-loop Performance and Operability Requirements

    NASA Technical Reports Server (NTRS)

    Zinnecker, Alicia M.; Csank, Jeffrey T.

    2015-01-01

    Designing a closed-loop controller for an engine requires balancing trade-offs between performance and operability of the system. One such trade-off is the relationship between the 95% response time and minimum high-pressure compressor (HPC) surge margin (SM) attained during acceleration from idle to takeoff power. Assuming a controller has been designed to meet some specification on response time and minimum HPC SM for a mid-life (nominal) engine, there is no guarantee that these limits will not be violated as the engine ages, particularly as it reaches the end of its life. A characterization for the uncertainty in this closed-loop system due to aging is proposed that defines elliptical boundaries to estimate worst-case performance levels for a given control design point. The results of this characterization can be used to identify limiting design points that bound the possible con- troller designs yielding transient results that do not exceed specified limits in response time or minimum HPC SM. This characterization involves performing Monte Carlo simulation of the closed-loop system with controller constructed for a set of trial design points and developing curve fits to describe the size and orientation of each ellipse; a binary search procedure is then employed that uses these fits to identify the limiting design point. The method is demonstrated through application to a generic turbofan engine model in closed- loop with a simplified controller; it is found that the limit for which each controller was designed was exceeded by less than 4.76%. Extension of the characterization to another trade-off, that between the maximum high-pressure turbine (HPT) entrance temperature and minimum HPC SM, showed even better results: the maximum HPT temperature was estimated within 0.76%. Because of the accuracy in this estimation, this suggests another limit that may be taken into consideration during design and analysis. It also demonstrates the extension of the characterization to other attributes that contribute to the performance or operability of the engine. Metrics are proposed that, together, provide information on the shape of the trade-off between response time and minimum HPC SM, and how much each varies throughout the life cycle, at the limiting design points. These metrics also facilitate comparison of the expected transient behavior for multiple engine models.

  4. A reconfigurable visual-programming library for real-time closed-loop cellular electrophysiology

    PubMed Central

    Biró, István; Giugliano, Michele

    2015-01-01

    Most of the software platforms for cellular electrophysiology are limited in terms of flexibility, hardware support, ease of use, or re-configuration and adaptation for non-expert users. Moreover, advanced experimental protocols requiring real-time closed-loop operation to investigate excitability, plasticity, dynamics, are largely inaccessible to users without moderate to substantial computer proficiency. Here we present an approach based on MATLAB/Simulink, exploiting the benefits of LEGO-like visual programming and configuration, combined to a small, but easily extendible library of functional software components. We provide and validate several examples, implementing conventional and more sophisticated experimental protocols such as dynamic-clamp or the combined use of intracellular and extracellular methods, involving closed-loop real-time control. The functionality of each of these examples is demonstrated with relevant experiments. These can be used as a starting point to create and support a larger variety of electrophysiological tools and methods, hopefully extending the range of default techniques and protocols currently employed in experimental labs across the world. PMID:26157385

  5. Visual Simulation of Microalgae Growth in Bioregenerative Life Support System

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    Bioregenerative life support system is one of the key technologies for future human deep space exploration and long-term space missions. BLSS use biological system as its core unit in combination with other physical and chemical equipments, under the proper control and manipulation by crew to complete a specific task to support life. Food production, waste treatment, oxygen and water regeneration are all conducted by higher plants or microalgae in BLSS, which is the most import characteristic different from other kinds of life support systems. Microalgae is light autotrophic micro-organisms, light undoubtedly is the most import factor which limits its growth and reproduction. Increasing or decreasing the light intensity changes the growth rate of microalgae, and then regulates the concentration of oxygen and carbon dioxide in the system. In this paper, based on the mathematical model of microalgae which grew under the different light intensity, three-dimensional visualization model was built and realized through using 3ds max, Virtools and some other three dimensional software, in order to display its change and impacting on oxygen and carbon dioxide intuitively. We changed its model structure and parameters, such as establishing closed-loop control system, light intensity, temperature and Nutrient fluid’s velocity and so on, carried out computer virtual simulation, and observed dynamic change of system with the aim of providing visualization support for system research.

  6. Preliminary study of the space adaptation of the MELiSSA life support system

    NASA Astrophysics Data System (ADS)

    Mas-Albaigès, Joan L.; Duatis, Jordi; Podhajsky, Sandra; Guirado, Víctor; Poughon, Laurent

    MELiSSA (Micro-Ecological Life Support System Alternative) is an European Space Agency (ESA) project focused on the development of a closed regenerative life support system to aid the development of technologies for future life support systems for long term manned planetary missions, e.g. a lunar base or missions to Mars. In order to understand the potential evolution of the MELiSSA concept towards its future use in the referred manned planetary mission context the MELiSSA Space Adaptation (MSA) activity has been undertaken. MSA's main objective is to model the different MELiSSA compartments using EcosimPro R , a specialized simulation tool for life support applications, in order to define a preliminary MELiSSA implementation for service in a man-tended lunar base scenario, with a four-member crew rotating in six-month increments, and performing the basic LSS functions of air revitalization, food production, and waste and water recycling. The MELiSSA EcosimPro R Model features a dedicated library for the different MELiSSA elements (bioreactors, greenhouse, crew, interconnecting elements, etc.). It is used to dimension the MELiSSA system in terms of major parameters like mass, volume and energy needs, evaluate the accuracy of the results and define the strategy for a progressive loop closure from the initial required performance (approx.100 The MELiSSA configuration(s) obtained through the EcosimPro R simulation are further analysed using the Advanced Life Support System Evaluation (ALISSE) metric, relying on mass, energy, efficiency, human risk, system reliability and crew time, for trade-off and optimization of results. The outcome of the MSA activity is, thus, a potential Life Support System architecture description, based on combined MELiSSA and other physico-chemical technologies, defining its expected performance, associated operational conditions and logistic needs.

  7. Research Opportunities Supporting the Vision for Space Exploration from the Transformation of the Former Microgravity Materials Science Program

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Szofran, Frank; Bassler, Julie A.; Schlagheck, Ronald A.; Cook, Mary Beth

    2005-01-01

    The Microgravity Materials Science Program established a strong research capability through partnerships between NASA and the scientific research community. With the announcement of the vision for space exploration, additional emphasis in strategic materials science areas was necessary. The President's Commission recognized that achieving its exploration objectives would require significant technical innovation, research, and development in focal areas defined as "enabling technologies." Among the 17 enabling technologies identified for initial focus were: advanced structures, advanced power and propulsion; closed-loop life support and habitability; extravehicular activity systems; autonomous systems and robotics; scientific data collection and analysis, biomedical risk mitigation; and planetary in situ resource utilization. Mission success may depend upon use of local resources to fabricate a replacement part to repair a critical system. Future propulsion systems will require materials with a wide range of mechanical, thermophysical, and thermochemical properties, many of them well beyond capabilities of today's materials systems. Materials challenges have also been identified by experts working to develop advanced life support systems. In responding to the vision for space exploration, the Microgravity Materials Science Program aggressively transformed its research portfolio and focused materials science areas of emphasis to include space radiation shielding; in situ fabrication and repair for life support systems; in situ resource utilization for life support consumables; and advanced materials for exploration, including materials science for space propulsion systems and for life support systems. The purpose of this paper is to inform the scientific community of these new research directions and opportunities to utilize their materials science expertise and capabilities to support the vision for space exploration.

  8. Fermentation as a first step in carbon and nutrient recovery in regenerative life support systems

    NASA Astrophysics Data System (ADS)

    Luther, Amanda; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Rabaey, Korneel; Ronsse, Frederik; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter

    2016-07-01

    Long term manned space missions, such as the establishment of a base on Mars, will require a regenerative means of supplying the basic resources (i.e., food, water, oxygen) necessary to support human life. The MELiSSA-loop is a closed loop compartmentalized artificial aquatic ecosystem designed to recover water, carbon, and nutrients from solid organic wastes (e.g., inedible food waste and feces) for the regeneration of food and oxygen for humans. The first step in this loop is a strictly anaerobic fermentation unit operated as a membrane bioreactor. In this step the aim is to maximize the hydrolysis of complex organic compounds into simple molecules (CO2, ammonia, volatile fatty acids, …) which can be consumed by plants and bacteria downstream to produce food again. Optimal steady state fermentation of a standardized homogeneous mixture of beets, lettuce, wheat straw, toilet paper, feces, and water was demonstrated to recover approximately 50% of the influent carbon as soluble organics in the effluent through anaerobic fermentation. Approximately 10% of the influent COD was converted to CO2, with the remaining ~40% retained as a mixture of undigested solids and biomass. Approximately 50% of the influent nitrogen was recovered in the effluent, 97% of which was in the form of ammonia. Similar results have been obtained at both lab and pilot scale. With only 10% of the carbon driven to CO2 through this fermentation, a major challenge at this moment for the MELiSSA-loop is closing the carbon cycle, by completely oxidizing the carbon in the organic waste and non-edible parts of the plant into CO2 for higher plants and algae to fix again for food production. To further improve the overall degradation we are investigating the integration of a high temperature and pressure, sub- or near critical water conditions to improve the degradation of fibrous material with the addition of an oxidant (hydrogen peroxide, H2O2) under sub- or near critical conditions to further enhanced the oxidation to CO2. The conversion of the soluble organic compounds (mainly volatile fatty acids) into CO2 is being investigated with bio-anodic oxidation in a microbial electrolysis cell. In this way, the energy present in the organic compounds is recovered without excessive biological sludge production.

  9. The Concept and Analytical Investigation of CO2 and Steam Co-Electrolysis for Resource Utilization in Space Exploration

    NASA Technical Reports Server (NTRS)

    McKellar, Michael G.; Stoots, Carl M.; Sohal, Manohar S.; Mulloth, Lila M.; Luna, Bernadette; Abney, Morgan B.

    2010-01-01

    CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented.

  10. Gas Foil Bearing Misalignment and Unbalance Effects

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground-based microturbines have demonstrated histories of successful long-term operation using GFBs (Heshmat et al., 2000). Small aircraft propulsion engines, helicopter gas turbines, and high-speed electric motors are potential future applications.

  11. System identification from closed-loop data with known output feedback dynamics

    NASA Technical Reports Server (NTRS)

    Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.

    1992-01-01

    This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.

  12. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  13. Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes: What Systems Are in Development?

    PubMed

    Trevitt, Sara; Simpson, Sue; Wood, Annette

    2016-05-01

    Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. © 2015 Diabetes Technology Society.

  14. Parametric Analysis of Life Support Systems for Future Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly S.; Bagdigian, Bob M.

    2011-01-01

    The National Aeronautics and Space Administration is in a process of evaluating future targets for space exploration. In order to maintain the welfare of a crew during future missions, a suite of life support technology is responsible for oxygen and water generation, carbon dioxide control, the removal of trace concentrations of organic contaminants, processing and recovery of water, and the storage and reclamation of solid waste. For each particular life support subsystem, a variety competing technologies either exist or are under aggressive development efforts. Each individual technology has strengths and weaknesses with regard to launch mass, power and cooling requirements, volume of hardware and consumables, and crew time requirements for operation. However, from a system level perspective, the favorability of each life support architecture is better assessed when the sub-system technologies are analyzed in aggregate. In order to evaluate each specific life support system architecture, the measure of equivalent system mass (ESM) was employed to benchmark system favorability. Moreover, the results discussed herein will be from the context of loop-closure with respect to the air, water, and waste sub-systems. Specifically, closure relates to the amount of consumables mass that crosses the boundary of the vehicle over the lifetime of a mission. As will be demonstrated in this manuscript, the optimal level of loop closure is heavily dependent upon mission requirements such as duration and the level of extra-vehicular activity (EVA) performed. Sub-system level trades were also considered as a function of mission duration to assess when increased loop closure is practical. Although many additional factors will likely merit consideration in designing life support systems for future missions, the ESM results described herein provide a context for future architecture design decisions toward a flexible path program.

  15. A bioreactor system for the nitrogen loop in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Saulmon, M. M.; Reardon, K. F.; Sadeh, W. Z.

    1996-01-01

    As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.

  16. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases.

    PubMed

    Dutta, Saheb; Kundu, Soumya; Saha, Amrita; Nandi, Nilashis

    2018-03-01

    Aminoacylation reaction is the first step of protein biosynthesis. The catalytic reorganization at the active site of aminoacyl tRNA synthetases (aaRSs) is driven by the loop motions. There remain lacunae of understanding concerning the catalytic loop dynamics in aaRSs. We analyzed the functional loop dynamics in seryl tRNA synthetase from Methanopyrus kandleri ( mk SerRS) and histidyl tRNA synthetases from Thermus thermophilus ( tt HisRS), respectively, using molecular dynamics. Results confirm that the motif 2 loop and other active site loops are flexible spots within the catalytic domain. Catalytic residues of the loops form a network of interaction with the substrates to form a reactive state. The loops undergo transitions between closed state and open state and the relaxation of the constituent residues occurs in femtosecond to nanosecond time scale. Order parameters are higher for constituent catalytic residues which form a specific network of interaction with the substrates to form a reactive state compared to the Gly residues within the loop. The development of interaction is supported from mutation studies where the catalytic domain with mutated loop exhibits unfavorable binding energy with the substrates. During the open-close motion of the loops, the catalytic residues make relaxation by ultrafast librational motion as well as fast diffusive motion and subsequently relax rather slowly via slower diffusive motion. The Gly residues act as a hinge to facilitate the loop closing and opening by their faster relaxation behavior. The role of bound water is analyzed by comparing implicit solvent-based and explicit solvent-based simulations. Loops fail to form catalytically competent geometry in absence of water. The present result, for the first time reveals the nature of the active site loop dynamics in aaRS and their influence on catalysis.

  17. The NICMOS Cooling SYSTEM-5 Years of Successful On-Orbit Operation

    NASA Astrophysics Data System (ADS)

    Swift, W. L.; Dolan, F. X.; Zagarola, M. V.

    2008-03-01

    The NICMOS Cooling System consists of a closed-loop turbo-Brayton cryocooler coupled with a cryogenic circulator that provides refrigeration to the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on the Hubble Space Telescope (HST). The cryocooler heat is rejected to space through a capillary pumped loop connected to radiators mounted on the side of the telescope. The system was deployed and integrated with NICMOS by astronauts during STS-109 (Space Shuttle Columbia) in March 2002. It has operated nearly continuously without performance degradation since that time, maintaining NICMOS detectors at a constant temperature of 77 K. Miniature, high-speed turbomachines are used in the cryocooler and the circulator loop to provide vibration-free, long-life operation. A small centrifugal compressor and miniature turboalternator are key elements of the closed loop cryocooler. A miniature cryogenic centrifugal circulator in a separate pressurized neon loop transports heat from the NICMOS instrument to the cryocooler interface heat exchanger. This paper describes the development of the system, key operational features, ground and orbital tests prior to its deployment, and operational results during its five-year operational history on orbit.

  18. Observations of decay-less low-amplitude kink oscillations of EUV coronal loops

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Nakariakov, Valery; Anfinogentov, Sergey

    The high spatial and temporal resolution observations at Extreme Ultra-Violet (EUV) wavelengths from the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) reveal new features in kink oscillations of coronal loops. We show that, in addition to the well-known rapidly decaying oscillations, a new type of kink waves is present, characterized by low-amplitude and undamped oscillations, that we define as decay-less. Typical periods range from 2.5 to 12 min in both regimes and are different for different loops, increasing with the loop length. Estimates of the loop lengths are supported by three dimensional reconstruction of the loop geometry. The amplitude for the decay-less regime is about 1 Mm, close to the spatial resolution of the AIA instruments. The oscillation phase, measured by the cross-correlation method, is found to be constant along each analysed loop, and the spatial structure of the phase of the oscillations corresponds to the fundamental standing kink mode. We show that the observed behaviours are consistent with the empirical model of a damped linear oscillator excited by a continuous low-amplitude harmonic driver, in addition to an eventual impulsive high-amplitude driver. The observed life-time of the oscillations is likely to be determined by the observational conditions rather than any physical damping. However, the balance between the driving and damping is a necessary ingredient of this model. The properties of this type of transverse oscillations make them interesting object of study in the framework of resonant absorption theory and coronal heating process.

  19. An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Sruthi Raju

    The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.

  20. A double closed loop to enhance the quality of life of Parkinson's Disease patients: REMPARK system.

    PubMed

    Samà, Albert; Pérez-López, Carlos; Rodríguez-Martín, Daniel; Moreno-Aróstegui, J Manuel; Rovira, Jordi; Ahlrichs, Claas; Castro, Rui; Cevada, João; Graça, Ricardo; Guimarães, Vânia; Pina, Bernardo; Counihan, Timothy; Lewy, Hadas; Annicchiarico, Roberta; Bayés, Angels; Rodríguez-Molinero, Alejandro; Cabestany, Joan

    2014-01-01

    This paper presents REMPARK system, a novel approach to deal with Parkinson's Disease (PD). REMPARK system comprises two closed loops of actuation onto PD. The first loop consists in a wearable system that, based on a belt-worn movement sensor, detects movement alterations that activate an auditory cueing system controlled by a smartphone in order to improve patient's gait. The belt-worn sensor analyzes patient's movement through real-time learning algorithms that were developed on the basis of a database previously collected from 93 PD patients. The second loop consists in disease management based on the data collected during long periods and that enables neurologists to tailor medication of their PD patients and follow the disease evolution. REMPARK system is going to be tested in 40 PD patients in Spain, Ireland, Italy and Israel. This paper describes the approach followed to obtain this system, its components, functionalities and trials in which the system will be validated.

  1. Next Generation Life Support Project Status

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  2. Informational Closed-Loop Coding-Decoding Control Concept as the Base of the Living or Organized Systems Theory

    NASA Astrophysics Data System (ADS)

    Kirvelis, Dobilas; Beitas, Kastytis

    2008-10-01

    The aim of this work is to show that the essence of life and living systems is their organization as bioinformational technology on the base of informational anticipatory control. Principal paradigmatic and structural schemes of functional organization of life (organisms and their systems) are constructed on the basis of systemic analysis and synthesis of main phenomenological features of living world. Life is based on functional elements that implement engineering procedures of closed-loop coding-decoding control (CL-CDC). Phenomenon of natural bioinformational control appeared and developed on the Earth 3-4 bln years ago, when the life originated as a result of chemical and later biological evolution. Informatics paradigm considers the physical and chemical transformations of energy and matter in organized systems as flows that are controlled and the signals as means for purposive informational control programs. The social and technical technological systems as informational control systems are a latter phenomenon engineered by man. The information emerges in organized systems as a necessary component of control technology. Generalized schemes of functional organization on levels of cell, organism and brain neocortex, as the highest biosystem with CL-CDC, are presented. CL-CDC concept expands the understanding of bioinformatics.

  3. Closed-Loop Control Better than Open-Loop Control of Profofol TCI Guided by BIS: A Randomized, Controlled, Multicenter Clinical Trial to Evaluate the CONCERT-CL Closed-Loop System

    PubMed Central

    Zhang, Xuena; Wu, Anshi; Yao, Shanglong; Xue, Zhanggang; Yue, Yun

    2015-01-01

    Background The CONCERT-CL closed-loop infusion system designed by VERYARK Technology Co., Ltd. (Guangxi, China) is an innovation using TCI combined with closed-loop controlled intravenous anesthesia under the guide of BIS. In this study we performed a randomized, controlled, multicenter study to compare closed-loop control and open-loop control of propofol by using the CONCERT-CL closed-loop infusion system. Methods 180 surgical patients from three medical centers undergone TCI intravenous anesthesia with propofol and remifentanil were randomly assigned to propofol closed-loop group and propofol opened-loop groups. Primary outcome was global score (GS, GS = (MDAPE+Wobble)/% of time of bispectral index (BIS) 40-60). Secondary outcomes were doses of the anesthetics and emergence time from anesthesia, such as, time to tracheal extubation. Results There were 89 and 86 patients in the closed-loop and opened-loop groups, respectively. GS in the closed-loop groups (22.21±8.50) were lower than that in the opened-loop group (27.19±15.26) (p=0.009). The higher proportion of time of BIS between 40 and 60 was also observed in the closed-loop group (84.11±9.50%), while that was 79.92±13.17% in the opened-loop group, (p=0.016). No significant differences in propofol dose and time of tracheal extubation were observed. The frequency of propofol regulation in the closed-loop group (31.55±9.46 times/hr) was obverse higher than that in the opened-loop group (6.84±6.21 times/hr) (p=0.000). Conclusion The CONCERT-CL closed-loop infusion system can automatically regulate the TCI of propofol, maintain the BIS value in an adequate range and reduce the workload of anesthesiologists better than open-loop system. Trial Registration ChiCTR ChiCTR-OOR-14005551 PMID:25886041

  4. Automatic control of finite element models for temperature-controlled radiofrequency ablation.

    PubMed

    Haemmerich, Dieter; Webster, John G

    2005-07-14

    The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.

  5. A Preliminary Research Plan for Development of a Photosynthetic Link in a Closed Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Morgan, P. W.

    1979-01-01

    The use of higher plants in a closed ecological life support system for long duration space missions involving large numbers of people is considered. The approach to planning and developing both the habitat for a long term space mission and closed ecological life support systems are discussed with emphasis on environmental compatibility and integrated systems design. The requirements of photosynthetic processes are summarized and evaluated in terms of their availability within a closed ecological life support environment. Specific references are recommended as a data base for future research on this topic.

  6. Rapid Analysis, Self-Calibrating Array for Air Monitoring

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Shevade, Abhijit V.; Lara, Liana; Huerta, Ramon; Vergara, Alexander; Muezzinoglua, Mehmet K.

    2012-01-01

    Human space missions have critical needs for monitoring and control for life support systems. These systems have monitoring needs that include feedback for closed loop processes and quality control for environmental factors. Sensors and monitoring technologies assure that the air environment and water supply for the astronaut crew habitat fall within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the more distant the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. The lifetime of the calibration, for some analytes, was as long as 24 months. We are working on a sensor array and new algorithms that will include sensor response time in the analysis. The preliminary array analysis for two analytes shows that the analysis time, of an event, can be dropped from 45 minutes to less than10 minutes and array training time can be cut substantially. We will describe the lifetime testing of an array and show lifetime data on individual sensors. This progress will lead to more rapid identification of analytes, and faster training time of the array.

  7. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  8. Design and Test of a Closed-Loop FES System for Supporting Function of the Hemiparetic Hand Based on Automatic Detection using the Microsoft Kinect sensor.

    PubMed

    Simonsen, Daniel; Spaich, Erika G; Hansen, John; Andersen, Ole K

    2016-10-26

    This paper describes the design of a FES system automatically controlled in a closed loop using a Microsoft Kinect sensor, for assisting both cylindrical grasping and hand opening. The feasibility of the system was evaluated in real-time in stroke patients with hand function deficits. A hand function exercise was designed in which the subjects performed an arm and hand exercise in sitting position. The subject had to grasp one of two differently sized cylindrical objects and move it forward or backwards in the sagittal plane. This exercise was performed with each cylinder with and without FES support. Results showed that the stroke patients were able to perform up to 29% more successful grasps when they were assisted by FES. Moreover, the hand grasp-and-hold and hold-and-release durations were shorter for the smaller of the two cylinders. FES was appropriately timed in more than 95% of all trials indicating successful closed loop FES control. Future studies should incorporate options for assisting forward reaching in order to target a larger group of stroke patients.

  9. Development of an atmospheric monitoring plan for space station

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.

    1989-01-01

    An environmental health monitoring plan for Space Station will ensure crew health during prolonged habitation. The Space Station, Freedom, will operate for extended periods, 90+ days, without resupply. A regenerative, closed loop life support system will be utilized in order to minimize resupply logistics and costs. Overboard disposal of wastes and venting of gases to space will be minimal. All waste material will be treated and recycled. The concentrated wastes will be stabilized and stored for ground disposal. The expected useful life of the station (decades) and the diversity of materials brought aboard for experimental or manufacturing purposes, increases the likelihood of cabin contamination. Processes by which cabin contamination can occur include: biological waste production, material off-gassing, process leakage, accidental containment breach, and accumulation due to poor removal efficiencies of the purification units. An industrial hygiene approach was taken to rationalize monitoring needs and to identify the substances likely to be present, the amount, and their hazard.

  10. An Abnormal Increase of Fatigue Life with Dwell Time during Creep-Fatigue Deformation for Directionally Solidified Ni-Based Superalloy DZ445

    NASA Astrophysics Data System (ADS)

    Ding, Biao; Ren, Weili; Deng, Kang; Li, Haitao; Liang, Yongchun

    2018-03-01

    The paper investigated the creep-fatigue behavior for directionally solidified nickel-based superalloy DZ445 at 900 °C. It is found that the fatigue life shows an abnormal increase when the dwell time exceeds a critical value during creep-fatigue deformation. The area of hysteresis loop and fractograph explain the phenomenon quite well. The shortest life corresponds to the maximal area of hysteresis loop, i. e. the maximum energy to be consumed during the creep-fatigue cycle. The fractographic observation of failed samples further supports the abnormal behavior of fatigue life.

  11. Control and modeling of a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Babcock, P. S.; Nadel, M.

    1983-01-01

    Research topics that arise from the conceptualization of control for closed life support systems which are life support systems in which all or most of the mass is recycled are discussed. Modeling and control of uncertain and poorly defined systems, resource allocation in closed life support systems, and control structures or systems with delay and closure are emphasized.

  12. Development Specification for the Portable Life Support System (PLSS) Thermal Loop Pump

    NASA Technical Reports Server (NTRS)

    Anchondo, Ian; Campbell, Colin

    2017-01-01

    The AEMU Thermal Loop Pump Development Specification establishes the requirements for design, performance, and testing of the Water Pump as part of the Thermal System of the Advanced Portable Life Support System (PLSS). It is envisioned that the Thermal Loop Pump is a positive displacement pump that provides a repeatable volume of flow against a given range of back-pressures provided by the various applications. The intention is to operate the pump at a fixed speed for the given application. The primary system is made up of two identical and redundant pumps of which only one is in operation at given time. The Auxiliary Loop Pump is an identical pump design to the primary pumps but is operated at half the flow rate. Inlet positive pressure to the pumps is provided by the upstream Flexible Supply Assembly (FSA-431 and FSA-531) which are physically located inside the suit volume and pressurized by suit pressure. An integrated relief valve, placed in parallel to the pump's inlet and outlet protects the pump and loop from over-pressurization. An integrated course filter is placed upstream of the pump's inlet to provide filtration and prevent potential debris from damaging the pump.

  13. A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2001-01-01

    It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and economical way of exploring the concept of Robust inlet design, where the mission variables are brought directly into the inlet design process and insensitivity or robustness to the mission variables becomes a design objective.

  14. Micropollutants in closed life-support systems: the case of triclosan, a biocide excreted via urine

    NASA Astrophysics Data System (ADS)

    Mastroleo, Felice; Pycke, Benny; Boon, Nico; de Wever, Heleen; Hendrickx, Larissa; Mastroleo, Felice; Wattiez, Ruddy; Mergeay, Max; Verstraete, Willy

    OBJECTIVES: The impact of triclosan on the growth and physiology of the bacterium Rhodospirillum rubrum was studied in the frame of the regenerative life-support system, Micro- Ecological Life Support System Alternative (MELiSSA). A wide range of compounds, such as steroid hormones, pharmaceuticals and personal care products, might enter the life support system via the excrements that are to be treated and recycled. Triclosan was chosen as the first compound to be tested because MELiSSA is a closed system, which is consequently particularly sensitive to compounds inhibiting the microbial metabolism. Because triclosan is increasingly used as an antimicrobial biocide in hygienic formulations (such as toothpaste, mouthwash, deodorants, etc.) and due to its chemical stability, it is considered an emerging pollutant in terrestrial ecosystems. METHODS: In a first phase, the triclosan concentration expected in the life-support system was estimated, the Minimal Inhibitory Concentration (MIC) was determined via plating, and the effect on growth kinetics was assessed by comparing growth parameters in the Gompertz model. In a second phase, the secondary effects of triclosan on cell physiology and gene expression were studied through flow-cytometry and microarray analyses, respectively. RESULTS: Based on the pharmacokinetic data from literature, the predicted concentration range is estimated to be 6-25µg/L triclosan in the Rhodospirillum rubrum compartment of the MELiSSA. The minimal inhibitory concentration of triclosan was determined to be 71 µg/L after 7 days of exposure on Sistrom medium. Upon exposure to 50-200µg/L triclosan, triclosan-resistant mutants of Rhodospirillum rubrum arose spontaneously at high frequency (3.1 ∗ 10 - 4). Analysis of the growth kinetics of the wild-type revealed that triclosan causes an important elongation of the lag-phase and a decrease in growth rate. At concentrations higher than 75mg/L(LD = 500mg/L), triclosan is bactericidal to wild-type cells, which coincides with increased membrane permeability. Yet, triclosan depolarises the bacterial membrane by significantly reducing the membrane potential prior to being lethal. Therefore, the lysis of wild-type cells appears not to be directly associated with membrane depolarisation and is probably the result of a disturbance in the cellular envelope by triclosan. CONCLUSIONS: The triclosan concentrations expected in the MELiSSA are within the 'Predicted No Effect Concentration' range. In addition, the effect of triclosan on growth rate is minimal; even at sub-inhibitory effect concentrations, where triclosan is mainly influencing the lag-phase instead of the growth rate. Efficient reactor operation will therefore remain unchanged with slight modification of the operating parameters. However, since there are no clear indication that triclosan might be degraded in the system, except for the nitrifying compartment, triclosan might accumulate in the loop. Therefore, a thorough study of the effect of triclosan on the other compartments in the MELiSSA loop is desired, as well as potential countermeasures. Keywords: triclosan, Rhodospirillum rubrum, MELiSSA, microarray analysis, flow cytometry, chlorinated biphenylether, minimal inhibitory concentration.

  15. Development Specification for the FN-323/324, Oxygen Ventilation Loop Fan Assembly

    NASA Technical Reports Server (NTRS)

    Ralston, Russell; Campbell, Colin

    2017-01-01

    This specification establishes the requirements for design, performance, safety, and manufacture of the FN-323/324, Oxygen Ventilation Loop Fan Assembly as part of the Advanced EMU (AEMU) Portable Life Support System (PLSS). Fan development for the advanced Portable Life Support System (PLSS) began in 2009 with the development of Fan 1.0. This fan was used in PLSS 2.0 for circulation of the ventilation loop gas. Fan 2.0 was delivered in 2015 and will be used in the PLSS 2.5 Live Loads test series. This fan used the same motor as Fan 1.0, but had a larger volute and impeller in hopes of achieving lower speeds. The next iteration of the advanced PLSS fan is the subject of the requirements contained within this document, and will be used with the PLSS 2.5 -302 configuration.

  16. Advanced Hybrid Spacesuit Concept Featuring Integrated Open Loop and Closed Loop Ventilation Systems

    NASA Technical Reports Server (NTRS)

    Daniel, Brian A.; Fitzpatrick, Garret R.; Gohmert, Dustin M.; Ybarra, Rick M.; Dub, Mark O.

    2013-01-01

    A document discusses the design and prototype of an advanced spacesuit concept that integrates the capability to function seamlessly with multiple ventilation system approaches. Traditionally, spacesuits are designed to operate both dependently and independently of a host vehicle environment control and life support system (ECLSS). Spacesuits that operate independent of vehicle-provided ECLSS services must do so with equipment selfcontained within or on the spacesuit. Suits that are dependent on vehicle-provided consumables must remain physically connected to and integrated with the vehicle to operate properly. This innovation is the design and prototype of a hybrid spacesuit approach that configures the spacesuit to seamlessly interface and integrate with either type of vehicular systems, while still maintaining the ability to function completely independent of the vehicle. An existing Advanced Crew Escape Suit (ACES) was utilized as the platform from which to develop the innovation. The ACES was retrofitted with selected components and one-off items to achieve the objective. The ventilation system concept was developed and prototyped/retrofitted to an existing ACES. Components were selected to provide suit connectors, hoses/umbilicals, internal breathing system ducting/ conduits, etc. The concept utilizes a lowpressure- drop, high-flow ventilation system that serves as a conduit from the vehicle supply into the suit, up through a neck seal, into the breathing helmet cavity, back down through the neck seal, out of the suit, and returned to the vehicle. The concept also utilizes a modified demand-based breathing system configured to function seamlessly with the low-pressure-drop closed-loop ventilation system.

  17. Implementation of Sensor and Control Designs for Bioregenerative Systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro R. (Editor)

    1990-01-01

    The goal of the Spring 1990 EGM 4001 Design class was to design, fabricate, and test sensors and control systems for a closed loop life support system (CLLSS). The designs investigated were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center (KSC). Designs included a seed moisture content sensor, a porous medium wetness sensor, a plant health sensor, and a neural network control system. The seed group focused on the design and implementation of a sensor that could detect the moisture content of a seed batch. The porous medium wetness group concentrated on the development of a sensor to monitor the amount of nutrient solution within a porous plate incorporating either infrared reflectance or thermal conductance properties. The plant health group examined the possibility of remotely monitoring the health of the plants within the Biomass Production Chamber (BPC) using infrared reflectance properties. Finally, the neural network group concentrated on the ability to use parallel processing in order to control a robot arm and analyze the data from the health sensor to detect regions of a plant.

  18. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  19. Review and analysis of over 40 years of space plant growth systems

    NASA Astrophysics Data System (ADS)

    Zabel, P.; Bamsey, M.; Schubert, D.; Tajmar, M.

    2016-08-01

    The cultivation of higher plants occupies an essential role within bio-regenerative life support systems. It contributes to all major functional aspects by closing the different loops in a habitat like food production, CO2 reduction, O2 production, waste recycling and water management. Fresh crops are also expected to have a positive impact on crew psychological health. Plant material was first launched into orbit on unmanned vehicles as early as the 1960s. Since then, more than a dozen different plant cultivation experiments have been flown on crewed vehicles beginning with the launch of Oasis 1, in 1971. Continuous subsystem improvements and increasing knowledge of plant response to the spaceflight environment has led to the design of Veggie and the Advanced Plant Habitat, the latest in the series of plant growth systems. The paper reviews the different designs and technological solutions implemented in higher plant flight experiments. Using these analyses a comprehensive comparison is compiled to illustrate the development trends of controlled environment agriculture technologies in bio-regenerative life support systems, enabling future human long-duration missions into the solar system.

  20. Dynamic optimization of ISR sensors using a risk-based reward function applied to ground and space surveillance scenarios

    NASA Astrophysics Data System (ADS)

    DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.

    2012-06-01

    As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.

  1. Automatic control of finite element models for temperature-controlled radiofrequency ablation

    PubMed Central

    Haemmerich, Dieter; Webster, John G

    2005-01-01

    Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811

  2. Design and test hardware for a solar array switching unit

    NASA Technical Reports Server (NTRS)

    Patil, A. R.; Cho, B. H.; Sable, D.; Lee, F. C.

    1992-01-01

    This paper describes the control of a pulse width modulated (PWM) type sequential shunt switching unit (SSU) for spacecraft applications. It is found that the solar cell output capacitance has a significant impact on SSU design. Shorting of this cell capacitance by the PWM switch causes input current surges. These surges are minimized by the use of a series filter inductor. The system with a filter is analyzed for ripple and the control to output-voltage transfer function. Stable closed loop design considerations are discussed. The results are supported by modeling and measurements of loop gain and of closed-loop bus impedance on test hardware for NASA's 120 V Earth Observation System (EOS). The analysis and modeling are also applicable to NASA's 160 V Space Station power system.

  3. Closed-loop control of epileptiform activities in a neural population model using a proportional-derivative controller

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Song; Wang, Mei-Li; Li, Xiao-Li; Ernst, Niebur

    2015-03-01

    Epilepsy is believed to be caused by a lack of balance between excitation and inhibitation in the brain. A promising strategy for the control of the disease is closed-loop brain stimulation. How to determine the stimulation control parameters for effective and safe treatment protocols remains, however, an unsolved question. To constrain the complex dynamics of the biological brain, we use a neural population model (NPM). We propose that a proportional-derivative (PD) type closed-loop control can successfully suppress epileptiform activities. First, we determine the stability of root loci, which reveals that the dynamical mechanism underlying epilepsy in the NPM is the loss of homeostatic control caused by the lack of balance between excitation and inhibition. Then, we design a PD type closed-loop controller to stabilize the unstable NPM such that the homeostatic equilibriums are maintained; we show that epileptiform activities are successfully suppressed. A graphical approach is employed to determine the stabilizing region of the PD controller in the parameter space, providing a theoretical guideline for the selection of the PD control parameters. Furthermore, we establish the relationship between the control parameters and the model parameters in the form of stabilizing regions to help understand the mechanism of suppressing epileptiform activities in the NPM. Simulations show that the PD-type closed-loop control strategy can effectively suppress epileptiform activities in the NPM. Project supported by the National Natural Science Foundation of China (Grant Nos. 61473208, 61025019, and 91132722), ONR MURI N000141010278, and NIH grant R01EY016281.

  4. A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.

    PubMed

    Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin

    Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of a closed-loop DBS controller. A DBS controller based on a fuzzy expert system was devised to automatically control DBS according to the predicted physiological marker via a set of rules. The simulated experimental results demonstrate that the ceDBS based on the closed-loop control architecture not only reduced power consumption using the predictive physiological marker, but also achieved a desired level of physiological marker through the DBS controller. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform

    PubMed Central

    Newman, Jonathan P.; Zeller-Townson, Riley; Fong, Ming-Fai; Arcot Desai, Sharanya; Gross, Robert E.; Potter, Steve M.

    2013-01-01

    Single neuron feedback control techniques, such as voltage clamp and dynamic clamp, have enabled numerous advances in our understanding of ion channels, electrochemical signaling, and neural dynamics. Although commercially available multichannel recording and stimulation systems are commonly used for studying neural processing at the network level, they provide little native support for real-time feedback. We developed the open-source NeuroRighter multichannel electrophysiology hardware and software platform for closed-loop multichannel control with a focus on accessibility and low cost. NeuroRighter allows 64 channels of stimulation and recording for around US $10,000, along with the ability to integrate with other software and hardware. Here, we present substantial enhancements to the NeuroRighter platform, including a redesigned desktop application, a new stimulation subsystem allowing arbitrary stimulation patterns, low-latency data servers for accessing data streams, and a new application programming interface (API) for creating closed-loop protocols that can be inserted into NeuroRighter as plugin programs. This greatly simplifies the design of sophisticated real-time experiments without sacrificing the power and speed of a compiled programming language. Here we present a detailed description of NeuroRighter as a stand-alone application, its plugin API, and an extensive set of case studies that highlight the system’s abilities for conducting closed-loop, multichannel interfacing experiments. PMID:23346047

  6. Mechanical-thermal noise in drive-mode of a silicon micro-gyroscope.

    PubMed

    Yang, Bo; Wang, Shourong; Li, Hongsheng; Zhou, Bailing

    2009-01-01

    A new closed-loop drive scheme which decouples the phase and the gain of the closed-loop driving system was designed in a Silicon Micro-Gyroscope (SMG). We deduce the system model of closed-loop driving and use stochastic averaging to obtain an approximate "slow" system that clarifies the effect of thermal noise. The effects of mechanical-thermal noise on the driving performance of the SMG, including the noise spectral density of the driving amplitude and frequency, are derived. By calculating and comparing the noise amplitude due to thermal noise both in the opened-loop driving and in the closed-loop driving, we find that the closed-loop driving does not reduce the RMS noise amplitude. We observe that the RMS noise frequency can be reduced by increasing the quality factor and the drive amplitude in the closed-loop driving system. The experiment and simulation validate the feasibility of closed-loop driving and confirm the validity of the averaged equation and its stablility criterion. The experiment and simulation results indicate the electrical noise of closed-loop driving circuitry is bigger than the mechanical-thermal noise and as the driving mass decreases, the mechanical-thermal noise may get bigger than the electrical noise of the closed-loop driving circuitry.

  7. The modified Altemeier procedure for a loop colostomy prolapse.

    PubMed

    Watanabe, Makoto; Murakami, Masahiko; Ozawa, Yoshiaki; Uchida, Marie; Yamazaki, Kimiyasu; Fujimori, Akira; Otsuka, Koji; Aoki, Takeshi

    2015-11-01

    Loop colostomy prolapse is associated with an impaired quality of life. Surgical treatment may sometimes be required for cases that cannot be closed by colon colostomy because of high-risk morbidities or advanced disease. We applied the Altimeter operation for patients with transverse loop colostomy. The Altemeier operation is therefore indicated for rectal prolapse. This technique involves a simple operation, which includes a circumferential incision through the full thickness of the outer and inner cylinder of the prolapsed limb, without incising the abdominal wall, and anastomosis with sutures using absorbable thread. We performed the Altemeier operation for three cases of loop stomal prolapse. Those patients demonstrated no postoperative complications (including obstruction, prolapse recurrence, or hernia). Our findings suggest that this procedure is useful as an optional surgical treatment for cases of transverse loop colostomy prolapse as a permanent measure in patients with high-risk morbidities or advanced disease.

  8. Closing the Loop on Classroom Interventions

    ERIC Educational Resources Information Center

    McCue, Patrick

    2010-01-01

    No Child Left Behind's mandate to close the achievement gap for students with disabilities and the emergence of response to intervention (RTI) as a means to address students' learning needs have led many schools to use more preventive academic supports within the general education classroom. The use of a diagnostic, intervention-based approach to…

  9. Introduction to Life Support Systems

    NASA Technical Reports Server (NTRS)

    Perry, Jay

    2017-01-01

    This course provides an introduction to the design and development of life support systems to sustain humankind in the harsh environment of space. The life support technologies necessary to provide a respirable atmosphere and clean drinking water are emphasized in the course. A historical perspective, beginning with open loop systems employed aboard the earliest crewed spacecraft through the state-of-the-art life support technology utilized aboard the International Space Station today, will provide a framework for students to consider applications to possible future exploration missions and destinations which may vary greatly in duration and scope. Development of future technologies as well as guiding requirements for designing life support systems for crewed exploration missions beyond low-Earth orbit are also considered in the course.

  10. Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cale, James; Johnson, Brian; Dall'Anese, Emiliano

    Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.

  11. Mitigating Communication Delays in Remotely Connected Hardware-in-the-loop Experiments

    DOE PAGES

    Cale, James; Johnson, Brian; Dall'Anese, Emiliano; ...

    2018-03-30

    Here, this paper introduces a potential approach for mitigating the effects of communication delays between multiple, closed-loop hardware-in-the-loop experiments which are virtually connected, yet physically separated. The method consists of an analytical method for the compensation of communication delays, along with the supporting computational and communication infrastructure. The control design leverages tools for the design of observers for the compensation of measurement errors in systems with time-varying delays. The proposed methodology is validated through computer simulation and hardware experimentation connecting hardware-in-the-loop experiments conducted between laboratories separated by a distance of over 100 km.

  12. Heat Rejection Concepts for Lunar Fission Surface Power Applications

    NASA Technical Reports Server (NTRS)

    Siamidis, John

    2006-01-01

    This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.

  13. Closed-loop supply chain models with considering the environmental impact.

    PubMed

    Mohajeri, Amir; Fallah, Mohammad

    2014-01-01

    Global warming and climate changes created by large scale emissions of greenhouse gases are a worldwide concern. Due to this, the issue of green supply chain management has received more attention in the last decade. In this study, a closed-loop logistic concept which serves the purposes of recycling, reuse, and recovery required in a green supply chain is applied to integrate the environmental issues into a traditional logistic system. Here, we formulate a comprehensive closed-loop model for the logistics planning considering profitability and ecological goals. In this way, we can achieve the ecological goal reducing the overall amount of CO2 emitted from journeys. Moreover, the profitability criterion can be supported in the cyclic network with the minimum costs and maximum service level. We apply three scenarios and develop problem formulations for each scenario corresponding to the specified regulations and investigate the effect of the regulation on the preferred transport mode and the emissions. To validate the models, some numerical experiments are worked out and a comparative analysis is investigated.

  14. Mineral separation and recycle in a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.

    1982-01-01

    The background of the mineral nutrition needs of plants are examined along with the applicability of mineral control and separation to a controlled ecological life support system (CELSS). Steps that may be taken in a program to analytically define and experimentally test key mineral control concepts in the nutritional and waste processing loops of a CELSS are delineated.

  15. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate very high reliability of critical ECLSS and other technologies.

  16. Advanced support systems development and supporting technologies for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Li, Ku-Yen; Yaws, Carl L.; Mei, Harry T.; Nguyen, Vinh D.; Chu, Hsing-Wei

    1994-01-01

    A methyl acetate reactor was developed to perform a subscale kinetic investigation in the design and optimization of a full-scale metabolic simulator for long term testing of life support systems. Other tasks in support of the closed ecological life support system test program included: (1) heating, ventilation and air conditioning analysis of a variable pressure growth chamber, (2) experimental design for statistical analysis of plant crops, (3) resource recovery for closed life support systems, and (4) development of data acquisition software for automating an environmental growth chamber.

  17. Faster Array Training and Rapid Analysis for a Sensor Array Intended for an Event Monitor in Air

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Shevade, A. V.; Fonollosa, J.; Huerta, R.

    2013-01-01

    Environmental monitoring, in particular, air monitoring, is a critical need for human space flight. Both monitoring and life support systems have needs for closed loop process feedback and quality control for environmental factors. Monitoring protects the air environment and water supply for the astronaut crew and different sensors help ensure that the habitat falls within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the farther the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. There is an acknowledged need for an event monitor which samples the air continuously and provides near real-time information on changes in the air. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. We are working on a sensor array and new algorithms that will incorporate transient sensor responses in the analysis. Preliminary work has already showed more rapid quantification and identification of analytes and the potential for faster training time of the array. We will look at some of the factors that contribute to demonstrating faster training time for the array. Faster training will decrease the integrated sensor exposure to training analytes, which will also help extend sensor lifetime.

  18. Environmental control and life support system selection for the first Lunar outpost habitat

    NASA Technical Reports Server (NTRS)

    Adams, Alan

    1993-01-01

    The planning for and feasibility study of an early human return mission to the lunar surface has been undertaken. The First Lunar Outpost (FLO) Mission philosophy is to use existing or near-term technology to achieve a human landing on the lunar surface in the year 2000. To support the crew the lunar habitat for the FLO mission incorporates an environmental control/life support system (ECLSS) design which meets the mission requirements and balances fixed mass and consumable mass. This tradeoff becomes one of regenerable life support systems versus open-loop systems.

  19. Closing the loop.

    PubMed

    Dassau, E; Atlas, E; Phillip, M

    2010-02-01

    The dream of closing the loop is actually the dream of creating an artificial pancreas and freeing the patients from being involved with the care of their own diabetes. Insulin-dependent diabetes (type 1) is a chronic incurable disease which requires constant therapy without the possibility of any 'holidays' or insulin-free days. It means that patients have to inject insulin every day of their life, several times per day, and in order to do it safely they also have to measure their blood glucose levels several times per day. Patients need to plan their meals, their physical activities and their insulin regime - there is only very small room for spontaneous activities. This is why the desire for an artificial pancreas is so strong despite the fact that it will not cure the diabetic patients. Attempts to develop a closed-loop system started in the 1960s but never got to a clinical practical stage of development. In recent years the availability of continuous glucose sensors revived those efforts and stimulated the clinician and researchers to believe that closing the loop might be possible nowadays. Many papers have been published over the years describing several different ideas on how to close the loop. Most of the suggested systems have a sensing arm that measures the blood glucose repeatedly or continuously, an insulin delivery arm that injects insulin upon command and a computer that makes the decisions of when and how much insulin to deliver. The differences between the various published systems in the literature are mainly in their control algorithms. However, there are also differences related to the method and site of glucose measurement and insulin delivery. SC glucose measurements and insulin delivery are the most studied option but other combinations of insulin measurements and glucose delivery including intravascular and intraperitoneal (IP) are explored. We tried to select recent publications that we believe had influenced and inspired people interested in the field.

  20. The Orion Atmosphere Revitalization Technology in Manned Ambient Pressure Space Suit Testing

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System (ARS) for moderate duration missions of the Orion Multipurpose Crew Vehicle. The Orion ARS is designed to support not only open-cabin operations, tests of which have been reported in previous years at this conference, but also closed space suit-loop operations. A previous low-pressure suit loop test was performed with a human metabolic simulator, and humans wearing emergency masks were tested in a closed-loop configuration before that. In late 2011, simple tests were performed in a suit-loop configuration with human test subjects in prototype space suits with prototype umbilicals at ambient and two slightly above-ambient pressures. Trace contaminant filters and a prototype blower were also incorporated into the test rig. This paper discusses the performance of the ARS technology in that 2011 test configuration.

  1. Texas K-16 Reform: The El Paso Story.

    ERIC Educational Resources Information Center

    Bristol, Jack

    1999-01-01

    The University of Texas at El Paso has provided leadership and support for several collaborative K-16 reform activities. A closed-loop, K-12, preservice teacher preparation system supported by generous extramural funding has provided the university, community college, and local schools with opportunities for conversation, shared vision, and…

  2. Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery

    NASA Astrophysics Data System (ADS)

    Gomez-Rodriguez, M.; Peters, J.; Hill, J.; Schölkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M.

    2011-06-01

    The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.

  3. The MELISSA food data base: space food preparation and process optimization

    NASA Astrophysics Data System (ADS)

    Creuly, Catherine; Poughon, Laurent; Pons, A.; Farges, Berangere; Dussap, Claude-Gilles

    Life Support Systems have to deal with air, water and food requirement for a crew, waste management and also to the crew's habitability and safety constraints. Food can be provided from stocks (open loops) or produced during the space flight or on an extraterrestrial base (what implies usually a closed loop system). Finally it is admitted that only biological processes can fulfil the food requirement of life support system. Today, only a strictly vegetarian source range is considered, and this is limited to a very small number of crops compared to the variety available on Earth. Despite these constraints, a successful diet should have enough variety in terms of ingredients and recipes and sufficiently high acceptability in terms of acceptance ratings for individual dishes to remain interesting and palatable over a several months period and an adequate level of nutrients commensurate with the space nutritional requirements. In addition to the nutritional aspects, others parameters have to be considered for the pertinent selection of the dishes as energy consumption (for food production and transformation), quantity of generated waste, preparation time, food processes. This work concerns a global approach called MELISSA Food Database to facilitate the cre-ation and the management of these menus associated to the nutritional, mass, energy and time constraints. The MELISSA Food Database is composed of a database (MySQL based) con-taining multiple information among others crew composition, menu, dishes, recipes, plant and nutritional data and of a web interface (PHP based) to interactively access the database and manage its content. In its current version a crew is defined and a 10 days menu scenario can be created using dishes that could be cooked from a set of limited fresh plant assumed to be produced in the life support system. The nutritional covering, waste produced, mass, time and energy requirements are calculated allowing evaluation of the menu scenario and its interactions with the life support system and filled with the information on food processes and equipment suitable for use in Advanced Life Support System. The MELISSA database is available on the server of the University Blaise Pascal (Clermont Université) with an authorized access at the address http://marseating.univ-bpclermont.fr. In the future, the challenge is to complete this database with specific data related to the MELISSA project. Plants chambers in the pilot plant located in Universitat Aut`noma de Barcelona will give nutritional and process data on crops cultivation.

  4. A novel system for automated propofol sedation: hybrid sedation system (HSS).

    PubMed

    Zaouter, Cedrick; Taddei, Riccardo; Wehbe, Mohamad; Arbeid, Erik; Cyr, Shantale; Giunta, Francesco; Hemmerling, Thomas M

    2017-04-01

    Closed-loop systems for propofol have been demonstrated to be safe and reliable for general anesthesia. However, no study has been conducted using a closed-loop system specifically designed for sedation in patients under spinal anesthesia. We developed an automatic anesthesia sedation system that allows for closed-loop delivery of propofol for sedation integrating a decision support system, called the hybrid sedation system (HSS). The objective of this study is to compare this system with standard practice. One hundred fifty patients were enrolled and randomly assigned to two groups: HSS-Group (N = 75), in which propofol was administered using a closed-loop system; Control Group (N = 75), in which propofol was delivered manually. The clinical performance of the propofol sedation control is defined as efficacy to maintain bispectral index (BIS) near 65. The clinical control was called 'Excellent', 'Good', 'Poor' and 'Inadequate' with BIS values within 10 %, from 11 to 20 %, 21 to 30 %, or greater than 30 % of the BIS target of 65, respectively. The controller performance was evaluated using Varvel's parameters. Data are presented as mean ± standard deviation, groups were compared using t test or Chi square test, P < 0.05. Clinical performance of sedation showed 'Excellent' control in the HSS-group for a significantly longer period of time (49 vs. 26 % in the control group, P < 0.0001). 'Poor' and 'Inadequate' sedation was significantly shorter in the HSS Group compared to the Control Group (11 and 10 % vs. 20 and 18 %, respectively, P < 0.0001). The novel, closed-loop system for propofol sedation showed better maintenance of the target BIS value compared to manual administration.

  5. Closing loop base pairs in RNA loop-loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Fernandez-Carmona, Juan; Condom, Roger; Cabrol-Bass, Daniel

    2004-12-01

    Nanosecond molecular dynamics using the Ewald summation method have been performed to elucidate the structural and energetic role of the closing base pair in loop-loop RNA duplexes neutralized by Mg2+ counterions in aqueous phases. Mismatches GA, CU and Watson-Crick GC base pairs have been considered for closing the loop of an RNA in complementary interaction with HIV-1 TAR. The simulations reveal that the mismatch GA base, mediated by a water molecule, leads to a complex that presents the best compromise between flexibility and energetic contributions. The mismatch CU base pair, in spite of the presence of an inserted water molecule, is too short to achieve a tight interaction at the closing-loop junction and seems to force TAR to reorganize upon binding. An energetic analysis has allowed us to quantify the strength of the interactions of the closing and the loop-loop pairs throughout the simulations. Although the water-mediated GA closing base pair presents an interaction energy similar to that found on fully geometry-optimized structure, the water-mediated CU closing base pair energy interaction reaches less than half the optimal value.

  6. Advanced Life Support Systems: Opportunities for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Fields, B.; Henninger, D.; Ming, D.; Verostko, C. E.

    1994-01-01

    NASA's future missions to explore the solar system will be of long-duration possibly lasting years at a time. Human life support systems will have to operate with very high reliability for these long periods with essentially no resupply from Earth. Such life support systems will make extensive use of higher plants, microorganisms, and physicochemical processes for recycling air and water, processing wastes, and producing food. Development of regenerative life support systems will be a pivotal capability for NASA's future human missions. A fully functional closed loop human life support system currently does not exist and thus represents a major technical challenge for space exploration. Technologies where all life support consumables are recycled have many potential terrestrial applications as well. Potential applications include providing human habitation in hostile environments such as the polar regions or the desert in such a way as to minimize energy expenditures and to minimize negative impacts on those often ecologically-sensitive areas. Other potential applications include production of food and ornamental crops without damaging the environment from fertilizers that contaminate water supplies; removal of trace gas contaminants from tightly sealed, energy-efficient buildings (the so-called sick building syndrome); and even the potential of gaining insight into the dynamics of the Earth's biosphere such that we can better manage our global environment. Two specific advanced life support technologies being developed by NASA, with potential terrestrial application, are the zeoponic plant growth system and the Hybrid Regenerative Water Recovery System (HRWRS). The potential applications for these candidate dual use technologies are quite different as are the mechanisms for transfer. In the case of zeoponics, a variety of commercial applications has been suggested which represent potentially lucrative markets. Also, the patented nature of this product offers opportunities for licensing to commercial entities. In the case of the HRWRS, commercial markets with broad applications have not been identified but some terrestrial applications are being explored where this approach has advantages over other methods of waste water processing. Although these potential applications do not appear to have the same broad attraction from the standpoint of rapid commercialization, they represent niches where commercialization possibilities as well as social benefits could be realized.

  7. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.; Cox, Marlon R.

    2010-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In three previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology. That testing was performed in a sea-level pressure environment with both simulated and real human metabolic loads, and in both open and closed-loop configurations. The Orion ARS is designed to also support space-suited operations in a depressurized cabin, so the next step in developmental testing at JSC was to test the ARS technology in a typical closed space suit-loop environment with low-pressure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure, high-oxygen, closed-loop testing of the Orion ARS technology, and it was conducted with simulated human metabolic loads in March 2009. The test investigated pressure drops and flow balancing through two different styles of prototype suit umbilical connectors. General swing-bed performance was tested with both umbilical configurations, as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable suit atmospheric CO2 and moisture levels.

  8. Method for Determination of Less Than 5 ppm Oxygen in Sodium Samples

    NASA Technical Reports Server (NTRS)

    Reid, R. S.; Martin, J. J.; Schmidt, G. L.

    2005-01-01

    Alkali metals used in pumped loops or heat pipes must be sufficiently free of nonmetallic impurities to ensure long heat rejection system life. Life issues are well established for alkali metal systems. Impurities can form ternary compounds between the container and working fluid, leading to corrosion. This Technical Memorandum discusses the consequences of impurities and candidate measurement techniques to determine whether impurities have been reduced to suf.ciently low levels within a single-phase liquid metal loop or a closed two-phase heat transfer system, such as a heat pipe. These techniques include the vanadium wire equilibration, neutron activation analysis, plug traps, distillation, and chemical analysis. Conceptual procedures for performing vanadium wire equilibration purity measurements on sodium contained in a heat pipe are discussed in detail.

  9. The Learning Thermometer: Closing the Loop between Teaching, Learning, Wellbeing and Support in Universities

    ERIC Educational Resources Information Center

    Stallman, Helen M.; King, Sharron

    2016-01-01

    The increasing awareness and impact of mental health problems in university students in addition to a need for objective measures of teaching quality provide the impetus for a new approach to supporting students. There is a need for more effective tools that integrate the institutional silos of teaching, learning, support, and wellbeing to help…

  10. ORION Environmental Control and Life Support Systems Suit Loop and Pressure Control Analysis

    NASA Technical Reports Server (NTRS)

    Eckhardt, Brad; Conger, Bruce; Stambaugh, Imelda C.

    2015-01-01

    Under NASA's ORION Multi-Purpose Crew Vehicle (MPCV) Environmental Control and Life Support System (ECLSS) Project at Johnson Space Center's (JSC), the Crew and Thermal Systems Division has developed performance models of the air system using Thermal Desktop/FloCAD. The Thermal Desktop model includes an Air Revitalization System (ARS Loop), a Suit Loop, a Cabin Loop, and Pressure Control System (PCS) for supplying make-up gas (N2 and O2) to the Cabin and Suit Loop. The ARS and PCS are designed to maintain air quality at acceptable O2, CO2 and humidity levels as well as internal pressures in the vehicle Cabin and during suited operations. This effort required development of a suite of Thermal Desktop Orion ECLSS models to address the need for various simulation capabilities regarding ECLSS performance. An initial highly detailed model of the ARS Loop was developed in order to simulate rapid pressure transients (water hammer effects) within the ARS Loop caused by events such as cycling of the Pressurized Swing Adsorption (PSA) Beds and required high temporal resolution (small time steps) in the model during simulation. A second ECLSS model was developed to simulate events which occur over longer periods of time (over 30 minutes) where O2, CO2 and humidity levels, as well as internal pressures needed to be monitored in the cabin and for suited operations. Stand-alone models of the PCS and the Negative Pressure relief Valve (NPRV) were developed to study thermal effects within the PCS during emergency scenarios (Cabin Leak) and cabin pressurization during vehicle re-entry into Earth's atmosphere. Results from the Orion ECLSS models were used during Orion Delta-PDR (July, 2014) to address Key Design Requirements (KDR's) for Suit Loop operations for multiple mission scenarios.

  11. Skylab observations of X-ray loops connecting separate active regions. [solar activity

    NASA Technical Reports Server (NTRS)

    Chase, R. C.; Krieger, A. S.; Svestka, Z.; Vaiana, G. S.

    1976-01-01

    One hundred loops interconnecting 94 separate active solar regions detectable in soft X-rays were identified during the Skylab mission. While close active regions are commonly interconnected with loops, the number of such interconnections decreases steeply for longer distances; the longest interconnecting loop observed in the Skylab data connected regions separated by 37 deg. Several arguments are presented which support the point of view that this is the actual limit of the size of magnetic interconnections between active regions. No sympathetic flares could be found in the interconnected regions. These results cast doubt on the hypothesis that accelerated particles can be guided in interconnecting loops from one active region to another over distances of 100 deg or more and eventually produce sympathetic flares in them.

  12. Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development

    DTIC Science & Technology

    2016-09-01

    ARL-TN-0779 ● SEP 2016 US Army Research Laboratory Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and...Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development by Neal Tesny Sensors and Electron Devices Directorate...TITLE AND SUBTITLE Electronic Warfare Closed Loop Laboratory (EWCLL) Antenna Motor Software and Hardware Development 5a. CONTRACT NUMBER 5b

  13. Closed-loop spontaneous baroreflex transfer function is inappropriate for system identification of neural arc but partly accurate for peripheral arc: predictability analysis

    PubMed Central

    Kamiya, Atsunori; Kawada, Toru; Shimizu, Shuji; Sugimachi, Masaru

    2011-01-01

    Abstract Although the dynamic characteristics of the baroreflex system have been described by baroreflex transfer functions obtained from open-loop analysis, the predictability of time-series output dynamics from input signals, which should confirm the accuracy of system identification, remains to be elucidated. Moreover, despite theoretical concerns over closed-loop system identification, the accuracy and the predictability of the closed-loop spontaneous baroreflex transfer function have not been evaluated compared with the open-loop transfer function. Using urethane and α-chloralose anaesthetized, vagotomized and aortic-denervated rabbits (n = 10), we identified open-loop baroreflex transfer functions by recording renal sympathetic nerve activity (SNA) while varying the vascularly isolated intracarotid sinus pressure (CSP) according to a binary random (white-noise) sequence (operating pressure ± 20 mmHg), and using a simplified equation to calculate closed-loop-spontaneous baroreflex transfer function while matching CSP with systemic arterial pressure (AP). Our results showed that the open-loop baroreflex transfer functions for the neural and peripheral arcs predicted the time-series SNA and AP outputs from measured CSP and SNA inputs, with r2 of 0.8 ± 0.1 and 0.8 ± 0.1, respectively. In contrast, the closed-loop-spontaneous baroreflex transfer function for the neural arc was markedly different from the open-loop transfer function (enhanced gain increase and a phase lead), and did not predict the time-series SNA dynamics (r2; 0.1 ± 0.1). However, the closed-loop-spontaneous baroreflex transfer function of the peripheral arc partially matched the open-loop transfer function in gain and phase functions, and had limited but reasonable predictability of the time-series AP dynamics (r2, 0.7 ± 0.1). A numerical simulation suggested that a noise predominantly in the neural arc under resting conditions might be a possible mechanism responsible for our findings. Furthermore, the predictabilities of the neural arc transfer functions obtained in open-loop and closed-loop conditions were validated by closed-loop pharmacological (phenylephrine and nitroprusside infusions) pressure interventions. Time-series SNA responses to drug-induced AP changes predicted by the open-loop transfer function matched closely the measured responses (r2, 0.9 ± 0.1), whereas SNA responses predicted by closed-loop-spontaneous transfer function deviated greatly and were the inverse of measured responses (r, −0.8 ± 0.2). These results indicate that although the spontaneous baroreflex transfer function obtained by closed-loop analysis has been believed to represent the neural arc function, it is inappropriate for system identification of the neural arc but is essentially appropriate for the peripheral arc under resting conditions, when compared with open-loop analysis. PMID:21486839

  14. Conditions for Stabilizability of Linear Switched Systems

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu

    2011-06-01

    This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.

  15. Inclusion of products of physicochemical oxidation of organic wastes in matter recycling of biological-technical life support systems.

    NASA Astrophysics Data System (ADS)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Trifonov, Sergei; Ushakova, Sofya

    Inclusion of products of human and plant wastes' `wet' incineration in 22 medium using alter-nating current into matter recycling of biological-technical life support system (BTLSS) has been considered. Fluid and gaseous components have been shown to be the products of such processing. In particular, the final product contained all necessary for plant cultivation nitrogen forms: NO2, NO3, NH4+. As the base solution included urine than NH4+ form dominated. At human solid wastes' mineralization NO2 NH4+ were registered in approximately equal amount. Comparative analysis of mineral composition of oxidized human wastes' and standard Knop solutions has been carried out. On the grounds of that analysis the dilution methods of solutions prepared with addition of oxidized human wastes for their further use for plant irrigation have been suggested. Reasonable levels of wheat productivity cultivated at use of given solutions have been obtained. CO2, N2 and O2 have been determined to be the main gas components of the gas admixture emitted within the given process. These gases easily integrate in matter recycling process of closed ecosystem. The data of plants' cultivation feasibility in the atmosphere obtained after closing of gas loop including physicochemical facility and vegetation chamber with plants-representatives of LSS phototrophic unit has been received. Conclusion of advance research on creation of matter recycling process in the integrated physical-chemical-biological model system has been drawn.

  16. A coated-wire ion-selective electrode for ionic calcium measurements

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Arnaud, Sara; Madou, Marc; Joseph, Jose; Jina, Arvind

    1991-01-01

    A coated-wire ion-selective electrode for measuring ionic calcium was developed, in collaboration with Teknektron Sensor Development Corporation (TSDC). This coated wire electrode sensor makes use of advanced, ion-responsive polyvinyl chloride (PVC) membrane technology, whereby the electroactive agent is incorporated into a polymeric film. The technology greatly simplifies conventional ion-selective electrode measurement technology, and is envisioned to be used for real-time measurement of physiological and environment ionic constituents, initially calcium. A primary target biomedical application is the real-time measurement of urinary and blood calcium changes during extended exposure to microgravity, during prolonged hospital or fracture immobilization, and for osteoporosis research. Potential advanced life support applications include monitoring of calcium and other ions, heavy metals, and related parameters in closed-loop water processing and management systems. This technology provides a much simplified ionic calcium measurement capability, suitable for both automated in-vitro, in-vivo, and in-situ measurement applications, which should be of great interest to the medical, scientific, chemical, and space life sciences communities.

  17. Review and analysis of over 40 years of space plant growth systems.

    PubMed

    Zabel, P; Bamsey, M; Schubert, D; Tajmar, M

    2016-08-01

    The cultivation of higher plants occupies an essential role within bio-regenerative life support systems. It contributes to all major functional aspects by closing the different loops in a habitat like food production, CO2 reduction, O2 production, waste recycling and water management. Fresh crops are also expected to have a positive impact on crew psychological health. Plant material was first launched into orbit on unmanned vehicles as early as the 1960s. Since then, more than a dozen different plant cultivation experiments have been flown on crewed vehicles beginning with the launch of Oasis 1, in 1971. Continuous subsystem improvements and increasing knowledge of plant response to the spaceflight environment has led to the design of Veggie and the Advanced Plant Habitat, the latest in the series of plant growth systems. The paper reviews the different designs and technological solutions implemented in higher plant flight experiments. Using these analyses a comprehensive comparison is compiled to illustrate the development trends of controlled environment agriculture technologies in bio-regenerative life support systems, enabling future human long-duration missions into the solar system. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  18. Biotechnology

    NASA Image and Video Library

    2003-02-09

    Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).

  19. Dwarf Wheat grown aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).

  20. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  1. A urine-fuelled soil-based bioregenerative life support system for long-term and long-distance manned space missions

    NASA Astrophysics Data System (ADS)

    Maggi, Federico; Tang, Fiona H. M.; Pallud, Céline; Gu, Chuanhui

    2018-05-01

    A soil-based cropping unit fuelled with human urine for long-term manned space missions was investigated with the aim to analyze whether a closed-loop nutrient cycle from human liquid wastes was achievable. Its ecohydrology and biogeochemistry were analysed in microgravity with the use of an advanced computational tool. Urine from the crew was used to supply primary (N, P, and K) and secondary (S, Ca and Mg) nutrients to wheat and soybean plants in the controlled cropping unit. Breakdown of urine compounds into primary and secondary nutrients as well as byproduct gases, adsorbed, and uptake fractions were tracked over a period of 20 years. Results suggested that human urine could satisfy the demand of at least 3 to 4 out of 6 nutrients with an offset in pH and salinity tolerable by plants. It was therefore inferred that a urine-fuelled life support system can introduce a number of advantages including: (1) recycling of liquids wastes and production of food; (2) forgiveness of neglect as compared to engineered electro-mechanical systems that may fail under unexpected or unplanned conditions; and (3) reduction of supply and waste loads during space missions.

  2. Neural Network Based Modeling and Analysis of LP Control Surface Allocation

    NASA Technical Reports Server (NTRS)

    Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen

    2003-01-01

    This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.

  3. The Rocketdyne Multifunction Tester. Part 2: Operation of a Radial Magnetic Bearing as an Excitation Source

    NASA Technical Reports Server (NTRS)

    Hawkins, L. A.; Murphy, Brian T.; Lang, K. W.

    1991-01-01

    The operation of the magnetic bearing used as an excitation source in the Rocketdyne Multifunction Tester is described. The tester is scheduled for operation during the summer of 1990. The magnetic bearing can be used in two control modes: (1) open loop mode, in which the magnetic bearing operates as a force actuator; and (2) closed loop mode, in which the magnetic bearing provides shaft support. Either control mode can be used to excite the shaft; however, response of the shaft in the two control modes is different due to the alteration of the eigenvalues by closed loop mode operation. A rotordynamic model is developed to predict the frequency response of the tester due to excitation in either control mode. Closed loop mode excitation is shown to be similar to the excitation produced by a rotating eccentricity in a conventional bearing. Predicted frequency response of the tester in the two control modes is compared, and the maximum response is shown to be the same for the two control modes when synchronous unbalance loading is not considered. The analysis shows that the response of this tester is adequate for the extraction of rotordynamic stiffness, damping, and inertia coefficients over a wide range of test article stiffnesses.

  4. Closed-Loop Supply Chain Models with Considering the Environmental Impact

    PubMed Central

    Fallah, Mohammad

    2014-01-01

    Global warming and climate changes created by large scale emissions of greenhouse gases are a worldwide concern. Due to this, the issue of green supply chain management has received more attention in the last decade. In this study, a closed-loop logistic concept which serves the purposes of recycling, reuse, and recovery required in a green supply chain is applied to integrate the environmental issues into a traditional logistic system. Here, we formulate a comprehensive closed-loop model for the logistics planning considering profitability and ecological goals. In this way, we can achieve the ecological goal reducing the overall amount of CO2 emitted from journeys. Moreover, the profitability criterion can be supported in the cyclic network with the minimum costs and maximum service level. We apply three scenarios and develop problem formulations for each scenario corresponding to the specified regulations and investigate the effect of the regulation on the preferred transport mode and the emissions. To validate the models, some numerical experiments are worked out and a comparative analysis is investigated. PMID:25309960

  5. Ultra Reliable Closed Loop Life Support for Long Space Missions

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  6. Cheshire charge in (3+1)-dimensional topological phases

    NASA Astrophysics Data System (ADS)

    Else, Dominic V.; Nayak, Chetan

    2017-07-01

    We show that (3 +1 ) -dimensional topological phases of matter generically support loop excitations with topological degeneracy. The loops carry "Cheshire charge": topological charge that is not the integral of a locally defined topological charge density. Cheshire charge has previously been discussed in non-Abelian gauge theories, but we show that it is a generic feature of all (3+1)-D topological phases (even those constructed from an Abelian gauge group). Indeed, Cheshire charge is closely related to nontrivial three-loop braiding. We use a dimensional reduction argument to compute the topological degeneracy of loop excitations in the (3 +1 ) -dimensional topological phases associated with Dijkgraaf-Witten gauge theories. We explicitly construct membrane operators associated with such excitations in soluble microscopic lattice models in Z2×Z2 Dijkgraaf-Witten phases and generalize this construction to arbitrary membrane-net models. We explain why these loop excitations are the objects in the braided fusion 2-category Z (2 VectGω) , thereby supporting the hypothesis that 2-categories are the correct mathematical framework for (3 +1 ) -dimensional topological phases.

  7. Comparative assessment of the efficacy of closed helical loop and T-loop for space closure in lingual orthodontics-a finite element study.

    PubMed

    Chacko, Ajay; Tikku, Tripti; Khanna, Rohit; Maurya, Rana Pratap; Srivastava, Kamna

    2018-05-28

    Retraction in lingual orthodontics has biomechanical differences when compared to labial orthodontics, which is not yet established. Thus, we have intended to compare the biomechanical characteristics of closed helical loop and T-loop on 1 mm activation with 30° of compensatory curvatures during retraction in lingual orthodontics. STb lingual brackets were indirectly bonded to maxillary typhodont model that was scanned to obtain FEM model. Closed helical loop (2 × 7 mm) and T-loop (6 × 2 × 7 mm) of 0.016″ × 0.016″ TMA wire were modeled without preactivation bends. Preactivation bends at 30° were given in the software. Boundary conditions were set. The force (F) and moment (M) of both the loops were determined on 1 mm activation, using ANSYS software. M/F ratio was also calculated for both the loops. T-loop exerted less force, thus increased M/F ratio as compared to closed helical loop on 1 mm activation. When torque has to be preserved in the anterior segment during retraction in lingual orthodontics, T-loop can be preferred over closed helical loop.

  8. Ground Source Heat Pumps vs. Conventional HVAC: A Comparison of Economic and Environmental Costs

    DTIC Science & Technology

    2009-03-26

    of systems are surface water heat pumps (SWHPs), ground water heat pumps (GWHPs), and ground coupled heat pumps ( GCHPs ) (Kavanaugh & Rafferty, 1997...Kavanaugh & Rafferty, 1997). Ground Coupled Heat Pumps (Closed-Loop Ground Source Heat Pumps) GCHPs , otherwise known as closed-loop GSHPs, are the...Significant confusion has arisen through the use of GCHP and closed-loop GSHP terminology. Closed-loop GSHP is the preferred nomenclature for this

  9. Closed-loop fiber optic gyroscope with homodyne detection

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Qin, BingKun; Chen, Shufen

    1996-09-01

    Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.

  10. Extending the Capabilities of Closed-loop Distributed Engine Control Simulations Using LAN Communication

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia Mae; Culley, Dennis E.

    2014-01-01

    Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.

  11. Two Topologically Distinct Dirac-Line Semimetal Phases and Topological Phase Transitions in Rhombohedrally Stacked Honeycomb Lattices

    NASA Astrophysics Data System (ADS)

    Hyart, T.; Ojajärvi, R.; Heikkilä, T. T.

    2018-04-01

    Three-dimensional topological semimetals can support band crossings along one-dimensional curves in the momentum space (nodal lines or Dirac lines) protected by structural symmetries and topology. We consider rhombohedrally (ABC) stacked honeycomb lattices supporting Dirac lines protected by time-reversal, inversion and spin rotation symmetries. For typical band structure parameters there exists a pair of nodal lines in the momentum space extending through the whole Brillouin zone in the stacking direction. We show that these Dirac lines are topologically distinct from the usual Dirac lines which form closed loops inside the Brillouin zone. In particular, an energy gap can be opened only by first merging the Dirac lines going through the Brillouin zone in a pairwise manner so that they turn into closed loops inside the Brillouin zone, and then by shrinking these loops into points. We show that this kind of topological phase transition can occur in rhombohedrally stacked honeycomb lattices by tuning the ratio of the tunneling amplitudes in the directions perpendicular and parallel to the layers. We also discuss the properties of the surface states in the different phases of the model.

  12. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  13. Balance control and anti-gravity muscle activity during the experience of fear at heights.

    PubMed

    Wuehr, Max; Kugler, Guenter; Schniepp, Roman; Eckl, Maria; Pradhan, Cauchy; Jahn, Klaus; Huppert, Doreen; Brandt, Thomas

    2014-02-01

    Fear of heights occurs when a visual stimulus causes the apprehension of losing balance and falling. A moderate form of visual height intolerance (vHI) affects about one third of the general population and has relevant consequences for the quality of life. A quantitative evaluation of balance mechanisms in persons susceptible to vHI during height exposure is missing. VHI-related changes in postural control were assessed by center-of-pressure displacements and electromyographic recordings of selected leg, arm, and neck muscles in 16 subjects with vHI while standing at heights on an emergency balcony versus standing in the laboratory at ground level. Characteristics of open- and closed-loop postural control were analyzed. Body sway and muscle activity parameters were correlated with the subjective estimates of fear at heights. During height exposure, (1) open-loop control was disturbed by a higher diffusion activity (P < 0.001) and (2) the sensory feedback threshold for closed-loop control was lowered (P < 0.010). Altered postural control was predominantly associated with increased co-contraction of leg muscles. Body sway and leg and neck muscle co-contraction correlated with the severity of subjective anxiety (P < 0.050). Alterations in postural control diminished if there were nearby stationary contrasts in the visual surrounding or if subjects stood with eyes closed. The performance of a cognitive dual task also improved impaired balance. Visual heights have two behavioral effects in vHI subjects: A change occurs in (1) open- and closed-loop postural control strategy and (2) co-contraction of anti-gravity leg and neck muscles, both of which depend on the severity of evoked fear at heights.

  14. Low Speed and High Speed Correlation of SMART Active Flap Rotor Loads

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi B. R.

    2010-01-01

    Measured, open loop and closed loop data from the SMART rotor test in the NASA Ames 40- by 80- Foot Wind Tunnel are compared with CAMRAD II calculations. One open loop high-speed case and four closed loop cases are considered. The closed loop cases include three high-speed cases and one low-speed case. Two of these high-speed cases include a 2 deg flap deflection at 5P case and a test maximum-airspeed case. This study follows a recent, open loop correlation effort that used a simple correction factor for the airfoil pitching moment Mach number. Compared to the earlier effort, the current open loop study considers more fundamental corrections based on advancing blade aerodynamic conditions. The airfoil tables themselves have been studied. Selected modifications to the HH-06 section flap airfoil pitching moment table are implemented. For the closed loop condition, the effect of the flap actuator is modeled by increased flap hinge stiffness. Overall, the open loop correlation is reasonable, thus confirming the basic correctness of the current semi-empirical modifications; the closed loop correlation is also reasonable considering that the current flap model is a first generation model. Detailed correlation results are given in the paper.

  15. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  16. Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section

    DTIC Science & Technology

    2016-10-01

    ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop ...ARL-TR-7860 ● OCT 2016 US Army Research Laboratory Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory...Design and Calibration of the US Army Research Laboratory (ARL) Closed Loop Laboratory Radio Frequency (RF) Propagation Section 5a. CONTRACT NUMBER

  17. Hypoglycaemia incidence and recovery during home use of hybrid closed-loop insulin delivery in adults with type 1 diabetes.

    PubMed

    Ruan, Yue; Bally, Lia; Thabit, Hood; Leelarathna, Lalantha; Hartnell, Sara; Tauschmann, Martin; Wilinska, Malgorzata E; Evans, Mark L; Mader, Julia K; Kojzar, Harald; Dellweg, Sibylle; Benesch, Carsten; Arnolds, Sabine; Pieber, Thomas R; Hovorka, Roman

    2018-03-25

    Glucose excursion was assessed prior to and post hypoglycaemia to increase understanding of hypoglycaemia incidence and recovery during hybrid closed-loop insulin delivery. We retrospectively analysed data from 60 adults with type 1 diabetes who received, in a crossover randomized design, day-and-night hybrid closed-loop insulin delivery and insulin pump therapy, the latter with or without real-time continuous glucose monitoring. Over 4-week study periods, we identified hypoglycaemic episodes, defined as sensor glucose <3.0 mmol/L, and analysed sensor glucose relative to the onset of hypoglycaemia. We identified 377 hypoglycaemic episodes during hybrid closed-loop intervention vs 662 during control intervention (P < .001), with a predominant reduction of nocturnal hypoglycaemia. The slope of sensor glucose prior to hypoglycaemia was steeper during closed-loop intervention than during control intervention (P < .01), while insulin delivery was reduced (P < .01). During both day and night, participants recovered from hypoglycaemia faster when treated by closed-loop intervention. At 120 minutes post hypoglycaemia, sensor glucose levels were higher during closed-loop intervention compared to the control period (P < .05). In conclusion, closed-loop intervention reduces the risk of hypoglycaemia, particularly overnight, with swift recovery from hypoglycaemia leading to higher 2-hour post-hypoglycaemia glucose levels. © 2018 John Wiley & Sons Ltd.

  18. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    PubMed

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  19. State estimation for advanced control of wave energy converters

    DOE Data Explorer

    Coe, Ryan; Bacelli, Giorgio

    2017-04-25

    A report on state estimation for advanced control of wave energy converters (WECs), with supporting data models and slides from the overview presentation. The methods discussed are intended for use to enable real-time closed loop control of WECs.

  20. A Closed-loop Brain Computer Interface to a Virtual Reality Avatar: Gait Adaptation to Visual Kinematic Perturbations

    PubMed Central

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-01-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915

  1. Bandwidth controller for phase-locked-loop

    NASA Technical Reports Server (NTRS)

    Brockman, Milton H. (Inventor)

    1992-01-01

    A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.

  2. Iterative LQG Controller Design Through Closed-Loop Identification

    NASA Technical Reports Server (NTRS)

    Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.

    1996-01-01

    This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.

  3. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds

    NASA Astrophysics Data System (ADS)

    Czupalla, M.; Horneck, G.; Blome, H. J.

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.

  4. The conceptual design of a hybrid life support system based on the evaluation and comparison of terrestrial testbeds.

    PubMed

    Czupalla, M; Horneck, G; Blome, H J

    2005-01-01

    This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  5. Closed-loop carrier phase synchronization techniques motivated by likelihood functions

    NASA Technical Reports Server (NTRS)

    Tsou, H.; Hinedi, S.; Simon, M.

    1994-01-01

    This article reexamines the notion of closed-loop carrier phase synchronization motivated by the theory of maximum a posteriori phase estimation with emphasis on the development of new structures based on both maximum-likelihood and average-likelihood functions. The criterion of performance used for comparison of all the closed-loop structures discussed is the mean-squared phase error for a fixed-loop bandwidth.

  6. Closed Field Coronal Heating Models Inspired by Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M. M.

    2013-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence dissipation (WTD) phenomenology for the heating of closed coronal loops. To do so, we employ an implementation of non-WKB equations designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic equations in 1D for an idealized loop, and the relevance to a range of solar conditions is established by computing solutions for several hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-sun and active region conditions. The importance of the self-reflection term in producing realistic heating scale heights and thermal non-equilibrium cycles is discussed, and preliminary 3D thermodynamic MHD simulations using this formulation are presented. Research supported by NASA and NSF.

  7. Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Sankovic, John; Lekan, Jack

    2006-01-01

    The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.

  8. Controlled Ecological Life Support System. Life Support Systems in Space Travel

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor); Klein, H. P. (Editor)

    1985-01-01

    Life support systems in space travel, in closed ecological systems were studied. Topics discussed include: (1) problems of life support and the fundamental concepts of bioregeneration; (2) technology associated with physical/chemical regenerative life support; (3) projection of the break even points for various life support techniques; (4) problems of controlling a bioregenerative life support system; (5) data on the operation of an experimental algal/mouse life support system; (6) industrial concepts of bioregenerative life support; and (7) Japanese concepts of bioregenerative life support and associated biological experiments to be conducted in the space station.

  9. Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Sanzi, James L.; Gibson, Marc A.; Sechkar, Edward A.

    2009-01-01

    Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise.

  10. A comparative approach to closed-loop computation.

    PubMed

    Roth, E; Sponberg, S; Cowan, N J

    2014-04-01

    Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. An approach to the mathematical modelling of a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Averner, M. M.

    1981-01-01

    An approach to the design of a computer based model of a closed ecological life-support system suitable for use in extraterrestrial habitats is presented. The model is based on elemental mass balance and contains representations of the metabolic activities of biological components. The model can be used as a tool in evaluating preliminary designs for closed regenerative life support systems and as a method for predicting the behavior of such systems.

  12. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton.

    PubMed

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement.

  13. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton

    PubMed Central

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement. PMID:27445658

  14. Experimental control of a fluidic pinball using genetic programming

    NASA Astrophysics Data System (ADS)

    Raibaudo, Cedric; Zhong, Peng; Noack, Bernd R.; Martinuzzi, Robert J.

    2017-11-01

    The wake stabilization of a triangular cluster of three rotating cylinders was investigated in the present study. Experiments were performed at Reynolds number Re 6000, and compared with URANS-2D simulations at same flow conditions. 2D2C PIV measurements and constant temperature anemometry were used to characterize the flow without and with actuation. Open-loop actuation was first considered for the identification of particular control strategies. Machine learning control was also implemented for the experimental study. Linear genetic programming has been used for the optimization of open-loop parameters and closed-loop controllers. Considering a cost function J based on the fluctuations of the velocity measured by the hot-wire sensor, significant performances were achieved using the machine learning approach. The present work is supported by the senior author's (R. J. Martinuzzi) NSERC discovery Grant. C. Raibaudo acknowledges the financial support of the University of Calgary Eyes-High PDF program.

  15. Man-Made Closed Ecological Systems as Model of Natural Ecosystems and as Means to Provide High Quality of Human Life in Adverse Environment

    NASA Technical Reports Server (NTRS)

    Gitelson, I. I.; Harper, Lynn (Technical Monitor)

    1994-01-01

    For its more than thirty year long history, the experimental creation of closed ecological systems has from its very sources been distinctly and strongly motivated by the development of human life-support systems for space. As the trend developed its fundamental significance and broad opportunities of terrestrial applications of the technologies under development were coming to the foreground. Nowadays, it can be argued that development of closed ecosystems is experimental foundation of a new branch of ecology biospherics, the goal of which is to comprehend the regularities of existence of the biosphere as a unique in the Universe (in that part of it that we know, at least) closed ecosystem. Closed technologies can be implemented in life-support systems under adverse conditions of life on the Earth - in Arctic and Antarctic latitudes, deserts, high mountains or deep in the ocean, as well as under the conditions of polluted water and air. In space where the environment is hostile for life all around the cell of life should be sealed and the life-support system as close to the ideally closed cyclic turnover of the matter as possible. Under terrestrial conditions designers should strive for maximum closure of the limiting factor: water - in deserts, oxygen - in high mountains, energy - in polar latitudes, etc. Essential closure of a life-support systems withstands also pollution of the environment by the wastes of human vital activity. This is of particular importance for the quarantine of visited planets, and on the Earth under the conditions of deficient heat in high latitudes and water in and areas. The report describes experimental ecosystem 'BIOS' and exohabitats being designed on its basis, which are adapted to various conditions, described capacities of the Center for Closed Ecosystems in Drasnoyarsk for international collaboration in research and education in this field.

  16. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    NASA Astrophysics Data System (ADS)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  17. Multiday Fully Closed Loop Insulin Delivery in Monitored Outpatient Conditions

    ClinicalTrials.gov

    2014-04-29

    To Demonstrate That the Closed Loop System Can be Used Safely Over a Few Consecutive Days.; To Assess Effectiveness in Maintaining Patients' Glucose Levels in the Target Range of 70 to 180 mg/dl, Measured by Blood Glucose Sensor.; To Evaluate the User Experience With a Closed Loop System

  18. Closed Loop Vibrational Control: Theory and Applications

    DTIC Science & Technology

    1993-10-01

    the open loop system dynamics will be close to that of Bit. However, in general, in a closed loop system with a specified feedback co-’ - oller , for...Juang, and G. Rodriguez , "Formulations and Applications of Large Structure Actuator and Sensor Placements," Second VPI & SU/AIAA Symposium on Dynamics

  19. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R. O.; Ollinger, O.; Venables, A.; Fernandez, E.

    1982-01-01

    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed.

  20. A dual closed-loop control system for mechanical ventilation.

    PubMed

    Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael

    2004-04-01

    Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.

  1. Robotic anesthesia: not the realm of science fiction any more.

    PubMed

    Hemmerling, Thomas M; Terrasini, Nora

    2012-12-01

    Robots are present in surgery, to a much lesser extent in the field of anesthesia. The purpose of this review is to show the latest and most important findings in robotic anesthesia. Moreover, this review argues the importance and utility of robots in anesthesia. Over the years, many closed-loop systems have been developed; they were able to control only one or two of the three components of anesthesia: hypnosis, analgesia, or muscle relaxation. McSleepy controls all three components of anesthesia, from induction to emergence of anesthesia. Telemedical applications have not only led to remote monitoring but even to remotely controlled anesthesia, such as transcontinental anesthesia. A new closed-loop system for sedation, called Sedasys, could revolutionize the field of nonoperating room sedation. 'Manual robots' are used to help and replace anesthesiologists performing anesthesia procedures. Specific robots for intubation and nerve blocks have been developed and tested in humans. Robots can improve performance in anesthesia and healthcare. Closed-loop systems are the basis for pharmacological robots. Safe anesthetic care might be delivered through teleanesthesia whenever qualified personnel are not available or need support. Mechanical robots are being developed for anesthesia care.

  2. Integrated Bio-ISRU and Life Support Systems at the Lunar Outpost: Concept and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Brown, I. I.; Garrison, D. H.; Allen, C. C.; Pickering, K.; Sarkisova, S. A.; Galindo, C., Jr.; Pan, D.; Foraker, E.; Mckay, D. S.

    2009-01-01

    We continue the development of our concept of a biotechnological loop for in-situ resource extraction along with propellant and food production at a future lunar outpost, based on the cultivation of litholytic cyanobacteria (LCB) with lunar regolith (LR) in a geobioreactor energized by sunlight. Our preliminary studies have shown that phototropic cultivation of LCB with simulants of LR in a low-mineralized medium supplemented with CO2 leads to rock dissolution (bioweathering) with the resulting accumulation of Fe, Mg and Al in cyanobacterial cells and in the medium. LCB cultivated with LR simulants produces more O2 than the same organisms cultivated in a high-mineralized medium. The loss of rock mass after bioweathering with LCB suggests the release of O from regolith. Further studies of chemical pathways of released O are required. The bioweathering process is limited by the availability of CO2, N, and P. Since lunar regolith is mainly composed of O, Si, Ca, Al and Mg, we propose to use organic waste to supply a geobioreactor with C, N and P. The recycling of organic waste, including urine, through a geobioreactor will allow for efficient element extraction as well as oxygen and biomass production. The most critical conclusion is that a biological life support system tied to a geobioreactor might be more efficient for supporting an extraterrestrial outpost than a closed environmental system.

  3. Closed-loop thrust and pressure profile throttling of a nitrous oxide/hydroxyl-terminated polybutadiene hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Peterson, Zachary W.

    Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.

  4. Bioregenerative system

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The design course is an eight semester credit multi-disciplinary engineering design course taught primarily to Engineering Science, Aerospace, Electrical and Mechanical Engineering seniors. This year the course project involved the design of the three interrelated loops: atmospheric, liquid nutrient and solid waste management, associated with growing higher plants to support man during long-term space missions. The project is complementary to the NASA Kennedy Space Center Controlled Environmental Life Support System (CELSS) project. The first semester the class worked on a preliminary design for a complete system. This effort included means for monitoring and control of composition, temperature, flow rate, etc., for the atmosphere and liquid nutrient solution; disease and contaminant monitoring and control; plant mechanical support, propagation and harvesting; solid and liquid waste recycling; and system maintenance and refurbishing. The project has significant biological, mechanical, electrical and Al/Robotics aspects. The second semester a small number of subsystems or components, identified as important and interesting during the first semester, were selected for detail design, fabrication, and testing. The class was supported by close cooperation with The Kennedy Space Center and by two teaching assistants. The availability of a dedicated, well equipped project room greatly enhanced the communication and team spirit of the class.

  5. Overview of the Environmental Control and Life Support System (ECLSS) Testing At MSFC

    NASA Technical Reports Server (NTRS)

    Traweek, Mary S.; Tatara, James D.

    1998-01-01

    Previously, almost all water used by the crew during space flight has been transported from earth or generated in-flight as a by-product of fuel cells. Additionally, this water has been stored and used for relatively short periods. To achieve the United States' commitment to a permanent manned presence in space, more innovative techniques are demanded. Over 20,000 pounds of water and large quantities of air would have to be transported to the International Space Station (ISS) every 90 days with a corresponding amount of waste returned to earth, for an 8-person crew. This approach results in prohibitive logistics costs, and necessitates near complete recovery and recycling of water. The potential hazards associated with long-term reuse of reclaimed water and revitalized air resulted in the recognition that additional characterization of closed-loop systems and products is essential. Integrated physical/chemical systems have been designed, assembled, and operated to provide air and potable water meeting ISS quality specifications. The purpose of the Environmental Control and Life Support System (ECLSS) test program at NASA's Marshall Space Flight Center is to conduct research related to the performance of the ISS and its Environmental Control components. The ECLSS Test Program encompasses the Water Recovery Test (WRT), the Integrated Air Revitalization Test (IART), and Life Testing, which permits ECLSS design evaluation. These subsystems revitalize air and reclaim waste waters representative of those to be generated on-orbit. This paper provides an overview of MSFC's 1997 ECLSS testing. Specific tests include: the Stage 10 Water Recovery Test; the Contaminant Injection Test; the Performance Enhancement Test and Life Testing of the Four Bed Molecular Sieve; the Oxygen Generator Assembly Life Test; and the ISS Water Distribution Biofilm Life Test.

  6. Gas exchange in NASA's biomass production chamber - A preprototype closed human life support system

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.; Wheeler, Raymond M.

    1992-01-01

    The unique capabilities of the NASA biomass production chamber for monitoring and evaluating gas exchange rates are examined. Special emphasis is given to results with wheat and soybeans. The potential of the chamber as a preprototype of a closed human life support system is considered.

  7. 78 FR 58535 - Hydropower Regulatory Efficiency Act of 2013; Supplemental Notice of Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... license for hydropower development at non-powered dams and closed-loop pumped storage projects in... for licensing hydropower development at non-powered dams and closed-loop pumped storage projects... closed- loop pumped storage) affect the steps included in a two-year process? 3.9 Should there be a...

  8. The Effects of Closed-Loop Medical Devices on the Autonomy and Accountability of Persons and Systems.

    PubMed

    Kellmeyer, Philipp; Cochrane, Thomas; Müller, Oliver; Mitchell, Christine; Ball, Tonio; Fins, Joseph J; Biller-Andorno, Nikola

    2016-10-01

    Closed-loop medical devices such as brain-computer interfaces are an emerging and rapidly advancing neurotechnology. The target patients for brain-computer interfaces (BCIs) are often severely paralyzed, and thus particularly vulnerable in terms of personal autonomy, decisionmaking capacity, and agency. Here we analyze the effects of closed-loop medical devices on the autonomy and accountability of both persons (as patients or research participants) and neurotechnological closed-loop medical systems. We show that although BCIs can strengthen patient autonomy by preserving or restoring communicative abilities and/or motor control, closed-loop devices may also create challenges for moral and legal accountability. We advocate the development of a comprehensive ethical and legal framework to address the challenges of emerging closed-loop neurotechnologies like BCIs and stress the centrality of informed consent and refusal as a means to foster accountability. We propose the creation of an international neuroethics task force with members from medical neuroscience, neuroengineering, computer science, medical law, and medical ethics, as well as representatives of patient advocacy groups and the public.

  9. 75 FR 16576 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  10. 77 FR 21835 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  11. 76 FR 21947 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  12. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  13. Preliminary demonstration of a robust controller design method

    NASA Technical Reports Server (NTRS)

    Anderson, L. R.

    1980-01-01

    Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.

  14. Methodology for Software Reliability Prediction. Volume 1.

    DTIC Science & Technology

    1987-11-01

    SPACECRAFT 0 MANNED SPACECRAFT B ATCH SYSTEM AIRBORNE AVIONICS 0 UNMANNED EVENT C014TROL a REAL TIME CLOSED 0 UNMANNED SPACECRAFT LOOP OPERATINS SPACECRAFT...software reliability. A Software Reliability Measurement Framework was established which spans the life cycle of a software system and includes the...specification, prediction, estimation, and assessment of software reliability. Data from 59 systems , representing over 5 million lines of code, were

  15. Automated hybrid closed-loop control with a proportional-integral-derivative based system in adolescents and adults with type 1 diabetes: individualizing settings for optimal performance.

    PubMed

    Ly, Trang T; Weinzimer, Stuart A; Maahs, David M; Sherr, Jennifer L; Roy, Anirban; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; Carria, Lori; Messer, Laurel; von Eyben, Rie; Buckingham, Bruce A

    2017-08-01

    Automated insulin delivery systems, utilizing a control algorithm to dose insulin based upon subcutaneous continuous glucose sensor values and insulin pump therapy, will soon be available for commercial use. The objective of this study was to determine the preliminary safety and efficacy of initialization parameters with the Medtronic hybrid closed-loop controller by comparing percentage of time in range, 70-180 mg/dL (3.9-10 mmol/L), mean glucose values, as well as percentage of time above and below target range between sensor-augmented pump therapy and hybrid closed-loop, in adults and adolescents with type 1 diabetes. We studied an initial cohort of 9 adults followed by a second cohort of 15 adolescents, using the Medtronic hybrid closed-loop system with the proportional-integral-derivative with insulin feed-back (PID-IFB) algorithm. Hybrid closed-loop was tested in supervised hotel-based studies over 4-5 days. The overall mean percentage of time in range (70-180 mg/dL, 3.9-10 mmol/L) during hybrid closed-loop was 71.8% in the adult cohort and 69.8% in the adolescent cohort. The overall percentage of time spent under 70 mg/dL (3.9 mmol/L) was 2.0% in the adult cohort and 2.5% in the adolescent cohort. Mean glucose values were 152 mg/dL (8.4 mmol/L) in the adult cohort and 153 mg/dL (8.5 mmol/L) in the adolescent cohort. Closed-loop control using the Medtronic hybrid closed-loop system enables adaptive, real-time basal rate modulation. Initializing hybrid closed-loop in clinical practice will involve individualizing initiation parameters to optimize overall glucose control. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1984-01-01

    A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  17. Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy

    NASA Astrophysics Data System (ADS)

    Sun, Yong-Zheng; Leng, Si-Yang; Lai, Ying-Cheng; Grebogi, Celso; Lin, Wei

    2017-11-01

    Controlling complex nonlinear networks is largely an unsolved problem at the present. Existing works focus either on open-loop control strategies and their energy consumptions or on closed-loop control schemes with an infinite-time duration. We articulate a finite-time, closed-loop controller with an eye toward the physical and mathematical underpinnings of the trade-off between the control time and energy as well as their dependence on the network parameters and structure. The closed-loop controller is tested on a large number of real systems including stem cell differentiation, food webs, random ecosystems, and spiking neuronal networks. Our results represent a step forward in developing a rigorous and general framework to control nonlinear dynamical networks with a complex topology.

  18. DC servomechanism parameter identification: a Closed Loop Input Error approach.

    PubMed

    Garrido, Ruben; Miranda, Roger

    2012-01-01

    This paper presents a Closed Loop Input Error (CLIE) approach for on-line parametric estimation of a continuous-time model of a DC servomechanism functioning in closed loop. A standard Proportional Derivative (PD) position controller stabilizes the loop without requiring knowledge on the servomechanism parameters. The analysis of the identification algorithm takes into account the control law employed for closing the loop. The model contains four parameters that depend on the servo inertia, viscous, and Coulomb friction as well as on a constant disturbance. Lyapunov stability theory permits assessing boundedness of the signals associated to the identification algorithm. Experiments on a laboratory prototype allows evaluating the performance of the approach. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Aquatic food production modules in bioregenerative life support systems based on higher plants

    NASA Astrophysics Data System (ADS)

    Bluem, V.; Paris, F.

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity.

  20. A urine-fuelled soil-based bioregenerative life support system for long-term and long-distance manned space missions.

    PubMed

    Maggi, Federico; Tang, Fiona H M; Pallud, Céline; Gu, Chuanhui

    2018-05-01

    A soil-based cropping unit fuelled with human urine for long-term manned space missions was investigated with the aim to analyze whether a closed-loop nutrient cycle from human liquid wastes was achievable. Its ecohydrology and biogeochemistry were analysed in microgravity with the use of an advanced computational tool. Urine from the crew was used to supply primary (N, P, and K) and secondary (S, Ca and Mg) nutrients to wheat and soybean plants in the controlled cropping unit. Breakdown of urine compounds into primary and secondary nutrients as well as byproduct gases, adsorbed, and uptake fractions were tracked over a period of 20 years. Results suggested that human urine could satisfy the demand of at least 3 to 4 out of 6 nutrients with an offset in pH and salinity tolerable by plants. It was therefore inferred that a urine-fuelled life support system can introduce a number of advantages including: (1) recycling of liquids wastes and production of food; (2) forgiveness of neglect as compared to engineered electro-mechanical systems that may fail under unexpected or unplanned conditions; and (3) reduction of supply and waste loads during space missions. Copyright © 2018 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that themore » lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.« less

  2. Theory and experiment research for ultra-low frequency maglev vibration sensor.

    PubMed

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  3. Theory and experiment research for ultra-low frequency maglev vibration sensor

    NASA Astrophysics Data System (ADS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  4. Research on the adaptive optical control technology based on DSP

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun

    2018-02-01

    Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.

  5. The results of the investigations of Russian Research Center - {open_quotes}Kurchatov Institute{close_quotes} on molten salt applications to problems of nuclear energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, V.M.

    1995-10-01

    The results of investigations on molten salt (MS) applications to problems of nuclear energy systems that have been conducted in Russian Research {open_quotes}Kurchatov Institute{close_quotes} are presented and discussed. The spectrum of these investigations is rather broad and covers the following items: physical characteristics of molten salt nuclear energy systems (MSNES); nuclear and radiation safety of MSNES; construction materials compatible with MS of different compositions; technological aspects of MS loops; in-reactor loop testing. It is shown that main findings of completed program support the conclusion that there are no physical nor technological obstacles on way of MS application to different nuclearmore » energy systems.« less

  6. Suggestions for Layout and Functional Behavior of Software-Based Voice Switch Keysets

    NASA Technical Reports Server (NTRS)

    Scott, David W.

    2010-01-01

    Marshall Space Flight Center (MSFC) provides communication services for a number of real time environments, including Space Shuttle Propulsion support and International Space Station (ISS) payload operations. In such settings, control team members speak with each other via multiple voice circuits or loops. Each loop has a particular purpose and constituency, and users are assigned listen and/or talk capabilities for a given loop based on their role in fulfilling the purpose. A voice switch is a given facility's hardware and software that supports such communication, and may be interconnected with other facilities switches to create a large network that, from an end user perspective, acts like a single system. Since users typically monitor and/or respond to several voice loops concurrently for hours on end and real time operations can be very dynamic and intense, it s vital that a control panel or keyset for interfacing with the voice switch be a servant that reduces stress, not a master that adds it. Implementing the visual interface on a computer screen provides tremendous flexibility and configurability, but there s a very real risk of overcomplication. (Remember how office automation made life easier, which led to a deluge of documents that made life harder?) This paper a) discusses some basic human factors considerations related to keysets implemented as application software windows, b) suggests what to standardize at the facility level and what to leave to the user's preference, and c) provides screen shot mockups for a robust but reasonably simple user experience. Concepts apply to keyset needs in almost any type of operations control or support center.

  7. Closing the Feedback Loop Is Not Enough: The Assessment Spiral

    ERIC Educational Resources Information Center

    Wehlburg, Catherine M.

    2007-01-01

    For quite some time, the call to close the feedback loop has been heard throughout higher education. Faculty and administrators have paid attention, and now they can more easily than ever point to the fact that at their institution, the feedback loop is almost always closed. As reviewers from accreditation teams visit campuses, they often hear…

  8. 78 FR 62322 - Hydropower Regulatory Efficiency Act of 2013; Notice of Rescheduled Two-Year Licensing Process...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-16

    ... at non-powered dams and closed-loop pumped storage projects in compliance with section 6 of the... process for licensing hydropower development at non-powered dams and closed-loop pumped storage projects...-powered dam versus closed- loop pumped storage) affect the steps included in a two-year process? 3.9...

  9. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.

    PubMed

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-04-21

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.

  10. Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat

    PubMed Central

    Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart

    2015-01-01

    Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892

  11. Performance constraints and compensation for teleoperation with delay

    NASA Technical Reports Server (NTRS)

    Mclaughlin, J. S.; Staunton, B. D.

    1989-01-01

    A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.

  12. Overnight closed-loop insulin delivery with model predictive control: assessment of hypoglycemia and hyperglycemia risk using simulation studies.

    PubMed

    Wilinska, Malgorzata E; Budiman, Erwin S; Taub, Marc B; Elleri, Daniela; Allen, Janet M; Acerini, Carlo L; Dunger, David B; Hovorka, Roman

    2009-09-01

    Hypoglycemia and hyperglycemia during closed-loop insulin delivery based on subcutaneous (SC) glucose sensing may arise due to (1) overdosing and underdosing of insulin by control algorithm and (2) difference between plasma glucose (PG) and sensor glucose, which may be transient (kinetics origin and sensor artifacts) or persistent (calibration error [CE]). Using in silico testing, we assessed hypoglycemia and hyperglycemia incidence during over-night closed loop. Additionally, a comparison was made against incidence observed experimentally during open-loop single-night in-clinic studies in young people with type 1 diabetes mellitus (T1DM) treated by continuous SC insulin infusion. Simulation environment comprising 18 virtual subjects with T1DM was used to simulate overnight closed-loop study with a model predictive control (MPC) algorithm. A 15 h experiment started at 17:00 and ended at 08:00 the next day. Closed loop commenced at 21:00 and continued for 11 h. At 18:00, protocol included meal (50 g carbohydrates) accompanied by prandial insulin. The MPC algorithm advised on insulin infusion every 15 min. Sensor glucose was obtained by combining model-calculated noise-free interstitial glucose with experimentally derived transient and persistent sensor artifacts associated with FreeStyle Navigator (FSN). Transient artifacts were obtained from FSN sensor pairs worn by 58 subjects with T1DM over 194 nighttime periods. Persistent difference due to FSN CE was quantified from 585 FSN sensor insertions, yielding 1421 calibration sessions from 248 subjects with diabetes. Episodes of severe (PG < or = 36 mg/dl) and significant (PG < or = 45 mg/dl) hypoglycemia and significant hyperglycemia (PG > or = 300 mg/dl) were extracted from 18,000 simulated closed-loop nights. Severe hypoglycemia was not observed when FSN CE was less than 45%. Hypoglycemia and hyperglycemia incidence during open loop was assessed from 21 overnight studies in 17 young subjects with T1DM (8 males; 13.5 +/- 3.6 years of age; body mass index 21.0 +/- 4.0 kg/m2; duration diabetes 6.4 +/- 4.1 years; hemoglobin A1c 8.5% +/- 1.8%; mean +/- standard deviation) participating in the Artificial Pancreas Project at Cambridge. Severe and significant hypoglycemia during simulated closed loop occurred 0.75 and 17.11 times per 100 person years compared to 1739 and 3479 times per 100 person years during experimental open loop, respectively. Significant hyperglycemia during closed loop and open loop occurred 75 and 15,654 times per 100 person years, respectively. The incidence of severe and significant hypoglycemia reduced 2300- and 200-fold, respectively, during stimulated overnight closed loop with MPC compared to that observed during open-loop overnight clinical studies in young subjects with T1DM. Hyperglycemia was 200 times less likely. Overnight closed loop with the FSN and the MPC algorithm is expected to reduce substantially the risk of hypoglycemia and hyperglycemia. 2009 Diabetes Technology Society.

  13. Fundamental Physics and Practical Applications of Electromagnetic Local Flow Control in High Speed Flows (Rutgers)

    DTIC Science & Technology

    2010-02-16

    field. Techniques utilizing this design use an open- loop control and no flow monitoring sensors are required. Conversely, reactive (or closed - loop ...and closed (dashed line) configuration. 38 closed configuration described above, the ambiguity in the critical limits of the transition...flow; a new vortex is then shed from the cavity leading edge, closing the feedback loop .[31] Open cavities with an L/D approximately greater than

  14. Direct-contact closed-loop heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.

  15. Assessing performance of closed-loop insulin delivery systems by continuous glucose monitoring: drawbacks and way forward.

    PubMed

    Hovorka, Roman; Nodale, Marianna; Haidar, Ahmad; Wilinska, Malgorzata E

    2013-01-01

    We investigated whether continuous glucose monitoring (CGM) levels can accurately assess glycemic control while directing closed-loop insulin delivery. Data were analyzed retrospectively from 33 subjects with type 1 diabetes who underwent closed-loop and conventional pump therapy on two separate nights. Glycemic control was evaluated by reference plasma glucose and contrasted against three methods based on Navigator (Abbott Diabetes Care, Alameda, CA) CGM levels. Glucose mean and variability were estimated by unmodified CGM levels with acceptable clinical accuracy. Time when glucose was in target range was overestimated by CGM during closed-loop nights (CGM vs. plasma glucose median [interquartile range], 86% [65-97%] vs. 75% [59-91%]; P=0.04) but not during conventional pump therapy (57% [32-72%] vs. 51% [29-68%]; P=0.82) providing comparable treatment effect (mean [SD], 28% [29%] vs. 23% [21%]; P=0.11). Using the CGM measurement error of 15% derived from plasma glucose-CGM pairs (n=4,254), stochastic interpretation of CGM gave unbiased estimate of time in target during both closed-loop (79% [62-86%] vs. 75% [59-91%]; P=0.24) and conventional pump therapy (54% [33-66%] vs. 51% [29-68%]; P=0.44). Treatment effect (23% [24%] vs. 23% [21%]; P=0.96) and time below target were accurately estimated by stochastic CGM. Recalibrating CGM using reference plasma glucose values taken at the start and end of overnight closed-loop was not superior to stochastic CGM. CGM is acceptable to estimate glucose mean and variability, but without adjustment it may overestimate benefit of closed-loop. Stochastic CGM provided unbiased estimate of time when glucose is in target and below target and may be acceptable for assessment of closed-loop in the outpatient setting.

  16. Comparison of cardiac output optimization with an automated closed-loop goal-directed fluid therapy versus non standardized manual fluid administration during elective abdominal surgery: first prospective randomized controlled trial.

    PubMed

    Lilot, Marc; Bellon, Amandine; Gueugnon, Marine; Laplace, Marie-Christine; Baffeleuf, Bruno; Hacquard, Pauline; Barthomeuf, Felicie; Parent, Camille; Tran, Thomas; Soubirou, Jean-Luc; Robinson, Philip; Bouvet, Lionel; Vassal, Olivia; Lehot, Jean-Jacques; Piriou, Vincent

    2018-01-27

    An intraoperative automated closed-loop system for goal-directed fluid therapy has been successfully tested in silico, in vivo and in a clinical case-control matching. This trial compared intraoperative cardiac output (CO) in patients managed with this closed-loop system versus usual practice in an academic medical center. The closed-loop system was connected to a CO monitoring system and delivered automated colloid fluid boluses. Moderate to high-risk abdominal surgical patients were randomized either to the closed-loop or the manual group. Intraoperative final CO was the primary endpoint. Secondary endpoints were intraoperative overall mean cardiac index (CI), increase from initial to final CI, intraoperative fluid volume and postoperative outcomes. From January 2014 to November 2015, 46 patients were randomized. There was a lower initial CI (2.06 vs. 2.51 l min -1 m -2 , p = 0.042) in the closed-loop compared to the control group. No difference in final CO and in overall mean intraoperative CI was observed between groups. A significant relative increase from initial to final CI values was observed in the closed-loop but not the control group (+ 28.6%, p = 0.006 vs. + 1.2%, p = 0.843). No difference was found for intraoperative fluid management and postoperative outcomes between groups. There was no significant impact on the primary study endpoint, but this was found in a context of unexpected lower initial CI in the closed-loop group.Trial registry number ID-RCB/EudraCT: 2013-A00770-45. ClinicalTrials.gov Identifier NCT01950845, date of registration: 17 September 2013.

  17. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.

    PubMed

    Du, Yu-Fan; He, Xin; Lan, Ning

    2010-01-01

    A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.

  18. Perception as a closed-loop convergence process.

    PubMed

    Ahissar, Ehud; Assa, Eldad

    2016-05-09

    Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception.

  19. Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Koppen, Daniel M.

    1997-01-01

    During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.

  20. Competition and quality in health care markets: a differential-game approach.

    PubMed

    Brekke, Kurt R; Cellini, Roberto; Siciliani, Luigi; Straume, Odd Rune

    2010-07-01

    We investigate the effect of competition on quality in health care markets with regulated prices taking a differential game approach, in which quality is a stock variable. Using a Hotelling framework, we derive the open-loop solution (health care providers set the optimal investment plan at the initial period) and the feedback closed-loop solution (providers move investments in response to the dynamics of the states). Under the closed-loop solution competition is more intense in the sense that providers observe quality in each period and base their investment on this information. If the marginal provision cost is constant, the open-loop and closed-loop solutions coincide, and the results are similar to the ones obtained by static models. If the marginal provision cost is increasing, investment and quality are lower in the closed-loop solution (when competition is more intense). In this case, static models tend to exaggerate the positive effect of competition on quality.

  1. New Directions for NASA's Advanced Life Support Program

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2006-01-01

    Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The Exploration Life Support (ELS) Project, under the Exploration Technology Development Program, has recently been initiated to perform directed life support technology development in support of Constellation and the Crew Exploration Vehicle (CEV). ELS) has replaced ALS, with several major differences. Thermal Control Systems have been separated into a new stand alone project (Thermal Systems for Exploration Missions). Tasks in Advanced Food Technology have been relocated to the Human Research Program. Tasks in a new discipline area, Habitation Engineering, have been added. Research and technology development for capabilities required for longer duration stays on the Moon and Mars, including bioregenerative system, have been deferred.

  2. Testing of a Neon Loop Heat Pipe for Large Area Cryocooling

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Robinson, Franklin Lee

    2014-01-01

    Cryocooling of large areas such as optics, detector arrays, and cryogenic propellant tanks is required for future NASA missions. A cryogenic loop heat pipe (CLHP) can provide a closed-loop cooling system for this purpose and has many advantages over other devices in terms of reduced mass, reduced vibration, high reliability, and long life. A neon CLHP was tested extensively in a thermal vacuum chamber using a cryopump as the heat sink to characterize its transient and steady performance and verify its ability to cool large areas or components. Tests conducted included loop cool-down from the ambient temperature, startup, power cycle, heat removal capability, loop capillary limit and recovery from a dry-out, low power operation, and long duration steady state operation. The neon CLHP demonstrated robust operation. The loop could be cooled from the ambient temperature to subcritical temperatures very effectively, and could start successfully by applying power to both the pump and evaporator without any pre-conditioning. It could adapt to changes in the pump power andor evaporator power, and reach a new steady state very quickly. The evaporator could remove heat loads between 0.25W and 4W. When the pump capillary limit was exceeded, the loop could resume its normal function by reducing the pump power. Steady state operations were demonstrated for up to 6 hours. The ability of the neon loop to cool large areas was therefore successfully verified.

  3. Space shuttle main engine definition (phase B). Volume 2: Avionics. [for space shuttle

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The advent of the space shuttle engine with its requirements for high specific impulse, long life, and low cost have dictated a combustion cycle and a closed loop control system to allow the engine components to run close to operating limits. These performance requirements, combined with the necessity for low operational costs, have placed new demands on rocket engine control, system checkout, and diagnosis technology. Based on considerations of precision environment, and compatibility with vehicle interface commands, an electronic control, makes available many functions that logically provide the information required for engine system checkout and diagnosis.

  4. Verification Processes in Recognition Memory: The Role of Natural Language Mediators

    ERIC Educational Resources Information Center

    Marshall, Philip H.; Smith, Randolph A. S.

    1977-01-01

    The existence of verification processes in recognition memory was confirmed in the context of Adams' (Adams & Bray, 1970) closed-loop theory. Subjects' recognition was tested following a learning session. The expectation was that data would reveal consistent internal relationships supporting the position that natural language mediation plays…

  5. [Habitability and biological life support systems for man].

    PubMed

    Gazenko, O G; Grigor'ev, A I; Meleshko, G I; Shepelev, E Ia

    1990-01-01

    This paper discusses general concepts and specific details of the habitability of space stations and planetary bases completely isolated from the Earth for long periods of time. It emphasizes inadequacy of the present-day knowledge about natural conditions that provide a biologically acceptable environment on the Earth as well as lack of information about life support systems as a source of consumables (oxygen, water, food) and a tool for waste management. The habitability of advanced space vehicles is closely related to closed bioregenerative systems used as life support systems.

  6. Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Belcastro, Celeste M.

    1997-01-01

    ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.

  7. Closed-Loop- and Decision-Assist-Guided Fluid Therapy of Human Hemorrhage.

    PubMed

    Hundeshagen, Gabriel; Kramer, George C; Ribeiro Marques, Nicole; Salter, Michael G; Koutrouvelis, Aristides K; Li, Husong; Solanki, Daneshvari R; Indrikovs, Alexander; Seeton, Roger; Henkel, Sheryl N; Kinsky, Michael P

    2017-10-01

    We sought to evaluate the efficacy, efficiency, and physiologic consequences of automated, endpoint-directed resuscitation systems and compare them to formula-based bolus resuscitation. Experimental human hemorrhage and resuscitation. Clinical research laboratory. Healthy volunteers. Subjects (n = 7) were subjected to hemorrhage and underwent a randomized fluid resuscitation scheme on separate visits 1) formula-based bolus resuscitation; 2) semiautonomous (decision assist) fluid administration; and 3) fully autonomous (closed loop) resuscitation. Hemodynamic variables, volume shifts, fluid balance, and cardiac function were monitored during hemorrhage and resuscitation. Treatment modalities were compared based on resuscitation efficacy and efficiency. All approaches achieved target blood pressure by 60 minutes. Following hemorrhage, the total amount of infused fluid (bolus resuscitation: 30 mL/kg, decision assist: 5.6 ± 3 mL/kg, closed loop: 4.2 ± 2 mL/kg; p < 0.001), plasma volume, extravascular volume (bolus resuscitation: 17 ± 4 mL/kg, decision assist: 3 ± 1 mL/kg, closed loop: -0.3 ± 0.3 mL/kg; p < 0.001), body weight, and urinary output remained stable under decision assist and closed loop and were significantly increased under bolus resuscitation. Mean arterial pressure initially decreased further under bolus resuscitation (-10 mm Hg; p < 0.001) and was lower under bolus resuscitation than closed loop at 20 minutes (bolus resuscitation: 57 ± 2 mm Hg, closed loop: 69 ± 4 mm Hg; p = 0.036). Colloid osmotic pressure (bolus resuscitation: 19.3 ± 2 mm Hg, decision assist, closed loop: 24 ± 0.4 mm Hg; p < 0.05) and hemoglobin concentration were significantly decreased after bolus fluid administration. We define efficacy of decision-assist and closed-loop resuscitation in human hemorrhage. In comparison with formula-based bolus resuscitation, both semiautonomous and autonomous approaches were more efficient in goal-directed resuscitation of hemorrhage. They provide favorable conditions for the avoidance of over-resuscitation and its adverse clinical sequelae. Decision-assist and closed-loop resuscitation algorithms are promising technological solutions for constrained environments and areas of limited resources.

  8. MELiSSA Food Characterization general approach and current status

    NASA Astrophysics Data System (ADS)

    Weihreter, Martin; Chaerle, Laury; Secco, Benjamin; Molders, Katrien; van der Straeten, Dominique; Duliere, Eric; Pieters, Serge; Maclean, Heather; Dochain, Denis; Quinet, Muriel; Lutts, Stanley; Graham, Thomas; Stasiak, Michael; Rondeau Vuk, Theresa; Zheng, Youbin; Dixon, Mike; Laniau, Martine; Larreture, Alain; Timsit, Michel; Aronne, Giovanna; Barbieri, Giancarlo; Buonomo, Roberta; Veronica; Paradiso, Roberta; de Pascale, Stafania; Galbiati, Massimo; Troia, A. R.; Nobili, Matteo; Bucchieri, Lorenzo; Page, Valérie; Feller, Urs; Lasseur, Christophe

    Higher plants play an important role in closed ecological life support systems as oxygen pro-ducers, carbon dioxide and water recyclers, and as a food source. For an integration of higher plant chambers into the MELiSSA (Micro Ecological Life Support System Alternative) loop, a detailed characterization and optimization of the full food production and preparation chain is needed. This implies the prediction and control of the nutritional quality of the final products consumed by the crew, the prediction of the wastes quality and quantity produced along the chain for further waste treatment (MELiSSA waste treatment) and the optimization of overall efficiencies. To reach this goal several issues have to be studied in an integrated manner: the physiological responses of crops to a range of environmental parameters, crop yield efficiencies and respective ratio and composition of edible and inedible biomass, the processability and storability of the produced food and last but not least composition of wastes in view of further degradation (fiber content). Within the Food Characterization (FC) project several compar-ative plant growth bench tests were carried out to obtain preliminary data regarding these aspects. Four pre-selected cultivars of each of the four energy-rich crops with worldwide usage -wheat, durum wheat, potato and soybean -were grown under well-characterized environmental conditions. The different cultivars of each species are screened for their performance in view of a closed loop application by parameter ranking. This comprises the characterization of edi-ble/inedible biomass ratio, nutritional quality, processability and overall performance under the specific conditions of hydroponic cultivation and artificial illumination. A second closely linked goal of the FC project is to develop a mechanistic physiological plant model, which will ease the integration of higher plants compartments in the MELiSSA concept by virtue of its predictive abilities. Available MELiSSA closed environment crop growth data were used to develop a first photosynthetic model representing the basic carbon fixation mechanisms. This model will be further elaborated in the course of this study to predict yield, oxygen production and transpi-ration. As an ultimate goal the model is intended to simulate the composition of the different plant organs (root, shoot, fruit/seed or tuber) for each crop under various conditions. For the validation of this model an extensive amount of data sets are needed. Current plant growth bench test setups will provide part of the required data. To gain more precise and detailed datasets, a highly closed plant growth chamber (Plant Characterization Unit, PCU) is under development. The PCU will provide accurate mass balances for carbon, water, oxygen and other elements with statistical reliability. This reliability is achieved through a high degree of closure and environment homogeneity. The PCU will also provide data for the above described plant characterization studies. The general work approach, the current status and future steps will be illustrated.

  9. Space Suit Environment Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Lin, Amy; Sweterlitsch, Jeffrey; Cox, Marlon

    2009-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Orion Atmosphere Revitalization System (ARS). In two previous years at this conference, reports were presented on extensive Johnson Space Center (JSC) testing of this technology in a sea-level pressure environment with simulated human metabolic loads. Another paper at this year s conference discusses similar testing with real human metabolic loads, including some closed-loop testing with emergency breathing masks. The Orion ARS is designed to also support extravehicular activity operations from a depressurized cabin. The next step in developmental testing at JSC was, therefore, to test this ARS technology in a typical closed space suit loop environment with low-pressure pure oxygen inside the process loop and vacuum outside the loop. This was the first instance of low-pressure oxygen loop testing of a new Orion ARS technology, and was conducted with simulated human metabolic loads in December 2008. The test investigated pressure drops through two different styles of prototype suit umbilical connectors and general swing-bed performance with both umbilical configurations as well as with a short jumper line installed in place of the umbilicals. Other interesting results include observations on the thermal effects of swing-bed operation in a vacuum environment and a recommendation of cycle time to maintain acceptable atmospheric CO2 and moisture levels.

  10. Sabatier Carbon Dioxide Reduction Assembly Development for Closed Loop Water Recovery

    NASA Technical Reports Server (NTRS)

    Smith, Frederick; Perry, Jay; Murdoch, Karen; Goldblatt, Loel

    2004-01-01

    The Sabatier Carbon Dioxide Reduction System (CRA) offers water recovery on a long duration space mission to reduce water resupply. Currently, NASA Johnson Space Center (JSC), NASA Marshall Space Flight Center (MSFC), Hamilton Sundstrand Space Systems International, Inc. (HSSSI), and Southwest Research Institute (SWRI) are working together to develop a Sabatier CRA for the International Space Station (ISS). This effort is being funded by the Office of Biological and Physical Research (Code U)/Advanced Life Support program which is administered by NASA JSC. The Sabatier CRA is the next step in closing the oxygen life support loop on future space missions. The Sabatier reaction combines the waste carbon dioxide (recovered from crew metabolism) with waste hydrogen (a byproduct of electrolysis to produce oxygen) to produce water and methane (CH4). On ISS, the methane would be vented overboard, however the methane can be utilized for propulsion during a planetary exploration mission. Based on a crew size of 7-equivalent people, the Sabatier CRA can produce as much a 2000 lb/year water. Use of the Sabatier CRA will significantly reduce the amount of water that needs to be resupplied to the ISS on a yearly basis, at a tremendous cost saving to the program. Additionally, by recycling this additional water, the Sabatier CRA enables additional launch capacity for science experiments to be brought up to the ISS. The NASA/Industry team noted above has been working to reduce technical risks associated with the Sabatier CRA system. To date the technical risks have been considerably reduced, bringing the Technology Readiness Level (TRL) from TRL 4 to TRL 5/6. In doing so, the team has developed the system schematic, system models, control scheme, produced engineering development unit (EDU) hardware, performed limited integration testing of the EDU's and verified system modeling through testing. Additionally, the system schematic has been evaluated for failure modes and hazards and had a successful technical review by the NASA Safety Board. The current focus is now related to development of the water/methane phase separator, liquid sensor and CO2 compressor piston seal life. The overall goal of the current effort is to bring the system up to a TRL6 by the end of GFY04. Although the Sabatier CRA is not currently baselined for use on the ISS, its benefits are significant enough such that volume within the Oxygen Generation System rack has been reserved for future installation. The value of the water the CRA recover will allow NASA the additional crew time and payload needed to pursue its mission of scientific research.

  11. Physical/chemical closed-loop water-recycling

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Wydeven, Theodore

    1991-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on Earth, in regions where extensive water recycling is needed or where advanced water treatment is essential to meet EPA health standards.

  12. Development of an Amine-based System for Combined Carbon Dioxide, Humidity, and Trace Contaminant Control

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Reiss, Julie; Filburn, Tom; Seery, Thomas; Smith, Fred; Perry, Jay

    2005-01-01

    A number of amine-based carbon dioxide (CO2) removal systems have been developed for atmosphere revitalization in closed loop life support systems. Most recently, Hamilton Sundstrand developed an amine-based sorbent, designated SA9T, possessing approximately 2-fold greater capacity compared to previous formulations. This new formulation has demonstrated applicability for controlling CO2 levels within vehicles and habitats as well as during extravehicular activity (EVA). System volume is competitive with existing technologies. Further enhancements in system performance can be realized by incorporating humidity and trace contaminant control functions within an amine-based atmosphere revitalization system. A 3-year effort to develop prototype hardware capable of removing CO2, H2O, and trace contaminants from a cabin atmosphere has been initiated. Progress pertaining to defining system requirements and identifying alternative amine formulations and substrates is presented.

  13. Knowledge Assisted Integrated Design of a Component and Its Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Gautham, B. P.; Kulkarni, Nagesh; Khan, Danish; Zagade, Pramod; Reddy, Sreedhar; Uppaluri, Rohith

    Integrated design of a product and its manufacturing processes would significantly reduce the total cost of the products as well as the cost of its development. However this would only be possible if we have a platform that allows us to link together simulations tools used for product design, performance evaluation and its manufacturing processes in a closed loop. In addition to that having a comprehensive knowledgebase that provides systematic knowledge guided assistance to product or process designers who may not possess in-depth design knowledge or in-depth knowledge of the simulation tools, would significantly speed up the end-to-end design process. In this paper, we propose a process and illustrate a case for achieving an integrated product and manufacturing process design assisted by knowledge support for the user to make decisions at various stages. We take transmission component design as an example. The example illustrates the design of a gear for its geometry, material selection and its manufacturing processes, particularly, carburizing-quenching and tempering, and feeding the material properties predicted during heat treatment into performance estimation in a closed loop. It also identifies and illustrates various decision stages in the integrated life cycle and discusses the use of knowledge engineering tools such as rule-based guidance, to assist the designer make informed decisions. Simulation tools developed on various commercial, open-source platforms as well as in-house tools along with knowledge engineering tools are linked to build a framework with appropriate navigation through user-friendly interfaces. This is illustrated through examples in this paper.

  14. Advanced Catalysts for the Ambient Temperature Oxidation of Carbon Monoxide and Formaldehyde

    NASA Technical Reports Server (NTRS)

    Nalette, Tim; Eldridge, Christopher; Yu, Ping; Alpetkin, Gokhan; Graf, John

    2010-01-01

    The primary applications for ambient temperature carbon monoxide (CO) oxidation catalysts include emergency breathing masks and confined volume life support systems, such as those employed on the Shuttle. While Hopcalite is typically used in emergency breathing masks for terrestrial applications, in the 1970s, NASA selected a 2% platinum (Pt) on carbon for use on the Shuttle since it is more active and also more tolerant to water vapor. In the last 10-15 years there have been significant advances in ambient temperature CO oxidation catalysts. Langley Research Center developed a monolithic catalyst for ambient temperature CO oxidation operating under stoichiometric conditions for closed loop carbon dioxide (CO2) laser applications which is also advertised as having the potential to oxidize formaldehyde (HCHO) at ambient temperatures. In the last decade it has been discovered that appropriate sized nano-particles of gold are highly active for CO oxidation, even at sub-ambient temperatures, and as a result there has been a wealth of data reported in the literature relating to ambient/low temperature CO oxidation. In the shorter term missions where CO concentrations are typically controlled via ambient temperature oxidation catalysts, formaldehyde is also a contaminant of concern, and requires specially treated carbons such as Calgon Formasorb as untreated activated carbon has effectively no HCHO capacity. This paper examines the activity of some of the newer ambient temperature CO and formaldehyde (HCHO) oxidation catalysts, and measures the performance of the catalysts relative to the NASA baseline Ambient Temperature Catalytic Oxidizer (ATCO) catalyst at conditions of interest for closed loop trace contaminant control systems.

  15. Night glucose control with MD-Logic artificial pancreas in home setting: a single blind, randomized crossover trial-interim analysis.

    PubMed

    Nimri, Revital; Muller, Ido; Atlas, Eran; Miller, Shahar; Kordonouri, Olga; Bratina, Natasa; Tsioli, Christiana; Stefanija, Magdalena A; Danne, Thomas; Battelino, Tadej; Phillip, Moshe

    2014-03-01

    Artificial pancreas (AP) systems have shown an improvement in glucose control and a reduced risk of nocturnal hypoglycemia under controlled conditions but remain to be evaluated under daily-life conditions. To assess the feasibility, safety, and efficacy of the MD-Logic AP in controlling nocturnal glucose levels in the patient's home. Two-arm study, each covering four consecutive nights comparing the MD-Logic AP ('closed-loop' arm) with sensor-augmented pump therapy ('control' arm). Fifteen patients (mean age 19 ± 10.4 yr, A1c 7.5 ± 0.5% or 58 ± 5.9 mmol/mol, diabetes duration 9.9 ± 8.2 yr) were randomly assigned either to 'Group A' (first 'closed-loop', then 'control' arm) or to 'Group B' (vice versa). Investigators were masked to treatment intervention. Primary endpoints were the time spent with glucose levels below 70 mg/dL and the percentage of nights in which the mean overnight glucose levels were within 90-140 mg/dL. Endpoint analyses were based on unmodified sensor glucose readings of the four study nights. Time of glucose levels spent below 70 mg/dL was significantly shorter on the closed-loop nights than on control nights, median and interquartile range 3.8 (0, 11.6) and 48.7 (0.6, 67.9) min, respectively; p = 0.0034. The percentage of individual nights in which mean overnight glucose level was within 90-140 mg/dL was 67 (33, 88), and 50 (25, 75), under closed-loop and control nights, respectively, with no statistical difference. Secondary endpoint analyses demonstrated significant improvements in hypoglycemia parameters. No serious adverse events were reported. This interim analysis demonstrates the feasibility, safety, and efficiency of the MD-Logic AP system in home use, and demonstrates an improvement over sensor-augmented pump therapy. (ClinicalTrials.gov identifier NCT01726829). © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Predictive lethal proarrhythmic risk evaluation using a closed-loop-circuit cell network with human induced pluripotent stem cells derived cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Hattori, Akihiro; Terazono, Hideyuki; Kim, Hyonchol; Odaka, Masao; Sugio, Yoshihiro; Yasuda, Kenji

    2016-06-01

    For the prediction of lethal arrhythmia occurrence caused by abnormality of cell-to-cell conduction, we have developed a next-generation in vitro cell-to-cell conduction assay, i.e., a quasi in vivo assay, in which the change in spatial cell-to-cell conduction is quantitatively evaluated from the change in waveforms of the convoluted electrophysiological signals from lined-up cardiomyocytes on a single closed loop of a microelectrode of 1 mm diameter and 20 µm width in a cultivation chip. To evaluate the importance of the closed-loop arrangement of cardiomyocytes for prediction, we compared the change in waveforms of convoluted signals of the responses in the closed-loop circuit arrangement with that of the response of cardiomyocyte clusters using a typical human ether a go-go related gene (hERG) ion channel blocker, E-4031. The results showed that (1) waveform prolongation and fluctuation both in the closed loops and clusters increased depending on the E-4031 concentration increase. However, (2) only the waveform signals in closed loops showed an apparent temporal change in waveforms from ventricular tachycardia (VT) to ventricular fibrillation (VF), which is similar to the most typical cell-to-cell conductance abnormality. The results indicated the usefulness of convoluted waveform signals of a closed-loop cell network for acquiring reproducible results acquisition and more detailed temporal information on cell-to-cell conduction.

  17. Real-Time Closed Loop Modulated Turbine Cooling

    NASA Technical Reports Server (NTRS)

    Shyam, Vikram; Culley, Dennis E.; Eldridge, Jeffrey; Jones, Scott; Woike, Mark; Cuy, Michael

    2014-01-01

    It has been noted by industry that in addition to dramatic variations of temperature over a given blade surface, blade-to-blade variations also exist despite identical design. These variations result from manufacturing variations, uneven wear and deposition over the life of the part as well as limitations in the uniformity of coolant distribution in the baseline cooling design. It is proposed to combine recent advances in optical sensing, actuation, and film cooling concepts to develop a workable active, closed-loop modulated turbine cooling system to improve by 10 to 20 the turbine thermal state over the flight mission, to improve engine life and to dramatically reduce turbine cooling air usage and aircraft fuel burn. A reduction in oxides of nitrogen (NOx) can also be achieved by using the excess coolant to improve mixing in the combustor especially for rotorcraft engines. Recent patents filed by industry and universities relate to modulating endwall cooling using valves. These schemes are complex, add weight and are limited to the endwalls. The novelty of the proposed approach is twofold 1) Fluidic diverters that have no moving parts are used to modulate cooling and can operate under a wide range of conditions and environments. 2) Real-time optical sensing to map the thermal state of the turbine has never been attempted in realistic engine conditions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerard, R.; Malekian, C.; Meessen, O.

    The Leak Before Break (LBB) concept allows to eliminate from the design basis the double-ended guillotine break of the primary loop piping, provided it can be demonstrated by a fracture mechanics analysis that a through-wall flaw, of a size giving rise to a leakage still well detectable by the plant leak detection systems, remains stable even under accident conditions (including the Safe Shutdown Earthquake (SSE)). This concept was successfully applied to the primary loop piping of several Belgian Pressurized Water Reactor (PWR) units, operated by the Utility Electrabel. One of the main benefits is to permit justification of supports inmore » the primary loop and justification of the integrity of the reactor pressure vessel and internals in case of a Loss Of Coolant Accident (LOCA) in stretch-out conditions. For two of the Belgian PWR units, the LBB approach also made it possible to reduce the number of large hydraulic snubbers installed on the primary coolant pumps. Last but not least, the LBB concept also facilitates the steam generator replacement operations, by eliminating the need for some pipe whip restraints located close to the steam generator. In addition to the U.S. regulatory requirements, the Belgian safety authorities impose additional requirements which are described in details in a separate paper. An novel aspect of the studies performed in Belgium is the way in which residual loads in the primary loop are taken into account. Such loads may result from displacements imposed to close the primary loop in a steam generator replacement operation, especially when it is performed using the {open_quote}two cuts{close_quotes} technique. The influence of such residual loads on the LBB margins is discussed in details and typical results are presented.« less

  19. Conformational Changes in Orotidine 5-Monophosphate Decarboxylase: "Remote" Residues That Stabilize the Active Conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B.; Amyes, T; Fedorov, A

    2010-01-01

    The structural factors responsible for the extraordinary rate enhancement ({approx}10{sup 17}) of the reaction catalyzed by orotidine 5{prime}-monophosphate decarboxylase (OMPDC) have not been defined. Catalysis requires a conformational change that closes an active site loop and 'clamps' the orotate base proximal to hydrogen-bonded networks that destabilize the substrate and stabilize the intermediate. In the OMPDC from Methanobacter thermoautotrophicus, a 'remote' structurally conserved cluster of hydrophobic residues that includes Val 182 in the active site loop is assembled in the closed, catalytically active conformation. Substitution of these residues with Ala decreases k{sub cat}/K{sub m} with a minimal effect on k{sub cat},more » providing evidence that the cluster stabilizes the closed conformation. The intrinsic binding energies of the 5{prime}-phosphate group of orotidine 5{prime}-monophosphate for the mutant enzymes are similar to that for the wild type, supporting this conclusion.« less

  20. Closing the Loop: A Study of How the National Survey of Student Engagement (NSSE) Is Used for Decision-Making and Planning in Student Affairs

    ERIC Educational Resources Information Center

    McCaul, Jennifer Lee

    2015-01-01

    "Closing the loop" is a commonly used phrase in discussing cyclical processes, such as the area of outcomes assessment in higher education. Increased interest in accountability and a shift in accreditation focus have necessitated that higher education institutions are closing the assessment loop and creating a culture of evidence to…

  1. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback.

    PubMed

    Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A

    2014-10-01

    Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide 'tactile' sensation to a non-human primate. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.

  2. Assessment of the Impacts of ACLS on the ISS Life Support System Using Dynamic Simulations in V-HAB

    NASA Technical Reports Server (NTRS)

    Putz, Daniel; Olthoff, Claas; Ewert, Michael; Anderson, Molly

    2016-01-01

    The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is the Virtual Habitat (V-HAB). Based on MATLAB, V-HAB has been under development at the Institute of Astronautics of the Technical University of Munich (TUM) since 2004 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large, ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside individual modules of the ISS by splitting it into twelve distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS Simulation and several different operating modes for both ACLS and the existing ISS life support systems are studied and the impacts of ACLS on the rest of the system are determined. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to a achieve a very low CO2 concentration in the cabin atmosphere.

  3. Assessment of the Impacts of ACLS on the ISS Life Support System using Dynamic Simulations in V-HAB

    NASA Technical Reports Server (NTRS)

    Puetz, Daniel; Olthoff, Claas; Ewert, Michael K.; Anderson, Molly S.

    2016-01-01

    The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is Virtual Habitat (V-HAB). Based on Matlab (Registered Trademark) V-HAB has been under development at the Institute of Astronautics of the Technical University Munich (TUM) since 2006 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside the individual modules of the ISS by splitting it into ten distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS simulation and different operating modes for both ACLS and the existing ISS life support systems are studied to determine the impacts of ACLS on the rest of the system. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to achieve the highest possible CO2 recycling together with a low CO2 concentration.

  4. Tonic accommodation predicts closed-loop accommodation responses.

    PubMed

    Liu, Chunming; Drew, Stefanie A; Borsting, Eric; Escobar, Amy; Stark, Lawrence; Chase, Christopher

    2016-12-01

    The purpose of this study is to examine the potential relationship between tonic accommodation (TA), near work induced TA-adaptation and the steady state closed-loop accommodation response (AR). Forty-two graduate students participated in the study. Various aspects of their accommodation system were objectively measured using an open-field infrared auto-refractor (Grand Seiko WAM-5500). Tonic accommodation was assessed in a completely dark environment. The association between TA and closed-loop AR was assessed using linear regression correlations and t-test comparisons. Initial mean baseline TA was 1.84diopter (D) (SD±1.29D) with a wide distribution range (-0.43D to 5.14D). For monocular visual tasks, baseline TA was significantly correlated with the closed-loop AR. The slope of the best fit line indicated that closed-loop AR varied by approximately 0.3D for every 1D change in TA. This ratio was consistent across a variety of viewing distances and different near work tasks, including both static targets and continuous reading. Binocular reading conditions weakened the correlation between baseline TA and AR, although results remained statistically significant. The 10min near reading task with a 3D demand did not reveal significant near work induced TA-adaptation for either monocular or binocular conditions. Consistently, the TA-adaptation did not show any correlation with AR during reading. This study found a strong association between open-loop TA and closed-loop AR across a variety of viewing distances and different near work tasks. Difference between the correlations under monocular and binocular reading condition suggests a potential role for vergence compensation during binocular closed-loop AR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.

    PubMed

    Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie

    2015-01-01

    Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.

  6. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.

    PubMed

    Arndt, Andreas; Nüsser, Peter; Graichen, Kurt; Müller, Johannes; Lampe, Bernhard

    2008-10-01

    A control strategy for rotary blood pumps meeting different user-selectable control objectives is proposed: maximum support with the highest feasible flow rate versus medium support with maximum ventricular washout and controlled opening of the aortic valve (AoV). A pulsatility index (PI) is calculated from the pressure difference, which is deduced from the axial thrust measured by the magnetic bearing of the pump. The gradient of PI with respect to pump speed (GPI) is estimated via online system identification. The outer loop of a cascaded controller regulates GPI to a reference value satisfying the selected control objective. The inner loop controls the PI to a reference value set by the outer loop. Adverse pumping states such as suction and regurgitation can be detected on the basis of the GPI estimates and corrected by the controller. A lumped-parameter computer model of the assisted circulation was used to simulate variations of ventricular contractility, pulmonary venous pressure, and aortic pressure. The performance of the outer control loop was demonstrated by transitions between the two control modes. Fast reaction of the inner loop was tested by stepwise reduction of venous return. For maximum support, a low PI was maintained without inducing ventricular collapse. For maximum washout, the pump worked at a high PI in the transition region between the opening and the permanently closed AoV. The cascaded control of GPI and PI is able to meet different control objectives and is worth testing in vitro and in vivo.

  7. Closed-loop analysis and control of a non-inverting buck-boost converter

    NASA Astrophysics Data System (ADS)

    Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong

    2010-11-01

    In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.

  8. Window-closing safety system

    DOEpatents

    McEwan, Thomas E.

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  9. Window-closing safety system

    DOEpatents

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  10. Partial synchronization of relaxation oscillators with repulsive coupling in autocatalytic integrate-and-fire model and electrochemical experiments

    NASA Astrophysics Data System (ADS)

    Kori, Hiroshi; Kiss, István Z.; Jain, Swati; Hudson, John L.

    2018-04-01

    Experiments and supporting theoretical analysis are presented to describe the synchronization patterns that can be observed with a population of globally coupled electrochemical oscillators close to a homoclinic, saddle-loop bifurcation, where the coupling is repulsive in the electrode potential. While attractive coupling generates phase clusters and desynchronized states, repulsive coupling results in synchronized oscillations. The experiments are interpreted with a phenomenological model that captures the waveform of the oscillations (exponential increase) followed by a refractory period. The globally coupled autocatalytic integrate-and-fire model predicts the development of partially synchronized states that occur through attracting heteroclinic cycles between out-of-phase two-cluster states. Similar behavior can be expected in many other systems where the oscillations occur close to a saddle-loop bifurcation, e.g., with Morris-Lecar neurons.

  11. MaTrace: tracing the fate of materials over time and across products in open-loop recycling.

    PubMed

    Nakamura, Shinichiro; Kondo, Yasushi; Kagawa, Shigemi; Matsubae, Kazuyo; Nakajima, Kenichi; Nagasaka, Tetsuya

    2014-07-01

    Even for metals, open-loop recycling is more common than closed-loop recycling due, among other factors, to the degradation of quality in the end-of-life (EoL) phase. Open-loop recycling is subject to loss of functionality of original materials, dissipation in forms that are difficult to recover, and recovered metals might need dilution with primary metals to meet quality requirements. Sustainable management of metal resources calls for the minimization of these losses. Imperative to this is quantitative tracking of the fate of materials across different stages, products, and losses. A new input-output analysis (IO) based model of dynamic material flow analysis (MFA) is presented that can trace the fate of materials over time and across products in open-loop recycling taking explicit consideration of losses and the quality of scrap into account. Application to car steel recovered from EoL vehicles (ELV) showed that after 50 years around 80% of the steel is used in products, mostly buildings and civil engineering (infrastructure), with the rest mostly resided in unrecovered obsolete infrastructure and refinery losses. Sensitivity analysis was conducted to evaluate the effects of changes in product lifespan, and the quality of scrap.

  12. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 11: Life support panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Life support technology requirements for long-term space habitation are identified with emphasis on regeneration capabilities and biological life support systems. Other topics discussed include: water recovery, oxygen recovery, waste management recycle, and a man-made closed ecology with selected biological species.

  13. Structural robustness with suboptimal responses for linear state space model

    NASA Technical Reports Server (NTRS)

    Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan

    1989-01-01

    A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.

  14. Closed-loop endo-atmospheric ascent guidance for reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Sun, Hongsheng

    This dissertation focuses on the development of a closed-loop endo-atmospheric ascent guidance algorithm for the 2nd generation reusable launch vehicle. Special attention has been given to the issues that impact on viability, complexity and reliability in on-board implementation. The algorithm is called once every guidance update cycle to recalculate the optimal solution based on the current flight condition, taking into account atmospheric effects and path constraints. This is different from traditional ascent guidance algorithms which operate in a simple open-loop mode inside atmosphere, and later switch to a closed-loop vacuum ascent guidance scheme. The classical finite difference method is shown to be well suited for fast solution of the constrained optimal three-dimensional ascent problem. The initial guesses for the solutions are generated using an analytical vacuum optimal ascent guidance algorithm. Homotopy method is employed to gradually introduce the aerodynamic forces to generate the optimal solution from the optimal vacuum solution. The vehicle chosen for this study is the Lockheed Martin X-33 lifting-body reusable launch vehicle. To verify the algorithm presented in this dissertation, a series of open-loop and closed-loop tests are performed for three different missions. Wind effects are also studied in the closed-loop simulations. For comparison, the solutions for the same missions are also obtained by two independent optimization softwares. The results clearly establish the feasibility of closed-loop endo-atmospheric ascent guidance of rocket-powered launch vehicles. ATO cases are also tested to assess the adaptability of the algorithm to autonomously incorporate the abort modes.

  15. Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.

    PubMed

    Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert

    2015-01-01

    Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.

  16. Domain Hierarchy and closed Loops (DHcL): a server for exploring hierarchy of protein domain structure

    PubMed Central

    Koczyk, Grzegorz; Berezovsky, Igor N.

    2008-01-01

    Domain hierarchy and closed loops (DHcL) (http://sitron.bccs.uib.no/dhcl/) is a web server that delineates energy hierarchy of protein domain structure and detects domains at different levels of this hierarchy. The server also identifies closed loops and van der Waals locks, which constitute a structural basis for the protein domain hierarchy. The DHcL can be a useful tool for an express analysis of protein structures and their alternative domain decompositions. The user submits a PDB identifier(s) or uploads a 3D protein structure in a PDB format. The results of the analysis are the location of domains at different levels of hierarchy, closed loops, van der Waals locks and their interactive visualization. The server maintains a regularly updated database of domains, closed loop and van der Waals locks for all X-ray structures in PDB. DHcL server is available at: http://sitron.bccs.uib.no/dhcl. PMID:18502776

  17. Novel imaging closed loop control strategy for heliostats

    NASA Astrophysics Data System (ADS)

    Bern, Gregor; Schöttl, Peter; Heimsath, Anna; Nitz, Peter

    2017-06-01

    Central Receiver Systems use up to thousands of heliostats to concentrate solar radiation. The precise control of heliostat aiming points is crucial not only for efficiency but also for reliable plant operation. Besides the calibration of open loop control systems, closed loop tracking strategies are developed to address a precise and efficient aiming strategy. The need for cost reductions in the heliostat field intensifies the motivation for economic closed loop control systems. This work introduces an approach for a closed loop heliostat tracking strategy using image analysis and signal modulation. The approach aims at the extraction of heliostat focal spot position within the receiver domain by means of a centralized remote vision system decoupled from the rough conditions close to the focal area. Taking an image sequence of the receiver while modulating a signal on different heliostats, their aiming points are retrieved. The work describes the methodology and shows first results from simulations and practical tests performed in small scale, motivating further investigation and deployment.

  18. Volatiles Evolved from Soybean Products Intended for Use in Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Vodovotz, Yael; Bourland, Charles T.

    1999-01-01

    Soybeans have been baselined to be grown in a habitat (Advanced Life Support Systems Integration Test Bed, ALSSITB) intended for evaluating advanced life support systems developed for long duration missions to the Moon or Mars. The ALSSITB is being constructed at NASA-Johnson Space Center and is composed of 5 chambers (4.6 m x 11.3 m each) and an airlock joined by an interconnecting tunnel (3.7 m x 19.2 m). Processed soy products such as soy milk and soy bread are planned to be incorporated into a nutritionally sound, plant-based food system. Since all consumables will be recycled and reused, volatile compounds evolved during the manufacturing of these food products need to be quantified to assess their impact on this closed loop system. Soy milk was made in a prototype machine and bread in a commercial bread baking machine. These machines were each placed in a tightly closed chamber and, at the completion of the process, air volatiles were identified and quantified by GC/MS. For soy milk, ethanol, acetaldehyde, methanol, hexanal, propanal and acetone and for soybread, acetaldehyde, ethanol, N-propanol and ethyl acetate were detected in significant quantities. The crew members will spend an average of 180 days in the ALSSITB and it was estimated that 138 batches of soy milk will be processed in the tunnel and 130 loaves of soybread would be baked in the habitat chamber during their stay. The aforementioned volatiles would surpass the 180 day Spacecraft Maximum Allowable Concentrations (SMACs) if no means of scrubbing are adapted which would lead to toxic levels of these compounds. Therefore, sufficient means for eliminating the contribution of volatiles evolved from food processing and preparation equipment needs to be provided in the ALSSITB.

  19. The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set.

    PubMed

    Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A

    2015-05-01

    Goal-directed movements, such as reaching out to grasp an object, are necessarily constrained by the spatial properties of the target such as its size, shape, and position. For example, during a reach-to-grasp movement, the peak width of the aperture formed by the thumb and fingers in flight (peak grip aperture, PGA) is linearly related to the target's size. Suppressing vision throughout the movement (visual open loop) has a small though significant effect on this relationship. Visual open loop conditions also produce a large increase in the PGA compared to when vision is available throughout the movement (visual closed loop). Curiously, this differential effect of the availability of visual feedback is influenced by the presentation order: the difference in PGA between closed- and open-loop trials is smaller when these trials are intermixed (an effect we have called 'homogenization'). Thus, grasping movements are affected not only by the availability of visual feedback (closed loop or open loop) but also by what happened on the previous trial. It is not clear, however, whether this carry-over effect is mediated through motor (or sensorimotor) memory or through the interference of different task sets for closed-loop and open-loop feedback that determine when the movements are fully specified. We reasoned that sensorimotor memory, but not a task set for closed and open loop feedback, would be specific to the type of response. We tested this prediction in a condition in which pointing to targets was alternated with grasping those same targets. Critically, in this condition, when pointing was performed in open loop, grasping was always performed in closed loop (and vice versa). Despite the fact that closed- and open-loop trials were alternating in this condition, we found no evidence for homogenization of the PGA. Homogenization did occur, however, in a follow-up experiment in which grasping movements and visual feedback were alternated between the left and the right hand, indicating that sensorimotor (or motor) memory can operate both within and between hands when the response type is kept the same. In a final experiment, we ruled out the possibility that simply alternating the hand used to perform the grasp interferes with motor or sensorimotor memory. We did this by showing that when the hand was alternated within a block of exclusively closed- or open-loop trials, homogenization of the PGA did not occur. Taken together, the results suggest that (1) interference from simply switching between task sets for closed or open-loop feedback or from switching between the hands cannot account homogenization in the PGA and that (2) the programming and execution of grasps can borrow not only from grasping movements executed in the past by the same hand, but also from grasping movements executed with the other hand. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.

    2017-01-01

    A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.

  1. Time delay compensation for closed-loop insulin delivery systems: a simulation study.

    PubMed

    Reboldi, G P; Home, P D; Calabrese, G; Fabietti, P G; Brunetti, P; Massi Benedetti, M

    1991-06-01

    Closed loop insulin therapy certainly represents the best possible approach to insulin replacement. However, present limitations preclude wider application of the so-called artificial pancreas. Therefore, a thorough understanding of these limitations is needed to design better systems for future long-term use. The present simulation study was design: to obtain better information on the impact of the measurement delay of currently available closed-loop devices both during closed-loop insulin delivery and blood glucose clamp studies, and to design and test a time delay compensator based on the method originally described by O.J. Smith. Simulations were performed on a Compaq Deskpro 486/25 personal computer under MS-DOS operating system using Simnon rel. 3.00 software. There was a direct relationship between measurement delay and amount of insulin delivered, i.e., the longer the delay the higher the insulin dose needed to control a rise in blood glucose; the closed-loop response in presence of a time delay was qualitatively impaired both during insulin delivery and blood glucose clamp studies; time delay compensation was effective in reducing the insulin dose and improving controller stability during the early phase of clamp studies. However, the robustness of a Smith's predictor-based controller should be carefully evaluated before implementation in closed-loop systems can be considered.

  2. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications.

    PubMed

    Scholten, Kee; Meng, Ellis

    2018-06-15

    Closed-loop drug delivery promises autonomous control of pharmacotherapy through the continuous monitoring of biomarker levels. For decades, researchers have strived for portable closed-loop systems capable of treating ambulatory patients with chronic conditions such as diabetes mellitus. After years of development, the first of these systems have left the laboratory and entered commercial use. This long-awaited advance reflects recent development of chronically stable implantable biosensors able to accurately measure biomarker levels in vivo. This review discusses the role of implantable biosensors in closed-loop drug delivery applications, with the intent to provide a resource for engineers and researchers studying such systems. We provide an overview of common biosensor designs and review the principle challenges in implementing long indwelling sensors: namely device sensitivity, selectivity, and lifetime. This review examines novel advances in transducer design, biological interface, and material biocompatibility, with a focus on recent academic and commercial work which provide successful strategies to overcome perennial challenges. This review focuses primarily on the topics of closed-loop glucose control and continuous glucose monitoring biosensors, which make up the overwhelming majority of published research in this area. We conclude with an overview of recent advances in closed-loop systems targeting applications outside blood glucose management. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sienicki, James J.; Grandy, Christopher

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. Themore » various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.« less

  4. Pre-frontal control of closed-loop limbic neurostimulation by rodents using a brain-computer interface

    NASA Astrophysics Data System (ADS)

    Widge, Alik S.; Moritz, Chet T.

    2014-04-01

    Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.

  5. Supporting end of life decision making: Case studies of relational closeness in supported decision making for people with severe or profound intellectual disability.

    PubMed

    Watson, Joanne; Wilson, Erin; Hagiliassis, Nick

    2017-11-01

    The United Nations Convention on the Rights of Persons with Disabilities (UNCRPD) promotes the use of supported decision making in lieu of substitute decision making. To date, there has been a lack of focus on supported decision making for people with severe or profound intellectual disability, including for end of life decisions. Five people with severe or profound intellectual disability's experiences of supported decision making were examined. This article is particularly focused on one participant's experiences at the end of his life. All five case studies identified that supporters were most effective in providing decision-making support for participants when they were relationally close to the person and had knowledge of the person's life story, particularly in relation to events that demonstrated preference. Findings from this study provide new understandings of supported decision making for people with severe or profound intellectual disability and have particular relevance for supporting decision making at the end of life. © 2017 John Wiley & Sons Ltd.

  6. Adjunct Faculty Needs Assessment and Closing the Loop: A Comparative Study

    ERIC Educational Resources Information Center

    Washburn, Jeanne

    2017-01-01

    In order to remain competitive, higher education institutions must be prepared to acculturate adjunct faculty to their mission and instructional philosophy (Bojarczyk, 2008). They must also develop programs that support and engage adjunct faculty (Blodgett, 2008; Landers, 2012). The purpose of this study was to analyze and describe differences…

  7. Cybernetic Principles of Learning and Educational Design.

    ERIC Educational Resources Information Center

    Smith, Karl U.; Smith, Margaret Foltz

    This book presents the cybernetic theory of learning and the evidence which supports it. Learning is more than the openloop forming of new stimulus-response associations--it is a process of reorganization of sensory feedback within a closed loop, or pattern, which increases the learner's level of control over his own behavior and the stimuli in…

  8. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    NASA Technical Reports Server (NTRS)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the technologies needed for Mars mission. Agencies see the importance of assessing gaps and overlaps in their plans to advance technologies in order to leverage their investments and enable exciting missions as soon as practical. They see the importance of respecting the ability of any agency to invest in any technologies considered interesting or strategic. This paper will describe the importance of developing an appropriate international strategy for technology development and ideas for effective mechanisms for advancing an international strategy. This work will both inform and be informed by the development of an ISECG Global Exploration Roadmap and serve as a concrete step forward in advancing the Global Exploration Strategy.

  9. Effect of closed-loop order processing on the time to initial antimicrobial therapy.

    PubMed

    Panosh, Nicole; Rew, Richardd; Sharpe, Michelle

    2012-08-15

    The results of a study comparing the average time to initiation of i.v. antimicrobial therapy with closed-versus open-loop order entry and processing are reported. A retrospective cohort study was performed to compare order-to-administration times for initial doses of i.v. antimicrobials before and after a closed-loop order-processing system including computerized prescriber order entry (CPOE) was implemented at a large medical center. A total of 741 i.v. antimicrobial administrations to adult patients during designated five-month preimplementation and postimplementation study periods were assessed. Drug-use reports generated by the pharmacy database were used to identify order-entry times, and medication administration records were reviewed to determine times of i.v. antimicrobial administration. The mean ± S.D. order-to-administration times before and after the implementation of the CPOE system and closed-loop order processing were 3.18 ± 2.60 and 2.00 ± 1.89 hours, respectively, a reduction of 1.18 hours (p < 0.0001). Closed-loop order processing was associated with significant reductions in the average time to initiation of i.v. therapy in all patient care areas evaluated (cardiology, general medicine, and oncology). The study results suggest that CPOE-based closed-loop order processing can play an important role in achieving compliance with current practice guidelines calling for increased efforts to ensure the prompt initiation of i.v. antimicrobials for severe infections (e.g., sepsis, meningitis). Implementation of a closed-loop order-processing system resulted in a significant decrease in order-to-administration times for i.v. antimicrobial therapy.

  10. An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction.

    PubMed

    Adams, Scott D; Kouzani, Abbas Z; Tye, Susannah J; Bennet, Kevin E; Berk, Michael

    2018-02-13

    Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.

  11. Sensory feedback in prosthetics: a standardized test bench for closed-loop control.

    PubMed

    Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario

    2015-03-01

    Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.

  12. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar

    NASA Astrophysics Data System (ADS)

    Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.

    2016-06-01

    Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.

  13. Microbiological Tests Performed During the Design of the International Space Station Environmental Control and Life Support Systems. Part 1, Bulk Phase. Part 1; Bulk Phase

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Mittelman, Marc W.

    2010-01-01

    The design and manufacturing of the main Environmental Control and Life Support Systems (ECLSS) for the United States segments of the International Space Station (ISS) was an involved process that started in the mid 1980s, with the assessment and testing of competing technologies that could be used to clean the air and recycle water. It culminated in 2009 with the delivery and successful activation of the Water Recovery System (WRS) water processor (WP). The ECLSS required the work of a team of engineers and scientist working together to develop systems that could clean and/or recycle human metabolic loads to maintain a clean atmosphere and provide the crew clean water. One of the main goals of the ECLSS is to minimize the time spent by the crew worrying about vital resources not available in the vacuum of space, which allows them to spend most of their time learning to live in a microgravity environment many miles from the comforts of Earth and working on science experiments. Microorganisms are a significant part of the human body as well as part of the environment that we live in. Therefore, the ISS ECLSS design had to take into account the effect microorganisms have on the quality of stored water and wastewater, as well as that of the air systems. Hardware performance issues impacted by the accumulation of biofilm and/or microbiologically influenced corrosion were also studied during the ECLSS development stages. Many of the tests that were performed had to take into account the unique aspects of a microgravity environment as well as the challenge of understanding how to design systems that could not be sterilized or maintained in a sterile state. This paper will summarize the work of several studies that were performed to assess the impacts and/or to minimize the effects of microorganisms in open, semi-closed and closed loop life support system. The biofilm and biodeterioration studies that were performed during the design and test periods will be presented in a future publication.

  14. Conceptual design for a lunar-base CELSS

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Cullingford, Hatice S.

    1990-01-01

    Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.

  15. Antenna Linear-Quadratic-Gaussian (LQG) Ccontrollers: Properties, Limits of Performance, and Tuning

    NASA Technical Reports Server (NTRS)

    Gawronski, Wodek K.

    2004-01-01

    The LQG controllers significantly improve antenna tracking precision, but their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller, and the selection of weights of the LQG performance index. The paper selects the coordinates of the open-loop model that simplify the shaping of the closed-loop performance. and analyzes the impact of thc weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. Finally, it presents the LQG controller tuning procedure that rationally shapes the closed-loop performance.

  16. Implementation of sensor and control designs for bioregenerative systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The EGM 4000/4001 Engineering Design class is an interdisciplinary design course that allows students to experience the design process. The projects involved the design of sensors and subsystems of a closed-loop life support system (CLLSS) with special emphasis on the Controlled Ecological Life Support System (CELSS) currently being developed at Kennedy Space Center (KSC) by NASA. To understand the work performed by the students, one must understand the purpose and concept of a CLLSS system. In the years to come, NASA will be constructing Moon bases and sending astronauts to other worlds on extended space missions. In order to support the crews, unreasonably large quantities of supplies would have to be sent from Earth. These supplies would be difficult to transport and require large holds. To remedy this problem, NASA plans to incorporate crops into the spacecraft. These crops would supply food for the crews, as well as provide beneficial psychological side effects. In addition, the plants would recycle the air and human waste and provide oxygen and water for the humans. The students in the design class were to work on supporting this project. In order to do this successfully, the course was separated into two phases. The first semester involved studying the various aspects of a CLLSS to determine sensing needs and develop ideas. The second semester involved first determining which of the ideas were most promising. Specific sensors were then designed and tested under laboratory conditions with promising results. Finally, recommendations for further development were proposed. Atmosphere and temperature control, nutrient delivery, plant health and propagation, and resource recycling are discussed.

  17. A control system design approach for flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Silverberg, L. M.

    1985-01-01

    A control system design approach for flexible spacecraft is presented. The control system design is carried out in two steps. The first step consists of determining the ideal control system in terms of a desirable dynamic performance. The second step consists of designing a control system using a limited number of actuators that possess a dynamic performance that is close to the ideal dynamic performance. The effects of using a limited number of actuators is that the actual closed-loop eigenvalues differ from the ideal closed-loop eigenvalues. A method is presented to approximate the actual closed-loop eigenvalues so that the calculation of the actual closed-loop eigenvalues can be avoided. Depending on the application, it also may be desirable to apply the control forces as impulses. The effect of digitizing the control to produce the appropriate impulses is also examined.

  18. Geometrical criteria for characterizing open and closed states of WPD-loop in PTP1B

    NASA Astrophysics Data System (ADS)

    Shinde, Ranajit Nivrutti; Elizabeth Sobhia, M.

    2012-06-01

    Distinctive movement of WPD-loop occurs during the catalysis of phosphotyrosine by protein tyrosine phosphatase 1B (PTP1B). This loop is in the "open" state in apo-form whereas it is catalytically competent in the "closed" state. During the closure of this loop, unique hydrogen bond interactions are formed between different residues of the PTP1B. Present study examines such interactions from the available 118 crystal structures of PTP1B. It gives insights into the five novel hydrogen bonds essentially formed in the "closed" loop structures. Additionally, the study provides distance ranges between the atoms involved in the hydrogen bonds. This information can be used as a geometrical criterion in the characterization of conformational state of the WPD-loop especially in the molecular dynamics simulations.

  19. 78 FR 20176 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... electricity from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small irrigation..., geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower... from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and solar energy...

  20. V-SUIT Model Validation Using PLSS 1.0 Test Results

    NASA Technical Reports Server (NTRS)

    Olthoff, Claas

    2015-01-01

    The dynamic portable life support system (PLSS) simulation software Virtual Space Suit (V-SUIT) has been under development at the Technische Universitat Munchen since 2011 as a spin-off from the Virtual Habitat (V-HAB) project. The MATLAB(trademark)-based V-SUIT simulates space suit portable life support systems and their interaction with a detailed and also dynamic human model, as well as the dynamic external environment of a space suit moving on a planetary surface. To demonstrate the feasibility of a large, system level simulation like V-SUIT, a model of NASA's PLSS 1.0 prototype was created. This prototype was run through an extensive series of tests in 2011. Since the test setup was heavily instrumented, it produced a wealth of data making it ideal for model validation. The implemented model includes all components of the PLSS in both the ventilation and thermal loops. The major components are modeled in greater detail, while smaller and ancillary components are low fidelity black box models. The major components include the Rapid Cycle Amine (RCA) CO2 removal system, the Primary and Secondary Oxygen Assembly (POS/SOA), the Pressure Garment System Volume Simulator (PGSVS), the Human Metabolic Simulator (HMS), the heat exchanger between the ventilation and thermal loops, the Space Suit Water Membrane Evaporator (SWME) and finally the Liquid Cooling Garment Simulator (LCGS). Using the created model, dynamic simulations were performed using same test points also used during PLSS 1.0 testing. The results of the simulation were then compared to the test data with special focus on absolute values during the steady state phases and dynamic behavior during the transition between test points. Quantified simulation results are presented that demonstrate which areas of the V-SUIT model are in need of further refinement and those that are sufficiently close to the test results. Finally, lessons learned from the modelling and validation process are given in combination with implications for the future development of other PLSS models in V-SUIT.

  1. Enabling Medical Device Interoperability for the Integrated Clinical Environment

    DTIC Science & Technology

    2016-02-01

    Pajic M, Mangharam R, Sokolsky O, Arney D, Goldman JM, Lee I. Model-Driven Safety Analysis of Closed - Loop Medical Systems. IEEE Transactions on...Manigel J, Osborn D, Roellike T, Weininger S, Westenskow D, “Development of a Standard for Physiologic Closed Loop Controllers in Medical Devices...3 2010. 27. Arney D, Pajic M, Goldman JM, Lee I, Mangharam R, Sokolsky O, “Toward Patient Safety in Closed - Loop Medical Device Systems,” In

  2. Closed Loop Control of Oxygen Delivery and Oxygen Generation

    DTIC Science & Technology

    2017-08-01

    AFRL-SA-WP-SR-2017-0024 Closed Loop Control of Oxygen Delivery and Oxygen Generation Dr. Jay Johannigman1, Richard Branson1...for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO...TITLE AND SUBTITLE Closed Loop Control of Oxygen Delivery and Oxygen Generation 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER

  3. Closed-loop model identification of cooperative manipulators holding deformable objects

    NASA Astrophysics Data System (ADS)

    Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.

    2017-11-01

    This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.

  4. Generalized environmental control and life support system computer program (G1894), phase 3

    NASA Technical Reports Server (NTRS)

    Mcenulty, R. E.

    1978-01-01

    The work performed during Phase 3 of the Generalized Environmental Control Life Support System (ECLSS) Computer Program is reported. Phase 3 of this program covered the period from December 1977 to September 1978. The computerized simulation of the Shuttle Orbiter ECLSS was upgraded in the following areas: (1) the payload loop of the Shuttle simulation was completely recoded and checked out; (2) the Shuttle simulation water and freon loop initialization logic was simplified to permit easier program input for the user; (3) the computerized simulation was modified to accept the WASP subroutine, which is a subroutine to evaluate thermal properties of water and freon; (4) the 1108 operating system was upgraded by LEC; (5) the Shuttle simulation was modified to permit failure cases which simulate zero component flow values; and (6) the Shuttle SEPS version was modified and secure files were setup on the 1108 and 1110 systems to permit simulation runs to be made from remote terminals.

  5. Investigation of Bio-Regenerative Life Support and Trash-To-Gas Experiment on a 4 Month Mars Simulation Mission

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will storing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into the high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purposes of this study are to show the how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG reactor technology.

  6. Investigation of Bio-Regenerative Life Support and Trash-to-Gas Experiment on a 4-Month Mars Simulation Mission

    NASA Technical Reports Server (NTRS)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purpose of this study is to show how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG technology.

  7. Active member vibration control for a 4 meter primary reflector support structure

    NASA Technical Reports Server (NTRS)

    Umland, J. W.; Chen, G.-S.

    1992-01-01

    The design and testing of a new low voltage piezoelectric active member with integrated load cell and displacement sensor is described. This active member is intended for micron level vibration and structural shape control of the Precision Segmented Reflector test-bed. The test-bed is an erectable 4 meter diameter backup support truss for a 2.4 meter focal length parabolic reflector. Active damping of the test-bed is then demonstrated using the newly developed active members. The control technique used is referred to as bridge feedback. With this technique the internal sensors are used in a local feedback loop to match the active member's input impedance to the structure's load impedance, which then maximizes vibrational energy dissipation. The active damping effectiveness is then evaluated from closed loop frequency responses.

  8. Sub-Poissonian light and photocurrent shot-noise suppression in closed opto-electronic loop

    NASA Technical Reports Server (NTRS)

    Masalov, A. V.; Putilin, A. A.; Vasilyev, Michael V.

    1994-01-01

    We examine experimentally photocurrent noise reduction in the opto-electronic closed loop. Photocurrent noise density 12.5 dB below the shot-noise was observed. So large suppression was not reached in previous experiments and cannot be explained in terms of an ordinary sub-Poissonian light in the loop. We propose the concept of anticorrelation state for the description of light in the loop.

  9. How to Establish a Bioregenerative Life Support System for Long-Term Crewed Missions to the Moon or Mars.

    PubMed

    Fu, Yuming; Li, Leyuan; Xie, Beizhen; Dong, Chen; Wang, Mingjuan; Jia, Boyang; Shao, Lingzhi; Dong, Yingying; Deng, Shengda; Liu, Hui; Liu, Guanghui; Liu, Bojie; Hu, Dawei; Liu, Hong

    2016-12-01

    To conduct crewed simulation experiments of bioregenerative life support systems on the ground is a critical step for human life support in deep-space exploration. An artificial closed ecosystem named Lunar Palace 1 was built through integrating efficient higher plant cultivation, animal protein production, urine nitrogen recycling, and bioconversion of solid waste. Subsequently, a 105-day, multicrew, closed integrative bioregenerative life support systems experiment in Lunar Palace 1 was carried out from February through May 2014. The results show that environmental conditions as well as the gas balance between O 2 and CO 2 in the system were well maintained during the 105-day experiment. A total of 21 plant species in this system kept a harmonious coexistent relationship, and 20.5% nitrogen recovery from urine, 41% solid waste degradation, and a small amount of insect in situ production were achieved. During the 105-day experiment, oxygen and water were recycled, and 55% of the food was regenerated. Key Words: Bioregenerative life support systems (BLSS)-Space agriculture-Space life support-Waste recycle-Water recycle. Astrobiology 16, 925-936.

  10. 40 CFR 63.166 - Standards: Sampling connection systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defined in 40 CFR part 261. (c) In-situ sampling systems and sampling systems without purges are exempt..., closed-loop, or closed-vent system, except as provided in § 63.162(b) of this subpart. Gases displaced...-purge, closed-loop, or closed-vent system as required in paragraph (a) of this section shall: (1) Return...

  11. Comparison of direct and indirect skeletal anchorage systems combined with 2 canine retraction techniques.

    PubMed

    Ozkan, Serkan; Bayram, Mehmet

    2016-11-01

    We compared the effectiveness of 2 canine retraction springs and anchorage systems (direct and indirect skeletal anchorage) in patients requiring first premolar extractions and maximum anchorage in the maxilla. Thirty-six patients were included (17 male, 19 female; mean age, 16.8 ± 2.4 years). A mini-implant-supported Nance appliance with indirect skeletal anchorage system was used in 18 patients and a mini-implant-supported direct skeletal anchorage system in the remaining patients. In each patient, a segmental retraction arch with a reverse closing loop was applied to a maxillary canine, and a Ladanyi spring (Dentaurum, Ispringen, Germany) was applied to the other canine randomly after extraction of the maxillary first premolars. The retraction process was continued until a Class I canine relationship was obtained. Lateral cephalometric films and orthodontic casts taken before and after retraction in the distalization process were used to evaluate changes during canine distalization. The measurements were statistically evaluated using paired and independent t tests with 95% confidence intervals. The reverse closing loop and the Ladanyi spring were found to be effective in canine distalization (P ≤0.001). There were no statistically significant differences between the reverse closing loop and the Ladanyi spring with regard to canine distalization rates (P ≥0.05). Both systems were effective in providing maximum anchorage (P ≥0.05); no statistically significant differences were detected in molar anchorage loss rates between the 2 methods (P ≥0.05). These 2 systems can be used during segmental distalization of canines requiring maximum anchorage with no significant anchorage loss. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. AP@home: a novel European approach to bring the artificial pancreas home.

    PubMed

    Heinemann, Lutz; Benesch, Carsten; DeVries, J Hans

    2011-11-01

    The development of an artificial pancreas (AP) made huge strides from 2006 to 2008 and a large number of activities are going on in this area of research. Until now, most AP systems under development were tested only under highly controlled conditions. The aim of our project, funded by the European Union, is to develop an AP system to such a level that it can be studied under daily life conditions at the home of patients with diabetes (hence AP@home). Based on a subcutaneous-subcutaneous closed-loop strategy (i.e., glucose sensing and insulin infusion in the subcutaneous tissue), two different approaches will be taken to achieve this aim: a two-port AP system and a single-port AP system. The two-port AP system will use off-the-shelf-components for the glucose sensor and insulin pump in combination with closed-loop algorithms generated in Europe. As to the single-port AP system, two different innovative single-port systems will be developed; in this case, continuous glucose monitoring and insulin infusion will take place via a single catheter. The first clinical trials with the two-port AP system under controlled clinical conditions have started and good progress has been made in the development of the single-port AP systems. We believe that our consortium of 12 European partners, which builds on existing achievements and close cooperation between academic centers and industry, can contribute substantially to the development of an AP system that can be used by patients in daily life. © 2011 Diabetes Technology Society.

  13. "It Is Definitely a Game Changer": A Qualitative Study of Experiences with In-home Overnight Closed-Loop Technology Among Adults with Type 1 Diabetes.

    PubMed

    Hendrieckx, Christel; Poole, Lucinda A; Sharifi, Amin; Jayawardene, Dilshani; Loh, Margaret M; Horsburgh, Jodie C; Bach, Leon A; Colman, Peter G; Kumareswaran, Kavita; Jenkins, Alicia J; MacIsaac, Richard J; Ward, Glenn M; Grosman, Benyamin; Roy, Anirban; O'Neal, David N; Speight, Jane

    2017-07-01

    This qualitative study explored trial participants' experiences of four nights of in-home closed loop. Sixteen adults with type 1 diabetes, who completed a randomized crossover trial, were interviewed after four consecutive nights of closed-loop. Interviews were audio recorded, transcribed, and analyzed with a coding framework developed to identify the main themes. Participants had a mean age of 42 ± 10 years, nine were women; mean diabetes duration was 27 ± 7 years, and all were using insulin pumps. Overall, first impressions were positive. Participants found closed-loop easy to use and understand. Most experienced more stable overnight glucose levels, although for some these were similar to usual care or higher than they expected. Compared with their usual treatment, they noticed the proactive nature of the closed-loop, being able to predict trends and deliver micro amounts of insulin. Most reported technical glitches or inconveniences during one or more nights, such as transmission problems, problematic connectivity between devices, ongoing alarms despite addressing low glucose levels, and sensor inaccuracy. Remote monitoring by the trial team and their own hypoglycemic awareness contributed to feelings of trust and safety. Although rare, safety concerns were raised, related to feeling unsure whether the system would respond in time to falling glucose levels. This study provides relevant insights for implementation of closed-loop in the real world. For people with diabetes who are less familiar with technology, remote monitoring for the first few days may provide reassurance, strengthen their trust/skills, and make closed-loop an acceptable option for more people with type 1 diabetes.

  14. Controlled Ecological Life Support System: Regenerative Life Support Systems in Space

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    A wide range of topics related to the extended support of humans in space are covered. Overviews of research conducted in Japan, Europe, and the U.S. are presented. The methods and technologies required to recycle materials, especially respiratory gases, within a closed system are examined. Also presented are issues related to plant and algal productivity, efficiency, and processing methods. Computer simulation of closed systems, discussions of radiation effects on systems stability, and modeling of a computer bioregenerative system are also covered.

  15. Aquatic food production modules in bioregenerative life support systems based on higher plants.

    PubMed

    Bluem, V; Paris, F

    2001-01-01

    Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity. Grant numbers: WS50WB9319-3, IVA1216-00588. c 2001. COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  16. Developing closed life support systems for large space habitats

    NASA Technical Reports Server (NTRS)

    Phillips, J. M.; Harlan, A. D.; Krumhar, K. C.

    1978-01-01

    In anticipation of possible large-scale, long-duration space missions which may be conducted in the future, NASA has begun to investigate the research and technology development requirements to create life support systems for large space habitats. An analysis suggests the feasibility of a regeneration of food in missions which exceed four years duration. Regeneration of food in space may be justified for missions of shorter duration when large crews must be supported at remote sites such as lunar bases and space manufacturing facilities. It is thought that biological components consisting principally of traditional crop and livestock species will prove to be the most acceptable means of closing the food cycle. A description is presented of the preliminary results of a study of potential biological components for large space habitats. Attention is given to controlled ecosystems, Russian life support system research, controlled-environment agriculture, and the social aspects of the life-support system.

  17. AQUILA Remotely Piloted Vehicle System Technology Demonstrator (RPV-STD) Program. Volume I. System Description and Capabilities

    DTIC Science & Technology

    1979-04-01

    tools, simplification of equipment interfaces involved in manual operations to provide simple system preparation, closing flight control inner loops ...alti- tude, and heading rate. The closed loops operate in three primary modes: cruise, dead reckoning, and approach. The aircraft is stabilized by...onboard closed loops , so the operator is not required to maintain hands-on operation to keep it in the air. The operator is able to command airspeed

  18. Ileostomy rod--is it a bridge too far?

    PubMed

    Speirs, M; Leung, E; Hughes, D; Robertson, I; Donnelly, L; Mackenzie, I; Macdonald, A

    2006-07-01

    Defunctioning loop ileostomies are used commonly to protect low colorectal anastomoses and thereby reducing the serious complications of leakage. However, they are associated with specific complications such as retraction. Traditionally, a supporting rod is placed as a bridge to support both limbs of the stoma in the hope of reducing the incidence of stomal retraction. There is little evidence in the published literature to support this practice. The aim of this study was to determine whether using an ileostomy rod would reduce the incidence of stomal retraction. A prospective, randomised controlled trial was performed in 60 consecutive patients who required a defunctioning loop ileostomy. Patients were allocated to either a 'bridge' or 'bridge-less' protocol. All the patients were assessed by dedicated stoma nurses for at least 3 months and until their stomas were closed. Their postoperative symptoms, including stoma activity and retraction rate, were recorded. Between May 2001 and June 2004, 57 patients completed the study (28 bridge; 29 bridge-less). There were no significant differences in the retraction rate between the groups. No clinical anastomotic leakage was recorded and none of the patients required early closure. If a loop ileostomy is constructed properly, stomal retraction is uncommon and routine use of a bridge is unnecessary.

  19. Inverse spin Hall effect in a closed loop circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omori, Y.; Auvray, F.; Wakamura, T.

    We present measurements of inverse spin Hall effects (ISHEs), in which the conversion of a spin current into a charge current via the ISHE is detected not as a voltage in a standard open circuit but directly as the charge current generated in a closed loop. The method is applied to the ISHEs of Bi-doped Cu and Pt. The derived expression of ISHE for the loop structure can relate the charge current flowing into the loop to the spin Hall angle of the SHE material and the resistance of the loop.

  20. Coronal Jets in Closed Magnetic Regions on the Sun

    NASA Astrophysics Data System (ADS)

    Wyper, Peter Fraser; DeVore, C. R.

    2015-04-01

    Coronal jets are dynamic, collimated structures observed in solar EUV and X-ray emission. They appear predominantly in the open field of coronal holes, but are also observed in areas of closed field, especially active regions. A common feature of coronal jets is that they originate from the field above a parasitic polarity of opposite sign to the surrounding field. Some process - such as instability onset or flux emergence - induces explosive reconnection between the closed “anemone” field and the surrounding open field that generates the jet. The lesser number of coronal jets in closed-field regions suggests a possible stabilizing effect of the closed configuration with respect to coronal jet formation. If the scale of the jet region is small compared with the background loop length, as in for example type II spicules, the nearby magnetic field may be treated as locally open. As such, one would expect that if a stabilizing effect exists it becomes most apparent as the scale of the anemone region approaches that of the background coronal loops.To investigate if coronal jets are indeed suppressed along shorter coronal loops, we performed a number of simulations of jets driven by a rotation of the parasitic polarity (as in the previous open-jet calculations by Pariat et. al 2009, 2010, 2015) embedded in a large-scale closed bipolar field. The simulations were performed with the state of the art Adaptively Refined Magnetohydrodynamics Solver. We will report here how the magnetic configuration above the anemone region determines the nature of the jet, when it is triggered, and how much of the stored magnetic energy is released. We show that regions in which the background field and the parasitic polarity region are of comparable scale naturally suppress explosive energy release. We will also show how in the post-jet relaxation phase a combination of confined MHD waves and weak current layers are generated by the jet along the background coronal loops, both of which may have implications for coronal heating.This work was supported by an appointment to the NASA Postdoctoral Program (P.F.W.) and by NASA’s Living With a Star Targeted Research and Technology program (C.R.D.).

  1. Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints

    NASA Astrophysics Data System (ADS)

    Krasovskii, A. A.; Lebedev, P. D.; Tarasyev, A. M.

    2017-05-01

    We consider a neoclassical (economic) growth model. A nonlinear Ramsey equation, modeling capital dynamics, in the case of Cobb-Douglas production function is reduced to the linear differential equation via a Bernoulli substitution. This considerably facilitates the search for a solution to the optimal growth problem with logarithmic preferences. The study deals with solving the corresponding infinite horizon optimal control problem. We consider a vector field of the Hamiltonian system in the Pontryagin maximum principle, taking into account control constraints. We prove the existence of two alternative steady states, depending on the constraints. A proposed algorithm for constructing growth trajectories combines methods of open-loop control and closed-loop regulatory control. For some levels of constraints and initial conditions, a closed-form solution is obtained. We also demonstrate the impact of technological change on the economic equilibrium dynamics. Results are supported by computer calculations.

  2. Insulin delivery and nocturnal glucose control in children and adolescents with type 1 diabetes.

    PubMed

    Tauschmann, Martin; Hovorka, Roman

    2017-12-01

    Nocturnal glucose control remains challenging in children and adolescents with type 1 diabetes due to highly variable overnight insulin requirements. The issue may be addressed by glucose responsive insulin delivery based on real-time continuous glucose measurements. Areas covered: This review outlines recent developments of glucose responsive insulin delivery systems from a paediatric perspective. We cover threshold-based suspend application, predictive low glucose suspend, and more advanced single hormone and dual-hormone closed-loop systems. Approaches are evaluated in relation to nocturnal glucose control particularly during outpatient randomised controlled trials. Expert opinion: Significant progress translating research from controlled clinical centre settings to free-living unsupervised home studies have been achieved over the past decade. Nocturnal glycaemic control can be improved whilst reducing the risk of hypoglycaemia with closed-loop systems. Following the US regulatory approval of the first hybrid closed-loop system in non-paediatric population, large multinational closed-loop clinical trials and pivotal studies including paediatric populations are underway or in preparation to facilitate the use of closed-loop systems in clinical practice.

  3. Visual and Kinesthetic Components of Pursuit-Tracking Performance.

    ERIC Educational Resources Information Center

    Thorsheim, Howard I.; And Others

    Seventy-five subjects were trained on a pursuit rotor for 10 trials, with ambient illumination from a strobe light flashing at frequencies of either 2,5,10,15, or 20 per second. A transfer trial followed, with a strobe flashing frequency of 10 per second for all subjects. Results supported hypotheses derived from Adams' closed-loop theory of motor…

  4. Carbon recycling in materially closed ecological life support systems

    NASA Technical Reports Server (NTRS)

    Obenhuber, D. C.; Folsome, C. E.

    1988-01-01

    Results of studies are presented of materially closed energetically open microbial ecosystems or 'closed ecosystems'. These are natural marine ecosystems that have been sealed in glass containers to prevent material exchange with the environment but allow energy to pass freely through them. They represent model life support systems for the future human habitation of space. The results are discussed analytically and indicate that these ecosystems, when subjected to a constant energy flux, seem to be reliable and self-sufficient systems for recycling of biologically produced carbon compounds.

  5. Atmospheric Monitoring Strategy for Ground Testing of Closed Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Feighery, John; Cavenall, Ivan; Knight, Amanda

    2004-01-01

    This paper reviews the evolution and current state of atmospheric monitoring on the International Space Station to provide context from which we can imagine a more advanced and integrated system. The unique environmental hazards of human space flight are identified and categorized into groups, taking into consideration the time required for the hazard to become a threat to human health or performance. The key functions of a comprehensive monitoring strategy for a closed ecological life support system are derived from past experience and a survey of currently available technologies for monitoring air quality. Finally, a system architecture is developed incorporating the lessons learned from ISS and other analogous closed life support systems. The paper concludes by presenting recommendations on how to proceed with requirements definition and conceptual design of an air monitoring system for exploration missions.

  6. Lidar-based wake tracking for closed-loop wind farm control

    NASA Astrophysics Data System (ADS)

    Raach, Steffen; Schlipf, David; Cheng, Po Wen

    2016-09-01

    This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.

  7. Closed-Loop and Activity-Guided Optogenetic Control

    PubMed Central

    Grosenick, Logan; Marshel, James H.; Deisseroth, Karl

    2016-01-01

    Advances in optical manipulation and observation of neural activity have set the stage for widespread implementation of closed-loop and activity-guided optical control of neural circuit dynamics. Closing the loop optogenetically (i.e., basing optogenetic stimulation on simultaneously observed dynamics in a principled way) is a powerful strategy for causal investigation of neural circuitry. In particular, observing and feeding back the effects of circuit interventions on physiologically relevant timescales is valuable for directly testing whether inferred models of dynamics, connectivity, and causation are accurate in vivo. Here we highlight technical and theoretical foundations as well as recent advances and opportunities in this area, and we review in detail the known caveats and limitations of optogenetic experimentation in the context of addressing these challenges with closed-loop optogenetic control in behaving animals. PMID:25856490

  8. Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test

    PubMed Central

    Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio

    2013-01-01

    In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102

  9. A digital wireless system for closed-loop inhibition of nociceptive signals

    NASA Astrophysics Data System (ADS)

    Zuo, Chao; Yang, Xiaofei; Wang, Yang; Hagains, Christopher E.; Li, Ai-Ling; Peng, Yuan B.; Chiao, J.-C.

    2012-10-01

    Neurostimulation of the spinal cord or brain has been used to inhibit nociceptive signals in pain management applications. Nevertheless, most of the current neurostimulation models are based on open-loop system designs. There is a lack of closed-loop systems for neurostimulation in research with small freely-moving animals and in future clinical applications. Based on our previously developed analog wireless system for closed-loop neurostimulation, a digital wireless system with real-time feedback between recorder and stimulator modules has been developed to achieve multi-channel communication. The wireless system includes a wearable recording module, a wearable stimulation module and a transceiver connected to a computer for real-time and off-line data processing, display and storage. To validate our system, wide dynamic range neurons in the spinal cord dorsal horn have been recorded from anesthetized rats in response to graded mechanical stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used to automatically trigger electrical stimulation at the periaqueductal gray in real time to inhibit their own activities by the closed-loop design. Our digital wireless closed-loop system has provided a simplified and efficient method for further study of pain processing in freely-moving animals and potential clinical application in patients. Groups 1, 2 and 3 contributed equally to this project.

  10. Antenna Linear-Quadratic-Gaussian (LQG) Controllers: Properties, Limits of Performance, and Tuning Procedure

    NASA Technical Reports Server (NTRS)

    Gawronski, W.

    2004-01-01

    Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.

  11. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    NASA Astrophysics Data System (ADS)

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen production), require significant power (tens of kWh/kg), and in many processes requires high temperatures ( 1000o C) to be effec-tive; therefore they are not compatible with closed life support systems such as MELiSSA. With the release of the NASA Lunar Architecture Team's latest Lunar Mission Strategy, the investigation of more efficient air bioregeneration techniques based on the metabolism of lower order photosynthetic organisms with ability to leach (weather) in situ rocks appears to be very timely and relevant. Cyanobacteria (CB) are known as very effective producers of O2, proteins, vitamins, immunomodulators (Brown et al., 2006) and as mineral destroyers (Friedmann, 1980; Gorbushina and Palinska, 1999) to supply themselves with different elements. Results: As a result of pilot studies, we propose, therefore, to develop a concept for semi-closed integrated system that uses CB to extract useful elements for their sustaining, to revitalize air and produce valuable biomolecules. Such a system could be the foundation of a self-sustaining extraterrestrial outpost (Hendrickx, De Wever et al., 2005; Handford, 2006). A potential advantage of a cyanobacterial photoreactor placed between LSS and ISRU loops is the possibility of supplying these systems with extracted elements and compounds from the regolith. In addition, waste regolith may be transformed into additional products such as methane, biomass, and organic and inorganic soil enrichment for the cultivation of high plants. We have used several species of siderophilic CB isolated from iron-depositing hot springs in Yellowstone Na-tional Park (Brown et al., 2007) to characterize their ability to utilize terrestrial analogs of lunar and martian rocks. Severe dilution of a rich medium for the cultivation of CB with deionized water did not lead to the growth repression of the cyanobacterium JSC-12. It was found that the suspension of JSC Mars-1 soil stimulant in deionized water sup-ports the proliferation of several cyanobacterial species. In parallel, it was found that rocks stimulated the production of 2-ketoglutaric acid, which has chelation properties, by those species. TEM studies revealed that siderophilic CB accumulate colloidal iron in or on cyanobacterial cells. Recent observation suggested that siderophilic CB Leptolyngbya sp. with expressed litholitic activity is also capable to generate hydrogen, which also is a valuable product for use on the Moon and Mars. Conclusion: Despite the harsh lunar environmental conditions, it seems possible to cultivate photosynthetic mi-croorganisms using a closed bioreactor illuminated and heated by solar energy and to produce in-situ geochemical resources. Such bioprocessing might be simultaneously employed in critical ISRU and life support functions, e.g. air revitalization, propellant (oxygen and methane) and food production, as well as divalent cation extraction. The most critical conclusion is that a semi-closed life support system tied to an ISRU facility might be more efficient for sup-port of an extraterrestrial outpost than closed environmental systems. Such a synthesis of technological capability could decrease the demand for energy, transfer mass and cost of future exploration.

  12. Brayton cycle heat exchanger and duct assembly (HXDA, preliminary design and technology tests

    NASA Technical Reports Server (NTRS)

    Coombs, M. G.; Morse, C. J.; Graves, R. F.; Gibson, J. C.

    1972-01-01

    A preliminary design of the heat exchanger and duct assembly (HXDA) for a 60 kwe, closed loop, Brayton cycle space power system is presented. This system is weight optimized within the constraints imposed by the defined structural and operational requirements. Also presented are the results of several small scale tests, directed to obtaining specific design data and/or the resolution of a design approach for long life Brayton cycle heat exchanger systems.

  13. Chasing Tics in the Human Brain: Development of Open, Scheduled and Closed Loop Responsive Approaches to Deep Brain Stimulation for Tourette Syndrome

    PubMed Central

    Martinez-Ramirez, Daniel; Rossi, Peter J.; Peng, Zhongxing; Gunduz, Aysegul; Okun, Michael S.

    2015-01-01

    Tourette syndrome is a childhood-onset disorder characterized by a combination of motor and vocal tics, often associated with psychiatric comorbidities including attention deficit and hyperactivity disorder and obsessive-compulsive disorder. Despite an onset early in life, half of patients may present symptoms in adulthood, with variable degrees of severity. In select cases, the syndrome may lead to significant physical and social impairment, and a worrisome risk for self injury. Evolving research has provided evidence supporting the idea that the pathophysiology of Tourette syndrome is directly related to a disrupted circuit involving the cortex and subcortical structures, including the basal ganglia, nucleus accumbens, and the amygdala. There has also been a notion that a dysfunctional group of neurons in the putamen contributes to an abnormal facilitation of competing motor responses in basal ganglia structures ultimately underpinning the generation of tics. Surgical therapies for Tourette syndrome have been reserved for a small group of patients not responding to behavioral and pharmacological therapies, and these therapies have been directed at modulating the underlying pathophysiology. Lesion therapy as well as deep brain stimulation has been observed to suppress tics in at least some of these cases. In this article, we will review the clinical aspects of Tourette syndrome, as well as the evolution of surgical approaches and we will discuss the evidence and clinical responses to deep brain stimulation in various brain targets. We will also discuss ongoing research and future directions as well as approaches for open, scheduled and closed loop feedback-driven electrical stimulation for the treatment of Tourette syndrome. PMID:25851890

  14. Testing and Results of Vacuum Swing Adsorption Units for Spacesuit Carbon Dioxide and Humidity Control

    NASA Technical Reports Server (NTRS)

    McMillin, Summer D.; Broerman, Craig D.; Swickrath, Michael; Anderson, Molly

    2011-01-01

    A principal concern for extravehicular activity (EVA) spacesuits is the capability to control carbon dioxide (CO2) and humidity (H2O) for the crewmember. The release of CO2 in a confined or unventilated area is dangerous for human health and leads to asphyxiation; therefore, CO2 and H2O control become leading factors in the design and development of the spacesuit. An amine-based CO2 and H2O vapor sorbent for use in pressure-swing regenerable beds has been developed by Hamilton Sundstrand. The application of solidamine materials with vacuum swing adsorption technology has shown the capacity to concurrently manage CO2 and H2O levels through a fully regenerative cycle eliminating mission constraints imposed with nonregenerative technologies. Two prototype solid amine-based systems, known as rapid cycle amine (RCA), were designed to continuously remove CO2 and H2O vapor from a flowing ventilation stream through the use of a two-bed amine based, vacuum-swing adsorption system. The Engineering and Science Contract Group (ESCG) RCA implements radial flow paths, whereas the Hamilton Sundstrand RCA was designed with linear flow paths. Testing was performed in a sea-level pressure environment and a reduced-pressure environment with simulated human metabolic loads in a closed-loop configuration. This paper presents the experimental results of laboratory testing for a full-size and a sub-scale test article. The testing described here characterized and evaluated the performance of each RCA unit at the required Portable Life Support Subsystem (PLSS) operating conditions. The test points simulated a range of crewmember metabolic rates. The experimental results demonstrated the ability of each RCA unit to sufficiently remove CO2 and H2O from a closed loop ambient or sub-ambient atmosphere.

  15. Quantitative Feedback Technique (QFT): Bridging the Gap

    DTIC Science & Technology

    2003-05-01

    with Eq. (2) illustrates: (a) the effect of changes of the uncertainty set P(s) upon the output of the closed -loop control system is reduced by the...Bridging the Gap root-locus technique the dominant closed -loop poles are determined for a ζ= 0.45. Table 3 presents the required value of Kx and...degree of decoupling will have been enhanced. Method 1 is then more readily applicable, with the additional benefit of reduced closed -loop BW. E.R.2

  16. An Investigation Relating Longitudinal Pilot-Induced Oscillation Tendency Rating to Describing Function Predictions for Rate-Limited Actuators

    DTIC Science & Technology

    2004-03-01

    2-15 2-10. Pitch Tracking Closed Loop System for Gap Criterion...................................... 2-16 2-11. Four Resulting Gap ...Level 1 Minimize Resonance Closed Loop Bode Diagram ( ) ( ) s sCommand θ θ ( ) ( ) s sCommand θ θ         BWω 2-16 Gap Criterion...System for Gap Criterion In modern fly-by-wire aircraft, feedback is an integral part of obtaining more desirable closed loop flying qualities

  17. Parameter estimation in linear models of the human operator in a closed loop with application of deterministic test signals

    NASA Technical Reports Server (NTRS)

    Vanlunteren, A.; Stassen, H. G.

    1973-01-01

    Parameter estimation techniques are discussed with emphasis on unbiased estimates in the presence of noise. A distinction between open and closed loop systems is made. A method is given based on the application of external forcing functions consisting of a sun of sinusoids; this method is thus based on the estimation of Fourier coefficients and is applicable for models with poles and zeros in open and closed loop systems.

  18. A training rule which guarantees finite-region stability for a class of closed-loop neural-network control systems.

    PubMed

    Kuntanapreeda, S; Fullmer, R R

    1996-01-01

    A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.

  19. Radiology reporting: a closed-loop cycle from order entry to results communication.

    PubMed

    Weiss, David L; Kim, Woojin; Branstetter, Barton F; Prevedello, Luciano M

    2014-12-01

    With the increasing prevalence of PACS over the past decade, face-to-face image review among health care providers has become a rarity. This change has resulted in increasing dependence on fast and accurate communication in radiology. Turnaround time expectations are now conveyed in minutes rather than hours or even days. Ideal modern radiology communication is a closed-loop cycle with multiple interoperable applications contributing to the final product. The cycle starts with physician order entry, now often performed through the electronic medical record, with clinical decision support to ensure that the most effective imaging study is ordered. Radiology reports are now almost all in electronic format. The majority are produced using speech recognition systems. Optimization of this software use can alleviate some, if not all, of the inherent user inefficiencies in this type of reporting. Integrated third-party software applications that provide data mining capability are extremely helpful in both academic and clinical settings. The closed-loop ends with automated communication of imaging results. Software products for this purpose should facilitate use of levels of alert, automated escalation to providers, and recording of audit trails of reports received. The multiple components of reporting should be completely interoperable with each other, as well as with the PACS, the RIS, and the electronic medical record. This integration will maximize radiologist efficiency and minimize the possibility of communication error. Copyright © 2014. Published by Elsevier Inc.

  20. Patient-specific biomechanical model of hypoplastic left heart to predict post-operative cardio-circulatory behaviour.

    PubMed

    Cutrì, Elena; Meoli, Alessio; Dubini, Gabriele; Migliavacca, Francesco; Hsia, Tain-Yen; Pennati, Giancarlo

    2017-09-01

    Hypoplastic left heart syndrome is a complex congenital heart disease characterised by the underdevelopment of the left ventricle normally treated with a three-stage surgical repair. In this study, a multiscale closed-loop cardio-circulatory model is created to reproduce the pre-operative condition of a patient suffering from such pathology and virtual surgery is performed. Firstly, cardio-circulatory parameters are estimated using a fully closed-loop cardio-circulatory lumped parameter model. Secondly, a 3D standalone FEA model is build up to obtain active and passive ventricular characteristics and unloaded reference state. Lastly, the 3D model of the single ventricle is coupled to the lumped parameter model of the circulation obtaining a multiscale closed-loop pre-operative model. Lacking any information on the fibre orientation, two cases were simulated: (i) fibre distributed as in the physiological right ventricle and (ii) fibre as in the physiological left ventricle. Once the pre-operative condition is satisfactorily simulated for the two cases, virtual surgery is performed. The post-operative results in the two cases highlighted similar hemodynamic behaviour but different local mechanics. This finding suggests that the knowledge of the patient-specific fibre arrangement is important to correctly estimate the single ventricle's working condition and consequently can be valuable to support clinical decision. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Rationale for evaluating a closed food chain for space habitats

    NASA Technical Reports Server (NTRS)

    Modell, M.; Spurlock, J. M.

    1980-01-01

    Closed food cycles for long duration space flight and space habitation are examined. Wash water for a crew of six is economically recyclable after a week, while a total closed loop water system is effective only if the stay exceeds six months' length. The stoichiometry of net plant growth is calculated and it is shown that the return of urine, feces, and inedible plant parts to the food chain, along with the addition of photosynthesis, closes the food chain loop. Scenarios are presented to explore the technical feasibility of achieving a closed loop system. An optimal choice of plants is followed by processing, waste conversion, equipment specifications, and control requirements, and finally, cost-effectiveness.

  2. Development of near real time performance measurements for closed-loop signal systems (CLS) using historical traffic data from existing loop detectors and signal timing data.

    DOT National Transportation Integrated Search

    2014-10-01

    The overarching goal of this research project was to investigate the potential for the NCDOT Central Office Signal Timing : (COST) Section to monitor and assess the quality of field deployed closed-loop signal system plans using the data inherent in ...

  3. A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2009-01-01

    This paper presents a standalone closed loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio frequency identification (RFID) transceiver (MLX90121) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop fashion. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either malfunction or excessive heat dissipation. RFID transceivers are often used open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 1.48 mW over a range of 6 to 12 cm, while the transmitter power consumption changed from 0.3 W to 1.21 W. The closed loop system can also oppose voltage variations as a result of sudden changes in load current.

  4. An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications.

    PubMed

    Kiani, Mehdi; Ghovanloo, Maysam

    2010-04-01

    This brief presents a standalone closed-loop wireless power transmission system that is built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader (TRF7960) operating at 13.56 MHz. It can be used for inductively powering implantable biomedical devices in a closed loop. Any changes in the distance and misalignment between transmitter and receiver coils in near-field wireless power transmission can cause a significant change in the received power, which can cause either a malfunction or excessive heat dissipation. RFID circuits are often used in an open loop. However, their back telemetry capability can be utilized to stabilize the received voltage on the implant. Our measurements showed that the delivered power to the transponder was maintained at 11.2 mW over a range of 0.5 to 2 cm, while the transmitter power consumption changed from 78 mW to 1.1 W. The closed-loop system can also oppose voltage variations as a result of sudden changes in the load current.

  5. Electrical crosstalk-coupling measurement and analysis for digital closed loop fibre optic gyro

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Tian, Hai-Ting; Pan, Xiong; Song, Ning-Fang

    2010-03-01

    The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed-loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.

  6. Closed Loop System Identification with Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  7. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain computer interface to a virtual reality avatar

    PubMed Central

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L.

    2017-01-01

    Objective The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1 – 3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated (AM) potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. Significance These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system. PMID:27064824

  8. Home Use of Day-and-Night Hybrid Closed-Loop Insulin Delivery in Suboptimally Controlled Adolescents With Type 1 Diabetes: A 3-Week, Free-Living, Randomized Crossover Trial.

    PubMed

    Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Thabit, Hood; Acerini, Carlo L; Dunger, David B; Hovorka, Roman

    2016-11-01

    This study evaluated the feasibility, safety, and efficacy of day-and-night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes under free-living conditions. In an open-label randomized crossover study, 12 suboptimally controlled adolescents on insulin pump therapy (mean ± SD age 14.6 ± 3.1 years; HbA 1c 69 ± 8 mmol/mol [8.5 ± 0.7%]; duration of diabetes 7.8 ± 3.5 years) underwent two 21-day periods in which hybrid closed-loop insulin delivery was compared with sensor-augmented insulin pump therapy in random order. During the closed-loop intervention, a model predictive algorithm automatically directed insulin delivery between meals and overnight. Participants used a bolus calculator to administer prandial boluses. The proportion of time that sensor glucose was in the target range (3.9-10 mmol/L; primary end point) was increased during the closed-loop intervention compared with sensor-augmented insulin pump therapy by 18.8 ± 9.8 percentage points (mean ± SD; P < 0.001), the mean sensor glucose level was reduced by 1.8 ± 1.3 mmol/L (P = 0.001), and the time spent above target was reduced by 19.3 ± 11.3 percentage points (P < 0.001). The time spent with sensor glucose levels below 3.9 mmol/L was low and comparable between interventions (median difference 0.4 [interquartile range -2.2 to 1.3] percentage points; P = 0.33). Improved glucose control during closed-loop was associated with increased variability of basal insulin delivery (P < 0.001) and an increase in the total daily insulin dose (53.5 [39.5-72.1] vs. 51.5 [37.6-64.3] units/day; P = 0.006). Participants expressed positive attitudes and experience with the closed-loop system. Free-living home use of day-and-night closed-loop in suboptimally controlled adolescents with type 1 diabetes is safe, feasible, and improves glucose control without increasing the risk of hypoglycemia. Larger and longer studies are warranted. © 2016 by the American Diabetes Association.

  9. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.

    PubMed

    Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L

    2016-06-01

    The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson's r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.

  10. The role of experience in flight behaviour of Drosophila.

    PubMed

    Hesselberg, Thomas; Lehmann, Fritz-Olaf

    2009-10-01

    Experience plays a key role in the acquisition of complex motor skills in running and flight of many vertebrates. To evaluate the significance of previous experience for the efficiency of motor behaviour in an insect, we investigated the flight behaviour of the fruit fly Drosophila. We reared flies in chambers in which the animals could freely walk and extend their wings, but could not gain any flight experience. These naive animals were compared with control flies under both open- and closed-loop tethered flight conditions in a flight simulator as well as in a free-flight arena. The data suggest that the overall flight behaviour in Drosophila seems to be predetermined because both groups exhibited similar mean stroke amplitude and stroke frequency, similar open-loop responses to visual stimulation and the immediate ability to track visual objects under closed-loop feedback conditions. In short free flight bouts, peak saccadic turning rate, angular acceleration, peak horizontal speed and flight altitude were also similar in naive and control flies. However, we found significant changes in other key parameters in naive animals such as a reduction in mean horizontal speed (-23%) and subtle changes in mean turning rate (-48%). Naive flies produced 25% less yaw torque-equivalent stroke amplitudes than the controls in response to a visual stripe rotating in open loop around the tethered animal, potentially suggesting a flight-dependent adaptation of the visuo-motor gain in the control group. This change ceased after the animals experienced visual closed-loop feedback. During closed-loop flight conditions, naive flies had 53% larger differences in left and right stroke amplitude when fixating a visual object, thus steering control was less precise. We discuss two alternative hypotheses to explain our results: the ;neuronal experience' hypothesis, suggesting that there are some elements of learning and fine-tuning involved during the first flight experiences in Drosophila and the ;muscular exercise' hypothesis. Our experiments support the first hypothesis because maximum locomotor capacity seems not to be significantly impaired in the naive group. Although this study primarily confirms the genetic pre-disposition for flight in Drosophila, previous experience may apparently adjust locomotor fine control and aerial performance, although this effect seems to be small compared with vertebrates.

  11. The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA

    PubMed Central

    Law, Michael J.; Rice, Andrew J.; Lin, Patti; Laird-Offringa, Ite A.

    2006-01-01

    The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5′ end of a 10-nt loop, and via hydrogen bonds with the closing C–G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents “breathing” of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5′ side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance. PMID:16738410

  12. The role of RNA structure in the interaction of U1A protein with U1 hairpin II RNA.

    PubMed

    Law, Michael J; Rice, Andrew J; Lin, Patti; Laird-Offringa, Ite A

    2006-07-01

    The N-terminal RNA Recognition Motif (RRM1) of the spliceosomal protein U1A interacting with its target U1 hairpin II (U1hpII) has been used as a paradigm for RRM-containing proteins interacting with their RNA targets. U1A binds to U1hpII via direct interactions with a 7-nucleotide (nt) consensus binding sequence at the 5' end of a 10-nt loop, and via hydrogen bonds with the closing C-G base pair at the top of the RNA stem. Using surface plasmon resonance (Biacore), we have examined the role of structural features of U1hpII in binding to U1A RRM1. Mutational analysis of the closing base pair suggests it plays a minor role in binding and mainly prevents "breathing" of the loop. Lengthening the stem and nontarget part of the loop suggests that the increased negative charge of the RNA might slightly aid association. However, this is offset by an increase in dissociation, which may be caused by attraction of the RRM to nontarget parts of the RNA. Studies of a single stranded target and RNAs with untethered loops indicate that structure is not very relevant for association but is important for complex stability. In particular, breaking the link between the stem and the 5' side of the loop greatly increases complex dissociation, presumably by hindering simultaneous contacts between the RRM and stem and loop nucleotides. While binding of U1A to a single stranded target is much weaker than to U1hpII, it occurs with nanomolar affinity, supporting recent evidence that binding of unstructured RNA by U1A has physiological significance.

  13. Quality of life and technology: impact on children and families with diabetes.

    PubMed

    Hirose, Masakazu; Beverly, Elizabeth A; Weinger, Katie

    2012-12-01

    Ensuring quality of life (QOL) while maintaining glycemic control within targets is an important challenge in type 1 and type 2 diabetes treatment. For children with diabetes, QOL includes enjoying meals, feeling safe in school, and perceiving positive, supportive relationships with parents, siblings, and friends. Yet many treatment-related and psychosocial barriers can interfere with a child's QOL and their ability to manage diabetes effectively. Diabetes management also imposes considerable lifestyle demands that are difficult and often frustrating for children to negotiate at a young age. Recent advances in diabetes medications and technologies have improved glycemic control in children with diabetes. Two widely used technologies are the insulin pump and continuous glucose monitoring (CGM) system. These technologies provide patients with more flexibility in their daily life and information about glucose fluctuations. Several studies report improvements in glycemic control in children with type 1 diabetes using the insulin pump or sensor-augmented pump therapy. Importantly, these technologies may impact QOL for children and families with diabetes, although they are rarely used or studied in the treatment of children with type 2 diabetes. Further, emerging closed loop and web- and phone-based technologies have great potential for supporting diabetes self-management and perhaps QOL. A deeper understanding and appreciation of the impact of diabetes technology on children's and parents' QOL is critical for both the medical and psychological care of diabetes. Thus, the purpose of this review is to discuss the impact of new diabetes technologies on QOL in children, adolescents and families with type 1 diabetes.

  14. A LabVIEW model incorporating an open-loop arterial impedance and a closed-loop circulatory system.

    PubMed

    Cole, R T; Lucas, C L; Cascio, W E; Johnson, T A

    2005-11-01

    While numerous computer models exist for the circulatory system, many are limited in scope, contain unwanted features or incorporate complex components specific to unique experimental situations. Our purpose was to develop a basic, yet multifaceted, computer model of the left heart and systemic circulation in LabVIEW having universal appeal without sacrificing crucial physiologic features. The program we developed employs Windkessel-type impedance models in several open-loop configurations and a closed-loop model coupling a lumped impedance and ventricular pressure source. The open-loop impedance models demonstrate afterload effects on arbitrary aortic pressure/flow inputs. The closed-loop model catalogs the major circulatory waveforms with changes in afterload, preload, and left heart properties. Our model provides an avenue for expanding the use of the ventricular equations through closed-loop coupling that includes a basic coronary circuit. Tested values used for the afterload components and the effects of afterload parameter changes on various waveforms are consistent with published data. We conclude that this model offers the ability to alter several circulatory factors and digitally catalog the most salient features of the pressure/flow waveforms employing a user-friendly platform. These features make the model a useful instructional tool for students as well as a simple experimental tool for cardiovascular research.

  15. High-precision horizontally directed force measurements for high dead loads based on a differential electromagnetic force compensation system

    NASA Astrophysics Data System (ADS)

    Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas

    2016-04-01

    In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of  ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.

  16. 40 CFR 1048.110 - How must my engines diagnose malfunctions?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engine-diagnostic requirements apply for engines equipped with three-way catalysts and closed-loop... malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop...

  17. Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.

    1996-01-01

    An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.

  18. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  19. New Look at Social Support: A Theoretical Perspective on Thriving through Relationships

    PubMed Central

    Feeney, Brooke C.; Collins, Nancy L.

    2017-01-01

    Close and caring relationships are undeniably linked to health and well-being at all stages in the lifespan. Yet the specific pathways through which close relationships promote optimal well-being are not well understood. In this article, we present a model of thriving through relationships to provide a theoretical foundation for identifying the specific interpersonal processes that underlie the effects of close relationships on thriving. This model highlights two life contexts through which people may potentially thrive (coping successfully with life’s adversities and actively pursuing life opportunities for growth and development), it proposes two relational support functions that are fundamental to the experience of thriving in each life context, and it identifies mediators through which relational support is likely to have long-term effects on thriving. This perspective highlights the need for researchers to take a new look at social support by conceptualizing it as an interpersonal process with a focus on thriving. PMID:25125368

  20. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region.

    PubMed

    Kumar, Girish; Kocour, Martin; Kunal, Swaraj Priyaranjan

    2016-05-01

    In order to assess the DNA sequence variation and phylogenetic relationship among five tuna species (Auxis thazard, Euthynnus affinis, Katsuwonus pelamis, Thunnus tonggol, and T. albacares) out of all four tuna genera, partial sequences of the mitochondrial DNA (mtDNA) D-loop region were analyzed. The estimate of intra-specific sequence variation in studied species was low, ranging from 0.027 to 0.080 [Kimura's two parameter distance (K2P)], whereas values of inter-specific variation ranged from 0.049 to 0.491. The longtail tuna (T. tonggol) and yellowfin tuna (T. albacares) were found to share a close relationship (K2P = 0.049) while skipjack tuna (K. pelamis) was most divergent studied species. Phylogenetic analysis using Maximum-Likelihood (ML) and Neighbor-Joining (NJ) methods supported the monophyletic origin of Thunnus species. Similarly, phylogeny of Auxis and Euthynnus species substantiate the monophyly. However, results showed a distinct origin of K. pelamis from genus Thunnus as well as Auxis and Euthynnus. Thus, the mtDNA D-loop region sequence data supports the polyphyletic origin of tuna species.

  1. Surface electromyographic mapping of the orbicularis oculi muscle for real-time blink detection.

    PubMed

    Frigerio, Alice; Cavallari, Paolo; Frigeni, Marta; Pedrocchi, Alessandra; Sarasola, Andrea; Ferrante, Simona

    2014-01-01

    Facial paralysis is a life-altering condition that significantly impairs function, appearance, and communication. Facial rehabilitation via closed-loop pacing represents a potential but as yet theoretical approach to reanimation. A first critical step toward closed-loop facial pacing in cases of unilateral paralysis is the detection of healthy movements to use as a trigger to prosthetically elicit automatic artificial movements on the contralateral side of the face. To test and to maximize the performance of an electromyography (EMG)-based blink detection system for applications in closed-loop facial pacing. Blinking was detected across the periocular region by means of multichannel surface EMG at an academic neuroengineering and medical robotics laboratory among 15 healthy volunteers. Real-time blink detection was accomplished by mapping the surface of the orbicularis oculi muscle on one side of the face with a multichannel surface EMG. The biosignal from each channel was independently processed; custom software registered a blink when an amplitude-based or slope-based suprathreshold activity was detected. The experiments were performed when participants were relaxed and during the production of particular orofacial movements. An F1 score metric was used to analyze software performance in detecting blinks. The maximal software performance was achieved when a blink was recorded from the superomedial orbit quadrant. At this recording location, the median F1 scores were 0.89 during spontaneous blinking, 0.82 when chewing gum, 0.80 when raising the eyebrows, and 0.70 when smiling. The overall performance of blink detection was significantly better at the superomedial quadrant (F1 score, 0.75) than at the traditionally used inferolateral quadrant (F1 score, 0.40) (P < .05). Electromyographic recording represents an accurate tool to detect spontaneous blinks as part of closed-loop facial pacing systems. The early detection of blink activity may allow real-time pacing via rapid triggering of contralateral muscles. Moreover, an EMG detection system can be integrated in external devices and in implanted neuroprostheses. A potential downside to this approach involves cross talk from adjacent muscles, which can be notably reduced by recording from the superomedial quadrant of the orbicularis oculi muscle and by applying proper signal processing. NA.

  2. A Closed-Loop Optimal Neural-Network Controller to Optimize Rotorcraft Aeromechanical Behaviour. Volume 1; Theory and Methodology

    NASA Technical Reports Server (NTRS)

    Leyland, Jane Anne

    2001-01-01

    Given the predicted growth in air transportation, the potential exists for significant market niches for rotary wing subsonic vehicles. Technological advances which optimise rotorcraft aeromechanical behaviour can contribute significantly to both their commercial and military development, acceptance, and sales. Examples of the optimisation of rotorcraft aeromechanical behaviour which are of interest include the minimisation of vibration and/or loads. The reduction of rotorcraft vibration and loads is an important means to extend the useful life of the vehicle and to improve its ride quality. Although vibration reduction can be accomplished by using passive dampers and/or tuned masses, active closed-loop control has the potential to reduce vibration and loads throughout a.wider flight regime whilst requiring less additional weight to the aircraft man that obtained by using passive methads. It is ernphasised that the analysis described herein is applicable to all those rotorcraft aeromechanical behaviour optimisation problems for which the relationship between the harmonic control vector and the measurement vector can be adequately described by a neural-network model.

  3. Evaluation of engineering foods for closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1982-01-01

    A nutritionally adequate and acceptable diet was evaluated and developed. A design for a multipurpose food plant is discussed. The types and amounts of foods needed to be regenerated in a partially closed ecological life support system (PCELSS) were proposed. All steps of food processes to be utilized in the multipurpose food plant of PCELSS were also considered. Equipment specifications, simplification of the proposed processes, and food waste treatment were analyzed.

  4. Plants for space plantations. [crops for closed life support systems

    NASA Technical Reports Server (NTRS)

    Nikishanova, T. I.

    1978-01-01

    Criteria for selection of candidate crops for closed life support systems are presented and discussed, and desired characteristics of candidate higher plant crops are given. Carbohydrate crops, which are most suitable, grown worldwide are listed and discussed. The sweet potato, ipomoea batatas Poir., is shown to meet the criteria to the greatest degree, and the criteria are recommended as suitable for initial evaluation of candidate higher plant crops for such systems.

  5. 77 FR 55416 - Drawbridge Operation Regulations; Long Island, New York Inland Waterway From East Rockaway Inlet...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ...: The Loop Parkway Bridge, mile 0.7, across Long Creek has a vertical clearance in the closed position... deviation the Loop Parkway Bridge and the Meadowbrook Parkway Bridge may remain in the closed position... operation of the Loop Parkway Bridge, mile 0.7, across Long Creek, and the Meadowbrook Parkway Bridge, mile...

  6. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    PubMed Central

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  7. Generalized EC&LSS computer program configuration control

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.

    1976-01-01

    The generalized environmental control and life support system (ECLSS) computer program (G189A) simulation of the shuttle orbiter ECLSS was upgraded. The G189A component model configuration was changed to represent the current PV102 and subsequent vehicle ECLSS configurations as defined by baseline ARS and ATCS schematics. The diagrammatic output schematics of the gas, water, and freon loops were also revised to agree with the new ECLSS configuration. The accuracy of the transient analysis was enhanced by incorporating the thermal mass effects of the equipment, structure, and fluid in the ARS gas and water loops and in the ATCS freon loops. The sources of the data used to upgrade the simulation are: (1) ATCS freon loop line sizes and lengths; (2) ARS water loop line sizes and lengths; (3) ARS water loop and ATCS freon loop component and equipment weights; and (4) ARS cabin and avionics bay thermal capacitance and conductance values. A single G189A combination master program library tape was generated which contains all of the master program library versions which were previously maintained on separate tapes. A new component subroutine, PIPETL, was developed and incorporated into the G189A master program library.

  8. Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals.

    PubMed

    Fukuma, Ryohei; Yanagisawa, Takufumi; Yorifuji, Shiro; Kato, Ryu; Yokoi, Hiroshi; Hirata, Masayuki; Saitoh, Youichi; Kishima, Haruhiko; Kamitani, Yukiyasu; Yoshimine, Toshiki

    2015-01-01

    A neuroprosthesis using a brain-machine interface (BMI) is a promising therapeutic option for severely paralyzed patients, but the ability to control it may vary among individual patients and needs to be evaluated before any invasive procedure is undertaken. We have developed a neuroprosthetic hand that can be controlled by magnetoencephalographic (MEG) signals to noninvasively evaluate subjects' ability to control a neuroprosthesis. Six nonparalyzed subjects performed grasping or opening movements of their right hand while the slow components of the MEG signals (SMFs) were recorded in an open-loop condition. The SMFs were used to train two decoders to infer the timing and types of movement by support vector machine and Gaussian process regression. The SMFs were also used to calculate estimated slow cortical potentials (eSCPs) to identify the origin of motor information. Finally, using the trained decoders, the subjects controlled a neuroprosthetic hand in a closed-loop condition. The SMFs in the open-loop condition revealed movement-related cortical field characteristics and successfully inferred the movement type with an accuracy of 75.0 ± 12.9% (mean ± SD). In particular, the eSCPs in the sensorimotor cortex contralateral to the moved hand varied significantly enough among the movement types to be decoded with an accuracy of 76.5 ± 10.6%, which was significantly higher than the accuracy associated with eSCPs in the ipsilateral sensorimotor cortex (58.1 ± 13.7%; p = 0.0072, paired two-tailed Student's t-test). Moreover, another decoder using SMFs successfully inferred when the accuracy was the greatest. Combining these two decoders allowed the neuroprosthetic hand to be controlled in a closed-loop condition. Use of real-time MEG signals was shown to successfully control the neuroprosthetic hand. The developed system may be useful for evaluating movement-related slow cortical potentials of severely paralyzed patients to predict the efficacy of invasive BMI.

  9. Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals

    PubMed Central

    Fukuma, Ryohei; Yanagisawa, Takufumi; Yorifuji, Shiro; Kato, Ryu; Yokoi, Hiroshi; Hirata, Masayuki; Saitoh, Youichi; Kishima, Haruhiko; Kamitani, Yukiyasu; Yoshimine, Toshiki

    2015-01-01

    Objective A neuroprosthesis using a brain–machine interface (BMI) is a promising therapeutic option for severely paralyzed patients, but the ability to control it may vary among individual patients and needs to be evaluated before any invasive procedure is undertaken. We have developed a neuroprosthetic hand that can be controlled by magnetoencephalographic (MEG) signals to noninvasively evaluate subjects’ ability to control a neuroprosthesis. Method Six nonparalyzed subjects performed grasping or opening movements of their right hand while the slow components of the MEG signals (SMFs) were recorded in an open-loop condition. The SMFs were used to train two decoders to infer the timing and types of movement by support vector machine and Gaussian process regression. The SMFs were also used to calculate estimated slow cortical potentials (eSCPs) to identify the origin of motor information. Finally, using the trained decoders, the subjects controlled a neuroprosthetic hand in a closed-loop condition. Results The SMFs in the open-loop condition revealed movement-related cortical field characteristics and successfully inferred the movement type with an accuracy of 75.0 ± 12.9% (mean ± SD). In particular, the eSCPs in the sensorimotor cortex contralateral to the moved hand varied significantly enough among the movement types to be decoded with an accuracy of 76.5 ± 10.6%, which was significantly higher than the accuracy associated with eSCPs in the ipsilateral sensorimotor cortex (58.1 ± 13.7%; p = 0.0072, paired two-tailed Student’s t-test). Moreover, another decoder using SMFs successfully inferred when the accuracy was the greatest. Combining these two decoders allowed the neuroprosthetic hand to be controlled in a closed-loop condition. Conclusions Use of real-time MEG signals was shown to successfully control the neuroprosthetic hand. The developed system may be useful for evaluating movement-related slow cortical potentials of severely paralyzed patients to predict the efficacy of invasive BMI. PMID:26134845

  10. Comparison of the Shack-Hartmann and plenoptic sensor in closed-loop adaptive optics system

    NASA Astrophysics Data System (ADS)

    Jiang, Pengzhi; Xu, Jieping; Liang, Yonghui; Mao, Hongjun

    2016-03-01

    The wavefront sensor is used in adaptive optics (AO) to detect the atmospheric distortion, which feeds back to the deformable mirror to compensate for this distortion. While the Shack-Hartmann sensor has been widely used, the plenoptic sensor was proposed in recent years. The two different wavefront sensing methods have different interpretations and numerical consequences, though they are both slope-based. The plenoptic sensor is compared with the Shack-Hartmann sensor in a closed-loop AO system. Simulations are performed to investigate their performances under closed-loop conditions. The plenoptic sensors both without and with modulation are discussed. The results show that the closed-loop performance of the plenoptic sensor without modulation is worse than that of the Shack-Hartmann sensor when the star for observation is brighter than magnitude 7, but better when the star is fainter. The closed-loop performance of the plenoptic sensor could be improved by modulation, except for the faint star. In summary, the limiting magnitude of the astronomical AO system may be improved by using the plenoptic sensor instead of the Shack-Hartmann sensor, and the modulation of the plenoptic sensor is more suitable for the bright star.

  11. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone

    PubMed Central

    Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G.

    2017-01-01

    Objective Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. Approach In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. Main Results We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. Significance We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms. PMID:29349070

  12. EEG Recording and Online Signal Processing on Android: A Multiapp Framework for Brain-Computer Interfaces on Smartphone.

    PubMed

    Blum, Sarah; Debener, Stefan; Emkes, Reiner; Volkening, Nils; Fudickar, Sebastian; Bleichner, Martin G

    2017-01-01

    Our aim was the development and validation of a modular signal processing and classification application enabling online electroencephalography (EEG) signal processing on off-the-shelf mobile Android devices. The software application SCALA (Signal ProCessing and CLassification on Android) supports a standardized communication interface to exchange information with external software and hardware. In order to implement a closed-loop brain-computer interface (BCI) on the smartphone, we used a multiapp framework, which integrates applications for stimulus presentation, data acquisition, data processing, classification, and delivery of feedback to the user. We have implemented the open source signal processing application SCALA. We present timing test results supporting sufficient temporal precision of audio events. We also validate SCALA with a well-established auditory selective attention paradigm and report above chance level classification results for all participants. Regarding the 24-channel EEG signal quality, evaluation results confirm typical sound onset auditory evoked potentials as well as cognitive event-related potentials that differentiate between correct and incorrect task performance feedback. We present a fully smartphone-operated, modular closed-loop BCI system that can be combined with different EEG amplifiers and can easily implement other paradigms.

  13. Modeling Advance Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pitts, Marvin; Sager, John; Loader, Coleen; Drysdale, Alan

    1996-01-01

    Activities this summer consisted of two projects that involved computer simulation of bioregenerative life support systems for space habitats. Students in the Space Life Science Training Program (SLSTP) used the simulation, space station, to learn about relationships between humans, fish, plants, and microorganisms in a closed environment. One student complete a six week project to modify the simulation by converting the microbes from anaerobic to aerobic, and then balancing the simulation's life support system. A detailed computer simulation of a closed lunar station using bioregenerative life support was attempted, but there was not enough known about system restraints and constants in plant growth, bioreactor design for space habitats and food preparation to develop an integrated model with any confidence. Instead of a completed detailed model with broad assumptions concerning the unknown system parameters, a framework for an integrated model was outlined and work begun on plant and bioreactor simulations. The NASA sponsors and the summer Fell were satisfied with the progress made during the 10 weeks, and we have planned future cooperative work.

  14. Wet Oxidation as a Waste Treatment Method in Closed Systems

    NASA Technical Reports Server (NTRS)

    Onisko, B. L.; Wydeven, T.

    1982-01-01

    The chemistry of the wet oxidation process was investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life support system. Hydroponically grown lettuce plants were used as a model plant waste, and oxygen gas was used as an oxidant. Organic nitrogen content was decreased 88-100%, depending on feed material. Production of ammonia and nitrogen gas accounted for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life support systems are discussed.

  15. Wet oxidation as a waste treatment in closed systems

    NASA Technical Reports Server (NTRS)

    Onisko, B. L.; Wydeven, T.

    1981-01-01

    The chemistry of the wet oxidation process has been investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life-support system. Hydroponically grown lettuce plants were used as a model plant waste and oxygen gas was used as oxidant. Organic nitrogen content was decreased 88-100% depending on feed material. Production of ammonia and nitrogen gas account for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life-support systems are discussed.

  16. A closed-loop photon beam control study for the Advanced Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Portmann, G.; Bengtsson, J.

    1993-05-01

    The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less

  17. Asteroid Redirect Crewed Mission Space Suit and EVA System Architecture Trade Study

    NASA Technical Reports Server (NTRS)

    Blanco, Raul A.; Bowie, Jonathan T.; Watson, Richard D.; Sipila, Stephanie A.

    2014-01-01

    The Asteroid Redirect Crewed Mission (ARCM) requires a Launch/Entry/Abort (LEA) suit capability and short duration Extra Vehicular Activity (EVA) capability for Orion. The EVAs will involve a two-person crew for approximately four hours. Currently, two EVAs are planned with one contingency EVA in reserve. Providing this EVA capability is very challenging due to system level constraints and a new and unknown environment. The goal of the EVA architecture for ARCM is one that builds upon previously developed technologies and lessons learned, and that accomplishes the ARCM mission while providing a stepping stone to future missions and destinations. The primary system level constraints are to 1) minimize system mass and volume and 2) minimize the interfacing impacts to the baseline Orion design. In order to minimize the interfacing impacts and to not perturb the baseline Orion schedule, the concept of adding "kits" to the baseline system is proposed. These kits consist of: an EVA kit (converts LEA suit to EVA suit), EVA Servicing and Recharge Kit (provides suit consumables), the EVA Tools, Translation Aids & Sample Container Kit (the tools and mobility aids to complete the tasks), the EVA Communications Kit (interface between the EVA radio and the MPCV), and the Cabin Repress Kit (represses the MPCV between EVAs). This paper will focus on the trade space, analysis, and testing regarding the space suit (pressure garment and life support system). Historical approaches and lessons learned from all past EVA operations were researched. Previous and current, successfully operated EVA hardware and high technology readiness level (TRL) hardware were evaluated, and a trade study was conducted for all possible pressure garment and life support options. Testing and analysis was conducted and a recommended EVA system architecture was proposed. Pressure garment options that were considered for this mission include the currently in-use ISS EVA Mobility Unit (EMU), all variations of the Advanced Crew Escape Suit (ACES), and the Exploration Z-suit. For this mission, the pressure garment that was selected is the Modified ACES (MACES) with EVA enhancements. Life support options that were considered included short closed-loop umbilicals, long open-loop umbilicals, the currently in-use ISS EMU Portable Life Support System (PLSS), and the currently in development Exploration PLSS. For this mission, the life support option that was selected is the Exploration PLSS. The greatest risk in the proposed architecture is viewed to be the comfort and mobility of the baseline MACES and the delicate balance between adding more mobility features while not compromising landing safety. Feasibility testing was accomplished in low fidelity analogs and in the JSC Neutral Buoyancy Laboratory (NBL) to validate the concept before a final recommendation on the architecture was made. The proposed architecture was found to meet the mission constraints, but much more work is required to determine the details of the required suit upgrades, the integration with the PLSS, and the rest of the tools and equipment required to accomplish the mission. This work and further definition of the remaining kits will be conducted in government fiscal year 14.

  18. Application of frequency domain handling qualities criteria to the longitudinal landing task

    NASA Technical Reports Server (NTRS)

    Sarrafian, S. K.; Powers, B. G.

    1985-01-01

    Three frequency-domain handling qualities criteria have been applied to the observed data to correlate the actual pilot ratings assigned to generic transport configurations with stability augmentation during the longitudinal landing task. The criteria are based on closed-loop techniques using pitch attitude, altitude rate at the pilot station, and altitude at the pilot station as dominating control parameters during this task. It is found that most promising results are obtained with altitude control performed by closing an inner loop on pitch attitude and closing an outer loop on altitude.

  19. Full-Authority Fault-Tolerant Electronic Engine Control Systems for Variable Cycle Engines.

    DTIC Science & Technology

    1981-12-01

    Geometry or Fuel Flow Scheduled as a Function of Engine State, i.e. FIGV = f( N1 C2 ) Closed Loop - Geometry or Fuel Flow Modulated To Maintain an Engine...Low Pressure Turbine Inlet Area (A41) Closed Loop (Integral) N2, T22 Core Stream Exhaust Nozzle Area (AJE) Closed Loop (Integral) N1 , T2 Duct Stream...to remain at the breakpoint value while low rotor speed reference ( N1 reference) is scheduled to decrease as a function of power lever angle (PLA), to

  20. Non-polynomial closed string field theory: loops and conformal maps

    NASA Astrophysics Data System (ADS)

    Hua, Long; Kaku, Michio

    1990-11-01

    Recently, we proposed the complete classical action for the non-polynomial closed string field theory, which succesfully reproduced all closed string tree amplitudes. (The action was simultaneously proposed by the Kyoto group). In this paper, we analyze the structure of the theory. We (a) compute the explicit conformal map for all g-loop, p-puncture diagrams, (b) compute all one-loop, two-puncture maps in terms of hyper-elliptic functions, and (c) analyze their modular structure. We analyze, but do not resolve, the question of modular invariance.

  1. Closed-loop systems for drug delivery.

    PubMed

    Fields, Aaron M; Fields, Kevin M; Cannon, Jeremy W

    2008-08-01

    To discuss closed-loop systems, the engineering behind them, and the application of these systems. The literature demonstrates that closed-loop systems can be used for controlling the depth of anesthesia, muscle relaxation, blood pressure, intravascular volume, and blood glucose levels. The future anesthesiologist may devote less time to easily delegated tasks when in the operating room. The ability of computers to maintain variables in a set range allows some tasks to be automated. Although monitoring of these systems will never be completely eliminated, the necessity for minute-to-minute intervention may.

  2. Active Pattern Factor Control for Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    May, James E.

    1998-01-01

    Small variations in fuel/air mixture ratios within gas turbine combustors can result in measurable, and potentially detrimental, exit thermal gradients. Thermal gradients can increase emissions, as well as shorten the design life of downstream turbomachinery, particularly stator vanes. Uniform temperature profiles are usually sought through careful design and manufacturing of related combustor components. However, small componentto-component variations as well as numerous aging effects degrade system performance. To compensate for degraded thermal performance, researchers are investigating active, closed-loop control schemes.

  3. Experimentally Determined Overall Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vogel, Matt; Vonaue, Walt; Conger, Bruce; Stein, James

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the overall heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flow rate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  4. Rapid prototyping strategy for a surgical data warehouse.

    PubMed

    Tang, S-T; Huang, Y-F; Hsiao, M-L; Yang, S-H; Young, S-T

    2003-01-01

    Healthcare processes typically generate an enormous volume of patient information. This information largely represents unexploited knowledge, since current hospital operational systems (e.g., HIS, RIS) are not suitable for knowledge exploitation. Data warehousing provides an attractive method for solving these problems, but the process is very complicated. This study presents a novel strategy for effectively implementing a healthcare data warehouse. This study adopted the rapid prototyping (RP) method, which involves intensive interactions. System developers and users were closely linked throughout the life cycle of the system development. The presence of iterative RP loops meant that the system requirements were increasingly integrated and problems were gradually solved, such that the prototype system evolved into the final operational system. The results were analyzed by monitoring the series of iterative RP loops. First a definite workflow for ensuring data completeness was established, taking a patient-oriented viewpoint when collecting the data. Subsequently the system architecture was determined for data retrieval, storage, and manipulation. This architecture also clarifies the relationships among the novel system and legacy systems. Finally, a graphic user interface for data presentation was implemented. Our results clearly demonstrate the potential for adopting an RP strategy in the successful establishment of a healthcare data warehouse. The strategy can be modified and expanded to provide new services or support new application domains. The design patterns and modular architecture used in the framework will be useful in solving problems in different healthcare domains.

  5. Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce

    2015-01-01

    A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.

  6. Earth applications of closed ecological systems: Relevance to the development of sustainability in our global biosphere

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Allen, J.; Ailing, A.; Dempster, W. F.; Silverstone, S.

    The parallels between the challenges facing bioregenerative life support in artificial closed ecological systems and those in our global biosphere are striking. At the scale of the current global technosphere and expanding human population, it is increasingly obvious that the biosphere can no longer safely buffer and absorb technogenic and anthropogenic pollutants. The loss of biodiversity, reliance on non-renewable natural resources, and conversion of once wild ecosystems for human use with attendant desertification/soil erosion, has led to a shift of consciousness and the widespread call for sustainability of human activities. For researchers working on bioregenerative life support in closed systems, the small volumes and faster cycling times than in the Earth's biosphere make it starkly clear that systems must be designed to ensure renewal of water and atmosphere, nutrient recycling, production of healthy food, and safe environmental methods of maintaining technical systems. The development of technical systems that can be fully integrated and supportive of living systems is a harbinger of new perspectives as well as technologies in the global environment. In addition, closed system bioregenerative life support offers opportunities for public education and consciousness changing of how to live with our global biosphere.

  7. Day-and-Night Hybrid Closed-Loop Insulin Delivery in Adolescents With Type 1 Diabetes: A Free-Living, Randomized Clinical Trial.

    PubMed

    Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Thabit, Hood; Stewart, Zoë; Cheng, Peiyao; Kollman, Craig; Acerini, Carlo L; Dunger, David B; Hovorka, Roman

    2016-07-01

    To evaluate feasibility, safety, and efficacy of day-and-night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes under free-living conditions without remote monitoring or supervision. In an open-label, randomized, free-living, crossover study design, 12 adolescents receiving insulin pump therapy (mean [±SD] age 15.4 ± 2.6 years; HbA1c 8.3 ± 0.9%; duration of diabetes 8.2 ± 3.4 years) underwent two 7-day periods of sensor-augmented insulin pump therapy or hybrid closed-loop insulin delivery without supervision or remote monitoring. During the closed-loop insulin delivery, a model predictive algorithm automatically directed insulin delivery between meals and overnight; prandial boluses were administered by participants using a bolus calculator. The proportion of time when the sensor glucose level was in the target range (3.9-10 mmol/L) was increased during closed-loop insulin delivery compared with sensor-augmented pump therapy (72 vs. 53%, P < 0.001; primary end point), the mean glucose concentration was lowered (8.7 vs. 10.1 mmol/L, P = 0.028), and the time spent above the target level was reduced (P = 0.005) without changing the total daily insulin amount (P = 0.55). The time spent in the hypoglycemic range was low and comparable between interventions. Unsupervised day-and-night hybrid closed-loop insulin delivery at home is feasible and safe in young people with type 1 diabetes. Compared with sensor-augmented insulin pump therapy, closed-loop insulin delivery may improve glucose control without increasing the risk of hypoglycemia in adolescents with suboptimally controlled type 1 diabetes. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Closing the Referral Loop: an Analysis of Primary Care Referrals to Specialists in a Large Health System.

    PubMed

    Patel, Malhar P; Schettini, Priscille; O'Leary, Colin P; Bosworth, Hayden B; Anderson, John B; Shah, Kevin P

    2018-05-01

    Ideally, a referral from a primary care physician (PCP) to a specialist results in a completed specialty appointment with results available to the PCP. This is defined as "closing the referral loop." As health systems grow more complex, regulatory bodies increase vigilance, and reimbursement shifts towards value, closing the referral loop becomes a patient safety, regulatory, and financial imperative. To assess the ability of a large health system to close the referral loop, we used electronic medical record (EMR)-generated data to analyze referrals from a large primary care network to 20 high-volume specialties between July 1, 2015 and June 30, 2016. The primary metric was documented specialist appointment completion rate. Explanatory analyses included documented appointment scheduling rate, individual clinic differences, appointment wait times, and geographic distance to appointments. Of the 103,737 analyzed referral scheduling attempts, only 36,072 (34.8%) resulted in documented complete appointments. Low documented appointment scheduling rates (38.9% of scheduling attempts lacked appointment dates), individual clinic differences in closing the referral loop, and significant differences in wait times and distances to specialists between complete and incomplete appointments drove this gap. Other notable findings include high variation in wait times among specialties and correlation between high wait times and low documented appointment completion rates. The rate of closing the referral loop in this health system is low. Low appointment scheduling rates, individual clinic differences, and patient access issues of wait times and geographic proximity explain much of the gap. This problem is likely common among large health systems with complex provider networks and referral scheduling. Strategies that improve scheduling, decrease variation among clinics, and improve patient access will likely improve rates of closing the referral loop. More research is necessary to determine the impact of these changes and other potential driving factors.

  9. Investigation of Desiccants and CO2 Sorbents for Advanced Exploration Systems 2015-2016

    NASA Technical Reports Server (NTRS)

    Cmarik, Gregory E.; Knox, Jim

    2016-01-01

    Advanced Environmental Control and Life Support System (ECLSS) design is critical for human space flight beyond Earth. Current systems enable extended missions in low-Earth orbit, but for deep-space missions, not only will astronauts be outside the reach of resupply operations from Earth but they will also need to handle malfunctions and compensate for the degradation of materials. These two daunting challenges must be overcome for long-term independent space flight. In order to solve the first, separation and reuse of onboard atmosphere components is required. Current systems utilize space vacuum to fully regenerate adsorbent beds, but this is not sustainable thus necessitating a closed-loop system. The second challenge stems from material and performance degradation due to operational cycling and on-board contaminants. This report will review the recent work by the ECLSS team at Marshall Space Flight Center towards overcoming these challenges by characterizing materials via novel methods for use in future systems.

  10. The design and optimization for light-algae bioreactor controller based on Artificial Neural Network-Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Liu, Hong; Yang, Chenliang; Hu, Enzhu

    As a subsystem of the bioregenerative life support system (BLSS), light-algae bioreactor (LABR) has properties of high reaction rate, efficiently synthesizing microalgal biomass, absorbing CO2 and releasing O2, so it is significant for BLSS to provide food and maintain gas balance. In order to manipulate the LABR properly, it has been designed as a closed-loop control system, and technology of Artificial Neural Network-Model Predictive Control (ANN-MPC) is applied to design the controller for LABR in which green microalgae, Spirulina platensis is cultivated continuously. The conclusion is drawn by computer simulation that ANN-MPC controller can intelligently learn the complicated dynamic performances of LABR, and automatically, robustly and self-adaptively regulate the light intensity illuminating on the LABR, hence make the growth of microalgae in the LABR be changed in line with the references, meanwhile provide appropriate damping to improve markedly the transient response performance of LABR.

  11. Development status of regenerable solid amine CO2 control systems

    NASA Technical Reports Server (NTRS)

    Colling, A. K., Jr.; Nalette, T. A.; Cusick, R. J.; Reysa, R. P.

    1985-01-01

    The development history of solid amine/water desorbed (SAWD) CO2 control systems is reviewed. The design of the preprototype SAWD I CO2 system on the basis of a three-man metabolic load at the 3.8 mm Hg ambient CO2 level, and the functions of the CO2 removal, CO2 storage/delivery, controller, and life test laboratory support packages are described. The development of a full-scale multiple canister SAWD II preprototype system, which is capable of conducting the CO2 removal/concentration function in a closed-loop atmosphere revitalization system during zero-gravity operation, is examined. The operation of the SAWD II system, including the absorption and desorption cycles, is analyzed. A reduction in the thermal mass of the canister and the system's energy transfer technique result in efficient energy use. The polyether foam, nylon felt, nickel foam, spring retained, and metal bellows bed tests performed to determine the design of the zero-gravity canister are studied; metal bellows are selected for the canister's configuration.

  12. Physical/chemical closed-loop water-recycling for long-duration missions

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Wydeven, Ted

    1990-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on earth, in regions where extensive water ecycling is needed or where advanced water treatment is essential to meet EPA health standards.

  13. Miniature Fourier transform spectrometer with a dual closed-loop controlled electrothermal micromirror.

    PubMed

    Han, Fengtian; Wang, Wei; Zhang, Xiaoyang; Xie, Huikai

    2016-10-03

    A large piston-displacement electrothermal micromirror with closed-loop control of both piston scan and tilting of the mirror plate is demonstrated for use in a miniature Fourier transform spectrometer. Constant scan velocity in an ultra large piston scan range has been demonstrated by the proposed closed-loop piston control scheme which can be easily implemented without considerably increasing system complexity. The experimental results show that the usable linear scan range generated by the micromirror has been extended up to 505 μm. The measured spectral resolution in a compact spectrometer reaches 20 cm-1, or 0.57 nm at 532 nm wavelength. Compared to other presented systems, this microspectrometer will benefit from the closed-loop thermal actuator approach utilizing both the piston servo and tilt control to provide more consistent spectral response, improved spectral resolution and enhanced robustness to disturbances.

  14. Robust fast controller design via nonlinear fractional differential equations.

    PubMed

    Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong

    2017-07-01

    A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. Similarity Metrics for Closed Loop Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.

    2008-01-01

    To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.

  16. Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas.

    PubMed

    Kovatchev, Boris P; Renard, Eric; Cobelli, Claudio; Zisser, Howard C; Keith-Hynes, Patrick; Anderson, Stacey M; Brown, Sue A; Chernavvsky, Daniel R; Breton, Marc D; Farret, Anne; Pelletier, Marie-Josée; Place, Jérôme; Bruttomesso, Daniela; Del Favero, Simone; Visentin, Roberto; Filippi, Alessio; Scotton, Rachele; Avogaro, Angelo; Doyle, Francis J

    2013-07-01

    To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital-hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes.

  17. Method for spinning up a three-axis controlled spacecraft

    NASA Technical Reports Server (NTRS)

    Vorlicek, Preston L. (Inventor)

    1988-01-01

    A three-axis controlled spacecraft (1), typically a satellite, is spun up about its roll axis (20) prior to firing a motor (2), i.e., a perigee kick motor, to achieve the requisite degree of angular momentum stiffness. Thrusters (21) for imparting rotation about the roll axis (20) are activated in open-loop fashion, typically at less than full duty cycle. Cross-axis torques induced by this rotational motion are compensated for by means of closed control loops for each of the pitch and yaw axes (30, 40, respectively). Each closed control loop combines a prebias torque (72) with torques (75, 74) representative of position and rate feedback information, respectively. A deadband (52) within each closed control loop can be widened during the spinup, to conserve fuel. Position feedback information (75) in each of the control loops is disabled upon saturation of the gyroscope associated with the roll axis (20).

  18. Space Suit Portable Life Support System Rapid Cycle Amine Repackaging and Sub-Scale Test Results

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Rivera, Fatonia L.

    2010-01-01

    NASA is developing technologies to meet requirements for an extravehicular activity (EVA) Portable Life Support System (PLSS) for exploration. The PLSS Ventilation Subsystem transports clean, conditioned oxygen to the pressure garment for space suit pressurization and human consumption, and recycles the ventilation gas, removing carbon dioxide, humidity, and trace contaminants. This paper provides an overview of the development efforts conducted at the NASA Johnson Space Center to redesign the Rapid Cycle Amine (RCA) canister and valve assembly into a radial flow, cylindrical package for carbon dioxide and humidity control of the PLSS ventilation loop. Future work is also discussed.

  19. Enhanced Performance Controller Design for Stochastic Systems by Adding Extra State Estimation onto the Existing Closed Loop Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyang; Zhang, Qichun; Wang, Hong

    To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, wheremore » encouraging results have been obtained.« less

  20. Operation of a cascade air conditioning system with two-phase loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yinshan; Wang, Jinliang; Zhao, Futao

    A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heatmore » transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.« less

  1. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1985-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  2. Shifting the closed-loop spectrum in the optimal linear quadratic regulator problem for hereditary systems

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1987-01-01

    In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.

  3. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres.

    PubMed

    Landi, Daniele; Gigli, Silvia; Germani, Michele; Marconi, Marco

    2018-05-01

    The management of end-of-life tyres (ELTs) is regulated by several national and international legislations aiming to promote the recovery of materials and energy from this waste. The three main materials used in tyres are considered: rubber (main product), which is currently reused in other closed-loop applications; steel, which is used for the production of virgin materials; and textile fibres (approximately 10% by weight of ELTs), which are mainly incinerated for energy recovery (open-loop scenario). This study aims to propose and validate a new closed-loop scenario for textile fibres based on material reuse for bituminous conglomerates. The final objective is to verify the technical, environmental, financial, and economic feasibility of the proposed treatment process and reuse scenario. After characterization of the textile material, which is required to determine the technological feasibility, a specific process has been developed to clean, compact, and prepare the fibres for subsequent reuse. A life cycle assessment (LCA) has been carried out to quantify the environmental benefits of reusing the fibres. Finally, a cost benefit analysis based on the LCA results was conducted to establish the long-term financial and economic sustainability. From a technological point of view, the tyre textile fibres could be a promising substitute to the reinforcement cellulose commonly used in asphalts as long as the fibres are properly prepared (compaction and pellet production) for application in the standard bituminous conglomerate production process. From an environmental point of view, relevant benefits in terms of global warming potential and acidification potential reduction were observed in comparison with the standard incineration for energy recovery (respectively -86% and -45%). Moreover, the proposed scenario can be considered as financially viable in the medium to long term (cumulative generated cash flow is positive after the 5th year) and economically sustainable (expected net present value of more than €3,000,000 and economic rate of return of approximately 30%). Finally, the sensitivity and risk analyses show that no specific issues are foreseen for the future implementation in real industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Closed-loop assisted versus manual goal-directed fluid therapy during high-risk abdominal surgery: a case-control study with propensity matching.

    PubMed

    Rinehart, Joseph; Lilot, Marc; Lee, Christine; Joosten, Alexandre; Huynh, Trish; Canales, Cecilia; Imagawa, David; Demirjian, Aram; Cannesson, Maxime

    2015-03-19

    Goal-directed fluid therapy strategies have been shown to benefit moderate- to high-risk surgery patients. Despite this, these strategies are often not implemented. The aim of this study was to assess a closed-loop fluid administration system in a surgical cohort and compare the results with those for matched patients who received manual management. Our hypothesis was that the patients receiving closed-loop assistance would spend more time in a preload-independent state, defined as percentage of case time with stroke volume variation less than or equal to 12%. Patients eligible for the study were all those over 18 years of age scheduled for hepatobiliary, pancreatic or splenic surgery and expected to receive intravascular arterial blood pressure monitoring as part of their anesthetic care. The closed-loop resuscitation target was selected by the primary anesthesia team, and the system was responsible for implementation of goal-directed fluid therapy during surgery. Following completion of enrollment, each study patient was matched to a non-closed-loop assisted case performed during the same time period using a propensity match to reduce bias. A total of 40 patients were enrolled, 5 were ultimately excluded and 25 matched pairs were selected from among the remaining 35 patients within the predefined caliper distance. There was no significant difference in fluid administration between groups. The closed-loop group spent a significantly higher portion of case time in a preload-independent state (95 ± 6% of case time versus 87 ± 14%, P =0.008). There was no difference in case mean or final stroke volume index (45 ± 10 versus 43 ± 9 and 45 ± 11 versus 42 ± 11, respectively) or mean arterial pressure (79 ± 8 versus 83 ± 9). Case end heart rate was significantly lower in the closed-loop assisted group (77 ± 10 versus 88 ± 13, P =0.003). In this case-control study with propensity matching, clinician use of closed-loop assistance resulted in a greater portion of case time spent in a preload-independent state throughout surgery compared with manual delivery of goal-directed fluid therapy. ClinicalTrials.gov Identifier: NCT02020863. Registered 19 December 2013.

  5. Phase-lock loop frequency control and the dropout problem

    NASA Technical Reports Server (NTRS)

    Attwood, S.; Kline, A. J.

    1968-01-01

    Technique automatically sets the frequency of narrow band phase-lock loops within automatic lock-in-range. It presets a phase-lock loop to a desired center frequency with a closed loop electronic frequency discriminator and holds the phase-lock loop to that center frequency until lock is achieved.

  6. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo

    2009-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  7. Heat Exchanger/Humidifier Trade Study and Conceptual Design for the Constellation Space Suit Portable Life Support System Ventilation Subsystem

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo

    2008-01-01

    As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.

  8. Biomedical Support of U.S. Extravehicular Activity

    NASA Technical Reports Server (NTRS)

    Gernhardt, Michael L.; Dervay, J. P.; Gillis, D.; McMann, H. J.; Thomas, K. S.

    2007-01-01

    The world's first extravehicular activity (EVA) was performed by A. A. Leonov on March 18, 1965 during the Russian Voskhod-2 mission. The first US EVA was executed by Gemini IV astronaut Ed White on June 3, 1965, with an umbilical tether that included communications and an oxygen supply. A hand-held maneuvering unit (HHMU) also was used to test maneuverability during the brief EVA; however the somewhat stiff umbilical limited controlled movement. That constraint, plus difficulty returning through the vehicle hatch, highlighted the need for increased thermal control and improved EVA ergonomics. Clearly, requirements for a useful EVA were interrelated with the vehicle design. The early Gemini EVAs generated requirements for suits providing micro-meteor protection, adequate visual field and eye protection from solar visual and infrared radiation, gloves optimized for dexterity while pressurized, and thermal systems capable of protecting the astronaut while rejecting metabolic heat during high workloads. Subsequent Gemini EVAs built upon this early experience and included development of a portable environmental control and life support systems (ECLSS) and an astronaut maneuvering unit. The ECLSS provided a pressure vessel and controller with functional control over suit pressure, oxygen flow, carbon dioxide removal, humidity, and temperature control. Gemini EVA experience also identified the usefulness of underwater neutral buoyancy and altitude chamber task training, and the importance of developing reliable task timelines. Improved thermal management and carbon dioxide control also were required for high workload tasks. With the Apollo project, EVA activity was primarily on the lunar surface; and suit durability, integrated liquid cooling garments, and low suit operating pressures (3.75 pounds per square inch absolute [psia] or 25.8 kilopascal [kPa],) were required to facilitate longer EVAs with ambulation and significant physical workloads with average metabolic rates of 1000 BTU/hr and peaks of up to 2200 BTU/hr. Mobility was further augmented with the Lunar Roving Vehicle. The Apollo extravehicular mobility unit (EMU) was made up of over 15 components, ranging from a biomedical belt for capturing and transmitting biomedical data, urine and fecal containment systems, a liquid cooling garment, communications cap, a modular portable life support system (PLSS), a boot system, thermal overgloves, and a bubble helmet with eye protection. Apollo lunar astronauts performed successful EVAs on the lunar surface from a 5 psia (34.4 kPa) 100% oxygen environment in the Lunar Lander. A maximum of three EVAs were performed on any mission. For Skylab a modified A7LB suit, used for Apollo 15, was selected. The Skylab astronaut life support assembly (ALSA) provided umbilical support through the life support umbilical (LSU) and used open loop oxygen flow, rather than closed-loop as in Apollo missions. Thermal control was provided by liquid water circulated by spacecraft pumps and electrical power also was provided from the spacecraft via the umbilical. The cabin atmosphere of 5 psia (34.4 kPa), 70% oxygen, provided a normoxic atmosphere and because of the very low nitrogen partial pressures, no special protocols were required to protect against decompression sickness (DCS) as was the case with the Apollo spacecraft with a 5 psi, 100% oxygen environment.

  9. Classical and adaptive control of ex vivo skeletal muscle contractions using Functional Electrical Stimulation (FES)

    PubMed Central

    Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander

    2017-01-01

    Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101

  10. Efficiently computing exact geodesic loops within finite steps.

    PubMed

    Xin, Shi-Qing; He, Ying; Fu, Chi-Wing

    2012-06-01

    Closed geodesics, or geodesic loops, are crucial to the study of differential topology and differential geometry. Although the existence and properties of closed geodesics on smooth surfaces have been widely studied in mathematics community, relatively little progress has been made on how to compute them on polygonal surfaces. Most existing algorithms simply consider the mesh as a graph and so the resultant loops are restricted only on mesh edges, which are far from the actual geodesics. This paper is the first to prove the existence and uniqueness of geodesic loop restricted on a closed face sequence; it contributes also with an efficient algorithm to iteratively evolve an initial closed path on a given mesh into an exact geodesic loop within finite steps. Our proposed algorithm takes only an O(k) space complexity and an O(mk) time complexity (experimentally), where m is the number of vertices in the region bounded by the initial loop and the resultant geodesic loop, and k is the average number of edges in the edge sequences that the evolving loop passes through. In contrast to the existing geodesic curvature flow methods which compute an approximate geodesic loop within a predefined threshold, our method is exact and can apply directly to triangular meshes without needing to solve any differential equation with a numerical solver; it can run at interactive speed, e.g., in the order of milliseconds, for a mesh with around 50K vertices, and hence, significantly outperforms existing algorithms. Actually, our algorithm could run at interactive speed even for larger meshes. Besides the complexity of the input mesh, the geometric shape could also affect the number of evolving steps, i.e., the performance. We motivate our algorithm with an interactive shape segmentation example shown later in the paper.

  11. Method for culturing mammalian cells in a perfused bioreactor

    NASA Technical Reports Server (NTRS)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)

    1992-01-01

    A bio-reactor system wherein a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.

  12. Rotating bio-reactor cell culture apparatus

    NASA Technical Reports Server (NTRS)

    Schwarz, Ray P. (Inventor); Wolf, David A. (Inventor)

    1991-01-01

    A bioreactor system is described in which a tubular housing contains an internal circularly disposed set of blade members and a central tubular filter all mounted for rotation about a common horizontal axis and each having independent rotational support and rotational drive mechanisms. The housing, blade members and filter preferably are driven at a constant slow speed for placing a fluid culture medium with discrete microbeads and cell cultures in a discrete spatial suspension in the housing. Replacement fluid medium is symmetrically input and fluid medium is symmetrically output from the housing where the input and the output are part of a loop providing a constant or intermittent flow of fluid medium in a closed loop.

  13. Failure Analysis of Network Based Accessible Pedestrian Signals in Closed-Loop Operation

    DOT National Transportation Integrated Search

    2011-03-01

    The potential failure modes of a network based accessible pedestrian system were analyzed to determine the limitations and benefits of closed-loop operation. The vulnerabilities of the system are accessed using the industry standard process known as ...

  14. Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.

    PubMed

    Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei

    2013-09-18

    The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.

  15. Camera Based Closed Loop Control for Partial Penetration Welding of Overlap Joints

    NASA Astrophysics Data System (ADS)

    Abt, F.; Heider, A.; Weber, R.; Graf, T.; Blug, A.; Carl, D.; Höfler, H.; Nicolosi, L.; Tetzlaff, R.

    Welding of overlap joints with partial penetration in automotive applications is a challenging process, since the laser power must be set very precisely to achieve a proper connection between the two joining partners without damaging the backside of the sheet stack. Even minor changes in welding conditions can lead to bad results. To overcome this problem a camera based closed loop control for partial penetration welding of overlap joints was developed. With this closed loop control it is possible to weld such configurations with a stable process result even under changing welding conditions.

  16. Closed loop models for analyzing the effects of simulator characteristics. [digital simulation of human operators

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Kleinman, D. L.

    1978-01-01

    The optimal control model of the human operator is used to develop closed loop models for analyzing the effects of (digital) simulator characteristics on predicted performance and/or workload. Two approaches are considered: the first utilizes a continuous approximation to the discrete simulation in conjunction with the standard optimal control model; the second involves a more exact discrete description of the simulator in a closed loop multirate simulation in which the optimal control model simulates the pilot. Both models predict that simulator characteristics can have significant effects on performance and workload.

  17. A novel Cs-(129)Xe atomic spin gyroscope with closed-loop Faraday modulation.

    PubMed

    Fang, Jiancheng; Wan, Shuangai; Qin, Jie; Zhang, Chen; Quan, Wei; Yuan, Heng; Dong, Haifeng

    2013-08-01

    We report a novel Cs-(129)Xe atomic spin gyroscope (ASG) with closed-loop Faraday modulation method. This ASG requires approximately 30 min to start-up and 110 °C to operate. A closed-loop Faraday modulation method for measurement of the optical rotation was used in this ASG. This method uses an additional Faraday modulator to suppress the laser intensity fluctuation and Faraday modulator thermal induced fluctuation. We theoretically and experimentally validate this method in the Cs-(129)Xe ASG and achieved a bias stability of approximately 3.25 °∕h.

  18. Hardware Evolution of Closed-Loop Controller Designs

    NASA Technical Reports Server (NTRS)

    Gwaltney, David; Ferguson, Ian

    2002-01-01

    Poster presentation will outline on-going efforts at NASA, MSFC to employ various Evolvable Hardware experimental platforms in the evolution of digital and analog circuitry for application to automatic control. Included will be information concerning the application of commercially available hardware and software along with the use of the JPL developed FPTA2 integrated circuit and supporting JPL developed software. Results to date will be presented.

  19. Microstrip monopulse antenna for land mobile communications

    NASA Technical Reports Server (NTRS)

    Garcia, Q.; Martin, C.; Delvalle, J. C.; Jongejans, A.; Rinous, P.; Travers, M. N.

    1993-01-01

    Low cost is one of the main requirements in a communication system suitable for mass production, as it is the case for satellite land mobile communications. Microstrip technology fulfills this requirement which must be supported by a low cost tracking system design. The tradeoff led us to a prototype antenna composed of microstrip patches based on electromechanical closed-loop principle; the design and the results obtained are described.

  20. Variability of Insulin Requirements Over 12 Weeks of Closed-Loop Insulin Delivery in Adults With Type 1 Diabetes.

    PubMed

    Ruan, Yue; Thabit, Hood; Leelarathna, Lalantha; Hartnell, Sara; Willinska, Malgorzata E; Dellweg, Sibylle; Benesch, Carsten; Mader, Julia K; Holzer, Manuel; Kojzar, Harald; Evans, Mark L; Pieber, Thomas R; Arnolds, Sabine; Hovorka, Roman

    2016-05-01

    To quantify variability of insulin requirements during closed-loop insulin delivery. We retrospectively analyzed overnight, daytime, and total daily insulin amounts delivered during a multicenter closed-loop trial involving 32 adults with type 1 diabetes. Participants applied hybrid day-and-night closed-loop insulin delivery under free-living home conditions over 12 weeks. The coefficient of variation was adopted to measure variability of insulin requirements in individual subjects. Data were analyzed from 1,918 nights, 1,883 daytime periods and 1,564 total days characterized by closed-loop use over 85% of time. Variability of overnight insulin requirements (mean [SD] coefficient of variation 31% [4]) was nearly twice as high as variability of total daily requirements (17% [3], P < 0.001) and was also higher than variability of daytime insulin requirements (22% [4], P < 0.001). Overnight insulin requirements were significantly more variable than daytime and total daily amounts. This may explain why some people with type 1 diabetes report frustrating variability in morning glycemia. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Closed-Loop Neuromorphic Benchmarks

    PubMed Central

    Stewart, Terrence C.; DeWolf, Travis; Kleinhans, Ashley; Eliasmith, Chris

    2015-01-01

    Evaluating the effectiveness and performance of neuromorphic hardware is difficult. It is even more difficult when the task of interest is a closed-loop task; that is, a task where the output from the neuromorphic hardware affects some environment, which then in turn affects the hardware's future input. However, closed-loop situations are one of the primary potential uses of neuromorphic hardware. To address this, we present a methodology for generating closed-loop benchmarks that makes use of a hybrid of real physical embodiment and a type of “minimal” simulation. Minimal simulation has been shown to lead to robust real-world performance, while still maintaining the practical advantages of simulation, such as making it easy for the same benchmark to be used by many researchers. This method is flexible enough to allow researchers to explicitly modify the benchmarks to identify specific task domains where particular hardware excels. To demonstrate the method, we present a set of novel benchmarks that focus on motor control for an arbitrary system with unknown external forces. Using these benchmarks, we show that an error-driven learning rule can consistently improve motor control performance across a randomly generated family of closed-loop simulations, even when there are up to 15 interacting joints to be controlled. PMID:26696820

  2. Fate of pharmaceuticals and pesticides in fly larvae composting.

    PubMed

    Lalander, C; Senecal, J; Gros Calvo, M; Ahrens, L; Josefsson, S; Wiberg, K; Vinnerås, B

    2016-09-15

    A novel and efficient organic waste management strategy currently gaining great attention is fly larvae composting. High resource recovery efficiency can be achieved in this closed-looped system, but pharmaceuticals and pesticides in waste could potentially accumulate in every loop of the treatment system and spread to the environment. This study evaluated the fate of three pharmaceuticals (carbamazepine, roxithromycin, trimethoprim) and two pesticides (azoxystrobin, propiconazole) in a fly larvae composting system and in a control treatment with no larvae. It was found that the half-life of all five substances was shorter in the fly larvae compost (<10% of control) and no bioaccumulation was detected in the larvae. Fly larvae composting could thus impede the spread of pharmaceuticals and pesticides into the environment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Restoration of motor function following spinal cord injury via optimal control of intraspinal microstimulation: toward a next generation closed-loop neural prosthesis

    PubMed Central

    Grahn, Peter J.; Mallory, Grant W.; Berry, B. Michael; Hachmann, Jan T.; Lobel, Darlene A.; Lujan, J. Luis

    2014-01-01

    Movement is planned and coordinated by the brain and carried out by contracting muscles acting on specific joints. Motor commands initiated in the brain travel through descending pathways in the spinal cord to effector motor neurons before reaching target muscles. Damage to these pathways by spinal cord injury (SCI) can result in paralysis below the injury level. However, the planning and coordination centers of the brain, as well as peripheral nerves and the muscles that they act upon, remain functional. Neuroprosthetic devices can restore motor function following SCI by direct electrical stimulation of the neuromuscular system. Unfortunately, conventional neuroprosthetic techniques are limited by a myriad of factors that include, but are not limited to, a lack of characterization of non-linear input/output system dynamics, mechanical coupling, limited number of degrees of freedom, high power consumption, large device size, and rapid onset of muscle fatigue. Wireless multi-channel closed-loop neuroprostheses that integrate command signals from the brain with sensor-based feedback from the environment and the system's state offer the possibility of increasing device performance, ultimately improving quality of life for people with SCI. In this manuscript, we review neuroprosthetic technology for improving functional restoration following SCI and describe brain-machine interfaces suitable for control of neuroprosthetic systems with multiple degrees of freedom. Additionally, we discuss novel stimulation paradigms that can improve synergy with higher planning centers and improve fatigue-resistant activation of paralyzed muscles. In the near future, integration of these technologies will provide SCI survivors with versatile closed-loop neuroprosthetic systems for restoring function to paralyzed muscles. PMID:25278830

  4. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.; Venables, A.; Huggins, D.; Gladue, R.

    1984-01-01

    In many respects, algae would be the ideal plant component for a biologically based controlled life support system, since they are eminently suited to the closely coupled functions of atmosphere regeneration and food production. Scenedesmus obliquus and Spirulina platensis were grown in three continuous culture apparatuses. Culture vessels their operation and relative merits are described. Both light and nitrogen utilization efficiency are examined. Long term culture issues are detailed and a discussion of a plasmid search in Spirulina is included.

  5. An approach to the preliminary evaluation of Closed Ecological Life Support System (CELSS) scenarios and control strategies

    NASA Technical Reports Server (NTRS)

    Stahr, J. D.; Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    Life support systems for manned space missions are discussed. A scenario analysis method was proposed for the initial step of comparing possible partial or total recycle scenarios. The method is discussed in detail.

  6. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel. The fundamental research in multiphase flow and phase change in microgravity is aimed at developing better mechanistic understanding of pool boiling and ascertaining the effects of gravity on heat transfer and the critical heat flux. Space flight experiments conducted in space have shown that nucleate pool boiling can be sustained under certain conditions in the microgravity environment. New space flight experiments are being developed to provide more quantitative information on pool boiling in microgravity. Ground-based investigations are also being conducted to develop mechanistic models for flow and pool boiling. An overview of the research plan and roadmap for the strategic research in multiphase flow and phase change as well as research findings from the ongoing program will be presented.

  7. Autopilot, Mind Wandering, and the Out of the Loop Performance Problem.

    PubMed

    Gouraud, Jonas; Delorme, Arnaud; Berberian, Bruno

    2017-01-01

    To satisfy the increasing demand for safer critical systems, engineers have integrated higher levels of automation, such as glass cockpits in aircraft, power plants, and driverless cars. These guiding principles relegate the operator to a monitoring role, increasing risks for humans to lack system understanding. The out of the loop performance problem arises when operators suffer from complacency and vigilance decrement; consequently, when automation does not behave as expected, understanding the system or taking back manual control may be difficult. Close to the out of the loop problem, mind wandering points to the propensity of the human mind to think about matters unrelated to the task at hand. This article reviews the literature related to both mind wandering and the out of the loop performance problem as it relates to task automation. We highlight studies showing how these phenomena interact with each other while impacting human performance within highly automated systems. We analyze how this proximity is supported by effects observed in automated environment, such as decoupling, sensory attention, and cognitive comprehension decrease. We also show that this link could be useful for detecting out of the loop situations through mind wandering markers. Finally, we examine the limitations of the current knowledge because many questions remain open to characterize interactions between out of the loop, mind wandering, and automation.

  8. Plasma dynamics above solar flare soft x-ray loop tops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doschek, G. A.; Warren, H. P.; McKenzie, D. E.

    2014-06-10

    We measure non-thermal motions in flare loop tops and above the loop tops using profiles of highly ionized spectral lines of Fe XXIV and Fe XXIII formed at multimillion-degree temperatures. Non-thermal motions that may be due to turbulence or multiple flow regions along the line of sight are extracted from the line profiles. The non-thermal motions are measured for four flares seen at or close to the solar limb. The profile data are obtained using the Extreme-ultraviolet Imaging Spectrometer on the Hinode spacecraft. The multimillion-degree non-thermal motions are between 20 and 60 km s{sup –1} and appear to increase withmore » height above the loop tops. Motions determined from coronal lines (i.e., lines formed at about 1.5 MK) tend to be smaller. The multimillion-degree temperatures in the loop tops and above range from about 11 MK to 15 MK and also tend to increase with height above the bright X-ray-emitting loop tops. The non-thermal motions measured along the line of sight, as well as their apparent increase with height, are supported by Solar Dynamics Observatory Atmospheric Imaging Assembly measurements of turbulent velocities in the plane of the sky.« less

  9. Production characteristics of lettuce Lactuca sativa L. in the frame of the first crop tests in the Higher Plant Chamber integrated into the MELiSSA Pilot Plant

    NASA Astrophysics Data System (ADS)

    Tikhomirova, Natalia; Lawson, Jamie; Stasiak, Michael; Dixon, Mike; Paille, Christel; Peiro, Enrique; Fossen, Arnaud; Godia, Francesc

    Micro-Ecological Life Support System Alternative (MELiSSA) is an artificial closed ecosystem that is considered a tool for the development of a bioregenerative life support system for manned space missions. One of the five compartments of MELiSSA loop -Higher Plant Chamber was recently integrated into the MELiSSA Pilot Plant facility at Universitat Aut`noma deo Barcelona. The main contributions expected by integration of this photosynthetic compartment are oxygen, water, vegetable food production and CO2 consumption. Production characteristics of Lactuca sativa L., as a MELiSSA candidate crop, were investigated in this work in the first crop experiments in the MELiSSA Pilot Plant facility. The plants were grown in batch culture and totaled 100 plants with a growing area 5 m long and 1 m wide in a sealed controlled environment. Several replicates of the experiments were carried out with varying duration. It was shown that after 46 days of lettuce cultivation dry edible biomass averaged 27, 2 g per plant. However accumulation of oxygen in the chamber, which required purging of the chamber, and decrease in the food value of the plants was observed. Reducing the duration of the tests allowed uninterrupted test without opening the system and also allowed estimation of the crop's carbon balance. Results of productivity, tissue composition, nutrient uptake and canopy photosynthesis of lettuce regardless of test duration are discussed in the paper.

  10. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.

    PubMed

    Sun, Zhi; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2015-07-07

    In recent years, recovery of metals from electronic waste within the European Union has become increasingly important due to potential supply risk of strategic raw material and environmental concerns. Electronic waste, especially a mixture of end-of-life electronic products from a variety of sources, is of inherently high complexity in composition, phase, and physiochemical properties. In this research, a closed-loop hydrometallurgical process was developed to recover valuable metals, i.e., copper and precious metals, from an industrially processed information and communication technology waste. A two-stage leaching design of this process was adopted in order to selectively extract copper and enrich precious metals. It was found that the recovery efficiency and extraction selectivity of copper both reached more than 95% by using ammonia-based leaching solutions. A new electrodeposition process has been proven feasible with 90% current efficiency during copper recovery, and the copper purity can reach 99.8 wt %. The residue from the first-stage leaching was screened into coarse and fine fractions. The coarse fraction was returned to be releached for further copper recovery. The fine fraction was treated in the second-stage leaching using sulfuric acid to further concentrate precious metals, which could achieve a 100% increase in their concentrations in the residue with negligible loss into the leaching solution. By a combination of different leaching steps and proper physical separation of light materials, this process can achieve closed-loop recycling of the waste with significant efficiency.

  11. Power converter having improved fluid cooling

    DOEpatents

    Meyer, Andreas A.; Radosevich, Lawrence D.; Beihoff, Bruce C.; Kehl, Dennis L.; Kannenberg, Daniel G.

    2007-03-06

    A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support, which may be controlled in a closed-loop manner. Interfacing between circuits, circuit mounting structure, and the support provide for greatly enhanced cooling. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  12. Reciprocal Family, Friendship and Church Support Networks of African Americans: Findings from the National Survey of American Life.

    PubMed

    Taylor, Robert Joseph; Mouzon, Dawne M; Nguyen, Ann W; Chatters, Linda M

    2016-12-01

    This study examined reciprocal support networks involving extended family, friends and church members among African Americans. Our analysis examined specific patterns of reciprocal support (i.e., received only, gave only, both gave and received, neither gave or received), as well as network characteristics (i.e., contact and subjective closeness) as correlates of reciprocal support. The analysis is based on the African American sub-sample of the National Survey of American Life (NSAL). Overall, our findings indicate that African Americans are very involved in reciprocal support networks with their extended family, friends and church members. Respondents were most extensively involved in reciprocal supports with extended family members, followed closely by friends and church networks. Network characteristics (i.e., contact and subjective closeness) were significantly and consistently associated with involvement with reciprocal support exchanges for all three networks. These and other findings are discussed in detail. This study complements previous work on the complementary roles of family, friend and congregational support networks, as well as studies of racial differences in informal support networks.

  13. Solution structure of an ATP-binding RNA aptamer reveals a novel fold.

    PubMed Central

    Dieckmann, T; Suzuki, E; Nakamura, G K; Feigon, J

    1996-01-01

    In vitro selection has been used to isolate several RNA aptamers that bind specifically to biological cofactors. A well-characterized example in the ATP-binding RNA aptamer family, which contains a conserved 11-base loop opposite a bulged G and flanked by regions of double-stranded RNA. The nucleotides in the consensus sequence provide a binding pocket for ATP (or AMP), which binds with a Kd in the micromolar range. Here we present the three-dimensional solution structure of a 36-nucleotide ATP-binding RNA aptamer complexed with AMP, determined from NMR-derived distance and dihedral angle restraints. The conserved loop and bulged G form a novel compact, folded structure around the AMP. The backbone tracing of the loop nucleotides can be described by a Greek zeta (zeta). Consecutive loop nucleotides G, A, A form a U-turn at the bottom of the zeta, and interact with the AMP to form a structure similar to a GNRA tetraloop, with AMP standing in for the final A. Two asymmetric G. G base pairs close the stems flanking the internal loop. Mutated aptamers support the existence of the tertiary interactions within the consensus nucleotides and with the AMP found in the calculated structures. PMID:8756406

  14. Partial gravity simulation using a pneumatic actuator with closed loop mechanical amplification

    NASA Technical Reports Server (NTRS)

    Ray, David M.

    1994-01-01

    To support future manned missions to the surface of the Moon and Mars or missions requiring manipulation of payloads and locomotion in space, a training device is required to simulate the conditions of both partial and microgravity as compared to the gravity on Earth. The focus of this paper is to present the development, construction, and testing of a partial gravity simulator which uses a pneumatic actuator with closed loop mechanical amplification. Results of the testing show that this type of simulator maintains a constant partial gravity simulation with a variation of the simulated body force between 2.2 percent and 10 percent, depending on the type of locomotion inputs. The data collected using the simulator show that mean stride frequencies at running speeds at lunar and Martian gravity levels are 12 percent less than those at Earth gravity. The data also show that foot/ground reaction forces at lunar and Martian gravity are, respectively, 62 percent and 51 percent less than those on Earth.

  15. The Stability Region for Feedback Control of the Wake Behind Twin Oscillating Cylinders

    NASA Astrophysics Data System (ADS)

    Borggaard, Jeff; Gugercin, Serkan; Zietsman, Lizette

    2016-11-01

    Linear feedback control has the ability to stabilize vortex shedding behind twin cylinders where cylinder rotation is the actuation mechanism. Complete elimination of the wake is only possible for certain Reynolds numbers and cylinder spacing. This is related to the presence of asymmetric unstable modes in the linearized system. We investigate this region of parameter space using a number of closed-loop simulations that bound this region. We then consider the practical issue of designing feedback controls based on limited state measurements by building a nonlinear compensator using linear robust control theory with and incorporating the nonlinear terms in the compensator (e.g., using the extended Kalman filter). Interpolatory model reduction methods are applied to the large discretized, linearized Navier-Stokes system and used for computing the control laws and compensators. Preliminary closed-loop simulations of a three-dimensional version of this problem will also be presented. Supported in part by the National Science Foundation.

  16. A method for paraplegic upper-body posture estimation during standing: a pilot study for rehabilitation purposes.

    PubMed

    Pages, Gaël; Ramdani, Nacim; Fraisse, Philippe; Guiraud, David

    2009-06-01

    This paper presents a contribution for restoring standing in paraplegia while using functional electrical stimulation (FES). Movement generation induced by FES remains mostly open looped and stimulus intensities are tuned empirically. To design an efficient closed-loop control, a preliminary study has been carried out to investigate the relationship between body posture and voluntary upper body movements. A methodology is proposed to estimate body posture in the sagittal plane using force measurements exerted on supporting handles during standing. This is done by setting up constraints related to the geometric equations of a two-dimensional closed chain model and the hand-handle interactions. All measured quantities are subject to an uncertainty assumed unknown but bounded. The set membership estimation problem is solved via interval analysis. Guaranteed uncertainty bounds are computed for the estimated postures. In order to test the feasibility of our methodology, experiments were carried out with complete spinal cord injured patients.

  17. Autonomous Guidance of Agile Small-scale Rotorcraft

    NASA Technical Reports Server (NTRS)

    Mettler, Bernard; Feron, Eric

    2004-01-01

    This report describes a guidance system for agile vehicles based on a hybrid closed-loop model of the vehicle dynamics. The hybrid model represents the vehicle dynamics through a combination of linear-time-invariant control modes and pre-programmed, finite-duration maneuvers. This particular hybrid structure can be realized through a control system that combines trim controllers and a maneuvering control logic. The former enable precise trajectory tracking, and the latter enables trajectories at the edge of the vehicle capabilities. The closed-loop model is much simpler than the full vehicle equations of motion, yet it can capture a broad range of dynamic behaviors. It also supports a consistent link between the physical layer and the decision-making layer. The trajectory generation was formulated as an optimization problem using mixed-integer-linear-programming. The optimization is solved in a receding horizon fashion. Several techniques to improve the computational tractability were investigate. Simulation experiments using NASA Ames 'R-50 model show that this approach fully exploits the vehicle's agility.

  18. Active vibration absorber for CSI evolutionary model: Design and experimental results

    NASA Technical Reports Server (NTRS)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.

  19. Linear motor drive system for continuous-path closed-loop position control of an object

    DOEpatents

    Barkman, William E.

    1980-01-01

    A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.

  20. Metabolic assessments during extra-vehicular activity.

    PubMed

    Osipov YuYu; Spichkov, A N; Filipenkov, S N

    1998-01-01

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha' (ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  1. Metabolic assessments during extra-vehicular activity

    NASA Astrophysics Data System (ADS)

    Osipov, Yu. Yu.; Spichkov, A. N.; Filipenkov, S. N.

    Extra-vehicular activity (EVA) has a significant role during extended space flights. It demonstrates that humans can survive and perform useful work outside the Orbital Space Stations (OSS) while wearing protective space suits (SS). When the International Space Station 'Alpha'(ISSA) is fully operational, EVA assembly, installation, maintenance and repair operations will become an everyday repetitive work activity in space. It needs new ergonomic evaluation of the work/rest schedule for an increasing of the labor amount per EVA hour. The metabolism assessment is a helpful method to control the productivity of the EVA astronaut and to optimize the work/rest regime. Three following methods were used in Russia to estimate real-time metabolic rates during EVA: 1. Oxygen consumption, computed from the pressure drop in a high pressure bottle per unit time (with actual thermodynamic oxygen properties under high pressure and oxygen leakage taken into account). 2. Carbon dioxide production, computed from CO 2 concentration at the contaminant control cartridge and gas flow rate in the life support subsystem closed loop (nominal mode) or gas leakage in the SS open loop (emergency mode). 3. Heat removal, computed from the difference between the temperatures of coolant water or gas and its flow rate in a unit of time (with assumed humidity and wet oxygen state taken into account). Comparison of heat removal values with metabolic rates enables us to determine the thermal balance during an operative medical control of EVA at "Salyut-6", "Salyut-7" and "Mir" OSS. Complex analysis of metabolism, body temperature and heat rate supports a differential diagnosis between emotional and thermal components of stress during EVA. It gives a prognosis of human homeostasis during EVA. Available information has been acquired into an EVA data base which is an effective tool for ergonomical optimization.

  2. Human factor observations of the Biosphere 2, 1991-1993, closed life support human experiment and its application to a long-term manned mission to Mars.

    PubMed

    Alling, Abigail; Nelson, Mark; Silverstone, Sally; Van Thillo, Mark

    2002-01-01

    Human factors are a key component to the success of long-term space missions such as those necessitated by the human exploration of Mars and the development of bioregenerative and eventually self-sufficient life support systems for permanent space outposts. Observations by participants living inside the 1991-1993 Biosphere 2 closed system experiment provide the following insights. (1) Crew members should be involved in the design and construction of their life support systems to gain maximum knowledge about the systems. (2) Individuals living in closed life support systems should expect a process of physiological and psychological adaptation to their new environment. (3) Far from simply being a workplace, the participants in such extended missions will discover the importance of creating a cohesive and satisfying life style. (4) The crew will be dependent on the use of varied crops to create satisfying cuisine, a social life with sufficient outlets of expression such as art and music, and to have down-time from purely task-driven work. (5) The success of the Biosphere 2 first 2-year mission suggests that crews with high cultural diversity, high commitment to task, and work democracy principles for individual responsibility may increase the probability of both mission success and personal satisfaction. (6) Remaining challenges are many, including the need for far more comprehensive real-time modeling and information systems (a "cybersphere") operating to provide real-time data necessary for decision-making in a complex life support system. (7) And, the aim will be to create a noosphere, or sphere of intelligence, where the people and their living systems are in sustainable balance.

  3. Binding of DNA hairpins to an assembler-strand as part of a primordial translation device

    NASA Astrophysics Data System (ADS)

    Baumann, Ulrich

    1987-09-01

    A crucial event in the process leading to the origin of life is the emergence of a simple translation device. To approach experimental realization of this device the binding ability of short DNA hairpins to complementary oligonucleotides fixed on a solid support was investigated. The binding is achieved by base pairing between the loop nucleotides of the hairpins containing different numbers of adenosine residues and oligothymidylates covalently linked to cellulose. The loop has to consist of at least five nucleotides to achieve binding. The exact number of established base pairs was determined in two ways. First, the elution temperatures of hairpins and those of oligoadenylates which had the length of the loop were compared. Secondly, the architecture of the loop was analyzed by means of the single-strand-specific nuclease from mung bean acting as structural probe. Onlyn-2 of n loop nucleotides of a hairpin are able to form base pairs. Therefore, a strong evidence for the formation of a triplet of base pairs between primeval tRNA and mRNA sufficient to stabilize the complex enzyme-free is given.

  4. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model

    NASA Astrophysics Data System (ADS)

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.

  5. Plastic flexible films waste management - A state of art review.

    PubMed

    Horodytska, O; Valdés, F J; Fullana, A

    2018-04-21

    Plastic flexible films are increasingly used in many applications due to their lightness and versatility. In 2014, the amount of plastic films represented 34% of total plastic packaging produced in UK. The flexible film waste generation rises according to the increase in number of applications. Currently, in developed countries, about 50% of plastics in domestic waste are films. Moreover, about 615,000 tonnes of agricultural flexible waste are generated in the EU every year. A review of plastic films recycling has been conducted in order to detect the shortcomings and establish guidelines for future research. This paper reviews plastic films waste management technologies from two different sources: post-industrial and post-consumer. Clean and homogeneous post-industrial waste is recycled through closed-loop or open-loop mechanical processes. The main differences between these methods are the quality and the application of the recycled materials. Further research should be focused on closing the loops to obtain the highest environmental benefits of recycling. This could be accomplished through minimizing the material degradation during mechanical processes. Regarding post-consumer waste, flexible films from agricultural and packaging sectors have been assessed. The agricultural films and commercial and industrial flexible packaging are recycled through open-loop mechanical recycling due to existing selective waste collection routes. Nevertheless, the contamination from the use phase adversely affects the quality of recycled plastics. Therefore, upgrading of current washing lines is required. On the other hand, household flexible packaging shows the lowest recycling rates mainly because of inefficient sorting technologies. Delamination and compatibilization methods should be further developed to ensure the recycling of multilayer films. Finally, Life Cycle Assessment (LCA) studies on waste management have been reviewed. A lack of thorough LCA on plastic films waste management systems was identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Microgyroscope with closed loop output

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian (Inventor); Gutierrez, Roman C. (Inventor); Tang, Tony K. (Inventor); Cargille, Donald R. (Inventor)

    2002-01-01

    A micro-gyroscope (10) having closed loop operation by a control voltage (V.sub.TY), that is demodulated by an output signal of the sense electrodes (S1, S2), providing Coriolis torque rebalance to prevent displacement of the micro-gyroscope (10) on the output axis (y-axis). The present invention provides wide-band, closed-loop operation for a micro-gyroscope (10) and allows the drive frequency to be closely tuned to a high Q sense axis resonance. A differential sense signal (S1-S2) is compensated and fed back by differentially changing the voltage on the drive electrodes to rebalance Coriolis torque. The feedback signal is demodulated in phase with the drive axis signal (K.sub..omega..crclbar..sub.x) to produce a measure of the Coriolis force.

  7. Hippocampal closed-loop modeling and implications for seizure stimulation design

    NASA Astrophysics Data System (ADS)

    Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.

    2015-10-01

    Objective. Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main results. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.

  8. The impact of closed-loop electronic medication management on time to first dose: a comparative study between paper and digital hospital environments.

    PubMed

    Austin, Jodie A; Smith, Ian R; Tariq, Amina

    2018-01-22

    Closed-loop electronic medication management systems (EMMS) are recognised as an effective intervention to improve medication safety, yet evidence of their effectiveness in hospitals is limited. Few studies have compared medication turnaround time for a closed-loop electronic versus paper-based medication management environment. To compare medication turnaround times in a paper-based hospital environment with a digital hospital equipped with a closed-loop EMMS, consisting of computerised physician order entry, profiled automated dispensing cabinets packaged with unit dose medications and barcode medication administration. Data were collected during 2 weeks at three private hospital sites (one with closed-loop EMMS) within the same organisation network in Queensland, Australia. Time between scheduled and actual administration times was analysed for first dose of time-critical and non-critical medications located on the ward or sourced via pharmacy. Medication turnaround times at the EMMS site were less compared to the paper-based sites (median, IQR: 35 min, 8-57 min versus 120 min, 30-180 min, P < 0.001). For time-critical medications, 77% were administered within 60 min of scheduled time at the EMMS site versus 38% for the paper-based sites. Similar difference was observed for non-critical medications, 80% were administered within 60 min of their scheduled time at the EMMS site versus 41% at the paper-based facilities. The study indicates medication turnaround times utilising a closed-loop EMMS are less compared to paper-based systems. This improvement may be attributable to increased accessibility of medications using automated dispensing cabinets and electronic medication administration records flagging tasks to nurses in real time. © 2018 Royal Pharmaceutical Society.

  9. Applying Computer Models to Realize Closed-Loop Neonatal Oxygen Therapy.

    PubMed

    Morozoff, Edmund; Smyth, John A; Saif, Mehrdad

    2017-01-01

    Within the context of automating neonatal oxygen therapy, this article describes the transformation of an idea verified by a computer model into a device actuated by a computer model. Computer modeling of an entire neonatal oxygen therapy system can facilitate the development of closed-loop control algorithms by providing a verification platform and speeding up algorithm development. In this article, we present a method of mathematically modeling the system's components: the oxygen transport within the patient, the oxygen blender, the controller, and the pulse oximeter. Furthermore, within the constraints of engineering a product, an idealized model of the neonatal oxygen transport component may be integrated effectively into the control algorithm of a device, referred to as the adaptive model. Manual and closed-loop oxygen therapy performance were defined in this article by 3 criteria in the following order of importance: percent duration of SpO2 spent in normoxemia (target SpO2 ± 2.5%), hypoxemia (less than normoxemia), and hyperoxemia (more than normoxemia); number of 60-second periods <85% SpO2 and >95% SpO2; and number of manual adjustments. Results from a clinical evaluation that compared the performance of 3 closed-loop control algorithms (state machine, proportional-integral-differential, and adaptive model) with manual oxygen therapy on 7 low-birth-weight ventilated preterm babies, are presented. Compared with manual therapy, all closed-loop control algorithms significantly increased the patients' duration in normoxemia and reduced hyperoxemia (P < 0.05). The number of manual adjustments was also significantly reduced by all of the closed-loop control algorithms (P < 0.05). Although the performance of the 3 control algorithms was equivalent, it is suggested that the adaptive model, with its ease of use, may have the best utility.

  10. Hippocampal closed-loop modeling and implications for seizure stimulation design.

    PubMed

    Sandler, Roman A; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W; Marmarelis, Vasilis Z

    2015-10-01

    Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the entorhinal cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3 → CA1, via the schaffer-collateral synapse, and CA1 → CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (principal dynamic modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Deep-brain stimulation (DBS) is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy.

  11. Hippocampal Closed-Loop Modeling and Implications for Seizure Stimulation Design

    PubMed Central

    Sandler, Roman A.; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.; Marmarelis, Vasilis Z.

    2016-01-01

    Objective Traditional hippocampal modeling has focused on the series of feedforward synapses known as the trisynaptic pathway. However, feedback connections from CA1 back to the hippocampus through the Entorhinal Cortex (EC) actually make the hippocampus a closed-loop system. By constructing a functional closed-loop model of the hippocampus, one may learn how both physiological and epileptic oscillations emerge and design efficient neurostimulation patterns to abate such oscillations. Approach Point process input-output models where estimated from recorded rodent hippocampal data to describe the nonlinear dynamical transformation from CA3→CA1, via the Schaffer-Collateral synapse, and CA1→CA3 via the EC. Each Volterra-like subsystem was composed of linear dynamics (Principal Dynamic Modes) followed by static nonlinearities. The two subsystems were then wired together to produce the full closed-loop model of the hippocampus. Main Results Closed-loop connectivity was found to be necessary for the emergence of theta resonances as seen in recorded data, thus validating the model. The model was then used to identify frequency parameters for the design of neurostimulation patterns to abate seizures. Significance DBS is a new and promising therapy for intractable seizures. Currently, there is no efficient way to determine optimal frequency parameters for DBS, or even whether periodic or broadband stimuli are optimal. Data-based computational models have the potential to be used as a testbed for designing optimal DBS patterns for individual patients. However, in order for these models to be successful they must incorporate the complex closed-loop structure of the seizure focus. This study serves as a proof-of-concept of using such models to design efficient personalized DBS patterns for epilepsy. PMID:26355815

  12. Sensor Life and Overnight Closed Loop: A Randomized Clinical Trial.

    PubMed

    Tauschmann, Martin; Allen, Janet M; Wilinska, Malgorzata E; Ruan, Yue; Thabit, Hood; Acerini, Carlo L; Dunger, David B; Hovorka, Roman

    2017-05-01

    Closed-loop (CL) systems direct insulin delivery based on continuous glucose monitor (CGM) sensor values. CGM accuracy varies with sensor life, being least accurate on day 1 of sensor insertion. We evaluated the effect of sensor life (enhanced Enlite, Medtronic MiniMed, Northridge, CA) on overnight CL. In an open-label, randomized, 2-period, inpatient crossover pilot study, 12 adolescents on insulin pump (age 16.7 ± 1.9 years; HbA1c 66 ± 10 mmol/mol) attended a clinical research facility on 2 overnight occasions. In random order, participants received CL on day 1 or on day 3-4 after sensor insertion. During both periods, glucose was automatically controlled by a model predictive control algorithm informed by sensor glucose. Plasma glucose was measured every 30 to 60 min. During overnight CL (22:30 to 07:30), the proportion of time with plasma glucose readings in the target range (3.9-8.0 mmol/l, primary endpoint) when initiated on day 1 of sensor insertion vs day 3-4 were comparable (58 ± 32% day 1 vs 56 ± 36% day 3-4; P = .34), and there were no significant differences between interventions in terms of mean plasma glucose ( P = .26), percentage time above 8.0 mmol/l ( P = .49), and time spent below 3.9 mmol/l ( P = .93). Sensor accuracy varied with sensor life (mean absolute relative difference 19.8 ± 15.0% on day 1 and 13.7 ± 10.2% on day 3 to 4). Sensor glucose tended to under-read plasma glucose inflating benefits of CL on glucose control. In spite of differences in sensor accuracy, overnight CL glucose control informed by sensor glucose on day 1 or day 3-4 after sensor insertion was comparable. The model predictive controller appears to mitigate against sensor inaccuracies.

  13. Snare coupling of the pre-pectoral pacing lead delivery catheter to the femoral transseptal apparatus for endocardial cardiac resynchronization therapy : mid-term results.

    PubMed

    Patel, Mehul B; Worley, Seth J

    2013-04-01

    Limitations imposed by the coronary sinus venous anatomy triggered the transseptal approach for endocardial LV lead placement. The alignment of the interatrial septum (IAS) and its neighborhood anatomy does not favor transseptal puncture from the pre-pectoral area. Locating and advancing a pre-pectoral LV lead delivery catheter (PDC) through an opening created in the IAS via femoral transseptal puncture (FTP) is time consuming and technically difficult. We describe a method where the PDC is snare coupled to the femoral transseptal apparatus (FTA). When the FTA is advanced into the left atrium (LA) the coupled PDC follows. The catheter of a 25-mm loop snare kit is replaced with the PDC (SelectSite®). The snare loop is positioned in the right common iliac vein from the pre-pectoral access. The PDC is coupled to the FTA by advancing the transseptal apparatus through the open snare loop. After conventional FTP, the FTA is withdrawn back into the right atrium (RA) over an extra support wire positioned in the LA. The PDC with open snare loop is pulled over the FTA up to the RA. The PDC is advanced to close the snare loop on the extra support wire immediately distal to the tip of the dilator close to the puncture site. The PDC is deflected to align with the FTA. The snare coupled catheters are gently advanced across the IAS into the LA. The PDC is released from the FTA by advancing the snare and opening the loop; the snare is then removed from the PDC. The PDC is deflected and advanced into the left ventricle (LV). After positioning the 4.1 Fr lumen less LV lead, the PDC is sliced and removed. The PDC snare coupled to the FTA was advanced into the LA in all five patients, however, access was lost during catheter manipulation in the one right-sided case. Endocardial LV lead was successfully positioned in all five patients. Snare coupling the pre-pectoral SelectSite® catheter to the FTA is technically simple, reliable and a safe method for transseptal endocardial LV lead placement for left pre-pectoral implantation.

  14. Closed-loop conductance scanning tunneling spectroscopy: demonstrating the equivalence to the open-loop alternative.

    PubMed

    Hellenthal, Chris; Sotthewes, Kai; Siekman, Martin H; Kooij, E Stefan; Zandvliet, Harold J W

    2015-01-01

    We demonstrate the validity of using closed-loop z(V) conductance scanning tunneling spectroscopy (STS) measurements for the determination of the effective tunneling barrier by comparing them to more conventional open-loop I(z) measurements. Through the development of a numerical model, the individual contributions to the effective tunneling barrier present in these experiments, such as the work function and the presence of an image charge, are determined quantitatively. This opens up the possibility of determining tunneling barriers of both vacuum and molecular systems in an alternative and more detailed manner.

  15. High Torque-to-Inertia Servo System for Stabilizing Sensor Systems. Candidate Systems Include Missile Guidance, Surveillance, and Tracking

    DTIC Science & Technology

    1980-04-01

    specifications ... 3-10 25. Typical isolation curve ... 3-12 26. Servo amp/motor/load frequency response (inner gimbal) ... 4-3 27. Slave loop ( open loop...slave loop ( open loop) frequency response (inner gimbal) . . . 4-4 30. Slave loop (closed loop) frequency response (inner gimbal) ... 4-5 3 . Slave...loop inner gimbal time response ... 4-5 32. Servo amp/motor/load frequency response (outer gimbal) ... 4-6 33. Slave loop ( open loop) uncompensated

  16. Earth applications of closed ecological systems: relevance to the development of sustainability in our global biosphere.

    PubMed

    Nelson, M; Allen, J; Alling, A; Dempster, W F; Silverstone, S

    2003-01-01

    The parallels between the challenges facing bioregenerative life support in artificial closed ecological systems and those in our global biosphere are striking. At the scale of the current global technosphere and expanding human population, it is increasingly obvious that the biosphere can no longer safely buffer and absorb technogenic and anthropogenic pollutants. The loss of biodiversity, reliance on non-renewable natural resources, and conversion of once wild ecosystems for human use with attendant desertification/soil erosion, has led to a shift of consciousness and the widespread call for sustainability of human activities. For researchers working on bioregenerative life support in closed systems, the small volumes and faster cycling times than in the Earth's biosphere make it starkly clear that systems must be designed to ensure renewal of water and atmosphere, nutrient recycling, production of healthy food, and safe environmental methods of maintaining technical systems. The development of technical systems that can be fully integrated and supportive of living systems is a harbinger of new perspectives as well as technologies in the global environment. In addition, closed system bioregenerative life support offers opportunities for public education and consciousness changing of how to live with our global biosphere. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  17. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination

    PubMed Central

    Karthik, K.; Rathore, Rajesh; Thomas, Prasad; Arun, T.R.; Viswas, K.N.; Dhama, Kuldeep; Agarwal, R.K.

    2014-01-01

    Loop mediated isothermal amplification (LAMP) assay, a promising diagnostic test, has been developed for detection of different pathogens of human as well as animals. Various positive points support its use as a field level test but the major problem is product cross contamination leading to false positive results. Different methods were adopted by various researchers to control this false positive amplification due to cross contamination but all have their own advantages and disadvantages. A new closed tube LAMP assay based on agar dye capsule was developed in the present study and this technique has some advantages over the other closed tube technique.•Agar at the concentration of 1.5% was used to sandwich SYBR green dye I with the aid of intradermal syringe. This agar dye capsule was placed over the LAMP reaction mixture before it was amplified.•To eliminate the hazardous nature of Ultra Violet (UV) light during result visualization of LAMP products, the present study demonstrates the use of Light Emitting Diode (LED) lights for result visualization.•LAMP was carried out for Brucella species detection using this modified techniques yielding good results without any cross contamination and LED showed similar fluorescence compared to UV. PMID:26150945

  18. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination.

    PubMed

    Karthik, K; Rathore, Rajesh; Thomas, Prasad; Arun, T R; Viswas, K N; Dhama, Kuldeep; Agarwal, R K

    2014-01-01

    Loop mediated isothermal amplification (LAMP) assay, a promising diagnostic test, has been developed for detection of different pathogens of human as well as animals. Various positive points support its use as a field level test but the major problem is product cross contamination leading to false positive results. Different methods were adopted by various researchers to control this false positive amplification due to cross contamination but all have their own advantages and disadvantages. A new closed tube LAMP assay based on agar dye capsule was developed in the present study and this technique has some advantages over the other closed tube technique.•Agar at the concentration of 1.5% was used to sandwich SYBR green dye I with the aid of intradermal syringe. This agar dye capsule was placed over the LAMP reaction mixture before it was amplified.•To eliminate the hazardous nature of Ultra Violet (UV) light during result visualization of LAMP products, the present study demonstrates the use of Light Emitting Diode (LED) lights for result visualization.•LAMP was carried out for Brucella species detection using this modified techniques yielding good results without any cross contamination and LED showed similar fluorescence compared to UV.

  19. Modeling Pilot Pulse Control

    NASA Technical Reports Server (NTRS)

    Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal

    2017-01-01

    In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).

  20. Semi-active control of helicopter vibration using controllable stiffness and damping devices

    NASA Astrophysics Data System (ADS)

    Anusonti-Inthra, Phuriwat

    Semi-active concepts for helicopter vibration reduction are developed and evaluated in this dissertation. Semi-active devices, controllable stiffness devices or controllable orifice dampers, are introduced; (i) in the blade root region (rotor-based concept) and (ii) between the rotor and the fuselage as semi-active isolators (in the non-rotating frame). Corresponding semi-active controllers for helicopter vibration reduction are also developed. The effectiveness of the rotor-based semi-active vibration reduction concept (using stiffness and damping variation) is demonstrated for a 4-bladed hingeless rotor helicopter in moderate- to high-speed forward flight. A sensitivity study shows that the stiffness variation of root element can reduce hub vibrations when proper amplitude and phase are used. Furthermore, the optimal semi-active control scheme can determine the combination of stiffness variations that produce significant vibration reduction in all components of vibratory hub loads simultaneously. It is demonstrated that desired cyclic variations in properties of the blade root region can be practically achieved using discrete controllable stiffness devices and controllable dampers, especially in the flap and lag directions. These discrete controllable devices can produce 35--50% reduction in a composite vibration index representing all components of vibratory hub loads. No detrimental increases are observed in the lower harmonics of blade loads and blade response (which contribute to the dynamic stresses) and controllable device internal loads, when the optimal stiffness and damping variations are introduced. The effectiveness of optimal stiffness and damping variations in reducing hub vibration is retained over a range of cruise speeds and for variations in fundamental rotor properties. The effectiveness of the semi-active isolator is demonstrated for a simplified single degree of freedom system representing the semi-active isolation system. The rotor, represented by a lumped mass under harmonic force excitation, is supported by a spring and a parallel damper on the fuselage (assumed to have infinite mass). Properties of the spring or damper can then be controlled to reduce transmission of the force into the fuselage or the support structure. This semi-active isolation concept can produce additional 30% vibration reduction beyond the level achieved by a passive isolator. Different control schemes (i.e. open-loop, closed-loop, and closed-loop adaptive schemes) are developed and evaluated to control transmission of vibratory loads to the support structure (fuselage), and it is seen that a closed-loop adaptive controller is required to retain vibration reduction effectiveness when there is a change in operating condition. (Abstract shortened by UMI.)

Top