Sample records for closely linked molecular

  1. Decomposition of the linking number of a closed ribbon: A problem from molecular biology

    PubMed Central

    Fuller, F. Brock

    1978-01-01

    A closed duplex DNA molecule relaxed and containing nucleosomes has a different linking number from the same molecule relaxed and without nucleosomes. What does this say about the structure of the nucleosome? A mathematical study of this question is made, representing the DNA molecule by a ribbon. It is shown that the linking number of a closed ribbon can be decomposed into the linking number of a reference ribbon plus a sum of locally determined “linking differences.” PMID:16592550

  2. Reversible and Selective Encapsulation of Dextromethorphan and β-Estradiol Using an Asymmetric Molecular Capsule Assembled via the Weak-Link Approach.

    PubMed

    Mendez-Arroyo, Jose; d'Aquino, Andrea I; Chinen, Alyssa B; Manraj, Yashin D; Mirkin, Chad A

    2017-02-01

    An allosterically regulated, asymmetric receptor featuring a binding cavity large enough to accommodate three-dimensional pharmaceutical guest molecules as opposed to planar, rigid aromatics, was synthesized via the Weak-Link Approach. This architecture is capable of switching between an expanded, flexible "open" configuration and a collapsed, rigid "closed" one. The structure of the molecular receptor can be completely modulated in situ through the use of simple ionic effectors, which reversibly control the coordination state of the Pt(II) metal hinges to open and close the molecular receptor. The substantial change in binding cavity size and electrostatic charge between the two configurations is used to explore the capture and release of two guest molecules, dextromethorphan and β-estradiol, which are widely found as pollutants in groundwater.

  3. 75 FR 57475 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date: October 14-15, 2010...; Collaborative: Behavioral Genetics and Epidemiology Linked Applications. Date: October 20-21, 2010. Time: 8:30 a...

  4. Thioarsenides: A case for long-range Lewis acid-base-directed van der Waals interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbs, Gerald V.; Wallace, Adam F.; Downs, R. T.

    2011-04-01

    Electron density distributions, bond paths, Laplacian and local energy density properties have been calculated for a number of As4Sn (n = 3,4,5) thioarsenide molecular crystals. On the basis of the distributions, the intramolecular As-S and As-As interactions classify as shared bonded interactions and the intermolecular As-S, As-As and S-S interactions classify as closed-shell van der Waals bonded interactions. The bulk of the intermolecular As-S bond paths link regions of locally concentrated electron density (Lewis base regions) with aligned regions of locally depleted electron density (Lewis acid regions) on adjacent molecules. The paths are comparable with intermolecular paths reported for severalmore » other molecular crystals that link aligned Lewis base and acid regions in a key-lock fashion, interactions that classified as long range Lewis acid-base directed van der Waals interactions. As the bulk of the intermolecular As-S bond paths (~70%) link Lewis acid-base regions on adjacent molecules, it appears that molecules adopt an arrangement that maximizes the number of As-S Lewis acid-base intermolecular bonded interactions. The maximization of the number of Lewis acid-base interactions appears to be connected with the close-packed array adopted by molecules: distorted cubic close-packed arrays are adopted for alacránite, pararealgar, uzonite, realgar and β-AsS and the distorted hexagonal close-packed arrays adopted by α- and β-dimorphite. A growth mechanism is proposed for thioarsenide molecular crystals from aqueous species that maximizes the number of long range Lewis acid-base vdW As-S bonded interactions with the resulting directed bond paths structuralizing the molecules as a molecular crystal.« less

  5. A Solomon link through an interwoven molecular grid.

    PubMed

    Beves, Jonathon E; Danon, Jonathan J; Leigh, David A; Lemonnier, Jean-François; Vitorica-Yrezabal, Iñigo J

    2015-06-22

    A molecular Solomon link was synthesized through the assembly of an interwoven molecular grid consisting of four bis(benzimidazolepyridyl)benzthiazolo[5,4-d]thiazole ligands and four zinc(II), iron(II), or cobalt(II) cations, followed by ring-closing olefin metathesis. NMR spectroscopy, mass spectrometry, and X-ray crystallography confirmed the doubly interlocked topology, and subsequent demetalation afforded the wholly organic Solomon link. The synthesis, in which each metal ion defines the crossing point of two ligand strands, suggests that interwoven molecular grids should be useful scaffolds for the rational construction of other topologically complex structures. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  6. Genetics Home Reference: L1 syndrome

    MedlinePlus

    ... X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 2013 Sep; ... F. Three cases with L1 syndrome and two novel mutations in the L1CAM gene. Eur J Pediatr. ...

  7. The microscopic structure of an exactly solvable model binary solution that exhibits two closed loops in the phase diagram.

    PubMed

    Lungu, Radu P; Huckaby, Dale A

    2008-07-21

    An exactly solvable lattice model describing a binary solution is considered where rodlike molecules of types AA and BB cover the links of a honeycomb lattice, the neighboring molecular ends having three-body and orientation-dependent bonding interactions. At phase coexistence of AA-rich and BB-rich phases, the average fraction of each type of triangle of neighboring molecular ends is calculated exactly. The fractions of the different types of triangles are then used to deduce the local microscopic structure of the coexisting phases for a case of the model that contains two closed loops in the phase diagram.

  8. Molecular ferroelectrics: where electronics meet biology.

    PubMed

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  9. Molecular ferroelectrics: where electronics meet biology

    PubMed Central

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-01-01

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by overview on the fundamentals of ferroelectricity. Latest development in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also noted. PMID:24018952

  10. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression.

    PubMed

    van Steensel, Bas; Belmont, Andrew S

    2017-05-18

    In metazoan cell nuclei, hundreds of large chromatin domains are in close contact with the nuclear lamina. Such lamina-associated domains (LADs) are thought to help organize chromosomes inside the nucleus and have been associated with gene repression. Here, we discuss the properties of LADs, the molecular mechanisms that determine their association with the nuclear lamina, their dynamic links with other nuclear compartments, and their proposed roles in gene regulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effect of varying molecular weight of dextran on acrylic-derivatized dextran and concanavalin A glucose-responsive materials for closed-loop insulin delivery.

    PubMed

    Sahota, Tarsem; Sawicka, Kirsty; Taylor, Joan; Tanna, Sangeeta

    2011-03-01

    Dextran methacrylate (dex-MA) and concanavalin A (con A)-methacrylamide were photopolymerized to produce covalently cross-linked glucose-sensitive gels for the basis of an implantable closed-loop insulin delivery device. The viscoelastic properties of these polymerized gels were tested rheologically in the non-destructive oscillatory mode within the linear viscoelastic range at glucose concentrations between 0 and 5% (w/w). For each cross-linked gel, as the glucose concentration was raised, a decrease in storage modulus, loss modulus and complex viscosity (compared at 1 Hz) was observed, indicating that these materials were glucose responsive. The higher molecular weight acrylic-derivatized dextrans [degree of substitution (DS) 3 and 8%] produced higher complex viscosities across the glucose concentration range. These studies coupled with in vitro diffusion experiments show that dex-MA of 70 kDa and DS (3%) was the optimum mass average molar mass to produce gels that show reduced component leach, glucose responsiveness, and insulin transport useful as part of a self-regulating insulin delivery device.

  12. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    PubMed Central

    2012-01-01

    Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. Conclusions We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species. PMID:22805587

  13. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    PubMed

    Yang, Huaan; Tao, Ye; Zheng, Zequn; Li, Chengdao; Sweetingham, Mark W; Howieson, John G

    2012-07-17

    In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS) technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin) as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA) sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Twenty informative plants from a cross of RxS (disease resistant x susceptible) in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM), and are now replacing the markers previously developed by a traditional DNA fingerprinting method for marker-assisted selection in the Australian national lupin breeding program. We demonstrated that more than 30 molecular markers linked to a target gene of agronomic trait of interest can be identified from a small portion (1/8) of one sequencing run on HiSeq2000 by applying NGS based RAD sequencing in marker development. The markers developed by the strategy described in this study are all co-dominant SNP markers, which can readily be converted into high throughput multiplex format or low-cost, simple PCR-based markers desirable for large scale marker implementation in plant breeding programs. The high density and closely linked molecular markers associated with a target trait help to overcome a major bottleneck for implementation of molecular markers on a wide range of germplasm in breeding programs. We conclude that application of NGS based RAD sequencing as DNA fingerprinting is a very rapid and cost-effective strategy for marker development in molecular plant breeding. The strategy does not require any prior genome knowledge or molecular information for the species under investigation, and it is applicable to other plant species.

  14. Self-assembly of knots and links

    NASA Astrophysics Data System (ADS)

    Orlandini, Enzo; Polles, Guido; Marenduzzo, Davide; Micheletti, Cristian

    2017-03-01

    Guiding the self-assembly of identical building blocks towards complex three-dimensional structures with a set of desired properties is a major goal in material science, chemistry and physics. A particularly challenging problem, especially explored in synthetic chemistry, is that of self-assembling closed structures with a target topology starting by simple geometrical templates. Here we overview and revisit recent advancements, based on stochastic simulations, where the geometry of rigid helical templates with functionalised sticky ends has been designed for self-assembling efficiently and reproducibly into a wide range of three-dimensional closed structures. Notably, these include non trivial topologies of links and knots, including the 819 knot that we had predicted to be highly encodable and that has only recently been obtained experimentally. By appropriately tuning the parameters that define the template shape, we show that, for fixed concentration of templates, the assembly process can be directed towards the formation of specific knotted and linked structures such as the trefoils, pentafoil knots, Hopf and Solomon links. More exotic and unexpected knots and links are also found. Our results should be relevant to the design of new protocols that can both increase and broaden the population of synthetise molecular knots and catenanes.

  15. Voltage-dependent conformational changes in connexin channels.

    PubMed

    Bargiello, Thaddeus A; Tang, Qingxiu; Oh, Seunghoon; Kwon, Taekyung

    2012-08-01

    Channels formed by connexins display two distinct types of voltage-dependent gating, termed V(j)- or fast-gating and loop- or slow-gating. Recent studies, using metal bridge formation and chemical cross-linking have identified a region within the channel pore that contributes to the formation of the loop-gate permeability barrier. The conformational changes are remarkably large, reducing the channel pore diameter from 15 to 20Å to less than 4Å. Surprisingly, the largest conformational change occurs in the most stable region of the channel pore, the 3(10) or parahelix formed by amino acids in the 42-51 segment. The data provide a set of positional constraints that can be used to model the structure of the loop-gate closed state. Less is known about the conformation of the V(j)-gate closed state. There appear to be two different mechanisms; one in which conformational changes in channel structure are linked to a voltage sensor contained in the N-terminus of Cx26 and Cx32 and a second in which the C-terminus of Cx43 and Cx40 may act either as a gating particle to block the channel pore or alternatively to stabilize the closed state. The later mechanism utilizes the same domains as implicated in effecting pH gating of Cx43 channels. It is unclear if the two V(j)-gating mechanisms are related or if they represent different gating mechanisms that operate separately in different subsets of connexin channels. A model of the V(j)-closed state of Cx26 hemichannel that is based on the X-ray structure of Cx26 and electron crystallographic structures of a Cx26 mutation suggests that the permeability barrier for V(j)-gating is formed exclusively by the N-terminus, but recent information suggests that this conformation may not represent a voltage-closed state. Closed state models are considered from a thermodynamic perspective based on information from the 3.5Å Cx26 crystal structure and molecular dynamics (MD) simulations. The applications of computational and experimental methods to define the path of allosteric molecular transitions that link the open and closed states are discussed. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Development of molecular markers closely linked to the potato leafroll virus resistance gene, Rlretb, for use in marker-assisted selection

    USDA-ARS?s Scientific Manuscript database

    Potato leafroll virus (PLRV) is a major pathogen of potato with worldwide impact on seed and commercial production of potato. In North America, the primary varieties grown by industry are not resistant to PLRV and require the application of insecticides to control the aphid vector of PLRV, so as to...

  17. Research Experiences and Mentoring Practices in Selected East Asian Graduate Programs: Predictors of Research Productivity among Doctoral Students in Molecular Biology

    ERIC Educational Resources Information Center

    Ynalvez, Ruby; Garza-Gongora, Claudia; Ynalvez, Marcus Antonius; Hara, Noriko

    2014-01-01

    Although doctoral mentors recognize the benefits of providing quality advisement and close guidance, those of sharing project management responsibilities with mentees are still not well recognized. We observed that mentees, who have the opportunity to co-manage projects, generate more written output. Here we examine the link between research…

  18. Application of subtracted gDNA microarray-assisted Bulked Segregant Analysis for rapid discovery of molecular markers associated with day-neutrality in strawberry (Fragaria x ananassa)

    PubMed Central

    Gor, Mian Chee; Mantri, Nitin; Pang, Edwin

    2016-01-01

    A Fragaria Discovery Panel (FDP; strawberry-specific SDA) containing 287 features was constructed by subtracting the pooled gDNA of nine non-angiosperm species from the pooled gDNA of five strawberry genotypes. This FDP was used for Bulk Segregant Analysis (BSA) to enable identification of molecular markers associated with day-neutrality. Analysis of hybridisation patterns of a short day (SD) DNA bulk and three day-neutral (DN) DNA bulks varying in flowering strength allowed identification of a novel feature, FaP2E11, closely linked to CYTOKININ OXIDASE 1 (CKX1) gene possibly involved in promoting flowering under non-inductive condition. The signal intensities of FaP2E11 feature obtained from the strong DN bulk (DN1) is three fold higher than the short day bulk (SD), indicating that the putative marker may linked to a CKX1 variant allele with lower enzyme activity. We propose a model for flowering regulation based on the hypothesis that flowering strength may be regulated by the copy number of FaP2E11-linked CKX1 alleles. This study demonstrates the feasibility of the SDA-based BSA approach for the identification of molecular markers associated with day-neutrality in strawberry. This innovative strategy is an efficient and cost-effective approach for molecular marker discovery. PMID:27586242

  19. Discrimination of closely related species in tintinnid ciliates: new insights on crypticity and polymorphism in the genus Helicostomella.

    PubMed

    Santoferrara, Luciana F; Tian, Michael; Alder, Viviana A; McManus, George B

    2015-02-01

    This study focuses on the utility of molecular markers for the discrimination of closely related species in tintinnid ciliates. We analyzed the ecologically important genus Helicostomella by sequencing part of the large-subunit rDNA (LSU rDNA) and the 5.8S rDNA combined with the internally transcribed spacer regions 1 and 2 (5.8S rDNA-ITS) from forty-five individuals collected in NW and SW Atlantic waters and after culturing. Although all described Helicostomella species represent a continuum of morphologies, forms with shorter or longer loricae would correspond to different species according to previous molecular data. Here we observed that long forms show both crypticity (i.e. two almost identical long forms with different DNA sequences) and polymorphism (i.e. some long forms develop significantly shorter loricae after culturing). Reviewing all available tintinnid sequences, we found that 1) three Helicostomella clusters are consistent with different species from a molecular perspective, although these clusters are neither clearly differentiated by their loricae nor unambiguously linked to described species, 2) Helicostomella is closely related (probably to the family or genus level) to four "Tintinnopsis-like" morphospecies, and 3) if considered separately, neither LSU rDNA nor 5.8S rDNA-ITS completely discriminate closely related species, thus supporting the use of multi-gene barcodes for tintinnids. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Molecular confirmation of Lassa fever imported into Ghana.

    PubMed

    Bonney, Joseph H K; Nyarko, Edward O; Ohene, Sally-Ann; Amankwa, Joseph; Ametepi, Ralph K; Nimo-Paintsil, Shirley C; Sarkodie, Badu; Agbenohevi, Prince; Adjabeng, Michael; Kyei, Nicholas N A; Bel-Nono, Samuel; Ampofo, William K

    2016-01-01

    Recent reports have shown an expansion of Lassa virus from the area where it was first isolated in Nigeria to other areas of West Africa. Two Ghanaian soldiers on a United Nations peacekeeping mission in Liberia were taken ill with viral haemorrhagic fever syndrome following the death of a sick colleague and were referred to a military hospital in Accra, Ghana, in May 2013. Blood samples from the soldiers and five asymptomatic close contacts were subjected to laboratory investigations. We report the results of these investigations to highlight the importance of molecular diagnostic applications and the need for heightened awareness about Lassa fever in West Africa. We used molecular assays on sera from the two patients to identify the causative organism. Upon detection of positive signals for Lassa virus ribonucleic material by two different polymerase chain reaction assays, sequencing and phylogenetic analyses were performed. The presence of Lassa virus in the soldiers' blood samples was shown by L-gene segment homology to be the Macenta and las803792 strains previously isolated in Liberia, with close relationships then confirmed by phylogenetic tree construction. The five asymptomatic close contacts were negative for Lassa virus. The Lassa virus strains identified in the two Ghanaian soldiers had molecular epidemiological links to strains from Liberia. Lassa virus was probably responsible for the outbreak of viral haemorrhagic fever in the military camp. These data confirm Lassa fever endemicity in West Africa.

  1. Crystal structure of 2-oxopyrrolidin-3-yl 4-(2-phenyl-diazen-1-yl)benzoate.

    PubMed

    Elkin, Igor; Maris, Thierry; Melkoumov, Alexandre; Hildgen, Patrice; Banquy, Xavier; Leclair, Grégoire; Barrett, Christopher

    2018-04-01

    In the title compound, C 17 H 15 N 3 O 3 , the plane of the pyrrolidone ring is inclined at an angle of 59.791 (2)° to that of the azo-benzene segment, which adopts a configuration close to planar. In the crystal, mol-ecules are oriented pairwise by (2-oxopyrrolidin-3-yl)-oxy moieties at an angle of 76.257 (3)°, linked by hydrogen bonds and π-stacking inter-actions, forming zigzag supra-molecular chains parallel to [010] further linked via additional C-H⋯π inter-actions.

  2. One-dimensional cuts through multidimensional potential-energy surfaces by tunable x rays

    NASA Astrophysics Data System (ADS)

    Eckert, Sebastian; da Cruz, Vinícius Vaz; Gel'mukhanov, Faris; Ertan, Emelie; Ignatova, Nina; Polyutov, Sergey; Couto, Rafael C.; Fondell, Mattis; Dantz, Marcus; Kennedy, Brian; Schmitt, Thorsten; Pietzsch, Annette; Odelius, Michael; Föhlisch, Alexander

    2018-05-01

    The concept of the potential-energy surface (PES) and directional reaction coordinates is the backbone of our description of chemical reaction mechanisms. Although the eigenenergies of the nuclear Hamiltonian uniquely link a PES to its spectrum, this information is in general experimentally inaccessible in large polyatomic systems. This is due to (near) degenerate rovibrational levels across the parameter space of all degrees of freedom, which effectively forms a pseudospectrum given by the centers of gravity of groups of close-lying vibrational levels. We show here that resonant inelastic x-ray scattering (RIXS) constitutes an ideal probe for revealing one-dimensional cuts through the ground-state PES of molecular systems, even far away from the equilibrium geometry, where the independent-mode picture is broken. We strictly link the center of gravity of close-lying vibrational peaks in RIXS to a pseudospectrum which is shown to coincide with the eigenvalues of an effective one-dimensional Hamiltonian along the propagation coordinate of the core-excited wave packet. This concept, combined with directional and site selectivity of the core-excited states, allows us to experimentally extract cuts through the ground-state PES along three complementary directions for the showcase H2O molecule.

  3. Dinosaur peptides suggest mechanisms of protein survival.

    PubMed

    San Antonio, James D; Schweitzer, Mary H; Jensen, Shane T; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P R O

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  4. Workshop on High-Field NMR and Biological Applications

    NASA Astrophysics Data System (ADS)

    Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.

  5. Explosive Disintegration of a Massive Young Stellar System in Orion

    NASA Astrophysics Data System (ADS)

    Zapata, Luis A.; Schmid-Burgk, Johannes; Ho, Paul T. P.; Rodríguez, Luis F.; Menten, Karl M.

    2009-10-01

    Young massive stars in the center of crowded star clusters are expected to undergo close dynamical encounters that could lead to energetic, explosive events. However, there has so far never been clear observational evidence of such a remarkable phenomenon. We here report new interferometric observations that indicate the well-known enigmatic wide-angle outflow located in the Orion BN/KL star-forming region to have been produced by such a violent explosion during the disruption of a massive young stellar system, and that this was caused by a close dynamical interaction about 500 years ago. This outflow thus belongs to a totally different family of molecular flows that is not related to the classical bipolar flows that are generated by stars during their formation process. Our molecular data allow us to create a three-dimensional view of the debris flow and to link this directly to the well-known Orion H2 "fingers" farther out.

  6. Skeletal and dental morphology supports diphyletic origin of baboons and mandrills

    PubMed Central

    Fleagle, John G.; McGraw, W. Scott

    1999-01-01

    Numerous biomolecular studies from the past 20 years have indicated that the large African monkeys Papio, Theropithecus, and Mandrillus have a diphyletic relationship with different species groups of mangabeys. According to the results of these studies, mandrills and drills (Mandrillus) are most closely related to the torquatus–galeritus group of mangabeys placed in the genus Cercocebus, whereas baboons (Papio) and geladas (Theropithecus) are most closely related to the albigena–aterrimus mangabeys, now commonly placed in the genus Lophocebus. However, there has been very little morphological evidence linking mandrills on the one hand and baboons and geladas on the other with different groups of mangabeys. In a study of mangabey locomotion and skeletal anatomy, we have identified features of the postcranial skeleton and the dentition that support the molecular phylogeny and clearly link mandrills with Cercocebus and Papio with Lophocebus. Moreover, the features linking Cercocebus and Mandrillus accord with ecological studies of these species indicating that these two genera are a cryptic clade characterized by unique adaptations for gleaning insects, hard nuts, and seeds from the forest floor. PMID:9927710

  7. Molecular regulation of the mitosis/meiosis decision in multicellular organisms.

    PubMed

    Kimble, Judith

    2011-08-01

    A major step in the journey from germline stem cell to differentiated gamete is the decision to leave the mitotic cell cycle and begin progression through the meiotic cell cycle. Over the past decade, molecular regulators of the mitosis/meiosis decision have been discovered in most of the major model multicellular organisms. Historically, the mitosis/meiosis decision has been closely linked with controls of germline self-renewal and the sperm/egg decision, especially in nematodes and mice. Molecular explanations of those linkages clarify our understanding of this fundamental germ cell decision, and unifying themes have begun to emerge. Although the complete circuitry of the decision is not known in any organism, the recent advances promise to impact key issues in human reproduction and agriculture.

  8. Molecular confirmation of Lassa fever imported into Ghana

    PubMed Central

    Nyarko, Edward O.; Ohene, Sally-Ann; Amankwa, Joseph; Ametepi, Ralph K.; Nimo-Paintsil, Shirley C.; Sarkodie, Badu; Agbenohevi, Prince; Adjabeng, Michael; Kyei, Nicholas N.A.; Bel-Nono, Samuel; Ampofo, William K.

    2016-01-01

    Background Recent reports have shown an expansion of Lassa virus from the area where it was first isolated in Nigeria to other areas of West Africa. Two Ghanaian soldiers on a United Nations peacekeeping mission in Liberia were taken ill with viral haemorrhagic fever syndrome following the death of a sick colleague and were referred to a military hospital in Accra, Ghana, in May 2013. Blood samples from the soldiers and five asymptomatic close contacts were subjected to laboratory investigations. Objective We report the results of these investigations to highlight the importance of molecular diagnostic applications and the need for heightened awareness about Lassa fever in West Africa. Methods We used molecular assays on sera from the two patients to identify the causative organism. Upon detection of positive signals for Lassa virus ribonucleic material by two different polymerase chain reaction assays, sequencing and phylogenetic analyses were performed. Results The presence of Lassa virus in the soldiers’ blood samples was shown by L-gene segment homology to be the Macenta and las803792 strains previously isolated in Liberia, with close relationships then confirmed by phylogenetic tree construction. The five asymptomatic close contacts were negative for Lassa virus. Conclusions The Lassa virus strains identified in the two Ghanaian soldiers had molecular epidemiological links to strains from Liberia. Lassa virus was probably responsible for the outbreak of viral haemorrhagic fever in the military camp. These data confirm Lassa fever endemicity in West Africa. PMID:28879105

  9. Self-Consistent Field Lattice Model for Polymer Networks.

    PubMed

    Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G

    2017-12-26

    A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.

  10. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivas-Ubach, Albert; Hódar, José A.; Sardans, Jordi

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P.more » nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.« less

  11. Molecular Regulation of the Mitosis/Meiosis Decision in Multicellular Organisms

    PubMed Central

    Kimble, Judith

    2011-01-01

    A major step in the journey from germline stem cell to differentiated gamete is the decision to leave the mitotic cell cycle and begin progression through the meiotic cell cycle. Over the past decade, molecular regulators of the mitosis/meiosis decision have been discovered in most of the major model multicellular organisms. Historically, the mitosis/meiosis decision has been closely linked with controls of germline self-renewal and the sperm/egg decision, especially in nematodes and mice. Molecular explanations of those linkages clarify our understanding of this fundamental germ cell decision, and unifying themes have begun to emerge. Although the complete circuitry of the decision is not known in any organism, the recent advances promise to impact key issues in human reproduction and agriculture. PMID:21646377

  12. Effects of cross-links, pressure and temperature on the thermal properties and glass transition behaviour of polybutadiene.

    PubMed

    Tonpheng, Bounphanh; Yu, Junchun; Andersson, Ove

    2011-09-07

    The thermal conductivity κ, heat capacity per unit volume ρc(p) and glass transition behaviour under pressure have been established for medium and high vinyl content polybutadiene PB with molecular weights 2600 and 100,000 and their highly cross-linked (ebonite) states obtained purely by high-pressure high-temperature treatments. Cross-linking eliminates the glass transitions and increases κ by as much as 50% at 295 K and 1 atm, and decreases ρc(p) to a limiting level close to that of the glassy state of PB, which is reached before the ultimate cross-link density is achieved. The pressure and temperature behaviours of κ are strongly changed by cross-links, which increases the effect of temperature but decreases the effect of pressure. We attribute these changes to a cross-linked induced permanent densification and consequential increase of phonon velocity simultaneously as conduction along polymer chains is disrupted. The glass transition temperatures for a time scale of 1 s are described to within 0.5 K by: T(g)(p) = 202.5 (1 + 2.94 p)(0.286) and T(g)(p) = 272.3 (1 + 2.57 p)(0.233) (p in GPa and T in K) up to 1 GPa, for PB2600 and PB100000, respectively, and can be estimated for medium and high vinyl content PBs with molecular weights in between by a constant, pressure independent, shift in temperature. This journal is © the Owner Societies 2011

  13. Universality and predictability in molecular quantitative genetics.

    PubMed

    Nourmohammad, Armita; Held, Torsten; Lässig, Michael

    2013-12-01

    Molecular traits, such as gene expression levels or protein binding affinities, are increasingly accessible to quantitative measurement by modern high-throughput techniques. Such traits measure molecular functions and, from an evolutionary point of view, are important as targets of natural selection. We review recent developments in evolutionary theory and experiments that are expected to become building blocks of a quantitative genetics of molecular traits. We focus on universal evolutionary characteristics: these are largely independent of a trait's genetic basis, which is often at least partially unknown. We show that universal measurements can be used to infer selection on a quantitative trait, which determines its evolutionary mode of conservation or adaptation. Furthermore, universality is closely linked to predictability of trait evolution across lineages. We argue that universal trait statistics extends over a range of cellular scales and opens new avenues of quantitative evolutionary systems biology. Copyright © 2013. Published by Elsevier Ltd.

  14. Interactions between cations and peat organic matter monitored with NMR wideline, static and FFC NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Schaumann, Gabriele E.; Conte, Pellegrino; Jäger, Alexander; Alonzo, Giuseppe; Bertmer, Marko

    2010-05-01

    The molecular size of humic substances is still under debate and is believed to range up to several hundred thousands Dalton, although a number of recent studies suggest much lower molecular weights. Nowadays an increasing number of authors suggest a model of molecular aggregates. One explanation why results on the molecular mass of humic materials are contradictory, may be that individual OM molecules are linked via intermolecular interactions, by bridges of water molecules or by cations bridging cation exchange sites (Schaumann, 2006a, b). Properties of such cross-linked systems can be similar to macromolecular systems revealing covalent cross-links. In this context, multivalent cations play an important ecological role, serving as reversible cross-linking agent. Formation and disruption of such cation bridges may close or open sorption sites in soil organic matter. Although cross-linking by multivalent cations has been proposed in many studies, the cross-linking effect has not yet been demonstrated on the molecular scale. The objective of this study was to investigate the interactions between cations and peat organic matter using NMR wideline techniques as well as static and fast field cycling (FFC) NMR relaxometry. Peat treated with solutions containing either Na+, Ca2+ or Al3+ was investigated in air-dried state for longitudinal relaxation times (T1) and NMR wideline characteristics. T1 distributions were separated into two Gaussian functions which were interpreted to represent two proton populations belonging to two environments of differing mobility. The relaxation rates (R1 = T1-1) in the cation treated samples spread over a range of 87-123 s-1 (R1a: fast component) and 32-42 s-1 (R1b: slow component). The rates in all treatments are significantly different from each other. and decrease in the order conditioned sample > desalinated sample > Na-treated sample. The treatment with multivalent cations affects R1a and R1b in different ways and needs more detailed explanation. Wideline proton NMR spectra can be used to quantify proton containing material, mainly water, based on their mobility. Spectra were decomposed into a Gaussian and Lorentzian line and changes to mobility after heat treatment indicate the water binding strength. In this study, differences in the various NMR parameters on the cation treatments will be presented and discussed with respect to the crosslinking hypothesis.

  15. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structure-function correlations at the molecular level.

    PubMed

    Halevas, E; Tsave, O; Yavropoulou, M P; Hatzidimitriou, A; Yovos, J G; Psycharis, V; Gabriel, C; Salifoglou, A

    2015-06-01

    Among the various roles of vanadium in the regulation of intracellular signaling, energy metabolism and insulin mimesis, its exogenous activity stands as a contemporary challenge currently under investigation and a goal to pursue as a metallodrug against Diabetes mellitus II. In this regard, the lipogenic activity of vanadium linked to the development of well-defined anti-diabetic vanadodrugs has been investigated through: a) specifically designing and synthesizing Schiff base organic ligands L, bearing a variable number of terminal alcohols, b) a series of well-defined soluble binary V(V)-L compounds synthesized and physicochemically characterized, c) a study of their cytotoxic effect and establishment of adipogenic activity in 3T3-L1 fibroblasts toward mature adipocytes, and d) biomarker examination of a closely-linked molecular target involving or influenced by the specific V(V) forms, cumulatively delineating factors involved in potential pathways linked to V(V)-induced insulin-like activity. Collectively, the results a) project the importance of specific structural features in Schiff ligands bound to V(V), thereby influencing the emergence of its (a)toxicity and for the first time its insulin-like activity in pre-adipocyte differentiation, b) contribute to the discovery of molecular targets influenced by the specific vanadoforms seeking to induce glucose uptake, and c) indicate an interplay of V(V) structural speciation and cell-differentiation biological activity, thereby gaining insight into vanadium's potential as a future metallodrug in Diabetes mellitus. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. 3-{(E)-[4-(4-Hy-droxy-3-meth-oxy-phen-yl)butan-2-yl-idene]amino}-1-phenyl-urea: crystal structure and Hirshfeld surface analysis.

    PubMed

    Tan, Ming Yueh; Crouse, Karen A; Ravoof, Thahira B S A; Jotani, Mukesh M; Tiekink, Edward R T

    2018-01-01

    Two independent mol-ecules ( A and B ) comprise the asymmetric unit of the title compound, C 18 H 21 N 3 O 3 . The urea moiety is disubstituted with one amine being linked to a phenyl ring, which is twisted out of the plane of the CN 2 O urea core [dihedral angles = 25.57 (11) ( A ) and 29.13 (10)° ( B )]. The second amine is connected to an imine ( E conformation), which is linked in turn to an ethane bridge that links a disubstituted benzene ring. Intra-molecular amine-N-H⋯N(imine) and hydroxyl-O-H⋯O(meth-oxy) hydrogen bonds close S (5) loops in each case. The mol-ecules have twisted conformations with the dihedral angles between the outer rings being 38.64 (81) ( A ) and 48.55 (7)° ( B ). In the crystal, amide-N-H⋯O(amide) hydrogen bonds link the mol-ecules A and B via an eight-membered {⋯HNCO} 2 synthon. Further associations between mol-ecules, leading to supra-molecular layers in the ac plane, are hydrogen bonds of the type hydroxyl-O-H⋯N(imine) and phenyl-amine-N-H⋯O(meth-oxy). Connections between layers, leading to a three-dimensional architecture, comprise benzene-C-H⋯O(hy-droxy) inter-actions. A detailed analysis of the calculated Hirshfeld surfaces shows mol-ecules A and B participate in very similar inter-molecular inter-actions and that any variations relate to conformational differences between the mol-ecules.

  17. Prevalence of Mycobacterium tuberculosis strain genotypes in Taiwan reveals a close link to ethnic and population migration.

    PubMed

    Dou, Horng-Yunn; Chen, Yih-Yuan; Kou, Shu-Chen; Su, Ih-Jen

    2015-06-01

    Taiwan is a relatively isolated island, serving as a mixing vessel for colonization by different waves of ethnic and migratory groups over the past 4 centuries. The potential transmission pattern of Mycobacterium tuberculosis in different ethnic and migratory populations remains to be elucidated. By using mycobacterial tandem repeat sequences as genetic markers, the prevalence of M. tuberculosis strains in Taiwan revealed a close link to the historical migration. Interestingly, the M. tuberculosis strain in the aborigines of Eastern and Central Taiwan had a dominance of the Haarlem (Dutch) strain while those in Southern Taiwan had a dominance of the East-African Indian (EAI) strain. The prevalence of different M. tuberculosis strains in specific ethnic populations suggests that M. tuberculosis transmission is limited and restricted to close contact. The prevalence of the Beijing modern strain in the young population causes a concern for M. tuberculosis control, because of high virulence and drug resistance. Furthermore, our data using molecular genotyping should provide valuable information on the historical study of the origin and migration of aborigines in Taiwan. Copyright © 2014. Published by Elsevier B.V.

  18. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    PubMed Central

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P. R. O.

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a ‘preservation motif’, and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival. PMID:21687667

  19. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results showmore » empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.« less

  20. Molecular anions.

    PubMed

    Simons, Jack

    2008-07-24

    The experimental and theoretical study of molecular anions has undergone explosive growth over the past 40 years. Advances in techniques used to generate anions in appreciable numbers as well as new ion-storage, ion-optics, and laser spectroscopic tools have been key on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now allow one to achieve higher accuracy and to study electronically metastable states, thus bringing theory in close collaboration with experiment in this field. In this article, many of the experimental and theoretical challenges specific to studying molecular anions are discussed. Results from many research groups on several classes of molecular anions are overviewed, and both literature citations and active (in online html and pdf versions) links to numerous contributing scientists' Web sites are provided. Specific focus is made on the following families of anions: dipole-bound, zwitterion-bound, double-Rydberg, multiply charged, metastable, cluster-based, and biological anions. In discussing each kind of anion, emphasis is placed on the structural, energetic, spectroscopic, and chemical-reactivity characteristics that make these anions novel, interesting, and important.

  1. Chromosomal Context Affects the Molecular Evolution of Sex-linked Genes and Their Autosomal Counterparts in Turtles and Other Vertebrates.

    PubMed

    Radhakrishnan, Srihari; Valenzuela, Nicole

    2017-10-30

    Sex chromosomes evolve differently from autosomes because natural selection acts distinctly on them given their reduced recombination and smaller population size. Various studies of sex-linked genes compared with different autosomal genes within species support these predictions. Here, we take a novel alternative approach by comparing the rate of evolution between subsets of genes that are sex-linked in selected reptiles/vertebrates and the same genes located in autosomes in other amniotes. We report for the first time the faster evolution of Z-linked genes in a turtle (the Chinese softshell turtle Pelodiscus sinensis) relative to autosomal orthologs in other taxa, including turtles with temperature-dependent sex determination (TSD). This faster rate was absent in its close relative, the spiny softshell turtle (Apalone spinifera), thus revealing important lineage effects, and was only surpassed by mammalian-X linked genes. In contrast, we found slower evolution of X-linked genes in the musk turtle Staurotypus triporcatus (XX/XY) and homologous Z-linked chicken genes. TSD lineages displayed overall faster sequence evolution than taxa with genotypic sex determination (GSD), ruling out global effects of GSD on molecular evolution beyond those by sex-linkage. Notably, results revealed a putative selective sweep around two turtle genes involved in vertebrate gonadogenesis (Pelodiscus-Z-linked Nf2 and Chrysemys-autosomal Tspan7). Our observations reveal important evolutionary changes at the gene level mediated by chromosomal context in turtles despite their low overall evolutionary rate and illuminate sex chromosome evolution by empirically testing expectations from theoretical models. Genome-wide analyses are warranted to test the generality and prevalence of the observed patterns. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Toward a Global Phylogeny of the “Living Fossil" Crustacean Order of the Notostraca

    PubMed Central

    Vanhove, Maarten P. M.; Denis, Carla; Jocque, Merlijn; Timms, Brian V.; Brendonck, Luc

    2012-01-01

    Tadpole shrimp (Crustacea, Notostraca) are iconic inhabitants of temporary aquatic habitats worldwide. Often cited as prime examples of evolutionary stasis, surviving representatives closely resemble fossils older than 200 mya, suggestive of an ancient origin. Despite significant interest in the group as ‘living fossils’ the taxonomy of surviving taxa is still under debate and both the phylogenetic relationships among different lineages and the timing of diversification remain unclear. We constructed a molecular phylogeny of the Notostraca using model based phylogenetic methods. Our analyses supported the monophyly of the two genera Triops and Lepidurus, although for Triops support was weak. Results also revealed high levels of cryptic diversity as well as a peculiar biogeographic link between Australia and North America presumably mediated by historic long distance dispersal. We concluded that, although some present day tadpole shrimp species closely resemble fossil specimens as old as 250 mya, no molecular support was found for an ancient (pre) Mesozoic radiation. Instead, living tadpole shrimp are most likely the result of a relatively recent radiation in the Cenozoic era and close resemblances between recent and fossil taxa are probably the result of the highly conserved general morphology in this group and of homoplasy. PMID:22529967

  3. A DFT-D study on the electronic and photophysical properties of ruthenium (II) complex with a chelating sulfoxide group

    NASA Astrophysics Data System (ADS)

    Li, Huifang; Zhang, Lisheng; Lin, Hui; Fan, Xiaolin

    2014-06-01

    Electronic and photophysical properties of [Ru(bpy)2(OSO)]+ (bpy = 2,2‧-bipyridine; OSO = methylsulfinylbenzoate) were examined theoretically to better understand the differences between S- and O-linked ruthenium sulfoxide complexes. It is found that the strength of Ru-O1 linkage is significantly larger than that of Ru-S linkage, which makes the charge transfer amount from surrounding ligands to central Ru decreased. The energy gap is closed due to the highest occupied molecular orbital energy increases to a larger extent than the lowest unoccupied molecular orbital energy. Thereby, red shifted absorption and emission maxima in such photochromic ruthenium sulfoxide complexes can be explained.

  4. Phylogenetic analyses of Andromedeae (Ericaceae subfam. Vaccinioideae).

    PubMed

    Kron, K A; Judd, W S; Crayn, D M

    1999-09-01

    Phylogenetic relationships within the Andromedeae and closely related taxa were investigated by means of cladistic analyses based on phenotypic (morphology, anatomy, chromosome number, and secondary chemistry) and molecular (rbcL and matK nucleotide sequences) characters. An analysis based on combined molecular and phenotypic characters indicates that the tribe is composed of two major clades-the Gaultheria group (incl. Andromeda, Chamaedaphne, Diplycosia, Gaultheria, Leucothoë, Pernettya, Tepuia, and Zenobia) and the Lyonia group (incl. Agarista, Craibiodendron, Lyonia, and Pieris). Andromedeae are shown to be paraphyletic in all analyses because the Vaccinieae link with some or all of the genera of the Gaultheria group. Oxydendrum is sister to the clade containing the Vaccinieae, Gaultheria group, and Lyonia group. The monophyly of Agarista, Lyonia, Pieris, and Gaultheria (incl. Pernettya) is supported, while that of Leucothoë is problematic. The close relationship of Andromeda and Zenobia is novel and was strongly supported in the molecular (but not morphological) analyses. Diplycosia, Tepuia, Gaultheria, and Pernettya form a well-supported clade, which can be diagnosed by the presence of fleshy calyx lobes and methyl salicylate. Recognition of Andromedeae is not reflective of our understanding of geneological relationships and should be abandoned; the Lyonia group is formally recognized at the tribal level.

  5. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate.

    PubMed

    Koukaras, Emmanuel N; Papadimitriou, Sofia A; Bikiaris, Dimitrios N; Froudakis, George E

    2012-10-01

    This work reports details pertaining to the formation of chitosan nanoparticles that we prepare by the ionic gelation method. The molecular interactions of the ionic cross-linking of chitosan with tripolyphosphate have been investigated and elucidated by means of all-electron density functional theory. Solvent effects have been taken into account using implicit models. We have identified primary-interaction ionic cross-linking configurations that we define as H-link, T-link, and M-link, and we have quantified the corresponding interaction energies. H-links, which display high interaction energies and are also spatially broadly accessible, are the most probable cross-linking configurations. At close range, proton transfer has been identified, with maximum interaction energies ranging from 12.3 up to 68.3 kcal/mol depending on the protonation of the tripolyphosphate polyanion and the relative coordination of chitosan with tripolyphosphate. On the basis of our results for the linking types (interaction energies and torsion bias), we propose a simple mechanism for their impact on the chitosan/TPP nanoparticle formation process. We introduce the β ratio, which is derived from the commonly used α ratio but is more fundamental since it additionally takes into account structural details of the oligomers.

  6. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq) in Wheat.

    PubMed

    Wu, Peipei; Xie, Jingzhong; Hu, Jinghuang; Qiu, Dan; Liu, Zhiyong; Li, Jingting; Li, Miaomiao; Zhang, Hongjun; Yang, Li; Liu, Hongwei; Zhou, Yang; Zhang, Zhongjun; Li, Hongjie

    2018-01-01

    Powdery mildew resistance gene Pm4b , originating from Triticum persicum , is effective against the prevalent Blumeria graminis f. sp. tritici ( Bgt ) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification of Pm4b during the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F 2:3 mapping population (237 families) derived from a pair of isogenic lines VPM1/7 ∗ Bainong 3217 F 4 (carrying Pm4b ) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F 2:3 families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. Four Pm4b -linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking the Pm4b gene. Three SSR markers, Xics13 , Xics43 , and Xics76 , were incorporated in the new genetic linkage map, which located Pm4b in a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship with Brachypodium distachyon chromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification of Pm4b during its MAS practice.

  7. Development of Molecular Markers Linked to Powdery Mildew Resistance Gene Pm4b by Combining SNP Discovery from Transcriptome Sequencing Data with Bulked Segregant Analysis (BSR-Seq) in Wheat

    PubMed Central

    Wu, Peipei; Xie, Jingzhong; Hu, Jinghuang; Qiu, Dan; Liu, Zhiyong; Li, Jingting; Li, Miaomiao; Zhang, Hongjun; Yang, Li; Liu, Hongwei; Zhou, Yang; Zhang, Zhongjun; Li, Hongjie

    2018-01-01

    Powdery mildew resistance gene Pm4b, originating from Triticum persicum, is effective against the prevalent Blumeria graminis f. sp. tritici (Bgt) isolates from certain regions of wheat production in China. The lack of tightly linked molecular markers with the target gene prevents the precise identification of Pm4b during the application of molecular marker-assisted selection (MAS). The strategy that combines the RNA-Seq technique and the bulked segregant analysis (BSR-Seq) was applied in an F2:3 mapping population (237 families) derived from a pair of isogenic lines VPM1/7∗Bainong 3217 F4 (carrying Pm4b) and Bainong 3217 to develop more closely linked molecular markers. RNA-Seq analysis of the two phenotypically contrasting RNA bulks prepared from the representative F2:3 families generated 20,745,939 and 25,867,480 high-quality read pairs, and 82.8 and 80.2% of them were uniquely mapped to the wheat whole genome draft assembly for the resistant and susceptible RNA bulks, respectively. Variant calling identified 283,866 raw single nucleotide polymorphisms (SNPs) and InDels between the two bulks. The SNPs that were closely associated with the powdery mildew resistance were concentrated on chromosome 2AL. Among the 84 variants that were potentially associated with the disease resistance trait, 46 variants were enriched in an about 25 Mb region at the distal end of chromosome arm 2AL. Four Pm4b-linked SNP markers were developed from these variants. Based on the sequences of Chinese Spring where these polymorphic SNPs were located, 98 SSR primer pairs were designed to develop distal markers flanking the Pm4b gene. Three SSR markers, Xics13, Xics43, and Xics76, were incorporated in the new genetic linkage map, which located Pm4b in a 3.0 cM genetic interval spanning a 6.7 Mb physical genomic region. This region had a collinear relationship with Brachypodium distachyon chromosome 5, rice chromosome 4, and sorghum chromosome 6. Seven genes associated with disease resistance were predicted in this collinear genomic region, which included C2 domain protein, peroxidase activity protein, protein kinases of PKc_like super family, Mlo family protein, and catalytic domain of the serine/threonine kinases (STKc_IRAK like super family). The markers developed in the present study facilitate identification of Pm4b during its MAS practice. PMID:29491869

  8. The Crystal Structure of GCAP3 Suggests Molecular Mechanism of GCAP–linked Cone Dystrophies

    PubMed Central

    Stephen, Ricardo; Palczewski, Krzysztof; Sousa, Marcelo C.

    2014-01-01

    Summary Absorption of light by visual pigments initiates the phototransduction pathway that results in degradation of the intracellular pool of cyclic–GMP (cGMP). This hydrolysis promotes the closing of cGMP–gated cation channels and consequent hyperpolarization of rod and cone photoreceptor cell membranes. Guanylate Cyclase Activating Proteins (GCAPs) are a family of proteins that regulate retinal guanylate cyclase (GC) activity in a Ca2+–dependent manner. At high [Ca2+], typical of the dark–adapted state (~500 nM), GCAPs inhibit retinal GCs. At the low [Ca2+] (~50 nM) that occur after the closing of cGMP-gated channels, GCAPs activate retinal GCs to replenish dark–state cGMP levels. Here, we report the crystal structure of unmyristoylated human GCAP3 with Ca2+ bound. GCAP3 is an EF–hand Ca2+–binding protein with Ca2+ bound to EF2, 3 and 4, while Ca2+ binding to EF–hand 1 is disabled. GCAP3 contains two domains with the EF–hand motifs arranged in a tandem array similar to GCAP2 and members of the recoverin subfamily of Ca2+–binding proteins. Residues not involved in Ca2+ binding, but conserved in all GCAPs, cluster around EF1 in the N–terminal domain and may represent the interface with GCs. Five point mutations in the closely related GCAP1 have been linked to the etiology of cone dystrophies. These residues are conserved in GCAP3 and the structure suggests important roles for these amino acids. We present a homology model of GCAP1 based on GCAP3 that offers insight into the molecular mechanism underlying the autosomal dominant cone dystrophies produced by GCAP1 mutations. PMID:16626734

  9. The crystal structure of GCAP3 suggests molecular mechanism of GCAP-linked cone dystrophies.

    PubMed

    Stephen, Ricardo; Palczewski, Krzysztof; Sousa, Marcelo C

    2006-06-02

    Absorption of light by visual pigments initiates the phototransduction pathway that results in degradation of the intracellular pool of cyclic-GMP (cGMP). This hydrolysis promotes the closing of cGMP-gated cation channels and consequent hyperpolarization of rod and cone photoreceptor cell membranes. Guanylate cyclase-activating proteins (GCAPs) are a family of proteins that regulate retinal guanylate cyclase (GC) activity in a Ca2+-dependent manner. At high [Ca2+], typical of the dark-adapted state (approximately 500 nM), GCAPs inhibit retinal GCs. At the low [Ca2+] (approximately 50 nM) that occurs after the closing of cGMP-gated channels, GCAPs activate retinal GCs to replenish dark-state cGMP levels. Here, we report the crystal structure of unmyristoylated human GCAP3 with Ca2+ bound. GCAP3 is an EF-hand Ca2+-binding protein with Ca2+ bound to EF2, 3 and 4, while Ca2+ binding to EF-hand 1 is disabled. GCAP3 contains two domains with the EF-hand motifs arranged in a tandem array similar to GCAP2 and members of the recoverin subfamily of Ca2+-binding proteins. Residues not involved in Ca2+ binding, but conserved in all GCAPs, cluster around EF1 in the N-terminal domain and may represent the interface with GCs. Five point mutations in the closely related GCAP1 have been linked to the etiology of cone dystrophies. These residues are conserved in GCAP3 and the structure suggests important roles for these amino acids. We present a homology model of GCAP1 based on GCAP3 that offers insight into the molecular mechanism underlying the autosomal dominant cone dystrophies produced by GCAP1 mutations.

  10. A joint cross-border investigation of a cluster of multidrug-resistant tuberculosis in Austria, Romania and Germany in 2014 using classic, genotyping and whole genome sequencing methods: lessons learnt

    PubMed Central

    Fiebig, Lena; Kohl, Thomas A; Popovici, Odette; Mühlenfeld, Margarita; Indra, Alexander; Homorodean, Daniela; Chiotan, Domnica; Richter, Elvira; Rüsch-Gerdes, Sabine; Schmidgruber, Beatrix; Beckert, Patrick; Hauer, Barbara; Niemann, Stefan; Allerberger, Franz; Haas, Walter

    2017-01-01

    Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders. PMID:28106529

  11. 4-Nitro­benzyl 2-bromo­acetate

    PubMed Central

    Zhu, Kai; Liu, Hui; Wang, Yan-Hua; Han, Ping-Fang; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H8BrNO4, the acetate group is close to planar [maximum deviation = 0.042 (3) Å] and is oriented at a dihedral angle of 73.24 (3)° with respect to the aromatic ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network, forming R 2 2(10) ring motifs. PMID:21582813

  12. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest.

    PubMed

    Mueller, Rebecca C; Paula, Fabiana S; Mirza, Babur S; Rodrigues, Jorge L M; Nüsslein, Klaus; Bohannan, Brendan J M

    2014-07-01

    Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.

  13. Spatial variability of organic matter molecular composition and elemental geochemistry in surface sediments of a small boreal Swedish lake

    NASA Astrophysics Data System (ADS)

    Tolu, Julie; Rydberg, Johan; Meyer-Jacob, Carsten; Gerber, Lorenz; Bindler, Richard

    2017-04-01

    The composition of sediment organic matter (OM) exerts a strong control on biogeochemical processes in lakes, such as those involved in the fate of carbon, nutrients and trace metals. While between-lake spatial variability of OM quality is increasingly investigated, we explored in this study how the molecular composition of sediment OM varies spatially within a single lake and related this variability to physical parameters and elemental geochemistry. Surface sediment samples (0-10 cm) from 42 locations in Härsvatten - a small boreal forest lake with a complex basin morphometry - were analyzed for OM molecular composition using pyrolysis gas chromatography mass spectrometry for the contents of 23 major and trace elements and biogenic silica. We identified 162 organic compounds belonging to different biochemical classes of OM (e.g., carbohydrates, lignin and lipids). Close relationships were found between the spatial patterns of sediment OM molecular composition and elemental geochemistry. Differences in the source types of OM (i.e., terrestrial, aquatic plant and algal) were linked to the individual basin morphometries and chemical status of the lake. The variability in OM molecular composition was further driven by the degradation status of these different source pools, which appeared to be related to sedimentary physicochemical parameters (e.g., redox conditions) and to the molecular structure of the organic compounds. Given the high spatial variation in OM molecular composition within Härsvatten and its close relationship with elemental geochemistry, the potential for large spatial variability across lakes should be considered when studying biogeochemical processes involved in the cycling of carbon, nutrients and trace elements or when assessing lake budgets.

  14. Escherichia coli mutant with altered respiratory control of the frd operon.

    PubMed Central

    Iuchi, S; Kuritzkes, D R; Lin, E C

    1985-01-01

    In wild-type Escherichia coli, fumarate reductase encoded by the frd operon is inducible by its substrate in the absence of molecular oxygen and nitrate. Synthesis of this enzyme under permissive conditions requires the fnr+ gene product, which is believed to be a pleiotropic regulatory protein that activates transcription. A spontaneous mutant was isolated in which the expression of the frd operon no longer depended on the presence of fumarate or the fnr+ gene product. Aerobic repression of the operon was abolished, but nitrate repression remained intact. Transductional analysis showed that the mutation was closely linked to the frd locus. The mutant phenotype strongly suggests that repression by molecular oxygen and nitrate is mediated by different mechanisms. PMID:3882660

  15. Reprogramming somatic cell differentiation and the Hayflick Limit: contrasting two modern molecular bioengineering aims and their impact on the future of mankind.

    PubMed

    Sills, E S; Takeuchi, T; Rosenwaks, Z; Palermo, G D

    2001-08-01

    The molecular biology of human cloning and aging research depend on the closely related laboratory techniques supported by a thorough understanding of cell-signaling processes. Unfortunately, the link between these two research fields has received only marginal attention in the lay press. Cloning is possible when somatic cell differentiation is successfully reprogrammed, and clinical control of cellular senescence depends on a proper reconfiguration of the predetermined number of divisions permitted during the cell life-cycle (the so-called "Hayflick Limit"). In this paper, we discuss these two concepts and compare the impact likely to be associated with bioengineering studies that facilitate both human cloning and longevity therapy.

  16. The ovary structure and oogenesis in the basal crustaceans and hexapods. Possible phylogenetic significance.

    PubMed

    Jaglarz, Mariusz K; Kubrakiewicz, Janusz; Bilinski, Szczepan M

    2014-07-01

    Recent large-scale phylogenetic analyses of exclusively molecular or combined molecular and morphological characters support a close relationship between Crustacea and Hexapoda. The growing consensus on this phylogenetic link is reflected in uniting both taxa under the name Pancrustacea or Tetraconata. Several recent molecular phylogenies have also indicated that the monophyletic hexapods should be nested within paraphyletic crustaceans. However, it is still contentious exactly which crustacean taxon is the sister group to Hexapoda. Among the favored candidates are Branchiopoda, Malacostraca, Remipedia and Xenocarida (Remipedia + Cephalocarida). In this context, we review morphological and ultrastructural features of the ovary architecture and oogenesis in these crustacean groups in search of traits potentially suitable for phylogenetic considerations. We have identified a suite of morphological characters which may prove useful in further comparative studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Direct versus indirect molecular diagnosis of fragile X mental retardation in 40 German families at risk.

    PubMed

    Knobloch, O; Pelz, F; Wick, U; Nelson, D L; Zoll, B

    1993-03-01

    In order to test whether the direct molecular diagnostic approach for fragile X mental retardation (Martin-Bell syndrome, MBS) really makes diagnosis of this disease more precise, we evaluated the results of direct diagnosis in 40 German families at risk together with the results of an earlier study with closely linked flanking markers in the same families. Of 84 men analysed, 43 showed clinical signs. In 39 of these affected men the disease could be confirmed by direct diagnosis. Compared to cytogenetic data, one man was false negative and two were false positive. Two men, whose status could not be determined by means of RFLP data, proved to be normal transmitting males (NTMs). However, the possibility of being an NTM had to be rejected in one case on RFLP data. Fragile X syndrome could be confirmed in 10 of the 13 women with clinical signs. Compared to cytogenetic data there were three cases of false negative results and one of false positive. All 36 obligate carrier women were detected by the direct approach. In addition, 22 women were newly identified as normal transmitting females (NTFs), among them one woman who could not be identified by cytogenetic means or by analysis with closely linked markers. These findings are discussed in view of the relative reliability of the three diagnostic approaches to MBS. Special attention is drawn to the significance of false negative and false positive results in direct diagnosis.

  18. Understanding the impact of Fc glycosylation on its conformational changes by molecular dynamics simulations and bioinformatics.

    PubMed

    Zhang, Yubo

    2015-12-01

    N-linked glycosylation of Fc at N297 plays an important role in its effector function, aberrance of which would cause disease pathogenesis. Here, we performed all-atom molecular dynamics simulations to explore the effects of Fc glycosylation on its dynamics behaviors. Firstly, equilibrium simulations suggested that Fc deglycosylation was able to induce residual flexibility in its CH2 domain. Besides, the free energy landscape revealed three minimum energy wells in deglycosylated Fc, representing its "open", "semi-closed" and "closed" states. However, we could only observe the "open" state of glycosylated Fc. Supportively, principal component analysis emphasized the prominent motion of delyclosylated Fc and dynamically depicted how it changed from the "open" state to its "closed" state. Secondly, we studied the recognition mechanism of the Fc binding to its partners. Energy decomposition analysis identified key residues of Fc to recognize its two partners P13 and P34. Evidently, electrostatic potential surfaces showed that electrostatic attraction helped to stabilize the interaction between Fc and its partners. Also, relative binding free energies explained different binding affinities in Fc-P13 and Fc-P34. Collectively, these results together provided the structural basis for understanding conformational changes of deglycosylated Fc and the recognition mechanism of the Fc binding to its partners.

  19. Molecular insights into the role of white adipose tissue in metabolically unhealthy normal weight and metabolically healthy obese individuals.

    PubMed

    Badoud, Flavia; Perreault, Maude; Zulyniak, Michael A; Mutch, David M

    2015-03-01

    Obesity is a risk factor for the development of type 2 diabetes and cardiovascular disease. However, it is now recognized that a subset of individuals have reduced cardiometabolic risk despite being obese. Paradoxically, a subset of lean individuals is reported to have high risk for cardiometabolic complications. These distinct subgroups of individuals are referred to as metabolically unhealthy normal weight (MUNW) and metabolically healthy obese (MHO). Although the clinical relevance of these subgroups remains debated, evidence shows a critical role for white adipose tissue (WAT) function in the development of these phenotypes. The goal of this review is to provide an overview of our current state of knowledge regarding the molecular and metabolic characteristics of WAT associated with MUNW and MHO. In particular, we discuss the link between different WAT depots, immune cell infiltration, and adipokine production with MUNW and MHO. Furthermore, we also highlight recent molecular insights made with genomic technologies showing that processes such as oxidative phosphorylation, branched-chain amino acid catabolism, and fatty acid β-oxidation differ between these phenotypes. This review provides evidence that WAT function is closely linked with cardiometabolic risk independent of obesity and thus contributes to the development of MUNW and MHO. © FASEB.

  20. Crystal structures of the three closely related compounds: bis-[(1H-tetra-zol-5-yl)meth-yl]nitramide, tri-amino-guanidinium 5-({[(1H-tetra-zol-5-yl)meth-yl](nitro)-amino}-meth-yl)tetra-zol-1-ide, and di-ammonium bis-[(tetra-zol-1-id-5-yl)meth-yl]nitramide monohydrate.

    PubMed

    Mitchell, Lauren A; Imler, Gregory H; Parrish, Damon A; Deschamps, Jeffrey R; Leonard, Philip W; Chavez, David E

    2017-07-01

    In the mol-ecule of neutral bis-[(1 H -tetra-zol-5-yl)meth-yl]nitramide, (I), C 4 H 6 N 10 O 2 , there are two intra-molecular N-H⋯O hydrogen bonds. In the crystal, N-H⋯N hydrogen bonds link mol-ecules, forming a two-dimensional network parallel to (-201) and weak C-H⋯O, C-H⋯N hydrogen bonds, and inter-molecular π-π stacking completes the three-dimensional network. The anion in the molecular salt, tri-amino-guanidinium 5-({[(1 H -tetra-zol-5-yl)meth-yl](nitro)-amino}-meth-yl)tetra-zol-1-ide, (II), CH 9 N 6 + ·C 4 H 5 N 10 O 2 - , displays intra-molecular π-π stacking and in the crystal, N-H⋯N and N-H⋯O hydrogen bonds link the components of the structure, forming a three-dimensional network. In the crystal of di-ammonium bis-[(tetra-zol-1-id-5-yl)meth-yl]nitramide monohydrate, (III), 2NH 4 + ·C 4 H 4 N 10 O 2 2- ·H 2 O, O-H⋯N, N-H⋯N, and N-H⋯O hydrogen bonds link the components of the structure into a three-dimensional network. In addition, there is inter-molecular π-π stacking. In all three structures, the central N atom of the nitramide is mainly sp 2 -hybridized. Bond lengths indicate delocalization of charges on the tetra-zole rings for all three compounds. Compound (II) was found to be a non-merohedral twin and was solved and refined in the major component.

  1. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    PubMed

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols detection the developed sensor system is characterized by simplicity of operation, compactness, and low cost. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Personalized skincare: from molecular basis to clinical and commercial applications.

    PubMed

    Markiewicz, Ewa; Idowu, Olusola Clement

    2018-01-01

    Individual responses of human skin to the environmental stress are determined by differences in the anatomy and physiology that are closely linked to the genetic characteristics such as pigmentation. Ethnic skin phenotypes can be distinguished based on defined genotypic traits, structural organization and compartmentalized sensitivity to distinct extrinsic aging factors. These differences are not only responsible for the variation in skin performance after exposure to damaging conditions, but can also affect the mechanisms of drug absorption, sensitization and other longer term effects. The unique characteristics of the individual skin function and, particularly, of the ethnic skin type are currently considered to shape the future of clinical and pharmacologic interventions as a basis for personalized skincare. Individual approaches to skincare render a novel and actively growing area with a range of biomedical and commercial applications within cosmetics industry. In this review, we summarize the aspects of the molecular and clinical manifestations of the environmental stress on human skin and proposed protective mechanisms that are linked to ethnic differences and pathophysiology of extrinsic skin aging. We subsequently discuss the possible applications and translation of this knowledge into personalized skincare.

  3. Personalized skincare: from molecular basis to clinical and commercial applications

    PubMed Central

    Markiewicz, Ewa; Idowu, Olusola Clement

    2018-01-01

    Individual responses of human skin to the environmental stress are determined by differences in the anatomy and physiology that are closely linked to the genetic characteristics such as pigmentation. Ethnic skin phenotypes can be distinguished based on defined genotypic traits, structural organization and compartmentalized sensitivity to distinct extrinsic aging factors. These differences are not only responsible for the variation in skin performance after exposure to damaging conditions, but can also affect the mechanisms of drug absorption, sensitization and other longer term effects. The unique characteristics of the individual skin function and, particularly, of the ethnic skin type are currently considered to shape the future of clinical and pharmacologic interventions as a basis for personalized skincare. Individual approaches to skincare render a novel and actively growing area with a range of biomedical and commercial applications within cosmetics industry. In this review, we summarize the aspects of the molecular and clinical manifestations of the environmental stress on human skin and proposed protective mechanisms that are linked to ethnic differences and pathophysiology of extrinsic skin aging. We subsequently discuss the possible applications and translation of this knowledge into personalized skincare. PMID:29692619

  4. Integrative network analysis unveils convergent molecular pathways in Parkinson's disease and diabetes.

    PubMed

    Santiago, Jose A; Potashkin, Judith A

    2013-01-01

    Shared dysregulated pathways may contribute to Parkinson's disease and type 2 diabetes, chronic diseases that afflict millions of people worldwide. Despite the evidence provided by epidemiological and gene profiling studies, the molecular and functional networks implicated in both diseases, have not been fully explored. In this study, we used an integrated network approach to investigate the extent to which Parkinson's disease and type 2 diabetes are linked at the molecular level. Using a random walk algorithm within the human functional linkage network we identified a molecular cluster of 478 neighboring genes closely associated with confirmed Parkinson's disease and type 2 diabetes genes. Biological and functional analysis identified the protein serine-threonine kinase activity, MAPK cascade, activation of the immune response, and insulin receptor and lipid signaling as convergent pathways. Integration of results from microarrays studies identified a blood signature comprising seven genes whose expression is dysregulated in Parkinson's disease and type 2 diabetes. Among this group of genes, is the amyloid precursor protein (APP), previously associated with neurodegeneration and insulin regulation. Quantification of RNA from whole blood of 192 samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Prognostic Biomarker Study (PROBE), revealed that expression of APP is significantly upregulated in Parkinson's disease patients compared to healthy controls. Assessment of biomarker performance revealed that expression of APP could distinguish Parkinson's disease from healthy individuals with a diagnostic accuracy of 80% in both cohorts of patients. These results provide the first evidence that Parkinson's disease and diabetes are strongly linked at the molecular level and that shared molecular networks provide an additional source for identifying highly sensitive biomarkers. Further, these results suggest for the first time that increased expression of APP in blood may modulate the neurodegenerative phenotype in type 2 diabetes patients.

  5. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation

    PubMed Central

    Ichikawa, Osamu; Fujimoto, Kazushi; Yamada, Atsushi; Okazaki, Susumu; Yamazaki, Kazuto

    2016-01-01

    The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand—receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs. PMID:27187591

  6. A joint cross-border investigation of a cluster of multidrug-resistant tuberculosis in Austria, Romania and Germany in 2014 using classic, genotyping and whole genome sequencing methods: lessons learnt.

    PubMed

    Fiebig, Lena; Kohl, Thomas A; Popovici, Odette; Mühlenfeld, Margarita; Indra, Alexander; Homorodean, Daniela; Chiotan, Domnica; Richter, Elvira; Rüsch-Gerdes, Sabine; Schmidgruber, Beatrix; Beckert, Patrick; Hauer, Barbara; Niemann, Stefan; Allerberger, Franz; Haas, Walter

    2017-01-12

    Molecular surveillance of multidrug-resistant tuberculosis (MDR-TB) using 24-loci MIRU-VNTR in the European Union suggests the occurrence of international transmission. In early 2014, Austria detected a molecular MDR-TB cluster of five isolates. Links to Romania and Germany prompted the three countries to investigate possible cross-border MDR-TB transmission jointly. We searched genotyping databases, genotyped additional isolates from Romania, used whole genome sequencing (WGS) to infer putative transmission links, and investigated pairwise epidemiological links and patient mobility. Ten isolates from 10 patients shared the same 24-loci MIRU-VNTR pattern. Within this cluster, WGS defined two subgroups of four patients each. The first comprised an MDR-TB patient from Romania who had sought medical care in Austria and two patients from Austria. The second comprised patients, two of them epidemiologically linked, who lived in three different countries but had the same city of provenance in Romania. Our findings strongly suggested that the two cases in Austrian citizens resulted from a newly introduced MDR-TB strain, followed by domestic transmission. For the other cases, transmission probably occurred in the same city of provenance. To prevent further MDR-TB transmission, we need to ensure universal access to early and adequate therapy and collaborate closely in tuberculosis care beyond administrative borders. This article is copyright of The Authors, 2017.

  7. Mapping Flagellar Genes in Chlamydomonas Using Restriction Fragment Length Polymorphisms

    PubMed Central

    Ranum, LPW.; Thompson, M. D.; Schloss, J. A.; Lefebvre, P. A.; Silflow, C. D.

    1988-01-01

    To correlate cloned nuclear DNA sequences with previously characterized mutations in Chlamydomonas and, to gain insight into the organization of its nuclear genome, we have begun to map molecular markers using restriction fragment length polymorphisms (RFLPs). A Chlamydomonas reinhardtii strain (CC-29) containing phenotypic markers on nine of the 19 linkage groups was crossed to the interfertile species Chlamydomonas smithii. DNA from each member of 22 randomly selected tetrads was analyzed for the segregation of RFLPs associated with cloned genes detected by hybridization with radioactive DNA probes. The current set of markers allows the detection of linkage to new molecular markers over approximately 54% of the existing genetic map. This study focused on mapping cloned flagellar genes and genes whose transcripts accumulate after deflagellation. Twelve different molecular clones have been assigned to seven linkage groups. The α-1 tubulin gene maps to linkage group III and is linked to the genomic sequence homologous to pcf6-100, a cDNA clone whose corresponding transcript accumulates after deflagellation. The α-2 tubulin gene maps to linkage group IV. The two β-tubulin genes are linked, with the β-1 gene being approximately 12 cM more distal from the centromere than the β-2 gene. A clone corresponding to a 73-kD dynein protein maps to the opposite arm of the same linkage group. The gene corresponding to the cDNA clone pcf6-187, whose mRNA accumulates after deflagellation, maps very close to the tightly linked pf-26 and pf-1 mutations on linkage group V. PMID:2906025

  8. Coverage Dependent Assembly of Anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Deloach, Andrew; Einstein, Theodore; Dougherty, Daniel

    A study of adsorbate-adsorbate and surface state mediated interactions of anthraquinone (AnQ) on Au(111) is presented. We utilize scanning tunneling microscopy (STM) to characterize the coverage dependence of AnQ structure formation. Ordered structures are observed up to a single monolayer (ML) and are found to be strongly dependent on molecular surface density. While the complete ML forms a well-ordered close-packed layer, for a narrow range of sub-ML coverages irregular close-packed islands are observed to coexist with a disordered pore network linking neighboring islands. This network displays a characteristic pore size and at lower coverages, the soliton walls of the herringbone reconstruction are shown to promote formation of distinct pore nanostructures. We will discuss these nanostructure formations in the context of surface mediated and more direct adsorbate interactions.

  9. Molecular-dynamics study of solid-liquid interface migration in fcc metals

    NASA Astrophysics Data System (ADS)

    Mendelev, M. I.; Rahman, M. J.; Hoyt, J. J.; Asta, M.

    2010-10-01

    In order to establish a link between various structural and kinetic properties of metals and the crystal-melt interfacial mobility, free-solidification molecular-dynamics simulations have been performed for a total of nine embedded atom method interatomic potentials describing pure Al, Cu and Ni. To fully explore the space of materials properties three new potentials have been developed. The new potentials are based on a previous description of Al, but in each case the liquid structure, the melting point and/or the latent heat are varied considerably. The kinetic coefficient, μ, for all systems has been compared with several theoretical predictions. It is found that at temperatures close to the melting point the magnitude of μ correlates well with the value of the diffusion coefficient in the liquid.

  10. Remote control of SMM behaviour via DTE ligands.

    PubMed

    Cosquer, Goulven; Breedlove, Brian K; Yamashita, Masahiro

    2015-02-21

    Chemists and physicists are continuously working to understand the mechanisms controlling molecular magnetism, especially single-molecule magnetism, to improve the magnetic properties, such as the blocking temperature. With the current research focused on preparing molecular devices, methods to control the components of the devices are necessary. Extensive research has shown that stimuli, such as light, electric current, etc., can be used to change the properties of the molecules making up the devices. Bis(carboxylato)dithienylethene (DTE) derivatives can be photo-isomerized between open and closed forms, i.e., unconjugated and π-conjugated forms, and because of the carboxylate groups, it can be used to link 3d and/or 4f metal ions. Herein the use of DTE ligands to remotely control the magnetic properties of single-molecule magnets is discussed.

  11. Revealing a Novel Otubain-like Enzyme from Leishmania infantum with Deubiquitinating Activity toward K48-linked Substrate

    NASA Astrophysics Data System (ADS)

    Azevedo, Clênia S.; Guido, Bruna C.; Pereira, Jhonata L.; Nolasco, Diego O.; Corrêa, Rafael; Magalhães, Kelly G.; Motta, Flávia N.; Santana, Jaime M.; Grellier, Philippe; Bastos, Izabela M. D.

    2017-03-01

    Deubiquitinating enzymes (DUBs) play an important role in regulating a variety of eukaryotic processes. In this context, exploring the role of deubiquitination in Leishmania infantum could be a promising alternative to search new therapeutic targets for leishmaniasis. Here we present the first characterization of a DUB from L. infantum, otubain (OtuLi), and its localization within parasite. The recombinant OtuLi (rOtuLi) showed improved activity on lysine 48 (K48)-linked over K63-linked tetra-ubiquitin (Ub) and site-directed mutations on amino acids close to the catalytic site (F82) or involved in Ub interaction (L265 and F182) caused structural changes as shown by molecular dynamics, resulting in a reduction or loss of enzyme activity, respectively. Furthermore, rOtuLi stimulates lipid droplet biogenesis (an inflammatory marker) in peritoneal macrophages and induces IL-6 and TNF-α secretion in peritoneal macrophages, both proinflammatory cytokines. Our findings suggest that OtuLi is a cytoplasmic enzyme with K48-linked substrate specificity that could play a part in proinflammatory response in stimulated murine macrophages.

  12. Vascular and Immunobiology of the Circulatory Sphingosine 1-Phosphate Gradient

    PubMed Central

    Yanagida, Keisuke; Hla, Timothy

    2017-01-01

    Vertebrates are endowed with a closed circulatory system, the evolution of which required novel structural and regulatory changes. Furthermore, immune cell trafficking paradigms adapted to the barriers imposed by the closed circulatory system. How did such changes occur mechanistically? We propose that spatial compartmentalization of the lipid mediator sphingosine 1-phosphate (S1P) may be one such mechanism. In vertebrates, S1P is spatially compartmentalized in the blood and lymphatic circulation, thus comprising a sharp S1P gradient across the endothelial barrier. Circulatory S1P has critical roles in maturation and homeostasis of the vascular system as well as in immune cell trafficking. Physiological functions of S1P are tightly linked to shear stress, the key biophysical stimulus from blood flow. Thus, circulatory S1P confinement could be a primordial strategy of vertebrates in the development of a closed circulatory system. This review discusses the cellular and molecular basis of the S1P gradients and aims to interpret its physiological significance as a key feature of the closed circulatory system. PMID:27813829

  13. Bud structure, position and fate generate various branching patterns along shoots of closely related Rosaceae species: a review

    PubMed Central

    Costes, Evelyne; Crespel, Laurent; Denoyes, Béatrice; Morel, Philippe; Demene, Marie-Noëlle; Lauri, Pierre-Eric; Wenden, Bénédicte

    2014-01-01

    Branching in temperate plants is closely linked to bud fates, either floral or vegetative. Here, we review how the fate of meristematic tissues contained in buds and their position along a shoot imprint specific branching patterns which differ among species. Through examples chosen in closely related species in different genera of the Rosaceae family, a panorama of patterns is apparent. Patterns depend on whether vegetative and floral buds are borne individually or together in mixed buds, develop as the shoot grows or after a rest period, and are located in axillary or terminal positions along the parent shoot. The resulting branching patterns are conserved among varieties in a given species but progressively change with the parent shoot length during plant ontogeny. They can also be modulated by agronomic and environmental conditions. The existence of various organizations in the topology and fate of meristematic tissues and their appendages in closely related species questions the between-species conservation of physiological and molecular mechanisms leading to bud outgrowth vs. quiescence and to floral induction vs. vegetative development. PMID:25520729

  14. Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns.

    PubMed

    Korall, Petra; Schuettpelz, Eric; Pryer, Kathleen M

    2010-09-01

    Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well-documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer-lived species tend to have slower rates of molecular evolution than their shorter-lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long-lived tree-like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines,but will be necessary for a full appreciation of molecular evolution.

  15. Identification and validation of FaP1D7, a putative marker associated with the biosynthesis of methyl butanoate in cultivated strawberry (Fragaria x ananassa).

    PubMed

    Gor, Mian Chee; Candappa, Chrishani; de Silva, Thishakya; Mantri, Nitin; Pang, Edwin

    2017-12-12

    Breeding strawberry (Fragaria x ananassa) with enhanced fruit flavour is one of the top breeding goals of many strawberry-producing countries. Although several genes involved in the biosynthetic pathways of key aroma compounds have been identified, the development and application of molecular markers associated with fruit flavour remain limited. This study aims to identify molecular markers closely linked to genes controlling strawberry aroma. A purpose-built Subtracted Diversity Array (SDA) known as Fragaria Discovery Panel (FDP) was used for marker screening. Polymorphic sequences associated with key aroma compounds were identified from two DNA bulks with extreme phenotypes, established using 50 F 1 progeny plants derived from Juliette X 07-102-41 cross, two strawberry genotypes differing in aroma profile. A total of 49 polymorphic markers for eight key aroma compounds were detected using genotypic data of the extreme DNA bulks and phenotypic data obtained from gas chromatography-mass spectrometry (GC-MS). A similarity search against the physical maps of Fragaria vesca revealed that FaP1D7 is linked to genes potentially involved in the synthesis of methyl butanoate. A C/T SNP was detected within the feature, which could possibly be converted to a molecular tool for rapid screening of the strawberry accessions for their methyl butanoate production capacity.

  16. Venlafaxine besylate monohydrate

    PubMed Central

    Corvalan, Carolina H.; Vega, Daniel R.

    2013-01-01

    The title compound {systematic name: [2-(1-hydroxycyclohexyl)-2-(4-methoxyphenyl)ethyl]dimethylazanium benzene­sulfonate monohydrate}, C17H28NO2 +·C6H5O3S−·H2O, is a besylate salt hydrate of the anti­depressant drug venlafaxine. In the crystal, besylate anions and water mol­ecules self-assemble, forming hydrogen-bonded dimers linked around inversion centers, with graph set R 4 4(6). The crystal packing features a chain of alternate dimers and venlafaxine cations in the b-axis direction with the components linked by O—H⋯O hydrogen bonds and C—H⋯O and C—H⋯π inter­actions. This is the first example of a venlafaxine cation with a closed conformation, as it features an intra­molecular N—H⋯O inter­action involving the protonated N atom. PMID:24454196

  17. Tuning the Rectification Ratio by Changing the Electronic Nature (Open-Shell and Closed-Shell) in Donor-Acceptor Self-Assembled Monolayers.

    PubMed

    Souto, Manuel; Yuan, Li; Morales, Dayana C; Jiang, Li; Ratera, Imma; Nijhuis, Christian A; Veciana, Jaume

    2017-03-29

    This Communication describes the mechanism of charge transport across self-assembled monolayers (SAMs) of two donor-acceptor systems consisting of a polychlorotriphenylmethyl (PTM) electron-acceptor moiety linked to an electron-donor ferrocene (Fc) unit supported by ultraflat template-stripped Au and contacted by a eutectic alloy of gallium and indium top contacts. The electronic and supramolecular structures of these SAMs were well characterized. The PTM unit can be switched between the nonradical and radical forms, which influences the rectification behavior of the junction. Junctions with nonradical units rectify currents via the highest occupied molecular orbital (HOMO) with a rectification ratio R = 99, but junctions with radical units have a new accessible state, a single-unoccupied molecular orbital (SUMO), which turns rectification off and drops R to 6.

  18. Recent Advances in Particulate Matter and Nanoparticle Toxicology: A Review of the In Vivo and In Vitro Studies

    PubMed Central

    Nemmar, Abderrahim; Holme, Jørn A.; Rosas, Irma; Schwarze, Per E.

    2013-01-01

    Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques. PMID:23865044

  19. Metabolic pathways in T cell activation and lineage differentiation.

    PubMed

    Almeida, Luís; Lochner, Matthias; Berod, Luciana; Sparwasser, Tim

    2016-10-01

    Recent advances in the field of immunometabolism support the concept that fundamental processes in T cell biology, such as TCR-mediated activation and T helper lineage differentiation, are closely linked to changes in the cellular metabolic programs. Although the major task of the intermediate metabolism is to provide the cell with a constant supply of energy and molecular precursors for the production of biomolecules, the dynamic regulation of metabolic pathways also plays an active role in shaping T cell responses. Key metabolic processes such as glycolysis, fatty acid and mitochondrial metabolism are now recognized as crucial players in T cell activation and differentiation, and their modulation can differentially affect the development of T helper cell lineages. In this review, we describe the diverse metabolic processes that T cells engage during their life cycle from naïve towards effector and memory T cells. We consider in particular how the cellular metabolism may actively support the function of T cells in their different states. Moreover, we discuss how molecular regulators such as mTOR or AMPK link environmental changes to adaptations in the cellular metabolism and elucidate the consequences on T cell differentiation and function. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. A limited 4 Å radial displacement of the S4-S5 linker is sufficient for internal gate closing in Kv channels.

    PubMed

    Faure, Élise; Starek, Greg; McGuire, Hugo; Bernèche, Simon; Blunck, Rikard

    2012-11-16

    Voltage-gated ion channels are responsible for the generation of action potentials in our nervous system. Conformational rearrangements in their voltage sensor domains in response to changes of the membrane potential control pore opening and thus ion conduction. Crystal structures of the open channel in combination with a wealth of biophysical data and molecular dynamics simulations led to a consensus on the voltage sensor movement. However, the coupling between voltage sensor movement and pore opening, the electromechanical coupling, occurs at the cytosolic face of the channel, from where no structural information is available yet. In particular, the question how far the cytosolic pore gate has to close to prevent ion conduction remains controversial. In cells, spectroscopic methods are hindered because labeling of internal sites remains difficult, whereas liposomes or detergent solutions containing purified ion channels lack voltage control. Here, to overcome these problems, we controlled the state of the channel by varying the lipid environment. This way, we directly measured the position of the S4-S5 linker in both the open and the closed state of a prokaryotic Kv channel (KvAP) in a lipid environment using Lanthanide-based resonance energy transfer. We were able to reconstruct the movement of the covalent link between the voltage sensor and the pore domain and used this information as restraints for molecular dynamics simulations of the closed state structure. We found that a small decrease of the pore radius of about 3-4 Å is sufficient to prevent ion permeation through the pore.

  1. Phylogeny and biogeography of pacific Rubus subgenus Idaeobatus (Rosaceae) species: Investigating the origin of the endemic Hawaiian raspberry R. macraei

    USGS Publications Warehouse

    Morden, C.W.; Gardner, D.E.; Weniger, D.A.

    2003-01-01

    The endemic Hawaiian raspberries Rubus hawaiensis and R. macraei (both subgenus Idaeobatus) had been thought to be closely related species until recent molecular studies demonstrated otherwise. These studies suggest that they are the products of separate colonizations to the Hawaiian Islands. Affinities of R. hawaiensis to R. spectabilis of western North America were clearly confirmed. However, no clear relation to R. macraei has been published. This study was initiated to examine species of subg. Idaeobatus from the surrounding Pacific region as well as species from other subgenera to better evaluate biogeographic and phylogenetic affinities of R. macraei by means of chromosome analysis and molecular data using the chloroplast gene ndbF. Results show that R. macraei clusters in a clade with species of blackberries, subg. Rubus, and of these it is most closely linked to R. ursinus. Chromosomally, R. macraei is 2n = 6x = 42, a number that would be a new report for subg. Idaeobatus. However, polyploidy is common in subg. Rubus. Analyses indicate that R. macraei and R. hawaiensis are derived from separate colonizations from North America and that similarities between them are due to convergent evolution in the Hawaiian environment.

  2. Retinoic Acid Signaling Affects Cortical Synchrony During Sleep

    NASA Astrophysics Data System (ADS)

    Maret, Stéphanie; Franken, Paul; Dauvilliers, Yves; Ghyselinck, Norbert B.; Chambon, Pierre; Tafti, Mehdi

    2005-10-01

    Delta oscillations, characteristic of the electroencephalogram (EEG) of slow wave sleep, estimate sleep depth and need and are thought to be closely linked to the recovery function of sleep. The cellular mechanisms underlying the generation of delta waves at the cortical and thalamic levels are well documented, but the molecular regulatory mechanisms remain elusive. Here we demonstrate in the mouse that the gene encoding the retinoic acid receptor beta determines the contribution of delta oscillations to the sleep EEG. Thus, retinoic acid signaling, which is involved in the patterning of the brain and dopaminergic pathways, regulates cortical synchrony in the adult.

  3. Recognition of Poly-Ubiquitins by the Proteasome through Protein Refolding Guided by Electrostatic and Hydrophobic Interactions.

    PubMed

    Zhang, Yi; Vuković, Lela; Rudack, Till; Han, Wei; Schulten, Klaus

    2016-08-25

    Specificity of protein degradation by cellular proteasomes comes from tetra-ubiquitin recognition. We carry out molecular dynamics simulations to characterize how the ubiquitin receptor Rpn10 recognizes in the 26S proteasome K48-linked tetra-ubiquitin. In the binding pose, ubiquitin and Rpn10 interact primarily through hydrophobic patches. However, K48-linked tetra-ubiquitin mostly assumes a closed form in solution prior to binding, in which its hydrophobic patches are not exposed to solvent. Likewise, the hydrophobic ubiquitin interacting motifs (UIMs) of Rpn10 are mostly protected prior to binding. As a result, ubiquitin recognition in the proteasome requires refolding of both K48-linked tetra-ubiquitin and Rpn10. Simulations suggest that conserved complementary electrostatic patterns of Rpn10 and ubiquitins guide protein association (stage 1 in the recognition process), which induces refolding (stage 2), and then facilitates formation of hydrophobic contacts (stage 3). The simulations also explain why Rpn10 has a higher affinity for K48-linked tetra-ubiquitin than for mono-ubiquitin and K48-linked di- and tri-ubiquitins. Simulation results expand on the current view that the flexible arm of Rpn10 acts as an extended fragment of α-helices and flexible coils in the recognition process.

  4. Genetic basis and biotechnological manipulation of sexual dimorphism and sex determination in fish.

    PubMed

    Mei, Jie; Gui, Jian-Fang

    2015-02-01

    Aquaculture has made an enormous contribution to the world food production, especially to the sustainable supply of animal proteins. The utility of diverse reproduction strategies in fish, such as the exploiting use of unisexual gynogenesis, has created a typical case of fish genetic breeding. A number of fish species show substantial sexual dimorphism that is closely linked to multiple economic traits including growth rate and body size, and the efficient development of sex-linked genetic markers and sex control biotechnologies has provided significant approaches to increase the production and value for commercial purposes. Along with the rapid development of genomics and molecular genetic techniques, the genetic basis of sexual dimorphism has been gradually deciphered, and great progress has been made in the mechanisms of fish sex determination and identification of sex-determining genes. This review summarizes the progress to provide some directive and objective thinking for further research in this field.

  5. The effect of real-time aging on the oxidation and wear of highly cross-linked UHMWPE acetabular liners.

    PubMed

    Wannomae, Keith K; Christensen, Steven D; Freiberg, Andrew A; Bhattacharyya, Shayan; Harris, William H; Muratoglu, Orhun Kamil

    2006-03-01

    Irradiation decreases the wear of ultra-high molecular weight polyethylene (UHMWPE) but generates residual free radicals, precursors to long-term oxidation. Melting or annealing is used in quenching free radicals. We hypothesized that irradiated and once-annealed UHMWPE would oxidize while irradiated and melted UHMWPE would not, and that the oxidation in the former would increase wear. Acetabular liners were real-time aged by immersion in an aqueous environment that closely mimicked the temperature and oxygen concentration of synovial fluid. After 95 weeks of real-time aging, once-annealed components were oxidized; the melted components were not. The wear rate of the real-time aged irradiated and once-annealed components was higher than the literature reported values of other contemporary highly cross-linked UHMWPEs. Single annealing after irradiation used with terminal gamma sterilization may adversely affect the long-term oxidative stability of UHMWPE components.

  6. Organic molecules in translucent interstellar clouds.

    PubMed

    Krełowski, Jacek

    2014-09-01

    Absorption spectra of translucent interstellar clouds contain many known molecular bands of CN, CH+, CH, OH, OH(+), NH, C2 and C3. Moreover, one can observe more than 400 unidentified absorption features, known as diffuse interstellar bands (DIBs), commonly believed to be carried by complex, carbon-bearing molecules. DIBs have been observed in extragalactic sources as well. High S/N spectra allow to determine precisely the corresponding column densities of the identified molecules, rotational temperatures which differ significantly from object to object in cases of centrosymmetric molecular species, and even the (12)C/(13)C abundance ratio. Despite many laboratory based studies of possible DIB carriers, it has not been possible to unambiguously link these bands to specific species. An identification of DIBs would substantially contribute to our understanding of chemical processes in the diffuse interstellar medium. The presence of substructures inside DIB profiles supports the idea that DIBs are very likely features of gas phase molecules. So far only three out of more than 400 DIBs have been linked to specific molecules but none of these links was confirmed beyond doubt. A DIB identification clearly requires a close cooperation between observers and experimentalists. The review presents the state-of-the-art of the investigations of the chemistry of interstellar translucent clouds i.e. how far our observations are sufficient to allow some hints concerning the chemistry of, the most common in the Galaxy, translucent interstellar clouds, likely situated quite far from the sources of radiation (stars).

  7. Mechanotransduction in skeletal muscle

    PubMed Central

    Burkholder, Thomas J.

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3’ kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction. PMID:17127292

  8. Mechanotransduction in skeletal muscle.

    PubMed

    Burkholder, Thomas J

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3' kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction.

  9. Protein Aggregation and Molecular Crowding: Perspectives From Multiscale Simulations.

    PubMed

    Musiani, F; Giorgetti, A

    2017-01-01

    Cells are extremely crowded environments, thus the use of diluted salted aqueous solutions containing a single protein is too simplistic to mimic the real situation. Macromolecular crowding might affect protein structure, folding, shape, conformational stability, binding of small molecules, enzymatic activity, interactions with cognate biomolecules, and pathological aggregation. The latter phenomenon typically leads to the formation of amyloid fibrils that are linked to several lethal neurodegenerative diseases, but that can also play a functional role in certain organisms. The majority of molecular simulations performed before the last few years were conducted in diluted solutions and were restricted both in the timescales and in the system dimensions by the available computational resources. In recent years, several computational solutions were developed to get close to physiological conditions. In this review we summarize the main computational techniques used to tackle the issue of protein aggregation both in a diluted and in a crowded environment. © 2017 Elsevier Inc. All rights reserved.

  10. 2-(4,5-Dihydro-1H-imidazol-2-yl)­pyridine

    PubMed Central

    Kia, Reza; Fun, Hoong-Kun; Kargar, Hadi

    2009-01-01

    In the mol­ecule of the title compound, C8H9N3, a new imidazoline derivative, the six- and five-membered rings are slightly twisted away from each other, forming a dihedral angle of 7.96 (15)°. In the crystal structure, neighbouring mol­ecules are linked together by inter­molecular N—H⋯N hydrogen bonds into extended one-dimensional chains along the a axis. The pyridine N atom is in close proximity to a carbon-bound H atom of the imidazoline ring, with an H⋯N distance of 2.70 Å, which is slightly shorter than the sum of the van der Waals radii of these atoms (2.75 Å). The crystal structure is further stabilized by inter­molecular C—H⋯π and π–π inter­actions (centroid-to-centroid distance 3.853 Å). PMID:21582505

  11. Low-molecular-weight heparins and cancer: focus on antitumoral effect.

    PubMed

    Franchini, Massimo; Mannucci, Pier Mannuccio

    2015-03-01

    A close relationship between cancer and thrombosis does exist, documented by the fact that an overall 7-fold increased risk of venous thromboembolism (VTE) has been reported in patients with malignancy compared to non-malignancy. The potential impact of antithrombotic agents in cancer-associated VTE has long been recognized, and, in particular, several clinical trials in the last 20 years have reported the safety and efficacy of low-molecular-weight heparins (LMWHs) for treatment and prophylaxis of VTE in patients with various types of cancer. More recently, a number of preclinical and clinical studies have suggested that LMWHs may improve survival in cancer patients with mechanisms that are different from its antithrombotic effect but are linked to the ability of influencing directly the tumor biology. This paper reviews the evidence around the potential survival benefits of LMWHs by analyzing the suggested mechanisms and the available clinical data.

  12. Three closely related 4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridines: synthesis, molecular conformations and hydrogen bonding in zero, one and two dimensions.

    PubMed

    Sagar, Belakavadi K; Harsha, Kachigere B; Yathirajan, Hemmige S; Rangappa, Kanchugarakoppal S; Rathore, Ravindranath S; Glidewell, Christopher

    2017-03-01

    In each of 1-(4-fluorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 F 4 N 3 O 2 S, (I), 1-(4-chlorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 ClF 3 N 3 O 2 S, (II), and 1-(3-methylphenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 22 H 22 F 3 N 3 O 2 S, (III), the reduced pyridine ring adopts a half-chair conformation with the methylsulfonyl substituent occupying an equatorial site. Although compounds (I) and (II) are not isostructural, having the space groups Pbca and P2 1 2 1 2 1 , respectively, their molecular conformations are very similar, but the conformation of compound (III) differs from those of (I) and (II) in the relative orientation of the N-benzyl and methylsulfonyl substituents. In compounds (II) and (III), but not in (I), the trifluoromethyl groups are disordered over two sets of atomic sites. Molecules of (I) are linked into centrosymmetric dimers by C-H...π(arene) hydrogen bonds, molecules of (II) are linked by two C-H...O hydrogen bonds to form ribbons of R 3 3 (18) rings, which are themselves further linked by a C-Cl...π(arene) interaction, and a combination of C-H...O and C-H...π(arene) hydrogen bonds links the molecules of (III) into sheets. Comparisons are made with the structures of some related compounds.

  13. Community of protein complexes impacts disease association

    PubMed Central

    Wang, Qianghu; Liu, Weisha; Ning, Shangwei; Ye, Jingrun; Huang, Teng; Li, Yan; Wang, Peng; Shi, Hongbo; Li, Xia

    2012-01-01

    One important challenge in the post-genomic era is uncovering the relationships among distinct pathophenotypes by using molecular signatures. Given the complex functional interdependencies between cellular components, a disease is seldom the consequence of a defect in a single gene product, instead reflecting the perturbations of a group of closely related gene products that carry out specific functions together. Therefore, it is meaningful to explore how the community of protein complexes impacts disease associations. Here, by integrating a large amount of information from protein complexes and the cellular basis of diseases, we built a human disease network in which two diseases are linked if they share common disease-related protein complex. A systemic analysis revealed that linked disease pairs exhibit higher comorbidity than those that have no links, and that the stronger association two diseases have based on protein complexes, the higher comorbidity they are prone to display. Moreover, more connected diseases tend to be malignant, which have high prevalence. We provide novel disease associations that cannot be identified through previous analysis. These findings will potentially provide biologists and clinicians new insights into the etiology, classification and treatment of diseases. PMID:22549411

  14. Construction of a general human chromosome jumping library, with application to cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, F.S.; Drumm, M.L.; Cole, J.L.

    1987-02-27

    In many genetic disorders, the responsible gene and its protein product are unknown. The technique known as reverse genetics, in which chromosomal map positions and genetically linked DNA markers are used to identify and clone such genes, is complicated by the fact that the molecular distances from the closest DNA markers to the gene itself are often too large to traverse by standard cloning techniques. To address this situation, a general human chromosome jumping library was constructed that allows the cloning of DNA sequences approximately 100 kilobases away from any starting point in genomic DNA. As an illustration of itsmore » usefulness, this library was searched for a jumping clone, starting at the met oncogene, which is a marker tightly linked to the cystic fibrosis gene that is located on human chromosome 7. Mapping of the new genomic fragment by pulsed field gel electrophoresis confirmed that it resides on chromosome 7 within 240 kilobases downstream of the met gene. The use of chromosome jumping should be applicable to any genetic locus for which a closely linked DNA marker is available.« less

  15. Molecular Ecological Basis of Grasshopper (Oedaleus asiaticus) Phenotypic Plasticity under Environmental Selection

    PubMed Central

    Qin, Xinghu; Hao, Kun; Ma, Jingchuan; Huang, Xunbing; Tu, Xiongbing; Ali, Md. Panna; Pittendrigh, Barry R.; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W.; Zhang, Zehua

    2017-01-01

    While ecological adaptation in insects can be reflected by plasticity of phenotype, determining the causes and molecular mechanisms for phenotypic plasticity (PP) remains a crucial and still difficult question in ecology, especially where control of insect pests is involved. Oedaleus asiaticus is one of the most dominant pests in the Inner Mongolia steppe and represents an excellent system to study phenotypic plasticity. To better understand ecological factors affecting grasshopper phenotypic plasticity and its molecular control, we conducted a full transcriptional screening of O. asiaticus grasshoppers reared in four different grassland patches in Inner Mongolia. Grasshoppers showed different degrees of PP associated with unique gene expressions and different habitat plant community compositions. Grasshopper performance variables were susceptible to habitat environment conditions and closely associated with plant architectures. Intriguingly, eco-transcriptome analysis revealed five potential candidate genes playing important roles in grasshopper performance, with gene expression closely relating to PP and plant community factors. By linking the grasshopper performances to gene profiles and ecological factors using canonical regression, we first demonstrated the eco-transcriptomic architecture (ETA) of grasshopper phenotypic traits (ETAGPTs). ETAGPTs revealed plant food type, plant density, coverage, and height were the main ecological factors influencing PP, while insect cuticle protein (ICP), negative elongation factor A (NELFA), and lactase-phlorizin hydrolase (LCT) were the key genes associated with PP. Our study gives a clear picture of gene-environment interaction in the formation and maintenance of PP and enriches our understanding of the transcriptional events underlying molecular control of rapid phenotypic plasticity associated with environmental variability. The findings of this study may also provide new targets for pest control and highlight the significance of ecological management practice on grassland conservation. PMID:29066978

  16. Cervical cancer in sub-Saharan Africa: an emerging and preventable disease associated with oncogenic human papillomavirus.

    PubMed

    Mboumba Bouassa, R S; Prazuck, T; Lethu, T; Meye, J F; Bélec, L

    2017-02-01

    Highly oncogenic human papillomavirus (HPV) infections are responsible for 7.7 % of cancers in developing countries, mainly cervical cancer. The incidence of this emerging cancer is steadily increasing in sub-Saharan Africa, with more than 75,000 new cases and close to 50,000 deaths a year, a toll further increased by HIV infection. According to the World Health Organization, cervical cancer will kill more than 443,000 women per year worldwide by 2030, nearly 90 % of them in sub-Saharan Africa. This increase in cervical cancer incidence in Africa is now counteracting the progress made by African women in reducing maternal mortality and increasing longevity. Nevertheless, cervical cancer is a potentially preventable noncommunicable disease that can be averted or halted by primary (vaccination), secondary (early diagnosis of situations at risk), and tertiary (early diagnosis of proven cases of cervical neoplasia) prevention. The close links between HIV and HPV justify linking cervical cancer prevention, screening, and management programs with AIDS programs as part of the "90-90-90" initiative of the UNAIDS, both nationally and regionally. Innovative strategies based on effective, rapid, inexpensive, and mobile screening tools, including at best molecular biology as well as vaccination and awareness programs, should be rapidly implemented and evaluated in sub-Saharan Africa.

  17. Molecular and karyological data confirm that the enigmatic genus Platypholis from Bonin-Islands (SE Japan) is phylogenetically nested within Orobanche (Orobanchaceae).

    PubMed

    Li, Xi; Jang, Tae-Soo; Temsch, Eva M; Kato, Hidetoshi; Takayama, Koji; Schneeweiss, Gerald M

    2017-03-01

    Molecular phylogenetic studies have greatly improved our understanding of phylogenetic relationships of non-photosynthetic parasitic broomrapes (Orobanche and related genera, Orobanchaceae), but a few genera have remained unstudied. One of those is Platypholis, whose sole species, Platypholis boninsimae, is restricted to the Bonin-Islands (Ogasawara Islands) about 1000 km southeast of Japan. Based on overall morphological similarity, Platypholis has been merged with Orobanche, but this hypothesis has never been tested with molecular data. Employing maximum likelihood and Bayesian analyses on a family-wide data set (two plastid markers, matK and rps2, and three nuclear markers, ITS, phyA and phyB) as well as on an ITS data set focusing on Orobanche s. str., it is shown that P. boninsimae Maxim. is phylogenetically closely linked to or even nested within Orobanche s. str. This position is supported both by morphological evidence and by the newly obtained chromosome number of 2n = 38, which is characteristic for the genus Orobanche s. str.

  18. Structural basis of Staphylococcus epidermidis biofilm formation: mechanisms and molecular interactions

    PubMed Central

    Büttner, Henning; Mack, Dietrich; Rohde, Holger

    2015-01-01

    Staphylococcus epidermidis is a usually harmless commensal bacterium highly abundant on the human skin. Under defined predisposing conditions, most importantly implantation of a medical device, S. epidermidis, however, can switch from a colonizing to an invasive life style. The emergence of S. epidermidis as an opportunistic pathogen is closely linked to the biofilm forming capability of the species. During the past decades, tremendous advance regarding our understanding of molecular mechanisms contributing to surface colonization has been made, and detailed information is available for several factors active during the primary attachment, accumulative or dispersal phase of biofilm formation. A picture evolved in which distinct factors, though appearing to be redundantly organized, take over specific and exclusive functions during biofilm development. In this review, these mechanisms are described in molecular detail, with a highlight on recent insights into multi-functional S. epidermidis cell surface proteins contributing to surface adherence and intercellular adhesion. The integration of distinct biofilm-promoting factors into regulatory networks is summarized, with an emphasis on mechanism that could allow S. epidermidis to flexibly adapt to changing environmental conditions present during colonizing or invasive life-styles. PMID:25741476

  19. Chloroplast Preproteins Bind to the Dimer Interface of the Toc159 Receptor during Import1[OPEN

    PubMed Central

    Chen, Lih-Jen; Yeh, Yi-Hung; Hsiao, Chwan-Deng

    2017-01-01

    Most chloroplast proteins are synthesized in the cytosol as higher molecular weight preproteins and imported via the translocons in the outer (TOC) and inner (TIC) envelope membranes of chloroplasts. Toc159 functions as a primary receptor and directly binds preproteins through its dimeric GTPase domain. As a first step toward a molecular understanding of how Toc159 mediates preprotein import, we mapped the preprotein-binding regions on the Toc159 GTPase domain (Toc159G) of pea (Pisum sativum) using cleavage by bound preproteins conjugated with the artificial protease FeBABE and cysteine-cysteine cross-linking. Our results show that residues at the dimer interface and the switch II region of Toc159G are in close proximity to preproteins. The mature portion of preproteins was observed preferentially at the dimer interface, whereas the transit peptide was found at both regions equally. Chloroplasts from transgenic plants expressing engineered Toc159 with a cysteine placed at the dimer interface showed increased cross-linking to bound preproteins. Our data suggest that, during preprotein import, the Toc159G dimer disengages and the dimer interface contacts translocating preproteins, which is consistent with a model in which conformational changes induced by dimer-monomer conversion in Toc159 play a direct role in facilitating preprotein import. PMID:28250068

  20. Molecular genetic analysis of consanguineous Pakistani families with autosomal recessive hypohidrotic ectodermal dysplasia.

    PubMed

    Bibi, Nosheen; Ahmad, Saeed; Ahmad, Wasim; Naeem, Muhammad

    2011-02-01

    Hypohidrotic ectodermal dysplasia is an inherited disorder characterized by defective development of teeth, hairs and sweat glands. X-linked hypohidrotic ectodermal dysplasia is caused by mutations in the EDA gene, and autosomal forms of hypohidrotic ectodermal dysplasia are caused by mutations in either the EDAR or the EDARADD genes. To study the molecular genetic cause of autosomal recessive hypohidrotic ectodermal dysplasia in three consanguineous Pakistani families (A, B and C), genotyping of 13 individuals was carried out by using polymorphic microsatellite markers that are closely linked to the EDAR gene on chromosome 2q11-q13 and the EDARADD gene on chromosome 1q42.2-q43. The results revealed linkage in the three families to the EDAR locus. Sequence analysis of the coding exons and splice junctions of the EDAR gene revealed two mutations: a novel non-sense mutation (p.E124X) in the probands of families A and B and a missense mutation (p.G382S) in the proband of family C. In addition, two synonymous single-nucleotide polymorphisms were also identified. The finding of mutations in Pakistani families extends the body of evidence that supports the importance of EDAR for the development of hypohidrotic ectodermal dysplasia. © 2010 The Authors. Australasian Journal of Dermatology © 2010 The Australasian College of Dermatologists.

  1. Linking Assessment Questions to a Research Article to Stimulate Self-directed Learning and Develop High-order Cognitive Skills in an Undergraduate Module of Molecular Genetics

    PubMed Central

    2009-01-01

    Assessment plays a crucial role in the learning process, but current assessments focus on assessment of learning rather than assessment for learning. In this study, a novel method for open-book continuous assessment (CA) was developed. The aim was to encourage students to learn beyond the textbook by challenging students with questions linked to a research article. Research articles closely related to lecture contents were selected and released to students before the CA for perusal. CA questions were set at three different levels to assess conceptual understanding, application, and synthesis. The CA was administered to first-year undergraduate students majoring in life science as part of Molecular Genetics, a compulsory module. It contributed 10% of the student's grade for the module. Students’ CA scores indicated that the majority could answer correctly all the questions. Students’ feedback on the CA showed that most of them praised the CA model for its novelty, motivation, and application. Only a few criticized it due to its poor coverage of lecture contents. Overall, this CA went beyond the traditional role of assessments in the assignment of scores and stimulated curiosity and self-directed learning. PMID:19952097

  2. In vivo oxidation in remelted highly cross-linked retrievals.

    PubMed

    Currier, B H; Van Citters, D W; Currier, J H; Collier, J P

    2010-10-20

    Elimination of free radicals to prevent oxidation has played a major role in the development and product differentiation of the latest generation of highly cross-linked ultra-high molecular weight polyethylene bearing materials. In the current study, we (1) examined oxidation in a series of retrieved remelted highly cross-linked ultra-high molecular weight polyethylene bearings from a number of device manufacturers and (2) compared the retrieval results with findings for shelf-stored control specimens. The hypothesis was that radiation-cross-linked remelted ultra-high molecular weight polyethylene would maintain oxidative stability in vivo comparable with the stability during shelf storage and in published laboratory aging tests. Fifty remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners and nineteen remelted highly cross-linked ultra-high molecular weight polyethylene tibial inserts were received after retrieval from twenty-one surgeons from across the U.S. Thirty-two of the retrievals had been in vivo for two years or more. Each was measured for oxidation with use of Fourier transform infrared spectroscopy. A control series of remelted highly cross-linked ultra-high molecular weight polyethylene acetabular liners from three manufacturers was analyzed with electron paramagnetic resonance spectroscopy to measure free radical content and with Fourier transform infrared spectroscopy to measure oxidation initially and after eight to nine years of shelf storage in air. The never-implanted, shelf-aged controls had no measurable free-radical content initially or after eight to nine years of shelf storage. The never-implanted controls showed no increase in oxidation during shelf storage. Oxidation measurements showed measurable oxidation in 22% of the retrieved remelted highly cross-linked liners and inserts after an average of two years in vivo. Because never-implanted remelted highly cross-linked ultra-high molecular weight polyethylene materials had no measurable free-radical concentration and no increase in oxidation during shelf storage, these materials were expected to be oxidation-resistant in vivo. However, some remelted highly cross-linked ultra-high molecular weight polyethylene retrievals showed measurable oxidation after an average of more than two years in vivo. This apparent departure from widely expected behavior requires continued study of the process of in vivo oxidation of ultra-high molecular weight polyethylene materials.

  3. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    NASA Technical Reports Server (NTRS)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  4. Histidinoalanine, a naturally occurring cross-link derived from phosphoserine and histidine residues in mineral-binding phosphoproteins.

    PubMed

    Marsh, M E

    1986-05-06

    Native mineral-containing phosphoprotein particles were isolated from the Heterodont bivalve Macrocallista nimbosa. The native particles are discrete structures about 40 nm in diameter which migrate as a single band during electrophoresis in agarose gels. Removal of the mineral component with ethylenediaminetetraacetic acid dissociates the native protein into nonidentical subunits. The lower molecular weight subunits, representing 8% of the total protein, were obtained by differential centrifugation. The native protein is characterized by a high content of aspartic acid, phosphoserine, phosphothreonine, histidine, and the bifunctional cross-linking residue histidinoalanine. The low molecular weight subunits have the same amino acid composition except for a reduction in histidinoalanine and a corresponding increase in phosphoserine and histidine residues, demonstrating that the alanine portion of the cross-link is derived from phosphoserine residues. Ion-exchange chromatography and molecular sieve chromatography show that the low molecular weight subunits have a similar charge density but differ in molecular weight, and the relative mobilities of the subunits on agarose gels indicate that they are polymers of a single phosphoprotein molecule. The minimum molecular weight of the monomer is about 140 000 on the basis of the amino acid composition. The high molecular weight subunits are rich in histidinoalanine and too large to be resolved by either molecular sieve chromatography or gel electrophoresis. On the basis of the ultrastructural, electrophoretic, chromatographic, and compositional evidence, native phosphoprotein particles are composed of subunits ionically cross-linked via divalent cations. These subunits are variable molecular weight aggregates of a single phosphoprotein molecule covalently cross-linked via histidinoalanine residues. Evidence for a nonenzymatic cross-linking mechanism is discussed.

  5. Genetics Home Reference: X-linked dystonia-parkinsonism

    MedlinePlus

    ... X-linked dystonia-parkinsonism syndrome (XDP): clinical and molecular genetic analysis. Brain Pathol. 1992 Oct;2(4):287-95. Review. Citation on PubMed Kaji R, Goto S, Tamiya G, Ando S, Makino S, Lee LV. Molecular dissection and anatomical basis of dystonia: X-linked ...

  6. The role of social relationships in the link between olfactory dysfunction and mortality.

    PubMed

    Leschak, Carrianne J; Eisenberger, Naomi I

    2018-01-01

    Recent work suggests that olfactory dysfunction is a strong predictor of five-year mortality in older adults. Based on past work showing: 1) that olfactory dysfunction impairs social functioning and 2) that social ties are linked with mortality, the current work explored whether impairments in social life mediated the relationship between olfactory dysfunction and mortality. Additionally, based on work showing gender differences in the social consequences of olfactory dysfunction, gender was assessed as a potential moderator of this association. Social network size mediated the olfactory-mortality link for females. To probe what feature of social networks was driving this effect, we investigated two subcomponents of social life: emotional closeness (e.g., perceived social support, loneliness) and physical closeness (e.g., physical contact, in-person socializing with others). Physical closeness significantly mediated the olfactory-mortality link for females, even after controlling for social network size. Emotional closeness did not mediate this link. Possible mechanisms underlying this relationship are discussed.

  7. Crystal structure of poly[N,N-diethyl-2-hy-droxy-ethan-1-aminium [μ3-cyanido-κ(3) C:C:N-di-μ-cyanido-κ(4) C:N-dicuprate(I)

    PubMed

    Corfield, Peter W R; Cleary, Emma; Michalski, Joseph F

    2016-07-01

    In the title compound, {(C6H16NO)[Cu2(CN)3]} n , the cyanide groups link the Cu(I) atoms into an open three-dimensional anionic network, with the mol-ecular formula Cu2(CN)3 (-). One Cu(I) atom is tetra-hedrally bound to four CN groups, and the other Cu(I) atom is bonded to three CN groups in an approximate trigonal-planar coordination. The tetra-hedrally coordinated Cu(I) atoms are linked into centrosymmetric dimers by the C atoms of two end-on bridging CN groups which bring the Cu(I) atoms into close contact at 2.5171 (7) Å. Two of the cyanide groups bonded to the Cu(I) atoms with trigonal-planar surrounding link the dimeric units into columns along the a axis, and the third links the columns together to form the network. The N,N-di-ethyl-ethano-lamine mol-ecules used in the synthesis have become protonated at the N atoms and are situated in cavities in the network, providing charge neutrality, with no covalent inter-actions between the cations and the anionic network.

  8. Molecular evidence that the genes for dioecism and monoecism in Spinacia oleracea L. are located at different loci in a chromosomal region

    PubMed Central

    Yamamoto, K; Oda, Y; Haseda, A; Fujito, S; Mikami, T; Onodera, Y

    2014-01-01

    Spinach (Spinacia oleracea L.) is widely known to be dioecious. However, monoecious plants can also occur in this species. Sex expression in dioecious spinach plants is controlled by a single gene pair termed X and Y. Our previous study showed that a single, incompletely dominant gene, which controls the monoecious condition in spinach line 03–336, should be allelic or linked to X/Y. Here, we developed 19 AFLP markers closely linked to the monoecious gene. The AFLP markers were mapped to a 38.2-cM chromosomal region that included the monoecious gene, which is bracketed between flanking markers with a distance of 7.1 cM. The four AFLP markers developed in our studies were converted into sequence-characterized amplified region (SCAR) markers, which are linked to both the monoecious gene and Y and are common to both populations segregating for the genes. Linkage analysis using the SCAR markers suggested that the monoecious gene (M) and Y are located in different intervals, between different marker pairs. Analysis of populations segregating for both M and Y also directly demonstrates linkage of the genes at a distance of ∼12 cM. The data presented in this study may be useful for breeding dioecious and highly male monoecious lines utilized as the pollen parents for hybrid seed production, as well as for studies of the evolutionary history of sexual systems in this species, and can provide a molecular basis for positional cloning of the sex-determining genes. PMID:24169648

  9. Molecular population genetics of X-linked genes in Drosophila pseudoobscura.

    PubMed Central

    Kovacevic, M; Schaeffer, S W

    2000-01-01

    This article presents a nucleotide sequence analysis of 500 bp determined in each of five X-linked genes, runt, sisterlessA, period, esterase 5, and Heat-shock protein 83, in 40 Drosophila pseudoobscura strains collected from two populations. Estimates of the neutral migration parameter for the five loci show that gene flow among D. pseudoobscura populations is sufficient to homogenize inversion frequencies across the range of the species. Nucleotide diversity at each locus fails to reject a neutral model of molecular evolution. The sample of 40 chromosomes included six Sex-ratio inversions, a series of three nonoverlapping inversions that are associated with a strong meiotic drive phenotype. The selection driven by the Sex-ratio meiotic drive element has not fixed variation across the X chromosome of D. pseudoobscura because, while significant linkage disequilibrium was observed within the sisterlessA, period, and esterase 5 genes, we did not find evidence for nonrandom association among loci. The Sex-ratio chromosome was estimated to be 25,000 years old based on the decomposition of linkage disequilibrium between esterase 5 and Heat-shock protein 83 or 1 million years old based on the net divergence of esterase 5 between Standard and Sex-ratio chromosomes. Genetic diversity was depressed within esterase 5 within Sex-ratio chromosomes, while the four other genes failed to show a reduction in heterozygosity in the Sex-ratio background. The reduced heterogeneity in esterase 5 is due either to its location near one of the Sex-ratio inversion breakpoints or that it is closely linked to a gene or genes responsible for the Sex-ratio meiotic drive system. PMID:10978282

  10. Molecular Mechanism of Photoactivation and Structural Location of the Cyanobacterial Orange Carotenoid Protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Liu, Haijun; Niedzwiedzki, Dariusz M.

    The orange carotenoid protein (OCP) plays a photoprotective role in cyanobacterial photosynthesis similar to that of nonphotochemical quenching in higher plants. Under high-light conditions, the OCP binds to the phycobilisome (PBS) and reduces the extent of transfer of energy to the photosystems. The protective cycle starts from a light-induced activation of the OCP. Detailed information about the molecular mechanism of this process as well as the subsequent recruitment of the active OCP to the phycobilisome are not known. We report here our investigation on the OCP photoactivation from the cyanobacterium Synechocystis sp. PCC 6803 by using a combination of nativemore » electrospray mass spectrometry (MS) and protein cross-linking. We demonstrate that native MS can capture the OCP with its intact pigment and further reveal that the OCP undergoes a dimer-to-monomer transition upon light illumination. The reversion of the activated form of the OCP to the inactive, dark form was also observed by using native MS. Furthermore, in vitro reconstitution of the OCP and PBS allowed us to perform protein chemical cross-linking experiments. Liquid chromatography–MS/MS analysis identified cross-linking species between the OCP and the PBS core components. Our result indicates that the N-terminal domain of the OCP is closely involved in the association with a site formed by two allophycocyanin trimers in the basal cylinders of the phycobilisome core. This report improves our understanding of the activation mechanism of the OCP and the structural binding site of the OCP during the cyanobacterial nonphotochemical quenching process.« less

  11. Link Between the Adult and the Metacercaria of Clinostomum heluans Braun, 1899 (Trematoda: Clinostomidae) Through DNA Sequences, and its Phylogenetic Position Within the Genus Clinostomum Leidy, 1856.

    PubMed

    Briosio-Aguilar, R; Pinto, H A; Rodríguez-Santiago, M A; López-García, K; García-Varela, M; de León, G Pérez-Ponce

    2018-06-01

    The phylogenetic position of Clinostomum heluans Braun, 1899 within the genus Clinostomum Leidy, 1856 is reported in this study based on sequences of the barcoding region of the mitochondrial cytochrome c oxidase subunit 1 gene ( COX1). Additionally, molecular data are used to link the adult and the metacercariae of the species. The metacercariae of C. heluans were found encysted infecting the cichlid fish Australoheros sp. in Minas Gerais, Brazil, whereas the adults were obtained from the mouth cavity of the Great White Egret, Ardea alba, in Campeche, Mexico. The COX1 sequences obtained for the Mexican clinostomes and the Brazilian metacercaria were almost identical (0.2% molecular divergence), indicating conspecificity. Similar molecular divergence (0.2-0.4%) was found between sequences of C. heluans reported here and Clinostomum sp. 6 previously obtained from a metacercaria recovered from the cichlid Cichlasoma boliviense in Santa Cruz, Bolivia. Both maximum likelihood and Bayesian inference analyses unequivocally showed the conspecificity between C. heluans and Clinostomum sp. 6, which form a monophyletic clade with high nodal support and very low genetic divergence. Moreover, tree topology reveals that C. heluans occupies a basal position with respect to New World species of Clinostomum, although a denser taxon sampling of species within the genus is further required. The metacercaria of C. heluans seems to be specific to cichlid fish because both samples from South America were recovered from species of this fish family, although not closely related.

  12. Academy of General Dentistry

    MedlinePlus

    ... Patient Resources Contact Us Facebook Twitter LinkedIn YouTube Instagram close Enter Keyword Search close Main Site Search ... 6600 888.AGD.DENT Facebook Twitter LinkedIn YouTube Instagram Join AGD Member Center My Profile Career Stages ...

  13. Clinicopathological and molecular stability and methylation analyses of gastric papillary adenocarcinoma.

    PubMed

    Uesugi, Noriyuki; Sugai, Tamotsu; Sugimoto, Ryo; Eizuka, Makoto; Fujita, Yasuko; Sato, Ayaka; Osakabe, Mitsumasa; Ishida, Kazuyuki; Koeda, Keisuke; Sasaki, Akira; Matsumoto, Takayuki

    2017-10-01

    The molecular alterations and pathological features of gastric papillary adenocarcinoma (GPA) remain unknown. We examined GPA samples and compared their molecular and pathological characteristics with those of gastric tubular adenocarcinoma (GTA). Additionally, we identified pathological and molecular features of GPA that vary with microsatellite stability. In the present study, samples from 63 GPA patients and 47 GTA patients were examined using a combination of polymerase chain reaction (PCR)-microsatellite assays and PCR-pyrosequencing in order to detect microsatellite instability (microsatellite instability, MSI; microsatellite stable, MSS), methylation status (low methylation, intermediate methylation and high methylation level), and chromosomal AI in multiple cancer-related loci. Additionally, the expression levels of TP53 and Her2 were evaluated using immunohistochemistry. GTA and GPA are statistically different in their frequency of pathological features, including mucinous, poorly differentiated and invasive micropapillary components. Clear genetic patterns differentiating GPA and GTA could not be identified with a hierarchical cluster analysis, but microsatellite stability was linked with TP53 and Her2 overexpression. Methylation status in GPA was also associated with the development of high microsatellite instability. However, no pathological differences were associated with microsatellite stability. We suggest that although molecular alterations in a subset of GPAs are closely associated with microsatellite stability, they play a minor role in GPA carcinogenesis. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  14. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.

    PubMed

    Müller, Erich A; Jackson, George

    2014-01-01

    A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.

  15. Peeling skin syndrome: genetic defects in late terminal differentiation of the epidermis.

    PubMed

    Bowden, Paul E

    2011-03-01

    In this issue, Israeli and colleagues confirm that homozygous mutations in corneodesmosin (CDSN) cause type B peeling skin syndrome (PSS), an autosomal recessive skin disorder. The deletion mutation described resulted in a frameshift, producing a downstream premature stop codon and early truncation of the protein. The recently described CDSN nonsense mutation in another PSS family also resulted in protein truncation and nonsense-mediated mRNA decay. Type B generalized PSS can now be clearly distinguished from acral PSS, caused by mutations in transglutaminase 5. This directly affects cornified envelope cross-linking rather than corneodesmosome adherence. These observations provide new insight into the molecular defects underlying two closely related forms of PSS.

  16. Organosilicon derivatives of BTBT for monolayer organic field effect transistors

    NASA Astrophysics Data System (ADS)

    Agina, Elena V.; Polinskaya, Marina S.; Trul, Askold A.; Chekusova, Viktoria P.; Sizov, Alexey S.; Borshchev, Oleg V.; Ponomarenko, Sergey A.

    2017-08-01

    Synthesis of novel organosilicon derivatives of [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) linked though flexible aliphatic spacers to a disiloxane anchor group is reported. They were successfully used in monolayer OFETs with the charge carrier mobilities up to 0.02 cm2 /Vs, threshold voltage close to 0 V and On/Off ratio up to 10,000. Influence of the chemical structure of the molecules synthesized on the morphology, molecular 2D ordering in the monolayers and their semiconducting properties is considered. The effect of different methods of the ultrathin semiconducting layer preparation, such as Langmuir-Blodgett, Langmuir-Schaefer, spin coating or doctor blade, on the OFET performance is discussed.

  17. Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments.

    PubMed

    Cheng, Bingqing; Behler, Jörg; Ceriotti, Michele

    2016-06-16

    One of the most prominent consequences of the quantum nature of light atomic nuclei is that their kinetic energy does not follow a Maxwell-Boltzmann distribution. Deep inelastic neutron scattering (DINS) experiments can measure this effect. Thus, the nuclear quantum kinetic energy can be probed directly in both ordered and disordered samples. However, the relation between the quantum kinetic energy and the atomic environment is a very indirect one, and cross-validation with theoretical modeling is therefore urgently needed. Here, we use state of the art path integral molecular dynamics techniques to compute the kinetic energy of hydrogen and oxygen nuclei in liquid, solid, and gas-phase water close to the triple point, comparing three different interatomic potentials and validating our results against equilibrium isotope fractionation measurements. We will then show how accurate simulations can draw a link between extremely precise fractionation experiments and DINS, therefore establishing a reliable benchmark for future measurements and providing key insights to increase further the accuracy of interatomic potentials for water.

  18. An accurate coarse-grained model for chitosan polysaccharides in aqueous solution.

    PubMed

    Tsereteli, Levan; Grafmüller, Andrea

    2017-01-01

    Computational models can provide detailed information about molecular conformations and interactions in solution, which is currently inaccessible by other means in many cases. Here we describe an efficient and precise coarse-grained model for long polysaccharides in aqueous solution at different physico-chemical conditions such as pH and ionic strength. The Model is carefully constructed based on all-atom simulations of small saccharides and metadynamics sampling of the dihedral angles in the glycosidic links, which represent the most flexible degrees of freedom of the polysaccharides. The model is validated against experimental data for Chitosan molecules in solution with various degree of deacetylation, and is shown to closely reproduce the available experimental data. For long polymers, subtle differences of the free energy maps of the glycosidic links are found to significantly affect the measurable polymer properties. Therefore, for titratable monomers the free energy maps of the corresponding links are updated according to the current charge of the monomers. We then characterize the microscopic and mesoscopic structural properties of large chitosan polysaccharides in solution for a wide range of solvent pH and ionic strength, and investigate the effect of polymer length and degree and pattern of deacetylation on the polymer properties.

  19. An accurate coarse-grained model for chitosan polysaccharides in aqueous solution

    PubMed Central

    Tsereteli, Levan

    2017-01-01

    Computational models can provide detailed information about molecular conformations and interactions in solution, which is currently inaccessible by other means in many cases. Here we describe an efficient and precise coarse-grained model for long polysaccharides in aqueous solution at different physico-chemical conditions such as pH and ionic strength. The Model is carefully constructed based on all-atom simulations of small saccharides and metadynamics sampling of the dihedral angles in the glycosidic links, which represent the most flexible degrees of freedom of the polysaccharides. The model is validated against experimental data for Chitosan molecules in solution with various degree of deacetylation, and is shown to closely reproduce the available experimental data. For long polymers, subtle differences of the free energy maps of the glycosidic links are found to significantly affect the measurable polymer properties. Therefore, for titratable monomers the free energy maps of the corresponding links are updated according to the current charge of the monomers. We then characterize the microscopic and mesoscopic structural properties of large chitosan polysaccharides in solution for a wide range of solvent pH and ionic strength, and investigate the effect of polymer length and degree and pattern of deacetylation on the polymer properties. PMID:28732036

  20. Linking matrices in systems with periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Panagiotou, Eleni; Millett, Kenneth C.

    2018-06-01

    We study the linking matrix, a measure of entanglement for a collection of closed or open chains in 3-space based on the Gauss linking number. Periodic boundary conditions (PBC) are often used in the simulation of physical systems of filaments. To measure entanglement of closed or open chains in systems employing PBC we use the periodic linking matrix, based on the periodic linking number, defined in Panagiotou (2015 J. Comput. Phys. 300 533–73). We study the properties of the periodic linking matrix as a function of cell size. We provide analytical results concerning the eigenvalues of the periodic linking matrix and show that some of them are invariant of cell-size.

  1. Spectroscopic and structural study of novel interaction product of pyrrolidine-2-thione with molecular iodine. Presumable mechanisms of oxidation

    NASA Astrophysics Data System (ADS)

    Chernov'yants, Margarita S.; Burykin, Igor V.; Starikova, Zoya A.; Tereznikov, Alexander Yu.; Kolesnikova, Tatiana S.

    2013-09-01

    Synthesis, spectroscopic and structural characterization of novel interaction product of pyrrolidine-2-thione with molecular iodine is reported. The ability of pyrrolidine-2-thione to form the outer-sphere charge-transfer complex C4H7NS·I2 with iodine molecule in dilute chloroform solution has been studied by UV/vis spectroscopy. Oxidative desulfurization promotes ring fusion of two pyrrolidine-2-thione molecules. The product of iodine induced oxidative desulfurization has been studied by X-ray diffraction method. The crystal structure of the reaction product is formed by 5-(2-thioxopyrrolidine-1-yl)-3,4-dihydro-2H-pyrrolium (C8H13N2S+) cations and pentaiodide anions I5-, which are linked by the intermolecular I⋯Hsbnd C and I⋯C close contacts. The angular pentaiodide anions can be considered as structures formed by coordination of two iodine molecules to the iodide ion (type 1) or by the coordination of iodine molecule to the triiodide ion (type 2).

  2. HER2 induces expression of leptin in human breast epithelial cells.

    PubMed

    Cha, Yujin; Kang, Youjin; Moon, Aree

    2012-12-01

    A close association between the obesity hormone leptin and breast cancer progression has been suggested. The present study investigated the molecular mechanism for enhanced leptin expression in breast cancer cells and its functional significance in breast cancer aggressiveness. We examined whether leptin expression level is affected by the oncoprotein human epidermal growth factor receptor2 (HER2), which is overexpressed in ∼30% of breast tumors. Here, we report, for the first time, that HER2 induces transcriptional activation of leptin in MCF10A human breast epithelial cells. We also showed that p38 mitogen-activated protein kinase signaling was involved in leptin expression induced by HER2. We showed a crucial role of leptin in the invasiveness of HER2-MCF10A cells using an siRNA molecule targeting leptin. Taken together, the results indicate a molecular link between HER2 and leptin, providing supporting evidence that leptin represents a target for breast cancer therapy. [BMB Reports 2012; 45(12): 719-723].

  3. HER2 induces expression of leptin in human breast epithelial cells

    PubMed Central

    Cha, Yujin; Kang, Youjin; Moon, Aree

    2012-01-01

    A close association between the obesity hormone leptin and breast cancer progression has been suggested. The present study investigated the molecular mechanism for enhanced leptin expression in breast cancer cells and its functional significance in breast cancer aggressiveness. We examined whether leptin expression level is affected by the oncoprotein human epidermal growth factor receptor2 (HER2), which is overexpressed in ∼30% of breast tumors. Here, we report, for the first time, that HER2 induces transcriptional activation of leptin in MCF10A human breast epithelial cells. We also showed that p38 mitogen-activated protein kinase signaling was involved in leptin expression induced by HER2. We showed a crucial role of leptin in the invasiveness of HER2-MCF10A cells using an siRNA molecule targeting leptin. Taken together, the results indicate a molecular link between HER2 and leptin, providing supporting evidence that leptin represents a target for breast cancer therapy. [BMB Reports 2012; 45(12): 719-723] PMID:23261058

  4. Towards non-invasive diagnostic imaging of early-stage Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Viola, Kirsten L.; Sbarboro, James; Sureka, Ruchi; de, Mrinmoy; Bicca, Maíra A.; Wang, Jane; Vasavada, Shaleen; Satpathy, Sreyesh; Wu, Summer; Joshi, Hrushikesh; Velasco, Pauline T.; Macrenaris, Keith; Waters, E. Alex; Lu, Chang; Phan, Joseph; Lacor, Pascale; Prasad, Pottumarthi; Dravid, Vinayak P.; Klein, William L.

    2015-01-01

    One way to image the molecular pathology in Alzheimer's disease is by positron emission tomography using probes that target amyloid fibrils. However, these fibrils are not closely linked to the development of the disease. It is now thought that early-stage biomarkers that instigate memory loss are composed of Aβ oligomers. Here, we report a sensitive molecular magnetic resonance imaging contrast probe that is specific for Aβ oligomers. We attach oligomer-specific antibodies onto magnetic nanostructures and show that the complex is stable and binds to Aβ oligomers on cells and brain tissues to give a magnetic resonance imaging signal. When intranasally administered to an Alzheimer's disease mouse model, the probe readily reached hippocampal Aβ oligomers. In isolated samples of human brain tissue, we observed a magnetic resonance imaging signal that distinguished Alzheimer's disease from controls. Such nanostructures that target neurotoxic Aβ oligomers are potentially useful for evaluating the efficacy of new drugs and ultimately for early-stage Alzheimer's disease diagnosis and disease management.

  5. Tocotrienols, the Vitamin E of the 21st Century: It’s Potential Against Cancer and Other Chronic Diseases

    PubMed Central

    Aggarwal, Bharat B.; Sundaram, Chitra; Prasad, Seema; Kannappan, Ramaswamy

    2010-01-01

    Initially discovered in 1938 as a “fertility factor,” vitamin E now refers to eight different isoforms that belong to two categories, four saturated analogues (α, β, γ, and δ) called tocopherols and four unsaturated analogues referred to as tocotrienols. While the tocopherols have been investigated extensively, little is known about the tocotrienols. Very limited studies suggest that both the molecular and therapeutic targets of the tocotrienols are distinct from those of the tocopherols. For instance, suppression of inflammatory transcription factor NF-κB, which is closely linked to tumorigenesis and inhibition of HMG-CoA reductase, mammalian DNA polymerases and certain protein tyrosine kinases, is unique to the tocotrienols. This review examines in detail the molecular targets of the tocotrienols and their roles in cancer, bone resorption, diabetes, and cardiovascular and neurological diseases at both preclinical and clinical levels. As disappointment with the therapeutic value of the tocopherols grows, the potential of these novel vitamin E analogues awaits further investigation. PMID:20696139

  6. Covalent Linking Greatly Enhances Photoinduced Electron Transfer in Fullerene-Quantum Dot Nanocomposites: Time-Domain Ab Initio Study.

    PubMed

    Chaban, Vitaly V; Prezhdo, Victor V; Prezhdo, Oleg V

    2013-01-03

    Nonadiabatic molecular dynamics combined with time-domain density functional theory are used to study electron transfer (ET) from a CdSe quantum dot (QD) to the C60 fullerene, occurring in several types of hybrid organic/inorganic nanocomposites. By unveiling the time dependence of the ET process, we show that covalent bonding between the QD and C60 is particularly important to ensure ultrafast transmission of the excited electron from the QD photon-harvester to the C60 electron acceptor. Despite the close proximity of the donor and acceptor species provided by direct van der Waals contact, it leads to a notably weaker QD-C60 interaction than a lengthy molecular bridge. We show that the ET rate in a nonbonded mixture of QDs and C60 can be enhanced by doping. The photoinduced ET is promoted primarily by mid- and low-frequency vibrations. The study establishes the basic design principles for enhancing photoinduced charge separation in nanoscale light harvesting materials.

  7. Molecular parameters involved in bee-plant relationships: a biological and chemical approach.

    PubMed

    Pham-Delegue, M H; Etievant, P; Masson, C

    1987-01-01

    Honeybee-plant relationships are based on a conditioning process in which olfactory (plant aroma) and gustatory cues (mainly nectars) are closely linked, leading to a selective foraging behaviour. Among crops dependent upon entomophilous cross-pollination, the sunflower has recently undergone extensive expansion due to hybrid variety selection. Sunflower hybrid seed production is strictly dependent upon pollinating insects, mainly the honeybees, but foragers may have preferences among the parental lines, leading to a lack of pollen carriage and consequently to a decrease of hybrid seed yield. In order to define the role of plant chemicals (aromas, nectars) involved in the pollination process, we set up a study combining behavioural and chemical assays. It appears that even though volatile chemical blends are much more complex compared to glucidic blends, for both kinds of cues only a 'limited chemical pattern' is responsible for foragers' choices. Therefore, it is henceforth possible to take these molecular criteria into account for plant improvement.

  8. Using lidocaine and benzocaine to link sodium channel molecular conformations to state-dependent antiarrhythmic drug affinity.

    PubMed

    Hanck, Dorothy A; Nikitina, Elena; McNulty, Megan M; Fozzard, Harry A; Lipkind, Gregory M; Sheets, Michael F

    2009-08-28

    Lidocaine and other antiarrhythmic drugs bind in the inner pore of voltage-gated Na channels and affect gating use-dependently. A phenylalanine in domain IV, S6 (Phe1759 in Na(V)1.5), modeled to face the inner pore just below the selectivity filter, is critical in use-dependent drug block. Measurement of gating currents and concentration-dependent availability curves to determine the role of Phe1759 in coupling of drug binding to the gating changes. The measurements showed that replacement of Phe1759 with a nonaromatic residue permits clear separation of action of lidocaine and benzocaine into 2 components that can be related to channel conformations. One component represents the drug acting as a voltage-independent, low-affinity blocker of closed channels (designated as lipophilic block), and the second represents high-affinity, voltage-dependent block of open/inactivated channels linked to stabilization of the S4s in domains III and IV (designated as voltage-sensor inhibition) by Phe1759. A homology model for how lidocaine and benzocaine bind in the closed and open/inactivated channel conformation is proposed. These 2 components, lipophilic block and voltage-sensor inhibition, can explain the differences in estimates between tonic and open-state/inactivated-state affinities, and they identify how differences in affinity for the 2 binding conformations can control use-dependence, the hallmark of successful antiarrhythmic drugs.

  9. Co-evolution with chicken class I genes.

    PubMed

    Kaufman, Jim

    2015-09-01

    The concept of co-evolution (or co-adaptation) has a long history, but application at molecular levels (e.g., 'supergenes' in genetics) is more recent, with a consensus definition still developing. One interesting example is the chicken major histocompatibility complex (MHC). In contrast to typical mammals that have many class I and class I-like genes, only two classical class I genes, two CD1 genes and some non-classical Rfp-Y genes are known in chicken, and all are found on the microchromosome that bears the MHC. Rarity of recombination between the closely linked and polymorphic genes encoding classical class I and TAPs allows co-evolution, leading to a single dominantly expressed class I molecule in each MHC haplotype, with strong functional consequences in terms of resistance to infectious pathogens. Chicken tapasin is highly polymorphic, but co-evolution with TAP and class I genes remains unclear. T-cell receptors, natural killer (NK) cell receptors, and CD8 co-receptor genes are found on non-MHC chromosomes, with some evidence for co-evolution of surface residues and number of genes along the avian and mammalian lineages. Over even longer periods, co-evolution has been invoked to explain how the adaptive immune system of jawed vertebrates arose from closely linked receptor, ligand, and antigen-processing genes in the primordial MHC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khabaz, Fardin, E-mail: rajesh.khare@ttu.edu; Khare, Ketan S., E-mail: rajesh.khare@ttu.edu; Khare, Rajesh, E-mail: rajesh.khare@ttu.edu

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring themore » resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.« less

  11. Molecular definition of red cell Rh haplotypes by tightly linked SphI RFLPs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C.H.; Reid, M.E.; Chen, Y.

    The Rh blood group system of human red cells contains five major antigens D, C/c, and E/e (the latter four designated {open_quotes}non-D{close_quotes}) that are specified by eight gene complexes known as Rh haplotypes. In this paper, we report on the mapping of the RH locus and identification of a set of SphI RFLPs that are tightly linked with the Rh structural genes. Using exon-specific probes, we have localized the SphI cleavage sites resulting in these DNA markers and derived a comprehensive map for the RH locus. It was found that the SphI fragments encompassing exons 4-7 of the Rh genesmore » occur in four banding patterns or frameworks that correspond to the distribution and segregation of the common Rh haplotypes. This linkage disequilibrium allowed a genotype-phenotype correlation and direct determination of Rh zygosity related to the Rh-positive or Rh-negative status (D/D, D/d, and d/d). Studies on the occurrence of SphI RFLPs in a number of rare Rh variants indicated that Rh phenotypic diversity has taken place on different haplotype backgrounds and has arisen by diverse genetic mechanisms. The molecular definition of Rh haplotypes by SphI RFLP frameworks should provide a useful procedure for genetic counseling and prenatal assessment of Rh alloimmunization. 32 refs., 7 figs., 3 tabs.« less

  12. A QUICK Screen for Lrrk2 Interaction Partners – Leucine-rich Repeat Kinase 2 is Involved in Actin Cytoskeleton Dynamics*

    PubMed Central

    Meixner, Andrea; Boldt, Karsten; Van Troys, Marleen; Askenazi, Manor; Gloeckner, Christian J.; Bauer, Matthias; Marto, Jarrod A.; Ampe, Christophe; Kinkl, Norbert; Ueffing, Marius

    2011-01-01

    Mutations in human leucine-rich repeat kinase 2 (Lrrk2), a protein of yet unknown function, are linked to Parkinson's disease caused by degeneration of midbrain dopaminergic neurons. The protein comprises several domains including a GTPase and a kinase domain both affected by several pathogenic mutations. To elucidate the molecular interaction network of endogenous Lrrk2 under stoichiometric constraints, we applied QUICK (quantitative immunoprecipitation combined with knockdown) in NIH3T3 cells. The identified interactome reveals actin isoforms as well as actin-associated proteins involved in actin filament assembly, organization, rearrangement, and maintenance, suggesting that the biological function of Lrrk2 is linked to cytoskeletal dynamics. In fact, we demonstrate Lrrk2 de novo binding to F-actin and its ability to modulate its assembly in vitro. When tested in intact cells, knockdown of Lrrk2 causes morphological alterations in NIH3T3 cells. In developing dopaminergic midbrain primary neurons, Lrrk2 knockdown results in shortened neurite processes, indicating a physiological role of Lrrk2 in cytoskeletal organization and dynamics of dopaminergic neurons. Hence, our results demonstrate that molecular interactions as well as the physiological function of Lrrk2 are closely related to the organization of the actin-based cytoskeleton, a crucial feature of neuronal development and neuron function. PMID:20876399

  13. Relationship between Monokaryotic Growth Rate and Mating Type in the Edible Basidiomycete Pleurotus ostreatus

    PubMed Central

    Larraya, Luis M.; Pérez, Gúmer; Iribarren, Iñaki; Blanco, Juan A.; Alfonso, Mikel; Pisabarro, Antonio G.; Ramírez, Lucía

    2001-01-01

    The edible fungus Pleurotus ostreatus (oyster mushroom) is an industrially produced heterothallic homobasidiomycete whose mating is controlled by a bifactorial tetrapolar genetic system. Two mating loci (matA and matB) control different steps of hyphal fusion, nuclear migration, and nuclear sorting during the onset and progress of the dikaryotic growth. Previous studies have shown that the segregation of the alleles present at the matB locus differs from that expected for a single locus because (i) new nonparental B alleles appeared in the progeny and (ii) there was a distortion in the segregation of the genomic regions close to this mating locus. In this study, we pursued these observations by using a genetic approach based on the identification of molecular markers linked to the matB locus that allowed us to dissect it into two genetically linked subunits (matBα and matBβ) and to correlate the presence of specific matBα and matA alleles with differences in monokaryotic growth rate. The availability of these molecular markers and the mating type dependence of growth rate in monokaryons can be helpful for marker-assisted selection of fast-growing monokaryons to be used in the construction of dikaryons able to colonize the substrate faster than the competitors responsible for reductions in the industrial yield of this fungus. PMID:11472908

  14. Conformational change during photocycle of bacteriorhodopsin and its proton-pumping mechanism.

    PubMed

    Chou, K C

    1993-06-01

    Based on the recent finding on the structural difference of seven helix bundles in the all-trans and 13-cis bacteriorhodopsins, the distances among the key groups performing the function of proton translocation as well as their microenvironments have been investigated. Consequently, a pore-gated model was proposed for the light-driven proton-pumping mechanism of bacteriorhodopsin. According to this model, the five double-bounded polyene chain in retinal chromophore can be phenomenologically likened to a molecular "lever," whose one end links to a "piston" (the beta-ionone ring) and the other end to a pump "relay station" (the Schiff base). During the photocycle of bacteriorhodopsin, the molecular "lever" is moving up and down as marked by the position change of the "piston," so as to trigger the gate of pore to open and close alternately. When the "piston" is up, the pore-controlled gate is open so that the water channel from Asp-96 to the Schiff base and that from the Schiff base to Asp-85 is established; when the "piston" is down, the pore-controlled gate is closed and the water channels for proton transportation in both the cytoplasmic half and extracellular half are blocked. The current model allows a consistent interpretation of a great deal of experimental data and also provides a useful basis for further investigating the mechanism of proton pumping by bacteriorhodopsin.

  15. What makes an animal? The molecular quest for the origin of the Animal Kingdom.

    PubMed

    Paps, Jordi

    2018-05-29

    What makes an animal? To find the answer we need to integrate data from disciplines such as phylogenetics, palaeontology, ecology, development, anatomy and physiology, as well as molecular biology and genomics. Knowledge of which groups branched before and after the origin of animals is essential. Recent advances in molecular phylogenetics, together with the discovery of new eukaryotic lineages, have drawn a new picture of the ancestry of animals. The nature of the early diverging animal lineages and the timing of the transition are in a state of flux. Various factors have been linked to this striking transition to multicellularity, including changes in environmental conditions and the ecological interactions between unicellular eukaryotes. The current wealth of genomic data has also shed new light on this question. The analysis of the genome of various close relatives of animals has revealed the importance that recycling of ancient genes into metazoan biological functions played into animal origins. A recent study reconstructing the genome of the last common ancestor of extant animals has unveiled an unprecedented emergence of new genes, highlighting the role of genomic novelty in the origin of metazoans.

  16. Conformational Sampling and Nucleotide-Dependent Transitions of the GroEL Subunit Probed by Unbiased Molecular Dynamics Simulations

    PubMed Central

    Skjaerven, Lars; Grant, Barry; Muga, Arturo; Teigen, Knut; McCammon, J. Andrew; Reuter, Nathalie; Martinez, Aurora

    2011-01-01

    GroEL is an ATP dependent molecular chaperone that promotes the folding of a large number of substrate proteins in E. coli. Large-scale conformational transitions occurring during the reaction cycle have been characterized from extensive crystallographic studies. However, the link between the observed conformations and the mechanisms involved in the allosteric response to ATP and the nucleotide-driven reaction cycle are not completely established. Here we describe extensive (in total long) unbiased molecular dynamics (MD) simulations that probe the response of GroEL subunits to ATP binding. We observe nucleotide dependent conformational transitions, and show with multiple 100 ns long simulations that the ligand-induced shift in the conformational populations are intrinsically coded in the structure-dynamics relationship of the protein subunit. Thus, these simulations reveal a stabilization of the equatorial domain upon nucleotide binding and a concomitant “opening” of the subunit, which reaches a conformation close to that observed in the crystal structure of the subunits within the ADP-bound oligomer. Moreover, we identify changes in a set of unique intrasubunit interactions potentially important for the conformational transition. PMID:21423709

  17. Experimental and theoretical studies on vibrational spectra of 4-(2-furanylmethyleneamino)antipyrine, 4-benzylideneaminoantipyrine and 4-cinnamilideneaminoantipyrine

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Xi; Hao, Qing-Li; Yu, Zong-Xue; Jiang, Wen-Jun; Lu, Lu-De; Wang, Xin

    2009-09-01

    This work deals with the IR and Raman spectroscopy of 4-(2-furanylmethyleneamino) antipyrine (FAP), 4-benzylideneaminoantipyrine (BAP) and 4-cinnamilideneaminoantipyrine (CAP) by means of experimental and quantum chemical calculations. The equilibrium geometries, harmonic frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-31G(d) basis set. The comparisons between the calculated and experimental results covering molecular structures, assignments of fundamental vibrational modes and thermodynamic properties were investigated. The optimized molecular geometries have been compared with the experimental data obtained from XRD data, which indicates that the theoretical results agree well with the corresponding experimental values. For the three compounds, comparisons and assignments of the vibrational frequencies indicate that the calculated frequencies are close to the experimental data, and the IR spectra are comparable with some slight differences, whereas the Raman spectra are different clearly and the strongest Raman scattering actives are relative tightly to the molecular conjugative moieties linked through their Schiff base imines. The thermodynamic properties (heat capacities, entropies and enthalpy changes) and their correlations with temperatures were also obtained from the harmonic frequencies of the optimized strucutres.

  18. Characterization and mapping of leaf rust resistance in four durum wheat cultivars.

    PubMed

    Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P R; N'Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim; Pozniak, Curtis J

    2018-01-01

    Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes.

  19. Characterization and mapping of leaf rust resistance in four durum wheat cultivars

    PubMed Central

    Kthiri, Dhouha; Loladze, Alexander; MacLachlan, P. R.; N’Diaye, Amidou; Walkowiak, Sean; Nilsen, Kirby; Dreisigacker, Susanne; Ammar, Karim

    2018-01-01

    Widening the genetic basis of leaf rust resistance is a primary objective of the global durum wheat breeding effort at the International Wheat and Maize Improvement Center (CIMMYT). Breeding programs in North America are following suit, especially after the emergence of new races of Puccinia triticina such as BBG/BP and BBBQD in Mexico and the United States, respectively. This study was conducted to characterize and map previously undescribed genes for leaf rust resistance in durum wheat and to develop reliable molecular markers for marker-assisted breeding. Four recombinant inbred line (RIL) mapping populations derived from the resistance sources Amria, Byblos, Geromtel_3 and Tunsyr_2, which were crossed to the susceptible line ATRED #2, were evaluated for their reaction to the Mexican race BBG/BP of P. triticina. Genetic analyses of host reactions indicated that leaf rust resistance in these genotypes was based on major seedling resistance genes. Allelism tests among resistant parents supported that Amria and Byblos carried allelic or closely linked genes. The resistance in Geromtel_3 and Tunsyr_2 also appeared to be allelic. Bulked segregant analysis using the Infinium iSelect 90K single nucleotide polymorphism (SNP) array identified two genomic regions for leaf rust resistance; one on chromosome 6BS for Geromtel_3 and Tunsyr_2 and the other on chromosome 7BL for Amria and Byblos. Polymorphic SNPs identified within these regions were converted to kompetitive allele-specific PCR (KASP) assays and used to genotype the RIL populations. KASP markers usw215 and usw218 were the closest to the resistance genes in Geromtel_3 and Tunsyr_2, while usw260 was closely linked to the resistance genes in Amria and Byblos. DNA sequences associated with these SNP markers were anchored to the wild emmer wheat (WEW) reference sequence, which identified several candidate resistance genes. The molecular markers reported herein will be useful to effectively pyramid these resistance genes with other previously marked genes into adapted, elite durum wheat genotypes. PMID:29746580

  20. A Social Psychological Perspective on the Links between Close Relationships and Health.

    PubMed

    Slatcher, Richard B; Selcuk, Emre

    2017-02-01

    The association between the quality of people's close relationships and their physical health is well-established. But from a psychological perspective, how do close relationships impact physical health? This article summarizes recent work seeking to identify the relationship processes, psychological mediators and moderators of the links between close relationships and health, with an emphasis on studies of married and cohabitating couples. We begin with a brief review of a recent meta-analysis of the links between marital quality and health. We then describe our strength and strain model of marriage and health, homing in on one process- partner responsiveness -and one moderator- adult attachment style -to illustrate ways in which basic relationship science can inform our understanding of how relationships impact physical health. We conclude with a brief discussion of promising directions in the study of close relationships and health.

  1. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties.

    PubMed

    Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A

    2015-09-16

    Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.

  2. Clonal hematopoiesis in acquired aplastic anemia.

    PubMed

    Ogawa, Seishi

    2016-07-21

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1 Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. © 2016 by The American Society of Hematology.

  3. Clonal hematopoiesis in acquired aplastic anemia

    PubMed Central

    2016-01-01

    Clonal hematopoiesis (CH) in aplastic anemia (AA) has been closely linked to the evolution of late clonal disorders, including paroxysmal nocturnal hemoglobinuria and myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML), which are common complications after successful immunosuppressive therapy (IST). With the advent of high-throughput sequencing of recent years, the molecular aspect of CH in AA has been clarified by comprehensive detection of somatic mutations that drive clonal evolution. Genetic abnormalities are found in ∼50% of patients with AA and, except for PIGA mutations and copy-neutral loss-of-heterozygosity, or uniparental disomy (UPD) in 6p (6pUPD), are most frequently represented by mutations involving genes commonly mutated in myeloid malignancies, including DNMT3A, ASXL1, and BCOR/BCORL1. Mutations exhibit distinct chronological profiles and clinical impacts. BCOR/BCORL1 and PIGA mutations tend to disappear or show stable clone size and predict a better response to IST and a significantly better clinical outcome compared with mutations in DNMT3A, ASXL1, and other genes, which are likely to increase their clone size, are associated with a faster progression to MDS/AML, and predict an unfavorable survival. High frequency of 6pUPD and overrepresentation of PIGA and BCOR/BCORL1 mutations are unique to AA, suggesting the role of autoimmunity in clonal selection. By contrast, DNMT3A and ASXL1 mutations, also commonly seen in CH in the general population, indicate a close link to CH in the aged bone marrow, in terms of the mechanism for selection. Detection and close monitoring of somatic mutations/evolution may help with prediction and diagnosis of clonal evolution of MDS/AML and better management of patients with AA. PMID:27121470

  4. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  5. Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility.

    PubMed

    Ohmori, Kana; Abu Bin, Imran; Seki, Takahiro; Liu, Chang; Mayumi, Koichi; Ito, Kohzo; Takeoka, Yukikazu

    2016-12-11

    This work investigates the influence of the molecular weight of polyrotaxane (PR) cross-linkers on the extensibility of polymer gels. The polymer gels, which were prepared using PR cross-linkers of three different molecular weights but the same number of cross-linking points per unit volume of gel, have almost the same Young's modulus. By contrast, the extensibility and rupture strength of the polymer gels are substantially increased with increasing molecular weight of the PR cross-linker.

  6. Logic modeling and the ridiculome under the rug

    PubMed Central

    2012-01-01

    Logic-derived modeling has been used to map biological networks and to study arbitrary functional interactions, and fine-grained kinetic modeling can accurately predict the detailed behavior of well-characterized molecular systems; at present, however, neither approach comes close to unraveling the full complexity of a cell. The current data revolution offers significant promises and challenges to both approaches - and could bring them together as it has spurred the development of new methods and tools that may help to bridge the many gaps between data, models, and mechanistic understanding. Have you used logic modeling in your research? It would not be surprising if many biologists would answer no to this hypothetical question. And it would not be true. In high school biology we already became familiar with cartoon diagrams that illustrate basic mechanisms of the molecular machinery operating inside cells. These are nothing else but simple logic models. If receptor and ligand are present, then receptor-ligand complexes form; if a receptor-ligand complex exists, then an enzyme gets activated; if the enzyme is active, then a second messenger is being produced; and so on. Such chains of causality are the essence of logic models (Figure 1a). Arbitrary events and mechanisms are abstracted; relationships are simplified and usually involve just two possible conditions and three possible consequences. The presence or absence of one or more molecule, activity, or function, [some icons in the cartoon] will determine whether another one of them will be produced (created, up-regulated, stimulated) [a 'positive' link] or destroyed (degraded, down-regulated, inhibited) [a 'negative' link], or be unaffected [there is no link]. The icons and links often do not follow a standardized format, but when we look at such a cartoon diagram, we believe that we 'understand' how the system works. Because our brain is easily able to process these relationships, these diagrams allow us to answer two fundamental types of questions related to the system: why (are certain things happening)? What if (we make some changes)? PMID:23171629

  7. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing

    PubMed Central

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses. PMID:27446182

  8. Genome-Wide Association Study Identifies Loci for Salt Tolerance during Germination in Autotetraploid Alfalfa (Medicago sativa L.) Using Genotyping-by-Sequencing.

    PubMed

    Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping

    2016-01-01

    Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses.

  9. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Muratoglu, Orhun K.

    2007-12-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory.

  10. Molecular characterization of a nosocomial outbreak of influenza B virus in an acute-care hospital setting.

    PubMed

    Sansone, Martina; Wiman, Åsa; Karlberg, Maria Lind; Brytting, Maria; Bohlin, Lars; Andersson, Lars-Magnus; Westin, Johan; Nordén, Rickard

    2018-06-14

    To describe a hospital outbreak of influenza B (InfB) virus infection during season 2015/2016 by combining clinical and epidemiological data with molecular methods. Twenty patients diagnosed with InfB from a hospital outbreak during a four-week-period were included. Nasopharyngeal swabs (NPS) positive for InfB by multiplex real-time PCR were sent for lineage typing and whole genome sequencing (WGS). Medical records were retrospectively reviewed for data regarding patient characteristics, localisation, exposure and outcome and assembled into a timeline. In order to find possible connections to the hospital outbreak, all patients with a positive NPS for influenza from the region during an extended time period were also reviewed. All 20 cases of InfB were of subtype B/Yamagata and 17/20 patients could be linked to each other by either shared room or shared ward. WGS was successful or partially successful for 15 of the 17 viral isolates and corroborated the epidemiological link supporting a close relationship. In the main affected ward, 19/75 in-patients were infected with InfB during the outbreak period resulting in an attack rate of 25%. One probable case of influenza-related death was identified. We present evidence that InfB virus may spread within an acute-care hospital and that advanced molecular methods may facilitate assessment of the source and extent of the outbreak. We believe a multifaceted approach including rapid diagnosis, early recognition of outbreak situations, simple rules for patient management and the use of regular infection control measures may efficiently prevent nosocomial transmission of influenza virus. Copyright © 2018. Published by Elsevier Ltd.

  11. Trade-offs in thermal adaptation: the need for a molecular to ecological integration.

    PubMed

    Pörtner, Hans O; Bennett, Albert F; Bozinovic, Francisco; Clarke, Andrew; Lardies, Marco A; Lucassen, Magnus; Pelster, Bernd; Schiemer, Fritz; Stillman, Jonathon H

    2006-01-01

    Through functional analyses, integrative physiology is able to link molecular biology with ecology as well as evolutionary biology and is thereby expected to provide access to the evolution of molecular, cellular, and organismic functions; the genetic basis of adaptability; and the shaping of ecological patterns. This paper compiles several exemplary studies of thermal physiology and ecology, carried out at various levels of biological organization from single genes (proteins) to ecosystems. In each of those examples, trade-offs and constraints in thermal adaptation are addressed; these trade-offs and constraints may limit species' distribution and define their level of fitness. For a more comprehensive understanding, the paper sets out to elaborate the functional and conceptual connections among these independent studies and the various organizational levels addressed. This effort illustrates the need for an overarching concept of thermal adaptation that encompasses molecular, organellar, cellular, and whole-organism information as well as the mechanistic links between fitness, ecological success, and organismal physiology. For this data, the hypothesis of oxygen- and capacity-limited thermal tolerance in animals provides such a conceptual framework and allows interpreting the mechanisms of thermal limitation of animals as relevant at the ecological level. While, ideally, evolutionary studies over multiple generations, illustrated by an example study in bacteria, are necessary to test the validity of such complex concepts and underlying hypotheses, animal physiology frequently is constrained to functional studies within one generation. Comparisons of populations in a latitudinal cline, closely related species from different climates, and ontogenetic stages from riverine clines illustrate how evolutionary information can still be gained. An understanding of temperature-dependent shifts in energy turnover, associated with adjustments in aerobic scope and performance, will result. This understanding builds on a mechanistic analysis of the width and location of thermal windows on the temperature scale and also on study of the functional properties of relevant proteins and associated gene expression mechanisms.

  12. Mapping and genomic targeting of the major leaf shape gene (L) in Upland cotton (Gossypium hirsutum L.).

    PubMed

    Andres, Ryan J; Bowman, Daryl T; Kaur, Baljinder; Kuraparthy, Vasu

    2014-01-01

    A major leaf shape locus (L) was mapped with molecular markers and genomically targeted to a small region in the D-genome of cotton. By using expression analysis and candidate gene mapping, two LMI1 -like genes are identified as possible candidates for leaf shape trait in cotton. Leaf shape in cotton is an important trait that influences yield, flowering rates, disease resistance, lint trash, and the efficacy of foliar chemical application. The leaves of okra leaf cotton display a significantly enhanced lobing pattern, as well as ectopic outgrowths along the lobe margins when compared with normal leaf cotton. These phenotypes are the hallmark characteristics of mutations in various known modifiers of leaf shape that culminate in the mis/over-expression of Class I KNOX genes. To better understand the molecular and genetic processes underlying leaf shape in cotton, a normal leaf accession (PI607650) was crossed to an okra leaf breeding line (NC05AZ21). An F2 population of 236 individuals confirmed the incompletely dominant single gene nature of the okra leaf shape trait in Gossypium hirsutum L. Molecular mapping with simple sequence repeat markers localized the leaf shape gene to 5.4 cM interval in the distal region of the short arm of chromosome 15. Orthologous mapping of the closely linked markers with the sequenced diploid D-genome (Gossypium raimondii) tentatively resolved the leaf shape locus to a small genomic region. RT-PCR-based expression analysis and candidate gene mapping indicated that the okra leaf shape gene (L (o) ) in cotton might be an upstream regulator of Class I KNOX genes. The linked molecular markers and delineated genomic region in the sequenced diploid D-genome will assist in the future high-resolution mapping and map-based cloning of the leaf shape gene in cotton.

  13. Closed-Loop Analysis of Soft Decisions for Serial Links

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlensinger, Adam M.

    2012-01-01

    Modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more overhead through noisier channels, and software-defined radios use error-correction techniques that approach Shannon s theoretical limit of performance. The authors describe the benefit of closed-loop measurements for a receiver when paired with a counterpart transmitter and representative channel conditions. We also describe a real-time Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in real-time during the development of software defined radios.

  14. Genetics Home Reference: X-linked dilated cardiomyopathy

    MedlinePlus

    ... Twitter Home Health Conditions X-linked dilated cardiomyopathy X-linked dilated cardiomyopathy Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description X-linked dilated cardiomyopathy is a form of heart ...

  15. Genetics Home Reference: X-linked thrombocytopenia

    MedlinePlus

    ... Facebook Twitter Home Health Conditions X-linked thrombocytopenia X-linked thrombocytopenia Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description X-linked thrombocytopenia is a bleeding disorder that primarily ...

  16. Genetics Home Reference: X-linked myotubular myopathy

    MedlinePlus

    ... Twitter Home Health Conditions X-linked myotubular myopathy X-linked myotubular myopathy Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description X-linked myotubular myopathy is a condition that primarily ...

  17. Genetics Home Reference: X-linked sideroblastic anemia

    MedlinePlus

    ... Twitter Home Health Conditions X-linked sideroblastic anemia X-linked sideroblastic anemia Printable PDF Open All Close ... Javascript to view the expand/collapse boxes. Description X-linked sideroblastic anemia is an inherited disorder that ...

  18. Quantum theory of atoms in molecules: results for the SR-ZORA Hamiltonian.

    PubMed

    Anderson, James S M; Ayers, Paul W

    2011-11-17

    The quantum theory of atoms in molecules (QTAIM) is generalized to include relativistic effects using the popular scalar-relativistic zeroth-order regular approximation (SR-ZORA). It is usually assumed that the definition of the atom as a volume bounded by a zero-flux surface of the electron density is closely linked to the form of the kinetic energy, so it is somewhat surprising that the atoms corresponding to the relativistic kinetic-energy operator in the SR-ZORA Hamiltonian are also bounded by zero-flux surfaces. The SR-ZORA Hamiltonian should be sufficient for qualitative descriptions of molecular electronic structure across the periodic table, which suggests that QTAIM-based analysis can be useful for molecules and solids containing heavy atoms.

  19. Cuscuta reflexa invasion induces Ca release in its host.

    PubMed

    Albert, M; van der Krol, S; Kaldenhoff, R

    2010-05-01

    Cuscuta reflexa induces a variety of reaction in its hosts. Some of these are visual reactions, and it is clear that these morphological changes are preceded by events at the molecular level, where signal transduction is one of the early processes. Calcium (Ca(2+)) release is the major second messenger during signal transduction, and we therefore studied Ca(2+) spiking in tomato during infection with C. reflexa. Bioluminescence in aequorin-expressing tomato was monitored for 48 h after the onset of Cuscuta infestation. Signals at the attachment sites were observed from 30 to 48 h. Treatment of aequorin-expressing tomato leaf disks with Cuscuta plant extracts suggested that the substance that induced Ca(2+) release from the host was closely linked to parasite haustoria.

  20. Genetic locus (nmp-1) affecting the principal outer membrane protein of Neisseria gonorrhoeae.

    PubMed Central

    Cannon, J G; Klapper, D G; Blackman, E Y; Sparling, P F

    1980-01-01

    An increase in the apparent molecular weight of the principal outer membrane protein (POMP) of Neisseria gonorrhoeae is associated with introduction of the penB2 genetic marker, which results in low-level, relatively nonspecific antibiotic resistance. Limited proteolysis of the two forms of POMP showed that they had few if any peptides in common. The nonspecific antibiotic resistance of penB2 was separated from the change in POMP by genetic transformation and by isolation of spontaneous penB mutants that showed no change in POMP. The genetic locus involved in the change from one POMP to another, which we have designated nmp-1, is closely linked to, but not identical with, penB2. Images PMID:6782080

  1. Molecular markers shared by diverse apomictic Pennisetum species.

    PubMed

    Lubbers, E L; Arthur, L; Hanna, W W; Ozias-Akins, P

    1994-11-01

    Two molecular markers, a RAPD (randomly amplified polymorphic DNA) and a RFLP/STS (restriction fragment length polymorphism/sequence-tagged site), previously were found associated with apomictic reproductive behavior in a backcross population produced to transfer apomixis from Pennisetum squamulatum to pearl millet. The occurrence of these molecular markers in a range of 29 accessions of Pennisetum comprising 11 apomictic and 8 sexual species was investigated. Both markers were specific for apomictic species in Pennisetum. The RFLP/STS marker, UGT 197, was found to be associated with all taxa that displayed apomictic reproductive behavior except those in section Brevivalvula. Neither UGT197 nor the cloned RAPD fragment OPC-04600 hybridized with any sexually reproducing representatives of the genus. The cloned C04600 was associated with 3 of the 11 apomictic species, P. ciliare, P. massaicum, and P. squamulatum. UGT197 was more consistently associated with apomictic reproductive behavior than OPC04600 or cloned C04600, thus it could be inferred that UGT197 is more closely linked to the gene(s) for apomixis than the cloned C04600. The successful use of these probes to survey other Pennisetum species indicates that apomixis is a trait that can be followed across species by using molecular means. This technique of surveying species within a genus will be useful in determining the relative importance of newly isolated markers and may facilitate the identification of the apomixis gene(s).

  2. The Drosophila ETV5 Homologue Ets96B: Molecular Link between Obesity and Bipolar Disorder.

    PubMed

    Williams, Michael J; Klockars, Anica; Eriksson, Anders; Voisin, Sarah; Dnyansagar, Rohit; Wiemerslage, Lyle; Kasagiannis, Anna; Akram, Mehwish; Kheder, Sania; Ambrosi, Valerie; Hallqvist, Emilie; Fredriksson, Robert; Schiöth, Helgi B

    2016-06-01

    Several reports suggest obesity and bipolar disorder (BD) share some physiological and behavioural similarities. For instance, obese individuals are more impulsive and have heightened reward responsiveness, phenotypes associated with BD, while bipolar patients become obese at a higher rate and earlier age than people without BD; however, the molecular mechanisms of such an association remain obscure. Here we demonstrate, using whole transcriptome analysis, that Drosophila Ets96B, homologue of obesity-linked gene ETV5, regulates cellular systems associated with obesity and BD. Consistent with a role in obesity and BD, loss of nervous system Ets96B during development increases triacylglyceride concentration, while inducing a heightened startle-response, as well as increasing hyperactivity and reducing sleep. Of notable interest, mouse Etv5 and Drosophila Ets96B are expressed in dopaminergic-rich regions, and loss of Ets96B specifically in dopaminergic neurons recapitulates the metabolic and behavioural phenotypes. Moreover, our data indicate Ets96B inhibits dopaminergic-specific neuroprotective systems. Additionally, we reveal that multiple SNPs in human ETV5 link to body mass index (BMI) and BD, providing further evidence for ETV5 as an important and novel molecular intermediate between obesity and BD. We identify a novel molecular link between obesity and bipolar disorder. The Drosophila ETV5 homologue Ets96B regulates the expression of cellular systems with links to obesity and behaviour, including the expression of a conserved endoplasmic reticulum molecular chaperone complex known to be neuroprotective. Finally, a connection between the obesity-linked gene ETV5 and bipolar disorder emphasizes a functional relationship between obesity and BD at the molecular level.

  3. Cross-Link Guided Molecular Modeling with ROSETTA

    PubMed Central

    Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  4. Processing Conjugated-Diene-Containing Polymers

    NASA Technical Reports Server (NTRS)

    Bell, Vernon L.; Havens, Stephen J.

    1987-01-01

    Diels-Alder reaction used to cross-linked thermoplastics. Process uses Diels-Alder reaction to cross-link and/or extend conjugated-diene-containing polymers by reacting them with bis-unsaturated dienophiles results in improved polymer properties. Quantities of diene groups required for cross-linking varies from very low to very high concentrations. Process also used to extend, or build up molecular weights of, low-molecular-weight linear polymers with terminal conjugated dienic groups.

  5. Diversity in Romantic Relations of Adolescents with Varying Health Status: Links to Intimacy in Close Relationships.

    ERIC Educational Resources Information Center

    Seiffge-Krenke, Inge

    2000-01-01

    Investigated similarities and differences between close friendships and romantic relationships among 95 adolescents, who were either diabetic or healthy. Among healthy adolescents, found demonstrated time-dependent links between intimacy in both relationship types. Among diabetic adolescents, found a preference for romantic partners who offered…

  6. Chromosomal localization of Emv-16 and Emv-17, two closely linked ecotropic proviruses of RF/J mice.

    PubMed Central

    Buchberg, A M; Taylor, B A; Jenkins, N A; Copeland, N G

    1986-01-01

    Emv-16 and Emv-17, the two closely linked ecotropic proviral loci of RF/J mice, have been mapped to chromosome 1 between leaden, ln, and the mouse engrailed homeo-box locus, En-1, by using recombinant inbred strains and conventional backcross analysis. Images PMID:2878091

  7. Using Lidocaine and Benzocaine to Link Sodium Channel Molecular Conformations to State-Dependent Antiarrhythmic Drug Affinity

    PubMed Central

    Hanck, Dorothy A.; Nikitina, Elena; McNulty, Megan M.; Fozzard, Harry A.; Lipkind, Gregory M.; Sheets, Michael F.

    2009-01-01

    Rationale Lidocaine and other antiarrhythmic drugs bind in the inner pore of voltage-gated Na channels and affect gating use-dependently. A phenylalanine in domain IV, S6 (Phe1759 in NaV1.5), modeled to face the inner pore just below the selectivity filter, is critical in use-dependent drug block. Objective Measurement of gating currents and concentration-dependent availability curves to determine the role of Phe1759 in coupling of drug binding to the gating changes. Methods & Results The measurements showed that replacement of Phe1759 with a non-aromatic residue permits clear separation of action of lidocaine and benzocaine into two components that can be related to channel conformations. One component represents the drug acting as a voltage-independent, low-affinity blocker of closed channels (designated as lipophilic block), and the second represents high-affinity, voltage-dependent block of open/inactivated channels linked to stabilization of the S4's in domains III and IV (designated as voltage-sensor inhibition) by Phe1759. A homology model for how lidocaine and benzocaine bind in the closed and open/inactivated channel conformation is proposed. Conclusions These two components, lipophilic block and voltage-sensor inhibition, can explain the differences in estimates between tonic and open-state/inactivated-state affinities, and they identify how differences in affinity for the two binding conformations can control use-dependence, the hallmark of successful antiarrhythmic drugs. PMID:19661462

  8. The potentiality of cross-linked fungal chitosan to control water contamination through bioactive filtration.

    PubMed

    Tayel, Ahmed A; El-Tras, Wael F; Elguindy, Nihal M

    2016-07-01

    Water contamination, with heavy metals and microbial pathogens, is among the most dangerous challenges that confront human health worldwide. Chitosan is a bioactive biopolymer that could be produced from fungal mycelia to be utilized in various applied fields. An attempt to apply fungal chitosan for heavy metals chelation and microbial pathogens inhibition, in contaminated water, was performed in current study. Chitosan was produced from the mycelia of Aspergillus niger, Cunninghamella elegans, Mucor rouxii and from shrimp shells, using unified production conditions. The FT-IR spectra of produced chitosans were closely comparable. M. rouxii chitosan had the highest deacetylation degree (91.3%) and the lowest molecular weight (33.2kDa). All chitosan types had potent antibacterial activities against Escherichia coli and Staphylococcus aureus; the most forceful type was C. elegans chitosan. Chitosan beads were cross-linked with glutaraldehyde (GLA) and ethylene-glycol-diglycidyl ether (EGDE); linked beads became insoluble in water, acidic and alkaline solutions and could effectively adsorb heavy metals ions, e.g. copper, lead and zinc, in aqueous solution. The bioactive filter, loaded with EGDE- A. niger chitosan beads, was able to reduce heavy metals' concentration with >68%, and microbial load with >81%, after 6h of continuous water flow in the experimentally designed filter. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. In Silico Computational Transcriptomics Reveals Novel Endocrine Disruptors in Largemouth Bass ( Micropterus salmoides).

    PubMed

    Basili, Danilo; Zhang, Ji-Liang; Herbert, John; Kroll, Kevin; Denslow, Nancy D; Martyniuk, Christopher J; Falciani, Francesco; Antczak, Philipp

    2018-06-15

    In recent years, decreases in fish populations have been attributed, in part, to the effect of environmental chemicals on ovarian development. To understand the underlying molecular events we developed a dynamic model of ovary development linking gene transcription to key physiological end points, such as gonadosomatic index (GSI), plasma levels of estradiol (E2) and vitellogenin (VTG), in largemouth bass ( Micropterus salmoides). We were able to identify specific clusters of genes, which are affected at different stages of ovarian development. A subnetwork was identified that closely linked gene expression and physiological end points and by interrogating the Comparative Toxicogenomic Database (CTD), quercetin and tretinoin (ATRA) were identified as two potential candidates that may perturb this system. Predictions were validated by investigation of reproductive associated transcripts using qPCR in ovary and in the liver of both male and female largemouth bass treated after a single injection of quercetin and tretinoin (10 and 100 μg/kg). Both compounds were found to significantly alter the expression of some of these genes. Our findings support the use of omics and online repositories for identification of novel, yet untested, compounds. This is the first study of a dynamic model that links gene expression patterns across stages of ovarian development.

  10. State-selective charge exchange in slow collisions of Si3+ ions with H atoms: A molecular state close coupling treatment*)

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2012-11-01

    Charge transfer cross sections are calculated by employing both the quantal and semiclassical ɛ(R) molecular orbital close coupling (MOCC) approximations in the adiabatic representation and compared with other theoretical and experimental results

  11. Endophytic Epichloë species and their grass hosts: from evolution to applications.

    PubMed

    Saikkonen, Kari; Young, Carolyn A; Helander, Marjo; Schardl, Christopher L

    2016-04-01

    The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.

  12. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane

    PubMed Central

    Mitchell, Jana M.; Mansfeld, Jörg; Capitanio, Juliana; Kutay, Ulrike

    2010-01-01

    Nuclear pore complexes (NPCs) control the movement of molecules across the nuclear envelope (NE). We investigated the molecular interactions that exist at the interface between the NPC scaffold and the pore membrane. We show that key players mediating these interactions in mammalian cells are the nucleoporins Nup155 and Nup160. Nup155 depletion massively alters NE structure, causing a dramatic decrease in NPC numbers and the improper targeting of membrane proteins to the inner nuclear membrane. The role of Nup155 in assembly is likely closely linked to events at the membrane as we show that Nup155 interacts with pore membrane proteins Pom121 and NDC1. Furthermore, we demonstrate that the N terminus of Pom121 directly binds the β-propeller regions of Nup155 and Nup160. We propose a model in which the interactions of Pom121 with Nup155 and Nup160 are predicted to assist in the formation of the nuclear pore and the anchoring of the NPC to the pore membrane. PMID:20974814

  13. Postdoctoral Fellow | Center for Cancer Research

    Cancer.gov

    A Postdoctoral Fellow position is available in Dr. Chuong Dinh Hoang's laboratory within the Thoracic and Gastrointestinal Oncology Branch (TGIB), National Cancer Institute, NIH. Our broad goal is to explore the molecular and cellular biology of thoracic cancers, namely mesothelioma and/ or non-small cell lung carcinoma, thymoma, etc. Currently, we have projects that involve investigating microRNA-mRNA interactions in malignant mesothelioma. New projects will focus on the pathogenic signaling pathways relevant to tumor initiation, invasion, metastasis, and resistance. With these projects, we have translational aims of developing novel molecular biomarkers and therapeutic targets based on an understanding of the pathogenetic mechanisms active in these cancers. Also, we are developing novel delivery platforms for nucleic-based agents that require pre-clinical testing in mouse tumor models. The culmination of these projects will be linked to clinical human protocols in these thoracic cancers of interest. This is a great opportunity for candidates who are interested in cancer biology and want to enhance their career potential by working in our research program with outstanding support of other established laboratories and core facilities in the National Cancer Institute. This laboratory effort will be in close collaboration with other faculty in our branch. We work closely with the Thoracic Oncology Section of David S. Schrump, M.D. (Chief, TGIB), which focuses on epigenetic mechanisms and regulation of thoracic tumors; and with the lab of Dr. Taylor Ripley, M.D., which focuses on metabolism of thoracic tumors.

  14. A molecular phylogeny of rose chafers (Coleoptera: Scarabaeidae: Cetoniinae) reveals a complex and concerted morphological evolution related to their flight mode.

    PubMed

    Šípek, Petr; Fabrizi, Silvia; Eberle, Jonas; Ahrens, Dirk

    2016-08-01

    Rose chafers (Cetoniinae) are a large group of flower visitors within the pleurostict Scarabaeidae that are characterized by their distinctive flight mode with nearly closed forewings. Despite their popularity, this is the first study to use molecular data to infer their phylogenetic relationships. We used partial gene sequences for 28S rRNA, cytochrome oxidase I (cox1) and 16S rRNA (rrnL) for 299 species, representing most recognized subfamilies of Scarabaeidae, including 125 species of Cetoniinae. Combined analyses using maximum parsimony, maximum likelihood and Bayesian inferences recovered Cetoniinae as monophyletic in all analyses, with the sister clade composed of Rutelinae and Dynastinae. Rutelinae was always recovered as paraphyletic with respect to Dynastinae. Trichiini sensu lato (s.l.) was recovered as a polyphyletic clade, while Cetoniini s.l. was recovered as paraphyletic. The inferred topologies were also supported by site bootstrapping of the ML trees. With the exception of Cremastochelini, most tribes of Cetoniinae were poly- or paraphyletic, indicating the critical need for a careful revision of rose chafer classification. Analysis of elytral base structure (including 11 scored characters) in the context of phylogeny, revealed a complex, concerted and rapid transformation of the single trait elements linked to a modified flight mode with closed elytra. This appears to be unlinked to the lateral sinuation of the elytra, which originated independently several times at later stages in the evolution of the group. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. From the Nano- to the Macroscale - Bridging Scales for the Moving Contact Line Problem

    NASA Astrophysics Data System (ADS)

    Nold, Andreas; Sibley, David; Goddard, Benjamin; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2016-11-01

    The moving contact line problem remains an unsolved fundamental problem in fluid mechanics. At the heart of the problem is its multiscale nature: a nanoscale region close to the solid boundary where the continuum hypothesis breaks down, must be resolved before effective macroscale parameters such as contact line friction and slip can be obtained. To capture nanoscale properties very close to the contact line and to establish a link to the macroscale behaviour, we employ classical density-functional theory (DFT), in combination with extended Navier-Stokes-like equations. Using simple models for viscosity and slip at the wall, we compare our computations with the Molecular Kinetic Theory, by extracting the contact line friction, depending on the imposed temperature of the fluid. A key fluid property captured by DFT is the fluid layering at the wall-fluid interface, which has a large effect on the shearing properties of a fluid. To capture this crucial property, we propose an anisotropic model for the viscosity, which also allows us to scrutinize the effect of fluid layering on contact line friction.

  16. Differential Susceptibility in Spillover Between Interparental Conflict and Maternal Parenting Practices: Evidence for OXTR and 5-HTT Genes

    PubMed Central

    Sturge-Apple, Melissa L.; Cicchetti, Dante; Davies, Patrick T.; Suor, Jennifer H.

    2012-01-01

    Guided by the affective spillover hypothesis and the differential susceptibility to environmental influence frameworks, the present study examined how associations between interparental conflict and mothers’ parenting practices were moderated by serotonin transporter (5-HTT) and oxytocin receptor (OXTR) genes. A sample of 201 mothers and their two-year old child participated in a laboratory-based research assessment. Results supported differential susceptibility hypotheses within spillover frameworks. With respect to OXTR rs53576, mothers with the GG genotype showed greater differential maternal sensitivity across varying levels of interparental conflict. Mothers with one or two copies of the 5-HTTLPR S allele demonstrated differential susceptibility for both sensitive and harsh/punitive caregiving behaviors. Finally, analyses examined whether maternal depressive symptoms and emotional closeness to their child mediated the moderating effects. Findings suggest that maternal emotional closeness with their child indirectly linked OXTR with maternal sensitivity. The results highlight how molecular genetics may explain heterogeneity in spillover models with differential implications for specific parenting behaviors. Implications for clinicians and therapists working with maritally distressed parents are discussed. PMID:22563705

  17. Molecular and clinical studies of X-linked deafness among Pakistani families.

    PubMed

    Waryah, Ali M; Ahmed, Zubair M; Bhinder, Munir A; Binder, Munir A; Choo, Daniel I; Sisk, Robert A; Shahzad, Mohsin; Khan, Shaheen N; Friedman, Thomas B; Riazuddin, Sheikh; Riazuddin, Saima

    2011-07-01

    There are 68 sex-linked syndromes that include hearing loss as one feature and five sex-linked nonsyndromic deafness loci listed in the OMIM database. The possibility of additional such sex-linked loci was explored by ascertaining three unrelated Pakistani families (PKDF536, PKDF1132 and PKDF740) segregating X-linked recessive deafness. Sequence analysis of POU3F4 (DFN3) in affected members of families PKDF536 and PKDF1132 revealed two novel nonsense mutations, p.Q136X and p.W114X, respectively. Family PKDF740 is segregating congenital blindness, mild-to-profound progressive hearing loss that is characteristic of Norrie disease (MIM#310600). Sequence analysis of NDP among affected members of this family revealed a novel single nucleotide deletion c.49delG causing a frameshift and premature truncation (p.V17fsX1) of the encoded protein. These mutations were not found in 150 normal DNA samples. Identification of pathogenic alleles causing X-linked recessive deafness will improve molecular diagnosis, genetic counseling and molecular epidemiology of hearing loss among Pakistanis.

  18. Towards force spectroscopy of single tip-link bonds

    NASA Astrophysics Data System (ADS)

    Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.; Corey, David P.

    2015-12-01

    Inner-ear mechanotransduction relies on tip links, fine protein filaments made of cadherin-23 and protocadherin-15 that convey tension to mechanosensitive channels at the tips of hair-cell stereocilia. The tip-link cadherins are thought to form a heterotetrameric complex, with two cadherin-23 molecules forming the upper part of the filament and two protocadherin-15 molecules forming the lower end. The interaction between cadherin-23 and protocadherin-15 is mediated by their N-terminal tips. Missense mutations that modify the interaction interface impair binding and lead to deafness. Molecular dynamics simulations predict that the tip-link bond is mechanically strong enough to withstand forces in hair cells, but its experimentally determined strength is unknown. We have developed molecular tools to facilitate single-molecule force spectroscopy on the tip link bond. Self-assembling DNA nanoswitches are functionalized with the interacting tips of cadherin-23 and protocadherin-15 using the enzyme sortase under conditions that preserve protein function. These tip link nanoswitches are designed to provide a signature force-extension profile. This molecular signature should allow us to identify single-molecule rupture events in pulling experiments.

  19. Molecular and Clinical Studies of X-linked Deafness Among Pakistani Families

    PubMed Central

    Waryah, Ali M.; Ahmed, Zubair M.; Choo, Daniel I.; Sisk, Robert A.; Binder, Munir A.; Shahzad, Mohsin; Khan, Shaheen N.; Friedman, Thomas B.; Riazuddin, Sheikh; Riazuddin, Saima

    2011-01-01

    There are 68 sex-linked syndromes that include hearing loss as one feature and five sex-linked nonsyndromic deafness loci listed in the OMIM database. The possibility of additional such sex-linked loci was explored by ascertaining three unrelated Pakistani families (PKDF536, PKDF1132, PKDF740) segregating X-linked recessive deafness. Sequence analysis of POU3F4 (DFN3) in affected members of families PKDF536 and PKDF1132 revealed two novel nonsense mutations, p.Q136X and p.W114X, respectively. Family PKDF740 is segregating congenital blindness, mild to profound progressive hearing loss that is characteristic of Norrie disease (MIM#310600). Sequence analysis of NDP among affected members of this family revealed a novel single nucleotide deletion c.49delG causing a frameshift and premature truncation (p.V17fsX1) of the encoded protein. These mutations were not found in 150 normal DNA samples. Identification of pathogenic alleles causing X-linked recessive deafness will improve molecular diagnosis, genetic counseling, and molecular epidemiology of hearing loss among Pakistanis. PMID:21633365

  20. Systems Toxicology: From Basic Research to Risk Assessment

    PubMed Central

    2014-01-01

    Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment. PMID:24446777

  1. Layered crystal structure, conformational and vibrational properties of 2,2,2-trichloroethoxysulfonamide: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Gil, Diego M.; Piro, Oscar E.; Echeverría, Gustavo A.; Tuttolomondo, María E.; Altabef, Aída Ben

    2013-12-01

    The molecular structure of 2,2,2-trichloroethoxysulfonamide, CCl3CH2OSO2NH2, has been determined in the solid state by X-ray diffraction data and in the gas phase by ab initio (MP2) and DFT calculations. The substance crystallizes in the monoclinic P21/c space group with a = 9.969(3) Å, b = 22.914(6) Å, c = 7.349(2) Å, β = 91.06(3)°, and Z = 8 molecules per unit cell. There are two independent, but closely related molecular conformers in the crystal asymmetric unit. They only differ in the angular orientation of the sulfonamide (sbnd SO2NH2) group. The conformers are arranged in the lattice as center-symmetric Nsbnd H⋯O(sulf)-bonded dimers. Neighboring dimers are linked through further Nsbnd H⋯O(sulf) bonds giving rise to a crystal layered structure. The solid state infrared and Raman spectra have been recorded and the observed bands assigned to the molecular vibration modes. Also, the thermal behavior of the substance was investigated by TG-DT analysis. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using natural bond (NBO) analysis.

  2. Isolation and molecular characterization of Mycobacterium tuberculosis from humans and cattle in Namwala District, Zambia.

    PubMed

    Malama, Sydney; Muma, John; Munyeme, Musso; Mbulo, Grace; Muwonge, Adrian; Shamputa, Isdore Chola; Djønne, Berit; Godfroid, Jacques; Johansen, Tone Bjordal

    2014-12-01

    Mycobacterium tuberculosis, the causative agent of tuberculosis in humans, is considered primarily a human pathogen. It has, however, been reported in a wide range of domestic and wild animals, often living in close prolonged contact with humans. Sputum samples in which acid fast bacteria were detected in smears were collected from patients at three health facilities in Namwala district, Zambia. Samples from cattle presenting gross lesions compatible with bovine tuberculosis were collected at a local abattoir in the same district. Isolated mycobacteria were identified and genotyped using classical molecular methods. From a total of 33 isolates of M. tuberculosis detected (30 from humans and 3 from cattle), two cattle isolates shared the same spoligotype and MIRU-VNTR pattern with a human patient. This study has for the first time documented the isolation of M. tuberculosis from cattle in Zambia and provides molecular evidence of an epidemiological link between M. tuberculosis isolates from humans and cattle in Namwala district. A possible spill back of M. tuberculosis to humans cannot be excluded and therefore further studies documenting to what extent M. tuberculosis is shed in cattle milk are needed. This finding further suggests that veterinary public health measures to control human TB, should also take into account the bovine reservoir.

  3. Systems toxicology: from basic research to risk assessment.

    PubMed

    Sturla, Shana J; Boobis, Alan R; FitzGerald, Rex E; Hoeng, Julia; Kavlock, Robert J; Schirmer, Kristin; Whelan, Maurice; Wilks, Martin F; Peitsch, Manuel C

    2014-03-17

    Systems Toxicology is the integration of classical toxicology with quantitative analysis of large networks of molecular and functional changes occurring across multiple levels of biological organization. Society demands increasingly close scrutiny of the potential health risks associated with exposure to chemicals present in our everyday life, leading to an increasing need for more predictive and accurate risk-assessment approaches. Developing such approaches requires a detailed mechanistic understanding of the ways in which xenobiotic substances perturb biological systems and lead to adverse outcomes. Thus, Systems Toxicology approaches offer modern strategies for gaining such mechanistic knowledge by combining advanced analytical and computational tools. Furthermore, Systems Toxicology is a means for the identification and application of biomarkers for improved safety assessments. In Systems Toxicology, quantitative systems-wide molecular changes in the context of an exposure are measured, and a causal chain of molecular events linking exposures with adverse outcomes (i.e., functional and apical end points) is deciphered. Mathematical models are then built to describe these processes in a quantitative manner. The integrated data analysis leads to the identification of how biological networks are perturbed by the exposure and enables the development of predictive mathematical models of toxicological processes. This perspective integrates current knowledge regarding bioanalytical approaches, computational analysis, and the potential for improved risk assessment.

  4. Re-evaluation of a 2014 multi-country European outbreak of Salmonella Enteritidis phage type 14b using recent epidemiological and molecular data

    PubMed Central

    Hörmansdorfer, Stefan; Messelhäußer, Ute; Rampp, Albert; Schönberger, Katharina; Dallman, Tim; Allerberger, Franz; Kornschober, Christian; Sing, Andreas; Wallner, Peter; Zapf, Andreas

    2017-01-01

    A European multi-country outbreak of Salmonella Enteritidis phage type (PT) 14b occurred from March to November 2014 associated with the consumption of eggs. The outbreak involved more than 400 human cases from France, Luxembourg, Austria and the United Kingdom. In 2016–2017, it has been re-evaluated combining recent epidemiological results with latest molecular data. The outbreak was traced back to one large Bavarian egg producer with four distinct premises, three located in Bavaria, one in the Czech Republic. The outbreak isolates of S. Enteritidis PT 14b were grouped into three closely related clades by whole genome sequencing. Two of these clades could be referred to two Bavarian premises of the egg producer on the basis of epidemiological and molecular data, while epidemiological data presumably linked the third clade to another premises of the egg producer. Interestingly and in contrast to the situation in other European countries where several outbreaks were documented, all notified 91 laboratory-confirmed cases of S. Enteritidis PT 14b from Bavaria were sporadic, singular cases not belonging to any epidemiological outbreaks. In conclusion, as demonstrated here, the resolution of food-related outbreaks with such a high discriminatory power is rare in outbreak investigation. PMID:29258650

  5. Research experiences and mentoring practices in selected east Asian graduate programs: predictors of research productivity among doctoral students in molecular biology.

    PubMed

    Ynalvez, Ruby; Garza-Gongora, Claudia; Ynalvez, Marcus Antonius; Hara, Noriko

    2014-01-01

    Although doctoral mentors recognize the benefits of providing quality advisement and close guidance, those of sharing project management responsibilities with mentees are still not well recognized. We observed that mentees, who have the opportunity to co-manage projects, generate more written output. Here we examine the link between research productivity, doctoral mentoring practices (DMP), and doctoral research experiences (DRE) of mentees in programs in the non-West. Inspired by previous findings that early career productivity is a strong predictor of later productivity, we examine the research productivity of 210 molecular biology doctoral students in selected programs in Japan, Singapore, and Taiwan. Using principal component (PC) analysis, we derive two sets of PCs: one set from 15 DMP and another set from 16 DRE items. We model research productivity using Poisson and negative-binomial regression models with these sets as predictors. Our findings suggest a need to re-think extant practices and to allocate resources toward professional career development in training future scientists. We contend that doctoral science training must not only be an occasion for future scientists to learn scientific and technical skills, but it must also be the opportunity to experience, to acquire, and to hone research management skills. © 2014 The International Union of Biochemistry and Molecular Biology.

  6. Re-evaluation of a 2014 multi-country European outbreak of Salmonella Enteritidis phage type 14b using recent epidemiological and molecular data.

    PubMed

    Hörmansdorfer, Stefan; Messelhäußer, Ute; Rampp, Albert; Schönberger, Katharina; Dallman, Tim; Allerberger, Franz; Kornschober, Christian; Sing, Andreas; Wallner, Peter; Zapf, Andreas

    2017-12-01

    A European multi-country outbreak of Salmonella Enteritidis phage type (PT) 14b occurred from March to November 2014 associated with the consumption of eggs. The outbreak involved more than 400 human cases from France, Luxembourg, Austria and the United Kingdom. In 2016-2017, it has been re-evaluated combining recent epidemiological results with latest molecular data. The outbreak was traced back to one large Bavarian egg producer with four distinct premises, three located in Bavaria, one in the Czech Republic. The outbreak isolates of S. Enteritidis PT 14b were grouped into three closely related clades by whole genome sequencing. Two of these clades could be referred to two Bavarian premises of the egg producer on the basis of epidemiological and molecular data, while epidemiological data presumably linked the third clade to another premises of the egg producer. Interestingly and in contrast to the situation in other European countries where several outbreaks were documented, all notified 91 laboratory-confirmed cases of S. Enteritidis PT 14b from Bavaria were sporadic, singular cases not belonging to any epidemiological outbreaks. In conclusion, as demonstrated here, the resolution of food-related outbreaks with such a high discriminatory power is rare in outbreak investigation.

  7. Molecular Electronic Terms and Molecular Orbital Configurations.

    ERIC Educational Resources Information Center

    Mazo, R. M.

    1990-01-01

    Discussed are the molecular electronic terms which can arise from a given electronic configuration. Considered are simple cases, molecular states, direct products, closed shells, and open shells. Two examples are provided. (CW)

  8. Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription.

    PubMed

    Rajendran, Ramkumar; Garva, Richa; Krstic-Demonacos, Marija; Demonacos, Constantinos

    2011-01-01

    Transcription is regulated by acetylation/deacetylation reactions of histone and nonhistone proteins mediated by enzymes called KATs and HDACs, respectively. As a major mechanism of transcriptional regulation, protein acetylation is a key controller of physiological processes such as cell cycle, DNA damage response, metabolism, apoptosis, and autophagy. The deacetylase activity of class III histone deacetylases or sirtuins depends on the presence of NAD(+) (nicotinamide adenine dinucleotide), and therefore, their function is closely linked to cellular energy consumption. This activity of sirtuins connects the modulation of chromatin dynamics and transcriptional regulation under oxidative stress to cellular lifespan, glucose homeostasis, inflammation, and multiple aging-related diseases including cancer. Here we provide an overview of the recent developments in relation to the diverse biological activities associated with sirtuin enzymes and stress responsive transcription factors, DNA damage, and oxidative stress and relate the involvement of sirtuins in the regulation of these processes to oncogenesis. Since the majority of the molecular mechanisms implicated in these pathways have been described for Sirt1, this sirtuin family member is more extensively presented in this paper.

  9. Molecular recognition principles and stationary-phase characteristics of topoisomer-selective chemoaffinity materials for chromatographic separation of circular plasmid DNA topoisomers.

    PubMed

    Mahut, Marek; Lindner, Wolfgang; Lämmerhofer, Michael

    2012-01-18

    We recently discovered the molecular recognition capability of a quinine carbamate ligand attached to silica as a powerful chemoaffinity material for the chromatographic separation of circular plasmid topoisomers of different linking numbers. In this paper we develop structure-selectivity relationship studies to figure out the essential structural features for topoisomer recognition. By varying different moieties of the original cinchonan-derived selector, it was shown that intercalation by the quinoline moiety of the ligand as assumed initially as the working hypothesis is not an essential feature for topoisomer recognition during chromatography. We found that the key elements for topoisomer selectivity are the presence of a rigid weak anion-exchange site and a H-donor site separated from each other in a defined distance by a 4-atom spacer. Additionally, incorporation of the weak anion-exchange site into a cyclic ring structure provides greater rigidity of the ligand molecule and turned out to be advantageous, if not mandatory, for (close to) baseline separation. © 2011 American Chemical Society

  10. Characterization of a rapid, blue light-mediated change in detectable phosphorylation of a plasma membrane protein from etiolated pea (Pisum sativum L. ) seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Short, T.W.; Briggs, W.R.

    1990-01-01

    When crude microsomal membranes from apical stem segments of etiolated Pisum sativum L. cv Alaska are mixed in vitro with {gamma}-({sup 32}P)ATP, a phosphorylated band of apparent molecular mass 120 kilodaltons can be detected on autoradiographs of sodium dodecyl sulfate electrophoresis gels. If the stem sections are exposed to blue light immediately prior to membrane isolation, this band is not evident. Comparisons of the kinetics, tissue distribution, and dark recovery of the phosphorylation response with those published for blue light mediated phototropism or rapid growth inhibition indicate that the phosphorylation could be linked to one or both of the reactionsmore » described. However, the fluence-response relationships for the change in detectable phosphorylation match quite closely those reported for phototropism but not those for growth inhibition. Blue light has also been found to regulate the capacity for in vitro phosphorylation of a second protein. It has an apparent molecular mass of 84 kilodaltons and is localized primarily in basal stem sections.« less

  11. Molecular phylogenetic position of hexactinellid sponges in relation to the Protista and Demospongiae.

    PubMed

    West, L; Powers, D

    1993-01-01

    Although it is generally accepted that the first multicellular organisms arose from unicellular ancestors, the phylogenetic relationships linking these groups remain unclear. Anatomical, physiological, and molecular studies of current multicellular organisms with relatively simple body organization suggest key characteristics of the earliest multicellular lineages. Glass sponges, the Hexactinellida, possess cellular characteristics that resemble some unicellular protistan organisms. These unique sponges were abundant in shallow seas of the early Cambrian, but they are currently restricted to polar habitats or very deep regions of the world oceans. Due in part to their relative inaccessibility, their potential significance to the early phylogeny of the eukaryotic kingdoms has been largely overlooked. We used sequences of the 18s ribosomal RNA gene of Farrea occa, a representative of the deep-water hexactinellid sponges, and Coelocarteria singaporense, a representative of the more common demosponges, and compared them with selected ribosomal RNA gene sequences available within the Protista. Using four computational methods for phylogenetic analysis of ribosomal DNA sequences, we found that the hexactinellid sponge-demosponge cluster is most closely related to Volvox and Acanthamoeba.

  12. NGC 3503 and its molecular environment

    NASA Astrophysics Data System (ADS)

    Duronea, N. U.; Vasquez, J.; Cappa, C. E.; Corti, M.; Arnal, E. M.

    2012-01-01

    Aims: We present a study of the molecular gas and interstellar dust distribution in the environs of the Hii region NGC 3503 associated with the open cluster Pis 17 with the aim of investigating the spatial distribution of the molecular gas linked to the nebula and achieving a better understanding of the interaction of the nebula and Pis 17 with their molecular environment. Methods: We based our study on 12CO(1-0) observations of a region of ~0.6° in size obtained with the 4-m NANTEN telescope, unpublished radio continuum data at 4800 and 8640 MHz obtained with the ATCA telescope, radio continuum data at 843 MHz obtained from SUMSS, and available IRAS, MSX, IRAC-GLIMPSE, and MIPSGAL images. Results: We found a molecular cloud (Component 1) having a mean velocity of -24.7 km s-1 ,compatible with the velocity of the ionized gas, which is associated with the nebula and its surroundings. Adopting a distance of 2.9 ± 0.4 kpc, the total molecular mass yields (7.6 ± 2.1) × 103M⊙ and density yields 400 ± 240 cm-3. The radio continuum data confirm the existence of an electron density gradient in NGC 3503. The IR emission shows a PDR bordering the higher density regions of the nebula. The spatial distribution of the CO emission shows that the nebula coincides with a molecular clump, and the strongest CO emission peak is located close to the higher electron density region. The more negative velocities of the molecular gas (about -27 km s-1), are coincident with NGC 3503. Candidate young stellar objects (YSOs) were detected toward the Hii region, suggesting that embedded star formation may be occurring in the neighborhood of the nebula. The clear electron density gradient, along with the spatial distribution of the molecular gas and PAHs in the region indicates that NGC 3503 is a blister-type Hii region that has probably undergone a champagne phase.

  13. Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations

    PubMed Central

    Hand, M L; Vít, P; Krahulcová, A; Johnson, S D; Oelkers, K; Siddons, H; Chrtek, J; Fehrer, J; Koltunow, A M G

    2015-01-01

    The Hieracium and Pilosella (Lactuceae, Asteraceae) genera of closely related hawkweeds contain species with two different modes of gametophytic apomixis (asexual seed formation). Both genera contain polyploid species, and in wild populations, sexual and apomictic species co-exist. Apomixis is known to co-exist with sexuality in apomictic Pilosella individuals, however, apomictic Hieracium have been regarded as obligate apomicts. Here, a developmental analysis of apomixis within 16 Hieracium species revealed meiosis and megaspore tetrad formation in 1 to 7% of ovules, for the first time indicating residual sexuality in this genus. Molecular markers linked to the two independent, dominant loci LOSS OF APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP) controlling apomixis in Pilosella piloselloides subsp. praealta were screened across 20 phenotyped Hieracium individuals from natural populations, and 65 phenotyped Pilosella individuals from natural and experimental cross populations, to examine their conservation, inheritance and association with reproductive modes. All of the tested LOA and LOP-linked markers were absent in the 20 Hieracium samples irrespective of their reproductive mode. Within Pilosella, LOA and LOP-linked markers were essentially absent within the sexual plants, although they were not conserved in all apomictic individuals. Both loci appeared to be inherited independently, and evidence for additional genetic factors influencing quantitative expression of LOA and LOP was obtained. Collectively, these data suggest independent evolution of apomixis in Hieracium and Pilosella and are discussed with respect to current knowledge of the evolution of apomixis. PMID:25026970

  14. Molecular mapping and genetic analysis of a rice brown planthopper (Nilaparvata lugens Stål) resistance gene.

    PubMed

    Yang, Haiyuan; Ren, Xiang; Weng, Qingmei; Zhu, Lili; He, Guangcun

    2002-01-01

    The brown planthopper (BPH), Nilaparvata lugens Stål, is a serious insect pest of rice (Oryza saliva L.). We have determined the chromosomal location of a BPH resistance gene in rice using SSR and RFLP techniques. A rice line 'B14', derived from the wild rice Oryza latifolia, showed high resistance to BPH. For tagging the resistance gene in 'B14X', an F2 population and a recombinant inbred (RI) population from a cross between Taichung Native 1 and 'B14' were developed and evaluated for BPH resistance. The results showed that a single dominant gene controlled the resistance of 'B14' to BPH. Bulked segregant SSR analysis was employed for identification of DNA markers linked to the resistance gene. From the survey of 302 SSR primer pairs, three SSR (RM335, RM261, RM185) markers linked to the resistance gene were identified. The closest SSR marker RM261 was linked to the resistance gene at a distance of 1.8 cM. Regions surrounding the resistance gene and the SSR markers were examined with additional RFLP markers on chromosome 4 to define the location of the resistance gene. Linkage of RFLP markers C820, R288, C946 with the resistance gene further confirmed its location on the short arm of chromosome 4. Closely linked DNA markers will facilitate selection for resistant lines in breeding programs and provide the basis for map-based cloning of this resistance gene.

  15. HRSA: Find a Health Center

    MedlinePlus

    ... to 8 p.m. ET, weekdays (except federal holidays). Additional Links: organdonor.gov Organ Procurement and Transplantation ... to 8 p.m. ET, weekdays (except federal holidays) HRSA Contact Center Close × Center Name Close Close ...

  16. Bulked segregant analysis identifies molecular markers linked to Melampsora medusae resistance in Populus deltoides

    Treesearch

    G. M. Tabor; Thomas L. Kubisiak; N. B. Klopfenstein; R. B. Hall; Henry S. McNabb

    2000-01-01

    In the north central United States, leaf rust caused by Melampsora medusae is a major disease problem on Populus deltoides. In this study we identified molecular markers linked to a M. medusae resistance locus (Lrd1) that was segregating 1:1 within an intraspecific P. deltoides...

  17. Molecular structure, mechanical behavior and failure mechanism of the C-terminal cross-link domain in type I collagen.

    PubMed

    Uzel, Sebastien G M; Buehler, Markus J

    2011-02-01

    Collagen is a key constituent in structural materials found in biology, including bone, tendon, skin and blood vessels. Here we report a first molecular level model of an entire overlap region of a C-terminal cross-linked type I collagen assembly and carry out a nanomechanical characterization based on large-scale molecular dynamics simulation in explicit water solvent. Our results show that the deformation mechanism and strength of the structure are greatly affected by the presence of the cross-link, and by the specific loading condition of how the stretching is applied. We find that the presence of a cross-link results in greater strength during deformation as complete intermolecular slip is prevented, and thereby particularly affects larger deformation levels. Conversely, the lack of a cross-link results in the onset of intermolecular sliding during deformation and as a result an overall weaker structure is obtained. Through a detailed analysis of the distribution of deformation by calculating the molecular strain we show that the location of largest strains does not occur around the covalent bonding region, but is found in regions further away from this location. The insight developed from understanding collagenous materials from a fundamental molecular level upwards could play a role in advancing our understanding of physiological and disease states of connective tissues, and also enable the development of new scaffolding material for applications in regenerative medicine and biologically inspired materials. Copyright © 2011. Elsevier Ltd. All rights reserved.

  18. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511

  19. Cross-Linked Nanotube Materials with Variable Stiffness Tethers

    NASA Technical Reports Server (NTRS)

    Frankland, Sarah-Jane V.; Odegard, Gregory M.; Herzog, Matthew N.; Gates, Thomas S.; Fay, Catherine C.

    2004-01-01

    The constitutive properties of a cross-linked single-walled carbon nanotube material are predicted with a multi-scale model. The material is modeled as a transversely isotropic solid using concepts from equivalent-continuum modeling. The elastic constants are determined using molecular dynamics simulation. Some parameters of the molecular force field are determined specifically for the cross-linker from ab initio calculations. A demonstration of how the cross-linked nanotubes may affect the properties of a nanotube/polyimide composite is included using a micromechanical analysis.

  20. Factors Influencing the Link between Social Anxiety and Peer Acceptance: Contributions of Social Skills and Close Friendships during Middle Childhood

    ERIC Educational Resources Information Center

    Greco, Laurie A.; Morris, Tracy L.

    2005-01-01

    Childhood social anxiety consistently has been linked with low levels of peer acceptance, yet little is known about the factors contributing to this association. We therefore examined the mediating and moderating role of social skills and close friendships, two conceptually and empirically relevant variables which were hypothesized to contribute…

  1. Closed-loop motor control using high-speed fiber optics

    NASA Technical Reports Server (NTRS)

    Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)

    1991-01-01

    A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.

  2. MMDB: Entrez’s 3D-structure database

    PubMed Central

    Wang, Yanli; Anderson, John B.; Chen, Jie; Geer, Lewis Y.; He, Siqian; Hurwitz, David I.; Liebert, Cynthia A.; Madej, Thomas; Marchler, Gabriele H.; Marchler-Bauer, Aron; Panchenko, Anna R.; Shoemaker, Benjamin A.; Song, James S.; Thiessen, Paul A.; Yamashita, Roxanne A.; Bryant, Stephen H.

    2002-01-01

    Three-dimensional structures are now known within many protein families and it is quite likely, in searching a sequence database, that one will encounter a homolog with known structure. The goal of Entrez’s 3D-structure database is to make this information, and the functional annotation it can provide, easily accessible to molecular biologists. To this end Entrez’s search engine provides three powerful features. (i) Sequence and structure neighbors; one may select all sequences similar to one of interest, for example, and link to any known 3D structures. (ii) Links between databases; one may search by term matching in MEDLINE, for example, and link to 3D structures reported in these articles. (iii) Sequence and structure visualization; identifying a homolog with known structure, one may view molecular-graphic and alignment displays, to infer approximate 3D structure. In this article we focus on two features of Entrez’s Molecular Modeling Database (MMDB) not described previously: links from individual biopolymer chains within 3D structures to a systematic taxonomy of organisms represented in molecular databases, and links from individual chains (and compact 3D domains within them) to structure neighbors, other chains (and 3D domains) with similar 3D structure. MMDB may be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Structure. PMID:11752307

  3. In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials.

    PubMed

    Heinz, Andrea; Ruttkies, Christoph K H; Jahreis, Günther; Schräder, Christoph U; Wichapong, Kanin; Sippl, Wolfgang; Keeley, Fred W; Neubert, Reinhard H H; Schmelzer, Christian E H

    2013-04-01

    Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown. Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry. MS(2) data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations. The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials. The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Molecular complexes in close and far away

    PubMed Central

    Klemperer, William; Vaida, Veronica

    2006-01-01

    In this review, gas-phase chemistry of interstellar media and some planetary atmospheres is extended to include molecular complexes. Although the composition, density, and temperature of the environments discussed are very different, molecular complexes have recently been considered as potential contributors to chemistry. The complexes reviewed include strongly bound aggregates of molecules with ions, intermediate-strength hydrogen bonded complexes (primarily hydrates), and weakly bonded van der Waals molecules. In low-density, low-temperature environments characteristic of giant molecular clouds, molecular synthesis, known to involve gas-phase ion-molecule reactions and chemistry at the surface of dust and ice grains is extended here to involve molecular ionic clusters. At the high density and high temperatures found on planetary atmospheres, molecular complexes contribute to both atmospheric chemistry and climate. Using the observational, laboratory, and theoretical database, the role of molecular complexes in close and far away is discussed. PMID:16740667

  5. Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure.

    PubMed

    Das, Uday; Naskar, Jishu; Mukherjee, Alok Kumar

    2015-12-01

    A terminally protected acyclic tetrapeptide has been synthesized, and the crystal structure of its hydrated form, Boc-Tyr-Aib-Tyr-Ile-OMe·2H2O (1), has been determined directly from powder X-ray diffraction data. The backbone conformation of tetrapeptide (1) exhibiting two consecutive β-turns is stabilized by two 4 → 1 intramolecular N-H · · · O hydrogen bonds. In the crystalline state, the tetrapeptide molecules are assembled through water-mediated O-H · · · O hydrogen bonds to form two-dimensional molecular sheets, which are further linked by intermolecular C-H · · · O hydrogen bonds into a three-dimensional supramolecular framework. The molecular electrostatic potential (MEP) surface of (1) has been used to supplement the crystallographic observations. The nature of intermolecular interactions in (1) has been analyzed quantitatively through the Hirshfeld surface and two-dimensional fingerprint plot. The DFT optimized molecular geometry of (1) agrees closely with that obtained from the X-ray structure analysis. The present structure analysis of Boc-Tyr-Aib-Tyr-Ile-OMe·2H2 O (1) represents a case where ab-initio crystal structure of an acyclic tetrapeptide with considerable molecular flexibility has been accomplished from laboratory X-ray powder diffraction data. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  6. Electron- and positron-molecule scattering: development of the molecular convergent close-coupling method

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Fursa, Dmitry V.; Savage, Jeremy S.; Bray, Igor

    2017-06-01

    Starting from first principles, this tutorial describes the development of the adiabatic-nuclei convergent close-coupling (CCC) method and its application to electron and (single-centre) positron scattering from diatomic molecules. We give full details of the single-centre expansion CCC method, namely the formulation of the molecular target structure; solving the momentum-space coupled-channel Lippmann-Schwinger equation; deriving adiabatic-nuclei cross sections and calculating V-matrix elements. Selected results are presented for electron and positron scattering from molecular hydrogen H2 and electron scattering from the vibrationally excited molecular hydrogen ion {{{H}}}2+ and its isotopologues (D2 +, {{{T}}}2+, HD+, HT+ and TD+). Convergence in both the close-coupling (target state) and projectile partial-wave expansions of fixed-nuclei electron- and positron-molecule scattering calculations is demonstrated over a broad energy-range and discussed in detail. In general, the CCC results are in good agreement with experiments.

  7. Methyl (4-bromo-benzene-sulfonamido)acetate.

    PubMed

    Arshad, Muhammad Nadeem; Tahir, M Nawaz; Khan, Islam Ullah; Ahmad, Ejaz; Shafiq, Muhammad

    2008-11-20

    The title compound, C(9)H(10)BrNO(4)S, is an inter-mediate for the formation of benzothia-zines. In the crystal structure, inter-molecular N-H⋯O hydrogen bonds link the mol-ecules, forming R(2) (2)(10) ring motifs, which are linked into a two-dimensional polymeric sheet through inter-molecular C-H⋯O hydrogen bonds.

  8. Determination of Physical and Chemical Structure of New High-Temperature Polymers

    DTIC Science & Technology

    toward determination of the molecular weight of both perfluorosebacate and perfluoroalkyl ether-linked polymers. In addition, solubility, thermal...thermal properties, and molecular weight. Several samples of the perfluoroalkyl bibenzoxazole polymers were examined. Considerable effort was directed...stability and subambient DTA of the perfluoroalkyl ether- linked polymers (elastomers) were investigated. Samples of the aromatic heterocyclic-ladder type

  9. Genetics Home Reference: immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome

    MedlinePlus

    ... Health Conditions IPEX syndrome Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome Printable PDF Open All Close All ... expand/collapse boxes. Description Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome primarily affects males and is ...

  10. Is the kinetoplast DNA a percolating network of linked rings at its critical point?

    NASA Astrophysics Data System (ADS)

    Michieletto, Davide; Marenduzzo, Davide; Orlandini, Enzo

    2015-05-01

    In this work we present a computational study of the kinetoplast genome, modelled as a large number of semiflexible unknotted loops, which are allowed to link with each other. As the DNA density increases, the systems shows a percolation transition between a gas of unlinked rings and a network of linked loops which spans the whole system. Close to the percolation transition, we find that the mean valency of the network, i.e. the average number of loops which are linked to any one loop, is around three, as found experimentally for the kinetoplast DNA (kDNA). Even more importantly, by simulating the digestion of the network by a restriction enzyme, we show that the distribution of oligomers, i.e. structures formed by a few loops which remain linked after digestion, quantitatively matches experimental data obtained from gel electrophoresis, provided that the density is, once again, close to the percolation transition. With respect to previous work, our analysis builds on a reduced number of assumptions, yet can still fully explain the experimental data. Our findings suggest that the kDNA can be viewed as a network of linked loops positioned very close to the percolation transition, and we discuss the possible biological implications of this remarkable fact.

  11. Structural analysis of chromosomal rearrangements associated with the developmental mutations Ph, W19H, and Rw on mouse chromosome 5.

    PubMed Central

    Nagle, D L; Martin-DeLeon, P; Hough, R B; Bućan, M

    1994-01-01

    We are studying the chromosomal structure of three developmental mutations, dominant spotting (W), patch (Ph), and rump white (Rw) on mouse chromosome 5. These mutations are clustered in a region containing three genes encoding tyrosine kinase receptors (Kit, Pdgfra, and Flk1). Using probes for these genes and for a closely linked locus, D5Mn125, we established a high-resolution physical map covering approximately 2.8 Mb. The entire chromosomal segment mapped in this study is deleted in the W19H mutation. The map indicates the position of the Ph deletion, which encompasses not more than 400 kb around and including the Pdgfra gene. The map also places the distal breakpoint of the Rw inversion to a limited chromosomal segment between Kit and Pdgfra. In light of the structure of the Ph-W-Rw region, we interpret the previously published complementation analyses as indicating that the pigmentation defect in Rw/+ heterozygotes could be due to the disruption of Kit and/or Pdgfra regulatory sequences, whereas the gene(s) responsible for the recessive lethality of Rw/Rw embryos is not closely linked to the Ph and W loci and maps proximally to the W19H deletion. The structural analysis of chromosomal rearrangements associated with W19H, Ph, and Rw combined with the high-resolution physical mapping points the way toward the definition of these mutations in molecular terms and isolation of homologous genes on human chromosome 4. Images PMID:8041773

  12. Zika Virus: An Emerging Worldwide Threat

    PubMed Central

    Rather, Irfan A.; Lone, Jameel B.; Bajpai, Vivek K.; Paek, Woon K.; Lim, Jeongheui

    2017-01-01

    ZIKA virus (ZIKV) poses a severe threat to the world. Recent outbreaks of ZIKV after 2007 along with its quick transmission have made this virus a matter of international concern. The virus shows symptoms that are similar to those caused in the wake of dengue virus (DENV) and other flaviviruses, which makes it difficult to discern the viral infection. Diagnosis is further complicated as the virus cross-reacts with antibodies of other viruses. Currently, molecular diagnosis of the virus is being performed by RT-PCR and IgM-captured enzyme-linked immunosorbent assay (MAC-ELISA). The real brunt of the virus is, however, borne by children and adults alike. Case studies of the ZIKV outbreaks in the French Polynesia and other places have suggested that there is a close link between the ZIKV and Gullian-Barre syndrome (GBS). The GBS has closely followed in areas facing ZIKV outbreaks. Although solid evidence is yet to emerge, clinical data integration has revealed a large number of ZIKV patients having GBS. Moreover, the amniotic fluids, blood cord, and miscarriage tissues of mothers have been detected with ZIKV, which indicates that the virus either gets transferred from mother to fetus or seeks direct entry in the fetus, causing microcephaly and other brain anomalies in the newborn babies. Studies on mice have confirmed the link between the ZIKV infection during pregnancy and microcephaly in babies. Reports have highlighted the sexual transmission of the ZIKV, as it has been detected in the semen and saliva of affected persons. The intensity with which the ZIKA is spreading can collapse the health sector of several countries, which are poor. A comprehensive strategy is a need of an hour to combat this virus so as to prevent its transmission and avert the looming threat. At the same time, more research on the cure of the ZIKV is imperative. PMID:28798738

  13. Zika Virus: An Emerging Worldwide Threat.

    PubMed

    Rather, Irfan A; Lone, Jameel B; Bajpai, Vivek K; Paek, Woon K; Lim, Jeongheui

    2017-01-01

    ZIKA virus (ZIKV) poses a severe threat to the world. Recent outbreaks of ZIKV after 2007 along with its quick transmission have made this virus a matter of international concern. The virus shows symptoms that are similar to those caused in the wake of dengue virus (DENV) and other flaviviruses, which makes it difficult to discern the viral infection. Diagnosis is further complicated as the virus cross-reacts with antibodies of other viruses. Currently, molecular diagnosis of the virus is being performed by RT-PCR and IgM-captured enzyme-linked immunosorbent assay (MAC-ELISA). The real brunt of the virus is, however, borne by children and adults alike. Case studies of the ZIKV outbreaks in the French Polynesia and other places have suggested that there is a close link between the ZIKV and Gullian-Barre syndrome (GBS). The GBS has closely followed in areas facing ZIKV outbreaks. Although solid evidence is yet to emerge, clinical data integration has revealed a large number of ZIKV patients having GBS. Moreover, the amniotic fluids, blood cord, and miscarriage tissues of mothers have been detected with ZIKV, which indicates that the virus either gets transferred from mother to fetus or seeks direct entry in the fetus, causing microcephaly and other brain anomalies in the newborn babies. Studies on mice have confirmed the link between the ZIKV infection during pregnancy and microcephaly in babies. Reports have highlighted the sexual transmission of the ZIKV, as it has been detected in the semen and saliva of affected persons. The intensity with which the ZIKA is spreading can collapse the health sector of several countries, which are poor. A comprehensive strategy is a need of an hour to combat this virus so as to prevent its transmission and avert the looming threat. At the same time, more research on the cure of the ZIKV is imperative.

  14. Comparison of the Deoxyribonucleic Acid Molecular Weights and Homologies of Plasmids Conferring Linked Resistance to Streptomycin and Sulfonamides

    PubMed Central

    Barth, Peter T.; Grinter, Nigel J.

    1974-01-01

    Bacterial strains showing linked resistance to streptomycin (Sm) and sulfonamides (Su) were chosen representing a wide taxonomic and geographical range. Their SmSu resistances were transferred to Escherichia coli K-12 and then plasmid deoxyribonucleic acid (DNA) was isolated by ethidium bromide CsCl centrifugation. The plasmid DNA was examined by electron microscopy and analyzed by sedimentation through 5 to 20% neutral sucrose gradients. Plasmid DNA from strains having transmissible SmSu resistance consisted of two or three molecular species, one of which had a molecular mass of about 5.7 Mdal (106 daltons), the others varying between 20 to 60 Mdal. By using transformation or F′ mobilization, we isolated the SmSu-resistance determinant from any fellow resident plasmids in each strain and again isolated the plasmid DNA. Cosedimentation of each of these with a differently labeled reference plasmid DNA (R300B) showed 9 out of 12 of the plasmids to have a molecular mass not significantly different from the reference (5.7 Mdal); two others were 6.3 and 9.2 Mdal, but PB165 consisted of three plasmids of 7.4, 14.7, and 21.4 Mdal. Three separate isolations of the SmSu determinant from PB165 gave the same three plasmids, which we conclude may be monomer, dimer, and trimer, respectively. DNA-DNA hybridizations at 75 C demonstrated 80 to 93% homology between reference R300B DNA and each isolated SmSu plasmid DNA, except for the 9.2-Mdal plasmid which had 45% homology and PB165 which had 35%. All the SmSu plasmids were present as multiple copies (about 10) per chromosome. The conjugative plasmid of R300 (present as 1.3 copies per chromosome) has been shown to have negligible effect on the number of copies of its accompanying SmSu plasmid R300B. We conclude that the SmSu plasmids are closely related and probably have a common evolutionary origin. Images PMID:4616941

  15. OpenSees Days 2016 - Registration Now Closed | PEER News

    Science.gov Websites

    education FAQs links News News OpenSees Days 2016 - Registration Now Closed PEER News Alerts RSS Industry News Feed News Archive Media Requests Site Map Search OpenSees Days 2016 - Registration Now Closed

  16. Evolution of microgastropods (Ellobioidea, Carychiidae): integrating taxonomic, phylogenetic and evolutionary hypotheses

    PubMed Central

    2013-01-01

    Background Current biodiversity patterns are considered largely the result of past climatic and tectonic changes. In an integrative approach, we combine taxonomic and phylogenetic hypotheses to analyze temporal and geographic diversification of epigean (Carychium) and subterranean (Zospeum) evolutionary lineages in Carychiidae (Eupulmonata, Ellobioidea). We explicitly test three hypotheses: 1) morphospecies encompass unrecognized evolutionary lineages, 2) limited dispersal results in a close genetic relationship of geographical proximally distributed taxa and 3) major climatic and tectonic events had an impact on lineage diversification within Carychiidae. Results Initial morphospecies assignments were investigated by different molecular delimitation approaches (threshold, ABGD, GMYC and SP). Despite a conservative delimitation strategy, carychiid morphospecies comprise a great number of unrecognized evolutionary lineages. We attribute this phenomenon to historic underestimation of morphological stasis and phenotypic variability amongst lineages. The first molecular phylogenetic hypothesis for the Carychiidae (based on COI, 16S and H3) reveals Carychium and Zospeum to be reciprocally monophyletic. Geographical proximally distributed lineages are often closely related. The temporal diversification of Carychiidae is best described by a constant rate model of diversification. The evolution of Carychiidae is characterized by relatively few (long distance) colonization events. We find support for an Asian origin of Carychium. Zospeum may have arrived in Europe before extant members of Carychium. Distantly related Carychium clades inhabit a wide spectrum of the available bioclimatic niche and demonstrate considerable niche overlap. Conclusions Carychiid taxonomy is in dire need of revision. An inferred wide distribution and variable phenotype suggest underestimated diversity in Zospeum. Several Carychium morphospecies are results of past taxonomic lumping. By collecting populations at their type locality, molecular investigations are able to link historic morphospecies assignments to their respective evolutionary lineage. We propose that rare founder populations initially colonized a continent or cave system. Subsequent passive dispersal into adjacent areas led to in situ pan-continental or mountain range diversifications. Major environmental changes did not influence carychiid diversification. However, certain molecular delimitation methods indicated a recent decrease in diversification rate. We attribute this decrease to protracted speciation. PMID:23343473

  17. A model for self-diffusion of guanidinium-based ionic liquids: a molecular simulation study.

    PubMed

    Klähn, Marco; Seduraman, Abirami; Wu, Ping

    2008-11-06

    We propose a novel self-diffusion model for ionic liquids on an atomic level of detail. The model is derived from molecular dynamics simulations of guanidinium-based ionic liquids (GILs) as a model case. The simulations are based on an empirical molecular mechanical force field, which has been developed in our preceding work, and it relies on the charge distribution in the actual liquid. The simulated GILs consist of acyclic and cyclic cations that were paired with nitrate and perchlorate anions. Self-diffusion coefficients are calculated at different temperatures from which diffusive activation energies between 32-40 kJ/mol are derived. Vaporization enthalpies between 174-212 kJ/mol are calculated, and their strong connection with diffusive activation energies is demonstrated. An observed formation of cavities in GILs of up to 6.5% of the total volume does not facilitate self-diffusion. Instead, the diffusion of ions is found to be determined primarily by interactions with their immediate environment via electrostatic attraction between cation hydrogen and anion oxygen atoms. The calculated average time between single diffusive transitions varies between 58-107 ps and determines the speed of diffusion, in contrast to diffusive displacement distances, which were found to be similar in all simulated GILs. All simulations indicate that ions diffuse by using a brachiation type of movement: a diffusive transition is initiated by cleaving close contacts to a coordinated counterion, after which the ion diffuses only about 2 A until new close contacts are formed with another counterion in its vicinity. The proposed diffusion model links all calculated energetic and dynamic properties of GILs consistently and explains their molecular origin. The validity of the model is confirmed by providing an explanation for the variation of measured ratios of self-diffusion coefficients of cations and paired anions over a wide range of values, encompassing various ionic liquid classes as well as the simulated GILs. The proposed diffusion model facilitates the qualitative a priori prediction of the impact of ion modifications on the diffusive characteristics of new ionic liquids.

  18. Metabolome of human gut microbiome is predictive of host dysbiosis.

    PubMed

    Larsen, Peter E; Dai, Yang

    2015-01-01

    Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome's interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome-host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  19. Genetic heterogeneity in psoriasis vulgaris based on linkage analyses of a large family material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahlstroem, J.; Swanbeck, G.; Inerot, A.

    1994-09-01

    Information on psoriasis among parents and siblings in 14,008 families has been collected. On the basis of this material, evidence for monogenetic autosomal recessive inheritance of psoriasis has recently been presented. Indications from more than one type of non-pustular psoriasis has been obtained from the population genetic data. Molecular genetic linkage analysis of psoriasis to a number of polymorphic genetic markers for a large number of families has been made. It is apparent that there is genetic heterogeneity in a psoriasis population with regard to psoriasis genes. Using the computer program Linkage 5.0 and a formula for heterogeneity, a lodscoremore » over 3.0 for one locus has been obtained. This locus has further been confirmed by several other markers in the vicinity. The locus found is linked to slightly over half of the families, indicating that there are more genetically independent types of psoriasis. The age at onset of those families that are apparently linked to this locus have a slightly higher age at onset than those not linked to that locus but with a considerable overlap. In spite of close coverage of the whole chromosomes number 6 and 17, no linkage has been found in this regions. This indicates that neither the HLA region nor the region earlier found to be involved in one family with psoriasis are primarily involved in our families.« less

  20. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Dai, Yang

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  1. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter E.; Dai, Yang

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. However, the community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependentmore » on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  2. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE PAGES

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  3. Molecular dynamics simulations of viral RNA polymerases link conserved and correlated motions of functional elements to fidelity

    PubMed Central

    Moustafa, Ibrahim M.; Shen, Hujun; Morton, Brandon; Colina, Coray M.; Cameron, Craig E.

    2011-01-01

    The viral RNA-dependent RNA polymerase (RdRp) is essential for multiplication of all RNA viruses. The sequence diversity of an RNA virus population contributes to its ability to infect the host. This diversity emanates from errors made by the RdRp during RNA synthesis. The physical basis for RdRp fidelity is unclear but is linked to conformational changes occurring during the nucleotide-addition cycle. To understand RdRp dynamics that might influence RdRp function, we have analyzed all-atom molecular dynamics (MD) simulations on the nanosecond timescale of four RdRps from the picornavirus family that exhibit 30–74% sequence identity. Principal component analysis showed that the major motions observed during the simulations derived from conserved structural motifs and regions of known function. Dynamics of residues participating in the same biochemical property, for example RNA binding, nucleotide binding or catalysis, were correlated even when spatially distant on the RdRp structure. The conserved and correlated dynamics of functional, structural elements suggest co-evolution of dynamics with structure and function of the RdRp. Crystal structures of all picornavirus RdRps exhibit a template-nascent RNA duplex channel too small to fully accommodate duplex RNA. Simulations revealed opening and closing motions of the RNA and NTP channels, which might be relevant to NTP entry, PPi exit and translocation. A role for nanosecond timescale dynamics in RdRp fidelity is supported by altered dynamics of the high-fidelity G64S derivative of PV RdRp relative to wild-type enzyme. PMID:21575642

  4. Closed-Loop Analysis of Soft Decisions for Serial Links

    NASA Technical Reports Server (NTRS)

    Lansdowne, Chatwin A.; Steele, Glen F.; Zucha, Joan P.; Schlesinger, Adam M.

    2013-01-01

    We describe the benefit of using closed-loop measurements for a radio receiver paired with a counterpart transmitter. We show that real-time analysis of the soft decision output of a receiver can provide rich and relevant insight far beyond the traditional hard-decision bit error rate (BER) test statistic. We describe a Soft Decision Analyzer (SDA) implementation for closed-loop measurements on single- or dual- (orthogonal) channel serial data communication links. The analyzer has been used to identify, quantify, and prioritize contributors to implementation loss in live-time during the development of software defined radios. This test technique gains importance as modern receivers are providing soft decision symbol synchronization as radio links are challenged to push more data and more protocol overhead through noisier channels, and software-defined radios (SDRs) use error-correction codes that approach Shannon's theoretical limit of performance.

  5. Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen.

    PubMed

    Yu, Guotai; Zhang, Qijun; Friesen, Timothy L; Rouse, Matthew N; Jin, Yue; Zhong, Shaobin; Rasmussen, Jack B; Lagudah, Evans S; Xu, Steven S

    2015-03-01

    Mapping studies confirm that resistance to Ug99 race of stem rust pathogen in Aegilops tauschii accession Clae 25 is conditioned by Sr46 and markers linked to the gene were developed for marker-assisted selection. The race TTKSK (Ug99) of Puccinia graminis f. sp. tritici, the causal pathogen for wheat stem rust, is considered as a major threat to global wheat production. To address this threat, researchers across the world have been devoted to identifying TTKSK-resistant genes. Here, we report the identification and mapping of a stem rust resistance gene in Aegilops tauschii accession CIae 25 that confers resistance to TTKSK and the development of molecular markers for the gene. An F2 population of 710 plants from an Ae. tauschii cross CIae 25 × AL8/78 were first evaluated against race TPMKC. A set of 14 resistant and 116 susceptible F2:3 families from the F2 plants were then evaluated for their reactions to TTKSK. Based on the tests, 179 homozygous susceptible F2 plants were selected as the mapping population to identify the simple sequence repeat (SSR) and sequence tagged site (STS) markers linked to the gene by bulk segregant analysis. A dominant stem rust resistance gene was identified and mapped with 16 SSR and five new STS markers to the deletion bin 2DS5-0.47-1.00 of chromosome arm 2DS in which Sr46 was located. Molecular marker and stem rust tests on CIae 25 and two Ae. tauschii accessions carrying Sr46 confirmed that the gene in CIae 25 is Sr46. This study also demonstrated that Sr46 is temperature-sensitive being less effective at low temperatures. The marker validation indicated that two closely linked markers Xgwm210 and Xwmc111 can be used for marker-assisted selection of Sr46 in wheat breeding programs.

  6. Regulator of G Protein Signaling 7 (RGS7) Can Exist in a Homo-oligomeric Form That Is Regulated by Gαo and R7-binding Protein.

    PubMed

    Tayou, Junior; Wang, Qiang; Jang, Geeng-Fu; Pronin, Alexey N; Orlandi, Cesare; Martemyanov, Kirill A; Crabb, John W; Slepak, Vladlen Z

    2016-04-22

    RGS (regulator of G protein signaling) proteins of the R7 subfamily (RGS6, -7, -9, and -11) are highly expressed in neurons where they regulate many physiological processes. R7 RGS proteins contain several distinct domains and form obligatory dimers with the atypical Gβ subunit, Gβ5 They also interact with other proteins such as R7-binding protein, R9-anchoring protein, and the orphan receptors GPR158 and GPR179. These interactions facilitate plasma membrane targeting and stability of R7 proteins and modulate their activity. Here, we investigated RGS7 complexes using in situ chemical cross-linking. We found that in mouse brain and transfected cells cross-linking causes formation of distinct RGS7 complexes. One of the products had the apparent molecular mass of ∼150 kDa on SDS-PAGE and did not contain Gβ5 Mass spectrometry analysis showed no other proteins to be present within the 150-kDa complex in the amount close to stoichiometric with RGS7. This finding suggested that RGS7 could form a homo-oligomer. Indeed, co-immunoprecipitation of differentially tagged RGS7 constructs, with or without chemical cross-linking, demonstrated RGS7 self-association. RGS7-RGS7 interaction required the DEP domain but not the RGS and DHEX domains or the Gβ5 subunit. Using transfected cells and knock-out mice, we demonstrated that R7-binding protein had a strong inhibitory effect on homo-oligomerization of RGS7. In contrast, our data indicated that GPR158 could bind to the RGS7 homo-oligomer without causing its dissociation. Co-expression of constitutively active Gαo prevented the RGS7-RGS7 interaction. These results reveal the existence of RGS protein homo-oligomers and show regulation of their assembly by R7 RGS-binding partners. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations

    PubMed Central

    Liu, Lu Tian; Xu, Yan; Tang, Pei

    2010-01-01

    Inhibition of N-methyl-D-aspartate (NMDA) receptors has been viewed as a primary cause of xenon anesthesia, yet the mechanism is unclear. Here, we investigated interactions between xenon and the ligand-binding domain (LBD) of a NMDA receptor and examined xenon-induced structural and dynamical changes that are relevant to functional changes of the NMDA receptor. Several comparative molecular dynamics simulations were performed on two X-ray structures representing the open- and closed-cleft LBD of the NMDA receptor. We identified plausible xenon action sites in the LBD, including those nearby agonist sites, in the hinge region, and at the interface between two subunits. The xenon binding energy varies from −5.3 to −0.7 kcal/mol. Xenon's effect on the NMDA receptor is conformation-dependent and is produced through both competitive and non-competitive mechanisms. Xenon can promote cleft opening in the absence of agonists and consequently stabilizes the closed channel. Xenon can also bind at the interface of two subunits, alter the inter-subunit interaction, and lead to a reduction of the distance between GT-links. This reduction corresponds to a rearrangement of the channel toward a direction of pore size decreasing, implying a closed or desensitized channel. In addition to these non-competitive actions, xenon was found to weaken the glutamate binding, which could lead to low agonist efficacy and appear as competitive inhibition. PMID:20560662

  8. Characterisation of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker-assisted selection.

    PubMed

    Bariana, H. S.; Brown, G. N.; Ahmed, N. U.; Khatkar, S.; Conner, R. L.; Wellings, C. R.; Haley, S.; Sharp, P. J.; Laroche, A.

    2002-02-01

    Stripe rust resistance was identified in Triticum vavilovii( T. vaviloviiAus22498)-derived Russian wheat aphid (RWA)-resistant germplasm. Inheritance studies indicated monogenic control of resistance. The resistance gene was tentatively designated as Yrvav and was located on chromosome 1B by monosomic analysis. A close association (1.5+/-0.9% recombination) of Yrvav with a T. vavilovii-derived gliadin allele ( Gli-B1vav) placed it in chromosome arm 1BS. Yrvavwas allelic with Yr10. Tests with Yr10 avirulent and virulent pathotypes showed that Yrvav and Yr10 possess identical pathogenic specificity. Yrvav and Yr10 showed close genetic associations with alternate alleles at the Xpsp3000(microsatellite marker), Gli-B1 and Rg1 loci. Based on these observations Yrvav was named as Yr10vav. The close association between Xpsp3000 and Gli-B1 was also confirmed. The Yr10vav-linked Xpsp3000 allele (285 bp) was not present in 65 Australian cultivars, whereas seven Australian wheats lacking Yr10 carried the same Xpsp3000 allele (260 bp) as Yr10carrying wheat cultivar Moro. Xpsp3000 and/or Gli-B1 could be used in marker-assisted selection for pyramiding Yr10vavor Yr10 with other stripe rust resistance genes. Yr10vav was inherited independently of the T. vavilovii-derived RWA resistance.

  9. Numerical simulation by the molecular collision theory of two-phase mixture explosion characteristics in closed or vented vessels

    NASA Astrophysics Data System (ADS)

    Pascaud, J. M.; Brossard, J.; Lombard, J. M.

    1999-09-01

    The aim of this work consists in presenting a simple modelling (the molecular collision theory), easily usable in an industrial environment in order to predict the evolution of thermodynamical characteristics of the combustion of two-phase mixtures in a closed or a vented vessel. Basic characteristics of the modelling have been developed for ignition and combustion of propulsive powders and adapted with appropriate parameters linked to simplified kinetics. A simple representation of the combustion phenomena based on energy transfers and the action of specific molecules is presented. The model is generalized to various mixtures such as dust suspensions, liquid fuel drops and hybrid mixtures composed of dust and a gaseous supply such as methane or propane in the general case of vented explosions. The pressure venting due to the vent breaking is calculated from thermodynamical characteristics given by the model and taking into account, the mass rate of discharge of the different products deduced from the standard orifice equations. The application conditions determine the fuel ratio of the used mixtures, the nature of the chemical kinetics and the calculation of a universal set of parameters. The model allows to study the influence of the fuel concentration and the supply of gaseous additives, the influence of the vessel volume (2400ell leq V_bleq 250 000ell) and the influence of the venting pressure or the vent area. The first results have been compared with various experimental works available for two phase mixtures and indicate quite correct predictions.

  10. Nonequilibrium Chromosome Looping via Molecular Slip Links

    NASA Astrophysics Data System (ADS)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  11. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    PubMed

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  12. Re-Examination of Mixed Media Communication: The Impact of Voice, Data Link, and Mixed Air Traffic Control Environments on the Flight Deck

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa; McGann, Alison; Mackintosh, Margaret-Anne; Lozito, Sandra; Ashford, Rose (Technical Monitor)

    2001-01-01

    A simulation in the B747-400 was conducted at NASA Ames Research Center that compared how crews handled voice and data link air traffic control (ATC) messages in a single medium versus a mixed voice and data link ATC environment The interval between ATC messages was also varied to examine the influence of time pressure in voice, data link, and mixed ATC environments. For messages sent via voice, transaction times were lengthened in the mixed media environment for closely spaced messages. The type of environment did not affect data link times. However, messages times were lengthened in both single and mixed-modality environments under time pressure. Closely spaced messages also increased the number of requests for clarification for voice messages in the mixed environment and review menu use for data link messages. Results indicated that when time pressure is introduced, the mix of voice and data link does not necessarily capitalize on the advantages of both media. These findings emphasize the need to develop procedures for managing communication in mixed voice and data link environments.

  13. Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation.

    PubMed

    Zheng, Wenjun; Hitchcock-DeGregori, Sarah E; Barua, Bipasha

    2016-10-01

    Tropomyosin (Tpm) is a two-chained α-helical coiled-coil protein that binds to filamentous actin (F-actin), and regulates its interactions with myosin by occupying three average positions on F-actin (blocked, closed, and open). Mutations in the Tpm are linked to heart diseases including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). To elucidate the molecular mechanisms of Tpm mutations (including DCM mutation E54K, HCM mutations E62Q, A63V, K70T, V95A, D175N, E180G, L185R, E192K, and a designed synthetic mutation D137L) in terms of their effects on Tpm flexibility and its interactions with F-actin, we conducted extensive molecular dynamics simulations for the wild-type and mutant Tpm in complex with F-actin (total simulation time 160 ns per mutant). The mutants exhibited distinct changes (i.e., increase or decrease) in the overall and local flexibility of the Tpm coiled-coil, with each mutation causing both local and long-range modifications of the Tpm flexibility. In addition, our binding calculations revealed weakened Tpm-F-actin interactions (except for L185R, D137L and A63V) involving five periods of Tpm, which correlate with elevated fluctuation of Tpm relative to the blocked position on F-actin that may lead to easier activation and increased Ca 2+ -sensitivity. We also simulated the αβ/βα-Tpm heterodimer in comparison with the αα-Tpm homodimer, which revealed greater flexibility and weaker actin binding in the heterodimer. Our findings are consistent with a complex mechanism underlying how different Tpm mutations perturb the Tpm function in distinct ways (e.g., by affecting specific sites of Tpm), which bear no simple links to the disease phenotypes (e.g., HCM vs. DCM).

  14. Recombination changes at the boundaries of fully and partially sex-linked regions between closely related Silene species pairs

    PubMed Central

    Campos, J L; Qiu, S; Guirao-Rico, S; Bergero, R; Charlesworth, D

    2017-01-01

    The establishment of a region of suppressed recombination is a critical change during sex chromosome evolution, leading to such properties as Y (and W) chromosome genetic degeneration, accumulation of repetitive sequences and heteromorphism. Although chromosome inversions can cause large regions to have suppressed recombination, and inversions are sometimes involved in sex chromosome evolution, gradual expansion of the non-recombining region could potentially sometimes occur. We here test whether closer linkage has recently evolved between the sex-determining region and several genes that are partially sex-linked in Silene latifolia, using Silene dioica, a closely related dioecious plants whose XY sex chromosome system is inherited from a common ancestor. The S. latifolia pseudoautosomal region (PAR) includes several genes extremely closely linked to the fully Y-linked region. These genes were added to an ancestral PAR of the sex chromosome pair in two distinct events probably involving translocations of autosomal genome regions causing multiple genes to become partially sex-linked. Close linkage with the PAR boundary must have evolved since these additions, because some genes added in both events now show almost complete sex linkage in S. latifolia. We compared diversity patterns of five such S. latifolia PAR boundary genes with their orthologues in S. dioica, including all three regions of the PAR (one gene that was in the ancestral PAR and two from each of the added regions). The results suggest recent recombination suppression in S. latifolia, since its split from S. dioica. PMID:27827389

  15. Moving Contact Lines: Linking Molecular Dynamics and Continuum-Scale Modeling.

    PubMed

    Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K

    2018-05-17

    Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.

  16. Evidence for tyrosine-linked glycosaminoglycan in a bacterial surface protein.

    PubMed

    Peters, J; Rudolf, S; Oschkinat, H; Mengele, R; Sumper, M; Kellermann, J; Lottspeich, F; Baumeister, W

    1992-04-01

    The S-layer protein of Acetogenium kivui was subjected to proteolysis with different proteases and several high molecular mass glycosaminoglycan peptides containing glucose, galactosamine and an unidentified sugar-related component were separated by molecular sieve chromatography and reversed-phase HPLC and subjected to N-terminal sequence analysis. By methylation analysis glucose was found to be uniformly 1,6-linked, whereas galactosamine was exclusively 1,4-linked. Hydrazinolysis and subsequent amino-acid analysis as well as two-dimensional NMR spectroscopy were used to demonstrate that in these peptides carbohydrate was covalently linked to tyrosine. As all of the four Tyr-glycosylation sites were found to be preceded by valine, a new recognition sequence for glycosylation is suggested.

  17. A cybertaxonomic revision of the new dung beetle tribe Parachoriini (Coleoptera: Scarabaeidae: Scarabaeinae) and its phylogenetic assessment using molecular and morphological data.

    PubMed

    Tarasov, Sergei

    2017-10-03

    Two Oriental dung beetle genera: Parachorius Harold, 1873 and Cassolus Sharp, 1875 have long had an ambiguous tribal position in Scarabaeinae (Coleoptera: Scarabaeidae), but have never been considered as closely related. A recently discovered species representing the morphological link between the two genera gave a hint to their possible close affiliation. To assess phylogenetic and taxonomic placement of these genera, I conducted phylogenetic analyses of global dung beetle samples using morphological (134 taxa, 232 characters) and molecular (551 terminals, 8 gene regions) data. Both morphological and molecular analyses strongly support the monophyly of Parachorius + Cassolus. This leads to the synonymy of Parachorius with Cassolus new synonymy, and resulted in the new generic concept for Parachorius. The isolated phylogenetic position of Parachorius and its morphological distinctiveness from all other known Scarabaeinae tribes suggest recognition of a new tribe, Parachoriini new tribe, to maintain the stability of tribal classification in dung beetles. Investigation of old and recent material of Parachorius revealed a large number of undescribed species and the need for a taxonomic revision of this genus. The revision of Parachorius, powered by the 3i cybertaxonomic tool, is presented in this study. The revised Parachorius is comprised of 19 species from the Oriental and southeastern Palaearctic Regions, of which seven are newly described (P. asymmetricus new species, P. bolavensis new species, P. longipenis new species, P. newthayerae new species, P. pseudojavanus new species, P. schuelkei new species, and P. solodovnikovi new species). Three species names in Parachorius are synonymized, namely, P. fungorum Kryzhanovsky & Medvedev, 1966 = P. krali Utsunomiya & Masumoto, 2001 new synonymy; P. thomsoni Harold, 1873 = P. lannathai Hanboonsong & Masumoto, 2001 new synonymy; and P. peninsularis (Arrow, 1907) = C. pongchaii Masumoto, 2001 new synonymy. Two species originally described in Cassolus (C. sumatranus and C. minutus) are transferred to the genus Panelus Lewis, 1895. The rank of the genus Macropanelus is lowered to a subgenus within Panelus (i.e. Panelus (Macropanelus) new status).

  18. PPAR-γ and Akt regulate GLUT1 and GLUT3 surface localization during Mycobacterium tuberculosis infection.

    PubMed

    Dasgupta, Shyamashree; Rai, Ramesh Chandra

    2018-03-01

    The success of Mycobacterium tuberculosis (Mtb) as a pathogen stems from its ability to manipulate the host macrophage towards increased lipid biogenesis and lipolysis inhibition. Inhibition of lipolysis requires augmented uptake of glucose into the host cell causing an upregulation of the glucose transporters GLUT1 and GLUT3 on the cell surface. Mechanism behind this upregulation of the GLUT proteins during Mtb infection is hitherto unknown and demands intensive investigation in order to understand the pathways linked with governing them. Our endeavor to investigate some of the key proteins that have been found to be affected during Mtb infection led us to investigate host molecular pathways such as Akt and PPAR-γ that remain closely associated with the survival of the bacilli by modulating the localization of glucose transporters GLUT1 and GLUT3.

  19. Properties of tetrahedral clusters and medium range order in GaN during rapid solidification

    NASA Astrophysics Data System (ADS)

    Gao, Tinghong; Li, Yidan; Yao, Zhenzhen; Hu, Xuechen; Xie, Quan

    2017-12-01

    The solidification process of liquid gallium nitride has been studied by molecular dynamics simulation using the Stillinger-Weber potential at cooling rate of 10 K/ps. The structural properties of gallium nitride during the rapid cooling process were investigated in detail by the radial distribution functions, Voronoi polyhedron index and the visualization technology. The amorphous structures were formed with many medium range order structures at 200 K. The <4 0 0 0> polyhedron as the main polyhedron was more stable than other polyhedron in GaN during the quenching process. The cubic and hexahedral medium range order structures were formed by the close link between <4 0 0 0> polyhedron. The cubic crystal structures grew up through the crystalline surface by a layer-by-layer method to become more stable structures during the quenching process.

  20. Vitellogenin in the honey bee brain: Atypical localization of a reproductive protein that promotes longevity.

    PubMed

    Münch, Daniel; Ihle, Kate E; Salmela, Heli; Amdam, Gro V

    2015-11-01

    In comparative gerontology, highly social insects such as honey bees (Apis mellifera) receive much attention due to very different and flexible aging patterns among closely related siblings. While experimental strategies that manipulate socio-environmental factors suggest a causative link between aging and social signals and behaviors, the molecular underpinnings of this linkage are less well understood. Here we study the atypical localization of the egg-yolk protein vitellogenin (Vg) in the brain of the honey bee. Vg is known to influence honey bee social regulation and aging rate. Our findings suggest that Vg immunoreactivity in the brain is specifically localized within the class of non-neuronal glial cells. We discuss how these results can help explain the socially-dependent aging rate of honey bees. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Immunohistochemical characterization of endometrial carcinomas: endometrioid, serous and clear cell adenocarcinomas in association with genetic analysis.

    PubMed

    Yasuda, Masanori

    2014-12-01

    Developments in immunohistochemistry, which are closely linked with the advances in the analyses of genetic abnormalities and their associated molecular disorders as early and late histogenetic events, have contributed greatly to the improvement of pathological diagnostic confirmation and validation. Immunohistochemistry has also generated great benefit to the innovation of therapeutic strategies for various kinds of cancers. In this article, the three representative histological types of corpus cancer, namely, endometrioid adenocarcinoma, serous adenocarcinoma and clear cell adenocarcinoma, will be histologically approached in association with their immunohistochemical profiles as well as genetic disorders. First, the focus will be on 'Conventional/prototypic features,' followed by 'Controversy over conventional histological subclassification,' and subsequently 'Tumorigenesis and re-subclassification'. © 2014 The Author. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  2. Silk Hydrogels of Tunable Structure and Viscoelastic Properties Using Different Chronological Orders of Genipin and Physical Cross-Linking.

    PubMed

    Elliott, Winston H; Bonani, Walter; Maniglio, Devid; Motta, Antonella; Tan, Wei; Migliaresi, Claudio

    2015-06-10

    Catering the hydrogel manufacturing process toward defined viscoelastic properties for intended biomedical use is important to hydrogel scaffolding function and cell differentiation. Silk fibroin hydrogels may undergo "physical" cross-linking through β-sheet crystallization during high pressure carbon dioxide treatment, or covalent "chemical" cross-linking by genipin. We demonstrate here that time-dependent mechanical properties are tunable in silk fibroin hydrogels by altering the chronological order of genipin cross-linking with β-sheet formation. Genipin cross-linking before β-sheet formation affects gelation mechanics through increased molecular weight, affecting gel morphology, and decreasing stiffness response. Alternately, genipin cross-linking after gelation anchored amorphous regions of the protein chain, and increasing stiffness. These differences are highlighted and validated through large amplitude oscillatory strain near physiologic levels, after incorporation of material characterization at molecular and micron length scales.

  3. Chemical cross-linking of the urease complex from Helicobacter pylori and analysis by Fourier transform ion cyclotron resonance mass spectrometry and molecular modeling

    NASA Astrophysics Data System (ADS)

    Carlsohn, Elisabet; Ångström, Jonas; Emmett, Mark R.; Marshall, Alan G.; Nilsson, Carol L.

    2004-05-01

    Chemical cross-linking of proteins is a well-established method for structural mapping of small protein complexes. When combined with mass spectrometry, cross-linking can reveal protein topology and identify contact sites between the peptide surfaces. When applied to surface-exposed proteins from pathogenic organisms, the method can reveal structural details that are useful in vaccine design. In order to investigate the possibilities of applying cross-linking on larger protein complexes, we selected the urease enzyme from Helicobacter pylori as a model. This membrane-associated protein complex consists of two subunits: [alpha] (26.5 kDa) and [beta] (61.7 kDa). Three ([alpha][beta]) heterodimers form a trimeric ([alpha][beta])3 assembly which further associates into a unique dodecameric 1.1 MDa complex composed of four ([alpha][beta])3 units. Cross-linked peptides from trypsin-digested urease complex were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and molecular modeling. Two potential cross-linked peptides (present in the cross-linked sample but undetectable in [alpha], [beta], and native complex) were assigned. Molecular modeling of urease [alpha][beta] complex and trimeric urease units ([alpha][beta])3 revealed a linkage site between the [alpha]-subunit and the [beta]-subunit, and an internal cross-linkage in the [beta]-subunit.

  4. Dynamic properties of molecular motors in burnt-bridge models

    NASA Astrophysics Data System (ADS)

    Artyomov, Maxim N.; Morozov, Alexander Yu; Pronina, Ekaterina; Kolomeisky, Anatoly B.

    2007-08-01

    Dynamic properties of molecular motors that fuel their motion by actively interacting with underlying molecular tracks are studied theoretically via discrete-state stochastic 'burnt-bridge' models. The transport of the particles is viewed as an effective diffusion along one-dimensional lattices with periodically distributed weak links. When an unbiased random walker passes the weak link it can be destroyed ('burned') with probability p, providing a bias in the motion of the molecular motor. We present a theoretical approach that allows one to calculate exactly all dynamic properties of motor proteins, such as velocity and dispersion, under general conditions. It is found that dispersion is a decreasing function of the concentration of bridges, while the dependence of dispersion on the burning probability is more complex. Our calculations also show a gap in dispersion for very low concentrations of weak links or for very low burning probabilities which indicates a dynamic phase transition between unbiased and biased diffusion regimes. Theoretical findings are supported by Monte Carlo computer simulations.

  5. Effects of Pectin Molecular Weight Changes on the Structure, Dynamics, and Polysaccharide Interactions of Primary Cell Walls of Arabidopsis thaliana: Insights from Solid-State NMR.

    PubMed

    Phyo, Pyae; Wang, Tuo; Xiao, Chaowen; Anderson, Charles T; Hong, Mei

    2017-09-11

    Significant cellulose-pectin interactions in plant cell walls have been reported recently based on 2D 13 C solid-state NMR spectra of intact cell walls, but how these interactions affect cell growth has not been probed. Here, we characterize two Arabidopsis thaliana lines with altered expression of the POLYGALACTURONASE INVOLVED IN EXPANSION1 (PGX1) gene, which encodes a polygalacturonase that cleaves homogalacturonan (HG). PGX1 AT plants overexpress PGX1, have HG with lower molecular weight, and grow larger, whereas pgx1-2 knockout plants have HG with higher molecular weight and grow smaller. Quantitative 13 C solid-state NMR spectra show that PGX1 AT cell walls have lower galacturonic acid and xylose contents and higher HG methyl esterification than controls, whereas high molecular weight pgx1-2 walls have similar galacturonic acid content and methyl esterification as controls. 1 H-transferred 13 C INEPT spectra indicate that the interfibrillar HG backbones are more aggregated whereas the RG-I side chains are more dispersed in PGX1 AT cell walls than in pgx1-2 walls. In contrast, the pectins that are close to cellulose become more mobile and have weaker cross peaks with cellulose in PGX1 AT walls than in pgx1-2 walls. Together, these results show that polygalacturonase-mediated plant growth is accompanied by increased esterification and decreased cross-linking of HG, increased aggregation of interfibrillar HG, and weaker HG-cellulose interactions. These structural and dynamical differences give molecular insights into how pectins influence wall dynamics during cell growth.

  6. Molecular features of biguanides required for targeting of mitochondrial respiratory complex I and activation of AMP-kinase.

    PubMed

    Bridges, Hannah R; Sirviö, Ville A; Agip, Ahmed-Noor A; Hirst, Judy

    2016-08-09

    The biguanides are a family of drugs with diverse clinical applications. Metformin, a widely used anti-hyperglycemic biguanide, suppresses mitochondrial respiration by inhibiting respiratory complex I. Phenformin, a related anti-hyperglycemic biguanide, also inhibits respiration, but proguanil, which is widely used for the prevention of malaria, does not. The molecular structures of phenformin and proguanil are closely related and both inhibit isolated complex I. Proguanil does not inhibit respiration in cells and mitochondria because it is unable to access complex I. The molecular features that determine which biguanides accumulate in mitochondria, enabling them to inhibit complex I in vivo, are not known. Here, a family of seven biguanides are used to reveal the molecular features that determine why phenformin enters mitochondria and inhibits respiration whereas proguanil does not. All seven biguanides inhibit isolated complex I, but only four of them inhibit respiration in cells and mitochondria. Direct conjugation of a phenyl group and bis-substitution of the biguanide moiety prevent uptake into mitochondria, irrespective of the compound hydrophobicity. This high selectivity suggests that biguanide uptake into mitochondria is protein mediated, and is not by passive diffusion. Only those biguanides that enter mitochondria and inhibit complex I activate AMP kinase, strengthening links between complex I and the downstream effects of biguanide treatments. Biguanides inhibit mitochondrial complex I, but specific molecular features control the uptake of substituted biguanides into mitochondria, so only some biguanides inhibit mitochondrial respiration in vivo. Biguanides with restricted intracellular access may be used to determine physiologically relevant targets of biguanide action, and for the rational design of substituted biguanides for diverse clinical applications.

  7. pH homeostasis links the nutrient sensing PKA/TORC1/Sch9 ménage-à-trois to stress tolerance and longevity.

    PubMed

    Deprez, Marie-Anne; Eskes, Elja; Wilms, Tobias; Ludovico, Paula; Winderickx, Joris

    2018-01-12

    The plasma membrane H + -ATPase Pma1 and the vacuolar V-ATPase act in close harmony to tightly control pH homeostasis, which is essential for a vast number of physiological processes. As these main two regulators of pH are responsive to the nutritional status of the cell, it seems evident that pH homeostasis acts in conjunction with nutrient-induced signalling pathways. Indeed, both PKA and the TORC1-Sch9 axis influence the proton pumping activity of the V-ATPase and possibly also of Pma1. In addition, it recently became clear that the proton acts as a second messenger to signal glucose availability via the V-ATPase to PKA and TORC1-Sch9. Given the prominent role of nutrient signalling in longevity, it is not surprising that pH homeostasis has been linked to ageing and longevity as well. A first indication is provided by acetic acid, whose uptake by the cell induces toxicity and affects longevity. Secondly, vacuolar acidity has been linked to autophagic processes, including mitophagy. In agreement with this, a decline in vacuolar acidity was shown to induce mitochondrial dysfunction and shorten lifespan. In addition, the asymmetric inheritance of Pma1 has been associated with replicative ageing and this again links to repercussions on vacuolar pH. Taken together, accumulating evidence indicates that pH homeostasis plays a prominent role in the determination of ageing and longevity, thereby providing new perspectives and avenues to explore the underlying molecular mechanisms.

  8. The Immature Fiber Mutant Phenotype of Cotton (Gossypium hirsutum) Is Linked to a 22-bp Frame-Shift Deletion in a Mitochondria Targeted Pentatricopeptide Repeat Gene.

    PubMed

    Thyssen, Gregory N; Fang, David D; Zeng, Linghe; Song, Xianliang; Delhom, Christopher D; Condon, Tracy L; Li, Ping; Kim, Hee Jin

    2016-06-01

    Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber (im) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes. Copyright © 2016 Thyssen et al.

  9. pH-Responsive Dimeric Zinc(II) Phthalocyanine in Mesoporous Silica Nanoparticles as an Activatable Nanophotosensitizing System for Photodynamic Therapy.

    PubMed

    Wong, Roy C H; Chow, Sun Y S; Zhao, Shirui; Fong, Wing-Ping; Ng, Dennis K P; Lo, Pui-Chi

    2017-07-19

    An acid-cleavable acetal-linked zinc(II) phthalocyanine dimer with an azido terminal group (cPc) was prepared and conjugated to alkyne-modified mesoporous silica nanoparticles via copper(I)-catalyzed alkyne-azide cycloaddition reaction. For comparison, an amine-linked analogue (nPc) was also prepared as a non-acid-cleavable counterpart. These dimeric phthalocyanines were significantly self-quenched due to the close proximity of the phthalocyanine units inside the mesopores, resulting in much weaker fluorescence emission and singlet oxygen generation, both in N,N-dimethylformamide and in phosphate-buffered saline (PBS), compared with the free molecular counterparts. Under acidic conditions in PBS, the cPc-encapsulated nanosystem was activated in terms of fluorescence emission and singlet oxygen production. After internalization into human colon adenocarcinoma HT29 cells, it exhibited much higher intracellular fluorescence and photocytotoxicity compared to the nanosystem entrapped with nPc. The activation of this nanosystem was also demonstrated in tumor-bearing nude mice. The intratumoral fluorescence intensity increased gradually over 24 h, while for the nPc counterpart the fluorescence remained very weak. The results suggest that this nanosystem serves as a promising activatable nanophotosensitizing agent for photodynamic therapy.

  10. In situ formation of leak-free polyethylene glycol (PEG) membranes in microfluidic fuel cells.

    PubMed

    Ho, W F; Lim, K M; Yang, K-L

    2016-11-29

    Membraneless microfluidic fuel cells operated under two co-laminar flows often face serious fuel cross-over problems, especially when flow rates are close to zero. In this study, we show that polyethylene glycol (PEG) monomers can be cross-linked inside microfluidic channels to form leak-free PEG membranes, which prevent mixing of two incompatible electrolyte solutions while allowing diffusion of certain molecules (e.g. glucose) and ions. By using PEG monomers of different molecular weights and cross-linking conditions, we are able to tailor selectivity of the membrane to allow passage of glucose while blocking larger molecules such as trypan blue. As a proof of principle, a microfluidic fuel cell with a PEG membrane and two incompatible electrolytes (acid and base) is demonstrated. Thanks to the leak-free nature of the PEG membrane, these two electrolytes do not mix together even at very slow flow rates. This microfluidic fuel cell is able to generate a voltage up to ∼450 mV from 10 mM of glucose with a flow rate of 20 μL min -1 . This microfluidic fuel cell is potentially useful as a miniature power source for many applications.

  11. Methyl (4-bromo­benzene­sulfonamido)acetate

    PubMed Central

    Arshad, Muhammad Nadeem; Tahir, M. Nawaz; Khan, Islam Ullah; Ahmad, Ejaz; Shafiq, Muhammad

    2008-01-01

    The title compound, C9H10BrNO4S, is an inter­mediate for the formation of benzothia­zines. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules, forming R 2 2(10) ring motifs, which are linked into a two-dimensional polymeric sheet through inter­molecular C—H⋯O hydrogen bonds. PMID:21581352

  12. Cross-linking and the molecular packing of corneal collagen

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

    1996-01-01

    We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

  13. Introducing Products to DoD Using Specifications and Standards

    DTIC Science & Technology

    2011-08-18

    to utilize the Product Introduction Tool. Search ~Favorites .S » Links ~Customize Links ~ EDS-NMCI ~Free Hotmail Product Introduction Process User...the Product Introduction Tool. Search ~Favorites .S » Links ~Customize Links ~ EDS-NMCI ~Free Hotmail Product Introduction Process User Pol icy...Links i1 EDS-NMCI ~ Free Hotmail i] I] Go ldentitify Categories/Subcategories Identify the category/subcategory that most closely covers your

  14. Linking patterns and processes of species diversification in the cone flies Strobilomyia (Diptera: Anthomyiidae).

    PubMed

    Sachet, Jean-Marie; Roques, Alain; Després, Laurence

    2006-12-01

    Phytophagous insects provide useful models for the study of ecological speciation. Much attention has been paid to host shifts, whereas situations where closely related lineages of insects use the same plant during different time periods have been relatively neglected in previous studies of insect diversification. Flies of the genus Strobilomyia are major pests of conifers in Eurasia and North America. They are specialized feeders in cones and seeds of Abies (fir), Larix (larch) ,and Picea (spruce). This close association is accompanied by a large number of sympatric Strobilomyia species coexisting within each tree genus. We constructed a molecular phylogeny with a 1320 base-pair fragment of mitochondrial DNA that demonstrated contrasting patterns of speciation in larch cone flies, as opposed to spruce and fir cone flies; this despite their comparable geographic distributions and similar resource quality of the host. Species diversity is the highest on larch, and speciation is primarily driven by within-host phenological shifts, followed by allopatric speciation during geographical expansion. By contrast, fewer species exploit spruce and fir, and within-host phenological shifts did not occur. This study illustrates within-host adaptive radiation through phenological shifts, a neglected mode of sympatric speciation.

  15. Differential susceptibility in spillover between interparental conflict and maternal parenting practices: evidence for OXTR and 5-HTT genes.

    PubMed

    Sturge-Apple, Melissa L; Cicchetti, Dante; Davies, Patrick T; Suor, Jennifer H

    2012-06-01

    Guided by the affective spillover hypothesis and the differential susceptibility to environmental influence frameworks, the present study examined how associations between interparental conflict and mothers' parenting practices were moderated by serotonin transporter (5-HTT) and oxytocin receptor (OXTR) genes. A sample of 201 mothers and their 2-year old child participated in a laboratory-based research assessment. Results supported differential susceptibility hypotheses within spillover frameworks. With respect to OXTR rs53576, mothers with the GG genotype showed greater differential maternal sensitivity across varying levels of interparental conflict. Mothers with one or two copies of the 5-HTTLPR S allele demonstrated differential susceptibility for both sensitive and harsh/punitive caregiving behaviors. Finally, analyses examined whether maternal depressive symptoms and emotional closeness to their child mediated the moderating effects. Findings suggest that maternal emotional closeness with their child indirectly linked OXTR with maternal sensitivity. The results highlight how molecular genetics may explain heterogeneity in spillover models with differential implications for specific parenting behaviors. Implications for clinicians and therapists working with maritally distressed parents are discussed. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  16. Effects of aging on serum levels of lipid molecular species as determined by lipidomics analysis in Japanese men and women.

    PubMed

    Kawanishi, Noriaki; Kato, Yuki; Yokozeki, Kyosuke; Sawada, Shuji; Sakurai, Ryota; Fujiwara, Yoshinori; Shinkai, Shoji; Goda, Nobuhito; Suzuki, Katsuhiko

    2018-06-06

    Aging is known to be associated with increased risk of lipid disorders related to the development of type 2 diabetes. Recent evidence revealed that change of lipid molecule species in blood is associated with the risk of type 2 diabetes. However, changes in lipid molecular species induced by aging are still unknown. We assessed the effects of age on the serum levels of lipid molecular species as determined by lipidomics analysis. Serum samples were collected from ten elderly men (71.7 ± 0.5 years old) and women (70.2 ± 1.0 years old), ten young men (23.9 ± 0.4 years old), and women (23.9 ± 0.7 years old). Serum levels of lipid molecular species were determined by liquid chromatography mass spectrometry-based lipidomics analysis. Our mass spectrometry analysis revealed increases in the levels of multiple triacylglycerol molecular species in the serum of elderly men and women. Moreover, serum levels of total ester-linked phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were increased by aging. In contrast, serum levels of specific ether-linked PC and PE molecular species were lower in elderly individuals than in young individuals. Our finding indicates that specific lipid molecular species, such as ether- and ester- linked phospholipids, may be selectively altered by aging.

  17. Identification of the bombesin receptor on murine and human cells by cross-linking experiments.

    PubMed

    Kris, R M; Hazan, R; Villines, J; Moody, T W; Schlessinger, J

    1987-08-15

    The bombesin receptor present on the surface of murine and human cells was identified using 125I-labeled gastrin-releasing peptide as a probe, the cross-linking agent disuccinimidyl suberate, and sodium dodecyl sulfate gels. A clone of NIH-3T3 cells which possesses approximately 80,000 bombesin receptors/cell with a single binding constant of approximately 1.9 X 10(-9) M was used in these studies. In addition, we used Swiss 3T3 cells and a human glioma cell line which possesses approximately 100,000 and approximately 55,000 bombesin receptors/cell, respectively. Under conditions found optimal for binding, it is demonstrated that 125I-labeled gastrin-releasing peptide can be cross-linked specifically to a glycoprotein of apparent molecular mass of 65,000 daltons on the surface of the NIH-3T3 cells. Similar results were obtained when the cross-linked product was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or non-reducing conditions. Moreover, the cross-linking reaction is specific and saturable and the 65,000-dalton polypeptide is not observed when the cross-linking experiments were performed with a NIH-3T3 cell line which is devoid of bombesin receptors. Interestingly, glycoproteins with apparent molecular weights of 75,000 were labeled specifically by 125I-labeled gastrin-releasing peptide when similar experiments were performed with Swiss 3T3 cells and with human glioma cell line GM-340. These different molecular weights may indicate differential glycosylation as treatment with the enzyme N-glycanase reduced the apparent molecular weight of the cross-linked polypeptide to 45,000. On the basis of these results it is concluded that the cross-linked polypeptides represent the bombesin receptor or the ligand-binding subunit of a putative larger bombesin receptor expressed on the surface of these cells.

  18. Coupling molecular catalysts with nanostructured surfaces for efficient solar fuel production

    NASA Astrophysics Data System (ADS)

    Jin, Tong

    Solar fuel generation via carbon dioxide (CO2) reduction is a promising approach to meet the increasing global demand for energy and to minimize the impact of energy consumption on climate change. However, CO2 is thermodynamically stable; its activation often requires the use of appropriate catalysts. In particular, molecular catalysts with well-defined structures and tunability have shown excellent activity in photochemical CO2 reduction. These homogenous catalysts, however, suffer from poor stability under photochemical conditions and difficulty in recycling from the reaction media. Heterogenized molecular catalysts, particularly those prepared by coupling molecular catalysts with solid-state surfaces, have attracted more attention in recent years as potential solutions to address the issues associated with molecular catalysts. In this work, solar CO2 reduction is investigated using systems coupling molecular catalysts with robust nanostructured surfaces. In Chapter 2, heterogenization of macrocyclic cobalt(III) and nickel (II) complexes on mesoporous silica surface was achieved by different methods. Direct ligand derivatization significantly lowered the catalytic activity of Co(III) complex, while grafting the Co(III) complex onto silica surface through Si-O-Co linkage resulted in hybrid catalysts with excellent activity in CO2 reduction in the presence of p-terphenyl as a molecular photosensitizer. An interesting loading effect was observed, in which the optimal activity was achieved at a medium Co(III) surface density. Heterogenization of the Ni(II) complex on silica surface has also been implemented, the poor photocatalytic activity of the hybrid catalyst can be attributed to the intrinsic nature of the homogeneous analogue. This study highlighted the importance of appropriate linking strategies in preparing functional heterogenized molecular catalysts. Coupling molecular complexes with light-harvesting surfaces could avoid the use of expensive molecular photosensitizers. In Chapter 3, effective coupling of the macrocyclic Co(III) complex with titanium dioxide (TiO¬2) nanoparticles was achieved by two deposition methods. The synthesized hybrid photocatalysts were thoroughly characterized with a variety of techniques. Upon UV light irradiation, photoexcited electrons in TiO2 nanoparticles were transferred to the surface Co(III) catalyst for CO2 reduction. Production of carbon monoxide (CO) from CO2 was confirmed by isotope labeling combined with infrared spectroscopy. Deposition of the Co(III) catalyst through Ti-O-Co linkages was essential for the photo-induced electron transfer and CO2-reduction activity using the hybrid photocatalysts. In Chapter 4, molecular Re(I) and Co(II) catalysts were coupled with silicon-based photoelectrodes, including a silicon nanowire (SiNW) photoelectrode, to achieve photoelectrochemical CO2 reduction. Photovoltages between 300-600 mV were obtained using the molecular catalysts on the silicon photoelectrodes. SiNWs exhibited enhanced properties, including significantly higher photovoltages than a planar silicon photoelectrode, the ability to protect one of the molecular catalysts from photo-induced decomposition, and excellent selectivity towards CO production in CO2 reduction. Recent theoretical and experimental work have demonstrated low-energy, binuclear pathways for CO2-to-CO conversion using several molecular catalysts. In such binuclear pathways, two metal centers work cooperatively to achieve two-electron CO2 reduction. Chapter 5 describes our effort to promote the binuclear pathway by grafting the molecular Co(III) catalyst onto silica surfaces. Different linking strategies were attempted to achieve this goal by planting the surface Co(III) sites in close proximity.

  19. Electron– and positron–molecule scattering: development of the molecular convergent close-coupling method

    DOE PAGES

    Zammit, Mark C.; Fursa, Dmitry V.; Savage, Jeremy S.; ...

    2017-05-22

    Starting from first principles, this tutorial describes the development of the adiabatic-nuclei convergent close-coupling (CCC) method and its application to electron and (single-centre) positron scattering from diatomic molecules. In this paper, we give full details of the single-centre expansion CCC method, namely the formulation of the molecular target structure; solving the momentum-space coupled-channel Lippmann-Schwinger equation; deriving adiabatic-nuclei cross sections and calculatingmore » $V$-matrix elements. Selected results are presented for electron and positron scattering from molecular hydrogen H$$_2$$ and electron scattering from the vibrationally excited molecular hydrogen ion H$$_2^+$$ and its isotopologues (D$$_2^+$$, T$$_2^+$$, HD$^+$, HT$^+$ and TD$^+$). Finally, convergence in both the close-coupling (target state) and projectile partial-wave expansions of fixed-nuclei electron- and positron-molecule scattering calculations is demonstrated over a broad energy-range and discussed in detail. In general the CCC results are in good agreement with experiments.« less

  20. Control of a flexible link by shaping the closed loop frequency response function through optimised feedback filters

    NASA Astrophysics Data System (ADS)

    Del Vescovo, D.; D'Ambrogio, W.

    1995-01-01

    A frequency domain method is presented to design a closed-loop control for vibration reduction flexible mechanisms. The procedure is developed on a single-link flexible arm, driven by one rotary degree of freedom servomotor, although the same technique may be applied to similar systems such as supports for aerospace antennae or solar panels. The method uses the structural frequency response functions (FRFs), thus avoiding system identification, that produces modeling uncertainties. Two closed-loops are implemented: the inner loop uses acceleration feedback with the aim of making the FRF similar to that of an equivalent rigid link; the outer loop feeds back displacements to achieve a fast positioning response and null steady state error. In both cases, the controller type is established a priori, while actual characteristics are defined by an optimisation procedure in which the relevant FRF is constrained into prescribed bounds and stability is taken into account.

  1. Molecular Dynamics Simulation Reveals Correlated Inter-Lobe Motion in Protein Lysine Methyltransferase SMYD2.

    PubMed

    Spellmon, Nicholas; Sun, Xiaonan; Sirinupong, Nualpun; Edwards, Brian; Li, Chunying; Yang, Zhe

    2015-01-01

    SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open-closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative correlated inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to by a twisting motion of the C-lobe with respect to the N-lobe and a clamshell-like motion between the lobes. Dynamical network analysis defines possible allosteric paths for the correlated dynamics. There are nine communities in the dynamical network with six in the N-lobe and three in the C-lobe, and the communication between the lobes is mediated by a lobe-bridging β hairpin. This study provides insight into the dynamical nature of SMYD2 and could facilitate better understanding of SMYD2 substrate specificity.

  2. Surface functionalization of solid state ultra-high molecular weight polyethylene through chemical grafting

    NASA Astrophysics Data System (ADS)

    Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir

    2015-12-01

    The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.

  3. Metal-Organic-Framework-Derived Carbon Nanostructure Augmented Sonodynamic Cancer Therapy.

    PubMed

    Pan, Xueting; Bai, Lixin; Wang, Hui; Wu, Qingyuan; Wang, Hongyu; Liu, Shuang; Xu, Bolong; Shi, Xinghua; Liu, Huiyu

    2018-06-01

    Sonodynamic therapy (SDT) can overcome the critical issue of depth-penetration barrier of photo-triggered therapeutic modalities. However, the discovery of sonosensitizers with high sonosensitization efficacy and good stability is still a significant challenge. In this study, the great potential of a metal-organic-framework (MOF)-derived carbon nanostructure that contains porphyrin-like metal centers (PMCS) to act as an excellent sonosensitizer is identified. Excitingly, the superior sonosensitization effect of PMCS is believed to be closely linked to the porphyrin-like macrocycle in MOF-derived nanostructure in comparison to amorphous carbon nanospheres, due to their large highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for high reactive oxygen species (ROS) production. The nanoparticle-assisted cavitation process, including the visualized formation of the cavitation bubbles and microjets, is also first captured by high-speed camera. High ROS production in PMCS under ultrasound is validated by electron spin resonance and dye measurement, followed by cellular destruction and high tumor inhibition efficiency (85%). This knowledge is important from the perspective of understanding the structure-dependent SDT enhancement of a MOF-derived carbon nanostructure. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sleep- and circadian rhythm-associated pathways as therapeutic targets in bipolar disorder.

    PubMed

    Bellivier, Frank; Geoffroy, Pierre-Alexis; Etain, Bruno; Scott, Jan

    2015-06-01

    Disruptions in sleep and circadian rhythms are observed in individuals with bipolar disorders (BD), both during acute mood episodes and remission. Such abnormalities may relate to dysfunction of the molecular circadian clock and could offer a target for new drugs. This review focuses on clinical, actigraphic, biochemical and genetic biomarkers of BDs, as well as animal and cellular models, and highlights that sleep and circadian rhythm disturbances are closely linked to the susceptibility to BDs and vulnerability to mood relapses. As lithium is likely to act as a synchronizer and stabilizer of circadian rhythms, we will review pharmacogenetic studies testing circadian gene polymorphisms and prophylactic response to lithium. Interventions such as sleep deprivation, light therapy and psychological therapies may also target sleep and circadian disruptions in BDs efficiently for treatment and prevention of bipolar depression. We suggest that future research should clarify the associations between sleep and circadian rhythm disturbances and alterations of the molecular clock in order to identify critical targets within the circadian pathway. The investigation of such targets using human cellular models or animal models combined with 'omics' approaches are crucial steps for new drug development.

  5. Synthesis of protein in host-free reticulate bodies of Chlamydia psittaci and Chlamydia trachomatis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, T.P.; Miceli, M.; Silverman, J.A.

    1985-06-01

    Synthesis of protein by the obligate intracellular parasitic bacteria Chlamydia psittaci (6BC) and Chlamydia trachomatis (serovar L2) isolated from host cells (host-free chlamydiae) was demonstrated for the first time. Incorporation of (/sup 35/S)methionine and (/sup 35/S)cysteine into trichloroacetic acid-precipitable material by reticulate bodies of chlamydiae persisted for 2 h and was dependent upon a exogenous source of ATP, an ATP-regenerating system, and potassium or sodium ions. Magnesium ions and amino acids stimulated synthesis; chloramphenicol, rifampin, oligomycin, and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (a proton ionophore) inhibited incorporation. Ribonucleoside triphosphates (other than ATP) had little stimulatory effect. The optimum pH for host-free synthesismore » was between 7.0 and 7.5. The molecular weights of proteins synthesized by host-free reticulate bodies closely resembled the molecular weights of proteins synthesized by reticulate bodies in an intracellular environment, and included outer membrane proteins. Elementary bodies of chlamydiae were unable to synthesize protein even when incubated in the presence of 10 mM dithiothreitol, a reducing agent which converted the highly disulfide bond cross-linked major outer membrane protein to monomeric form.« less

  6. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume.

    PubMed

    Duan, D; Cowley, S; Horowitz, B; Hume, J R

    1999-01-01

    In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.

  7. Coarse-grained, foldable, physical model of the polypeptide chain.

    PubMed

    Chakraborty, Promita; Zuckermann, Ronald N

    2013-08-13

    Although nonflexible, scaled molecular models like Pauling-Corey's and its descendants have made significant contributions in structural biology research and pedagogy, recent technical advances in 3D printing and electronics make it possible to go one step further in designing physical models of biomacromolecules: to make them conformationally dynamic. We report here the design, construction, and validation of a flexible, scaled, physical model of the polypeptide chain, which accurately reproduces the bond rotational degrees of freedom in the peptide backbone. The coarse-grained backbone model consists of repeating amide and α-carbon units, connected by mechanical bonds (corresponding to ϕ and ψ) that include realistic barriers to rotation that closely approximate those found at the molecular scale. Longer-range hydrogen-bonding interactions are also incorporated, allowing the chain to readily fold into stable secondary structures. The model is easily constructed with readily obtainable parts and promises to be a tremendous educational aid to the intuitive understanding of chain folding as the basis for macromolecular structure. Furthermore, this physical model can serve as the basis for linking tangible biomacromolecular models directly to the vast array of existing computational tools to provide an enhanced and interactive human-computer interface.

  8. Fetal Stress and Programming of Hypoxic/Ischemic-Sensitive Phenotype in the Neonatal Brain: Mechanisms and Possible Interventions

    PubMed Central

    Li, Yong; Gonzalez, Pablo; Zhang, Lubo

    2012-01-01

    Growing evidence of epidemiological, clinical and experimental studies has clearly shown a close link between adverse in utero environment and the increased risk of neurological, psychological and psychiatric disorders in later life. Fetal stresses, such as hypoxia, malnutrition, and fetal exposure to nicotine, alcohol, cocaine and glucocorticoids may directly or indirectly act at cellular and molecular levels to alter the brain development and result in programming of heightened brain vulnerability to hypoxic-ischemic encephalopathy and the development of neurological diseases in the postnatal life. The underlying mechanisms are not well understood. However, glucocorticoids may play a crucial role in epigenetic programming of neurological disorders of fetal origins. This review summarizes the recent studies about the effects of fetal stress on the abnormal brain development, focusing on the cellular, molecular and epigenetic mechanisms and highlighting the central effects of glucocorticoids on programming of hypoxicischemic-sensitive phenotype in the neonatal brain, which may enhance the understanding of brain pathophysiology resulting from fetal stress and help explore potential targets of timely diagnosis, prevention and intervention in neonatal hypoxic-ischemic encephalopathy and other for brain disorders. PMID:22627492

  9. Marital Quality and Spouses' Marriage Work with Close Friends and Each Other.

    ERIC Educational Resources Information Center

    Helms, Heather M.; Crouter, Ann C.; McHale, Susan M.

    2003-01-01

    Explores how husbands' and wives' marriage work with close friends and one another was linked to their perceptions of marital quality. Results showed that husbands engaged in more marriage work with their wives than with close friends, whereas wives engaged in similar levels of marriage work with their close friends and husbands. (Contains 58…

  10. Aging and cancer: are sirtuins the link?

    PubMed

    Rodriguez, Ramon M; Fraga, Mario F

    2010-06-01

    Classically, aging has been defined as a general degeneration process that leads to the loss of corporal function. The loss of function caused by degeneration limits the maximum lifespan of all organisms and is linked to disease and cancer. Nevertheless, the molecular mechanisms behind aging and their connection to cancer are not well understood. NAD-dependent protein deacetylase enzymes, sirtuins, are emerging as a novel molecular link between aging and cancer due to their specific role in cell cycle regulation, antistress response and cell survival. This article reviews the contribution of sirtuins and environmental factors to ontogenic development, senescence and cancer.

  11. 77 FR 2738 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ..., Review Group; Clinical Molecular Imaging and Probe Development. Date: February 2-3, 2012. Time: 7 p.m. to..., Bethesda, MD 20892, (301) 435-1777, [email protected] . Name of Committee: Molecular, Cellular and...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology...

  12. Fanconi Anemia Proteins and Their Interacting Partners: A Molecular Puzzle

    PubMed Central

    Kaddar, Tagrid; Carreau, Madeleine

    2012-01-01

    In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle. PMID:22737580

  13. 77 FR 55852 - Center for Scientific Review Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... unwarranted invasion of personal privacy. Name of Committee: Molecular, Cellular and Developmental...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Synapses, Cytoskeleton and... . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular...

  14. 75 FR 3241 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neurodifferentiation..., (301) 435- 1178, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date...

  15. Molecular detection of trophic links in a complex insect host-parasitoid food web.

    PubMed

    Hrcek, Jan; Miller, Scott E; Quicke, Donald L J; Smith, M Alex

    2011-09-01

    Previously, host-parasitoid links have been unveiled almost exclusively by time-intensive rearing, while molecular methods were used only in simple agricultural host-parasitoid systems in the form of species-specific primers. Here, we present a general method for the molecular detection of these links applied to a complex caterpillar-parasitoid food web from tropical rainforest of Papua New Guinea. We DNA barcoded hosts, parasitoids and their tissue remnants and matched the sequences to our extensive library of local species. We were thus able to match 87% of host sequences and 36% of parasitoid sequences to species and infer subfamily or family in almost all cases. Our analysis affirmed 93 hitherto unknown trophic links between 37 host species from a wide range of Lepidoptera families and 46 parasitoid species from Hymenoptera and Diptera by identifying DNA sequences for both the host and the parasitoid involved in the interaction. Molecular detection proved especially useful in cases where distinguishing host species in caterpillar stage was difficult morphologically, or when the caterpillar died during rearing. We have even detected a case of extreme parasitoid specialization in a pair of Choreutis species that do not differ in caterpillar morphology and ecology. Using the molecular approach outlined here leads to better understanding of parasitoid host specificity, opens new possibilities for rapid surveys of food web structure and allows inference of species associations not already anticipated. Published 2011. This article is a US Government work and is in the public domain in the USA.

  16. Three Dimensional Architecture of Membrane-Embedded MscS in the Closed Conformation

    PubMed Central

    Vásquez, Valeria; Sotomayor, Marcos; Cortes, D. Marien; Roux, Benoît; Schulten, Klaus; Perozo, Eduardo

    2009-01-01

    The mechanosensitive channel of small conductance (MscS) is part of a coordinated response to osmotic challenges in E. coli. MscS opens as a result of membrane tension changes, thereby releasing small solutes and effectively acting as an osmotic safety valve. Both, the functional state depicted by its crystal structure and its gating mechanism remain unclear. Here, we combine site-directed spin labeling, electron paramagnetic resonance (EPR) spectroscopy, and molecular dynamics simulations with novel energy restraints based on experimental EPR data to investigate the native transmembrane and periplasmic molecular architecture of closed MscS in a lipid bilayer. In the closed conformation, MscS shows a more compact transmembrane domain than in the crystal structure, characterized by a realignment of the transmembrane segments towards the normal of the membrane. The previously unresolved NH2-terminus forms a short helical hairpin capping the extracellular ends of TM1 and TM2 and in close interaction with the bilayer interface. The present three-dimensional model of membrane-embedded MscS in the closed state represents a key step in determining the molecular mechanism of MscS gating. PMID:18343404

  17. Structural interactions between retroviral Gag proteins examined by cysteine cross-linking.

    PubMed Central

    Hansen, M S; Barklis, E

    1995-01-01

    We have examined structural interactions between Gag proteins within Moloney murine leukemia virus (M-MuLV) particles by making use of the cysteine-specific cross-linking agents iodine and bis-maleimido hexane. Virion-associated wild-type M-MuLV Pr65Gag proteins in immature particles were intermolecularly cross-linked at cysteines to form Pr65Gag oligomers, from dimers to pentamers or hexamers. Following a systematic approach of cysteine-to-serine mutagenesis, we have shown that cross-linking of Pr65Gag occurred at cysteines of the nucleocapsid (NC) Cys-His motif, suggesting that the Cys-His motifs within virus particles are packed in close proximity. The M-MuLV Pr65Gag protein did not cross-link to the human immunodeficiency virus Pr55Gag protein when the two molecules were coexpressed, indicating either that they did not coassemble or that heterologous Gag proteins were not in close enough proximity to be cross-linked. Using an assembly-competent, protease-minus, cysteine-minus Pr65Gag protein as a template, novel cysteine residues were generated in the M-MuLV capsid domain major homology region (MHR). Cross-linking of proteins containing MHR cysteines showed above-background levels of Gag-Gag dimers but also identified a novel cellular factor, present in virions, that cross-linked to MHR residues. Although the NC cysteine mutation was compatible with M-MuLV particle assembly, deletions of the NC domain were not tolerated. These results suggest that the Cys-His motif is held in close proximity within immature M-MuLV particles by interactions between CA domains and/or non-Cys-His motif domains of the NC. PMID:7815493

  18. A comparison of the wear of cross-linked polyethylene against itself with the wear of ultra-high molecular weight polyethylene against itself.

    PubMed

    Joyce, T J; Unsworth, A

    1996-01-01

    Wear tests were carried out on reciprocating pin-on-plate machines which had pins loaded at 10 N and 40 N. The materials tested were irradiated cross-linked polyethylene sliding against itself, irradiated ultra-high molecular weight polyethylene sliding against itself and non-irradiated ultra-high molecular weight polyethylene sliding against itself. After 153.5 km of sliding, the non-irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads, or a nominal contact stress of 0.51 MPa, of 84.0 x 10(-6) mm3/N m for the plates and 81.3 x 10(-6) mm3/N m for the pins. Under 40 N loads, or a nominal contact stress of 2.04 MPa, the non-irradiated ultra-high molecular weight polyethylene pins sheared at 22.3 km. At the last measurement point prior to this failure, 19.1 km, wear factors of 158 x 10(-6) mm3/N m for the plates and 85.0 x 10(-6) mm3/N m for the pins had been measured. After 152.8 km. the irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads of 59.8 x 10(-6) mm3/N m for the plates and 31.1 x 10(-6) mm3/N m for the pins. In contrast, after 150.2 km, a mean wear factor of 0.72 x 10(-6) mm3/N m was found for the irradiated cross-linked polyethylene plates compared with 0.053 x 10(-6) mm3/N m for the irradiated cross-linked polyethylene pins.

  19. 78 FR 26378 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ..., Genomes, and Genetics Integrated Review Group; Prokaryotic Cell and Molecular Biology Study Section. Date..., Kidney and Urological Systems Integrated Review Group; Clinical, Integrative and Molecular... Respiratory Sciences Integrated Review Group; Lung Cellular, Molecular, and Immunobiology Study Section. Date...

  20. 75 FR 54893 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-09

    ... 7850, Bethesda, MD 20892. 301-435-3009. [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Molecular Neuropharmacology and Signaling... . Name of Committee: Emerging Technologies and Training Neurosciences Integrated Review Group, Molecular...

  1. A Quantative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population Dynamics

    EPA Science Inventory

    A Quantitative Adverse Outcome Pathway Linking Aromatase Inhibition in Fathead Minnows with Population DynamicsAn adverse outcome pathway (AOP) is a qualitative description linking a molecular initiating event (MIE) with measureable key events leading to an adverse outcome (AO). ...

  2. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation.

    PubMed

    Shokuhfar, Ali; Arab, Behrouz

    2013-09-01

    Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.

  3. Mechanisms of plastic deformation in highly cross-linked UHMWPE for total hip components--the molecular physics viewpoint.

    PubMed

    Takahashi, Yasuhito; Shishido, Takaaki; Yamamoto, Kengo; Masaoka, Toshinori; Kubo, Kosuke; Tateiwa, Toshiyuki; Pezzotti, Giuseppe

    2015-02-01

    Plastic deformation is an unavoidable event in biomedical polymeric implants for load-bearing application during long-term in-vivo service life, which involves a mass transfer process, irreversible chain motion, and molecular reorganization. Deformation-induced microstructural alterations greatly affect mechanical properties and durability of implant devices. The present research focused on evaluating, from a molecular physics viewpoint, the impact of externally applied strain (or stress) in ultra-high molecular weight polyethylene (UHMWPE) prostheses, subjected to radiation cross-linking and subsequent remelting for application in total hip arthroplasty (THA). Two different types of commercial acetabular liners, which belong to the first-generation highly cross-linked UHMWPE (HXLPE), were investigated by means of confocal/polarized Raman microprobe spectroscopy. The amount of crystalline region and the spatial distribution of molecular chain orientation were quantitatively analyzed according to a combined theory including Raman selection rules for the polyethylene orthorhombic structure and the orientation distribution function (ODF) statistical approach. The structurally important finding was that pronounced recrystallization and molecular reorientation increasingly appeared in the near-surface regions of HXLPE liners with increasing the amount of plastic (compressive) deformation stored in the microstructure. Such molecular rearrangements, occurred in response to external strains, locally increase surface cross-shear (CS) stresses, which in turn trigger microscopic wear processes in HXLPE acetabular liners. Thus, on the basis of the results obtained at the molecular scale, we emphasize here the importance of minimizing the development of irrecoverable deformation strain in order to retain the pristine and intrinsically high wear performance of HXLPE components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Method of making molecularly doped composite polymer material

    DOEpatents

    Affinito, John D [Tucson, AZ; Martin, Peter M [Kennewick, WA; Graff, Gordon L [West Richland, WA; Burrows, Paul E [Kennewick, WA; Gross, Mark E. , Sapochak, Linda S.

    2005-06-21

    A method of making a composite polymer of a molecularly doped polymer. The method includes mixing a liquid polymer precursor with molecular dopant forming a molecularly doped polymer precursor mixture. The molecularly doped polymer precursor mixture is flash evaporated forming a composite vapor. The composite vapor is cryocondensed on a cool substrate forming a composite molecularly doped polymer precursor layer, and the cryocondensed composite molecularly doped polymer precursor layer is cross linked thereby forming a layer of the composite polymer layer of the molecularly doped polymer.

  5. Public Health Investigation of Two Outbreaks of Shiga Toxin-Producing Escherichia coli O157 Associated with Consumption of Watercress.

    PubMed

    Jenkins, Claire; Dallman, Timothy J; Launders, Naomi; Willis, Caroline; Byrne, Lisa; Jorgensen, Frieda; Eppinger, Mark; Adak, Goutam K; Aird, Heather; Elviss, Nicola; Grant, Kathie A; Morgan, Dilys; McLauchlin, Jim

    2015-06-15

    An increase in the number of cases of Shiga toxin-producing Escherichia coli (STEC) O157 phage type 2 (PT2) in England in September 2013 was epidemiologically linked to watercress consumption. Whole-genome sequencing (WGS) identified a phylogenetically related cluster of 22 cases (outbreak 1). The isolates comprising this cluster were not closely related to any other United Kingdom strain in the Public Health England WGS database, suggesting a possible imported source. A second outbreak of STEC O157 PT2 (outbreak 2) was identified epidemiologically following the detection of outbreak 1. Isolates associated with outbreak 2 were phylogenetically distinct from those in outbreak 1. Epidemiologically unrelated isolates on the same branch as the outbreak 2 cluster included those from human cases in England with domestically acquired infection and United Kingdom domestic cattle. Environmental sampling using PCR resulted in the isolation of STEC O157 PT2 from irrigation water at one implicated watercress farm, and WGS showed this isolate belonged to the same phylogenetic cluster as outbreak 2 isolates. Cattle were in close proximity to the watercress bed and were potentially the source of the second outbreak. Transfer of STEC from the field to the watercress bed may have occurred through wildlife entering the watercress farm or via runoff water. During this complex outbreak investigation, epidemiological studies, comprehensive testing of environmental samples, and the use of novel molecular methods proved invaluable in demonstrating that two simultaneous outbreaks of STEC O157 PT2 were both linked to the consumption of watercress but were associated with different sources of contamination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Fine Physical and Genetic Mapping of Powdery Mildew Resistance Gene MlIW172 Originating from Wild Emmer (Triticum dicoccoides)

    PubMed Central

    Han, Jun; Zhao, Xiaojie; Cui, Yu; Song, Wei; Huo, Naxin; Liang, Yong; Xie, Jingzhong; Wang, Zhenzhong; Wu, Qiuhong; Chen, Yong-Xing; Lu, Ping; Zhang, De-Yun; Wang, Lili; Sun, Hua; Yang, Tsomin; Keeble-Gagnere, Gabriel; Appels, Rudi; Doležel, Jaroslav; Ling, Hong-Qing; Luo, Mingcheng; Gu, Yongqiang; Sun, Qixin; Liu, Zhiyong

    2014-01-01

    Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172. PMID:24955773

  7. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea.

    PubMed

    Tudzynski, P; Hölter, K; Correia, T; Arntz, C; Grammel, N; Keller, U

    1999-02-01

    A gene (cpd1) coding for the dimethylallyltryptophan synthase (DMATS) that catalyzes the first specific step in the biosynthesis of ergot alkaloids, was cloned from a strain of Claviceps purpurea that produces alkaloids in axenic culture. The derived gene product (CPD1) shows only 70% similarity to the corresponding gene previously isolated from Claviceps strain ATCC 26245, which is likely to be an isolate of C. fusiformis. Therefore, the related cpd1 most probably represents the first C. purpurea gene coding for an enzymatic step of the alkaloid biosynthetic pathway to be cloned. Analysis of the 3'-flanking region of cpd1 revealed a second, closely linked ergot alkaloid biosynthetic gene named cpps1, which codes for a 356-kDa polypeptide showing significant similarity to fungal modular peptide synthetases. The protein contains three amino acid-activating modules, and in the second module a sequence is found which matches that of an internal peptide (17 amino acids in length) obtained from a tryptic digest of lysergyl peptide synthetase 1 (LPS1) of C. purpurea, thus confirming that cpps1 encodes LPS1. LPS1 activates the three amino acids of the peptide portion of ergot peptide alkaloids during D-lysergyl peptide assembly. Chromosome walking revealed the presence of additional genes upstream of cpd1 which are probably also involved in ergot alkaloid biosynthesis: cpox1 probably codes for an FAD-dependent oxidoreductase (which could represent the chanoclavine cyclase), and a second putative oxidoreductase gene, cpox2, is closely linked to it in inverse orientation. RT-PCR experiments confirm that all four genes are expressed under conditions of peptide alkaloid biosynthesis. These results strongly suggest that at least some genes of ergot alkaloid biosynthesis in C. purpurea are clustered, opening the way for a detailed molecular genetic analysis of the pathway.

  8. Public Health Investigation of Two Outbreaks of Shiga Toxin-Producing Escherichia coli O157 Associated with Consumption of Watercress

    PubMed Central

    Dallman, Timothy J.; Launders, Naomi; Willis, Caroline; Byrne, Lisa; Jorgensen, Frieda; Eppinger, Mark; Adak, Goutam K.; Aird, Heather; Elviss, Nicola; Grant, Kathie A.; Morgan, Dilys; McLauchlin, Jim

    2015-01-01

    An increase in the number of cases of Shiga toxin-producing Escherichia coli (STEC) O157 phage type 2 (PT2) in England in September 2013 was epidemiologically linked to watercress consumption. Whole-genome sequencing (WGS) identified a phylogenetically related cluster of 22 cases (outbreak 1). The isolates comprising this cluster were not closely related to any other United Kingdom strain in the Public Health England WGS database, suggesting a possible imported source. A second outbreak of STEC O157 PT2 (outbreak 2) was identified epidemiologically following the detection of outbreak 1. Isolates associated with outbreak 2 were phylogenetically distinct from those in outbreak 1. Epidemiologically unrelated isolates on the same branch as the outbreak 2 cluster included those from human cases in England with domestically acquired infection and United Kingdom domestic cattle. Environmental sampling using PCR resulted in the isolation of STEC O157 PT2 from irrigation water at one implicated watercress farm, and WGS showed this isolate belonged to the same phylogenetic cluster as outbreak 2 isolates. Cattle were in close proximity to the watercress bed and were potentially the source of the second outbreak. Transfer of STEC from the field to the watercress bed may have occurred through wildlife entering the watercress farm or via runoff water. During this complex outbreak investigation, epidemiological studies, comprehensive testing of environmental samples, and the use of novel molecular methods proved invaluable in demonstrating that two simultaneous outbreaks of STEC O157 PT2 were both linked to the consumption of watercress but were associated with different sources of contamination. PMID:25841005

  9. Structural Analysis of a Family 101 Glycoside Hydrolase in Complex with Carbohydrates Reveals Insights into Its Mechanism.

    PubMed

    Gregg, Katie J; Suits, Michael D L; Deng, Lehua; Vocadlo, David J; Boraston, Alisdair B

    2015-10-16

    O-Linked glycosylation is one of the most abundant post-translational modifications of proteins. Within the secretory pathway of higher eukaryotes, the core of these glycans is frequently an N-acetylgalactosamine residue that is α-linked to serine or threonine residues. Glycoside hydrolases in family 101 are presently the only known enzymes to be able to hydrolyze this glycosidic linkage. Here we determine the high-resolution structures of the catalytic domain comprising a fragment of GH101 from Streptococcus pneumoniae TIGR4, SpGH101, in the absence of carbohydrate, and in complex with reaction products, inhibitor, and substrate analogues. Upon substrate binding, a tryptophan lid (residues 724-WNW-726) closes on the substrate. The closing of this lid fully engages the substrate in the active site with Asp-764 positioned directly beneath C1 of the sugar residue bound within the -1 subsite, consistent with its proposed role as the catalytic nucleophile. In all of the bound forms of the enzyme, however, the proposed catalytic acid/base residue was found to be too distant from the glycosidic oxygen (>4.3 Å) to serve directly as a general catalytic acid/base residue and thereby facilitate cleavage of the glycosidic bond. These same complexes, however, revealed a structurally conserved water molecule positioned between the catalytic acid/base and the glycosidic oxygen. On the basis of these structural observations we propose a new variation of the retaining glycoside hydrolase mechanism wherein the intervening water molecule enables a Grotthuss proton shuttle between Glu-796 and the glycosidic oxygen, permitting this residue to serve as the general acid/base catalytic residue. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. High-throughput genotyping-by-sequencing facilitates molecular tagging of a novel rust resistance gene, R 15 , in sunflower (Helianthus annuus L.).

    PubMed

    Ma, G J; Song, Q J; Markell, S G; Qi, L L

    2018-07-01

    A novel rust resistance gene, R 15 , derived from the cultivated sunflower HA-R8 was assigned to linkage group 8 of the sunflower genome using a genotyping-by-sequencing approach. SNP markers closely linked to R 15 were identified, facilitating marker-assisted selection of resistance genes. The rust virulence gene is co-evolving with the resistance gene in sunflower, leading to the emergence of new physiologic pathotypes. This presents a continuous threat to the sunflower crop necessitating the development of resistant sunflower hybrids providing a more efficient, durable, and environmentally friendly host plant resistance. The inbred line HA-R8 carries a gene conferring resistance to all known races of the rust pathogen in North America and can be used as a broad-spectrum resistance resource. Based on phenotypic assessments of 140 F 2 individuals derived from a cross of HA 89 with HA-R8, rust resistance in the population was found to be conferred by a single dominant gene (R 15 ) originating from HA-R8. Genotypic analysis with the currently available SSR markers failed to find any association between rust resistance and any markers. Therefore, we used genotyping-by-sequencing (GBS) analysis to achieve better genomic coverage. The GBS data showed that R 15 was located at the top end of linkage group (LG) 8. Saturation with 71 previously mapped SNP markers selected within this region further showed that it was located in a resistance gene cluster on LG8, and mapped to a 1.0-cM region between three co-segregating SNP makers SFW01920, SFW00128, and SFW05824 as well as the NSA_008457 SNP marker. These closely linked markers will facilitate marker-assisted selection and breeding in sunflower.

  11. The obligate respiratory supercomplex from Actinobacteria.

    PubMed

    Kao, Wei-Chun; Kleinschroth, Thomas; Nitschke, Wolfgang; Baymann, Frauke; Neehaul, Yashvin; Hellwig, Petra; Richers, Sebastian; Vonck, Janet; Bott, Michael; Hunte, Carola

    2016-10-01

    Actinobacteria are closely linked to human life as industrial producers of bioactive molecules and as human pathogens. Respiratory cytochrome bcc complex and cytochrome aa3 oxidase are key components of their aerobic energy metabolism. They form a supercomplex in the actinobacterial species Corynebacterium glutamicum. With comprehensive bioinformatics and phylogenetic analysis we show that genes for cyt bcc-aa3 supercomplex are characteristic for Actinobacteria (Actinobacteria and Acidimicrobiia, except the anaerobic orders Actinomycetales and Bifidobacteriales). An obligatory supercomplex is likely, due to the lack of genes encoding alternative electron transfer partners such as mono-heme cyt c. Instead, subunit QcrC of bcc complex, here classified as short di-heme cyt c, will provide the exclusive electron transfer link between the complexes as in C. glutamicum. Purified to high homogeneity, the C. glutamicum bcc-aa3 supercomplex contained all subunits and cofactors as analyzed by SDS-PAGE, BN-PAGE, absorption and EPR spectroscopy. Highly uniform supercomplex particles in electron microscopy analysis support a distinct structural composition. The supercomplex possesses a dimeric stoichiometry with a ratio of a-type, b-type and c-type hemes close to 1:1:1. Redox titrations revealed a low potential bcc complex (Em(ISP)=+160mV, Em(bL)=-291mV, Em(bH)=-163mV, Em(cc)=+100mV) fined-tuned for oxidation of menaquinol and a mixed potential aa3 oxidase (Em(CuA)=+150mV, Em(a/a3)=+143/+317mV) mediating between low and high redox potential to accomplish dioxygen reduction. The generated molecular model supports a stable assembled supercomplex with defined architecture which permits energetically efficient coupling of menaquinol oxidation and dioxygen reduction in one supramolecular entity. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Mapping of the X-linked cataract (Xcat) mutation, the gene implicated in the Nance Horan syndrome, on the mouse X chromosome.

    PubMed

    Stambolian, D; Favor, J; Silvers, W; Avner, P; Chapman, V; Zhou, E

    1994-07-15

    The Xcat mutation in the mouse, an X-linked inherited disorder, is characterized by the congenital onset of cataracts. The cataracts have morphologies similar to those of cataracts found in the human Nance Horan (X-linked cataract dental) syndrome, suggesting that Xcat is an animal model for Nance Horan. The Xcat mutation provides an opportunity to investigate, at the molecular level, the pathogenesis of cataract. As a first step to cloning the Xcat gene, we report the localization of the Xcat mutation with respect to known molecular markers on the mouse X chromosome. Back-cross progeny carrying the Xcat mutation were obtained from an interspecific cross. Genomic DNA from each mouse was subjected to Southern and PCR analysis to identify restriction fragment length polymorphisms and simple sequence length polymorphisms, respectively. Our results refine the location of Xcat to a 2-cM region, eliminate several genes from consideration as the Xcat mutation, identify molecular probes tightly linked with Xcat, and suggest candidate genes responsible for the Xcat phenotype.

  13. Drying Affects the Fiber Network in Low Molecular Weight Hydrogels

    PubMed Central

    2017-01-01

    Low molecular weight gels are formed by the self-assembly of a suitable small molecule gelator into a three-dimensional network of fibrous structures. The gel properties are determined by the fiber structures, the number and type of cross-links and the distribution of the fibers and cross-links in space. Probing these structures and cross-links is difficult. Many reports rely on microscopy of dried gels (xerogels), where the solvent is removed prior to imaging. The assumption is made that this has little effect on the structures, but it is not clear that this assumption is always (or ever) valid. Here, we use small angle neutron scattering (SANS) to probe low molecular weight hydrogels formed by the self-assembly of dipeptides. We compare scattering data for wet and dried gels, as well as following the drying process. We show that the assumption that drying does not affect the network is not always correct. PMID:28631478

  14. Molecular characterization of the plant biopolyester cutin by AFM and spectroscopic techniques.

    PubMed

    Benítez, José J; Matas, Antonio J; Heredia, Antonio

    2004-08-01

    Atomic force microscopy, FT-IR spectroscopy, and solid-state nuclear magnetic resonance have been used to improve our current knowledge on the molecular characteristics of the biopolyester cutin, the main component of the plant cuticle. After comparison of samples of cutin isolated from young and mature tomato fruit cuticles has been possible to establish different degrees of cross-linking in the biopolymer and that the polymer is mainly formed after esterification of secondary hydroxyl groups of the monomers that form this type of cutin. Atomic force microscopy gave useful structural information on the molecular topography of the outer surface of the isolated samples. The texture of these samples is a consequence of the cross-linking degree or chemical status of the polymer. Thus, the more dense and cross-linked cutin from ripe or mature tomato fruit is characterized by a flatter and more globular texture in addition to the development of elongated and orientated superstructures.

  15. Epidemiological bases and molecular mechanisms linking obesity, diabetes, and cancer.

    PubMed

    Gutiérrez-Salmerón, María; Chocarro-Calvo, Ana; García-Martínez, José Manuel; de la Vieja, Antonio; García-Jiménez, Custodia

    2017-02-01

    The association between diabetes and cancer was hypothesized almost one century ago. Today, a vast number of epidemiological studies support that obese and diabetic populations are more likely to experience tissue-specific cancers, but the underlying molecular mechanisms remain unknown. Obesity, diabetes, and cancer share many hormonal, immune, and metabolic changes that may account for the relationship between diabetes and cancer. In addition, antidiabetic treatments may have an impact on the occurrence and course of some cancers. Moreover, some anticancer treatments may induce diabetes. These observations aroused a great controversy because of the ethical implications and the associated commercial interests. We report an epidemiological update from a mechanistic perspective that suggests the existence of many common and differential individual mechanisms linking obesity and type 1 and 2 diabetes mellitus to certain cancers. The challenge today is to identify the molecular links responsible for this association. Classification of cancers by their molecular signatures may facilitate future mechanistic and epidemiological studies. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Website Policies / Important Links | Data Explorer

    Science.gov Websites

    : Collaborations: Publication Date: to Sort: Relevance (highest to lowest) Publication Date (newest first ) Publication Date (oldest first) Close Clear All Find DOE Data Explorer Website Policies / Important Links

  17. Effect of microstructure on the thermo-oxidation of solid isotactic polypropylene-based polyolefins

    PubMed Central

    Hoyos, Mario; Tiemblo, Pilar; Gómez-Elvira, José Manuel

    2008-01-01

    In the present work we aim to clarify the role of the microstructure and the crystalline distribution from the thermo-oxidation of solid isotactic PP (iPP) and ethylene-propylene (EP) copolymers. The effects of the content and quality of the isotacticity interruptions, together with the associated average isotactic length, on the induction time (ti) as well as on the activation energy (Eact) of the thermo-oxidation are analysed. Both parameters have been found to change markedly at an average isotactic length (n1) of 30 propylene units. While ti reaches a minimum when n1 is approximately 30 units, Eact increases quasi-exponentially as the number of units decreases from 30. This variation can be explained in terms of changes induced in the crystalline interphase, i.e. local molecular dynamics, which are closely linked to the initiation of the thermo-oxidation of isotactic PP-based polyolefins. PMID:27877971

  18. Molecular mapping of powdery mildew resistance gene Eg-3 in cultivated oat (Avena sativa L. cv. Rollo).

    PubMed

    Mohler, Volker; Zeller, Friedrich J; Hsam, Sai L K

    2012-05-01

    Powdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn. The resistance gene was mapped with restriction fragment length polymorphism (RFLP) markers from Triticeae group-1 chromosomes using a population of F(3) lines from a cross between A. byzantina cv. Kanota and A. sativa cv. Rollo. This comparative mapping approach positioned Eg-3 between cDNA-RFLP marker loci cmwg706 and cmwg733. Since both marker loci were derived from the long arm of barley chromosome 1H, the subchromosomal location of Eg-3 was assumed to be on the long arm of oat chromosome 17. Amplified fragment length polymorphism (AFLP) marker technology featured as an efficient means for obtaining markers closely linked to Eg-3.

  19. Topological transformations of Hopf solitons in chiral ferromagnets and liquid crystals.

    PubMed

    Tai, Jung-Shen B; Ackerman, Paul J; Smalyukh, Ivan I

    2018-01-30

    Liquid crystals are widely known for their facile responses to external fields, which forms a basis of the modern information display technology. However, switching of molecular alignment field configurations typically involves topologically trivial structures, although singular line and point defects often appear as short-lived transient states. Here, we demonstrate electric and magnetic switching of nonsingular solitonic structures in chiral nematic and ferromagnetic liquid crystals. These topological soliton structures are characterized by Hopf indices, integers corresponding to the numbers of times that closed-loop-like spatial regions (dubbed "preimages") of two different single orientations of rod-like molecules or magnetization are linked with each other. We show that both dielectric and ferromagnetic response of the studied material systems allow for stabilizing a host of topological solitons with different Hopf indices. The field transformations during such switching are continuous when Hopf indices remain unchanged, even when involving transformations of preimages, but discontinuous otherwise.

  20. An electrostatic potassium channel opener targeting the final voltage sensor transition

    PubMed Central

    Börjesson, Sara I.

    2011-01-01

    Free polyunsaturated fatty acids (PUFAs) modulate the voltage dependence of voltage-gated ion channels. As an important consequence thereof, PUFAs can suppress epileptic seizures and cardiac arrhythmia. However, molecular details for the interaction between PUFA and ion channels are not well understood. In this study, we have localized the site of action for PUFAs on the voltage-gated Shaker K channel by introducing positive charges on the channel surface, which potentiated the PUFA effect. Furthermore, we found that PUFA mainly affects the final voltage sensor movement, which is closely linked to channel opening, and that specific charges at the extracellular end of the voltage sensor are critical for the PUFA effect. Because different voltage-gated K channels have different charge profiles, this implies channel-specific PUFA effects. The identified site and the pharmacological mechanism will potentially be very useful in future drug design of small-molecule compounds specifically targeting neuronal and cardiac excitability. PMID:21624947

  1. Inhibition of TRPV1 channels by a naturally occurring omega-9 fatty acid reduces pain and itch

    PubMed Central

    Morales-Lázaro, Sara L.; Llorente, Itzel; Sierra-Ramírez, Félix; López-Romero, Ana E.; Ortíz-Rentería, Miguel; Serrano-Flores, Barbara; Simon, Sidney A.; Islas, León D.; Rosenbaum, Tamara

    2016-01-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation. PMID:27721373

  2. Biological monitoring of environmental quality: The use of developmental instability

    USGS Publications Warehouse

    Freeman, D.C.; Emlen, J.M.; Graham, J.H.; Hough, R. A.; Bannon, T.A.

    1994-01-01

    Distributed robustness is thought to influence the buffering of random phenotypic variation through the scale-free topology of gene regulatory, metabolic, and protein-protein interaction networks. If this hypothesis is true, then the phenotypic response to the perturbation of particular nodes in such a network should be proportional to the number of links those nodes make with neighboring nodes. This suggests a probability distribution approximating an inverse power-law of random phenotypic variation. Zero phenotypic variation, however, is impossible, because random molecular and cellular processes are essential to normal development. Consequently, a more realistic distribution should have a y-intercept close to zero in the lower tail, a mode greater than zero, and a long (fat) upper tail. The double Pareto-lognormal (DPLN) distribution is an ideal candidate distribution. It consists of a mixture of a lognormal body and upper and lower power-law tails.

  3. Triboluminescence from Pharmaceutical Formulations.

    PubMed

    Smith, Casey J; Griffin, Scott R; Eakins, Gregory S; Deng, Fengyuan; White, Julia K; Thirunahari, Satyanarayana; Ramakrishnan, Srividya; Sangupta, Atanu; Zhang, Siwei; Novak, Julie; Liu, Zhen; Rhodes, Timothy; Simpson, Garth J

    2018-06-05

    Triboluminescence (TL) is shown to enable selective detection of trace crystallinity within nominally amorphous solid dispersions (ASDs). ASDs are increasingly used for the preparation of pharmaceutical formulations, the physical stability of which can be negatively impacted by trace crystallinity introduced during manufacturing or storage. In the present study, TL measurements of a model ASD consisting of griseofulvin in polyethylene glycol produced limits of detection of 140 ppm. Separate studies of the particle size dependence of sucrose crystals and the dependence on polymorphism in clopidogrel bisulfate particles are both consistent with a mechanism for TL closely linked to the piezoelectric response of the crystalline fraction. Whereas disordered polymeric materials cannot support piezoelectric activity, molecular crystals produced from homochiral molecules adopt crystal structures that are overwhelmingly symmetry-allowed for piezoelectricity. Consequently, TL may provide a broadly applicable and simple experimental route for sensitive detection of trace crystallinity within nominally amorphous materials.

  4. The Intestinal Microbiome and the Liver Transplant Recipient: What We Know and What We Need to Know.

    PubMed

    Doycheva, Iliana; Leise, Michael D; Watt, Kymberly D

    2016-01-01

    The intestinal microbiome and immune system are in close symbiotic relationship in health. Gut microbiota plays a role in many chronic liver diseases and cirrhosis. However, alterations in the gut microbiome after liver transplantation and the implications for liver transplant recipients are not well understood and rely mainly on experimental animal studies. Recent advances in molecular techniques have identified that increased intestinal permeability, decreased beneficial bacteria, and increased pathogenic species may play important roles in the early posttransplant period. The associations between microbiota perturbation and postliver transplant infections and acute rejection are evolving. The link with metabolic syndrome, obesity, and cardiac disease in the general population require translation into the transplant recipient. This review focuses on our current knowledge of the known and potential interaction of the microbiome in the liver transplant recipient. Future human studies focused on microbiota changes in liver transplant patients are warranted and expected.

  5. Nipah Virus in Lyle's Flying Foxes, Cambodia

    PubMed Central

    Counor, Dorian; Ong, Sivuth; Faure, Caroline; Seng, Vansay; Molia, Sophie; Walston, Joe; Georges-Courbot, Marie Claude; Deubel, Vincent; Sarthou, Jean-Louis

    2005-01-01

    We conducted a survey in Cambodia in 2000 on henipavirus infection among several bat species, including flying foxes, and persons exposed to these animals. Among 1,072 bat serum samples tested by enzyme-linked immunosorbent assay, antibodies reactive to Nipah virus (NiV) antigen were detected only in Pteropus lylei species; Cynopterus sphinx, Hipposideros larvatus, Scotophilus kuhlii, Chaerephon plicata, Taphozous melanopogon, and T. theobaldi species were negative. Seroneutralization applied on a subset of 156 serum samples confirmed these results. None of the 8 human serum samples was NiV seropositive with the seroneutralization test. One virus isolate exhibiting cytopathic effect with syncytia was obtained from 769 urine samples collected at roosts of P. lylei specimens. Partial molecular characterization of this isolate demonstrated that it was closely related to NiV. These results strengthen the hypothesis that flying foxes could be the natural host of NiV. Surveillance of human cases should be implemented. PMID:16022778

  6. Rheology of wormlike micellar fluids from Brownian and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Padding, J. T.; Boek, E. S.; Briels, W. J.

    2005-11-01

    There is a great need for understanding the link between the detailed chemistry of surfactants, forming wormlike micelles, and their macroscopic rheological properties. In this paper we show how this link may be explored through particle simulations. First we review an existing bead-spring model. We find that shear flow enhances the formation of rings at the expense of linear chains. The shear viscosity of this model is dominated by solvent contributions, however, and the link with the chemistry of the surfactants is missing. We introduce a more realistic Brownian dynamics model, the parameters of which are measured from atomistic molecular dynamics simulations.

  7. N(4)C-ethyl-N(4)C cross-linked DNA: synthesis and characterization of duplexes with interstrand cross-links of different orientations.

    PubMed

    Noronha, Anne M; Noll, David M; Wilds, Christopher J; Miller, Paul S

    2002-01-22

    The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms.

  8. 77 FR 3277 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Training Neurosciences Integrated Review Group; Molecular Neurogenetics Study Section. Date: February 16-17..., [email protected] . Name of Committee: Vascular and Hematology Integrated Review Group; Molecular and...- 1213, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience...

  9. 77 FR 2739 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-19

    ... . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics A Study... Urological Systems Integrated Review Group; Kidney Molecular Biology and Genitourinary Organ Development... Sciences Integrated Review Group; Molecular and Cellular Endocrinology Study Section. Date: February 13...

  10. 75 FR 994 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ..., Genomes, and Genetics Integrated Review Group; Molecular Genetics C Study Section. Date: February 4-5...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neural Oxidative Metabolism [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review...

  11. Linking genes to microbial growth kinetics: an integrated biochemical systems engineering approach.

    PubMed

    Koutinas, Michalis; Kiparissides, Alexandros; Silva-Rocha, Rafael; Lam, Ming-Chi; Martins Dos Santos, Vitor A P; de Lorenzo, Victor; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2011-07-01

    The majority of models describing the kinetic properties of a microorganism for a given substrate are unstructured and empirical. They are formulated in this manner so that the complex mechanism of cell growth is simplified. Herein, a novel approach for modelling microbial growth kinetics is proposed, linking biomass growth and substrate consumption rates to the gene regulatory programmes that control these processes. A dynamic model of the TOL (pWW0) plasmid of Pseudomonas putida mt-2 has been developed, describing the molecular interactions that lead to the transcription of the upper and meta operons, known to produce the enzymes for the oxidative catabolism of m-xylene. The genetic circuit model was combined with a growth kinetic model decoupling biomass growth and substrate consumption rates, which are expressed as independent functions of the rate-limiting enzymes produced by the operons. Estimation of model parameters and validation of the model's predictive capability were successfully performed in batch cultures of mt-2 fed with different concentrations of m-xylene, as confirmed by relative mRNA concentration measurements of the promoters encoded in TOL. The growth formation and substrate utilisation patterns could not be accurately described by traditional Monod-type models for a wide range of conditions, demonstrating the critical importance of gene regulation for the development of advanced models closely predicting complex bioprocesses. In contrast, the proposed strategy, which utilises quantitative information pertaining to upstream molecular events that control the production of rate-limiting enzymes, predicts the catabolism of a substrate and biomass formation and could be of central importance for the design of optimal bioprocesses. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Looking like Limulus? – Retinula axons and visual neuropils of the median and lateral eyes of scorpions

    PubMed Central

    2013-01-01

    Background Despite ongoing interest in the neurophysiology of visual systems in scorpions, aspects of their neuroanatomy have received little attention. Lately sets of neuroanatomical characters have contributed important arguments to the discussion of arthropod ground patterns and phylogeny. In various attempts to reconstruct phylogeny (from morphological, morphological + molecular, or molecular data) scorpions were placed either as basalmost Arachnida, or within Arachnida with changing sister-group relationships, or grouped with the extinct Eurypterida and Xiphosura inside the Merostomata. Thus, the position of scorpions is a key to understanding chelicerate evolution. To shed more light on this, the present study for the first time combines various techniques (Cobalt fills, DiI / DiO labelling, osmium-ethyl gallate procedure, and AMIRA 3D-reconstruction) to explore central projections and visual neuropils of median and lateral eyes in Euscorpius italicus (Herbst, 1800) and E. hadzii Di Caporiacco, 1950. Results Scorpion median eye retinula cells are linked to a first and a second visual neuropil, while some fibres additionally connect the median eyes with the arcuate body. The lateral eye retinula cells are linked to a first and a second visual neuropil as well, with the second neuropil being partly shared by projections from both eyes. Conclusions Comparing these results to previous studies on the visual systems of scorpions and other chelicerates, we found striking similarities to the innervation pattern in Limulus polyphemus for both median and lateral eyes. This supports from a visual system point of view at least a phylogenetically basal position of Scorpiones in Arachnida, or even a close relationship to Xiphosura. In addition, we propose a ground pattern for the central projections of chelicerate median eyes. PMID:23842208

  13. The genome-wide landscape of DNA methylation and hydroxymethylation in response to sleep deprivation impacts on synaptic plasticity genes.

    PubMed

    Massart, R; Freyburger, M; Suderman, M; Paquet, J; El Helou, J; Belanger-Nelson, E; Rachalski, A; Koumar, O C; Carrier, J; Szyf, M; Mongrain, V

    2014-01-21

    Sleep is critical for normal brain function and mental health. However, the molecular mechanisms mediating the impact of sleep loss on both cognition and the sleep electroencephalogram remain mostly unknown. Acute sleep loss impacts brain gene expression broadly. These data contributed to current hypotheses regarding the role for sleep in metabolism, synaptic plasticity and neuroprotection. These changes in gene expression likely underlie increased sleep intensity following sleep deprivation (SD). Here we tested the hypothesis that epigenetic mechanisms coordinate the gene expression response driven by SD. We found that SD altered the cortical genome-wide distribution of two major epigenetic marks: DNA methylation and hydroxymethylation. DNA methylation differences were enriched in gene pathways involved in neuritogenesis and synaptic plasticity, whereas large changes (>4000 sites) in hydroxymethylation where observed in genes linked to cytoskeleton, signaling and neurotransmission, which closely matches SD-dependent changes in the transcriptome. Moreover, this epigenetic remodeling applied to elements previously linked to sleep need (for example, Arc and Egr1) and synaptic partners of Neuroligin-1 (Nlgn1; for example, Dlg4, Nrxn1 and Nlgn3), which we recently identified as a regulator of sleep intensity following SD. We show here that Nlgn1 mutant mice display an enhanced slow-wave slope during non-rapid eye movement sleep following SD but this mutation does not affect SD-dependent changes in gene expression, suggesting that the Nlgn pathway acts downstream to mechanisms triggering gene expression changes in SD. These data reveal that acute SD reprograms the epigenetic landscape, providing a unique molecular route by which sleep can impact brain function and health.

  14. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.

    PubMed

    Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G

    2018-05-30

    Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  15. Molecular binding of black tea theaflavins to biological membranes: relationship to bioactivities

    USDA-ARS?s Scientific Manuscript database

    Molecular dynamics simulations were used to study the interactions of three theaflavin compounds with lipid bilayers. Experimental studies have linked theaflavins to beneficial health effects, some of which are related to interactions with the cell membrane. The molecular interaction of theaflavin...

  16. Carotenoids are the likely precursor of a significant fraction of marine dissolved organic matter

    PubMed Central

    Arakawa, Neal; Aluwihare, Lihini I.; Simpson, Andre J.; Soong, Ronald; Stephens, Brandon M.; Lane-Coplen, Daniel

    2017-01-01

    The ocean’s biota sequester atmospheric carbon dioxide (CO2) in part by producing dissolved organic matter (DOM) that persists in the ocean for millennia. This long-term accumulation of carbon may be facilitated by abiotic and biotic production of chemical structures that resist degradation, consequently contributing disproportionately to refractory DOM. Compounds that are selectively preserved in seawater were identified in solid-phase extracted DOM (PPL-DOM) using comprehensive gas chromatography (GC) coupled to mass spectrometry (MS). These molecules contained cyclic head groups that were linked to isoprenoid tails, and their overall structures closely resembled carotenoid degradation products (CDP). The origin of these compounds in PPL-DOM was further confirmed with an in vitro β-carotene photooxidation experiment that generated water-soluble CDP with similar structural characteristics. The molecular-level identification linked at least 10% of PPL-DOM carbon, and thus 4% of total DOM carbon, to CDP. Nuclear magnetic resonance spectra of experimental CDP and environmental PPL-DOM overlapped considerably, which indicated that even a greater proportion of PPL-DOM was likely composed of CDP. The CDP-rich DOM fraction was depleted in radiocarbon (14C age > 1500 years), a finding that supports the possible long-term accumulation of CDP in seawater. By linking a specific class of widespread biochemicals to refractory DOM, this work provides a foundation for future studies that aim to examine how persistent DOM forms in the ocean. PMID:28959723

  17. Wing patterning gene redefines the mimetic history of Heliconius butterflies.

    PubMed

    Hines, Heather M; Counterman, Brian A; Papa, Riccardo; Albuquerque de Moura, Priscila; Cardoso, Marcio Z; Linares, Mauricio; Mallet, James; Reed, Robert D; Jiggins, Chris D; Kronforst, Marcus R; McMillan, W Owen

    2011-12-06

    The mimetic butterflies Heliconius erato and Heliconius melpomene have undergone parallel radiations to form a near-identical patchwork of over 20 different wing-pattern races across the Neotropics. Previous molecular phylogenetic work on these radiations has suggested that similar but geographically disjunct color patterns arose multiple times independently in each species. The neutral markers used in these studies, however, can move freely across color pattern boundaries, and therefore might not represent the history of the adaptive traits as accurately as markers linked to color pattern genes. To assess the evolutionary histories across different loci, we compared relationships among races within H. erato and within H. melpomene using a series of unlinked genes, genes linked to color pattern loci, and optix, a gene recently shown to control red color-pattern variation. We found that although unlinked genes partition populations by geographic region, optix had a different history, structuring lineages by red color patterns and supporting a single origin of red-rayed patterns within each species. Genes closely linked (80-250 kb) to optix exhibited only weak associations with color pattern. This study empirically demonstrates the necessity of examining phenotype-determining genomic regions to understand the history of adaptive change in rapidly radiating lineages. With these refined relationships, we resolve a long-standing debate about the origins of the races within each species, supporting the hypothesis that the red-rayed Amazonian pattern evolved recently and expanded, causing disjunctions of more ancestral patterns.

  18. Genetic deviation in geographically close populations of the dengue vector Aedes aegypti (Diptera: Culicidae): influence of environmental barriers in South India.

    PubMed

    Vadivalagan, Chithravel; Karthika, Pushparaj; Murugan, Kadarkarai; Panneerselvam, Chellasamy; Paulpandi, Manickam; Madhiyazhagan, Pari; Wei, Hui; Aziz, Al Thabiani; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Nicoletti, Marcello; Paramasivan, Rajaiah; Dinesh, Devakumar; Benelli, Giovanni

    2016-03-01

    Mosquitoes are vectors of devastating pathogens and parasites, causing millions of deaths every year. Dengue is a mosquito-borne viral infection found in tropical and subtropical regions around the world. Recently, dengue transmission has strongly increased in urban and semiurban areas, becoming a major international public health concern. Aedes aegypti (Diptera: Culicidae) is a primary vector of dengue. Shedding light on genetic deviation in A. aegypti populations is of crucial importance to fully understand their molecular ecology and evolution. In this research, haplotype and genetic analyses were conducted using individuals of A. aegypti from 31 localities in the north, southeast, northeast and central regions of Tamil Nadu (South India). The mitochondrial DNA region of cytochrome c oxidase 1 (CO1) gene was used as marker for the analyses. Thirty-one haplotypes sequences were submitted to GenBank and authenticated. The complete haplotype set included 64 haplotypes from various geographical regions clustered into three groups (lineages) separated by three fixed mutational steps, suggesting that the South Indian Ae. aegypti populations were pooled and are linked with West Africa, Columbian and Southeast Asian lineages. The genetic and haplotype diversity was low, indicating reduced gene flow among close populations of the vector, due to geographical barriers such as water bodies. Lastly, the negative values for neutrality tests indicated a bottle-neck effect and supported for low frequency of polymorphism among the haplotypes. Overall, our results add basic knowledge to molecular ecology of the dengue vector A. aegypti, providing the first evidence for multiple introductions of Ae. aegypti populations from Columbia and West Africa in South India.

  19. Integration of molecular typing results into tuberculosis surveillance in Germany—A pilot study

    PubMed Central

    Fiebig, Lena; Priwitzer, Martin; Richter, Elvira; Rüsch-Gerdes, Sabine; Haas, Walter; Niemann, Stefan; Brodhun, Bonita

    2017-01-01

    An integrated molecular surveillance for tuberculosis (TB) improves the understanding of ongoing TB transmission by combining molecular typing and epidemiological data. However, the implementation of an integrated molecular surveillance for TB is complex and requires thoughtful consideration of feasibility, demand, public health benefits and legal issues. We aimed to pilot the integration of molecular typing results between 2008 and 2010 in the German Federal State of Baden-Württemberg (population 10.88 Million) as preparation for a nationwide implementation. Culture positive TB cases were typed by IS6110 DNA fingerprinting and results were integrated into routine notification data. Demographic and clinical characteristics of cases and clusters were described and new epidemiological links detected after integrating typing data were calculated. Furthermore, a cross-sectional survey was performed among local public health offices to evaluate their perception and experiences. Overall, typing results were available for 83% of notified culture positive TB cases, out of which 25% were clustered. Age <15 years (OR = 4.96, 95% CI: 1.69–14.55) and being born in Germany (OR = 2.01, 95% CI: 1.44–2.80) were associated with clustering. At cluster level, molecular typing information allowed the identification of previously unknown epidemiological links in 11% of the clusters. In 59% of the clusters it was not possible to identify any epidemiological link. Clusters extending over different counties were less likely to have epidemiological links identified among their cases (OR = 11.53, 95% CI: 3.48–98.23). The majority of local public health offices found molecular typing useful for their work. Our study illustrates the feasibility of integrating typing data into the German TB notification system and depicts its added public health value as complementary strategy in TB surveillance, especially to uncover transmission events among geographically separated TB patients. It also emphasizes that special efforts are required to strengthen the communication between local public health offices in different counties to enhance TB control. PMID:29166403

  20. Integration of molecular typing results into tuberculosis surveillance in Germany-A pilot study.

    PubMed

    Andrés, Marta; Göhring-Zwacka, Elke; Fiebig, Lena; Priwitzer, Martin; Richter, Elvira; Rüsch-Gerdes, Sabine; Haas, Walter; Niemann, Stefan; Brodhun, Bonita

    2017-01-01

    An integrated molecular surveillance for tuberculosis (TB) improves the understanding of ongoing TB transmission by combining molecular typing and epidemiological data. However, the implementation of an integrated molecular surveillance for TB is complex and requires thoughtful consideration of feasibility, demand, public health benefits and legal issues. We aimed to pilot the integration of molecular typing results between 2008 and 2010 in the German Federal State of Baden-Württemberg (population 10.88 Million) as preparation for a nationwide implementation. Culture positive TB cases were typed by IS6110 DNA fingerprinting and results were integrated into routine notification data. Demographic and clinical characteristics of cases and clusters were described and new epidemiological links detected after integrating typing data were calculated. Furthermore, a cross-sectional survey was performed among local public health offices to evaluate their perception and experiences. Overall, typing results were available for 83% of notified culture positive TB cases, out of which 25% were clustered. Age <15 years (OR = 4.96, 95% CI: 1.69-14.55) and being born in Germany (OR = 2.01, 95% CI: 1.44-2.80) were associated with clustering. At cluster level, molecular typing information allowed the identification of previously unknown epidemiological links in 11% of the clusters. In 59% of the clusters it was not possible to identify any epidemiological link. Clusters extending over different counties were less likely to have epidemiological links identified among their cases (OR = 11.53, 95% CI: 3.48-98.23). The majority of local public health offices found molecular typing useful for their work. Our study illustrates the feasibility of integrating typing data into the German TB notification system and depicts its added public health value as complementary strategy in TB surveillance, especially to uncover transmission events among geographically separated TB patients. It also emphasizes that special efforts are required to strengthen the communication between local public health offices in different counties to enhance TB control.

  1. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    PubMed

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  2. Monogenic Mouse Models of Autism Spectrum Disorders: Common Mechanisms and Missing Links

    PubMed Central

    Hulbert, Samuel W.; Jiang, Yong-hui

    2016-01-01

    Autism Spectrum Disorders (ASDs) present unique challenges in the fields of genetics and neurobiology because of the clinical and molecular heterogeneity underlying these disorders. Genetic mutations found in ASD patients provide opportunities to dissect the molecular and circuit mechanisms underlying autistic behaviors using animal models. Ongoing studies of genetically modified models have offered critical insight into possible common mechanisms arising from different mutations, but links between molecular abnormalities and behavioral phenotypes remain elusive. The challenges encountered in modeling autism in mice demand a new analytic paradigm that integrates behavioral analysis with circuit-level analysis in genetically modified models with strong construct validity. PMID:26733386

  3. Parallel cascade selection molecular dynamics (PaCS-MD) to generate conformational transition pathway

    NASA Astrophysics Data System (ADS)

    Harada, Ryuhei; Kitao, Akio

    2013-07-01

    Parallel Cascade Selection Molecular Dynamics (PaCS-MD) is proposed as a molecular simulation method to generate conformational transition pathway under the condition that a set of "reactant" and "product" structures is known a priori. In PaCS-MD, the cycle of short multiple independent molecular dynamics simulations and selection of the structures close to the product structure for the next cycle are repeated until the simulated structures move sufficiently close to the product. Folding of 10-residue mini-protein chignolin from the extended to native structures and open-close conformational transition of T4 lysozyme were investigated by PaCS-MD. In both cases, tens of cycles of 100-ps MD were sufficient to reach the product structures, indicating the efficient generation of conformational transition pathway in PaCS-MD with a series of conventional MD without additional external biases. Using the snapshots along the pathway as the initial coordinates, free energy landscapes were calculated by the combination with multiple independent umbrella samplings to statistically elucidate the conformational transition pathways.

  4. Toward elucidating the heat activation mechanism of the TRPV1 channel gating by molecular dynamics simulation

    PubMed Central

    Wen, Han; Qin, Feng; Zheng, Wenjun

    2016-01-01

    As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high-resolution closed and open structures of TRPV1 solved by cryo-electron microscopy. In the closed-state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open-state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble-based structural analyses of the closed state vs. the open state, we revealed pronounced closed-to-open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open-state specific hydrogen bonds. By comparing the closed-state simulations at 30°C and 60°C, we observed heat-activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed-to-open conformational changes, along with partial formation of the open-state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. PMID:27699868

  5. Rich, poor share stake in poverty, pollution link

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeCanio, S.J.

    A dirty environment and poverty go together, and this link between environmental protection and economic development is creating a new basis for international cooperation, says Stephen J. DeCanio of the University of California at Santa Barbara. [open quotes]Both developed and developing countries have a stake in solving the development/environment impasse,[close quotes] DeCanio adds. [open quotes]Furthermore, the link between these problems offers a fresh opportunity to make progress on both fronts.[close quotes] He says environmental protection expenditures by developed countries can be used to promote the sustainable economic growth of those countries struggling to escape from poverty. The money could bemore » collected in several ways, he notes: from various types of environmental taxes, such as a carbon tax; from environmental user fees; from [open quotes]debt-for nature[close quotes] swaps; and from tradable emissions permits. Such mechanisms transfer resources to developing countries, where they can be applied to economic development-a desired objective, according to DeCanio. [open quotes]The benefits of equitable worldwide growth and development outweigh any temporary loss of wealth developed countries may experience as a result of environmental transfers,[close quotes] he asserts.« less

  6. 77 FR 33474 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... Translational Integrated Review Group; Cancer Molecular Pathobiology Study Section. Date: June 25-26, 2012. Time... 7818, Bethesda, MD 20892, 301-435- 1198, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of...

  7. Excitation and Disruption of a Giant Molecular Cloud by the Sepurnova Remnant 3C 391

    NASA Technical Reports Server (NTRS)

    Reach, W. T.; Rho, J.

    1998-01-01

    The ambient molecular gas at the distance of the remnant comprises a giant molecular cloud whose edge is closely parallel to a ridge of bright non-thermal radio continuum, which evidently delineates the blast-wave into the cloud.

  8. 75 FR 25273 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ... Genetics Integrated Review Group, Molecular Genetics C Study Section. Date: June 3-4, 2010. Time: 8 a.m. to... Committee: Oncology 1-Basic Translational Integrated Review Group, Cancer Molecular Pathobiology Study... Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Cellular and...

  9. 77 FR 31030 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... Review Group; Cellular, Molecular and Integrative Reproduction Study Section. Date: June 21, 2012. Time...: Endocrinology, Metabolism, Nutrition and Reproductive Sciences Integrated Review Group; Molecular and Cellular..., Bethesda, MD 20892, 301-827- 7915, [email protected] . Name of Committee: Molecular, Cellular and...

  10. Highly Conductive Ionic-Liquid Gels Prepared with Orthogonal Double Networks of a Low-Molecular-Weight Gelator and Cross-Linked Polymer.

    PubMed

    Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo

    2015-10-21

    We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.

  11. Design theory and performance of cryogenic molecular adsorption refrigeration systems

    NASA Technical Reports Server (NTRS)

    Hartwig, W. H.; Woltman, A. W.; Masson, J. P.

    1978-01-01

    Closed-cycle operation of molecular adsorption refrigeration systems (MARS) has been demonstrated by using thermally cycled zeolites to adsorb and desorb various gases under pressures of 20-60 atm. This paper develops three aspects of the design theory: the physical theory of molecular adsorption of small molecules such as A, N2, N2O and NH3, the design relations for closed-cycle flow for three or more compressors, and the coefficient of performance. This work is intended to demonstrate nonmechanical gas compression for various cryogenic gases than can compete with mechanical systems with a different mix of advantages and disadvantages.

  12. Urinary polycyclic aromatic hydrocarbons as a biomarker of exposure to PAHs in air: a pilot study among pregnant women.

    PubMed

    Nethery, Elizabeth; Wheeler, Amanda J; Fisher, Mandy; Sjödin, Andreas; Li, Zheng; Romanoff, Lovisa C; Foster, Warren; Arbuckle, Tye E

    2012-01-01

    Recent studies have linked increased polycyclic aromatic hydrocarbons (PAHs) in air and adverse fetal health outcomes. Urinary PAH metabolites are of interest for exposure assessment if they can predict PAHs in air. We investigated exposure to PAHs by collecting air and urine samples among pregnant women pre-selected as living in "high" (downtown and close to steel mills, n=9) and "low" (suburban, n=10) exposure areas. We analyzed first-morning urine voids from all 3 trimesters of pregnancy for urinary PAH metabolites and compared these to personal air PAH/PM(2.5)/NO(2)/NO(X) samples collected in the 3rd trimester. We also evaluated activities and home characteristics, geographic indicators and outdoor central site PM(2.5)/NO(2)/NO(X) (all trimesters). Personal air exposures to the lighter molecular weight (MW) PAHs were linked to indoor sources (candles and incense), whereas the heavier PAHs were related to outdoor sources. Geometric means of all personal air measurements were higher in the "high" exposure group. We suggest that centrally monitored heavier MW PAHs could be used to predict personal exposures for heavier PAHs only. Urine metabolites were only directly correlated with their parent air PAHs for phenanthrene (Pearson's r=0.31-0.45) and fluorene (r=0.37-0.58). Predictive models suggest that specific metabolites (3-hydroyxyfluorene and 3-hydroxyphenanthrene) may be related to their parent air PAH exposures. The metabolite 2-hydroxynaphthalene was linked to smoking and the metabolite 1-hydroxypyrene was linked to dietary exposures. For researchers interested in predicting exposure to airborne lighter MW PAHs using urinary PAH metabolites, we propose that hydroxyfluorene and hydroxyphenanthrene metabolites be considered.

  13. Fundamental Studies of Hydroporphyrin Architectures for Solar-Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindsey, Jonathan S.; Bocian, David F.; Holten, Dewey

    2013-10-30

    The long-term objective of the Bocian/Holten&Kirmaier/Lindsey research program is to design, synthesize, and characterize tetrapyrrole-based molecular architectures that absorb sunlight, funnel energy, and separate charge with high efficiency and in a manner compatible with current and future solar-energy conversion schemes. The synthetic tetrapyrroles include porphyrins and hydroporphyrins; the latter classes of molecules encompass analogues of the naturally occurring chlorophylls and bacteriochlorophylls (e.g., chlorins, bacteriochlorins, and their derivatives). The attainment of the goals of the research program requires the close interplay of molecular design and synthesis (Lindsey group), static and time-resolved optical spectroscopic measurements (Holten&Kirmaier group), and electrochemical, electron paramagnetic resonance,more » resonance Raman, and infrared studies, as well as density functional theory calculations (Bocian Group). The proposed research encompasses four interrelated themes: (i) Gain a deeper understanding of the spectral and electronic properties of bacteriochlorins, with a subsidiary aim of learning how to shift the long-wavelength absorption band deeper into the NIR region. Bacteriochlorins bearing diverse substituents, including annulated rings, will be prepared and examined. A set of bacteriochlorins with site-specific isotopic (13C, 2H) substitution patterns about the macrocycle perimeter will be prepared for studies of vibrational and electronic properties. (ii) Examine the underlying electronic origin of panchromatic absorption and excited-state behavior of strongly coupled rylene–tetrapyrrole arrays. The rylene constituents include a perylene-monoimide and a terrylene-monoimide. The tetrapyrroles include porphyrins (meso- or β-linked) and bacteriochlorins (β-linked). The objective is to achieve panchromatic absorption while preserving a viable, long-lived excited singlet state. (iii) Determine the rates of ground-state hole/electron transfer between (hydro)porphyrins as a function of array size, distance between components, linker type, site of linker connection, and frontier molecular orbital composition. (iv) Build upon the results of the aforementioned studies to design, synthesize, and characterize integrated architectures that incorporate a panchromatic absorber and other molecular components that that afford efficient hole/electron migration and long-lived charge separation. Such architectures will be examined on solid substrates to explore the viability of the component parts and processes under application-oriented conditions. Such architectures or successors may prove directly useful for solar-energy conversion systems. An equally important attribute is to serve as a test-bed for successful integration of the requisite properties and processes, some of which require rather weak coupling between constituents, some of which require very strong electronic interactions to elicit the desired behavior, and all of which should be tunable under molecular design control to the extent possible. Collectively, the proposed studies will provide fundamental insights into molecular properties, interactions, and processes relevant to the design of molecular architectures for solar-energy conversion. The accomplishment of these goals is only possible through a highly synergistic program that encompasses molecular design, synthesis, and in-depth characterization.« less

  14. The Effect of Crosslinking on the Microscale Stress Response and Molecular Deformations in Actin Networks

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.

    Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.

  15. Dynamics of an Active-Site Flap Contributes to Catalysis in a JAMM Family Metallo Deubiquitinase.

    PubMed

    Bueno, Amy N; Shrestha, Rashmi K; Ronau, Judith A; Babar, Aditya; Sheedlo, Michael J; Fuchs, Julian E; Paul, Lake N; Das, Chittaranjan

    2015-10-06

    The endosome-associated deubiquitinase (DUB) AMSH is a member of the JAMM family of zinc-dependent metallo isopeptidases with high selectivity for Lys63-linked polyubiquitin chains, which play a key role in endosomal-lysosomal sorting of activated cell surface receptors. The catalytic domain of the enzyme features a flexible flap near the active site that opens and closes during its catalytic cycle. Structural analysis of its homologues, AMSH-LP (AMSH-like protein) and the fission yeast counterpart, Sst2, suggests that a conserved Phe residue in the flap may be critical for substrate binding and/or catalysis. To gain insight into the contribution of this flap in substrate recognition and catalysis, we generated mutants of Sst2 and characterized them using a combination of enzyme kinetics, X-ray crystallography, molecular dynamics simulations, and isothermal titration calorimetry (ITC). Our analysis shows that the Phe residue in the flap contributes key interactions during the rate-limiting step but not to substrate binding, since mutants of Phe403 exhibit a defect only in kcat but not in KM. Moreover, ITC studies show Phe403 mutants have similar KD for ubiquitin compared to the wild-type enzyme. The X-ray structures of both Phe403Ala and the Phe403Trp, in both the free and ubiquitin bound form, reveal no appreciable structural change that might impair substrate or alter product binding. We observed that the side chain of the Trp residue is oriented identically with respect to the isopeptide moiety of the substrate as the Phe residue in the wild-type enzyme, so the loss of activity seen in this mutant cannot be explained by the absence of a group with the ability to provide van der Waals interactions that facilitate the hyrdolysis of the Lys63-linked diubiquitin. Molecular dynamics simulations indicate that the flap in the Trp mutant is quite flexible, allowing almost free rotation of the indole side chain. Therefore, it is possible that these different dynamic properties of the flap in the Trp mutant, compared to the wild-type enzyme, manifest as a defect in interactions that facilitate the rate-limiting step. Consistent with this notion, the Trp mutant was able to cleave Lys48-linked and Lys11-linked diubiquitin better than the wild-type enzyme, indicating altered mobility and hence reduced selectivity.

  16. Chemistry of gluten proteins.

    PubMed

    Wieser, Herbert

    2007-04-01

    Gluten proteins play a key role in determining the unique baking quality of wheat by conferring water absorption capacity, cohesivity, viscosity and elasticity on dough. Gluten proteins can be divided into two main fractions according to their solubility in aqueous alcohols: the soluble gliadins and the insoluble glutenins. Both fractions consist of numerous, partially closely related protein components characterized by high glutamine and proline contents. Gliadins are mainly monomeric proteins with molecular weights (MWs) around 28,000-55,000 and can be classified according to their different primary structures into the alpha/beta-, gamma- and omega-type. Disulphide bonds are either absent or present as intrachain crosslinks. The glutenin fraction comprises aggregated proteins linked by interchain disulphide bonds; they have a varying size ranging from about 500,000 to more than 10 million. After reduction of disulphide bonds, the resulting glutenin subunits show a solubility in aqueous alcohols similar to gliadins. Based on primary structure, glutenin subunits have been divided into the high-molecular-weight (HMW) subunits (MW=67,000-88,000) and low-molecular-weight (LMW) subunits (MW=32,000-35,000). Each gluten protein type consists or two or three different structural domains; one of them contains unique repetitive sequences rich in glutamine and proline. Native glutenins are composed of a backbone formed by HMW subunit polymers and of LMW subunit polymers branched off from HMW subunits. Non-covalent bonds such as hydrogen bonds, ionic bonds and hydrophobic bonds are important for the aggregation of gliadins and glutenins and implicate structure and physical properties of dough.

  17. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.

    PubMed

    Šponer, Jiří; Bussi, Giovanni; Krepl, Miroslav; Banáš, Pavel; Bottaro, Sandro; Cunha, Richard A; Gil-Ley, Alejandro; Pinamonti, Giovanni; Poblete, Simón; Jurečka, Petr; Walter, Nils G; Otyepka, Michal

    2018-04-25

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.

  18. Laboratory and Molecular Characterization of Dengue Viruses in a 2014 Outbreak in Guangfo Region, Southern China.

    PubMed

    Luo, Zhao-Fan; Hu, Bo; Zhang, Feng-Yi; Lin, Xiang-Hua; Xie, Xiao-Ying; Pan, Kun-Yi; Li, Hong-Yu; Ren, Rui-Wen; Zhao, Wen-Zhong

    2017-09-25

    Non-specific symptoms and low viremia levels make early diagnosis of dengue virus (DENV) infection challenging. This study aimed to i) identify laboratory markers that can be used to predict a DENV-positive diagnosis and ii) perform a molecular characterization of DENVs from the 2014 Guangdong epidemic. This retrospective study analyzed 1,044 patients from the Guangdong epidemic who were clinically suspected cases of dengue. Viral RNA was detected by real-time RT-PCR, and viral-specific NS1 antigen was detected using enzyme-linked immuno sorbent assay. A molecular phylogenetic analysis was performed for the with the DENV C-prM gene junction. Patients with dengue infection had leukopenia (2.8 × 10 9 /L), thrombocytopenia (109.0 × 10 9 /L), elevated aspartate aminotransferase (56.0 IU/L) and alanine aminotransferase (43.5 IU/L), and prolonged activated partial thromboplastin time (APTT, 33.5 s) (all P < 0.001) compared to patients without dengue. The positive predictive value of leukopenia and thrombocytopenia for DENV infection were 96.9% and 93.0%, respectively. Leukopenia, thrombocytopenia, elevated aminotransferases, and prolonged APTT were useful predictive markers for an early diagnosis of DENV infection. Phylogenetic analysis indicated that the DENVs from the 2014 epidemic were closely related to a 2010 New Delhi strain and a 2013 Guangzhou strain. The 2014 epidemic consisted of co-circulating DENV-1 genotypes I and V from multiple origins. Efficient dengue surveillance can facilitate rapid response to future outbreaks.

  19. Association between a polymorphism of the α-lactalbumin gene and milk production traits in Chinese Holstein cows.

    PubMed

    Zhou, J P; Dong, C H

    2013-09-04

    The traits particularly important for milk production include milk yield, protein percentage, fat percentage, and the somatic cell score. Alpha-lactalbumin (α-LA) is an important whey protein of cow milk, and is also present in the milk of many other mammalian species. In this study, we analyzed the genetic polymorphisms of the α-LA gene and their relationship to milk production traits (milk yield, protein percentage, fat percentage, and somatic cell score) in Chinese Holstein cows. The goal of this study was to contribute further molecular genetic information related to dairy cattle, to determine the molecular markers that are most closely linked with milk production traits, and to provide a scientific basis for the improvement of economically relevant traits in cows. Fluorescence-based conformation-sensitive gel electrophoresis, DNA sequencing, and ligation detection reaction techniques were used to analyze genetic variations of the α-LA gene (5'-UTR, exons 1, 2, 3, 4, and 3'-UTR) in 923 Chinese Holstein cows. One novel single nucleotide polymorphism (SNP), α-LA2516, was identified in exon 4 of the α-LA gene. Allele frequencies were as follows: T 0.674, C 0.326. Association analysis revealed that α-LA2516 was not associated with milk yield, protein percentage, fat percentage, or somatic cell score (P > 0.05). These findings suggest that the SNP α-LA2516 in the α-LA gene likely does not have potential as a molecular marker for milk production traits in Chinese Holstein cows.

  20. Transcriptome signatures of p,p´-DDE-induced liver damage in Mus spretus mice.

    PubMed

    Morales-Prieto, Noelia; Ruiz-Laguna, Julia; Sheehan, David; Abril, Nieves

    2018-07-01

    The use of DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) in some countries, although regulated, is contributing to an increased worldwide risk of exposure to this organochlorine pesticide or its derivative p,p'-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene]. Many studies have associated p,p'-DDE exposure to type 2 diabetes, obesity and alterations of the reproductive system, but their molecular mechanisms of toxicity remain poorly understood. We have addressed this issue by using commercial microarrays based on probes for the entire Mus musculus genome to determine the hepatic transcriptional signatures of p,p'-DDE in the phylogenetically close mouse species Mus spretus. High-stringency hybridization conditions and analysis assured reliable results, which were also verified, in part, by qRT-PCR, immunoblotting and/or enzymatic activity. Our data linked 198 deregulated genes to mitochondrial dysfunction and perturbations of central signaling pathways (kinases, lipids, and retinoic acid) leading to enhanced lipogenesis and aerobic glycolysis, inflammation, cell proliferation and testosterone catabolism and excretion. Alterations of transcript levels of genes encoding enzymes involved in testosterone catabolism and excretion would explain the relationships established between p,p´-DDE exposure and reproductive disorders, obesity and diabetes. Further studies will help to fully understand the molecular basis of p,p´-DDE molecular toxicity in liver and reproductive organs, to identify effective exposure biomarkers and perhaps to design efficient p,p'-DDE exposure counteractive strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Human T-lymphotropic virus-1/2 detected in drug abused men who have sex with men in Surakarta Indonesia

    NASA Astrophysics Data System (ADS)

    Prasetyo, Afiono Agung; Sari, Yulia

    2017-02-01

    Human T-cell lymphotropic virus types 1 and 2 (HTLV-1/2) are retroviruses that probably among the most neglected blood-borne pathogens. The molecular epidemiology data of HTLV-1/2 in Indonesia is very rare. This study evaluated the prevalence of HTLV-1 and 2 in men who have sex with men with drug abused history in Surakarta Indonesia, to track the presentation of HTLV-1/2 in Indonesia. All blood samples collected from men who have sex with men with drug abused history in Surakarta in 2009-2013 were tested using enzyme linked immunosorbent assays and confirmed by RT-PCR nested addressed the part of HTLV-1 LTR and HTLV-2 LTR region, respectively. The specificity of the molecular assays was confirmed by sequencing the amplicons. The anti HTLV-1/2 positive rate was 4.8% (6/126). All positive serological samples were confirmed by nested RT-PCR. Of these, two was HTLV-1 positive and four was HTLV-2 positive. Molecular analysis of positive PCR products revealed that all HTLV-1 isolate had close relationship with HTLV-1 isolated in Japan while all HTLV-2 isolate with that of isolated in USA. HTLV-1 and HTLV-2 were detected in men who have sex with men with drug abused history in Surakarta indicated that these viruses were circulated in Indonesia, especially in the high risk communities

  2. Flight Deck Data Link Displays: An Evaluation of Textual and Graphical Implementations

    NASA Technical Reports Server (NTRS)

    McGann, Alison; Lozito, Sandy; Corker, Kevin; Ashford, Rose (Technical Monitor)

    2001-01-01

    In Experiment 1, 16 pilots participated in a part-task simulation study that evaluated pilot data link communication for short and long message types and for two textual formats. No differences were found between the two textual formats when evaluating data link transaction times and pilot performance on a secondary task. Pilots initiated flight changes more quickly with the T-Scan format, where location of clearance information roughly corresponded to the cockpit instrument layout. Longer messages were less problematic than two short messages sent in close succession as pilots required more verbal clarification for closely spaced messages. 24 pilots participated in a second experiment that evaluated pilot communication performance for textual data link, two implementations of graphical data link, and a combined graphical and textual information modality. The two modalities incorporating text resulted in significantly faster transaction times and better performance on the secondary task than the two graphical-only implementations. The interval between messages was also more systematically varied in Experiment 2, and a short interval between messages significantly increased the access time for the second message. This delay in access was long enough to increase significantly the total transaction time of the second message, and this effect was exaggerated for the graphical-only implementations. Time to view the message before acknowledgement and time to initiate flight changes were not affected by the interval manipulation, This suggests that pilots adopt a sequential message handling strategy, and presenting messages closely in succession may present operational problems in a data link Air Traffic Control (ATC) environment. The results of this study also indicate that the perceived importance of message content is currently a crucial element in pilot data link communication.

  3. 75 FR 54641 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ...-435-2309, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: October 4-5, 2010. Time... 20892, (301) 435- 4433, [email protected] . Name of Committee: Molecular, Cellular and Developmental...

  4. 77 FR 52751 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Molecular Neuropharmacology and Signaling Study Section. Date: September 24-25, 2012. Time: 8 a.m... 7770, Bethesda, MD 20892, (301) 435- 0684, [email protected] . Name of Committee: Molecular, Cellular...

  5. 76 FR 22907 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics B Study Section. Date: June 1-2... . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics A Study... Reproductive Sciences; Integrated Review Group. Molecular and Cellular Endocrinology Study Section. Date: June...

  6. 75 FR 51277 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ..., Genomes, and Genetics Integrated Review Group; Molecular Genetics B Study Section. Date: October 3-4, 2010... and Urological Systems Integrated Review Group; Clinical, Integrative and Molecular Gastroenterology... Integrated Review Group; Clinical Molecular Imaging and Probe Development. Date: October 4-5, 2010. Time: 7 p...

  7. 78 FR 54259 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics B Study... . Name of Committee: Emerging Technologies and Training Neurosciences Integrated Review Group; Molecular...

  8. 77 FR 511 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ... . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group, Molecular Genetics B Study...: Digestive, Kidney and Urological Systems Integrated Review Group, Clinical, Integrative and Molecular...

  9. Discrimination of three genetically close Aspergillus species by using high resolution melting analysis applied to indoor air as case study.

    PubMed

    Libert, Xavier; Packeu, Ann; Bureau, Fabrice; Roosens, Nancy H; De Keersmaecker, Sigrid C J

    2017-04-04

    Indoor air pollution caused by fungal contamination is suspected to have a public health impact. Monitoring of the composition of the indoor airborne fungal contaminants is therefore important. To avoid problems linked to culture-dependent protocols, molecular methods are increasingly being proposed as an alternative. Among these molecular methods, the polymerase chain reaction (PCR) and the real-time PCR are the most frequently used tools for indoor fungal detection. However, even if these tools have demonstrated their appropriate performance, some of them are not able to discriminate between species which are genetically close. A solution to this could be the use of a post-qPCR high resolution melting (HRM) analysis, which would allow the discrimination of these species based on the highly accurate determination of the difference in melting temperature of the obtained amplicon. In this study, we provide a proof-of-concept for this approach, using a dye adapted version of our previously developed qPCR SYBR®Green method to detect Aspergillus versicolor in indoor air, an important airborne fungus in terms of occurrence and cause of health problems. Despite the good performance observed for that qPCR method, no discrimination could previously be made between A. versicolor, Aspergillus creber and Aspergillus sydowii. In this study, we developed and evaluated an HRM assay for the discrimination between A. versicolor, Aspergillus creber and Aspergillus sydowii. Using HRM analysis, the discrimination of the 3 Aspergillus species could be made. No false positive, nor false negatives were observed during the performance assessment including 20 strains of Aspergillus. The limit of detection was determined for each species i.e., 0.5 pg of gDNA for A. creber and A. sydowii, and 0.1 pg of gDNA for A. versicolor. The HRM analysis was also successfully tested on environmental samples. We reported the development of HRM tools for the discrimination of A. versicolor, A. creber and A. sydowii. However, this study could be considered as a study case demonstrating that HRM based on existing qPCR assays, allows a more accurate identification of indoor air contaminants. This contributes to an improved insight in the diversity of indoor airborne fungi and hence, eventually in the causal link with health problems.

  10. Electro-mechanical heat switch for cryogenic applications

    DOEpatents

    van den Berg, Marcel L.; Batteux, Jan D.; Labov, Simon E.

    2003-01-01

    A heat switch includes two symmetric jaws. Each jaw is comprised of a link connected at a translatable joint to a flexible arm. Each arm rotates about a fixed pivot, and has an articulated end including a thermal contact pad connected to a heat sink. The links are joined together at a translatable main joint. To close the heat switch, a closing solenoid is actuated and forces the main joint to an over-center position. This movement rotates the arms about their pivots, respectively, forces each of them into a stressed configuration, and forces the thermal contact pads towards each other and into compressive contact with a cold finger. The closing solenoid is then deactivated. The heat switch remains closed due to a restoring force generated by the stressed configuration of each arm, until actuation of an opening solenoid returns the main joint to its starting open-switch position.

  11. Erythropoietic Protoporphyria (EPP) or Protoporphyria

    MedlinePlus

    ... protoporphyrin can differentiate X-linked protoporphyria from EPP. Molecular genetic testing can confirm a diagnosis of X-linked ... systematically and comprehensively plan an affected child’s treatment. Genetic ... expression and characterization of erythroid-specific 5-aminolevulinate ...

  12. Intra-molecular cross-linking of acidic residues for protein structure studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of themore » lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry, increasing the probability that the protein target of choice will yield sufficient distance constraints to develop a structural model.« less

  13. [Clinical and molecular study in a child with X-linked hypohidrotic ectodermal dysplasia].

    PubMed

    Callea, Michele; Yavuz, Izzet; Clarich, Gabriella; Cammarata-Scalisi, Francisco

    2015-12-01

    Ectodermal dysplasia encompasses more than 200 clinically distinct entities, which affect at least two structures derived from the ectoderm, including the skin, hair, nails, teeth, sweat glands, and sebaceous glands. X-linked hypohidrotic ectodermal dysplasia is the most common type and is caused by mutation of the EDA gene that encodes Ectodysplasin-A. It occurs in less than 1 in 100 000 individuals and is clinically characterized by hypodontia, hypohidrosis, hypotrichosis, and eye dis orders. We present a child evaluated in a multidisciplinary manner with clinical and molecular diagnosis of X-linked hypohidrotic ectodermal dysplasia with type missense mutation c.1133C> T; p.T378M in EDA gene.

  14. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations

    PubMed Central

    Brodie, Nicholas I.; Popov, Konstantin I.; Petrotchenko, Evgeniy V.; Dokholyan, Nikolay V.; Borchers, Christoph H.

    2017-01-01

    We present an integrated experimental and computational approach for de novo protein structure determination in which short-distance cross-linking data are incorporated into rapid discrete molecular dynamics (DMD) simulations as constraints, reducing the conformational space and achieving the correct protein folding on practical time scales. We tested our approach on myoglobin and FK506 binding protein—models for α helix–rich and β sheet–rich proteins, respectively—and found that the lowest-energy structures obtained were in agreement with the crystal structure, hydrogen-deuterium exchange, surface modification, and long-distance cross-linking validation data. Our approach is readily applicable to other proteins with unknown structures. PMID:28695211

  15. Solving protein structures using short-distance cross-linking constraints as a guide for discrete molecular dynamics simulations.

    PubMed

    Brodie, Nicholas I; Popov, Konstantin I; Petrotchenko, Evgeniy V; Dokholyan, Nikolay V; Borchers, Christoph H

    2017-07-01

    We present an integrated experimental and computational approach for de novo protein structure determination in which short-distance cross-linking data are incorporated into rapid discrete molecular dynamics (DMD) simulations as constraints, reducing the conformational space and achieving the correct protein folding on practical time scales. We tested our approach on myoglobin and FK506 binding protein-models for α helix-rich and β sheet-rich proteins, respectively-and found that the lowest-energy structures obtained were in agreement with the crystal structure, hydrogen-deuterium exchange, surface modification, and long-distance cross-linking validation data. Our approach is readily applicable to other proteins with unknown structures.

  16. Catenanes: Fifty Years of Molecular Links

    PubMed Central

    Gil-Ramírez, Guzmán; Leigh, David A; Stephens, Alexander J

    2015-01-01

    Half a century after Schill and Lüttringhaus carried out the first directed synthesis of a [2]catenane, a plethora of strategies now exist for the construction of molecular Hopf links (singly interlocked rings), the simplest type of catenane. The precision and effectiveness with which suitable templates and/or noncovalent interactions can arrange building blocks has also enabled the synthesis of intricate and often beautiful higher order interlocked systems, including Solomon links, Borromean rings, and a Star of David catenane. This Review outlines the diverse strategies that exist for synthesizing catenanes in the 21st century and examines their emerging applications and the challenges that still exist for the synthesis of more complex topologies. PMID:25951013

  17. Thermal conductivity of cross-linked polyethylene from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Xiong, Xue; Yang, Ming; Liu, Changlin; Li, Xiaobo; Tang, Dawei

    2017-07-01

    The thermal conductivity of cross-linked bulk polyethylene is studied using molecular dynamics simulation. The atomic structure of the cross-linked polyethylene (PEX) is generated through simulated bond formation using LAMMPS. The thermal conductivity of PEX is studied with different degrees of crosslinking, chain length, and tensile strain. Generally, the thermal conductivity increases with the increasing degree of crosslinking. When the length of the primitive chain increases, the thermal conductivity increases linearly. When the polymer is stretched along one direction, the thermal conductivity increases in the stretched direction and decreases in the direction perpendicular to it. However, the thermal conductivity varies slightly when the polymer is stretched in three directions simultaneously.

  18. 5-Nitro-N 4,N 6-diphenyl­pyrimidine-4,6-diamine: polarized mol­ecules linked into π-stacked chains via three-centre C—H⋯(O)2 hydrogen bonds

    PubMed Central

    Rodríguez, Ricaurte; Nogueras, Manuel; Cobo, Justo; Glidewell, Christopher

    2009-01-01

    Mol­ecules of the title compound, C16H13N5O2, have no inter­nal symmetry despite the symmetric pattern of substitution in the pyrimidine ring. The intra­molecular distances indicate polarization of the electronic structure. There are two intra­molecular N—H⋯O hydrogen bonds and mol­ecules are linked into centrosymmetric dimers by pairs of three-centre C—H⋯(O)2 hydrogen bonds. These dimers are linked into chains by means of a π–π stacking inter­action. PMID:19726856

  19. Structure of chromatin and the linking number of DNA.

    PubMed Central

    Worcel, A; Strogatz, S; Riley, D

    1981-01-01

    Recent observations suggest that the basic supranucleosomal structure of chromatin is a zigzag helical ribbon with a repeat unit made of two nucleosomes connected by a relaxed spacer DNA. A remarkable feature of one particular ribbon is that it solves the apparent paradox between the number of DNA turns per nucleosome and the total linking number of a nucleosome-containing closed circular DNA molecule. We show here that the repeat unit of the proposed structure, which contains two nucleosomes with -1 3/4 DNA turns per nucleosome and one spacer crossover per repeat, contributes -2 to the linking number of closed circular DNA. Space-filling models show that the cylindrical 250-A chromatin fiber can be generated by twisting the ribbon. Images PMID:6940168

  20. Epidemiological and molecular investigation of a measles outbreak in Punjab, Pakistan, 2013-2015.

    PubMed

    Zaidi, Syed Sohail Zahoor; Hameed, Abdul; Ali, Naeem; Rana, Muhammad Suleman; Umair, Massab; Alam, Muhammad Masroor; Aamir, Uzma Bashir; Khurshid, Adnan; Sharif, Salmaan; Shaukat, Shahzad; Angez, Mehar; Mujtaba, Ghulam; Arshad, Yasir; Akthar, Ribqa; Sufian, Mian Muhammad; Mehmood, Nayab

    2018-04-28

    Despite the availability of an effective vaccine, the measles virus continues to cause significant morbidity and mortality in children worldwide. Molecular characterization of wild-type measles strains is an invaluable component of epidemiological studies or surveillance systems that provides important information pertinent to outbreak linkages and transmission pathways. Serum samples and throat swabs were collected from suspected measles cases from the Punjab province of Pakistan (2013-2015) and further tested for measles immunoglobulin M (IgM) through enzyme-linked immunosorbent assay and reverse-transcriptase polymerase chain reaction for molecular characterization. Among the total of 5415 blood samples, 59% tested positive for measles IgM. Males had a higher infection rate (55%) than females (45%), and the highest frequency of positive cases (63%) was found in the age group of 0 to 5 years. Partial sequencing of the nucleoprotein gene showed that 27 strains belonged to the B3 genotype, whereas 2 viruses were identified as D4. On phylogenetic analysis, Pakistani B3 strains were found to be closely related to previously reported indigenous strains and those from neighboring countries of Iran and Qatar. This is the first report on the detection of the measles B3 genotype from Punjab, Pakistan. The current study shows a high burden of measles infections in Punjab province owing to poor routine immunization coverage in major cities. It is imperative that national health authorities adopt strategic steps on an urgent basis for improvement of routine immunization coverage. Molecular epidemiology of the measles viruses circulating in different parts of the country can provide useful data to manage future outbreaks. © 2018 Wiley Periodicals, Inc.

  1. Decoupling Identification for Serial Two-Link Two-Inertia System

    NASA Astrophysics Data System (ADS)

    Oaki, Junji; Adachi, Shuichi

    The purpose of our study is to develop a precise model by applying the technique of system identification for the model-based control of a nonlinear robot arm, under taking joint-elasticity into consideration. We previously proposed a systematic identification method, called “decoupling identification,” for a “SCARA-type” planar two-link robot arm with elastic joints caused by the Harmonic-drive® reduction gears. The proposed method serves as an extension of the conventional rigid-joint-model-based identification. The robot arm is treated as a serial two-link two-inertia system with nonlinearity. The decoupling identification method using link-accelerometer signals enables the serial two-link two-inertia system to be divided into two linear one-link two-inertia systems. The MATLAB®'s commands for state-space model estimation are utilized in the proposed method. Physical parameters such as motor inertias, link inertias, joint-friction coefficients, and joint-spring coefficients are estimated through the identified one-link two-inertia systems using a gray-box approach. This paper describes accuracy evaluations using the two-link arm for the decoupling identification method under introducing closed-loop-controlled elements and varying amplitude-setup of identification-input. Experimental results show that the identification method also works with closed-loop-controlled elements. Therefore, the identification method is applicable to a “PUMA-type” vertical robot arm under gravity.

  2. A Linked-Cell Domain Decomposition Method for Molecular Dynamics Simulation on a Scalable Multiprocessor

    DOE PAGES

    Yang, L. H.; Brooks III, E. D.; Belak, J.

    1992-01-01

    A molecular dynamics algorithm for performing large-scale simulations using the Parallel C Preprocessor (PCP) programming paradigm on the BBN TC2000, a massively parallel computer, is discussed. The algorithm uses a linked-cell data structure to obtain the near neighbors of each atom as time evoles. Each processor is assigned to a geometric domain containing many subcells and the storage for that domain is private to the processor. Within this scheme, the interdomain (i.e., interprocessor) communication is minimized.

  3. 78 FR 57169 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ..., Molecular and Integrative Reproduction Study Section. Date: October 9, 2013. Time: 8:00 a.m. to 5:00 p.m...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Neurogenesis and Cell Fate [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review...

  4. 77 FR 30021 - Center for Scientific Review Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ... personal privacy. Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: June 14, 2012. Time: 8:00 a.m. to 7..., Bethesda, MD 20892, (301) 435- 4433, [email protected] . Name of Committee: Molecular, Cellular and...

  5. 76 FR 27652 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Integrated Review Group, Molecular Genetics C Study Section. Date: June 23-24, 2011. Time: 8 a.m. to 6 p.m... . Name of Committee: Interdisciplinary Molecular Sciences and Training Integrated Review Group, Enabling..., Bethesda, MD 20892, (301) 435-1782, [email protected] . Name of Committee: Molecular, Cellular and...

  6. 75 FR 25275 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ...; Molecular Genetics B Study Section. Date: June 1-2, 2010. Time: 8 a.m. to 5 p.m. Agenda: To review and...-435- 1180, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date...

  7. 78 FR 31954 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ....gov . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics A..., Molecular and Integrative Reproduction Study Section. Date: June 20, 2013. Time: 8:00 a.m. to 6:00 p.m...: Emerging Technologies and Training Neurosciences Integrated Review Group; Molecular Neurogenetics Study...

  8. 75 FR 1399 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... Committee: Genes, Genomes, and Genetics Integrated Review Group, Molecular Genetics A Study Section. Date... Committee: Vascular and Hematology Integrated Review Group, Vascular Cell and Molecular Biology Study... Molecular Pharmacology Study Section. Date: February 8-9, 2010. Time: 8 a.m. to 6 p.m. Agenda: To review and...

  9. Difunctional polyisobutylene prepared by polymerization of monomer on molecular sieve

    NASA Technical Reports Server (NTRS)

    Midler, J. A., Jr.

    1970-01-01

    Process yields difunctional isobutylene polymers ranging in molecular weight from 1150 to 3600. These polymers have the potential for copolymerization and cross-linking with other monomers to form elastomeric materials.

  10. Sphingolipid biosynthesis in man and microbes.

    PubMed

    Harrison, Peter J; Dunn, Teresa M; Campopiano, Dominic J

    2018-06-04

    A new review covering up to 2018Sphingolipids are essential molecules that, despite their long history, are still stimulating interest today. The reasons for this are that, as well as playing structural roles within cell membranes, they have also been shown to perform a myriad of cell signalling functions vital to the correct function of eukaryotic and prokaryotic organisms. Indeed, sphingolipid disregulation that alters the tightly-controlled balance of these key lipids has been closely linked to a number of diseases such as diabetes, asthma and various neuropathologies. Sphingolipid biogenesis, metabolism and regulation is mediated by a large number of enzymes, proteins and second messengers. There appears to be a core pathway common to all sphingolipid-producing organisms but recent studies have begun to dissect out important, species-specific differences. Many of these have only recently been discovered and in most cases the molecular and biochemical details are only beginning to emerge. Where there is a direct link from classic biochemistry to clinical symptoms, a number a drug companies have undertaken a medicinal chemistry campaign to try to deliver a therapeutic intervention to alleviate a number of diseases. Where appropriate, we highlight targets where natural products have been exploited as useful tools. Taking all these aspects into account this review covers the structural, mechanistic and regulatory features of sphingolipid biosynthetic and metabolic enzymes.

  11. Induction of fibroblast senescence generates a non-fibrogenic myofibroblast phenotype that differentially impacts on cancer prognosis

    PubMed Central

    Thirdborough, Steve; Mellows, Toby; Garcia, Edwin; Woo, Jeongmin; Tod, Joanne; Frampton, Steve; Jenei, Veronika; Moutasim, Karwan A.; Kabir, Tasnuva D.; Brennan, Peter A; Venturi, Giulia; Ford, Kirsty; Herranz, Nicolas; Lim, Kue Peng; Clarke, James; Lambert, Daniel W.; Prime, Stephen S.; Underwood, Timothy J.; Vijayanand, Pandurangan; Eliceiri, Kevin W.; Woelk, Christopher; King, Emma V.; Gil, Jesus; Ottensmeier, Christian H.; Thomas, Gareth J.

    2017-01-01

    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes. PMID:27992856

  12. Induction of fibroblast senescence generates a non-fibrogenic myofibroblast phenotype that differentially impacts on cancer prognosis.

    PubMed

    Mellone, Massimiliano; Hanley, Christopher J; Thirdborough, Steve; Mellows, Toby; Garcia, Edwin; Woo, Jeongmin; Tod, Joanne; Frampton, Steve; Jenei, Veronika; Moutasim, Karwan A; Kabir, Tasnuva D; Brennan, Peter A; Venturi, Giulia; Ford, Kirsty; Herranz, Nicolas; Lim, Kue Peng; Clarke, James; Lambert, Daniel W; Prime, Stephen S; Underwood, Timothy J; Vijayanand, Pandurangan; Eliceiri, Kevin W; Woelk, Christopher; King, Emma V; Gil, Jesus; Ottensmeier, Christian H; Thomas, Gareth J

    2016-12-15

    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo , showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro , we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.

  13. Mapping the Rust Resistant Loci MXC3 and MER in P. trichocarpa and Assessing the Intermarker Linkage Disequilibrium in MXC3 Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Tongming; Difazio, Stephen P.; Gunter, Lee E

    In an attempt to elucidate the molecular mechanisms of Melampsora rust resistance in Populus trichocarpa, we have mapped two resistance loci, MXC3 and MER, and intensively characterized the flanking genomic sequence for the MXC3 locus and the level of linkage disequilibrium (LD) in natural populations. We used an interspecific backcross pedigree and a genetic map that was highly saturated with AFLP and SSR markers, and assembled shotgun-sequence data in the region containing markers linked to MXC3. The two loci were mapped to different linkage groups. Linkage disequilibrium for MXC3 was confined to two closely linked regions spanning 34 and 16more » kb, respectively. The MXC3 region also contained six disease-resistance candidate genes. The MER and MXC3 loci are clearly distinct, and may have different mechanisms of resistance, as different classes of putative resistance genes were present near each locus. The suppressed recombination previously observed in the MXC3 region was possibly caused by extensive hemizygous rearrangements confined to the original parent tree. The relatively low observed LD may facilitate association studies using candidate genes for rust resistance, but will probably inhibit marker-aided selection.« less

  14. Recombinant Human Lysyl Oxidase-like 2 Secreted from Human Embryonic Kidney Cells Displays Complex and Acidic Glycans at All Three N-Linked Glycosylation Sites.

    PubMed

    Go, Eden P; Moon, Hee-Jung; Mure, Minae; Desaire, Heather

    2018-05-04

    Human lysyl oxidase-like 2 (hLOXL2), a glycoprotein implicated in tumor progression and organ fibrosis, is a molecular target for anticancer and antifibrosis treatment. This glycoprotein contains three predicted N-linked glycosylation sites; one is near the protein's active site, and at least one more is known to facilitate the protein's secretion. Because the glycosylation impacts the protein's biology, we sought to characterize the native, mammalian glycosylation profile and to determine how closely this profile is recapitulated when the protein is expressed in insect cells. All three glycosylation sites on the protein, expressed in human embryonic kidney (HEK) cells, were characterized individually using a mass spectrometry-based glycopeptide analysis workflow. These data were compared to the glycosylation profile of the same protein expressed in insect cells. We found that the producer cell type imparts a substantial influence on the glycosylation of this important protein. The more-relevant version, expressed in HEK cells, contains large, acidic glycoforms; these glycans are not generated in insect cells. The glycosylation differences likely have structural and functional consequences, and these data should be considered when generating protein for functional studies or for high-throughput screening campaigns.

  15. Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans.

    PubMed

    Bolscher, Jan; Nazmi, Kamran; van Marle, Jan; van 't Hof, Wim; Veerman, Enno

    2012-06-01

    Bovine lactoferrin harbors 2 antimicrobial sequences (LFcin and LFampin), situated in close proximity in the N1-domain. To mimic their semi parallel configuration we have synthesized a chimeric peptide (LFchimera) in which these sequences are linked in a head-to-head fashion to the α- and ε-amino group, respectively, of a single lysine. In line with previously described bactericidal effects, this peptide was also a stronger candidacidal agent than the antimicrobial peptides LFcin17-30 and LFampin265-284, or a combination of these 2. Conditions that strongly reduced the candidacidal activities of LFcin17-30 and LFampin265-284, such as high ionic strength and energy depletion, had little influence on the activity of LFchimera. Freeze-fracture electron microscopy showed that LFchimera severely affected the membrane morphology, resulting in disintegration of the membrane bilayer and in an efflux of small and high molecular weight molecules such as ATP and proteins. The differential effects displayed by the chimeric peptide and a mixture of its constituent peptides clearly demonstrate the synergistic effect of linking these peptides in a fashion that allows a similar spatial arrangement as in the parent protein, suggesting that in bovine lactoferrrin the corresponding fragments act in concert in its candidacidal activity.

  16. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    PubMed

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  17. Durability improvements of two-dimensional metal nanoparticle sheets by molecular cross-linked structures between nanoparticles

    NASA Astrophysics Data System (ADS)

    Saito, Noboru; Ryuzaki, Sou; Wang, Pangpang; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru

    2018-03-01

    The durability of two-dimensional metal nanoparticle sheets is a crucial factor for realizing next-generation optoelectronic devices based on plasmonics such as organic light-emitting diodes. Here, we report improvements in the durability of Ag nanoparticle sheets by forming alkanedithiol (DT16) cross-linked structures between the nanoparticles. The cross-linked structures in a sheet were fabricated by the self-assembly of DT16-capped Ag nanoparticles with 10% coverage (AgDT16). The durabilities for thermal, organic solvent, and oxidation reactions of AgDT16 sheets were found to be improved owing to the cross-linked structures by comparing Ag nanoparticle sheets without the cross-linked structures. The absorbance spectra revealed that the Ag nanoparticle sheets without the structure are markedly damaged by each durability test, whereas the AgDT16 sheets remain. The molecular cross-linked structures between nanoparticles in two-dimansional metal nanoparticle sheets were found to have the potential to play a key role in the realization of plasmonic optoelectronic devices including metal nanoparticles.

  18. Characterization of a mini core collection of Japanese wheat varieties using single-nucleotide polymorphisms generated by genotyping-by-sequencing.

    PubMed

    Kobayashi, Fuminori; Tanaka, Tsuyoshi; Kanamori, Hiroyuki; Wu, Jianzhong; Katayose, Yuichi; Handa, Hirokazu

    2016-03-01

    A core collection of Japanese wheat varieties (JWC) consisting of 96 accessions was established based on their passport data and breeding pedigrees. To clarify the molecular basis of the JWC collection, genome-wide single-nucleotide polymorphism (SNP) genotyping was performed using the genotyping-by-sequencing (GBS) approach. Phylogenetic tree and population structure analyses using these SNP data revealed the genetic diversity and relationships among the JWC accessions, classifying them into four groups; "varieties in the Hokkaido area", "modern varieties in the northeast part of Japan", "modern varieties in the southwest part of Japan" and "classical varieties including landraces". This clustering closely reflected the history of wheat breeding in Japan. Furthermore, to demonstrate the utility of the JWC collection, we performed a genome-wide association study (GWAS) for three traits, namely, "days to heading in autumn sowing", "days to heading in spring sowing" and "culm length". We found significantly associated SNP markers with each trait, and some of these were closely linked to known major genes for heading date or culm length on the genetic map. Our study indicates that this JWC collection is a useful set of germplasm for basic and applied research aimed at understanding and utilizing the genetic diversity among Japanese wheat varieties.

  19. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention.

    PubMed

    Grimm, Marcus O W; Michaelson, Daniel M; Hartmann, Tobias

    2017-11-01

    In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  20. Recombination Modulates How Selection Affects Linked Sites in Drosophila

    PubMed Central

    McGaugh, Suzanne E.; Heil, Caiti S. S.; Manzano-Winkler, Brenda; Loewe, Laurence; Goldstein, Steve; Himmel, Tiffany L.; Noor, Mohamed A. F.

    2012-01-01

    One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. PMID:23152720

  1. Transient Binding and Viscous Dissipation in Semi-flexible Polymer Networks

    NASA Astrophysics Data System (ADS)

    Lieleg, Oliver; Claessens, Mireille; Bausch, Andreas

    2008-03-01

    Nature specifically chooses from a myriad of actin binding proteins (ABPs) to tailor the cytoskeletal microstructure. Herein, cells rely on the dynamics of the cytoskeleton as its structural and mechanical adaptability is crucial to allow for dynamic processes. A molecular understanding of such biological complexity calls for an in vitro system with well-defined structural rearrangements and cross-linker dynamics to elucidate the physical origin of the unique viscoelastic properties of cells. As we present here, the frequency-dependent viscoelastic response of cross-linked in vitro actin networks is determined by the binding kinetics of cross-linking molecules. Independent from the particular network structure, the viscous dissipation (loss modulus) exhibits a pronounced minimum in an intermediate frequency which is dominated by elasticity. We show that in this frequency regime the molecular origin of the viscoelastic response is given by the non-static nature of actin/ABP bonds as they are subjugated to chemical on/off kinetics. The time scale of the resulting stress release is set by the lifetime distribution of the cross-linking molecule and therefore can be tuned independently from other relaxation mechanisms. We speculate that unbinding of distinct cross-links might be the molecular mechanism employed by cells for mechanosensing.

  2. Two genetic markers closely linked to adult polycystic kidney disease on chromosome 16.

    PubMed Central

    Reeders, S T; Breuning, M H; Corney, G; Jeremiah, S J; Meera Khan, P; Davies, K E; Hopkinson, D A; Pearson, P L; Weatherall, D J

    1986-01-01

    The genetic locus for autosomal dominant adult polycystic kidney disease was recently assigned to chromosome 16 by the finding of genetic linkage to the alpha globin gene cluster. Further study showed that the phosphoglycolate phosphatase locus is also closely linked to both the locus for adult polycystic kidney disease and the alpha globin gene cluster. These findings have important implications for the prenatal and presymptomatic diagnosis of adult polycystic kidney disease and for a better understanding of its pathogenesis. Images FIG 1 PMID:3008903

  3. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  4. Effects of glycation on human γd-crystallin proteins by different glycation-inducing agents.

    PubMed

    Li, Chien-Ting; How, Su-Chun; Chen, Mei-Er; Lo, Chun-Hsien; Chun, Min-Chih; Chang, Chih-Kai; Chen, Wei-An; Wu, Josephine W; Wang, Steven S-S

    2018-06-24

    Human γd-crystallin (Hγd-crystallin), a major protein component of the human eye lens, is associated with the development of juvenile- and mature-onset cataracts. Evidence suggests that nonenzymatic protein glycation plays an important role in the aetiology of cataract and diabetic sequelae. This research compared the effects of various glycation modifiers on Hγd-crystallin aggregation, by treating samples of Hγd-crystallin with ribose, galactose, or methylglyoxal using several biophysical techniques. To measure advanced glycation end products, an N ε -(carboxyethyl)lysine enzyme-linked immunosorbent assay was performed on the glycating agent-treated Hγd-crystallin samples. Fructosamine production detection was performed for both ribose-treated and galactose-treated samples. Methylglyoxal-treated samples had the highest level of aggregation and the greatest extent of unfolding, and upon incubation for a minimum of 12 days, exhibited a marked enhancement in the amount of N ε -(carboxyethyl)lysine. The molecular profiles and morphological features of the glycated samples were highly correlated to the type of glycation agent used. These findings highlight a close connection between the type of glycation modifier and the various aggregation species that form. Thus, these results may facilitate deciphering of the molecular mechanism of diabetic cataractogenesis. Copyright © 2018. Published by Elsevier B.V.

  5. Ceruloplasmin expression by human peripheral blood lymphocytes: a new link between immunity and iron metabolism.

    PubMed

    Banha, João; Marques, Liliana; Oliveira, Rita; Martins, Maria de Fátima; Paixão, Eleonora; Pereira, Dina; Malhó, Rui; Penque, Deborah; Costa, Luciana

    2008-02-01

    Ceruloplasmin (CP) is a multicopper oxidase involved in the acute phase reaction to stress. Although the physiological role of CP is uncertain, its role in iron (Fe) homeostasis and protection against free radical-initiated cell injury has been widely documented. Previous studies showed the existence of two molecular isoforms of CP: secreted CP (sCP) and a membrane glycosylphosphatidylinositol (GPI)-anchored form of CP (GPI-CP). sCP is produced mainly by the liver and is abundant in human serum whereas GPI-CP is expressed in mammalian astrocytes, rat leptomeningeal cells, and Sertolli cells. Herein, we show using RT-PCR that human peripheral blood lymphocytes (huPBL) constitutively express the transcripts for both CP molecular isoforms previously reported. Also, expression of CP in huPBL is demonstrated by immunofluorescence with confocal microscopy and flow cytometry analysis using cells isolated from healthy blood donors with normal Fe status. Importantly, the results obtained show that natural killer cells have a significantly higher CP expression compared to all other major lymphocyte subsets. In this context, the involvement of lymphocyte-derived CP on host defense processes via its anti/prooxidant properties is proposed, giving further support for a close functional interaction between the immune system and the Fe metabolism.

  6. Transcriptomes define distinct subgroups of salivary gland adenoid cystic carcinoma with different driver mutations and outcomes

    PubMed Central

    Frerich, Candace A.; Brayer, Kathryn J.; Painter, Brandon M.; Kang, Huining; Mitani, Yoshitsugu; El-Naggar, Adel K.; Ness, Scott A.

    2018-01-01

    The relative rarity of salivary gland adenoid cystic carcinoma (ACC) and its slow growing yet aggressive nature has complicated the development of molecular markers for patient stratification. To analyze molecular differences linked to the protracted disease course of ACC and metastases that form 5 or more years after diagnosis, detailed RNA-sequencing (RNA-seq) analysis was performed on 68 ACC tumor samples, starting with archived, formalin-fixed paraffin-embedded (FFPE) samples up to 25 years old, so that clinical outcomes were available. A statistical peak-finding approach was used to classify the tumors that expressed MYB or MYBL1, which had overlapping gene expression signatures, from a group that expressed neither oncogene and displayed a unique phenotype. Expression of MYB or MYBL1 was closely correlated to the expression of the SOX4 and EN1 genes, suggesting that they are direct targets of Myb proteins in ACC tumors. Unsupervised hierarchical clustering identified a subgroup of approximately 20% of patients with exceptionally poor overall survival (median less than 30 months) and a unique gene expression signature resembling embryonic stem cells. The results provide a strategy for stratifying ACC patients and identifying the high-risk, poor-outcome group that are candidates for personalized therapies. PMID:29484115

  7. Identification of stem rust resistance genes in wheat cultivars in China using molecular markers.

    PubMed

    Xu, Xiaofeng; Yuan, Depeng; Li, Dandan; Gao, Yue; Wang, Ziyuan; Liu, Yang; Wang, Siting; Xuan, Yuanhu; Zhao, Hui; Li, Tianya; Wu, Yuanhua

    2018-01-01

    Wheat stem rust caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. ( Pgt ), is a major disease that has been effectively controlled using resistance genes. The appearance and spread of Pgt races such as Ug99, TKTTF, and TTTTF, which are virulent to most stem rust-resistant genes currently deployed in wheat breeding programs, renewed the interest in breeding cultivars resistant to wheat stem rust. It is therefore important to investigate the levels of resistance or vulnerability of wheat cultivars to Pgt races. Resistance to Pgt races 21C3CTHQM, 34MKGQM, and 34C3RTGQM was evaluated in 136 Chinese wheat cultivars at the seedling stage. A total of 124 cultivars (91.2%) were resistant to the three races. Resistance genes Sr2 , Sr24 , Sr25 , Sr26 , Sr31 , and Sr38 were analyzed using molecular markers closely linked to them, and 63 of the 136 wheat cultivars carried at least one of these genes: 21, 25, and 28 wheat cultivars likely carried Sr2 , Sr31 , and Sr38 , respectively. Cultivars "Kehan 3" and "Jimai 22" likely carried Sr25 . None of the cultivars carried Sr24 or Sr26 . These cultivars with known stem rust resistance genes provide valuable genetic material for breeding resistant wheat cultivars.

  8. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae.

    PubMed

    Rhee, Jae-Sung; Kim, Bo-Mi; Kim, Ryeo-Ok; Seo, Jung Soo; Kim, Il-Chan; Lee, Young-Mi; Lee, Jae-Seong

    2013-09-15

    To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin

    1998-01-01

    Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.

  10. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data. PMID:23782527

  11. Parasitic plants have increased rates of molecular evolution across all three genomes.

    PubMed

    Bromham, Lindell; Cowman, Peter F; Lanfear, Robert

    2013-06-19

    Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data.

  12. Gas mixtures for spark gap closing switches

    DOEpatents

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  13. Complexation of β-cyclodextrin with dual molecular probes bearing fluorescent and paramagnetic moieties linked by short polyether chains.

    PubMed

    Mocanu, S; Matei, I; Ionescu, S; Tecuceanu, V; Marinescu, G; Ionita, P; Culita, D; Leonties, A; Ionita, Gabriela

    2017-10-18

    Electron paramagnetic resonance (EPR) and fluorescence spectroscopies provide molecular-level insights on the interaction of paramagnetic and fluorescent species with the microenvironment. A series of dual molecular probes bearing fluorescent and paramagnetic moieties linked by flexible short polyether chains have been synthesized. These new molecular probes open the possibility to investigate various multi-component systems such as host-guest systems, polymeric micelles, gels and protein solutions by using EPR and fluorescence spectroscopies concertedly. The EPR and fluorescence spectra of these compounds show that the dependence of the rotational correlation time and fluorescence quantum yield on the chain length of the linker is not linear, due to the flexibility of the polyether linker. The quenching effect of the nitroxide moiety on the fluorescence intensity of the pyrene group varies with the linker length and flexibility. The interaction of these dual molecular probes with β-cyclodextrin, in solution and in polymeric gels, was evaluated and demonstrated by analysis of EPR and fluorescence spectra.

  14. Social Networks and Health Among Older Adults in Lebanon: The Mediating Role of Support and Trust

    PubMed Central

    Antonucci, Toni C.; Ajrouch, Kristine J.; Abdulrahim, Sawsan

    2015-01-01

    Objectives. Despite a growing body of literature documenting the influence of social networks on health, less is known in other parts of the world. The current study investigates this link by clustering characteristics of network members nominated by older adults in Lebanon. We then identify the degree to which various types of people exist within the networks. This study further examines how network composition as measured by the proportion of each type (i.e., type proportions) is related to health; and the mediating role of positive support and trust in this process. Method. Data are from the Family Ties and Aging Study (2009). Respondents aged ≥60 were selected (N = 195) for analysis. Results. Three types of people within the networks were identified: Geographically Distant Male Youth, Geographically Close/Emotionally Distant Family, and Close Family. Having more Geographically Distant Male Youth in one’s network was associated with health limitations, whereas more Close Family was associated with no health limitations. Positive support mediated the link between type proportions and health limitations, whereas trust mediated the link between type proportions and depressive symptoms. Discussion. Results document links between the social networks and health of older adults in Lebanon within the context of ongoing demographic transitions. PMID:25324295

  15. Positive selection in octopus haemocyanin indicates functional links to temperature adaptation.

    PubMed

    Oellermann, Michael; Strugnell, Jan M; Lieb, Bernhard; Mark, Felix C

    2015-07-05

    Octopods have successfully colonised the world's oceans from the tropics to the poles. Yet, successful persistence in these habitats has required adaptations of their advanced physiological apparatus to compensate impaired oxygen supply. Their oxygen transporter haemocyanin plays a major role in cold tolerance and accordingly has undergone functional modifications to sustain oxygen release at sub-zero temperatures. However, it remains unknown how molecular properties evolved to explain the observed functional adaptations. We thus aimed to assess whether natural selection affected molecular and structural properties of haemocyanin that explains temperature adaptation in octopods. Analysis of 239 partial sequences of the haemocyanin functional units (FU) f and g of 28 octopod species of polar, temperate, subtropical and tropical origin revealed natural selection was acting primarily on charge properties of surface residues. Polar octopods contained haemocyanins with higher net surface charge due to decreased glutamic acid content and higher numbers of basic amino acids. Within the analysed partial sequences, positive selection was present at site 2545, positioned between the active copper binding centre and the FU g surface. At this site, methionine was the dominant amino acid in polar octopods and leucine was dominant in tropical octopods. Sites directly involved in oxygen binding or quaternary interactions were highly conserved within the analysed sequence. This study has provided the first insight into molecular and structural mechanisms that have enabled octopods to sustain oxygen supply from polar to tropical conditions. Our findings imply modulation of oxygen binding via charge-charge interaction at the protein surface, which stabilize quaternary interactions among functional units to reduce detrimental effects of high pH on venous oxygen release. Of the observed partial haemocyanin sequence, residue 2545 formed a close link between the FU g surface and the active centre, suggesting a role as allosteric binding site. The prevalence of methionine at this site in polar octopods, implies regulation of oxygen affinity via increased sensitivity to allosteric metal binding. High sequence conservation of sites directly involved in oxygen binding indicates that functional modifications of octopod haemocyanin rather occur via more subtle mechanisms, as observed in this study.

  16. Closing loop base pairs in RNA loop-loop complexes: structural behavior, interaction energy and solvation analysis through molecular dynamics simulations.

    PubMed

    Golebiowski, Jérôme; Antonczak, Serge; Fernandez-Carmona, Juan; Condom, Roger; Cabrol-Bass, Daniel

    2004-12-01

    Nanosecond molecular dynamics using the Ewald summation method have been performed to elucidate the structural and energetic role of the closing base pair in loop-loop RNA duplexes neutralized by Mg2+ counterions in aqueous phases. Mismatches GA, CU and Watson-Crick GC base pairs have been considered for closing the loop of an RNA in complementary interaction with HIV-1 TAR. The simulations reveal that the mismatch GA base, mediated by a water molecule, leads to a complex that presents the best compromise between flexibility and energetic contributions. The mismatch CU base pair, in spite of the presence of an inserted water molecule, is too short to achieve a tight interaction at the closing-loop junction and seems to force TAR to reorganize upon binding. An energetic analysis has allowed us to quantify the strength of the interactions of the closing and the loop-loop pairs throughout the simulations. Although the water-mediated GA closing base pair presents an interaction energy similar to that found on fully geometry-optimized structure, the water-mediated CU closing base pair energy interaction reaches less than half the optimal value.

  17. Redox-active porous coordination polymer based on trinuclear pivalate: Temperature-dependent crystal rearrangement and redox-behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lytvynenko, Anton S.; Kiskin, Mikhail A., E-mail: mkiskin@igic.ras.ru; Dorofeeva, Victoria N.

    2015-03-15

    Linking of trinuclear pivalate Fe{sub 2}NiO(Piv){sub 6} (Piv=O{sub 2}CC(CH{sub 3}){sub 3}) by 2,6-bis(4-pyridyl)-4-(1-naphthyl)pyridine (L) resulted in formation of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)·Solv, which was characterized in two forms: DMSO solvate Fe{sub 2}NiO(Piv){sub 6}(L)(DMSO)·2.5DMSO (1) or water solvate Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) (2). X-ray structure of 1 was determined. Crystal lattice of 1 at 160 K contained open channels, filled by captured solvent, while temperature growth to 296 K led to the crystal lattice rearrangement and formation of closed voids. Redox-behavior of 2 was studied by cyclic voltammetry for a solid compound, deposited on glassy-carbon electrode. Redox-activity of Lmore » preserved upon incorporation in the coordination polymer. The presence of pores in desolvated sample Fe{sub 2}NiO(Piv){sub 6}(L) was confirmed by the measurements of N{sub 2} and H{sub 2} adsorption at 77 K. Potential barriers of the different molecules diffusion through pores were estimated by the means of molecular mechanics. - Graphical abstract: Redox-behavior of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) was studied by cyclic voltammetry in thin film, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. Potential barriers of different molecules diffusion through pores were estimated by the means of molecular mechanics. - Highlights: • Porous 1D coordination polymer was synthesized. • Temperature growth led to pores closing due to crystal lattice rearrangement. • Redox-activity of ligand preserved upon incorporation into coordination polymer. • Redox-properties of solid coordination polymer were studied in thin film. • Diffusion barriers were evaluated by molecular mechanics.« less

  18. Structural basis of G protein-coupled receptor-Gi protein interaction: formation of the cannabinoid CB2 receptor-Gi protein complex.

    PubMed

    Mnpotra, Jagjeet S; Qiao, Zhuanhong; Cai, Jian; Lynch, Diane L; Grossfield, Alan; Leioatts, Nicholas; Hurst, Dow P; Pitman, Michael C; Song, Zhao-Hui; Reggio, Patricia H

    2014-07-18

    In this study, we applied a comprehensive G protein-coupled receptor-Gαi protein chemical cross-linking strategy to map the cannabinoid receptor subtype 2 (CB2)-Gαi interface and then used molecular dynamics simulations to explore the dynamics of complex formation. Three cross-link sites were identified using LC-MS/MS and electrospray ionization-MS/MS as follows: 1) a sulfhydryl cross-link between C3.53(134) in TMH3 and the Gαi C-terminal i-3 residue Cys-351; 2) a lysine cross-link between K6.35(245) in TMH6 and the Gαi C-terminal i-5 residue, Lys-349; and 3) a lysine cross-link between K5.64(215) in TMH5 and the Gαi α4β6 loop residue, Lys-317. To investigate the dynamics and nature of the conformational changes involved in CB2·Gi complex formation, we carried out microsecond-time scale molecular dynamics simulations of the CB2 R*·Gαi1β1γ2 complex embedded in a 1-palmitoyl-2-oleoyl-phosphatidylcholine bilayer, using cross-linking information as validation. Our results show that although molecular dynamics simulations started with the G protein orientation in the β2-AR*·Gαsβ1γ2 complex crystal structure, the Gαi1β1γ2 protein reoriented itself within 300 ns. Two major changes occurred as follows. 1) The Gαi1 α5 helix tilt changed due to the outward movement of TMH5 in CB2 R*. 2) A 25° clockwise rotation of Gαi1β1γ2 underneath CB2 R* occurred, with rotation ceasing when Pro-139 (IC-2 loop) anchors in a hydrophobic pocket on Gαi1 (Val-34, Leu-194, Phe-196, Phe-336, Thr-340, Ile-343, and Ile-344). In this complex, all three experimentally identified cross-links can occur. These findings should be relevant for other class A G protein-coupled receptors that couple to Gi proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. A shared neural ensemble links distinct contextual memories encoded close in time

    NASA Astrophysics Data System (ADS)

    Cai, Denise J.; Aharoni, Daniel; Shuman, Tristan; Shobe, Justin; Biane, Jeremy; Song, Weilin; Wei, Brandon; Veshkini, Michael; La-Vu, Mimi; Lou, Jerry; Flores, Sergio E.; Kim, Isaac; Sano, Yoshitake; Zhou, Miou; Baumgaertel, Karsten; Lavi, Ayal; Kamata, Masakazu; Tuszynski, Mark; Mayford, Mark; Golshani, Peyman; Silva, Alcino J.

    2016-06-01

    Recent studies suggest that a shared neural ensemble may link distinct memories encoded close in time. According to the memory allocation hypothesis, learning triggers a temporary increase in neuronal excitability that biases the representation of a subsequent memory to the neuronal ensemble encoding the first memory, such that recall of one memory increases the likelihood of recalling the other memory. Here we show in mice that the overlap between the hippocampal CA1 ensembles activated by two distinct contexts acquired within a day is higher than when they are separated by a week. Several findings indicate that this overlap of neuronal ensembles links two contextual memories. First, fear paired with one context is transferred to a neutral context when the two contexts are acquired within a day but not across a week. Second, the first memory strengthens the second memory within a day but not across a week. Older mice, known to have lower CA1 excitability, do not show the overlap between ensembles, the transfer of fear between contexts, or the strengthening of the second memory. Finally, in aged mice, increasing cellular excitability and activating a common ensemble of CA1 neurons during two distinct context exposures rescued the deficit in linking memories. Taken together, these findings demonstrate that contextual memories encoded close in time are linked by directing storage into overlapping ensembles. Alteration of these processes by ageing could affect the temporal structure of memories, thus impairing efficient recall of related information.

  20. 76 FR 26736 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... due to the timing limitations imposed by the review and funding cycle. Name of Committee: Molecular....gov . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Cellular and Molecular Biology of Glia Study Section. Date: June 2-3, 2011. Time: 8 a.m. to 4 p.m. Agenda...

  1. 76 FR 1444 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... Committee: Genes, Genomes, and Genetics Integrated Review Group, Molecular Genetics A Study Section. Date..., Cellular and Molecular Biology of the Kidney Study Section. Date: February 7, 2011. Time: 8 a.m. to 6 p.m... Clinical Integrated Review Group, Drug Discovery and Molecular Pharmacology Study Section. Date: February 7...

  2. 78 FR 59361 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-26

    ... Review Group; Molecular Genetics A Study Section. Date: October 21-22, 2013. Time: 8:30 a.m. to 1:30 p.m...-435- 0681, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Glia Study Section. Date: October 21, 2013. Time...

  3. Purification and characterization of a novel polysaccharide-peptide complex from Clinacanthus nutans Lindau leaves.

    PubMed

    Huang, Danmin; Li, Yunhong; Cui, Fengjie; Chen, Jun; Sun, Jiamin

    2016-02-10

    A novel polysaccharide-peptide complex CNP-1-2 with molecular weight of 9.17 × 10(4) Da was obtained from Clinacanthus nutans Lindau leaves by hot water extraction, ethanol precipitation, and purification with Superdex 200 and DEAE-Sepharose Fast Flow column chromatography. CNP-1-2 exhibited the highest growth inhibitory effect on human gastric cancer cells SGC-7901 with inhibition ratio of 92.34% and stimulated activation of macrophages with NO secretion level of 47.53 μmol/L among the polysaccharide fractions. CNP-1-2 comprised approximately 87.25% carbohydrate and 9.37% protein. Monosaccharide analysis suggested that CNP-1-2 was composed of L-rhamnose, l-arabinose, D-mannose, D-glucose and D-galactose with a molar ratio of 1.30:1.00:2.56:4.95:5.09. Methylation analysis, FT-IR, and (1)H NMR spectroscopy analysis revealed that CNP-1-2 might have a backbone consisting of 1,4-linked Glcp, 1,3-linked Glcp, 1,3-linked Manp, 1,4-linked Galp, 1,2,6-linked Galp and 1,2,6-linked Galp. Its side chain might be composed of 1-linked Araf, 1,6-linked Galp and 1-linked Rhap residues. AFM (atomic force micrograph) analysis revealed that CNP-1-2 had the molecular aggregation along with branched and entangled structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Toward elucidating the heat activation mechanism of the TRPV1 channel gating by molecular dynamics simulation.

    PubMed

    Wen, Han; Qin, Feng; Zheng, Wenjun

    2016-12-01

    As a key cellular sensor, the TRPV1 cation channel undergoes a gating transition from a closed state to an open state in response to various physical and chemical stimuli including noxious heat. Despite years of study, the heat activation mechanism of TRPV1 gating remains enigmatic at the molecular level. Toward elucidating the structural and energetic basis of TRPV1 gating, we have performed molecular dynamics (MD) simulations (with cumulative simulation time of 3 μs), starting from the high-resolution closed and open structures of TRPV1 solved by cryo-electron microscopy. In the closed-state simulations at 30°C, we observed a stably closed channel constricted at the lower gate (near residue I679), while the upper gate (near residues G643 and M644) is dynamic and undergoes flickery opening/closing. In the open-state simulations at 60°C, we found higher conformational variation consistent with a large entropy increase required for the heat activation, and both the lower and upper gates are dynamic with transient opening/closing. Through ensemble-based structural analyses of the closed state versus the open state, we revealed pronounced closed-to-open conformational changes involving the membrane proximal domain (MPD) linker, the outer pore, and the TRP helix, which are accompanied by breaking/forming of a network of closed/open-state specific hydrogen bonds. By comparing the closed-state simulations at 30°C and 60°C, we observed heat-activated conformational changes in the MPD linker, the outer pore, and the TRP helix that resemble the closed-to-open conformational changes, along with partial formation of the open-state specific hydrogen bonds. Some of the residues involved in the above key hydrogen bonds were validated by previous mutational studies. Taken together, our MD simulations have offered rich structural and dynamic details beyond the static structures of TRPV1, and promising targets for future mutagenesis and functional studies of the TRPV1 channel. Proteins 2016; 84:1938-1949. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Learning and Memory, Part II: Molecular Mechanisms of Synaptic Plasticity

    ERIC Educational Resources Information Center

    Lombroso, Paul; Ogren, Marilee

    2009-01-01

    The molecular events that are responsible for strengthening synaptic connections and how these are linked to memory and learning are discussed. The laboratory preparations that allow the investigation of these events are also described.

  6. The molecular universe: from astronomy to laboratory astrophysics and back

    NASA Astrophysics Data System (ADS)

    van Dishoeck, Ewine

    2015-08-01

    Molecules are found in a wide range of astronomical environments, fromour Solar System to distant starburst galaxies at the highest redshifts. Thanks to the opening up of the infrared and (sub)millimeter wavelength regime, culminating with Herschel and ALMA, more than 180 different species have now been found throughout the various stages of stellar birth and death: diffuse and dense interstellar clouds, protostars and disks, the envelopes of evolved stars and planetary nebulae, and exo-planetary atmospheres. Molecules and solid-state features are now also routinely detected in the interstellar medium of external galaxies, near and far.There are many motivations for studying this molecular universe. From the chemical perspective, interstellar space provides a unique laboratory to study basic molecular processes under very different conditions from those normally found in a laboratory on Earth. For astronomers, molecules are unique probes of the many environments where they are found, providing information on density, temperature, dynamics, ionization fractions and magnetic fields. Molecules also play an important role in the cooling of clouds allowing them to collapse, including the formation of the very first stars and galaxies. Finally, the molecular composition is sensitive to the history of the material, and ultimately provides critical information on our origins.This talk will summarize a number of recent observational highlights and provide examples of cases where the availability of new laboratory data proved crucial in the analysis. This includes basic data such as spectroscopy and collisional rate coefficients, but also an improved understanding of photoprocesses in the gaseous and solid state. Much of the chemistry in star- and planet-forming regions is now thought to be driven by gas-grain chemistry rather than pure gas-phase chemistry, and a few examples of the close link between models and laboratory experiments will be given. In spite of lingering uncertainties, the future of molecular astrophysics is bright and will allow increased understanding of the journey of gas and solids from clouds to comets and planets.

  7. A molecular cross-linking approach for hybrid metal oxides.

    PubMed

    Jung, Dahee; Saleh, Liban M A; Berkson, Zachariah J; El-Kady, Maher F; Hwang, Jee Youn; Mohamed, Nahla; Wixtrom, Alex I; Titarenko, Ekaterina; Shao, Yanwu; McCarthy, Kassandra; Guo, Jian; Martini, Ignacio B; Kraemer, Stephan; Wegener, Evan C; Saint-Cricq, Philippe; Ruehle, Bastian; Langeslay, Ryan R; Delferro, Massimiliano; Brosmer, Jonathan L; Hendon, Christopher H; Gallagher-Jones, Marcus; Rodriguez, Jose; Chapman, Karena W; Miller, Jeffrey T; Duan, Xiangfeng; Kaner, Richard B; Zink, Jeffrey I; Chmelka, Bradley F; Spokoyny, Alexander M

    2018-04-01

    There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO 2 , to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as 'molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B 12 (OH) 12 ] 2- . This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO 2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.

  8. A molecular cross-linking approach for hybrid metal oxides

    NASA Astrophysics Data System (ADS)

    Jung, Dahee; Saleh, Liban M. A.; Berkson, Zachariah J.; El-Kady, Maher F.; Hwang, Jee Youn; Mohamed, Nahla; Wixtrom, Alex I.; Titarenko, Ekaterina; Shao, Yanwu; McCarthy, Kassandra; Guo, Jian; Martini, Ignacio B.; Kraemer, Stephan; Wegener, Evan C.; Saint-Cricq, Philippe; Ruehle, Bastian; Langeslay, Ryan R.; Delferro, Massimiliano; Brosmer, Jonathan L.; Hendon, Christopher H.; Gallagher-Jones, Marcus; Rodriguez, Jose; Chapman, Karena W.; Miller, Jeffrey T.; Duan, Xiangfeng; Kaner, Richard B.; Zink, Jeffrey I.; Chmelka, Bradley F.; Spokoyny, Alexander M.

    2018-03-01

    There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO2, to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as `molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B12(OH)12]2-. This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.

  9. Edge-effect fragmentation in the context of foliar disease transmission

    NASA Astrophysics Data System (ADS)

    Lejeune, S.; Gilet, T.; Bourouiba, L.

    2017-11-01

    Rain-induced foliar pathogen propagation is inherently linked to raindrop fragmentation upon impact on infected leaves. Close to leaf edges, the outcome of a drop impact is complex and asymmetric. Despite the ubiquitous nature of impacts close to edges, little is known on the role of edges in shaping drop fragmentation (edge-effect fragmentation). To address this gap, we present a series of drop impact experimental results with impact point close to the surface edge. We focus on the liquid sheet expansion in the air and the role of the edge in introducing the asymmetry in such expansion. We link the edge-induced asymmetry of the sheet to the emergence of different families of droplet-producing fragmentation processes. We discuss how our results can help shed light on foliar disease transmission.

  10. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  11. Macrocyclic molecular rotors with bridged steroidal frameworks.

    PubMed

    Czajkowska-Szczykowska, Dorota; Rodríguez-Molina, Braulio; Magaña-Vergara, Nancy E; Santillan, Rosa; Morzycki, Jacek W; Garcia-Garibay, Miguel A

    2012-11-16

    In this work, we describe the synthesis and solid-state dynamics of isomeric molecular rotors 7E and 7Z, consisting of two androstane steroidal frameworks linked by the D rings by triple bonds at their C17 positions to a 1,4-phenylene rotator. They are also linked by the A rings by an alkenyl diester bridge to restrict the conformational flexibility of the molecules and reduce the number of potential crystalline arrays. The analysis of the resulting molecular structures and packing motifs offered insights of the internal dynamics that were later elucidated by means of line shape analyses of the spectral features obtained through variable-temperature solid-state (13)C NMR; such analysis revealed rotations in the solid state occurring at kilohertz frequency at room temperature.

  12. Effect of the molecular mass of tremella polysaccharides on accelerated recovery from cyclophosphamide-induced leucopenia in rats.

    PubMed

    Jiang, Rui-Zhi; Wang, Ying; Luo, Hao-Ming; Cheng, Yan-Qiu; Chen, Ying-Hong; Gao, Yang; Gao, Qi-Pin

    2012-03-23

    The body of tremella were decocted with water, and hydrolyzed with 0.1 mol/L hydrochloric acid for different times, giving tremella polysaccharides with six molecular mass values. The structures of all the tremella polysaccharides had non-reducing terminals of β-D-pyranglucuronide, the backbone was composed of (1 → 3)-linked β-D-manno-pyranoside, and the side chain composed of (1 → 6)-linked β-D-xylopyranoside was attached to the C(2) of the backbone mannopyranoside. Immunomodulatory effect studies indicated that tremella polysaccharides increased the counts of leukocytes in the peripheral blood which were significantly lowered by cyclophosphamide, and the lower the molecular mass of the tremella polysaccharide, the better this effect was.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, Kevin; Jenkins, Caroline; Nett, Markus

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we reportmore » the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification« less

  14. 78 FR 108 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... Review Special Emphasis Panel Member Conflict: Molecular Genetics and Imaging in Neuroscience. Date...: Molecular and Cellular Hematology. Date: January 22-23, 2013. Time: 10:00 a.m. to 7:00 p.m. Agenda: To...

  15. Dynamical properties and transport coefficients of one-dimensional Lennard-Jones fluids: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bazhenov, Alexiev M.; Heyes, David M.

    1990-01-01

    The thermodynamics, structure, and transport coefficients, as defined by the Green-Kubo integrals, of the one-dimensional Lennard-Jones fluid are evaluated for a wide range of state points by molecular dynamics computer simulation. These calculations are performed for the first time for thermal conductivity and the viscosity. We observe a transition from hard-rod behavior at low number density to harmonic-spring fluid behavior in the close-packed limit. The self-diffusion coefficient decays with increasing density to a finite limiting value. The thermal conductivity increases with density, tending to ∞ in the close-packed limit. The viscosity in contrast maximizes at intermediate density, tending to zero in the zero density and close-packed limits.

  16. Preliminary Characterization of Genipin-Cross-Linked Silk Sericin/Poly(vinyl alcohol) Films as Two-Dimensional Wound Dressings for the Healing of Superficial Wounds

    PubMed Central

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds. PMID:24106722

  17. Preliminary characterization of genipin-cross-linked silk sericin/poly(vinyl alcohol) films as two-dimensional wound dressings for the healing of superficial wounds.

    PubMed

    Siritientong, Tippawan; Ratanavaraporn, Juthamas; Srichana, Teerapol; Aramwit, Pornanong

    2013-01-01

    The genipin-cross-linked silk sericin/poly(vinyl alcohol) (PVA) films were developed aiming to be applied as two-dimensional wound dressings for the treatment of superficial wounds. The effects of genipin cross-linking concentration on the physical and biological properties of the films were investigated. The genipin-cross-linked silk sericin/PVA films showed the increased surface density, tensile strength, and percentage of elongation, but decreased percentage of light transmission, water vapor transmission rate, and water swelling, compared to the non-cross-linked films. This explained that the cross-linking bonds between genipin and silk sericin would reduce the mobility of molecular chains within the films, resulting in the more rigid molecular structure. Silk sericin was released from the genipin-cross-linked films in a sustained manner. In addition, either L929 mouse fibroblast or HaCat keratinocyte cells showed high percentage of viability when cultured on the silk sericin/PVA films cross-linked with 0.075 and 0.1% w/v genipin. The in vivo safety test performed according to ISO 10993-6 confirmed that the genipin-cross-linked silk sericin/PVA films were safe for the medical usages. The efficacy of the films for the treatment of superficial skin wounds will be further investigated in vivo and clinically. The genipin-cross-linked silk sericin/PVA films would be promising choices of two-dimensional wound dressings for the treatment of superficial wounds.

  18. Excitations and relaxation dynamics in multiferroic GeV4S8 studied by terahertz and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.

    2017-10-01

    We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.

  19. Structural rearrangements at the translocation pore of the human glutamate transporter, EAAT1.

    PubMed

    Leighton, Barbara H; Seal, Rebecca P; Watts, Spencer D; Skyba, Mary O; Amara, Susan G

    2006-10-06

    Structure-function studies of mammalian and bacterial excitatory amino acid transporters (EAATs), as well as the crystal structure of a related archaeal glutamate transporter, support a model in which TM7, TM8, and the re-entrant loops HP1 and HP2 participate in forming a substrate translocation pathway within each subunit of a trimer. However, the transport mechanism, including precise binding sites for substrates and co-transported ions and changes in the tertiary structure underlying transport, is still not known. In this study, we used chemical cross-linking of introduced cysteine pairs in a cysteine-less version of EAAT1 to examine the dynamics of key domains associated with the translocation pore. Here we show that cysteine substitution at Ala-395, Ala-367, and Ala-440 results in functional single and double cysteine transporters and that in the absence of glutamate or dl-threo-beta-benzyloxyaspartate (dl-TBOA), A395C in the highly conserved TM7 can be cross-linked to A367C in HP1 and to A440C in HP2. The formation of these disulfide bonds is reversible and occurs intra-molecularly. Interestingly, cross-linking A395C to A367C appears to abolish transport, whereas cross-linking A395C to A440C lowers the affinities for glutamate and dl-TBOA but does not change the maximal transport rate. Additionally, glutamate and dl-TBOA binding prevent cross-linking in both double cysteine transporters, whereas sodium binding facilitates cross-linking in the A395C/A367C transporter. These data provide evidence that within each subunit of EAAT1, Ala-395 in TM7 resides close to a residue at the tip of each re-entrant loop (HP1 and HP2) and that these residues are repositioned relative to one another at different steps in the transport cycle. Such behavior likely reflects rearrangements in the tertiary structure of the translocation pore during transport and thus provides constraints for modeling the structural dynamics associated with transport.

  20. Molecular mechanism of the sweet taste enhancers.

    PubMed

    Zhang, Feng; Klebansky, Boris; Fine, Richard M; Liu, Haitian; Xu, Hong; Servant, Guy; Zoller, Mark; Tachdjian, Catherine; Li, Xiaodong

    2010-03-09

    Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.

  1. Molecular motors interacting with their own tracks

    NASA Astrophysics Data System (ADS)

    Artyomov, Max N.; Morozov, Alexander Yu.; Kolomeisky, Anatoly B.

    2008-04-01

    Dynamics of molecular motors that move along linear lattices and interact with them via reversible destruction of specific lattice bonds is investigated theoretically by analyzing exactly solvable discrete-state “burnt-bridge” models. Molecular motors are viewed as diffusing particles that can asymmetrically break or rebuild periodically distributed weak links when passing over them. Our explicit calculations of dynamic properties show that coupling the transport of the unbiased molecular motor with the bridge-burning mechanism leads to a directed motion that lowers fluctuations and produces a dynamic transition in the limit of low concentration of weak links. Interaction between the backward biased molecular motor and the bridge-burning mechanism yields a complex dynamic behavior. For the reversible dissociation the backward motion of the molecular motor is slowed down. There is a change in the direction of the molecular motor’s motion for some range of parameters. The molecular motor also experiences nonmonotonic fluctuations due to the action of two opposing mechanisms: the reduced activity after the burned sites and locking of large fluctuations. Large spatial fluctuations are observed when two mechanisms are comparable. The properties of the molecular motor are different for the irreversible burning of bridges where the velocity and fluctuations are suppressed for some concentration range, and the dynamic transition is also observed. Dynamics of the system is discussed in terms of the effective driving forces and transitions between different diffusional regimes.

  2. Roles of Communication Problems and Communication Strategies on Resident-Related Role Demand and Role Satisfaction.

    PubMed

    Savundranayagam, Marie Y; Lee, Christopher

    2017-03-01

    This study investigated the impact of dementia-related communication difficulties and communication strategies used by staff on resident-related indicators of role demand and role satisfaction. Formal/paid long-term care staff caregivers (N = 109) of residents with dementia completed questionnaires on dementia-related communication difficulties, communication strategies, role demand (ie, residents make unreasonable demands), and role satisfaction (measured by relationship closeness and influence over residents). Three types of communication strategies were included: (a) effective repair strategies, (b) completing actions by oneself, and (c) tuning out or ignoring the resident. Analyses using structural equation modeling revealed that communication problems were positively linked with role demand. Repair strategies were positively linked with relationship closeness and influence over residents. Completing actions by oneself was positively linked to role demand and influence over residents, whereas tuning out was negatively linked with influence over residents. The findings underscore that effective caregiver communication skills are essential in enhancing staff-resident relationships.

  3. Locating inefficient links in a large-scale transportation network

    NASA Astrophysics Data System (ADS)

    Sun, Li; Liu, Like; Xu, Zhongzhi; Jie, Yang; Wei, Dong; Wang, Pu

    2015-02-01

    Based on data from geographical information system (GIS) and daily commuting origin destination (OD) matrices, we estimated the distribution of traffic flow in the San Francisco road network and studied Braess's paradox in a large-scale transportation network with realistic travel demand. We measured the variation of total travel time Δ T when a road segment is closed, and found that | Δ T | follows a power-law distribution if Δ T < 0 or Δ T > 0. This implies that most roads have a negligible effect on the efficiency of the road network, while the failure of a few crucial links would result in severe travel delays, and closure of a few inefficient links would counter-intuitively reduce travel costs considerably. Generating three theoretical networks, we discovered that the heterogeneously distributed travel demand may be the origin of the observed power-law distributions of | Δ T | . Finally, a genetic algorithm was used to pinpoint inefficient link clusters in the road network. We found that closing specific road clusters would further improve the transportation efficiency.

  4. Protocol for HER2 FISH Using a Non-cross-linking, Formalin-free Tissue Fixative to Combine Advantages of Cryo-preservation and Formalin Fixation

    PubMed Central

    Loibner, Martina; Oberauner-Wappis, Lisa; Viertler, Christian; Groelz, Daniel; Zatloukal, Kurt

    2017-01-01

    Morphologic assessment of formalin-fixed, paraffin-embedded (FFPE) tissue samples has been the gold standard for cancer diagnostics for decades due to its excellent preservation of morphology. Personalized medicine increasingly provides individually adapted and targeted therapies for characterized individual diseases enabled by combined morphological and molecular analytical technologies and diagnostics. Performance of morphologic and molecular assays from the same FFPE specimen is challenging because of the negative impact of formalin due to chemical modification and cross-linking of nucleic acids and proteins. A non-cross-linking, formalin-free tissue fixative has been recently developed to fulfil both requirements, i.e., to preserve morphology like FFPE and biomolecules like cryo-preservation. Since FISH is often required in combination with histopathology and molecular diagnostics, we tested the applicability of FISH protocols on tissues treated with this new fixative. We found that formalin post-fixation of histological sections of non-cross-linking, formalin-free and paraffin-embedded (NCFPE) breast cancer tissue generated equivalent results to those with FFPE tissue in human epidermal growth factor receptor 2 (HER2) FISH analysis. This protocol describes how a FISH assay originally developed and validated for FFPE tissue can be used for NCFPE tissues by a simple post-fixation step of histological sections. PMID:29364207

  5. Mass spectrometric identification of Au68(SR)34 molecular gold nanoclusters with 34-electron shell closing.

    PubMed

    Dass, Amala

    2009-08-26

    The molecular formula Au(68)(SCH(2)CH(2)Ph)(34) has been assigned to the 14 kDa nanocluster using MALDI-TOF mass spectrometry. The 34-electron shell closing in a macroscopically obtained thiolated gold nanocluster is demonstrated. The Au(68) nanocluster is predicted to have a 49 atom Marks decahedral core with 19 inner core atoms and 30 outer atoms chelating with the staple motifs. The nanoclusters' predicted formulation is [Au](19+30) [Au(SR)(2)](11) [Au(2)(SR)(3)](4).

  6. The molecular epidemiology of Huntington disease is related to intermediate allele frequency and haplotype in the general population.

    PubMed

    Kay, Chris; Collins, Jennifer A; Wright, Galen E B; Baine, Fiona; Miedzybrodzka, Zosia; Aminkeng, Folefac; Semaka, Alicia J; McDonald, Cassandra; Davidson, Mark; Madore, Steven J; Gordon, Erynn S; Gerry, Norman P; Cornejo-Olivas, Mario; Squitieri, Ferdinando; Tishkoff, Sarah; Greenberg, Jacquie L; Krause, Amanda; Hayden, Michael R

    2018-04-01

    Huntington disease (HD) is the most common monogenic neurodegenerative disorder in populations of European ancestry, but occurs at lower prevalence in populations of East Asian or black African descent. New mutations for HD result from CAG repeat expansions of intermediate alleles (IAs), usually of paternal origin. The differing prevalence of HD may be related to the rate of new mutations in a population, but no comparative estimates of IA frequency or the HD new mutation rate are available. In this study, we characterize IA frequency and the CAG repeat distribution in fifteen populations of diverse ethnic origin. We estimate the HD new mutation rate in a series of populations using molecular IA expansion rates. The frequency of IAs was highest in Hispanic Americans and Northern Europeans, and lowest in black Africans and East Asians. The prevalence of HD correlated with the frequency of IAs by population and with the proportion of IAs found on the HD-associated A1 haplotype. The HD new mutation rate was estimated to be highest in populations with the highest frequency of IAs. In European ancestry populations, one in 5,372 individuals from the general population and 7.1% of individuals with an expanded CAG repeat in the HD range are estimated to have a molecular new mutation. Our data suggest that the new mutation rate for HD varies substantially between populations, and that IA frequency and haplotype are closely linked to observed epidemiological differences in the prevalence of HD across major ancestry groups in different countries. © 2018 Wiley Periodicals, Inc.

  7. Genetic characterization of H9N2 avian influenza viruses isolated from poultry in Poland during 2013/2014.

    PubMed

    Świętoń, Edyta; Jóźwiak, Michał; Minta, Zenon; Śmietanka, Krzysztof

    2018-02-01

    The study presents molecular characterization of H9N2 avian influenza (AI) isolates from field outbreaks in turkeys that occurred in Poland in 2013-2014. Sequences of all gene segments of one isolate from 2013 (A/turkey/Poland/14/2013(H9N2)) and two isolates from 2014 (A/turkey/Poland/08/2014(H9N2), A/turkey/Poland/09/2014(H9N2)) were obtained and analyzed in search of the phylogenetic relationship and molecular markers of zoonotic potential or increased pathogenicity. All gene segments were shown to originate from the wild bird reservoir and the close relationship of the analyzed isolates proved the link between the outbreaks in 2013 and 2014. However, remarkable molecular differences between isolates from 2013 to 2014 were identified, including mutation in the HA cleavage site (CS) leading to conversion from the PAASNR*GLF to the PAASKR*GLF motif and truncation of the PB1-F2 protein. Additionally, T97I substitution in the PA protein in A/turkey/Poland/08/2014 was detected which can be responsible for enhanced activity of viral polymerase in mammalian cells. However, experimental infection of mice with both isolates from 2014 showed their low pathogenicity, and no statistically significant differences in virus replication were observed between the viruses. Nevertheless, these findings indicate the dynamic evolution of H9N2 in the field emphasizing the need for monitoring of the situation in terms of H9N2 AI in Europe.

  8. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

    PubMed Central

    2018-01-01

    With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA–ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field. PMID:29297679

  9. Carbon Nanomembranes

    NASA Astrophysics Data System (ADS)

    Angelova, Polina; Gölzhäuser, Armin

    2017-03-01

    This chapter describes the formation and properties of one nanometer thick carbon nanomembranes (CNMs), made by electron induced cross-linking of aromatic self-assembled monolayers (SAMs). The cross-linked SAMs are robust enough to be released from the surface and placed on solid support or over holes as free-standing membranes. Annealing at 1000K transforms CNMs into graphene accompanied by a change of mechanical stiffness and electrical resistance. The developed fabrication approach is scalable and provides molecular level control over thickness and homogeneity of the produced CNMs. The mechanisms of electron-induced cross-linking process are discussed in details. A variety of polyaromatic thiols: oligophenyls as well as small and extended condensed polycyclic hydrocarbons have been successfully employed, demonstrating that the structural and functional properties of the resulting nanomembranes are strongly determined by the structure of molecular monolayers. The mechanical properties of CNMs (Young's modulus, tensile strength and prestress) are characterized by bulge testing. The interpretation of the bulge test data relates the Young's modulus to the properties of single molecules and to the structure of the pristine SAMs. The gas transport through the CNM is measured onto polydimethylsiloxane (PDMS) - thin film composite membrane. The established relationship of permeance and molecular size determines the molecular sieving mechanism of permeation through this ultrathin sheet.

  10. Multiscale mechanical effects of native collagen cross-linking in tendon.

    PubMed

    Eekhoff, Jeremy D; Fang, Fei; Lake, Spencer P

    2018-06-06

    The hierarchical structure of tendon allows for attenuation of mechanical strain down decreasing length scales. While reorganization of collagen fibers accounts for microscale strain attenuation, cross-linking between collagen molecules contributes to deformation mechanisms at the fibrillar and molecular scales. Divalent and trivalent enzymatic cross-links form during the development of collagen fibrils through the enzymatic activity of lysyl oxidase (LOX). By establishing connections between telopeptidyl and triple-helical domains of adjacent molecules within collagen fibrils, these cross-links stiffen the fibrils by resisting intermolecular sliding. Ultimately, greater enzymatic cross-linking leads to less compliant and stronger tendon as a result of stiffer fibrils. In contrast, nonenzymatic cross-links such as glucosepane and pentosidine are not produced during development but slowly accumulate through glycation of collagen. Therefore, these cross-links are only expected to be present in significant quantities in advanced age, where there has been sufficient time for glycation to occur, and in diabetes, where the presence of more free sugar in the extracellular matrix increases the rate of glycation. Unlike enzymatic cross-links, current evidence suggests that nonenzymatic cross-links are at least partially isolated to the surface of collagen fibers. As a result, glycation has been proposed to primarily impact tendon mechanics by altering molecular interactions at the fiber interface, thereby diminishing sliding between fibers. Thus, increased nonenzymatic cross-linking decreases microscale strain attenuation and the viscous response of tendon. In conclusion, enzymatic and nonenzymatic collagen cross-links have demonstrable and distinct effects on the mechanical properties of tendon across different length scales.

  11. Citric-Acid-Derived Photo-cross-Linked Biodegradable Elastomers

    PubMed Central

    Gyawali, Dipendra; Tran, Richard T.; Guleserian, Kristine J.; Tang, Liping; Yang, Jian

    2010-01-01

    Citric-acid-derived thermally cross-linked biodegradable elastomers (CABEs) have recently received significant attention in various biomedical applications, including tissue-engineering orthopedic devices, bioimaging and implant coatings. However, citric-acid-derived photo-cross-linked biodegradable elastomers are rarely reported. Herein, we report a novel photo-cross-linked biodegradable elastomer, referred to as poly(octamethylene maleate citrate) (POMC), which preserves pendant hydroxyl and carboxylic functionalities after cross-linking for the potential conjugation of biologically active molecules. POMC is a low-molecular-mass pre-polymer with a molecular mass average between 701 and 1291 Da. POMC networks are soft and elastic with an initial modulus of 0.07 to 1.3 MPa and an elongation at break between 38 and 382%. FT-IR–ATR results confirmed the successful surface immobilization of type-I collagen onto POMC films, which enhanced in vitro cellular attachment and proliferation. Photo-polymerized POMC films implanted subcutaneously into Sprague–Dawley rats demonstrated minimal in vivo inflammatory responses. The development of POMC enriches the family of citric-acid-derived biodegradable elastomers and expands the available biodegradable polymers for versatile needs in biomedical applications. PMID:20557687

  12. Situation management in the Link Monitor and Control Operator Assistant (LMCOA)

    NASA Technical Reports Server (NTRS)

    Hill, Randall W., Jr.; Lee, Lorrine F.

    1993-01-01

    This paper describes a knowledge-based system called the Situation Manager that was developed for the Link Monitor and Control Operator Assistant (LMCOA) at the Jet Propulsion Laboratory. This system was developed in response to a number of deficiencies that were identified in an earlier version of the LMCOA: the need to close the control loop between sending a directive and knowing when its execution is complete (versus just closing the communications loop), the need to recognize an anomaly and alert the operator when a directive is rejected or a link device fails, and the need to suggest ways to work around an anomaly, provided that it is recognizable. In response to these needs, the Situation Manager has been designed to provide the LMCOA with three basic capabilities: situation assessment, anomaly diagnosis, and recovery from commonly occurring problems.

  13. The normal huntington disease (HD) allele, or a closely linked gene, influences age at onset of HD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrer, L.A.; Cupples, L.A.; Conneally, P.M.

    1993-07-01

    The authors evaluated the hypothesis that Huntington disease (HD) is influenced by the normal HD allele by comparing transmission patterns of genetically linked markers at the D4S10 locus in the normal parent against age at onset in the affected offspring. Analysis of information from 21 sibships in 14 kindreds showed a significant tendency for sibs who have similar onset ages to share the same D4S10 allele from the normal parent. Affected sibs who inherited different D4S10 alleles from the normal parent tended to have more variable ages at onset. These findings suggest that the expression of HD is modulated bymore » the normal HD allele or by a closely linked locus. 38 refs., 2 figs., 1 tab.« less

  14. Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.

    PubMed

    Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula

    2017-12-01

    Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.

  15. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories.

    PubMed

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  16. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories

    PubMed Central

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems. PMID:27200016

  17. 75 FR 27562 - National Institute of Environmental Health Sciences; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... Environmental Health Sciences; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory... Health Sciences Special Emphasis Panel, Linking nanomaterial physical characteristics with biological...: Sally Eckert-Tilotta, PhD, Scientific Review Officer, Nat. Institute of Environmental Health Sciences...

  18. Toward molecular mechanism of xenon anesthesia: a link to studies of xenon complexes with small aromatic molecules.

    PubMed

    Andrijchenko, Natalya N; Ermilov, Alexander Yu; Khriachtchev, Leonid; Räsänen, Markku; Nemukhin, Alexander V

    2015-03-19

    The present study illustrates the steps toward understanding molecular mechanism of xenon anesthesia by focusing on a link to the structures and spectra of intermolecular complexes of xenon with small aromatic molecules. A primary cause of xenon anesthesia is attributed to inhibition of N-methyl-D-aspartate (NMDA) receptors by an unknown mechanism. Following the results of quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) calculations we report plausible xenon action sites in the ligand binding domain of the NMDA receptor, which are due to interaction of xenon atoms with aromatic amino-acid residues. We rely in these calculations on computational protocols adjusted in combined experimental and theoretical studies of intermolecular complexes of xenon with phenol. Successful reproduction of vibrational shifts in molecular species upon complexation with xenon measured in low-temperature matrices allowed us to select a proper functional form in density functional theory (DFT) approach for use in QM subsystems, as well as to calibrate force field parameters for MD simulations. The results of molecular modeling show that xenon atoms can compete with agonists for a place in the corresponding protein cavity, thus indicating their active role in anesthetic action.

  19. Active Site Gate Dynamics Modulate the Catalytic Activity of the Ubiquitination Enzyme E2-25K.

    PubMed

    Rout, Manoj K; Lee, Brian L; Lin, Aiyang; Xiao, Wei; Spyracopoulos, Leo

    2018-05-03

    The ubiquitin proteasome system (UPS) signals for degradation of proteins through attachment of K48-linked polyubiquitin chains, or alterations in protein-protein recognition through attachment of K63-linked chains. Target proteins are ubiquitinated in three sequential chemical steps by a three-component enzyme system. Ubiquitination, or E2 enzymes, catalyze the central step by facilitating reaction of a target protein lysine with the C-terminus of Ub that is attached to the active site cysteine of the E2 through a thioester bond. E2 reactivity is modulated by dynamics of an active site gate, whose central residue packs against the active site cysteine in a closed conformation. Interestingly, for the E2 Ubc13, which specifically catalyzes K63-linked ubiquitination, the central gate residue adopts an open conformation. We set out to determine if active site gate dynamics play a role in catalysis for E2-25K, which adopts the canonical, closed gate conformation, and which selectively synthesizes K48-linked ubiquitin chains. Gate dynamics were characterized using mutagenesis of key residues, combined with enzyme kinetics measurements, and main chain NMR relaxation. The experimental data were interpreted with all atom MD simulations. The data indicate that active site gate opening and closing rates for E2-25K are precisely balanced.

  20. Intermediate closed state for glycine receptor function revealed by cysteine cross-linking.

    PubMed

    Prevost, Marie S; Moraga-Cid, Gustavo; Van Renterghem, Catherine; Edelstein, Stuart J; Changeux, Jean-Pierre; Corringer, Pierre-Jean

    2013-10-15

    Pentameric ligand-gated ion channels (pLGICs) mediate signal transmission by coupling the binding of extracellular ligands to the opening of their ion channel. Agonist binding elicits activation and desensitization of pLGICs, through several conformational states, that are, thus far, incompletely characterized at the structural level. We previously reported for GLIC, a prokaryotic pLGIC, that cross-linking of a pair of cysteines at both sides of the extracellular and transmembrane domain interface stabilizes a locally closed (LC) X-ray structure. Here, we introduced the homologous pair of cysteines on the human α1 glycine receptor. We show by electrophysiology that cysteine cross-linking produces a gain-of-function phenotype characterized by concomitant constitutive openings, increased agonist potency, and equalization of efficacies of full and partial agonists. However, it also produces a reduction of maximal currents at saturating agonist concentrations without change of the unitary channel conductance, an effect reversed by the positive allosteric modulator propofol. The cross-linking thus favors a unique closed state distinct from the resting and longest-lived desensitized states. Fitting the data according to a three-state allosteric model suggests that it could correspond to a LC conformation. Its plausible assignment to a gating intermediate or a fast-desensitized state is discussed. Overall, our data show that relative movement of two loops at the extracellular-transmembrane interface accompanies orthosteric agonist-mediated gating.

  1. Social networks and health among older adults in Lebanon: the mediating role of support and trust.

    PubMed

    Webster, Noah J; Antonucci, Toni C; Ajrouch, Kristine J; Abdulrahim, Sawsan

    2015-01-01

    Despite a growing body of literature documenting the influence of social networks on health, less is known in other parts of the world. The current study investigates this link by clustering characteristics of network members nominated by older adults in Lebanon. We then identify the degree to which various types of people exist within the networks. This study further examines how network composition as measured by the proportion of each type (i.e., type proportions) is related to health; and the mediating role of positive support and trust in this process. Data are from the Family Ties and Aging Study (2009). Respondents aged ≥60 were selected (N = 195) for analysis. Three types of people within the networks were identified: Geographically Distant Male Youth, Geographically Close/Emotionally Distant Family, and Close Family. Having more Geographically Distant Male Youth in one's network was associated with health limitations, whereas more Close Family was associated with no health limitations. Positive support mediated the link between type proportions and health limitations, whereas trust mediated the link between type proportions and depressive symptoms. Results document links between the social networks and health of older adults in Lebanon within the context of ongoing demographic transitions. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Molecular conformation of the full-length tumor suppressor NF2/Merlin—a small angle neutron scattering study

    PubMed Central

    Khajeh, Jahan Ali; Ju, Jeong Ho; Atchiba, Moussoubaou; Allaire, Marc; Stanley, Christopher; Heller, William T.; Callaway, David J.E.; Bu, Zimei

    2014-01-01

    Summary The tumor suppressor protein Merlin inhibits cell proliferation upon establishing cell-cell contacts. Because Merlin has high sequence similarity to the Ezrin-Radixin-Moesin (ERM) family of proteins, the structural model of ERM protein autoinhibition and cycling between closed/resting and open/active conformational states is often employed to explain Merlin function. However, recent biochemical studies suggest alternative molecular models of Merlin function. Here, we have determined the low resolution molecular structure and binding activity of Merlin and a Merlin(S518D) mutant that mimics the inactivating phosphorylation at S518 using small angle neutron scattering (SANS) and binding experiments. SANS shows that in solution both Merlin and Merlin(S518D) adopt a closed conformation, but binding experiments indicate that a significant fraction of either Merlin or Merlin(S518D) is capable of binding to the target protein NHERF1. Upon binding to the phosphatidylinositol 4,5-bisphosphate lipid, the wild-type Merlin adopts a more open conformation than in solution, but Merlin(S518D) remains in a closed conformation. This study supports a rheostat model of Merlin in NHERF1 binding, and contributes to resolve a controversy about the molecular conformation and binding activity of Merlin. PMID:24882693

  3. Synthetic Morphogenesis.

    PubMed

    Teague, Brian P; Guye, Patrick; Weiss, Ron

    2016-09-01

    Throughout biology, function is intimately linked with form. Across scales ranging from subcellular to multiorganismal, the identity and organization of a biological structure's subunits dictate its properties. The field of molecular morphogenesis has traditionally been concerned with describing these links, decoding the molecular mechanisms that give rise to the shape and structure of cells, tissues, organs, and organisms. Recent advances in synthetic biology promise unprecedented control over these molecular mechanisms; this opens the path to not just probing morphogenesis but directing it. This review explores several frontiers in the nascent field of synthetic morphogenesis, including programmable tissues and organs, synthetic biomaterials and programmable matter, and engineering complex morphogenic systems de novo. We will discuss each frontier's objectives, current approaches, constraints and challenges, and future potential. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Ethyl 5-amino-1-[(4-methyl­phen­yl)sulfon­yl]-1H-pyrazole-4-carboxyl­ate

    PubMed Central

    Elgazwy, Abdel-Sattar S. Hamad; Nassar, Ibrahim F.; Jones, Peter G.

    2013-01-01

    In the title mol­ecule, C13H15N3O4S, the benzene and pyrazole rings are inclined to each other at 77.48 (3)°. Two amino H atoms are involved in bifurcated hydrogen bonds, viz. intra­molecular N—H⋯O and inter­molecular N—H⋯O(N). The inter­molecular hydrogen bonds link the mol­ecules related by translation in [100] into chains. A short distance of 3.680 (3) Å between the centroids of benzene and pyrazole rings from neighbouring mol­ecules shows the presence of π–π inter­actions, which link the hydrogen-bonded chains into layers parallel to the ab plane. PMID:24427020

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonelli, Perry Edward

    A low-level model-to-model interface is presented that will enable independent models to be linked into an integrated system of models. The interface is based on a standard set of functions that contain appropriate export and import schemas that enable models to be linked with no changes to the models themselves. These ideas are presented in the context of a specific multiscale material problem that couples atomistic-based molecular dynamics calculations to continuum calculations of fluid ow. These simulations will be used to examine the influence of interactions of the fluid with an adjacent solid on the fluid ow. The interface willmore » also be examined by adding it to an already existing modeling code, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and comparing it with our own molecular dynamics code.« less

  6. Molecularly imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination*

    PubMed Central

    Lay, Sovichea; Yu, Hai-ning; Hu, Bao-xiang; Shen, Sheng-rong

    2016-01-01

    A pre-treatment methodology for clenbuterol hydrochloride (CLEN) isolation and enrichment in a complex matrix environment was developed through exploiting molecularly imprinted polymers (MIPs). CLEN-imprinted polymers were synthesized by the combined use of ally-β-cyclodextrin (ally-β-CD) and methacrylic acid (MAA), allyl-β-CD and acrylonitrile (AN), and allyl-β-CD and methyl methacrylate (MMA) as the binary functional monomers. MAA-linked allyl-β-CD MIPs (M-MAA) were characterized by Fourier transform-infrared (FT-IR) spectroscopy and a scanning electron microscope (SEM). Based upon the results, M-MAA polymers generally proved to be an excellent selective extraction compared to its references: AN-linked allyl-β-CD MIPs (M-AN) and MMA-linked allyl-β-CD MIPs (M-MMA). M-MAA polymers were eventually chosen to run through a molecularly imprinted solid-phase extraction (MISPE) micro-column to enrich CLEN residues spiked in pig livers. A high recovery was achieved, ranging from 91.03% to 96.76% with relative standard deviation (RSD) ≤4.45%. PMID:27256680

  7. General Formalism of Mass Scaling Approach for Replica-Exchange Molecular Dynamics and its Application

    NASA Astrophysics Data System (ADS)

    Nagai, Tetsuro

    2017-01-01

    Replica-exchange molecular dynamics (REMD) has demonstrated its efficiency by combining trajectories of a wide range of temperatures. As an extension of the method, the author formalizes the mass-manipulating replica-exchange molecular dynamics (MMREMD) method that allows for arbitrary mass scaling with respect to temperature and individual particles. The formalism enables the versatile application of mass-scaling approaches to the REMD method. The key change introduced in the novel formalism is the generalized rules for the velocity and momentum scaling after accepted replica-exchange attempts. As an application of this general formalism, the refinement of the viscosity-REMD (V-REMD) method [P. H. Nguyen, J. Chem. Phys. 132, 144109 (2010)] is presented. Numerical results are provided using a pilot system, demonstrating easier and more optimized applicability of the new version of V-REMD as well as the importance of adherence to the generalized velocity scaling rules. With the new formalism, more sound and efficient simulations will be performed.

  8. 77 FR 57571 - Center For Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ...: Genes, Genomes, and Genetics Integrated Review Group; Genomics, Computational Biology and Technology... Reproductive Sciences Integrated Review Group; Cellular, Molecular and Integrative Reproduction Study Section...: Immunology Integrated Review Group; Cellular and Molecular Immunology--B Study Section. [[Page 57572

  9. 76 FR 370 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group; Molecular Genetics B Study... Committee: Cardiovascular and Respiratory Sciences Integrated Review Group; Lung Cellular, Molecular, and... Committee: Population Sciences and Epidemiology Integrated Review Group; Behavioral Genetics and...

  10. 76 FR 2399 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-13

    ...: Molecular, Cellular and Developmental Neuroscience Integrated Review Group, Neurotransporters, Receptors...- 1198. [email protected] . Name of Committee: Genes, Genomes, and Genetics Integrated Review Group.... (301) 435-1045. [email protected] . Name of Committee: Molecular, Cellular and Developmental...

  11. Method of assembly of molecular-sized nets and scaffolding

    DOEpatents

    Michl, Josef; Magnera, Thomas F.; David, Donald E.; Harrison, Robin M.

    1999-01-01

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures.

  12. Method of assembly of molecular-sized nets and scaffolding

    DOEpatents

    Michl, J.; Magnera, T.F.; David, D.E.; Harrison, R.M.

    1999-03-02

    The present invention relates to methods and starting materials for forming molecular-sized grids or nets, or other structures based on such grids and nets, by creating molecular links between elementary molecular modules constrained to move in only two directions on an interface or surface by adhesion or bonding to that interface or surface. In the methods of this invention, monomers are employed as the building blocks of grids and more complex structures. Monomers are introduced onto and allowed to adhere or bond to an interface. The connector groups of adjacent adhered monomers are then polymerized with each other to form a regular grid in two dimensions above the interface. Modules that are not bound or adhered to the interface are removed prior to reaction of the connector groups to avoid undesired three-dimensional cross-linking and the formation of non-grid structures. Grids formed by the methods of this invention are useful in a variety of applications, including among others, for separations technology, as masks for forming regular surface structures (i.e., metal deposition) and as templates for three-dimensional molecular-sized structures. 9 figs.

  13. Epigenetic regulation of TTF-I-mediated promoter–terminator interactions of rRNA genes

    PubMed Central

    Németh, Attila; Guibert, Sylvain; Tiwari, Vijay Kumar; Ohlsson, Rolf; Längst, Gernot

    2008-01-01

    Ribosomal RNA synthesis is the eukaryotic cell's main transcriptional activity, but little is known about the chromatin domain organization and epigenetics of actively transcribed rRNA genes. Here, we show epigenetic and spatial organization of mouse rRNA genes at the molecular level. TTF-I-binding sites subdivide the rRNA transcription unit into functional chromatin domains and sharply delimit transcription factor occupancy. H2A.Z-containing nucleosomes occupy the spacer promoter next to a newly characterized TTF-I-binding site. The spacer and the promoter proximal TTF-I-binding sites demarcate the enhancer. DNA from both the enhancer and the coding region is hypomethylated in actively transcribed repeats. 3C analysis revealed an interaction between promoter and terminator regions, which brings the beginning and end of active rRNA genes into close contact. Reporter assays show that TTF-I mediates this interaction, thereby linking topology and epigenetic regulation of the rRNA genes. PMID:18354495

  14. Evaluation of genetic polymorphism among Lactobacillus rhamnosus non-starter Parmigiano Reggiano cheese strains.

    PubMed

    Bove, Claudio Giorgio; De Dea Lindner, Juliano; Lazzi, Camilla; Gatti, Monica; Neviani, Erasmo

    2011-01-05

    Parmigiano Reggiano (PR) is an Italian cooked, long-ripened cheese made with unheated cow's milk and natural whey starter. The microflora is involved in the manufacturing of this cheese, arising from the natural whey starter, the raw milk and the environment. Molecular studies have shown that mesophilic non-starter lactic acid bacteria (NSLAB) are the dominant microflora present during the ripening of PR. In this study, a characterisation of Lactobacillus rhamnosus isolated from a single PR manufacturing and ripening process is reported, using a combination of genotypic fingerprinting techniques (RAPD-PCR and REP-PCR). The intraspecies heterogeneity evidenced for 66 strains is correlated to their abilities to adapt to specific environmental and technological conditions. The detection of biotypes that correlate with specific moments in cheese ripening or differential development throughout this process suggests that these strains may have specific roles closely linked to their peculiar technological properties. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Glycine receptor mechanism illuminated by electron cryo-microscopy

    PubMed Central

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-01-01

    Summary The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of GlyRs has been hindered by a dearth of high-resolution structures. Here we report electron cryo-microscopy structures of the α1 GlyR with strychnine, glycine, or glycine/ivermectin. Strychnine arrests the receptor in an antagonist-bound, closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain ‘wrist’ interface, and leads to rotation of the transmembrane domain toward the pore axis, occluding the ion conduction pathway. These structures illuminate GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors. PMID:26344198

  16. Glycine receptor mechanism elucidated by electron cryo-microscopy.

    PubMed

    Du, Juan; Lü, Wei; Wu, Shenping; Cheng, Yifan; Gouaux, Eric

    2015-10-08

    The strychnine-sensitive glycine receptor (GlyR) mediates inhibitory synaptic transmission in the spinal cord and brainstem and is linked to neurological disorders, including autism and hyperekplexia. Understanding of molecular mechanisms and pharmacology of glycine receptors has been hindered by a lack of high-resolution structures. Here we report electron cryo-microscopy structures of the zebrafish α1 GlyR with strychnine, glycine, or glycine and ivermectin (glycine/ivermectin). Strychnine arrests the receptor in an antagonist-bound closed ion channel state, glycine stabilizes the receptor in an agonist-bound open channel state, and the glycine/ivermectin complex adopts a potentially desensitized or partially open state. Relative to the glycine-bound state, strychnine expands the agonist-binding pocket via outward movement of the C loop, promotes rearrangement of the extracellular and transmembrane domain 'wrist' interface, and leads to rotation of the transmembrane domain towards the pore axis, occluding the ion conduction pathway. These structures illuminate the GlyR mechanism and define a rubric to interpret structures of Cys-loop receptors.

  17. On the link between column density distribution and density scaling relation in star formation regions

    NASA Astrophysics Data System (ADS)

    Veltchev, Todor; Donkov, Sava; Stanchev, Orlin

    2017-07-01

    We present a method to derive the density scaling relation ∝ L^{-α} in regions of star formation or in their turbulent vicinities from straightforward binning of the column-density distribution (N-pdf). The outcome of the method is studied for three types of N-pdf: power law (7/5≤α≤5/3), lognormal (0.7≲α≲1.4) and combination of lognormals. In the last case, the method of Stanchev et al. (2015) was also applied for comparison and a very weak (or close to zero) correlation was found. We conclude that the considered `binning approach' reflects rather the local morphology of the N-pdf with no reference to the physical conditions in a considered region. The rough consistency of the derived slopes with the widely adopted Larson's (1981) value α˜1.1 is suggested to support claims that the density-size relation in molecular clouds is indeed an artifact of the observed N-pdf.

  18. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  19. Mechanical behaviour׳s evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation.

    PubMed

    Breche, Q; Chagnon, G; Machado, G; Girard, E; Nottelet, B; Garric, X; Favier, D

    2016-07-01

    PLA-b-PEG-b-PLA is a biodegradable triblock copolymer that presents both the mechanical properties of PLA and the hydrophilicity of PEG. In this paper, physical and mechanical properties of PLA-b-PEG-b-PLA are studied during in vitro degradation. The degradation process leads to a mass loss, a decrease of number average molecular weight and an increase of dispersity index. Mechanical experiments are made in a specific experimental set-up designed to create an environment close to in vivo conditions. The viscoelastic behaviour of the material is studied during the degradation. Finally, the mechanical behaviour is modelled with a linear viscoelastic model. A degradation variable is defined and included in the model to describe the hydrolytic degradation. This variable is linked to physical parameters of the macromolecular polymer network. The model allows us to describe weak deformations but become less accurate for larger deformations. The abilities and limits of the model are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Molecular identification of species of Taenia causing bovine cysticercosis in Ethiopia.

    PubMed

    Hailemariam, Z; Nakao, M; Menkir, S; Lavikainen, A; Iwaki, T; Yanagida, T; Okamoto, M; Ito, A

    2014-09-01

    Bovine cysticercosis causing damage to the beef industry is closely linked to human taeniasis due to Taenia saginata. In African countries, Taenia spp. from wildlife are also involved as possible sources of infections in livestock. To identify the aetiological agents of bovine cysticercosis in Ethiopia, cysticerci were collected from 41 cattle slaughtered in the eastern and central areas during 2010-2012. A single cysticercus per animal was subjected to the polymerase chain reaction (PCR)-based DNA sequencing of mitochondrial cytochrome c oxidase subunit 1 gene, and the resultant sequence was compared with those of members of the genus Taenia. Although 38 out of 41 cysticerci (92.7%) were identified as T. saginata, three samples (7.3%) showed the hitherto unknown sequences of Taenia sp., which is distantly related to Taenia solium, Taenia arctos and Taenia ovis. Old literatures suggest it to be Taenia hyaenae, but morphological identification of species could not be completed by observing only the larval samples.

  1. N-[4-(9-Chloro­quino[3,2-b]benzo[1,4]thia­zin-6-yl)but­yl]acetamide1

    PubMed Central

    Jeleń, Małgorzata; Suwińska, Kinga; Pluta, Krystian; Morak-Młodawska, Beata

    2012-01-01

    In the title mol­ecule, C21H20ClN3OS, the tetra­cyclic system is close to planar [r.m.s. deviation = 0.110 (4) Å]. The dihedral angle between the quinoline ring system and the benzene ring is 178.3 (1)° and the angle between two (S—C=C—N) halves of the thia­zine ring is 173.4 (1)°. In the crystal, mol­ecules are arranged via π–π inter­actions [centroid–centroid distances = 3.603 (2)–3.739 (2) Å] into slipped stacks extending along [010]. Inter­molecular N—H⋯O hydrogen bonds link the amide groups of neighbouring mol­ecules along the stack, generating a C(4) motif. The title compound shows promising anti­proliferative and anti­cancer activity. PMID:23476166

  2. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    PubMed

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  3. Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors.

    PubMed

    Hameed, Abdul; Khan, Khalid Mohammed; Zehra, Syeda Tazeen; Ahmed, Ramasa; Shafiq, Zahid; Bakht, Syeda Mahwish; Yaqub, Muhammad; Hussain, Mazhar; de la Vega de León, Antonio; Furtmann, Norbert; Bajorath, Jürgen; Shad, Hazoor Ahmad; Tahir, Muhammad Nawaz; Iqbal, Jamshed

    2015-08-01

    Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a-3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Intermolecular Structural Change for Thermoswitchable Polymeric Photosensitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Wooram; Park, Sin-Jung; Cho, Soojeong

    2016-08-17

    A switchable photosensitizer (PS), which can be activated at a spe-cific condition beside light, has tremendous advantages for photo-dynamic therapy (PDT). Herein, we developed a thermo-switchable polymeric photosensitizer (T-PPS) by conjugating PS (Pheophor-bide-a, PPb-a) to a temperature-responsive polymer backbone of biocompatible hydroxypropyl cellulose (HPC). Self-quenched PS molecules linked in close proximity by pi-pi stacking in T-PPS were easily transited to an active monomeric state by the tempera-ture induced phase transition of polymer backbones. The tempera-ture responsive inter-molecular interaction changes of PS molecules in T-PPS were demonstrated in synchrotron small-angle X-ray scattering (SAXS) and UV-Vis spectrophotometer analysis. The T-PPS allowed switchablemore » activation and synergistically enhanced cancer cell killing effect at the hyperthermia temperature (45 °C). Our developed T-PPS has the considerable potential not only as a new class of photomedicine in clinics but also as a biosensor based on temperature responsiveness.« less

  5. NF2/Merlin mediates contact-dependent inhibition of EGFR mobility and internalization via cortical actomyosin.

    PubMed

    Chiasson-MacKenzie, Christine; Morris, Zachary S; Baca, Quentin; Morris, Brett; Coker, Joanna K; Mirchev, Rossen; Jensen, Anne E; Carey, Thomas; Stott, Shannon L; Golan, David E; McClatchey, Andrea I

    2015-10-26

    The proliferation of normal cells is inhibited at confluence, but the molecular basis of this phenomenon, known as contact-dependent inhibition of proliferation, is unclear. We previously identified the neurofibromatosis type 2 (NF2) tumor suppressor Merlin as a critical mediator of contact-dependent inhibition of proliferation and specifically found that Merlin inhibits the internalization of, and signaling from, the epidermal growth factor receptor (EGFR) in response to cell contact. Merlin is closely related to the membrane-cytoskeleton linking proteins Ezrin, Radixin, and Moesin, and localization of Merlin to the cortical cytoskeleton is required for contact-dependent regulation of EGFR. We show that Merlin and Ezrin are essential components of a mechanism whereby mechanical forces associated with the establishment of cell-cell junctions are transduced across the cell cortex via the cortical actomyosin cytoskeleton to control the lateral mobility and activity of EGFR, providing novel insight into how cells inhibit mitogenic signaling in response to cell contact. © 2015 Chiassson-MacKenzie et al.

  6. Rmg8, a New Gene for Resistance to Triticum Isolates of Pyricularia oryzae in Hexaploid Wheat.

    PubMed

    Anh, Vu Lan; Anh, Nguyen Tuan; Tagle, Analiza Grubanzo; Vy, Trinh Thi Phuong; Inoue, Yoshihiro; Takumi, Shigeo; Chuma, Izumi; Tosa, Yukio

    2015-12-01

    Blast, caused by Pyricularia oryzae, is one of the major diseases of wheat in South America. We identified a new gene for resistance to Triticum isolates of P. oryzae in common wheat 'S-615', and designated it "resistance to Magnaporthe grisea 8" (Rmg8). Rmg8 was assigned to chromosome 2B through molecular mapping with simple-sequence repeat markers. To identify an avirulence gene corresponding to Rmg8, Triticum isolate Br48 (avirulent on S-615) was crossed with 200R29 (virulent on S-615), an F1 progeny derived from a cross between an Eleusine isolate (MZ5-1-6) and Br48. Segregation analysis of their progeny revealed that avirulence of Br48 on S-615 was conditioned by a single gene, which was designated AVR-Rmg8. AVR-Rmg8 was closely linked to AVR-Rmg7, which corresponded to Rmg7 located on chromosome 2A of tetraploid wheat.

  7. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation.

    PubMed

    Filippakopoulos, Panagis; Kofler, Michael; Hantschel, Oliver; Gish, Gerald D; Grebien, Florian; Salah, Eidarus; Neudecker, Philipp; Kay, Lewis E; Turk, Benjamin E; Superti-Furga, Giulio; Pawson, Tony; Knapp, Stefan

    2008-09-05

    The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.

  8. Links between Adolescents’ Closeness to Adoptive Parents and Attachment Style in Young Adulthood

    PubMed Central

    Grant-Marsney, Holly A.; Grotevant, Harold D.; Sayer, Aline G.

    2014-01-01

    This study examined whether adolescents’ closeness to adoptive parents (APs) predicted attachment styles in close relationships outside their family during young adulthood. In a longitudinal study of domestic infant adoptions, closeness to adoptive mother and adoptive father was assessed in 156 adolescents (M = 15.7 years). Approximately nine years later (M = 25.0 years), closeness to parents was assessed again as well as attachment style in their close relationships. Multilevel modeling was used to predict attachment style in young adulthood from the average and discrepancy of closeness to adolescents’ adoptive mothers and fathers and the change over time in closeness to APs. Less avoidant attachment style was predicted by stronger closeness to both APs during adolescence. Increased closeness to APs over time was related to less anxiety in close relationships. Higher closeness over time to either AP was related to less avoidance and anxiety in close relationships. PMID:25859067

  9. Links between Adolescents' Closeness to Adoptive Parents and Attachment Style in Young Adulthood.

    PubMed

    Grant-Marsney, Holly A; Grotevant, Harold D; Sayer, Aline G

    2015-04-01

    This study examined whether adolescents' closeness to adoptive parents (APs) predicted attachment styles in close relationships outside their family during young adulthood. In a longitudinal study of domestic infant adoptions, closeness to adoptive mother and adoptive father was assessed in 156 adolescents ( M = 15.7 years). Approximately nine years later ( M = 25.0 years), closeness to parents was assessed again as well as attachment style in their close relationships. Multilevel modeling was used to predict attachment style in young adulthood from the average and discrepancy of closeness to adolescents' adoptive mothers and fathers and the change over time in closeness to APs. Less avoidant attachment style was predicted by stronger closeness to both APs during adolescence. Increased closeness to APs over time was related to less anxiety in close relationships. Higher closeness over time to either AP was related to less avoidance and anxiety in close relationships.

  10. A Computational Model for Oocyte Growth Dynamics in Fathead Minnows

    EPA Science Inventory

    Molecular biomarkers have been used in ecotoxicological studies to evaluate the effects of endocrine disrupting chemicals in fish. Changes in these molecular biomarkers must then be linked to the effects upon reproduction in individuals, and subsequently populations. To meet th...

  11. A Computational Model for Oocyte Growth Dynamics in Fathead Minnows (Pimephales promelas)

    EPA Science Inventory

    Molecular biomarkers have been used in ecotoxicological studies to evaluate the effects of endocrine disrupting chemicals in fish. Ideally, changes in these molecular biomarkers should be linked to the effects upon reproduction in individuals, and subsequently populations. To m...

  12. Synthesis and structures of six closely related N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]arylamides, together with an isolated reaction intermediate: order versus disorder, molecular conformations and hydrogen bonding in zero, one and two dimensions.

    PubMed

    Sagar, Belakavadi K; Yathirajan, Hemmige S; Rathore, Ravindranath S; Glidewell, Christopher

    2018-02-01

    Six closely related N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]arylamides have been synthesized and structurally characterized, together with a representative reaction intermediate. In each of N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]benzamide, C 20 H 16 ClNO 2 S, (I), N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-4-phenylbenzamide, C 26 H 20 ClNO 2 S, (II), and 2-bromo-N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]benzamide, C 20 H 15 BrClNO 2 S, (III), the molecules are disordered over two sets of atomic sites, with occupancies of 0.894 (8) and 0.106 (8) in (I), 0.832 (5) and 0.168 (5) in (II), and 0.7006 (12) and 0.2994 (12) in (III). In each of N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2-iodobenzamide, C 20 H 15 ClINO 2 S, (IV), and N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2-methoxybenzamide, C 21 H 18 ClNO 3 S, (V), the molecules are fully ordered, but in N-[3-(2-chlorobenzoyl)-5-ethylthiophen-2-yl]-2,6-difluorobenzamide, C 20 H 14 ClF 2 NO 2 S, (VI), which crystallizes with Z' = 2 in the space group C2/c, one of the two independent molecules is fully ordered, while the other is disordered over two sets of atomic sites having occupancies of 0.916 (3) and 0.084 (3). All of the molecules in compounds (I)-(VI) exhibit an intramolecular N-H...O hydrogen bond. The molecules of (I) and (VI) are linked by C-H...O hydrogen bonds to form finite zero-dimensional dimers, which are cyclic in (I) and acyclic in (VI), those of (III) are linked by C-H...π(arene) hydrogen bonds to form simple chains, and those of (IV) and (V) are linked into different types of chains of rings, built in each case from a combination of C-H...O and C-H...π(arene) hydrogen bonds. Two C-H...O hydrogen bonds link the molecules of (II) into sheets containing three types of ring. In benzotriazol-1-yl 3,4-dimethoxybenzoate, C 15 H 13 N 3 O 4 , (VII), the benzoate component is planar and makes a dihedral angle of 84.51 (6)° with the benzotriazole unit. Comparisons are made with related compounds.

  13. What Stands and Develops between Creative and Critical Thinking? Argumentation?

    ERIC Educational Resources Information Center

    Glassner, Amnon; Schwarz, Baruch B.

    2007-01-01

    Creative and critical thinking have been traditionally considered as involving independent skills and dispositions. However the definition of critical thinking has been gradually reconsidered to include skills and dispositions through which one opens new links instead of scrutinizing existing links in a closed analysis. Experimental studies have…

  14. The Role of Higher Education in Linking Arts, Culture, and Economic Development

    ERIC Educational Resources Information Center

    Steinkamp, Judith S.

    2004-01-01

    In the knowledge economy, colleges and universities are realigning academic initiatives to link more closely with regional needs. They are unique catalysts for forming community alliances to focus on issues of economic development, neighborhood revitalization, and cultural tourism. In partnership with business, municipalities, and cultural…

  15. Linking Schools with Human Service Agencies. ERIC/CUE Digest No. 62.

    ERIC Educational Resources Information Center

    Ascher, Carol

    A number of factors put pressure on schools to work more closely with health, social service, and other youth-serving institutions but poor communications, program redundancies, fear for job security, and concerns about parent and community support for controversial services inhibit close collaboration. Recent successful collaborative school,…

  16. A Single Molecular Diels-Alder Crosslinker for Achieving Recyclable Cross-Linked Polymers.

    PubMed

    Chen, Shengli; Wang, Fenfen; Peng, Yongjin; Chen, Tiehong; Wu, Qiang; Sun, Pingchuan

    2015-09-01

    A triol-functional crosslinker combining the thermoreversible properties of Diels-Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross-linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro-DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid-state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot-press molding, injection molding, and solution casting. It is notable that all the recycled cross-linked polymers display nearly invariable elongation/stress at break compared to the as-synthesized samples. Further end-group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross-linked polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Larval anatomy of the pterobranch Cephalodiscus gracilis supports secondarily derived sessility concordant with molecular phylogenies

    NASA Astrophysics Data System (ADS)

    Stach, Thomas

    2013-12-01

    Pterobranchs have been interpreted as "missing links" combining primitive invertebrate features with advanced vertebrate-like characteristics. The first detailed morphological description of an ontogenetic stage of a pterobranch, based on digital 3D-reconstruction at electron microscopic resolution, reveals a triploblastic animal with monociliated epithelia, an extensive coelomic cavity, a through gut with an asymmetrically developed gill slit but no signs of planktonic specializations, such as ciliated bands. Therefore, this crawling larva supports the hypothesis proposed in previous molecular phylogenetic studies that pterobranchs could be derived within enteropneusts rather than being "missing links".

  18. Replacement of Antibodies in Pseudo-ELISAs: Molecularly Imprinted Nanoparticles for Vancomycin Detection.

    PubMed

    Canfarotta, Francesco; Smolinska-Kempisty, Katarzyna; Piletsky, Sergey

    2017-01-01

    The enzyme-linked immunosorbent assay (ELISA) is a widely employed analytical test used to quantify a given molecule. It relies on the use of specific antibodies, linked to an enzyme, to target the desired molecule. The reaction between the enzyme and its substrate gives rise to the analytical signal that can be quantified. Thanks to their robustness and low cost, molecularly imprinted polymer nanoparticles (nanoMIPs) are a viable alternative to antibodies. Herein, we describe the synthesis of nanoMIPs imprinted for vancomycin and their subsequent application in an ELISA-like format for direct replacement of antibodies.

  19. Phylogenetic relationships of North American Gomphidae and their close relatives

    EPA Science Inventory

    Intrafamilial relationships among clubtail dragonflies (Gomphidae) have been the subject of many morphological studies, but have not yet been systematically evaluated using molecular data. Here we present the first molecular phylogeny of Gomphidae. We include six of the eight sub...

  20. 76 FR 27070 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience Integrated Review Group; Cellular and Molecular Biology of Neurodegeneration Study Section. Date: June 13-14, 2011. Time... Committee: Population Sciences and Epidemiology Integrated Review Group; Epidemiology of Cancer Study...

  1. Three closely related (2E,2'E)-3,3'-(1,4-phenyl-ene)bis-[1-(meth-oxy-phen-yl)prop-2-en-1-ones]: supra-molecular assemblies in one dimension mediated by hydrogen bonding and C-H⋯π inter-actions.

    PubMed

    Sim, Aijia; Chidan Kumar, C S; Kwong, Huey Chong; Then, Li Yee; Win, Yip-Foo; Quah, Ching Kheng; Naveen, S; Chandraju, S; Lokanath, N K; Warad, Ismail

    2017-06-01

    In the title compounds, (2 E ,2' E )-3,3'-(1,4-phenyl-ene)bis-[1-(2-meth-oxy-phen-yl)prop-2-en-1-one], C 26 H 22 O 4 (I), (2 E ,2' E )-3,3'-(1,4-phenyl-ene)bis-[1-(3-meth-oxy-phen-yl)prop-2-en-1-one], C 26 H 22 O 4 (II) and (2 E ,2' E )-3,3'-(1,4-phenyl-ene)bis-[1-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one], C 28 H 26 O 6 (III), the asymmetric unit consists of a half-mol-ecule, completed by crystallographic inversion symmetry. The dihedral angles between the central and terminal benzene rings are 56.98 (8), 7.74 (7) and 7.73 (7)° for (I), (II) and (III), respectively. In the crystal of (I), mol-ecules are linked by pairs of C-H⋯π inter-actions into chains running parallel to [101]. The packing for (II) and (III), features inversion dimers linked by pairs of C-H⋯O hydrogen bonds, forming R 2 2 (16) and R 2 2 (14) ring motifs, respectively, as parts of [201] and [101] chains, respectively.

  2. Comparison of the Structure and Expression of Odd-Skipped and Two Related Genes That Encode a New Family of Zinc Finger Proteins in Drosophila

    PubMed Central

    Hart, M. C.; Wang, L.; Coulter, D. E.

    1996-01-01

    The odd-skipped (odd) gene, which was identified on the basis of a pair-rule segmentation phenotype in mutant embryos, is initially expressed in the Drosophila embryo in seven pair-rule stripes, but later exhibits a segment polarity-like pattern for which no phenotypic correlate is apparent. We have molecularly characterized two embryonically expressed odd-cognate genes, sob and bowel (bowl), that encode proteins with highly conserved C(2)H(2) zinc fingers. While the Sob and Bowl proteins each contain five tandem fingers, the Odd protein lacks a fifth (C-terminal) finger and is also less conserved among the four common fingers. Reminiscent of many segmentation gene paralogues, the closely linked odd and sob genes are expressed during embryogenesis in similar striped patterns; in contrast, the less-tightly linked bowl gene is expressed in a distinctly different pattern at the termini of the early embryo. Although our results indicate that odd and sob are more likely than bowl to share overlapping developmental roles, some functional divergence between the Odd and Sob proteins is suggested by the absence of homology outside the zinc fingers, and also by amino acid substitutions in the Odd zinc fingers at positions that appear to be constrained in Sob and Bowl. PMID:8878683

  3. Global Insight into Lysine Acetylation Events and Their Links to Biological Aspects in Beauveria bassiana, a Fungal Insect Pathogen

    PubMed Central

    Wang, Zhi-Kang; Cai, Qing; Liu, Jin; Ying, Sheng-Hua; Feng, Ming-Guang

    2017-01-01

    Lysine acetylation (Kac) events in filamentous fungi are poorly explored. Here we show a lysine acetylome generated by LC-MS/MS analysis of immunoaffinity-based Kac peptides from normal hyphal cells of Beauveria bassiana, a fungal entomopathogen. The acetylome comprised 283 Kac proteins and 464 Kac sites. These proteins were enriched to eight molecular functions, 20 cellular components, 27 biological processes, 20 KEGG pathways and 12 subcellular localizations. All Kac sites were characterized as six Kac motifs, including a novel motif (KacW) for 26 Kac sites of 17 unknown proteins. Many Kac sites were predicted to be multifunctional, largely expanding the fungal Kac events. Biological importance of identified Kac sites was confirmed through functional analysis of Kac sites on Pmt1 and Pmt4, two O-mannosyltransferases. Singular site mutations (K88R and K482R) of Pmt1 resulted in impaired conidiation, attenuated virulence and decreased tolerance to oxidation and cell wall perturbation. These defects were close to or more severe than those caused by the deletion of pmt1. The Pmt4 K360R mutation facilitated colony growth under normal and stressful conditions and enhanced the fungal virulence. Our findings provide the first insight into the Kac events of B. bassiana and their links to the fungal potential against insect pests. PMID:28295016

  4. Evolutionary bursts in Euphorbia (Euphorbiaceae) are linked with photosynthetic pathway.

    PubMed

    Horn, James W; Xi, Zhenxiang; Riina, Ricarda; Peirson, Jess A; Yang, Ya; Dorsey, Brian L; Berry, Paul E; Davis, Charles C; Wurdack, Kenneth J

    2014-12-01

    The mid-Cenozoic decline of atmospheric CO2 levels that promoted global climate change was critical to shaping contemporary arid ecosystems. Within angiosperms, two CO2 -concentrating mechanisms (CCMs)-crassulacean acid metabolism (CAM) and C4 -evolved from the C3 photosynthetic pathway, enabling more efficient whole-plant function in such environments. Many angiosperm clades with CCMs are thought to have diversified rapidly due to Miocene aridification, but links between this climate change, CCM evolution, and increased net diversification rates (r) remain to be further understood. Euphorbia (∼2000 species) includes a diversity of CAM-using stem succulents, plus a single species-rich C4 subclade. We used ancestral state reconstructions with a dated molecular phylogeny to reveal that CCMs independently evolved 17-22 times in Euphorbia, principally from the Miocene onwards. Analyses assessing among-lineage variation in r identified eight Euphorbia subclades with significantly increased r, six of which have a close temporal relationship with a lineage-corresponding CCM origin. Our trait-dependent diversification analysis indicated that r of Euphorbia CCM lineages is approximately threefold greater than C3 lineages. Overall, these results suggest that CCM evolution in Euphorbia was likely an adaptive strategy that enabled the occupation of increased arid niche space accompanying Miocene expansion of arid ecosystems. These opportunities evidently facilitated recent, replicated bursts of diversification in Euphorbia. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  5. Molecular Features of Phosphatase and Tensin Homolog (PTEN) Regulation by C-terminal Phosphorylation*

    PubMed Central

    Chen, Zan; Dempsey, Daniel R.; Thomas, Stefani N.; Hayward, Dawn; Bolduc, David M.; Cole, Philip A.

    2016-01-01

    PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380–385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains. PMID:27226612

  6. Linkage of A-to-I RNA Editing in Metazoans and the Impact on Genome Evolution.

    PubMed

    Duan, Yuange; Dou, Shengqian; Zhang, Hong; Wu, Changcheng; Wu, Mingming; Lu, Jian

    2018-01-01

    The adenosine-to-inosine (A-to-I) RNA editomes have been systematically characterized in various metazoan species, and many editing sites were found in clusters. However, it remains unclear whether the clustered editing sites tend to be linked in the same RNA molecules or not. By adopting a method originally designed to detect linkage disequilibrium of DNA mutations, we examined the editomes of ten metazoan species and detected extensive linkage of editing in Drosophila and cephalopods. The prevalent linkages of editing in these two clades, many of which are conserved between closely related species and might be associated with the adaptive proteomic recoding, are maintained by natural selection at the cost of genome evolution. Nevertheless, in worms and humans, we only detected modest proportions of linked editing events, the majority of which were not conserved. Furthermore, the linkage of editing in coding regions of worms and humans might be overall deleterious, which drives the evolution of DNA sites to escape promiscuous editing. Altogether, our results suggest that the linkage landscape of A-to-I editing has evolved during metazoan evolution. This present study also suggests that linkage of editing should be considered in elucidating the functional consequences of RNA editing. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Role of the tail in the regulated state of myosin 2

    PubMed Central

    Jung, HyunSuk; Billington, Neil; Thirumurugan, Kavitha; Salzameda, Bridget; Cremo, Christine R.; Chalovich, Joseph M.; Chantler, Peter D.; Knight, Peter J.

    2013-01-01

    Myosin 2 from vertebrate smooth muscle or non-muscle sources is in equilibrium between compact, inactive monomers and thick filaments under physiological conditions. In the inactive monomer, the two heads pack compactly together and the long tail is folded into three closely-packed segments that are associated chiefly with one of the heads. The molecular basis of the folding of the tail remains unexplained. Using electron microscopy, we show that compact monomers of smooth muscle myosin 2 have the same structure in both the native state and following specific, intramolecular photo-cross-linking between Cys109 of the regulatory light chain (RLC) and segment 3 of the tail. Non-specific cross-linking between lysine residues of the folded monomer by glutaraldehyde also does not perturb the compact conformation, and stabilises it against unfolding at high ionic strength. Sequence comparisons across phyla and myosin 2 isoforms suggest that folding of the tail is stabilised by ionic interactions between the positively-charged N-terminal sequence of the RLC and a negatively-charged region near the start of tail segment 3, and that phosphorylation of the RLC could perturb these interactions. Our results support the view that interactions between the heads and the distal tail perform a critical role in regulating activity of myosin 2 molecules through stabilising the compact monomer conformation. PMID:21419133

  8. Magnetic Evolution Linked to the Interrelated Activity Complexes Involving Transequatorial Coronal Holes

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Heidy; Taliashvili, Lela; Lazarian, Alexandre

    2018-06-01

    We studied a magnetic evolution linked to a cadence of interrelated activities developed in a large solar region during Carrington rotations, CRs 2119 - 2121, based on multi-wavelength and multi-spacecraft observations. Three coronal holes (CHs), two transequatorial and one isolated, eight filaments and some active regions were distributed closely in the region. Every of these filaments partial and/or complete eruption was linked to a Coronal Mass Ejection (CME) or coronal jet. We found different types of interrelated activities: eruptions of three pairs of interrelated filaments close to a CH and eruptions of two filaments close to the active region and CH. Some indicators of the magnetic reconnection were observed frequently during the pre- as well as post-filament eruptions. Additionally, post-filament eruption and/or post-CME processes show their implication in the evolution of nearby CHs and newly formed transient CHs or dimming regions, including a new CH formation. We discussed the small- and large-scale magnetic reconfigurations associated with these interrelated activity complexes, the ones involving long-lived transequatorial CHs, and their possible implication in the evolution of the global solar magnetic field, especially with the starting processes of quadruple configuration and polarity reversal of the solar cycle 24.

  9. Enzyme-ligand interactions that drive active site rearrangements in the Helicobacter pylori 5´-methylthioadenosine/S-adenosylhomocysteine nucleosidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronning, Donald R; Iacopelli, Natalie M; Mishra, Vidhi

    2012-03-15

    The bacterial enzyme 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) plays a central role in three essential metabolic pathways in bacteria: methionine salvage, purine salvage, and polyamine biosynthesis. Recently, its role in the pathway that leads to the production of autoinducer II, an important component in quorum-sensing, has garnered much interest. Because of this variety of roles, MTAN is an attractive target for developing new classes of inhibitors that influence bacterial virulence and biofilm formation. To gain insight toward the development of new classes of MTAN inhibitors, the interactions between the Helicobacter pylori-encoded MTAN and its substrates and substrate analogs were probed using X-raymore » crystallography. The structures of MTAN, an MTAN-Formycin A complex, and an adenine bound form were solved by molecular replacement and refined to 1.7, 1.8, and 1.6 Å, respectively. The ribose-binding site in the MTAN and MTAN-adenine cocrystal structures contain a tris[hydroxymethyl]aminomethane molecule that stabilizes the closed form of the enzyme and displaces a nucleophilic water molecule necessary for catalysis. This research gives insight to the interactions between MTAN and bound ligands that promote closing of the enzyme active site and highlights the potential for designing new classes of MTAN inhibitors using a link/grow or ligand assembly development strategy based on the described H. pylori MTAN crystal structures.« less

  10. Products of Chemistry: Alkanes: Abundant, Pervasive, Important, and Essential.

    ERIC Educational Resources Information Center

    Seymour, Raymond B.

    1989-01-01

    Discusses the history and commercialization of alkanes. Examines the nomenclature and uses of alkanes. Studies polymerization and several types of polyethylenes: low-density, high-density, low-molecular-weight, cross-linked, linear low-density, and ultrahigh-molecular-weight. Includes a glossary of hydrocarbon terms. (MVL)

  11. Traditional Banana Diversity in Oceania: An Endangered Heritage

    PubMed Central

    Kagy, Valérie; Wong, Maurice; Vandenbroucke, Henri; Jenny, Christophe; Dubois, Cécile; Ollivier, Anthony; Cardi, Céline; Mournet, Pierre; Tuia, Valérie; Roux, Nicolas; Doležel, Jaroslav; Perrier, Xavier

    2016-01-01

    This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the conservation strategy for the ex-situ Pacific Banana Collection supported collectively by the Pacific countries. PMID:26982801

  12. Extraordinary Sequence Divergence at Tsga8, an X-linked Gene Involved in Mouse Spermiogenesis

    PubMed Central

    Good, Jeffrey M.; Vanderpool, Dan; Smith, Kimberly L.; Nachman, Michael W.

    2011-01-01

    The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion–deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5′ and 3′ ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice. PMID:21186189

  13. Traditional Banana Diversity in Oceania: An Endangered Heritage.

    PubMed

    Kagy, Valérie; Wong, Maurice; Vandenbroucke, Henri; Jenny, Christophe; Dubois, Cécile; Ollivier, Anthony; Cardi, Céline; Mournet, Pierre; Tuia, Valérie; Roux, Nicolas; Doležel, Jaroslav; Perrier, Xavier

    2016-01-01

    This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the conservation strategy for the ex-situ Pacific Banana Collection supported collectively by the Pacific countries.

  14. Scalable Wrap-Around Shuffle Exchange Network with Deflection Routing

    NASA Technical Reports Server (NTRS)

    Monacos, Steve P. (Inventor)

    1997-01-01

    The invention in one embodiment is a communication network including plural non-blocking crossbar nodes, first apparatus for connecting the nodes in a first layer of connecting links, and second apparatus for connecting links independent of the first layer, whereby each layer is connected to the other layer at each point of the nodes. Preferably, each one of the layers of connecting links corresponds to one recirculating network topology that closes in on itself.

  15. Adverse outcome pathways linked to population models as a methodology for investigating effects of chemical stressors

    EPA Science Inventory

    In addressing the complexity and toxicity of chemical contaminants in Great Lakes ecosystems, we describe an approach to link chemically induced alterations in molecular and biochemical endpoints to adverse outcomes in whole organisms and populations. Analysis of population impac...

  16. Indian Country Leaking Underground Storage Tanks, Region 9, 2016

    EPA Pesticide Factsheets

    This GIS dataset contains point features that represent Leaking Underground Storage Tanks in US EPA Region 9 Indian Country. This dataset contains facility name and locational information, status of LUST case, operating status of facility, inspection dates, and links to No Further Action letters for closed LUST cases. This database contains 1230 features, with 289 features having a LUST status of open, closed with no residual contamination, or closed with residual contamination.

  17. Radio Links for the NASA ABTS

    NASA Technical Reports Server (NTRS)

    Jeutter, Dean C.

    1996-01-01

    Goals Determine Out-Link FSK Bandwidth Develop FSK Outlink Transmitter Develop Wideband Outlink FSK Receiver Develop OOK In-Link Transmitter Develop OOK In-Link Receiver Marry Out-Link & In-Link Components Outlink FSK Bandwidth preliminary inlink transmitter were accomplished in Summer 1995 visit. The calculation of FSK bandwidth is repeated in these notes. Spectrum analyzer measurements of the actual FSK spectrum agree well with the calculations. The goal to develop a wideband FSK receiver for outlink data was given first priority for end of Summer 1996 completion. The goal of developing OOK inlink transmitter and receiver system components and interfacing all outlink and inlink components into an operating closed loop prototypical system was given a December 1, 1996 completion date.

  18. Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach

    PubMed Central

    Lasker, Keren; Förster, Friedrich; Bohn, Stefan; Walzthoeni, Thomas; Villa, Elizabeth; Unverdorben, Pia; Beck, Florian; Aebersold, Ruedi; Sali, Andrej; Baumeister, Wolfgang

    2012-01-01

    The 26S proteasome is at the executive end of the ubiquitin-proteasome pathway for the controlled degradation of intracellular proteins. While the structure of its 20S core particle (CP) has been determined by X-ray crystallography, the structure of the 19S regulatory particle (RP), which recruits substrates, unfolds them, and translocates them to the CP for degradation, has remained elusive. Here, we describe the molecular architecture of the 26S holocomplex determined by an integrative approach based on data from cryoelectron microscopy, X-ray crystallography, residue-specific chemical cross-linking, and several proteomics techniques. The “lid” of the RP (consisting of Rpn3/5/6/7/8/9/11/12) is organized in a modular fashion. Rpn3/5/6/7/9/12 form a horseshoe-shaped heterohexamer, which connects to the CP and roofs the AAA-ATPase module, positioning the Rpn8/Rpn11 heterodimer close to its mouth. Rpn2 is rigid, supporting the lid, while Rpn1 is conformationally variable, positioned at the periphery of the ATPase ring. The ubiquitin receptors Rpn10 and Rpn13 are located in the distal part of the RP, indicating that they were recruited to the complex late in its evolution. The modular structure of the 26S proteasome provides insights into the sequence of events prior to the degradation of ubiquitylated substrates. PMID:22307589

  19. ELKS active zone proteins as multitasking scaffolds for secretion

    PubMed Central

    Held, Richard G.

    2018-01-01

    Synaptic vesicle exocytosis relies on the tethering of release ready vesicles close to voltage-gated Ca2+ channels and specific lipids at the future site of fusion. This enables rapid and efficient neurotransmitter secretion during presynaptic depolarization by an action potential. Extensive research has revealed that this tethering is mediated by an active zone, a protein dense structure that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Although roles of individual active zone proteins in exocytosis are in part understood, the molecular mechanisms that hold the protein scaffold at the active zone together and link it to the presynaptic plasma membrane have remained unknown. This is largely due to redundancy within and across scaffolding protein families at the active zone. Recent studies, however, have uncovered that ELKS proteins, also called ERC, Rab6IP2 or CAST, act as active zone scaffolds redundant with RIMs. This redundancy has led to diverse synaptic phenotypes in studies of ELKS knockout mice, perhaps because different synapses rely to a variable extent on scaffolding redundancy. In this review, we first evaluate the need for presynaptic scaffolding, and we then discuss how the diverse synaptic and non-synaptic functional roles of ELKS support the hypothesis that ELKS provides molecular scaffolding for organizing vesicle traffic at the presynaptic active zone and in other cellular compartments. PMID:29491150

  20. Etiology in psychiatry: embracing the reality of poly‐gene‐environmental causation of mental illness

    PubMed Central

    Uher, Rudolf; Zwicker, Alyson

    2017-01-01

    Intriguing findings on genetic and environmental causation suggest a need to reframe the etiology of mental disorders. Molecular genetics shows that thousands of common and rare genetic variants contribute to mental illness. Epidemiological studies have identified dozens of environmental exposures that are associated with psychopathology. The effect of environment is likely conditional on genetic factors, resulting in gene‐environment interactions. The impact of environmental factors also depends on previous exposures, resulting in environment‐environment interactions. Most known genetic and environmental factors are shared across multiple mental disorders. Schizophrenia, bipolar disorder and major depressive disorder, in particular, are closely causally linked. Synthesis of findings from twin studies, molecular genetics and epidemiological research suggests that joint consideration of multiple genetic and environmental factors has much greater explanatory power than separate studies of genetic or environmental causation. Multi‐factorial gene‐environment interactions are likely to be a generic mechanism involved in the majority of cases of mental illness, which is only partially tapped by existing gene‐environment studies. Future research may cut across psychiatric disorders and address poly‐causation by considering multiple genetic and environmental measures across the life course with a specific focus on the first two decades of life. Integrative analyses of poly‐causation including gene‐environment and environment‐environment interactions can realize the potential for discovering causal types and mechanisms that are likely to generate new preventive and therapeutic tools. PMID:28498595

Top