Science.gov

Sample records for closely spaced quasar

  1. Close Companions to Two High-redshift Quasars

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Bian, Fuyan; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i AB = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW0 ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ~ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ~4.5 mag fainter than the quasar (Y AB = 25) at a separation of 0.''9. The red i 775 - Y 105 color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #12184 and #12493. Observations were also made with the LBT and MMT.

  2. A search for closely spaced gravitational lenses

    SciTech Connect

    Crampton, D.; Mcclure, R.D.; Fletcher, J.M.; Hutchings, J.B. National Research Council of Canada, Herzberg Institute of Astrophysics, Ottawa )

    1989-10-01

    A new image-stabilizing camera was used to search for closely spaced images of a sample of 25 intrinsically luminous quasars with z greater than 1.6 and m smaller than 19. Observations of seven similarly selected quasars with the regular CCD camera in good seeing conditions are also reported. Of the 32 quasars, seven are gravitational lens candidates. Two of these have subarcsecond separations. Additional information on all these candidates is required. 22 refs.

  3. Close companions to two high-redshift quasars

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  4. Quasar Astrophysics with the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn

    2007-01-01

    Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.

  5. Expanding Space, Quasars and St. Augustine's Fireworks

    NASA Astrophysics Data System (ADS)

    Chashchina, Olga; Silagadze, Zurab

    2015-10-01

    An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration.

  6. HUBBLE SPACE TELESCOPE Snapshot Survey of 3CR Quasars: The Data

    NASA Astrophysics Data System (ADS)

    Lehnert, Matthew D.; Miley, George K.; Sparks, William B.; Baum, Stefi A.; Biretta, John; Golombek, Daniel; de Koff, Sigrid; Macchetto, Ferdinando D.; McCarthy, Patrick J.

    1999-08-01

    combination reveals a wide variety of structures in the host galaxies of these quasars. Most of the host galaxies show twisted, asymmetric, or distorted isophotes. About 1/4 of the quasar hosts have close (within a few arcseconds) companions seen in projection and about 1/10 show obvious signs of tidal interactions with a close companion. Finally, using radio images available from the literature, we find that in many of the resolved sources there is a correspondence between the radio and optical morphologies. We find that these sources exhibit a tendency for the principal axes of the radio and optical emission to align similar but perhaps weaker than that observed for radio galaxies. This correspondence also suggests that our methodology for removing the point source contribution from the resolved emission is sound. A more complete analysis of these data and new HST snapshot data will be presented in subsequent papers. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  7. Low-redshift quasars in the SDSS Stripe 82. Host galaxy colours and close environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Falomo, R.; Kotilainen, J. K.; Karhunen, K.; Uslenghi, M.

    2015-12-01

    We present a photometrical and morphological multicolour study of the properties of low-redshift (z < 0.3) quasar hosts based on a large and homogeneous data set of quasars derived from the Sloan Digital Sky Survey (DR7). We used quasars that were imaged in the SDSS Stripe82 that is up to 2 mag deeper than standard Sloan images. This sample is part of a larger data set of ˜400 quasars at z < 0.5 for which both the host galaxies and their galaxy environments were studied. For 52 quasars, we undertake a study of the colour of the host galaxies and of their close environments in the u, g, r, i and z bands. We are able to resolve almost all the quasars in the sample in the filters g, r, i and z and also in u for about 50 per cent of the targets. We found that the mean colours of the QSO host galaxy (g - i = 0.82 ± 0.26; r - i = 0.26 ± 0.16 and u - g = 1.32 ± 0.25) are very similar to the values of a sample of inactive galaxies matched in terms of redshift and galaxy luminosity with the quasar sample. There is a suggestion that the most massive QSO hosts have bluer colours. Both quasar hosts and the comparison sample of inactive galaxies have candidates of close (<50 kpc) companion galaxies for ˜30 per cent of the sources with no significant difference between active and inactive galaxies. We do not find significant correlation between the central black hole (BH) mass and the quasar host luminosity that appears to be extra luminous at a given BH mass with respect to the local relation (MBH - Mhost) for inactive galaxies. This confirms previous suggestion that a substantial disc component, not correlated with the BH mass, is present in the galaxies hosting low-z quasars. These results support a scenario where the activation of the nucleus has negligible effects on the global structural and photometrical properties of the hosting galaxies.

  8. Hubble Space Telescope Images of Nearby Luminous Quasars. 2; Results for Eight Quasars and Tests of the Detection Sensitivity

    NASA Technical Reports Server (NTRS)

    Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1995-01-01

    Observations with the Wide-Field Camera of the Hubble Space Telescope (HST) are presented for eight intrinsically luminous quasars with redshifts between 0.16 and 0.29. These observations, when combined with a similar HST study of the quasar PKS 2349-014, show that luminous nearby quasars exist in a variety of environments. Seven companion galaxies brighter than M(V) = 16.5 (H(sub 0) = 100 km s(sup -1) Mpc(sup -1), Omega(sub 0) = 1.0) lie within a projected distance of 25 kpc of the quasars; three of the companions are located closer than 3'' (6 kpc projected distance) from the quasars, well within the volume that would be enclosed by a typical L* host galaxy. The observed association of quasars and companion galaxies is statistically significant and may he an important element in the luminous-quasar phenomenon. Apparent host galaxies are detected for three of the quasars: PG 1116+215, 3C 273, and PG 1444+407; the hosts have an average absolute magnitude of about 0.6 mag brighter than L*. The agreement between the previously published major-axis directions in ground-based images and in the present HST images of 3C 273 and PG 1444+407 constitutes important evidence supporting the reality of these candidate host galaxies. Upper limits are placed on the visual-band brightnesses of representative galactic hosts for all the quasars. These limits are established by placing galaxy images obtained with HST underneath the quasars and measuring at what faintness level the known galaxies are detected. On average, the HST spirals would have been detected if they were as faint as 1 mag below L*, and the early-type galaxies could have been detected down to a brightness level of about L*, where L* is the Schechter characteristic luminosity of field galaxies. Smooth, featureless galaxy models (exponential disks or de Vaucouleurs profiles) are fitted to the residual light after a best-fitting point source is subtracted from the quasar images. The results show that smooth spiral

  9. HUBBLE SPACE TELESCOPE IMAGING OF POST-STARBURST QUASARS

    SciTech Connect

    Cales, S. L.; Brotherton, M. S.; Shang Zhaohui; Bennert, Vardha Nicola; Canalizo, G.; Stoll, R.; Ganguly, R.; Vanden Berk, D.; Paul, C.; Diamond-Stanic, A. E-mail: mbrother@uwyo.edu E-mail: bennert@physics.ucsb.edu E-mail: stoll@astronomy.ohio-state.edu E-mail: daniel.vandenberk@email.stvincent.edu E-mail: aleks@ucsd.edu

    2011-11-10

    We present images of 29 post-starburst quasars (PSQs) from a Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Wide Field Channel Snapshot program. These broadlined active galactic nuclei (AGNs) possess the spectral signatures of massive (M{sub burst} {approx} 10{sup 10} M{sub sun}), moderate-aged stellar populations (hundreds of Myr). Thus, their composite nature provides insight into the AGN-starburst connection. We measure quasar-to-host galaxy light contributions via semi-automated two-dimensional light profile fits of point-spread-function-subtracted images. We examine the host morphologies and model the separate bulge and disk components. The HST/ACS-F606W images reveal an equal number of spiral (13/29) and early-type (13/29) hosts, with the remaining three hosts having indeterminate classifications. AGNs hosted by early-type galaxies have on average greater luminosity than those hosted by spiral galaxies. Disturbances such as tidal tails, shells, star-forming knots, and asymmetries are seen as signposts of interaction/merger activity. Disturbances like these were found in 17 of the 29 objects and are evenly distributed among early-type and spiral galaxies. Two of these systems are clearly merging with their companions. Compared to other AGNs of similar luminosity and redshift, these PSQs have a higher fraction of early-type hosts and disturbances. Our most luminous objects with disturbed early-type host galaxies appear to be consistent with merger products. Thus, these luminous galaxies may represent a phase in an evolutionary scenario for merger-driven activity. Our less luminous objects appear to be consistent with Seyfert galaxies not requiring triggering by major mergers. Many of these Seyferts are barred spiral galaxies.

  10. A census of quasar-intrinsic absorption in the Hubble Space Telescope archive: systems from high-resolution echelle spectra

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Lynch, Ryan S.; Charlton, Jane C.; Eracleous, Michael; Tripp, Todd M.; Palma, Christopher; Sembach, Kenneth R.; Misawa, Toru; Masiero, Joseph R.; Milutinovic, Nikola; Lackey, Benjamin D.; Jones, Therese M.

    2013-10-01

    We present a census of zabs ≲ 2 intrinsic (those showing partial coverage) and associated (zabs ˜ zem) quasar absorption-line systems detected in the Hubble Space Telescope archive of Space Telescope Imaging Spectrograph echelle spectra. This work complements the Misawa et al. survey of 2 < zem < 4 quasars that selects systems using similar techniques. We confirm the existence of so-called strong N V intrinsic systems (where the equivalent width of H I Lyα is small compared to N V λ1238) presented in that work, but find no convincing cases of `strong C IV' intrinsic systems at low redshift/luminosity. Moreover, we also report on the existence of `strong O VI' systems. From a comparison of partial coverage results as a function of ion, we conclude that systems selected by the N V ion have the highest probability of being intrinsic. By contrast, the C IV and O VI ions are poor selectors. Of the 30 O VI systems tested, only two of the systems in the spectrum on 3C 351 show convincing evidence for partial coverage. However, there is an ˜3σ excess in the number of absorbers near the quasar redshift (|Δv| ≤ 5000 km s-1) over absorbers at large redshift differences. In at least two cases, the associated O VI systems are known not to arise close to the accretion disc of the quasar.

  11. Closed Orbits in Phase Space

    NASA Astrophysics Data System (ADS)

    Murphy, Andrew; Haestad, Jace; Morgan, Thomas

    2015-09-01

    We report characteristics of closed classical orbits in an electric field in phase space produced in photoabsorption. Rydberg states of atomic and molecular hydrogen and helium are considered. The core potential used for the hydrogen molecule is an effective one electron one center core potential evaluated at the internuclear equilibrium distance. Poincare surfaces of section in phase space are generated by integrating the equations of motion in semiparabolic coordinates u = (r + z) 1 / 2 and v = (r - z) 1 / 2, and plotting the location in phase space (pv versus v) whenever u = 0, with the electric field in the z direction. Combination orbits produced by Rydberg electron core scattering are studied and the evolution in phase space of these combination orbits due to scattering from one closed orbit into another is investigated. Connections are made to measured laser photoabsorption experiments that excite Rydberg states (20 < n < 30) and produce accompanying scaled energy recurrence spectra. The phase space structures responsible for the spectra are identified.

  12. HUBBLE SPACE TELESCOPE Imaging of the Host Galaxies of High-RedshiftRadio-loud Quasars

    NASA Astrophysics Data System (ADS)

    Lehnert, Matthew D.; van Breugel, Wil J. M.; Heckman, Timothy M.; Miley, George K.

    1999-09-01

    We present rest-frame UV and Lyα images of spatially resolved structures (``hosts'') around five high-redshift radio-loud quasars obtained with the WFPC2 camera on the Hubble Space Telescope (HST). The quasars were imaged with the PC1 through the F555W (``V''-band) filter, which at the redshifts of the quasars (2.1quasars at high redshift have prominent host galaxies that appeared to have properties similar to those of high-redshift radio galaxies. Our HST observations allow a more detailed investigation of quasar host morphologies and a comparison with similar HST studies of radio galaxies by others. Using several methods to measure and quantify the host properties we find that all five quasars are extended and that this ``fuzz'' contains ~5%-40% of the total continuum flux and 15%-65% of the Lyα flux within a radius of about 1.5". The rest-frame UV luminosities of the hosts are log λPλ~11.9-12.5 Lsolar (assuming no internal dust extinction), comparable to the luminous radio galaxies at similar redshifts and a factor 10 higher than both radio-quiet field galaxies at z~2-3 and the most UV-luminous low-redshift starburst galaxies. The Lyα luminosities of the hosts are log LLyα~44.3-44.9 ergs s-1, which are also similar to the those of luminous high-redshift radio galaxies and considerably larger than the Lyα luminosities of high-redshift field galaxies. To generate the Lyα luminosities of the hosts would require roughly a few percent of the total observed ionizing luminosity of the quasar. The UV continuum morphologies of the hosts appear complex and knotty at the relatively high surface brightness levels of our exposures (about 24 V mag arcsec-2). In two quasars we find evidence for foreground galaxies that confuse the

  13. Early Fermi Gamma-ray Space Telescope Observations of the Quasar 3C454.3

    SciTech Connect

    Abdo, A

    2009-05-07

    This is the first report of Fermi Gamma-ray Space Telescope observations of the quasar 3C 454.3, which has been undergoing pronounced long-term outbursts since 2000. The data from the Large Area Telescope (LAT), covering 2008 July 7-October 6, indicate strong, highly variable {gamma}-ray emission with an average flux of {approx} 3 x 10{sup -6} photons cm{sup -2} s{sup -1}, for energies > 100 MeV. The {gamma}-ray flux is variable, with strong, distinct, symmetrically-shaped flares for which the flux increases by a factor of several on a time scale of about three days. This variability indicates a compact emission region, and the requirement that the source is optically thin to pair-production implies relativistic beaming with Doppler factor {delta} > 8, consistent with the values inferred from VLBI observations of superluminal expansion ({delta} {approx} 25). The observed {gamma}-ray spectrum is not consistent with a simple power-law, but instead steepens strongly above {approx} 2 GeV, and is well described by a broken power-law with photon indices of {approx} 2.3 and {approx} 3.5 below and above the break, respectively. This is the first direct observation of a break in the spectrum of a high luminosity blazar above 100 MeV, and it is likely direct evidence for an intrinsic break in the energy distribution of the radiating particles. Alternatively, the spectral softening above 2GeV could be due to -ray absorption via photonphoton pair production on the soft X-ray photon field of the host AGN, but such an interpretation would require the dissipation region to be located very close ({approx}< 100 gravitational radii) to the black hole, which would be inconsistent with the X-ray spectrum of the source.

  14. A possible close supermassive black-hole binary in a quasar with optical periodicity.

    PubMed

    Graham, Matthew J; Djorgovski, S G; Stern, Daniel; Glikman, Eilat; Drake, Andrew J; Mahabal, Ashish A; Donalek, Ciro; Larson, Steve; Christensen, Eric

    2015-02-05

    Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic and can be due to a variety of physical mechanisms; it is also well-described statistically in terms of a damped random walk model. The recent availability of large collections of astronomical time series of flux measurements (light curves) offers new data sets for a systematic exploration of quasar variability. Here we report the detection of a strong, smooth periodic signal in the optical variability of the quasar PG 1302-102 with a mean observed period of 1,884 ± 88 days. It was identified in a search for periodic variability in a data set of light curves for 247,000 known, spectroscopically confirmed quasars with a temporal baseline of about 9 years. Although the interpretation of this phenomenon is still uncertain, the most plausible mechanisms involve a binary system of two supermassive black holes with a subparsec separation. Such systems are an expected consequence of galaxy mergers and can provide important constraints on models of galaxy formation and evolution.

  15. Tracing high redshift cosmic web with quasar systems

    NASA Astrophysics Data System (ADS)

    Einasto, Maret

    2016-10-01

    We study the cosmic web at redshifts 1.0 <= <= 1.8 using quasar systems based on quasar data from the SDSS DR7 QSO catalogue. Quasar systems were determined with a friend-of-friend (FoF) algorithm at a series of linking lengths. At the linking lengths l <= 30 h -1 Mpc the diameters of quasar systems are smaller than the diameters of random systems, and are comparable to the sizes of galaxy superclusters in the local Universe. The mean space density of quasar systems is close to the mean space density of local rich superclusters. At larger linking lengths the diameters of quasar systems are comparable with the sizes of supercluster complexes in our cosmic neighbourhood. The richest quasar systems have diameters exceeding 500h Mpc. Very rich systems can be found also in random distribution but the percolating system which penetrate the whole sample volume appears in quasar sample at smaller linking length than in random samples showing that the large-scale distribution of quasar systems differs from random distribution. Quasar system catalogues at our web pages (http://www.aai.ee/maret/QSOsystems.html) serve as a database to search for superclusters of galaxies and to trace the cosmic web at high redshifts.

  16. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    SciTech Connect

    Rorai, Alberto; Hennawi, Joseph F.; White, Martin

    2013-10-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of

  17. A Long-Term Space Astrophysics Research Program. The Evolution of the Quasar Continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1998-01-01

    The grant "The Evolution of the Quasar Continuum" resulted in over 53 published referred papers and conference proceedings. The more significant of these papers are listed below, and abstracts are attached. The papers address a wide range of issues involving the evolution of quasars, their electromagnetic emissions, and their environment, from nearby low luminosity Seyfert galaxies to quasars at the highest redshifts. Primarily observational in content the work nonetheless included theoretical studies of quasar accretion disks that attempt to explain the observed time variability of quasars, and the overall 'demographics' of the quasar population. The work carried out under this grant has laid a strong foundation for ongoing and future research with AXAF, HST and other new facilities.

  18. In Search of Quasar Host Galaxies

    NASA Astrophysics Data System (ADS)

    Young, Jason; Eracleous, M.; Gronwall, C.; Shemmer, O.; Netzer, H.; Sturm, E.; Ciardullo, R.

    2011-01-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Accretion-powered and star formation activity have been shown to coincide, motivating us to search for the star-forming regions in the host galaxies of quasars and to determine the star-formation rates. In this work we use calibrated narrow band emission line (H-beta and Pa-alpha) WFPC2 and NICMOS images as maps for total star formation rate. The main challenge in imaging quasar host galaxies is the separation of the quasar light from the galaxy light, especially in the case of z approximately 0.1 quasars in WFPC2 images where the PSF radius closely matches the expected host scale radius. To this this end we present a novel technique for image decomposition and subtraction of quasar light, which we have validated through extensive simulations using artificial quasar+galaxy images. The other significant challenge in mapping and measuring star forming regions is correcting for extinction, which we address using extinction maps created from the Pa-alpha/H-beta ratio. To determine the source of excitation, we utilize H-beta along with [OIII]5007 and [OII]3727 images in diagnostic line ratio (BPT) diagrams. We detect extended line emission in our targets on scales of order 1-2 kpc. A preliminary analysis suggests star formation rates of order 10 solar masses per year.

  19. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  20. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  1. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  2. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  3. 46 CFR 72.15-15 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Ventilation for closed spaces. 72.15-15 Section 72.15-15... ARRANGEMENT Ventilation § 72.15-15 Ventilation for closed spaces. (a) All enclosed spaces within the vessel... spaces and for closing all doorways, ventilators and annular spaces around funnels and other openings...

  4. 78 FR 53497 - Commercial Space Transportation Advisory Committee; Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-29

    ... Federal Aviation Administration Commercial Space Transportation Advisory Committee; Closed Session AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory... closed session of the Commercial Space Transportation Advisory Committee (COMSTAC). The special...

  5. Gravitational lensing of quasars as seen by the Hubble Space Telescope Snapshot Survey

    NASA Technical Reports Server (NTRS)

    Maoz, D.; Bahcall, J. N.; Doxsey, R.; Schneider, D. P.; Bahcall, N. A.; Lahav, O.; Yanny, B.

    1992-01-01

    Results from the ongoing HST Snapshot Survey are presented, with emphasis on 152 high-luminosity, z greater than 1 quasars. One quasar among those observed, 1208 + 1011, is a candidate lens system with subarcsecond image separation. Six other quasars have point sources within 6 arcsec. Ground-based observations of five of these cases show that the companion point sources are foreground Galactic stars. The predicted lensing frequency of the sample is calculated for a variety of cosmological models. The effect of uncertainties in some of the observational parameters upon the predictions is discussed. No correlation of the drift rate with time, right ascension, declination, or point error is found.

  6. A long-term space astrophysics research program: The evolution of the quasar continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1993-01-01

    The research program supported by this grant now has great momentum. Numerous papers are in progress, and a strong multi-wavelength observing program is rapidly accumulating data on samples of high redshift quasars across the spectrum. ROSAT spectra of quasars continue to yield surprises. Of four z = 3 quasars with X-ray spectra, three show strong absorption. This contrasts strongly with the situation for luminous AGN at low redshifts where fewer than 1 in 20 show X-ray absorption. A new site for this absorption is probably needed, either around the quasar (e.g. in a cluster cooling flow) or along the line of sight (e.g. in a Damped Lyman-alpha system). The unabsorbed quasar allows limits on the physical conditions in a damped Lyman-alpha cloud to be calculated, and will allow a X-ray Gunn-Peterson test to be applied that will limit the fraction of the closure mass in an intergalactic medium. The X-ray spectral indices of these z = 3 quasars show no change from those of similar objects at low z, suggesting that 'short-lifetime' models apply. Eight other z = 3-4 quasars have been detected and their energy distributions from X-rays to Infrared (using new infrared spectrographs) have been compiled. These are now being compared with the low z continua from the 'Atlas of Quasar Energy Distributions' to search for evolutionary changes. The discovery of a likely warm absorber in 3C351 made recognition of another example simple. Also, modeling of the conditions in the absorber in 3C351 using the OVI absorption line from HST and the high ionization emission lines, suggests that the broad line region is indeed the origin of the warm absorber in this quasar, and by extension, others. Warm absorbers can now be used as a new diagnostic of this region. The X-ray spectrum of a 'Red Quasar', 3C212, has a cut-off spectrum, which could be fitted by an absorbed power-law, or more remarkably, by an unabsorbed black body. Using our quasi-simultaneous optical data and photoionization

  7. Controlled Microbial Cenoses in Closed Spaces

    NASA Astrophysics Data System (ADS)

    Somova, Lydia; Mikheeva, Galina

    Controlled microbial cenoses have good prospects in closed spaces: for air treatment in LSS and cellars industrial premises; for sewage treatment in LSS; for increase of productivity and protect of plants from infections in LSS. Possible methods of formation of microbiocenoses are: selection, autoselection, artificial formation taking into account their biochemical properties and metabolic interactions. Experimental microbiocenoses, has been produced on the basis of natural association of microorganisms by long cultivation on specially developed medium. Dominating groups are bacteria of genera: Lactobacillus, Streptococcus, Leuconostoc, Bidobac-terium, Rhodopseudomonas and yeast of genera: Kluyveromyces, Saccharomyces and Torulop-sis. Microbiocenoses do not contain pathogenic and conditionally pathogenic microorganisms, they possess opposing and probiotic properties. Different examples of microbial cenoses actions are to be presented in the paper.

  8. Dust in the Quasar Wind (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy.

    Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from?

    Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young.

    Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds.

    Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  9. Twin Quasars Tango And It's No Mirage

    NASA Astrophysics Data System (ADS)

    2002-03-01

    image of a single quasar into an apparent double has proved fruitless. This led to the speculation that the gravitation light-bending might be caused by a new type of cluster that contained hot gas and dark matter, but failed to ever make stars or galaxies. Such a "dark cluster" would be invisible to optical and ultraviolet telescopes, but would be detectable in X-rays. The Chandra images, the most sensitive ever taken for this type of search, showed no evidence for a massive dark cluster. Further, the X-ray spectra of the two quasars were distinctly different. "This may mean that the pair Q2345+007A,B actually consists of two separate quasars," said Green. "However, a mystery remains. How can two quasars have identical optical spectra - every bump and wiggle? The coincidence seems improbable." One possible explanation is that the quasars are formed close by each other grow up to look alike at optical wavelengths, but that X-rays which probe closer to their central black holes, bring out the individual differences. Chandra observed Q2345+007 on May 26, 2000, for 65,000 seconds using the Advanced CCD Imaging Spectrometer instrument. Scientists from the Harvard-Smithsonian Center for Astrophysics and the National Optical Astronomy Observatory were also members of the research team. The ACIS camera was developed for NASA by Pennsylvania State University, University Park, Pa., and the Massachusetts Institute of Technology, Cambridge, Mass. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge. The National Optical Astronomy Observatory is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation.

  10. The Cluster Environments of Quasar Groups

    NASA Astrophysics Data System (ADS)

    West, Michael; Gregg, Michael; Toller, Justin

    2017-01-01

    Quasars are rare astronomical objects, and quasar pairs, triplets and larger groupings are even rarer. The presence of several quasars in the same small volume of space might therefore indicate a region that is exceptionally rich in galaxies, and hence groups of quasars could serve as ueful beacons for identifying distant clusters or protoclusters of galaxies. With this motivation, we compare the cluster environments of single versus multiple quasar systems using data from the Sloan Digital Sky Survey.

  11. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for...

  12. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for...

  13. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for...

  14. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for...

  15. 46 CFR 190.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation for closed spaces. 190.15-10 Section 190.15... CONSTRUCTION AND ARRANGEMENT Ventilation § 190.15-10 Ventilation for closed spaces. (a) All enclosed spaces... chemical laboratories, scientific laboratories, chemical storerooms, and machinery spaces and for...

  16. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data

    SciTech Connect

    Fan, X.; Strauss, M.A.; Schneider, D.P.; Gunn, J.E.; Lupton, R.H.; Yanny, B.; Anderson, S.F.; Anderson, J.E. Jr.; Annis, J.; Bahcall, N.A.; Bakken, J.A.; Bastian, S.; Berman, E.; Boroski, W.N.; Briegel, C.; Briggs, J.W.; Brinkmann, J.; Carr, M.A.; Colestock, P.L.; Connolly, A.J.; Crocker, J.H.; Csabai, I. |; Davis, J.E.; and others

    1999-07-01

    We present photometric and spectroscopic observations of 15 high-redshift quasars (z{gt}3.6) discovered from {approximately}140 deg{sup 2} of five-color ({ital u}{prime}, {ital g}{prime}, {ital r}{prime}, {ital i}{prime}, and {ital z}{prime}) imaging data taken by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. The quasars are selected by their distinctive colors in SDSS multicolor space. Four of the quasars have redshifts higher than 4.6 (z=4.63, 4.75, 4.90, and 5.00, the latter being the highest redshift quasar yet known). In addition, two previously known z{gt}4 objects were recovered from the data. The quasars all have i{sup *} {lt}20 and have luminosities comparable to that of 3C 273. The spectra of the quasars have similar features (strong, broad emission lines and substantial absorption blueward of the Ly{alpha} emission line) seen in previously known high-redshift quasars. Although the photometric accuracy and image quality fail to meet the final survey requirements, our success rate for identifying high-redshift quasars (17 quasars from 27 candidates) is much higher than that of previous multicolor surveys. However, the numbers of high-redshift quasars found is in close accord with the number density inferred from previous surveys. {copyright} {ital {copyright} 1999.} {ital The American Astronomical Society}

  17. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or...

  18. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or...

  19. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or...

  20. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or...

  1. 46 CFR 92.15-10 - Ventilation for closed spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation for closed spaces. 92.15-10 Section 92.15-10... CONSTRUCTION AND ARRANGEMENT Ventilation § 92.15-10 Ventilation for closed spaces. (a) Except as noted in paragraph (c) of this section, all enclosed spaces within the vessel shall be properly vented or...

  2. Towards a comprehensive picture of powerful quasars, their host galaxies and quasar winds at z ˜ 0.5

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; Liu, Guilin; Obied, Georges

    2016-03-01

    Luminous type-2 quasars in which the glow from the central black hole is obscured by dust are ideal targets for studying their host galaxies and the quasars' effect on galaxy evolution. Such feedback appears ubiquitous in luminous obscured quasars where high-velocity-ionized nebulae have been found. We present rest-frame yellow-band (˜5000 Å) observations using the Hubble Space Telescope (HST) for a sample of 20 luminous quasar host galaxies at 0.2 < z < 0.6 selected from the Sloan Digital Sky Survey. For the first time, we combine host galaxy observations with geometric measurements of quasar illumination using blue-band HST observations and [O III] integral field unit observations probing the quasar winds. The HST images reveal bright merger signatures in about half the galaxies; a significantly higher fraction than in comparison inactive ellipticals. We show that the host galaxies are primarily bulge-dominated, with masses close to M*, but belong to <30 per cent of elliptical galaxies that are highly star forming at z ˜ 0.5. Ionized gas signatures are uncorrelated with faint stellar discs (if present), confirming that the ionized gas is not concentrated in a disc. Scattering cones and [O III] ionized gas velocity field are aligned with the forward scattering cones being co-spatial with the blue-shifted side of the velocity field, suggesting the high-velocity gas is indeed photo-ionized by the quasar. Based on the host galaxies' high star formation rates and bright merger signatures, we suggest that this low-redshift outbreak of luminous quasar activity is triggered by recent minor mergers. Combining these novel observations, we present new quasar unification tests, which are in agreement with expectations of the orientation-based unification model for quasars.

  3. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  4. Co-location of Space Geodetic Instruments at the "Quasar" VLBI Network Observatories

    NASA Astrophysics Data System (ADS)

    Finkelstein, A.; Ipatov, A.; Gayazov, I.; Shargorodsky, V.; Smolentsev, S.; Mitryaev, V.; Diyakov, A.; Olifirov, V.; Rahimov, I.

    2012-12-01

    This paper discusses the current status of creating the co-location stations at the observatories of the Russian VLBI network "Quasar". Satellite Laser Ranging systems "Sazhen-TM" manufactured by Research-and-Production Corporation "Precision Systems and Instruments" were installed at all observatories of the network in 2011. The main technical characteristics of the SLR system and the co-location of high-precision observational instruments at the observatories are presented in this paper.

  5. Quasar microlensing

    NASA Astrophysics Data System (ADS)

    Schmidt, R. W.; Wambsganss, J.

    2010-09-01

    Quasar microlensing deals with the effect of compact objects along the line of sight on the apparent brightness of the background quasars. Due to the relative motion between quasar, lenses and observer, the microlensing magnification changes with time which results in uncorrelated brightness variations in the various images of multiple quasar systems. The amplitudes of the signal can be more than a magnitude with time scales of weeks to months to years. The effect is due to the “granular” nature of the gravitational microlenses—stars or other compact objects in the stellar mass range. Quasar microlensing allows to study the quasar accretion disk with a resolution of tens of microarcseconds, hence quasar microlensing can be used to explore an astrophysical field that is hardly accessible by any other means. Quasar microlensing can also be used to study the lensing objects in a statistical sense, their nature (compact or smoothly distributed, normal stars or dark matter) as well as transverse velocities. Quasar microlensing light curves are now being obtained from monitoring programs across the electromagnetic spectrum from the radio through the infrared and optical range to the X-ray regime. Recently, spectroscopic microlensing was successfully applied, it provides quantitative comparisons with quasar/accretion disk models. There are now more than a handful of systems with several-year long light curves and significant microlensing signal, lending to detailed analysis. This review summarizes the current state of the art of quasar microlensing and shows that at this point in time, observational monitoring programs and complementary intense simulations provide a scenario where some of the early promises of quasar microlensing can be quantitatively applied. It has been shown, e.g., that smaller sources display more violent microlensing variability, first quantitative comparison with accretion disk models has been achieved, and quasar microlensing has been used to

  6. A transformer of closely spaced pulsed waveforms

    NASA Technical Reports Server (NTRS)

    Niedra, J.

    1970-01-01

    Passive circuit, using diodes, transistors, and magnetic cores, transforms the voltage of repetitive positive or negative pulses. It combines a pulse transformer with switching devices to effect a resonant flux reset and can transform various pulsed waveforms that have a nonzero average value and are relatively cosely spaced in time.

  7. Hubble space telescope/cosmic origins spectrograph observations of the quasar Q0302–003: Probing the He II reionization epoch and QSO proximity effects

    SciTech Connect

    Syphers, David; Shull, J. Michael

    2014-03-20

    Q0302–003 (z = 3.2860 ± 0.0005) was the first quasar discovered that showed a He II Gunn-Peterson trough, a sign of incomplete helium reionization at z ≳ 2.9. We present its Hubble Space Telescope/Cosmic Origins Spectrograph far-UV medium-resolution spectrum, which resolves many spectral features for the first time, allowing study of the quasar itself, the intergalactic medium, and quasar proximity effects. Q0302–003 has a harder intrinsic extreme-UV spectral index than previously claimed, as determined from both a direct fit to the spectrum (yielding α{sub ν} ≈ –0.8) and the helium-to-hydrogen ion ratio in the quasar's line-of-sight proximity zone. Intergalactic absorption along this sightline shows that the helium Gunn-Peterson trough is largely black in the range 2.87 < z < 3.20, apart from ionization due to local sources, indicating that helium reionization has not completed at these redshifts. However, we tentatively report a detection of nonzero flux in the high-redshift trough when looking at low-density regions, but zero flux in higher-density regions. This constrains the He II fraction to be about 1% in the low-density intergalactic medium (IGM) and possibly a factor of a few higher in the IGM as a whole, suggesting helium reionization has progressed substantially by z ∼ 3.1. The Gunn-Peterson trough recovers to a He II Lyα forest at z < 2.87. We confirm a transmission feature due to the ionization zone around a z = 3.05 quasar just off the sightline, and resolve the feature for the first time. We discover a similar such feature possibly caused by a luminous z = 3.23 quasar further from the sightline, which suggests that this quasar has been luminous for >34 Myr.

  8. Comparison of open and closed multimegawatt space power systems

    NASA Technical Reports Server (NTRS)

    Gallup, D. R.; Edenburn, M. W.

    1987-01-01

    One of the major questions that is being addressed at present by SDI Multimegawatt Space Power Project is whether or not space weapon power systems must be closed, i.e., whether effluents from the systems are tolerable. If they are not tolerable, the major penalty that must be paid to close space systems is increased mass. Open systems remove waste heat by producing effluents, e.g., hot hydrogen gas. Closed systems require radiators, thermal storage masses, effluent storage, or refrigeration to remove waste heat. The mass penalty incurred by addition of these devices is so severe that the option of closing space power systems should be avoided if at all possible. The mass penalty is even more severe if the weapon system itself must also be closed.

  9. Multi-wavelength Monitoring of Lensed Quasars: Deciphering Quasar Structure at Micro-arcseconds Scales

    NASA Astrophysics Data System (ADS)

    Mosquera, Ana; Morgan, Christopher W.; Kochanek, Christopher S.; Dai, Xinyu; Chen, Bin; MacLeod, Chelsea Louise; Chartas, George

    2016-01-01

    Microlensing in multiply imaged gravitationally lensed quasars provides us with a unique tool to zoom in on the structure of AGN and explore their physics in more detail. Microlensing magnification, caused primarily by stars and white dwarfs close to the line of sight towards the lensed quasar images, is seen as uncorrelated flux variations due to the relative motions of the quasar, the lens, its stars, and the observer, and it depends on the structural and dynamical properties of the source and the lens. Since the magnification depends upon the size of the source, we can use microlensing to measure the size of quasar emission regions. In essence, the amplitude of the microlensing variability encodes the source size, with smaller sources showing larger variability amplitudes. Using state of the art microlensing techniques, our team has performed pioneering research in the field based on multi-wavelength space and ground-based observations. Among the most remarkable results, using Chandra observations we have set the first quantitative constraints on the sizes of the X-ray emission regions of quasars. In this work l briefly describe the methodology, the results from our previous multi-wavelength monitoring programs, and the next frontier of exploring the dependence of the structure of the X-ray emission regions on black hole mass and X-ray energy.

  10. SPITZER OBSERVATIONS OF YOUNG RED QUASARS

    SciTech Connect

    Urrutia, Tanya; Lacy, Mark; Spoon, Henrik; Glikman, Eilat; Petric, Andreea; Schulz, Bernhard E-mail: mlacy@nrao.edu E-mail: eilat.glikman@yale.edu E-mail: bschulz@ipac.caltech.edu

    2012-10-01

    We present mid-infrared spectra and photometry of 13 redshift 0.4 < z < 1 dust reddened quasars obtained with Spitzer IRS and MIPS. We compare properties derived from their infrared spectral energy distributions (intrinsic active galactic nucleus (AGN) luminosity and far-infrared luminosity from star formation) to the host luminosities and morphologies from Hubble Space Telescope imaging, and black hole masses estimated from optical and/or near-infrared spectroscopy. Our results are broadly consistent with models in which most dust reddened quasars are an intermediate phase between a merger-driven starburst triggering a completely obscured AGN, and a normal, unreddened quasar. We find that many of our objects have high accretion rates, close to the Eddington limit. These objects tend to fall below the black hole mass-bulge luminosity relation as defined by local galaxies, whereas most of our low accretion rate objects are slightly above the local relation, as typical for normal quasars at these redshifts. Our observations are therefore most readily interpreted in a scenario in which galaxy stellar mass growth occurs first by about a factor of three in each merger/starburst event, followed sometime later by black hole growth by a similar amount. We do not, however, see any direct evidence for quasar feedback affecting star formation in our objects, for example, in the form of a relationship between accretion rate and star formation. Five of our objects, however, do show evidence for outflows in the [O III]5007 A emission line profile, suggesting that the quasar activity is driving thermal winds in at least some members of our sample.

  11. A hybrid genetic algorithm for resolving closely spaced objects

    NASA Technical Reports Server (NTRS)

    Abbott, R. J.; Lillo, W. E.; Schulenburg, N.

    1995-01-01

    A hybrid genetic algorithm is described for performing the difficult optimization task of resolving closely spaced objects appearing in space based and ground based surveillance data. This application of genetic algorithms is unusual in that it uses a powerful domain-specific operation as a genetic operator. Results of applying the algorithm to real data from telescopic observations of a star field are presented.

  12. Heat Transfer Analysis of a Closed Brayton Cycle Space Radiator

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.

    2007-01-01

    This paper presents a mathematical analysis of the heat transfer processes taking place in a radiator for a closed cycle gas turbine (CCGT), also referred to as a Closed Brayton Cycle (CBC) space power system. The resulting equations and relationships have been incorporated into a radiator sub-routine of a numerical triple objective CCGT optimization program to determine operating conditions yielding maximum cycle efficiency, minimum radiator area and minimum overall systems mass. Study results should be of interest to numerical modeling of closed cycle Brayton space power systems and to the design of fluid cooled radiators in general.

  13. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029---Ejected or Intervening?

    NASA Astrophysics Data System (ADS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-10-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of zabs = 0.695 in the spectrum of the zem = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km s-1 is detected from C IV, N V, and O VI in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM ~ 250 km s-1) at zabs = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C IV, N V, and O VI doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by ~56,000 km s-1 to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km s-1 from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  14. The Hubble Space Telescope Quasar Absorption Line Key Project: The Unusual Absorption-Line System in the Spectrum of PG 2302+029--Ejected or Intervening?

    NASA Technical Reports Server (NTRS)

    Jannuzi, B. T.; Hartig, G. F.; Kirhakos, S.; Sargent, W. L. W.; Turnshek, D. A.; Weymann, R. J.; Bahcall, J. N.; Bergeron, J.; Boksenberg, A.; Savage, B. D.; Schneider, D. P.; Wolfe, A. M.

    1996-01-01

    We report the discovery of a high-ionization broad absorption line system at a redshift of z(sub abs) = 0.695 in the spectrum of the z(sub em) = 1.052 radio-quiet quasar PG 2302+029. Broad absorption with FWHM from 3000 to 5000 km/s is detected from C iv, N v, and O vi in Hubble Space Telescope (HST) Faint Object Spectrograph spectra of the quasar. A narrow-line system (FWHM approx. 250 km/s) at z(sub abs) = 0.7016 is resolved from the broad blend and includes absorption by Ly alpha and the C iv, N v, and O vi doublets. No absorption by low-ionization metal species (e.g., Si II and Mg II) is detected in the HST or ground-based spectra for either the broad or the narrow system. The centroids of the broad system lines are displaced by approx. 56,000 km/s to the blue of the quasar's broad emission lines. The reddest extent of the broad-line absorption is more than 50,000 km/s from the quasar. The properties of this system are unprecedented, whether it is an intervening or an ejected system.

  15. The Extremes of Quasar Variability

    NASA Astrophysics Data System (ADS)

    Stern, Daniel

    2016-04-01

    Variability is one of the key observational properties of quasars, and it can be used as a probe of their fueling, physics, and evolution. A new generation of synoptic sky surveys, in combination with the novel data analytics tools, offers unprecedented data sets for the studies of quasars in the time domain. I will illustrate this with examples from the Catalina Real-Time Transient Survey (CRTS), which has an open and growing archive of 500 million light curves, including 350,000 spectroscopically confirmed quasars, with the time baselines ranging from 10 minutes to 10 years. I will discuss a new approach to discover quasars using a combination of variability and mid-IR colors from WISE, which results in a catalog of over a million quasar candidates. I will then discuss quasars with extreme, anomolous light curves, including quasars that have gone through extreme brightening events over the past decade with concordant large changes in their spectroscopic properties. I will also discuss a small subset of quasars with periodic light curves which we interpret as a signature of close (milliparsec scale) supermassive black hole (SMBH) binaries.

  16. A Hungry Quasar Caught in the Act

    NASA Astrophysics Data System (ADS)

    2001-05-01

    interaction with the quasar host galaxy. Quasar activity is believed to be triggered by such dramatic events. Since some time, astronomers have therefore been searching for clear evidence for a connection between gravitational interaction and the quasar phenomenon. However, quasars are very bright objects and their light easily outshines all nearby objects. Any companion galaxies and structural features that may indicate interaction are therefore hard to detect. While observations with the Hubble Space Telescope (HST) have much improved our knowledge of the interaction-activity connection in some relatively nearby quasars, it has been difficult to probe the same phenomenon in more distant quasar environments. Such studies clearly require larger telescopes. The observations of the quasar HE 1013-2136 presented here result from a new programme that addresses this issue at earlier cosmic epochs. This 17-mag object is seen in the southern constellation Hydra (The Water Snake) and is located at a distance of about 10 billion light years (the redshift is z = 0.785) PR Photo 20a/01 shows an image of HE 1013-2136 and its immediate surroundings, obtained with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope under very good seeing conditions. The image resolution is about 0.6 arcsec, or about 10,000 light-years at the distance of the quasar. The image has been further sharpened by means of image processing software (the Lucy algorithm) in PR Photo 20b/01 , now also showing the distribution of objects very close to the bright quasar image. This impressively illustrates the light gathering and resolution power of the VLT. Tidal forces at HE 1013-2136 The quasar is the point-like object at the center of the images. It is embedded within a complex structure that mainly consists of two arc-like and knotty tails extending in different directions. Such tails are well-known from nearby galaxy interactions, cf. NGC 6872/IC4970 and are a consequence of tidal forces in the

  17. The spaces of non-contractible closed curves in compact space forms

    NASA Astrophysics Data System (ADS)

    Taimanov, I. A.

    2016-10-01

    The rational equivariant cohomology of noncontractible loop spaces is calculated for compact space forms. It is also shown how to use these calculations to establish the existence of closed geodesics. Bibliography: 18 titles.

  18. Hubble Space Telescope faint object spectrograph Quasar Absorption System Snapshot Survey (AbSnap). 1: Astrometric optical positions and finding charts of 269 bright QSO

    NASA Technical Reports Server (NTRS)

    Bowen, David V.; Osmer, Samantha J.; Blades, J. Chris; Tytler, David; Cottrell, Lance; Fan, Xiao-Ming; Lanzetta, Kenneth M.

    1994-01-01

    We present finding charts and optical positions accurate to less than 1 arcsec for 269 bright (V less than or = 18.5) Quasi-Stellar Objects (QSOs). These objects were selected as candidates for the Hubble Space Telescope (HST) Quasar Absorption System Snapshot Survey (AbSnap), a program designed to use the Faint Object Spectrograph (FOS) to obtain short exposure ultraviolet (UV) spectra of bright QSOs. Many quasars were included because of their proximity to bright, low redshift galaxies and positions of these QSOs are measured accurately for the first time. Data were obtained using the digitized sky survey produced by the Space Telescope Science Institute's Guide Stars Selection System Astrometric Support Program.

  19. Judging Criterion of Controlled Structures with Closely Spaced Natural Frequencies

    SciTech Connect

    Xie Faxiang; Sun Limin

    2010-05-21

    The structures with closely spaced natural frequencies widely exist in civil engineering; however, the judging criterion of the density of closely spaced frequencies is in dispute. This paper suggests a judging criterion for structures with closely spaced natural frequencies based on the analysis on a controlled 2-DOF structure. The analysis results indicate that the optimal control gain of the structure with velocity feedback is dependent on the frequency density parameter of structure and the maximum attainable additional modal damping ratio is 1.72 times of the frequency density parameter when state feedback is applied. Based on a brief review on the previous researches, a judging criterion related the minimum frequency density parameter and the required mode damping ratio was proposed.

  20. Modal vector estimation for closely spaced frequency modes

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chung, Y. T.; Blair, M.

    1982-01-01

    Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.

  1. Rationale for evaluating a closed food chain for space habitats

    NASA Technical Reports Server (NTRS)

    Modell, M.; Spurlock, J. M.

    1980-01-01

    Closed food cycles for long duration space flight and space habitation are examined. Wash water for a crew of six is economically recyclable after a week, while a total closed loop water system is effective only if the stay exceeds six months' length. The stoichiometry of net plant growth is calculated and it is shown that the return of urine, feces, and inedible plant parts to the food chain, along with the addition of photosynthesis, closes the food chain loop. Scenarios are presented to explore the technical feasibility of achieving a closed loop system. An optimal choice of plants is followed by processing, waste conversion, equipment specifications, and control requirements, and finally, cost-effectiveness.

  2. Optimization of closed Brayton cycles for space power generation

    NASA Technical Reports Server (NTRS)

    Hanlon, James C.

    1992-01-01

    A development status evaluation is presented for methods that allow accurate preliminary design and optimization of closed Brayton cycle engines for space electrical power generation. The basis for such work is the Closed Cycle Engine Performance simulation code, in conjunction with the optimization code COPES/ADS; the joining of the two codes has greatly expedited the optimization process. Attention is given to a variety of other model-versatility enhancers.

  3. HUBBLE'S 100,000TH EXPOSURE CAPTURES IMAGE OF DISTANT QUASAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope achieved its 100,000th exposure June 22 with a snapshot of a quasar that is about 9 billion light-years from Earth. The Wide Field and Planetary Camera 2 clicked this image of the quasar, the bright object in the center of the photo. The fainter object just above it is an elliptical galaxy. Although the two objects appear to be close to each other, they are actually separated by about 2 billion light-years. Located about 7 billion light-years away, the galaxy is almost directly in front of the quasar. Astronomer Charles Steidel of the California Institute of Technology in Pasadena, Calif., indirectly discovered the galaxy when he examined the quasar's light, which contained information about the galaxy's chemical composition. The reason, Steidel found, was that the galaxy was absorbing the light at certain frequencies. The astronomer is examining other background quasars to determine which kinds of galaxies absorb light at the same frequencies. Steidel also was somewhat surprised to discover that the galaxy is an elliptical, rather than a spiral. Elliptical galaxies are generally believed to contain very little gas. However, this elliptical has a gaseous 'halo' and contains no visible stars. Part of the halo is directly in front of the quasar. The bright object to the right of the quasar is a foreground star. The quasar and star are separated by billions of light-years. The quasar looks as bright as the star because it produces a tremendous amount of light from a compact source. The 'disturbed-looking' double spiral galaxy above the quasar also is in the foreground. Credit: Charles Steidel (California Institute of Technology, Pasadena, CA) and NASA. Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  4. Close-up of Shuttle Thermal Tiles in Space

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26 2005, from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission's third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter's heat-shielding tiles located on the craft's underbelly. Never before had any repairs been done to an orbiter while still in space. This close up of the thermal tiles was taken by astronaut Stephen K. Robinson, STS-114 mission specialist (out of frame). Astronaut Soichi Noguchi, STS-114 mission specialist representing the Japan Aerospace Exploration (JAXA), can be seen in the background perched on a Space Station truss.

  5. Developing closed life support systems for large space habitats

    NASA Technical Reports Server (NTRS)

    Phillips, J. M.; Harlan, A. D.; Krumhar, K. C.

    1978-01-01

    In anticipation of possible large-scale, long-duration space missions which may be conducted in the future, NASA has begun to investigate the research and technology development requirements to create life support systems for large space habitats. An analysis suggests the feasibility of a regeneration of food in missions which exceed four years duration. Regeneration of food in space may be justified for missions of shorter duration when large crews must be supported at remote sites such as lunar bases and space manufacturing facilities. It is thought that biological components consisting principally of traditional crop and livestock species will prove to be the most acceptable means of closing the food cycle. A description is presented of the preliminary results of a study of potential biological components for large space habitats. Attention is given to controlled ecosystems, Russian life support system research, controlled-environment agriculture, and the social aspects of the life-support system.

  6. Approximating the Generalized Voronoi Diagram of Closely Spaced Objects

    SciTech Connect

    Edwards, John; Daniel, Eric; Pascucci, Valerio; Bajaj, Chandrajit

    2015-06-22

    We present an algorithm to compute an approximation of the generalized Voronoi diagram (GVD) on arbitrary collections of 2D or 3D geometric objects. In particular, we focus on datasets with closely spaced objects; GVD approximation is expensive and sometimes intractable on these datasets using previous algorithms. With our approach, the GVD can be computed using commodity hardware even on datasets with many, extremely tightly packed objects. Our approach is to subdivide the space with an octree that is represented with an adjacency structure. We then use a novel adaptive distance transform to compute the distance function on octree vertices. The computed distance field is sampled more densely in areas of close object spacing, enabling robust and parallelizable GVD surface generation. We demonstrate our method on a variety of data and show example applications of the GVD in 2D and 3D.

  7. Underwater acoustic source localization using closely spaced hydrophone pairs

    NASA Astrophysics Data System (ADS)

    Sim, Min Seop; Choi, Bok-Kyoung; Kim, Byoung-Nam; Lee, Kyun Kyung

    2016-07-01

    Underwater sound source position is determined using a line array. However, performance degradation occurs owing to a multipath environment, which generates incoherent signals. In this paper, a hydrophone array is proposed for underwater source position estimation robust to a multipath environment. The array is composed of three pairs of sensors placed on the same line. The source position is estimated by performing generalized cross-correlation (GCC). The proposed system is not affected by a multipath time delay because of the close distance between closely spaced sensors. The validity of the array is confirmed by simulation using acoustic signals synthesized by eigenrays.

  8. Do quasars have cosmologically long lifetimes

    NASA Technical Reports Server (NTRS)

    Chanan, G. A.

    1982-01-01

    An alternative explanation to gravitational lensing is examined, by which problems inherent in space density evolution are avoided without invoking gravitational effects. Apparent and unreal density evolution follows as an immediate consequence, if the quasar lifetimes that are the only free parameter in the model proposed are of the order of three billion years. If such lifetimes are the case, while quasars may occur less frequently than has been thought, the local density of quasars may have been grossly underestimated.

  9. Hubble Space Telescope Observations of the Luminous IRAS Source FSC 10214+4724: A Gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter R.; Armus, Lee; Hogg, David W.; Soifer, B. T.; Neugebauer, G.; Werner, Michael W.

    1996-01-01

    With a redshift of 2.3, the IRAS source FSC 10214+4724 is apparently one of the most luminous objects known in the universe. We present an image of FSC 10214+4724 at 0.8 pm obtained with the Hubble Space Telescope (HST) WFPC2 Planetary Camera. The source appears as an unresolved (less then 0.06) arc 0.7 long, with significant substructure along its length. The center of curvature of the arc is located near an elliptical galaxy 1.18 to the north. An unresolved component 100 times fainter than the arc is clearly detected on the opposite side of this galaxy. The most straightforward interpretation is that FSC 10214+4724 is gravitationally lensed by the foreground elliptical galaxy, with the faint component a counter-image of the IRAS source. The brightness of the arc in the HST image is then magnified by approx. 100, and the intrinsic source diameter is approx. 0.0l (80 pc) at 0.25 microns rest wavelength. The bolometric luminosity is probably amplified by a smaller factor (approx. 30) as a result of the larger extent expected for the source in the far-infrared. A detailed lensing model is presented that reproduces the observed morphology and relative flux of the arc and counterimage and correctly predicts the position angle of the lensing galaxy. The model also predicts reasonable values for the velocity dispersion, mass, and mass-to-light ratio of the lensing galaxy for a wide range of galaxy redshifts. A redshift for the lensing galaxy of -0.9 is consistent with the measured surface brightness profile from the image, as well as with the galaxy's spectral energy distribution. The background lensed source has an intrinsic luminosity approx. 2 x 10(exp 13) L(solar mass) and remains a highly luminous quasar with an extremely large ratio of infrared to optical/ultraviolet luminosity.

  10. Close-up of Shuttle Thermal Tiles in Space

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module and the External Stowage Platform-2. A major focus of the mission was the testing and evaluation of new Space Shuttle flight safety, which included new inspection and repair techniques. Upon its approach to the International Space Station (ISS), the Space Shuttle Discovery underwent a photography session in order to assess any damages that may have occurred during its launch and/or journey through Space. The mission's third and final Extra Vehicular Activity (EVA) included taking a close-up look and the repair of the damaged heat shield. Gap fillers were removed from between the orbiter's heat-shielding tiles located on the craft's underbelly. Never before had any repairs been done to an orbiter while still in space. This particular photo was taken by astronaut Stephen K. Robinson, STS-114 mission specialist, whose shadow is visible on the thermal protection tiles, and a portion of the Canadian built Remote Manipulator System (RMS) robotic arm and the Nile River is visible at the bottom.

  11. Temporal extent of surface potentials between closely spaced metals.

    PubMed

    Pollack, S E; Schlamminger, S; Gundlach, J H

    2008-08-15

    Variations in the electrostatic surface potential between the proof mass and electrode housing in the space-based gravitational wave mission Laser Interferometer Space Antenna (LISA) is one of the largest contributors of noise at frequencies below a few mHz. Torsion balances provide an ideal test bed for investigating these effects in conditions emulative of LISA. Our apparatus consists of a Au coated Cu plate brought near a Au coated Si plate pendulum suspended from a thin W wire. We have measured a white noise level of 30 microV/sqrt Hz above approximately 0.1 mHz, rising at lower frequencies, for the surface potential variations between these two closely spaced metals.

  12. A DISTANT QUASAR'S BRILLIANT LIGHT

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The arrow in this image, taken by a ground-based telescope, points to a distant quasar, the brilliant core of an active galaxy residing billions of light-years from Earth. As light from this faraway object travels across space, it picks up information on galaxies and the vast clouds of material between galaxies as it moves through them. The Space Telescope Imaging Spectrograph aboard NASA's Hubble Space Telescope decoded the quasar's light to find the spectral 'fingerprints' of highly ionized (energized) oxygen, which had mixed with invisible clouds of hydrogen in intergalactic space. The quasar's brilliant beam pierced at least four separate filaments of the invisible hydrogen laced with the telltale oxygen. The presence of oxygen between the galaxies implies there are huge quantities of hydrogen in the universe. Credits: WIYN Telescope at Kitt Peak National Observatory in Arizona. The telescope is owned and operated by the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatories.

  13. 78 FR 70093 - Commercial Space Transportation Advisory Committee-Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... Federal Aviation Administration Commercial Space Transportation Advisory Committee--Closed Session AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory... closed session of the Commercial Space Transportation Advisory Committee (COMSTAC). The special...

  14. A closed life-support system for space colonies

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.; Jebens, H. J.; Sweet, H. C.

    1977-01-01

    In 1975, a system design study was performed to examine a completely self-contained system for a permanent colony of 10,000 inhabitants in space. Fundamental to this design was the life support system. Since resupply from earth is prohibitive in transportation costs, it was decided to use a closed system with the initial supply of oxygen coming from processing of lunar ores, and the supply of carbon, nitrogen and hydrogen from earth. The problem of life support was treated starting with the nutritional and metabolic requirements for the human population, creating a food and water chain sufficient to supply these demands, adding the additional requirements for the animal and plant sources in the food chain, feeding back useful waste products, supplying water as required from different sources, and closing the loop by processing organic wastes into CO2. This concept places the burden of the system upon plants for O2 generation and waste processing the CO2 generation.

  15. NASA Research For Instrument Approaches To Closely Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Elliott, Dawn M.; Perry, R. Brad

    2000-01-01

    Within the NASA Aviation Systems Capacity Program, the Terminal Area Productivity (TAP) Project is addressing airport capacity enhancements during instrument meteorological condition (IMC). The Airborne Information for Lateral Spacing (AILS) research within TAP has focused on an airborne centered approach for independent instrument approaches to closely spaced parallel runways using Differential Global Positioning System (DGPS) and Automatic Dependent Surveillance-Broadcast (ADS-B) technologies. NASA Langley Research Center (LaRC), working in partnership with Honeywell, Inc., completed in AILS simulation study, flight test, and demonstration in 1999 examining normal approaches and potential collision scenarios to runways with separation distances of 3,400 and 2,500 feet. The results of the flight test and demonstration validate the simulation study.

  16. A Closed Ecological System in a Space Experiment

    NASA Astrophysics Data System (ADS)

    Strauch, S. M.; Schuster, M.; Lebert, M.; Richter, P.; Schmittnagel, M.; Hader, D.-P.

    2008-06-01

    The Russian FOTON-M3 mission, a satellite for mid-length experiments in space and recovery afterwards, included a closed artificial ecosystem (OMEGAHAB for Oreochromis Mossambicus-Euglena Gracilis-Aquatic HABitat) with the photosynthetic flagellate Euglena gracilis as oxygen producer and larvae of Oreochromis mossambicus, a Tilapia species, as consumer. During the 12-day orbital flight the algae were observed 10 minutes per day by means of a miniaturized microscope to analyse their swimming behavior. The fishes were also filmed to monitor their development and movement. An identical experiment was carried out as ground control. A data downlink provided the measured temperature values of the space experiment every day to readjust the temperature of the ground reference in order to eliminate the influence of the different temperature on the velocity of the development of the fishes. The system worked very well and confirmed the design in principle. OMEGAHAB was the most successful German experiment of that kind as yet.

  17. Close Up of Space Shuttle External Tank's Intertank Flange Area

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In NASA's Michoud Assembly Facility in New Orleans, the Space Shuttle External Tank 120 is in position for its new foam application process on the liquid hydrogen tank-to-inter tank flange area, a tank structural connection point. This image is a close-up of the inter tank flange area. The foam will be applied with an enhanced finishing procedure that requires two technicians, one for a new mold-injection procedure to the intertank's ribbing and one for real-time videotaped surveillance of the process. The 120 tank is slated for launch on the Orbiter Discovery scheduled for next Spring. Marshall Space Flight Center played a significant role in the development of the new application process designed to replace the possible debris shedding source previously used. (Lockheed Martin/NASA Michoud)

  18. New Quasar Surveys with WIRO: Colors of ~1000 Quasars at 0 < z < 3

    NASA Astrophysics Data System (ADS)

    Witherspoon, Catherine; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Harvey, William; Lee, Daniel; Lyke, Bradley; Haze Nunez, Evan; Parziale, Ryan; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    We present the colors of quasars observed as part of an imaging campaign using the Wyoming Infrared Observatory (WIRO). A major goal of the campaign was to calibrate the magnitudes of point sources in the Sloan Digital Sky Survey (SDSS) photometric system using WIRO's new DoublePrime camera. The sample we study is comprised of approximately 1000 quasars with redshift 0 < z < 3 that were matched to spectroscopically confirmed quasars in SDSS Stripe 82. As expected from earlier imaging surveys of quasars, we find that quasars occupy a region of u-g vs. g-r color-color space that is distinct from that of stars. The quasar u-g colors are considerably bluer than those of the stars while quasar g-r colors are only slightly bluer than the g-r colors of the majority of the observed stars. There is a noticeable correlation between the quasar redshift and the corresponding u-g color. As the redshift of a quasar increases, its u-g color becomes redder. In the g-r vs. r-i and r-i vs. i-z color-color spaces, the quasars occupy regions that overlap with the regions occupied by the majority of the stars, again in excellent agreement with the expectation from earlier surveys.This work is supported by the National Science Foundation under REU grant AST 1560461.

  19. CFD simulation of boundary effects on closely spaced jets

    NASA Astrophysics Data System (ADS)

    Shrivastava, Ishita; Adams, Eric

    2015-11-01

    In coastal areas characterized by shallow water depth, industrial effluents are often diluted using multiple closely spaced jets. Examples of such effluents include brine from desalination plants, treated wastewater from sewage treatment plants and heated water from thermal power plants. These jets are arranged in various orientations, such as unidirectional diffusers and rosette groups, to maximize mixing with ambient water. Due to effects of dynamic pressure, the jets interact with each other leading to mixing characteristics which are quite different from those of individual jets. The effect of mutual interaction is exaggerated under confinement, when a large number of closely spaced jets discharge into shallow depth. Dilution through an outfall, consisting of multiple jets, depends on various outfall and ambient parameters. Here we observe the effects of shoreline proximity, in relation to diffuser length and water depth, on the performance of unidirectional diffusers discharging to quiescent water. For diffusers located closer to shore, less dilution is observed due to the limited availability of ambient water for dilution. We report on the results of Computational Fluid Dynamics (CFD) simulations and compare the results with experimental observations.

  20. Locating star-forming regions in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Young, J. E.; Eracleous, M.; Shemmer, O.; Netzer, H.; Gronwall, C.; Lutz, Dieter; Ciardullo, R.; Sturm, Eckhard

    2014-02-01

    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship between black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II]λ3727, Hβ, [O III]λ5007 and Paα images, taken with the Wide Field Planetary Camera 2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus, powered primarily by star formation. We determine star-formation rates of the order of a few tens of M⊙ yr-1. The host galaxies of our target quasars have stellar masses of the order of 1011 M⊙ and specific star-formation rates on a par with those of M82 and luminous infrared galaxies. As such they fall at the upper envelope or just above the star-formation mass sequence in the specific star formation versus stellar mass diagram. We see a clear trend of increasing star-formation rate with quasar luminosity, reinforcing the link between the growth of the stellar mass of the host and the black hole mass found by other authors.

  1. Predicting Space Weather Effects on Close Approach Events

    NASA Technical Reports Server (NTRS)

    Hejduk, Matthew D.; Newman, Lauri K.; Besser, Rebecca L.; Pachura, Daniel A.

    2015-01-01

    The NASA Robotic Conjunction Assessment Risk Analysis (CARA) team sends ephemeris data to the Joint Space Operations Center (JSpOC) for conjunction assessment screening against the JSpOC high accuracy catalog and then assesses risk posed to protected assets from predicted close approaches. Since most spacecraft supported by the CARA team are located in LEO orbits, atmospheric drag is the primary source of state estimate uncertainty. Drag magnitude and uncertainty is directly governed by atmospheric density and thus space weather. At present the actual effect of space weather on atmospheric density cannot be accurately predicted because most atmospheric density models are empirical in nature, which do not perform well in prediction. The Jacchia-Bowman-HASDM 2009 (JBH09) atmospheric density model used at the JSpOC employs a solar storm active compensation feature that predicts storm sizes and arrival times and thus the resulting neutral density alterations. With this feature, estimation errors can occur in either direction (i.e., over- or under-estimation of density and thus drag). Although the exact effect of a solar storm on atmospheric drag cannot be determined, one can explore the effects of JBH09 model error on conjuncting objects' trajectories to determine if a conjunction is likely to become riskier, less risky, or pass unaffected. The CARA team has constructed a Space Weather Trade-Space tool that systematically alters the drag situation for the conjuncting objects and recalculates the probability of collision for each case to determine the range of possible effects on the collision risk. In addition to a review of the theory and the particulars of the tool, the different types of observed output will be explained, along with statistics of their frequency.

  2. Performance of a simple Closed Aquatic Ecosystem (CAES) in space.

    PubMed

    Wang, G-H; Li, G-B; Hu, C-X; Liu, Y-D; Song, L-R; Tong, G-H; Liu, X-M; Cheng, E-T

    2004-01-01

    A simple Closed Aquatic Ecosystem (CAES) consisting of single-celled green algae (Chlorella pyrenoidosa, producer), a spiral snail (Bulinus australianus, consumer) and a data acquisition and control unit was flown on the Chinese Spacecraft SHENZHOU-II in January 2001 for 7 days. In order to study the effect of microgravity on the operation of CAES, a 1 g centrifuge reference group in space, a ground 1 g reference group and a ground 1 g centrifuge reference group (1.4 g group) were run concurrently. Real-time data about algae biomass (calculated from transmission light intensity), temperature, light and centrifugation of the CAES were logged at minute intervals. It was found that algae biomass of both the microgravity group and the ground 1 g-centrifuge reference group (1.4 g) fluctuated during the experiment, but the algae biomass of the 1 g centrifuge reference group in space and the ground 1 g reference group increased during the experiment. The results may be attributable to influences of microgravity and 1.4 g gravity on the algae and snails metabolisms. Microgravity is the main factor to affect the operation of CAES in space and the contribution of microgravity to the effect was also estimated. These data may be valuable for the establishment of a complex CELSS in the future.

  3. NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    SciTech Connect

    Mechtley, M.; Windhorst, R. A.; Cohen, S. H.; Jansen, R. A.; Scannapieco, E.; Ryan, R. E.; Koekemoer, A. M.; Schneider, G.; Fan, X.; Hathi, N. P.; Keel, W. C.; Roettgering, H.; Schneider, D. P.; Strauss, M. A.; Yan, H. J.

    2012-09-10

    We report on deep near-infrared F125W (J) and F160W (H) Hubble Space Telescope Wide Field Camera 3 images of the z = 6.42 quasar J1148+5251 to attempt to detect rest-frame near-ultraviolet emission from the host galaxy. These observations included contemporaneous observations of a nearby star of similar near-infrared colors to measure temporal variations in the telescope and instrument point-spread function (PSF). We subtract the quasar point source using both this direct PSF and a model PSF. Using direct subtraction, we measure an upper limit for the quasar host galaxy of m{sub J} > 22.8 and m{sub H} > 23.0 AB mag (2 {sigma}). After subtracting our best model PSF, we measure a limiting surface brightness from 0.''3 to 0.''5 radius of {mu}{sub J} > 23.5 and {mu}{sub H} > 23.7 AB mag arcsec{sup -2} (2 {sigma}). We test the ability of the model subtraction method to recover the host galaxy flux by simulating host galaxies with varying integrated magnitude, effective radius, and Sersic index, and conducting the same analysis. These models indicate that the surface brightness limit ({mu}{sub J} > 23.5 AB mag arcsec{sup -2}) corresponds to an integrated upper limit of m{sub J} > 22-23 AB mag, consistent with the direct subtraction method. Combined with existing far-infrared observations, this gives an infrared excess log (IRX) > 1.0 and corresponding ultraviolet spectral slope {beta} > -1.2 {+-} 0.2. These values match those of most local luminous infrared galaxies, but are redder than those of almost all local star-forming galaxies and z {approx_equal} 6 Lyman break galaxies.

  4. A Quasar's Identity May Simply Be In The Eye Of The Beholder

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Using NASA's Chandra X-ray Observatory, astronomers have made the first detailed study of a peculiar type of quasar that is shrouded in clouds of gas and dust flowing outward at millions of miles per hour. The results support the idea that this outflow is a common feature of all quasars, highly active supermassive black holes that give the illusion of being different when viewed from various angles. Quasars are some of the most energetic and distant known objects in the universe. Most quasars are extremely bright in optical light, but about 10 percent appear 'shrouded,'or hidden, by absorbing clouds of gas and dust. In addition to these obscuring clouds, the same subset of quasars shows evidence of extremely energetic winds blasting outwards from the central regions. Astronomers have debated whether these shrouded quasars represent an early evolutionary stage of black holes when they vigorously consume matter, or whether these energetic outflows are present in all quasars, but detectable only when viewed in certain orientations. "Because high-energy X-rays can pierce through these clouds, we can use Chandra to observe close to the underlying black hole," said Paul Green of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper to appear in The Astrophysical Journal. "Looking through these veils, we find that the extremely hot gas around these supermassive black holes shines just the same way as in non-shrouded quasars." Green and his colleagues used Chandra to survey ten shrouded quasars through a process known as spectroscopy, the study of how atoms absorb and emit light. X-ray spectroscopy provides astronomers with a unique ability to "fingerprint" very high-energy objects at great distances. BALQSO These two Chandra images demonstrate the different appearances of "normal" and "shrouded" quasars. Credit: NASA/CfA/P.Green et al. "Chandra is beginning to show us that these quasars are all the same underneath, regardless of what they are wearing

  5. 3. A Closed Aquatic System for Space and Earth Application

    NASA Astrophysics Data System (ADS)

    Slenzka, K.; Duenne, M.; Jastorff, B.; Ranke, J.; Schirmer, M.

    Increased durations in space travel as well as living in extreme environments are requiring reliable life support systems in general and bioregenerative ones in detail. Waste water management, air revitalization and food production are obviously center goals in this research, however, in addition a potential influence by chemicals, drugs etc. released to the closed environment must be considered. On this basis ecotoxicological data become more and more important for CELSS (Closed Ecological Life Support System) development and performance. The experiences gained during the last years in our research group lead to the development of an aquatic habitat, called AquaHab (formerly CBRU), which is a closed, self-sustaining system with a total water volume of 9 liters. In the frame program of a R&D project funded by the state of Bremen and OHB System, AquaHab is under adaptation to become an ecotoxicological research unit containing for example Japanese Medaka or Zebra Fish, amphipods, water snails and water plants. Test runs were standardized and analytical methods were developed. Beside general biological and water chemical parameters, activity measurements of biotransforming enzymes (G6PDH, CytP450-Oxidase, Peroxidase) and cell viability tests as well as residual analysis of the applied substance and respective metabolites were selected as evaluation criteria. In a first series of tests low doses effects of TBT (Tributyltin, 0.1 to 20 μgTBT/l nominal concentration) were analyzed. The AquaHab and data obtained for applied environmental risk assessment will be presented at the assembly.

  6. The Hubble Space Telescope quasar absorption line key project. 6: Properties of the metal-rich systems

    NASA Technical Reports Server (NTRS)

    Bergeron, Jacqueline; Petitjean, Patrick; Sargent, W. L. W.; Bahcall, John N.; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Savage, Blair D.; Schneider, Donald P.

    1994-01-01

    We present an analysis of the properties of a sample of 18 metal-rich, low-redshift z(sub abs) much less than z(sub em) absorbers seen in low- and medium-resolution spectra obtained for the Quasar Absorption Line Key Project with the Hubble Space Telescope Faint Object Spectrograph (HST/FOS). For most of the C IV and Lyman-limit systems, observations in the optical wavelength range of the expected associated Mg II absorption are available. As at high redshift (z approximately 2), there are two subclasses of absorbers which are characterized by the presence or absence of MG II absorption. However, some low-redshift Mg II and Fe absorptions originate from regions optically thin to UV ionizing photons and thus, at low redshift, the low-ionization systems do not always trace high opacities, as is the case at high redshift. This implies that the mean ionization state of metal-rich, optically thin absorbing clouds falls with decreasing redshift, which is consistent with the hypothesis that the gas is photoionized by the metagalactic UV background radiation field. Two main constraints are derived from the analysis of the Lyman-limit sample, assuming photoionization models are valid. First, a low opacity to ionizing photons (tau(sub LL) approximately less than 1), as observed for several Mg II-Fe II systems at z approximately 0.5, sets limits on the ionization level of hydrogen, thus on the total hydrogen column density and the heavy element abundances, (Z/H) approximately -0.5 to -0.3. Second, the dimensions of individual Mg II clouds are smaller than at high redshift by a factor 3-10. At z approximately greater than 0.6, the O VI absorption doublet is detected in four of the five z(sub abs) much less than z(sub em) systems for which the O VI wavelength range has been observed, whereas the associated N V doublet is detected in only two cases. This suggests that the presence of a high-ionization O VI phase is a general property of z approximately 0.6-1 absorption systems

  7. CFD simulations of closely spaced jets in shallow flowing ambient

    NASA Astrophysics Data System (ADS)

    Shrivastava, Ishita; Adams, E. Eric

    2016-11-01

    In shallow water bodies, multiple closely spaced jets are often used to discharge industrial effluents such as brine from desalination plants, heated water from thermal power plants and wastewater from wastewater treatment plants. The jets interact with each other due to effects of dynamic pressure and result in jet trajectories and mixing that are significantly different from non-interfering jets. Here, we look at the case of a unidirectional diffuser, which consists of a linear array of jets discharging horizontally in the direction perpendicular to the diffuser. Dilution through such an arrangement of jets depends on various discharge and ambient parameters, such as effluent buoyancy, water depth and ambient current. We present results of computational fluid dynamics (CFD) simulations and compare them with experimental observations to examine the effects of shallowness, shoreline separation and ambient currents on the mixing of a unidirectional diffuser. We observe that shallow depth, shoreline proximity and crossflow, all result in increased interaction among the jets and reduced mixing.

  8. Possibility of graphene growth by close space sublimation.

    PubMed

    Sopinskyy, Mykola V; Khomchenko, Viktoriya S; Strelchuk, Viktor V; Nikolenko, Andrii S; Olchovyk, Genadiy P; Vishnyak, Volodymyr V; Stonis, Viktor V

    2014-04-14

    Carbon films on the Si/SiO2 substrate are fabricated using modified method of close space sublimation at atmospheric pressure. The film properties have been characterized by micro-Raman and X-ray photoelectron spectroscopy and monochromatic ellipsometry methods. Ellipsometrical measurements demonstrated an increase of the silicon oxide film thickness in the course of manufacturing process. The XPS survey spectra of the as-prepared samples indicate that the main elements in the near-surface region are carbon, silicon, and oxygen. The narrow-scan spectra of C1s, Si2p, O1s regions indicate that silicon and oxygen are mainly in the SiOx (x ≈ 2) oxide form, whereas the main component of C1s spectrum at 284.4 eV comes from the sp2-hybridized carbon phase. Micro-Raman spectra confirmed the formation of graphene films with the number of layers that depended on the distance between the graphite source and substrate.

  9. Quasar Structure from Microlensing in Gravitationally Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher W.

    2007-12-01

    I investigate microlensing in gravitationally lensed quasars and discuss the use of its signal to probe quasar structure on small angular scales. I describe our lensed quasar optical monitoring program and RETROCAM, the optical camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I use the microlensing variability observed in 11 gravitationally lensed quasars to show that the accretion disk size at 2500Å is related to the black hole mass by log(R2500/cm) = (15.70±0.16) + (0.64±0.18)log(MBH/109M⊙). This scaling is consistent with the expectation from thin disk theory (R ∝ MBH2/3), but it implies that black holes radiate with relatively low efficiency, log(η) = -1.54±0.36 + log(L/LE) where η=L/(Mdotc2). With one exception, these sizes are larger by a factor of 4 than the size needed to produce the observed 0.8µm quasar flux by thermal radiation from a thin disk with the same T ∝ R-3/4 temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate. This research made extensive use of a Beowulf computer cluster obtained through the Cluster Ohio program of the Ohio Supercomputer Center. Support for program HST-GO-9744 was provided by NASA through a grant from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS-5-26666.

  10. The Hubble Space Telescope quasar absorption line key project. III - First observational results on Milky Way gas

    NASA Technical Reports Server (NTRS)

    Savage, Blair D.; Lu, Limin; Bahcall, John N.; Bergeron, Jacqueline; Boksenberg, Alec; Hartig, George F.; Jannuzi, Buell T.; Kirhakos, Sofia; Lockman, Felix J.; Sargent, W. L. W.

    1993-01-01

    Absorption lines found near zero redshift due to Milky Way disk and halo gas in the spectra of 15 quasars observed with the Faint Object Spectrograph (FOS) of the HST at a resolution of about 230 km/s are reported. Results show that Milky Way absorption lines comprise about 44 percent of all absorption lines seen in the first group of Key Project FOS spectra. Milky Way lines were observed for 3C 273 and H1821 + 643. Limits to the Mg-to-H abundance ratio obtained for very high velocity Mg II absorption detections imply gas-phase Mg abundances for the very high velocity gas ranging from more than 0.059 to more than 0.32 times the solar abundance. In all cases where high-velocity H I emission is seen, corresponding high-velocity metal-line absorption is observed.

  11. 76 FR 4412 - Commercial Space Transportation Advisory Committee-Closed Session

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Closed Session AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation... 102-3.160, notice is hereby given of a special closed session of the Commercial Space...

  12. Investigations in Time and of Space Using the FIRST Survey: Radio Source Variability and the Evolution of FR II Quasars

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan

    The FIRST survey covered ∼10,000 deg2 of the sky over a decade, providing unprecedented levels of flux density sensitivity (∼ 1 mJy) at 1.4 GHz, uniformity to within 15% (at ∼0.15 mJy rms), 5.4" angular resolution, astrometric accuracy to better than 1" and has cataloged ≳ 800,000 sources. It has made enormous contributions to diverse scientific ends including such subjects as radio source populations, quasars, large-scale structure and clustering of radio sources, gravitational lensing, cosmology, etc. I present the motivation, analysis and results of two projects also intended to demonstrate the power and expand the scope of the FIRST survey's scientific reach. A comprehensive search for variable and transient radio sources has been conducted using the ∼55,000 snapshot images of the FIRST survey. An analysis leading to the discovery of 1,651 variable and transient objects down to mJy levels over a wide range of timescales (few minutes to years) is presented. The multi-wavelength matching for counterparts reveals the diverse classes of objects exhibiting variability. Interestingly, ∼ 60% of the objects in the sample have either no classified counterparts or no corresponding sources at any other wavelength and require multi-wavelength follow-up observations. I discuss these classes of variables and speculate on the identity of objects that lack multi-wavelength counterparts. Thus, the FIRST survey has yielded the largest sample by far of radio variables and transients to date to unprecedented levels of sensitivity and sky coverage and demonstrates the promise of future radio instruments which have transient-detection as one of their key science projects. For decades, radio astronomers have attempted to use double-lobed radio sources to constrain the angular size-redshift (θ - z ) relation and to derive cosmological parameters therefrom. Most of the early attempts have, embarrassingly, shown general consistency with a static Euclidean universe rather

  13. Quasars Probing Quasars. IV. Joint Constraints on the Circumgalactic Medium from Absorption and Emission

    NASA Astrophysics Data System (ADS)

    Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-03-01

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Lyα emission, resulting from quasar-powered fluorescence, resonant Lyα scattering, and/or cooling radiation, is expected. A sensitive search (1σ surface-brightness limits of SB_{Ly\\alpha } \\simeq 3{\\; \\times \\; 10^{-18}}\\,erg\\,s^{-1\\,cm^{-2}\\,arcsec^{-2}}) for diffuse Lyα emission in the environments of the foreground (predominantly radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale ~100 kpc Lyα emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R <~ 50 kpc extended Lyα nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W Lyα > 50 Å) Lyα-emitter with luminosity L Lyα = 2.1 ± 0.32 × 1041 erg s-1 at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence, than simply be a star-forming galaxy clustered around the quasar. Our observations imply that much deeper

  14. QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION

    SciTech Connect

    Hennawi, Joseph F.; Prochaska, J. Xavier

    2013-03-20

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Ly{alpha} emission, resulting from quasar-powered fluorescence, resonant Ly{alpha} scattering, and/or cooling radiation, is expected. A sensitive search (1{sigma} surface-brightness limits of SB{sub Ly{alpha}}{approx_equal}3 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2} arcsec{sup -2}) for diffuse Ly{alpha} emission in the environments of the foreground (predominantly radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale {approx}100 kpc Ly{alpha} emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R {approx}< 50 kpc extended Ly{alpha} nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W{sub Ly{alpha}} > 50 A) Ly{alpha}-emitter with luminosity L{sub Ly{alpha}} = 2.1 {+-} 0.32 Multiplication-Sign 10{sup 41} erg s{sup -1} at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence

  15. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  16. Space ecosynthesis: An approach to the design of closed ecosystems for use in space

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Averner, M. M.

    1978-01-01

    The use of closed ecological systems for the regeneration of wastes, air, and water is discussed. It is concluded that such systems, if they are to be used for the support of humans in space, will require extensive mechanical and physico-chemical support. The reason for this is that the buffering capacity available in small systems is inadequate, and that natural biological and physical regulatory mechanisms rapidly become inoperative. It is proposed that mathematical models of the dynamics of a closed ecological system may provide the best means of studying the initial problems of ecosystem closure. A conceptual and mathematical model of a closed ecosystem is described which treats the biological components as a farm, calculates the rates of flow of elements through the system by mass-balance techniques and control theory postulates, and can evaluate the requirements for mechanical buffering activities. It is suggested that study of the closure of ecosystems can significantly aid in the establishment of general principles of ecological systems.

  17. Quasar Rain

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2015-01-01

    Velocity resolved reverberation mapping (VRRM) has shown clear evidence for inflows in the broad emission line (BEL) region of active galactic nuclei: redshifted BELs at zero lag (AGNs, e.g. Arp 151, Bentz et al. 2010; Grier et al. 2013). While radiative transfer in rotating disks can give shorter red side lags than blue, a zero lag has to be along our line of sight, so it is hard to escape infall. The BEL region is normally considered to be rotating or in outflow so this result is a surprise. Infalling BEL gas cannot fall far without the need to lose angular momentum for accreting gas producing an accretion disk.I suggest that quasar continuum irradiation induced cooling instabilities (Chakravorty et al 2009; Krolik, McKee & Tarter 1981) lead to dense BEL clouds condensing out of the semi-ubiquitous warm absorber (WA) outflows found in AGNs and that these clouds may produce a VRRM inflow signature.Unlike WA gas, dense high column density BEL clouds are hard to accelerate with radiation pressure (Risaliti & Elvis 2010; Mushotzky, Solomon & Strittmatter 1972). BEL clouds will thus stall in the outflow and begin to fall back toward the central black hole after a dynamical time, 'raining out' of the WA medium. If these BEL clouds condense out before these outflows reach escape velocity [v(esc)] then this inflow can potentially produce the observed VRRM signature. As the clouds fall back in they will be moving on elliptical orbits supersonically through the WA gas with Mach number ~(2000 km/s)/(100km/s) ~20. This will produce comet-like structures with narrow opening angles, as seen in asymmetric X-ray absorbing 'eclipses' (Maiolino et al. 2010). They will survive only a few months, as required to avoid forming a disk. For this picture to work the condensation time must be less than the acceleration time to v(esc) and the destruction time must be longer than the dynamical time.

  18. Do quasars have cosmologically long lifetimes

    SciTech Connect

    Chanan, G.A.

    1982-01-01

    Turner and Tyson have independently suggested that the apparent evolution of quasars may be an artifact caused by (unseen) gravitational lenses; some of the problems inherent in the usual picture of space density evolution are thereby avoided. We discuss how these problems may be similarly avoided without invoking any such gravitational effects: apparent (and unreal) density evolution follows as an immediate consequence if quasar lifetimes (the only free parameter in our model) are of the order of 3 x 10/sup 9/ years. If the lifetimes are indeed this long, quasars may occur much less frequently than previously thought but, at the same time, the local density of quasars may have been grossly underestimated.

  19. Plants for space plantations. [crops for closed life support systems

    NASA Technical Reports Server (NTRS)

    Nikishanova, T. I.

    1978-01-01

    Criteria for selection of candidate crops for closed life support systems are presented and discussed, and desired characteristics of candidate higher plant crops are given. Carbohydrate crops, which are most suitable, grown worldwide are listed and discussed. The sweet potato, ipomoea batatas Poir., is shown to meet the criteria to the greatest degree, and the criteria are recommended as suitable for initial evaluation of candidate higher plant crops for such systems.

  20. Ultra Reliable Closed Loop Life Support for Long Space Missions

    NASA Technical Reports Server (NTRS)

    Jones, Harry W.; Ewert, Michael K.

    2010-01-01

    Spacecraft human life support systems can achieve ultra reliability by providing sufficient spares to replace all failed components. The additional mass of spares for ultra reliability is approximately equal to the original system mass, provided that the original system reliability is not too low. Acceptable reliability can be achieved for the Space Shuttle and Space Station by preventive maintenance and by replacing failed units. However, on-demand maintenance and repair requires a logistics supply chain in place to provide the needed spares. In contrast, a Mars or other long space mission must take along all the needed spares, since resupply is not possible. Long missions must achieve ultra reliability, a very low failure rate per hour, since they will take years rather than weeks and cannot be cut short if a failure occurs. Also, distant missions have a much higher mass launch cost per kilogram than near-Earth missions. Achieving ultra reliable spacecraft life support systems with acceptable mass will require a well-planned and extensive development effort. Analysis must determine the reliability requirement and allocate it to subsystems and components. Ultra reliability requires reducing the intrinsic failure causes, providing spares to replace failed components and having "graceful" failure modes. Technologies, components, and materials must be selected and designed for high reliability. Long duration testing is needed to confirm very low failure rates. Systems design should segregate the failure causes in the smallest, most easily replaceable parts. The system must be designed, developed, integrated, and tested with system reliability in mind. Maintenance and reparability of failed units must not add to the probability of failure. The overall system must be tested sufficiently to identify any design errors. A program to develop ultra reliable space life support systems with acceptable mass should start soon since it must be a long term effort.

  1. Noncontact Friction and Force Fluctuations between Closely Spaced Bodies

    SciTech Connect

    Stipe, B. C.; Mamin, H. J.; Stowe, T. D.; Kenny, T. W.; Rugar, D.

    2001-08-27

    Noncontact friction between a Au(111) surface and an ultrasensitive gold-coated cantilever was measured as a function of tip-sample spacing, temperature, and bias voltage using observations of cantilever damping and Brownian motion. The importance of the inhomogeneous contact potential is discussed and comparison is made to measurements over dielectric surfaces. Using the fluctuation-dissipation theorem, the force fluctuations are interpreted in terms of near-surface fluctuating electric fields interacting with static surface charge.

  2. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Observatory in California indicated that the object was likely a binary quasar in the midst of a galaxy merger. Carnegie's Mulchaey then used the 6.5 meter Baade-Magellan telescope at the Las Campanas observatory in Chile to obtain deeper images and more detailed spectroscopy of the merging galaxies. "Just because you see two galaxies that are close to each other in the sky doesn't mean they are merging," says Mulchaey. "But from the Magellan images we can actually see tidal tails, one from each galaxy, which suggests that the galaxies are in fact interacting and are in the process of merging." Thomas Cox, now a fellow at the Carnegie Observatories, corroborated this conclusion using computer simulations of the merging galaxies. When Cox's model galaxies merged, they showed features remarkably similar to what Mulchaey observed in the Magellan images. "The model verifies the merger origin for this binary quasar system," he says. "It also hints that this kind of galaxy interaction is a key component of the growth of black holes and production of quasars throughout our universe." * The authors of the paper published in the Astrophysical Journal are Paul J. Green of the Harvard-Smithsonian Center for Astrophysics, Adam D. Myers of the University of Illinois at Urbana-Champaign, Wayne A. Barkhouse of the University of North Dakota, John S. Mulchaey of the Observatories of the Carnegie Institution for Science, Vardha N. Bennert of the Department of Physics, University of California, Santa Barbara, Thomas J. Cox of the Observatories of the Carnegie Institution for Science, Thomas L. Aldcroft of the Harvard-Smithsonian Center for Astrophysics, and Joan M. Wrobel of National Radio Astronomy Observatory, Socorro, NM. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov

  3. NEAR-INFRARED PHOTOMETRIC PROPERTIES OF 130,000 QUASARS: AN SDSS-UKIDSS-MATCHED CATALOG

    SciTech Connect

    Peth, Michael A.; Ross, Nicholas P.; Schneider, Donald P.

    2011-04-15

    We present a catalog of over 130,000 quasar candidates with near-infrared (NIR) photometric properties, with an areal coverage of approximately 1200 deg{sup 2}. This is achieved by matching the Sloan Digital Sky Survey (SDSS) in the optical ugriz bands to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) in the NIR YJHK bands. We match the {approx}1 million SDSS DR6 Photometric Quasar catalog to Data Release 3 of the UKIDSS LAS (ULAS) and produce a catalog with 130,827 objects with detections in one or more NIR bands, of which 74,351 objects have optical and K-band detections and 42,133 objects have the full nine-band photometry. The majority ({approx}85%) of the SDSS objects were not matched simply because these were not covered by the ULAS. The positional standard deviation of the SDSS Quasar to ULAS matches is {delta}{sub R.A.} = 0.''1370 and {delta}{sub decl.} = 0.''1314. We find an absolute systematic astrometric offset between the SDSS Quasar catalog and the UKIDSS LAS, of |R.A.{sub offset}| = 0.''025 and |decl.{sub offset}| = 0.''040; we suggest the nature of this offset to be due to the matching of catalog, rather than image, level data. Our matched catalog has a surface density of {approx}53 deg{sup -2} for K {<=} 18.27 objects; tests using our matched catalog, along with data from the UKIDSS Deep Extragalactic Survey, imply that our limiting magnitude is i {approx} 20.6. Color-redshift diagrams, for the optical and NIR, show a close agreement between our matched catalog and recent quasar color models at redshift z {approx}< 2.0, while at higher redshifts, the models generally appear to be bluer than the mean observed quasar colors. The gJK and giK color spaces are used to examine methods of differentiating between stars and (mid-redshift) quasars, the key to currently ongoing quasar surveys. Finally, we report on the NIR photometric properties of high, z > 4.6, and very high, z > 5.7, redshift previously discovered quasars.

  4. Near-infrared Photometric Properties of 130,000 Quasars: An SDSS-UKIDSS-matched Catalog

    NASA Astrophysics Data System (ADS)

    Peth, Michael A.; Ross, Nicholas P.; Schneider, Donald P.

    2011-04-01

    We present a catalog of over 130,000 quasar candidates with near-infrared (NIR) photometric properties, with an areal coverage of approximately 1200 deg2. This is achieved by matching the Sloan Digital Sky Survey (SDSS) in the optical ugriz bands to the UKIRT Infrared Digital Sky Survey (UKIDSS) Large Area Survey (LAS) in the NIR YJHK bands. We match the ≈1 million SDSS DR6 Photometric Quasar catalog to Data Release 3 of the UKIDSS LAS (ULAS) and produce a catalog with 130,827 objects with detections in one or more NIR bands, of which 74,351 objects have optical and K-band detections and 42,133 objects have the full nine-band photometry. The majority (~85%) of the SDSS objects were not matched simply because these were not covered by the ULAS. The positional standard deviation of the SDSS Quasar to ULAS matches is δR.A. = 0farcs1370 and δdecl. = 0farcs1314. We find an absolute systematic astrometric offset between the SDSS Quasar catalog and the UKIDSS LAS, of |R.A.offset| = 0farcs025 and |decl.offset| = 0farcs040; we suggest the nature of this offset to be due to the matching of catalog, rather than image, level data. Our matched catalog has a surface density of ≈53 deg-2 for K <= 18.27 objects; tests using our matched catalog, along with data from the UKIDSS Deep Extragalactic Survey, imply that our limiting magnitude is i ≈ 20.6. Color-redshift diagrams, for the optical and NIR, show a close agreement between our matched catalog and recent quasar color models at redshift z <~ 2.0, while at higher redshifts, the models generally appear to be bluer than the mean observed quasar colors. The gJK and giK color spaces are used to examine methods of differentiating between stars and (mid-redshift) quasars, the key to currently ongoing quasar surveys. Finally, we report on the NIR photometric properties of high, z > 4.6, and very high, z > 5.7, redshift previously discovered quasars.

  5. Quantum field theory in spaces with closed timelike curves

    NASA Astrophysics Data System (ADS)

    Boulware, David G.

    1992-11-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 2π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the noncausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the noncausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  6. HST and Keck Snapshot Surveys for Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Gregg, M. D.; Becker, R. H.; Schechter, P. L.; White, R. L.; Wisotzki, L.

    2000-12-01

    Most theories of quasar lensing predict more close separation lenses than are presently known. Deciding whether this deficit is real or an observational selection effect is important for using lenses to constrain the intervening galaxy mass distribution or cosmological models. We are conducting two imaging surveys of bright quasars to search for new examples of gravitational lensing, particularly those with small image separations. After about 200 snapshots during Cycles 8 and 9, the program using the imaging capability of the Space Telescope Imaging Spectrograph (STIS) has found three certain lensed quasars, with separations of 0.64" (Gregg et al. 2000), 1.2", and a surprisingly large 3.4". There are several additional promising candidates. The other survey is being conducted with the Near InfraRed Camera (NIRC) at Keck Observatory. While the NIRC effort has not yet turned up any confirmed lensed quasars, the K-band imaging has detected the lensing galaxy in two of the new STIS systems. We will present our results and analysis to date, including additional ground based follow-up imaging and spectroscopy of the lensed and candidate systems. Support for this work is provided by NASA grants GO-8202 and GO-8631 from STScI, operated by AURA, Inc., under NASA contract NAS5-26555. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. Gregg, M.D., Wisotzki, L., Becker, R.H., Maza, J., Schechter, P. White, R.L., Brotherton, M.S., & Winn, J.N. 2000, AJ, 119, 2535.

  7. Nutritional criteria for closed-loop space food systems

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.

    1980-01-01

    The nutritional requirements for Skylab crews are summarized as a data base for long duration spaceflight nutrient requirements. Statistically significant increases in energy consumption were detected after three months, along with CO2/O2 exhalation during exercise and thyroxine level increases. Linoleic acid amounting to 3-4 g/day was found to fulfill all fat requirements, and carbohydrate and protein (amino acid) necessities are discussed, noting that vigorous exercise programs avoid deconditioning which enhances nitrogen loss. Urinary calcium losses continued at a rate 100% above a baseline figure, a condition which ingestion of vitamin D2 did not correct. Projections are given that spaceflights lasting more than eight years will necessitate recycling of human waste for nutrient growth, which can be processed into highly efficient space food with a variety of tastes.

  8. A CONSTRAINT ON QUASAR CLUSTERING AT z = 5 FROM A BINARY QUASAR

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Eftekharzadeh, Sarah; Myers, Adam D.

    2016-03-15

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada–France–Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ∼135 kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5; the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r{sub 0}){sup −2}, this discovery implies a correlation length of r{sub 0} ≳ 20h{sup −1} Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift.

  9. A Constraint on Quasar Clustering at z = 5 from a Binary Quasar

    NASA Astrophysics Data System (ADS)

    McGreer, Ian D.; Eftekharzadeh, Sarah; Myers, Adam D.; Fan, Xiaohui

    2016-03-01

    We report the discovery of a quasar pair at z = 5 separated by 21″. Both objects were identified as quasar candidates using simple color selection techniques applied to photometric catalogs from the Canada-France-Hawaii Telescope (CFHT) Legacy Survey (CFHTLS). Spectra obtained with the MMT present no discernible offset in redshift between the two objects; on the other hand, there are clear differences in the emission line profiles and in the multiwavelength spectral energy distributions that strongly disfavor the hypothesis that they are gravitationally lensed images of a single quasar. Both quasars are surprisingly bright given their proximity (a projected separation of ˜135 kpc), with i = 19.4 and i = 21.4. Previous measurements of the luminosity function demonstrate that luminous quasars are extremely rare at z = 5 the existence of this pair suggests that quasars have strong small-scale clustering at high redshift. Assuming a real-space correlation function of the form ξ(r) ∝ (r/r0)-2, this discovery implies a correlation length of r0 ≳ 20h-1 Mpc, consistent with a rapid strengthening of quasar clustering at high redshift as seen in previous observations and predicted by theoretical models where feedback effects are inefficient at shutting down black hole growth at high redshift. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  10. XMM-Newton closes in on space's exotic matter

    NASA Astrophysics Data System (ADS)

    2002-11-01

    With ESA's space telescope XMM-Newton, they are now closer to testing this idea. For the first time, XMM-Newton has been able to measure the influence of the gravitational field of a neutron star on the light it emits. This measurement provides much better insight into these objects. Neutron stars are among the densest objects in the Universe. They pack the mass of the sun inside a sphere 10 kilometres across. A sugar cube-sized piece of neutron star weighs over a billion tonnes. Neutron stars are the remnants of exploding stars up to eight times more massive than our Sun. They end their life in a supernova explosion and then collapse under their own gravity. Their interiors may therefore contain a very exotic form of matter. Scientists believe that in a neutron star, the density and the temperatures are similar to those existing a fraction of a second after the Big Bang. They assume that when matter is tightly packed as it is in a neutron star, it goes through important changes. Protons, electrons, and neutrons - the components of atoms - fuse together. It is possible that even the building-blocks of protons and neutrons, the so-called quarks, get crushed together, giving rise to a kind of exotic plasma of 'dissolved' matter. How to find out? Scientists have spent decades trying to identify the nature of matter in neutron stars. To do this, they need to know some important parameters very precisely: if you know a star’s mass and radius, or the relationship between them, you can obtain its compactness. However,no instrument has been advanced enough to perform the measurements needed, until now. Thanks to ESA's XMM-Newton observatory, astronomers have been able for the first time to measure the mass-to-radius ratio of a neutron star and obtain the first clues to its composition. These suggest that the neutron star contains normal, non-exotic matter, although they are not conclusive. The authors say this is a “key first step” and they will keep on with the

  11. The real-space clustering of luminous red galaxies around z < 0.6 quasars in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Norberg, Peder; Porciani, Cristiano

    2009-08-01

    We measure the clustering of a sample of photometrically selected luminous red galaxies (LRGs) around a low-redshift (0.2 < z < 0.6) sample of quasars selected from the Sloan Digital Sky Survey Data Release 5. We make use of a new statistical estimator to obtain precise measurements of the LRG autocorrelations and constrain halo occupation distributions for them. These are used to generate mock catalogues which aid in interpreting our quasar-LRG cross-correlation measurements. The cross-correlation is well described by a power law with slope 1.8 +/- 0.1 and r0 = 6 +/- 0.5h-1Mpc, consistent with observed galaxy correlation functions. We find no evidence for `excess' clustering on 0.1Mpc scales and demonstrate that this is consistent with the results of Serber et al. and Strand, Brunner and Myers, when one accounts for several subtleties in the interpretation of their measurements. Combining the quasar-LRG cross-correlation with the LRG autocorrelations, we determine a large-scale quasar bias bQSO = 1.09 +/- 0.15 at a median redshift of 0.43, with no observed redshift or luminosity evolution. This corresponds to a mean halo mass ~ 1012h-1Msolar, Eddington ratios from 0.01 to 1 and lifetimes less than 107yr. Using simple models of halo occupation, these correspond to a number density of quasar hosts greater than 10-3 h3Mpc-3 and stellar masses less than 1011 h-1Msolar. The small-scale clustering signal can be interpreted with the aid of our mock LRG catalogues, and depends on the manner in which quasars inhabit haloes. We find that our small-scale measurements are inconsistent with quasar positions being randomly subsampled from halo centres above a mass threshold, requiring a satellite fraction >25 per cent.

  12. Changing Look Quasars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.; MacLeod, Chelsea; Anderson, Scott F.; Eracleous, Michael; Ruan, John J.; Runnoe, Jessie C.; Graham, Matthew J.

    2017-01-01

    Accretion onto black holes (BH) illuminates fascinating physics from the stellar mass BHs in Galactic X-ray binaries (XRBs) to the supermassive black holes (SMBH) in Seyferts and quasars. Alas, BH accretion regions are too compact to be spatially resolved. Temporal changes in XRB spectral states have gone a long way to unravel the accretion physics in XRBs, and suggest powerful theoretical and observational analogies to quasars. However, simple mass scaling to SMBHs suggests impractically long timescales (millenia) for accretion state transitions in quasars. However, large spectral state changes in quasars have now been detected that both inform and invigorate debates about accretion theory and the nature of historical quasar classes (e.g., Type 1 vs Type 2). In the last couple of years, a dozen luminous "changing-look quasars" (CLQs) were discovered to exhibit strong, persistent changes in luminosity, accompanied by the dramatic emergence or disappearance of broad emission-line (BEL) components. The availability of repeat spectroscopy for large samples of quasars provided by Sloan Digital Sky Survey (SDSS) and its ongoing Time Domain Spectroscopic Survey (TDSS) now extend this rare and remarkable phenomenon to regimes of luminosity and redshift that overlap the huge cosmological samples of quasars in the SDSS. We review the current understanding of these events, and upcoming possibilities for their detection, characterization and modeling.

  13. The search for and investigation of large quasar groups

    NASA Astrophysics Data System (ADS)

    Komberg, B. V.; Kravtsov, A. V.; Lukash, V. N.

    1996-10-01

    Recently, it was suggested that large concentrations or groups of quasars may trace sites of enhanced matter density at medium and high redshifts, analogous to the way in which galaxy clusters trace them in nearby space. We checked existing quasar data for the presence of such groups. Large quasar groups (LQGs) were identified using a well-known cluster analysis technique and the following selection criteria: (i) an LQG must contain at least 10 quasars; (ii) the number density of quasars in a group must exceed that of the background by at least a factor of 2; (iii) the majority of quasars in a group must have reliable redshifts. Our final list contains 12 such groups, including one reported previously. It was found that most of the quasars in these groups come from deep homogeneous surveys. Further analysis of the spatial distribution of quasars in these surveys shows that: (i) the probability that the detected groups are random is rather small (generally a few per cent); (ii) their sizes range from ~70 to ~160 h^-1 Mpc, which is comparable to the sizes of nearby rich superclusters; (iii) the detected groups all have redshifts 0.5quasar groups and superclusters can be evolutionarily related. We argue that quasar groups could be a common feature of the spatial distribution of medium-redshift quasars, and that the quasars in groups may belong to concentrations of young galaxy clusters and groups (distant superclusters) and hence be biased tracers of the large-scale structure of matter distribution in the early Universe. Theoretical implications, as well as other observations needed to test this point, are discussed.

  14. THE EXTREME ULTRAVIOLET DEFICIT AND MAGNETICALLY ARRESTED ACCRETION IN RADIO-LOUD QUASARS

    SciTech Connect

    Punsly, Brian

    2014-12-20

    The Hubble Space Telescope composite quasar spectra presented in Telfer et al. show a significant deficit of emission in the extreme ultraviolet for the radio-loud component of the quasar population (RLQs) compared to the radio-quiet component of the quasar population. The composite quasar continuum emission between 1100 Å and ∼580 Å is generally considered to be associated with the innermost regions of the accretion flow onto the central black hole. The deficit between 1100 Å and 580 Å in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. It is proposed that this can be the result of islands of large-scale magnetic flux in RLQs that are located close to the central black hole that remove energy from the accretion flow as Poynting flux (sometimes called magnetically arrested accretion). These magnetic islands are natural sites for launching relativistic jets. Based on the Telfer et al. data and the numerical simulations of accretion flows in Penna et al., the magnetic islands are concentrated between the event horizon and an outer boundary of <2.8 M (in geometrized units) for rapidly rotating black holes and <5.5 M for modestly rotating black holes.

  15. Physicochemical bases of autonomous maintenance of humidity and temperature in closed spaces

    NASA Astrophysics Data System (ADS)

    Aristov, Yu. I.; Vasiliev, L. L.; Glaznev, I. S.; Gordeeva, L. G.; Zhuravlev, A. S.; Kovaleva, M. N.

    2012-09-01

    An inexpensive adsorption humidistat working in the static and dynamic regimes is proposed. This humidistat is designed for maintenance of the relative humidity and temperature in a closed space at levels (15-18%, 20-25°C) necessary for reliable storage of rare books, manuscripts, pictures, and museum valuables and for their safe transportation in the process of visiting exhibitions. Principles of maintenance of the relative humidity in a closed space with the use of chemical substances and autonomous thermostatting of this space are considered. Results of testing of some new moisture buffers under laboratory and real conditions are presented.

  16. Powerful Quasar Outflows at High Redshifts

    NASA Astrophysics Data System (ADS)

    Aljanahi, Sara; Robert Scott Barrows

    2017-01-01

    Powerful quasar outflows can be driven by radiation pressure or radio jets, and they are capable of effecting the evolution of their host galaxies, particularly at high-redshifts (z~2)) when the quasar density peaks. We present a multi-wavelength analysis of 131 quasar outflows at high-redshifts (0.8quasar energy is coupled with the energy being emitted by the radiation pressure from the accretion disk. Three of the quasars are found in the Hubble Space Telescope archives, with two of them showing clear signs of galaxy interactions/mergers, and a fraction of 0.4 show evidence of interactions from SDSS imaging. These combined results suggests that galaxy interactions may be the triggers of enhanced accretion onto the nuclear supermassive black holes of this sample, with the corresponding enhanced radiation pressure driving the outflows. Furthermore, the high-redshift nature of this sample has pushed the systematic study of quasar outflows closer to the epoch in which quasar feedback is likely to have been important in galaxy evolution.

  17. Causes and effects of the first quasars.

    PubMed Central

    Rees, M J

    1993-01-01

    The light we observe from the most distant known quasars set out when the Universe was about 200 times denser than it is now and less than one-tenth of its present age. The existence of these objects implies that galaxy formation had already, at that early epoch, proceeded to the stage when massive (>10(8)M[symbol, see text]) objects had accumulated in the centers of at least some young galaxies. A specific model is presented to show that the evolution and luminosity function of quasars are compatible with the cold dark matter cosmogony. Most big galaxies probably passed through a quasar phase; the remnant black holes in nearby galaxies may reveal themselves via the flares that occur whenever a star passes too close to them and gets tidally disrupted. The rich absorption spectra of quasars serve as a probe of the intervening medium. The gas responsible for the Lyman alpha absorption lines may be due to primordial gas gravitationally confined in minihalos of dark matter--shallow potential wells whose evolution and relation to dwarf galaxies are briefly discussed. The patchy heat input into the intergalactic medium from early quasars could modulate the environment in which galaxies form, leading to large-scale spatial correlations in the galaxy distribution. This review concludes with general comments on the prospects for a fully quantitative understanding of galaxy formation. PMID:11607397

  18. Doppler interpretation of quasar red shifts.

    PubMed

    Zapolsky, H S

    1966-08-05

    The hypothesis that the quasistellar sources (quasars) are local objects moving with velocities close to the speed of light is examined. Provided there is no observational cutoff on apparent bolometric magnitude for the quasars, the transverse Doppler effect leads to the expectation of fewer blue shifts than red shifts for an isotropic distribution of velocities. Such a distribution also yields a function N(z), the number of objects with red shift less than z which is not inconsistent with the present data. On the basis of two extreme assumptions concerning the origin of such rapidly moving sources, we computed curves of red shift plotted against magnitude. In particular, the curve obtained on the assumption that the quasars originated from an explosion in or nearby our own galaxy is in as good agreement with the observations as the curve of cosmological red shift plotted against magnitude.

  19. On π-closed sets and π-normal property in topological spaces

    NASA Astrophysics Data System (ADS)

    Saad Thabit, Sadeq Ali; Kamarulhaili, Hailiza

    2013-09-01

    In this paper, we present some results on π-normal and nearly paracompact spaces. Some relationships between π-normality and near paracompactness are given. We give some conditions on two spaces X and Y so that the product space X × Y will be π-normal. We show that if the product space X × I is π-normal, then the subspace X × {0} is also π-normal. We also look into π-closed and π-open sets in subspaces as well as in finite product spaces. Some various properties of π-closed and π-open sets are proved and some examples/counterexamples are given.

  20. NASA's Chandra Finds Evidence for Quasar Ignition

    NASA Astrophysics Data System (ADS)

    2006-03-01

    of gas into the black hole releases a tremendous amount of energy, and a quasar is born. The power output of the quasar dwarfs that of the surrounding galaxy and expels gas from the galaxy in what has been termed a galactic superwind. The Chandra data provide the best evidence yet for a quasar-produced superwind. Hubble Optical Image of 4C37.43 Hubble Optical Image of 4C37.43 Over a period of about 100 million years, the superwind will drive all the gas away from the central regions of the galaxy, quenching both star formation and further black hole growth. The quasar phase will end and the galaxy will settle down to a relatively quiet life. The tranquility of the galaxy will be interrupted from time to time as a small satellite galaxy is captured and provides food for the otherwise dormant supermassive black hole. Other members of the research team were J. Patrick Henry, also of the University of Hawaii, and Gabriela Canalizo of the University of California, Riverside. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory provides science support and controls flight operations from the Chandra X-ray Center in Cambridge, Mass. http://chandra.harvard.edu and http://chandra.nasa.gov

  1. Quasar Metallicities and Host Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Leah, Simon E.; Hamann, F. W.

    2006-12-01

    From studies of galaxies in the local Universe we find the masses of the galactic spheroidal component corresponds with the mass of the central supermassive black hole (SMBH). This relation is known as the M(gal) M(BH) relation, and suggests a close relationship between the formation of the galaxy and the black hole. We study the metallicities near quasars at high redshift to observe this formation process in action. Associated absorption lines (AALs) provide us with a unique tool for this study, because these lines have a high probability of forming close to the quasar. Most of the work so far, using the emission lines, suggests that quasar environments are typically metal rich, with gas-phase metallicities near solar or higher at all observed redshifts. However, other independant abundance checks, such as AALs, are essential in order to confirm these results. We use very high resolution echelle spectra from VLT-UVES for 8 high redshift (z of 2 to z of 4.6) quasars, selected to contain candidate intrinsic absorbers, and ecompassing a typical rest-frame spectral range from approximatly 900 Angstroms to 2500 Angstroms, designed to include at least Lyman alpha and C IV spectral features. We perform one of the first analyses of absorption line metallicities in high redshift quasars and present lower limits on column densities, as well as estimates for the absorber locations relative to the quasar. We place rough estimates on the abundances where possible. We find covering fractions which vary with velocity, and a significant fraction of absorption lines which exhibit variability, indicating their intrinsic nature. Saturated lines inhibit concrete abundance analysis, but present excellent opportunities for future research proposals.

  2. Quasar Metallicities and Host Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Simon, Leah; Hamann, F.

    2007-12-01

    From studies of galaxies in the local Universe we find the masses of the galactic spheroidal component corresponds with the mass of the central supermassive black hole (SMBH). This relation is known as the M(gal) - M(BH) relation, and suggests a close relationship between the formation of the galaxy and the black hole. We study the metallicities near quasars at high redshift to observe this formation process in action. Associated absorption lines (AALs) provide us with a unique tool for this study, because these lines have a high probability of forming close to the quasar. Most of the work so far, using the emission lines, suggests that quasar environments are typically metal rich, with gas-phase metallicities near solar or higher at all observed redshifts. However, other independent abundance checks, such as AALs, are essential in order to confirm these results. We use very high resolution echelle spectra from VLT-UVES, Keck-HIRES and Magellan-MIKE for 18 high redshift (z of 2 to z of 4.6) quasars, selected to contain candidate intrinsic absorbers, and encompassing a typical rest-frame spectral range from approximately 900 Angstroms to 2500 Angstroms, designed to include at least Lyman alpha and C IV spectral features. We perform one of the first analyses of absorption line metallicities in high redshift quasars and present column densities, as well as estimates for the absorber locations relative to the quasar. We place solid limits on the C/H abundances, and find a wide range of values, from one hundredth solar to several times solar. We find covering fractions which vary with velocity, indicating the intrinsic nature of the absorbing gas. Saturated lines inhibit concrete abundance analysis in some systems, but are still useful for placing limits based on Gaussian fits to the lines.

  3. THE HISTORY AND ENVIRONMENT OF A FADED QUASAR: HUBBLE SPACE TELESCOPE OBSERVATIONS OF HANNY'S VOORWERP AND IC 2497

    SciTech Connect

    Keel, William C.; Manning, Anna; Lintott, Chris J.; Schawinski, Kevin; Bennert, Vardha N.; Thomas, Daniel; Chojnowski, S. Drew; Van Arkel, Hanny; Lynn, Stuart

    2012-08-15

    We present Hubble Space Telescope imaging and spectroscopy, along with supporting Galaxy Evolution Explorer and ground-based data, for the extended high-ionization cloud known as Hanny's Voorwerp, near the spiral galaxy IC 2497. Wide Field Camera 3 images show complex dust absorption near the nucleus of IC 2497. The galaxy core in these data is, within the errors, coincident with the very long baseline interferometry core component marking the active nucleus. Space Telescope Imaging Spectrograph (STIS) optical spectra show the active galactic nucleus (AGN) to be a type 2 Seyfert galaxy of rather low luminosity. The derived ionization parameter log U = -3.5 is in accordance with the weak X-ray emission from the AGN. We find no high-ionization gas near the nucleus, adding to the evidence that the AGN is currently at a low radiative output (perhaps with the central black hole having switched to a mode dominated by kinetic energy). The nucleus is accompanied by an expanding ring of ionized gas Almost-Equal-To 500 pc in projected diameter on the side opposite Hanny's Voorwerp. Where sampled by the STIS slit, this ring has Doppler offset Almost-Equal-To 300 km s{sup -1} from the nucleus, implying a kinematic age <7 Multiplication-Sign 10{sup 5} years. Narrowband [O III] and H{alpha}+[N II] Advanced Camera for Surveys images show fine structure in Hanny's Voorwerp, including limb-brightened sections suggesting modest interaction with a galactic outflow and small areas where H{alpha} is strong. We identify these latter regions as regions ionized by recent star formation, in contrast to the AGN ionization of the entire cloud. These candidate 'normal' H II regions contain blue continuum objects, whose colors are consistent with young stellar populations; they appear only in a 2 kpc region toward IC 2497 in projection, perhaps meaning that the star formation was triggered by compression from a narrow outflow. The ionization-sensitive ratio [O III]/H{alpha} shows broad bands

  4. Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields

    PubMed Central

    Yan, Xinqiang; Xue, Rong; Zhang, Xiaoliang

    2015-01-01

    Radiofrequency (RF) coil arrays with high count of elements, e.g., closely-spaced multi-row arrays, exhibit superior parallel imaging performance in MRI. However, it is technically challenging and time-consuming to build multi-row arrays due to complex coupling issues. This paper presents a novel and simple method for closely-spaced multi-row RF array designs. Induced current elimination (ICE) decoupling method has shown the capability of reducing coupling between microstrip elements from different rows. In this study, its capability for decoupling array elements from the same row was investigated and validated by bench tests, with an isolation improvement from −8.9 dB to −20.7 dB. Based on this feature, a closely-spaced double-row microstrip array with 16 elements was built at 7T. S21 between any two elements of the 16-channel closely-spaced was better than −14 dB. In addition, its feasibility and performance was validated by MRI experiments. No significant image reconstruction- related noise amplifications were observed for parallel imaging even when reduced factor (R) achieves 4. The experimental results demonstrated that the proposed design might be a simple and efficient approach in fabricating closely-spaced multi-row RF arrays. PMID:26508810

  5. Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields.

    PubMed

    Yan, Xinqiang; Xue, Rong; Zhang, Xiaoliang

    2015-11-01

    Radiofrequency (RF) coil arrays with high count of elements, e.g., closely-spaced multi-row arrays, exhibit superior parallel imaging performance in MRI. However, it is technically challenging and time-consuming to build multi-row arrays due to complex coupling issues. This paper presents a novel and simple method for closely-spaced multi-row RF array designs. Induced current elimination (ICE) decoupling method has shown the capability of reducing coupling between microstrip elements from different rows. In this study, its capability for decoupling array elements from the same row was investigated and validated by bench tests, with an isolation improvement from -8.9 dB to -20.7 dB. Based on this feature, a closely-spaced double-row microstrip array with 16 elements was built at 7T. S21 between any two elements of the 16-channel closely-spaced was better than -14 dB. In addition, its feasibility and performance was validated by MRI experiments. No significant image reconstruction- related noise amplifications were observed for parallel imaging even when reduced factor (R) achieves 4. The experimental results demonstrated that the proposed design might be a simple and efficient approach in fabricating closely-spaced multi-row RF arrays.

  6. Quasars: A Progress Report.

    ERIC Educational Resources Information Center

    Weedman, Daniel

    1988-01-01

    Reports on some of the discoveries over the last quarter century regarding quasars including spectra and energy sources, formation and evolution, and cosmological probes. Describes some of the fundamental mysteries that remain. (CW)

  7. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  8. Deployable space manipulator closed-loop control, ideas and possibilities of using GPS as a sensor

    NASA Astrophysics Data System (ADS)

    Romero, I.; Vignjevic, R.

    2002-07-01

    In the area of study of the dynamics and control of large flexible spacecraft one of the most challenging areas is that of large space-based robotic manipulators. The Deployable Space Manipulator is a large manipulator concept for Low Earth Orbit operation with one rotational joint and one prismatic joint. In this paper the dynamics of the manipulator undergoing large rotational motion while carrying a payload and extending its length are developed and the need for closed loop control is discussed. An output feedback closed loop control approach is presented and a concept for using GPS antennas mounted on the structure as feedback sensor for the control law is presented and discussed.

  9. Closed Crawl Space Performance: Proof of Concept in the Production Builder Marketplace

    SciTech Connect

    Malkin-Weber, Melissa; Dastur, Cyrus; Mauceri, Maria; Hannas, Benjamin

    2008-10-30

    This overview is intended to be a very concise, limited summary of the key project activities discussed in the detailed report that follows. Due to the large scope of this project, the detailed report is broken into three individually titled sections. Each section repeats key background information, with the goal that the sections will eventually stand alone as complete reports on the major activities of the project. The information presented herein comes from ongoing research, so please note that all observations, findings and recommendations presented are preliminary and subject to change in the future. We invite and welcome your comments and suggestions for improving the project. Advanced Energy completed its first jointly-funded crawl space research project with the Department of Energy in 2005. That project, funded under award number DE-FC26-00NT40995 and titled 'A Field Study Comparison of the Energy and Moisture Performance Characteristics of Ventilated Versus Sealed Crawl Spaces in the South' demonstrated the substantial energy efficiency and moisture management benefits that result from using properly closed crawl space foundations for residential construction instead of traditional wall vented crawl space foundations. Two activities of this first project included (1) an assessment of ten existing homes to document commonly observed energy and moisture failures associated with wall-vented crawl space foundations and (2) a detailed literature review that documented both the history of closed crawl space research and the historical lack of scientific justification for building code requirements for crawl space ventilation. The most valuable activity of the 2005 project proved to be the field demonstration of various closed crawl space techniques, which were implemented in a set of twelve small (1040 square feet), simply designed homes in eastern North Carolina. These homes had matched envelope, mechanical and architectural designs, and comparable performance

  10. Probabilistic Analysis of Impact of Wake Vortices on Closely-Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Hardy, Gordon H.; Rossow, Vernon J.; Meyn, Larry A.

    2005-01-01

    One of the primary constraints on the capacity of the nation's air transportation system is the landing capacity of its largest airports. Many airports with closely spaced parallel runways suffer a severe runway acceptance rate when the weather conditions do not allow full utilization of these parallel runways. The present requirement for simultaneous independent landings in Instrument Meteorological Conditions, IMC, is at least 4300 feet of lateral runway spacing (as close as 3000 feet for runways with a Precision Runway Monitor). Operations in Visual Meteorological Conditions, VMC, to Closely Spaced Parallel Approaches only require a lateral runway spacing greater than 750 feet. A study by Hardy and Lewis integrated and extended earlier studies and concepts in lateral traffic separation, longitudinal station keeping, wake prediction, wake display, and the concepts of R N P into a preliminary system concept for Closely Spaced Parallel Approaches in IMC. This system allows IMC airport acceptance rates to approach those for VMC. The system concept that was developed, presented traffic and wake information on the NAVigation Display, NAV, and developed operational procedures for a mix of conventional and Runway Independent Aircraft with different approach speeds to Closely Spaced Parallel Runways. This paper first describes some improvements made on the technology needed to better predict and formulate a probabilistic representation for the time-dependent motion and spreading of the hazardous region associated with the lift-generated vortex wakes of preceding aircraft. In this way, the time at which the vortex wakes of leading aircraft intrude into the airspace of adjacent flight-corridor/runway combinations can be more reliably predicted. Such a prediction is needed because it determines restraints to be placed on in-trail separation distances; or, the allowable time intervals between aircraft executing nearly simultaneous landings or takeoffs on very closely-spaced

  11. OBSCURATION BY GAS AND DUST IN LUMINOUS QUASARS

    SciTech Connect

    Usman, S. M.; Murray, S. S.; Hickox, R. C.; Brodwin, M.

    2014-06-10

    We explore the connection between absorption by neutral gas and extinction by dust in mid-infrared (IR) selected luminous quasars. We use a sample of 33 quasars at redshifts 0.7 < z ≲ 3 in the 9 deg{sup 2} Boötes multiwavelength survey field that are selected using Spitzer Space Telescope Infrared Array Camera colors and are well-detected as luminous X-ray sources (with >150 counts) in Chandra observations. We divide the quasars into dust-obscured and unobscured samples based on their optical to mid-IR color, and measure the neutral hydrogen column density N {sub H} through fitting of the X-ray spectra. We find that all subsets of quasars have consistent power law photon indices Γ ≈ 1.9 that are uncorrelated with N {sub H}. We classify the quasars as gas-absorbed or gas-unabsorbed if N {sub H} > 10{sup 22} cm{sup –2} or N {sub H} < 10{sup 22} cm{sup –2}, respectively. Of 24 dust-unobscured quasars in the sample, only one shows clear evidence for significant intrinsic N {sub H}, while 22 have column densities consistent with N {sub H} < 10{sup 22} cm{sup –2}. In contrast, of the nine dust-obscured quasars, six show evidence for intrinsic gas absorption, and three are consistent with N {sub H} < 10{sup 22} cm{sup –2}. We conclude that dust extinction in IR-selected quasars is strongly correlated with significant gas absorption as determined through X-ray spectral fitting. These results suggest that obscuring gas and dust in quasars are generally co-spatial, and confirm the reliability of simple mid-IR and optical photometric techniques for separating quasars based on obscuration.

  12. The Extreme Ultraviolet Variability of Quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Marziani, Paola; Zhang, Shaohua; Muzahid, Sowgat; O'Dea, Christopher P.

    2016-10-01

    We study the extreme ultraviolet (EUV) variability (rest frame wavelengths 500-920 Å) of high-luminosity quasars using Hubble Space Telescope (HST) (low to intermediate redshift sample) and Sloan Digital sky Survey (SDSS) (high redshift sample) archives. The combined HST and SDSS data indicates a much more pronounced variability when the sampling time between observations in the quasar rest frame is \\gt 2× {10}7 {{s}} compared to \\lt 1.5× {10}7 s. Based on an excess variance analysis, for time intervals \\lt 2× {10}7 {{s}} in the quasar rest frame, 10% of the quasars (4/40) show evidence of EUV variability. Similarly, for time intervals \\gt 2× {10}7 {{s}} in the quasar rest frame, 55% of the quasars (21/38) show evidence of EUV variability. The propensity for variability does not show any statistically significant change between 2.5× {10}7 {{s}} and 3.16× {10}7 {{s}} (1 year). The temporal behavior is one of a threshold time interval for significant variability as opposed to a gradual increase on these timescales. A threshold timescale can indicate a characteristic spatial dimension of the EUV region. We explore this concept in the context of the slim disk models of accretion. We find that for rapidly spinning black holes, the radial infall time to the plunge region of the optically thin surface layer of the slim disk that is responsible for the preponderance of the EUV flux emission (primarily within 0-7 black hole radii from the inner edge of the disk) is consistent with the empirically determined variability timescale.

  13. Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Pilot non-conformance to alerting system commands has been noted in general and to a TCAS-like collision avoidance system in a previous experiment. This paper details two experiments studying collision avoidance during closely-spaced parallel approaches in instrument meteorological conditions (IMC), and specifically examining possible causal factors of, and design solutions to, pilot non-conformance.

  14. Two to Tango? Binary Quasars, their Environments, and the Merger Hypothesis

    NASA Astrophysics Data System (ADS)

    Green, Paul

    2008-09-01

    Merger/feedback scenarios linking AGN and galaxy evolution to cosmological structure formation seem wildly successful. Close quasar pairs, which are rare but show a significant excess over the extrapolated large-scale quasar correlation function, are the strongest candidates for merger triggering we have. But a competing theory posits that their excess is only due to their inhabiting locally overdense environments. To address this controversy, we propose to observe 9 close quasar pairs. Their X-ray luminosity, spectra, and broadband SEDs will be compared to hundreds of isolated SDSS quasars already imaged and analyzed. Proposed NOAO 4-meter imaging provides complementary tests for environmental overdensities.

  15. Quasar Absorption Studies

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  16. Engineering of closed ecological system in space and inter-organismal interactions.

    PubMed

    Yamashita, Masamichi

    2003-06-01

    Space agriculture is a concept of synthesis and operation of closed ecological system for controlling living environment and supplying materials in order to sustain life and to meet metabolic needs of space crew. It revitalizes metabolites and other excretion of crew for their recycled usage. It is an advanced concept for life support for long and large scaled manned space missions, where open loop system for materials cycle is not feasible to apply. Several issues, such as cost-benefit analysis with considering benefits of amenity and psychological factors of crew, are discussed in this essay, together with reliability and productivity of biological systems. Studies on plant physiology for inter-organismal interaction contribute to design work for space agriculture, and associate with our engagements to our future, sustainable development of our civilization both on the earth and extending to outer space.

  17. Negative Pressure Wound Therapy on Closed Surgical Wounds With Dead Space

    PubMed Central

    Suh, Hyunsuk; Lee, A-Young; Park, Eun Jung; Hong, Joon Pio

    2016-01-01

    Background Closed incisional wound surgery frequently leaves dead space under the repaired skin, which results in delayed healing. The purpose of this study was to evaluate the effect of negative pressure wound therapy (NPWT) on incisional wounds with dead space after primary closure by evaluating the fluid volume through the suction drain, blood flow of the skin, tensile strength, and histology of the wounds. Methods Bilateral 25-cm-long incisional wounds with dead space were created on the back of 6 pigs by partially removing the back muscle and then suturing the skin with nylon sutures. NPWT (experimental group) or gauze dressing (control group) was applied over the closed incision for 7 days. Analysis of the wound included monitoring the amount of closed suction drain, blood perfusion unit, tensile strength of the repaired skin, and histology of the incision site. Results The drainage amount was significantly reduced in the experimental group (49.8 mL) compared to the control group (86.2 mL) (P = 0.046). Skin perfusion was increased in the experimental group with statistical significance compared to the control group (P = 0.0175). Collagen staining was increased in the experimental group. The tensile strength of the incision site was significantly higher in the experimental group (24.6 N at 7 days, 61.67 N at 21 days) compared to the control group (18.26 N at 7 days, 50.05 N at 21 days) (P = 0.02). Conclusion This study explains some of the mechanism for using NPWT in closed incision wounds with dead space. It demonstrates that NPWT significantly reduces drainage amount, increases skin perfusion, increases tensile strength, and has the tendency to promote collagen synthesis for closed wound with dead space indicating enhanced healing. PMID:25003432

  18. CONSTRAINING SUB-PARSEC BINARY SUPERMASSIVE BLACK HOLES IN QUASARS WITH MULTI-EPOCH SPECTROSCOPY. I. THE GENERAL QUASAR POPULATION

    SciTech Connect

    Shen, Yue; Liu, Xin; Loeb, Abraham; Tremaine, Scott

    2013-09-20

    We perform a systematic search for sub-parsec binary supermassive black holes (BHs) in normal broad-line quasars at z < 0.8, using multi-epoch Sloan Digital Sky Survey (SDSS) spectroscopy of the broad Hβ line. Our working model is that (1) one and only one of the two BHs in the binary is active; (2) the active BH dynamically dominates its own broad-line region (BLR) in the binary system, so that the mean velocity of the BLR reflects the mean velocity of its host BH; (3) the inactive companion BH is orbiting at a distance of a few R{sub BLR}, where R{sub BLR} ∼ 0.01-0.1 pc is the BLR size. We search for the expected line-of-sight acceleration of the broad-line velocity from binary orbital motion by cross-correlating SDSS spectra from two epochs separated by up to several years in the quasar rest frame. Out of ∼700 pairs of spectra for which we have good measurements of the velocity shift between two epochs (1σ error ∼40 km s{sup –1}), we detect 28 systems with significant velocity shifts in broad Hβ, among which 7 are the best candidates for the hypothesized binaries, 4 are most likely due to broad-line variability in single BHs, and the rest are ambiguous. Continued spectroscopic observations of these candidates will easily strengthen or disprove these claims. We use the distribution of the observed accelerations (mostly non-detections) to place constraints on the abundance of such binary systems among the general quasar population. Excess variance in the velocity shift is inferred for observations separated by longer than 0.4 yr (quasar rest frame). Attributing all the excess to binary motion would imply that most of the quasars in this sample must be in binaries, that the inactive BH must be on average more massive than the active one, and that the binary separation is at most a few times the size of the BLR. However, if this excess variance is partly or largely due to long-term broad-line variability, the requirement of a large population of close

  19. THE COLOR VARIABILITY OF QUASARS

    SciTech Connect

    Schmidt, Kasper B.; Rix, Hans-Walter; Knecht, Matthias; Hogg, David W.; Shields, Joseph C.; Maoz, Dan; Bovy, Jo

    2012-01-10

    We quantify quasar color variability using an unprecedented variability database-ugriz photometry of 9093 quasars from Sloan Digital Sky Survey (SDSS) Stripe 82, observed over 8 years at {approx}60 epochs each. We confirm previous reports that quasars become bluer when brightening. We find a redshift dependence of this blueing in a given set of bands (e.g., g and r), but show that it is the result of the flux contribution from less-variable or delayed emission lines in the different SDSS bands at different redshifts. After correcting for this effect, quasar color variability is remarkably uniform, and independent not only of redshift, but also of quasar luminosity and black hole mass. The color variations of individual quasars, as they vary in brightness on year timescales, are much more pronounced than the ranges in color seen in samples of quasars across many orders of magnitude in luminosity. This indicates distinct physical mechanisms behind quasar variability and the observed range of quasar luminosities at a given black hole mass-quasar variations cannot be explained by changes in the mean accretion rate. We do find some dependence of the color variability on the characteristics of the flux variations themselves, with fast, low-amplitude, brightness variations producing more color variability. The observed behavior could arise if quasar variability results from flares or ephemeral hot spots in an accretion disk.

  20. DISCOVERY OF THE DISTURBED RADIO MORPHOLOGY IN THE INTERACTING BINARY QUASAR FIRST J164311.3+315618

    SciTech Connect

    Kunert-Bajraszewska, Magdalena; Janiuk, Agnieszka

    2011-08-01

    We report the high-resolution radio observations and the subsequent analysis of the radio-loud compact steep spectrum quasar FIRST J164311.3+315618, one of the members of a binary system. The second component of the system is a radio-quiet active galactic nucleus. The projected separation of this pair is 2.''3 (15 kpc); it is one of the smallest-known-separation binary quasars. The multi-band images of this binary system made with the Hubble Space Telescope show that the host galaxy of the radio-loud quasar is highly disturbed. The radio observations presented here were made with the Multi-Element Radio-Linked interferometer network (MERLIN) at 1.66 GHz and 5 GHz. We show that the radio morphology of FIRST J164311.3+315618 is complex on both frequencies and exhibits four components that indicate the intermittent activity with a possible rapid change of the jet direction and/or restarting of the jet due to the interaction with the companion. The radio components that are no longer powered by the jet can quickly fade away. We suggest that this makes the potential distortions of the radio structure short-lived phenomena. Our numerical simulations show that the influence of the companion can lead to prolonged current and future activities. FIRST J164311.3+315618 is an unusual and statistically very rare low redshift binary quasar wherein the first close encounter is probably just taking place.

  1. Wake Encounter Analysis for a Closely Spaced Parallel Runway Paired Approach Simulation

    NASA Technical Reports Server (NTRS)

    Mckissick,Burnell T.; Rico-Cusi, Fernando J.; Murdoch, Jennifer; Oseguera-Lohr, Rosa M.; Stough, Harry P, III; O'Connor, Cornelius J.; Syed, Hazari I.

    2009-01-01

    A Monte Carlo simulation of simultaneous approaches performed by two transport category aircraft from the final approach fix to a pair of closely spaced parallel runways was conducted to explore the aft boundary of the safe zone in which separation assurance and wake avoidance are provided. The simulation included variations in runway centerline separation, initial longitudinal spacing of the aircraft, crosswind speed, and aircraft speed during the approach. The data from the simulation showed that the majority of the wake encounters occurred near or over the runway and the aft boundaries of the safe zones were identified for all simulation conditions.

  2. The Pan-STARRS1 z>6 quasar survey: More than 100 quasars within the first Gyr of the universe

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Banados, Eduardo; Venemans, Bram; Decarli, Roberto; Farina, Emanuele; Mazzucchelli, Chiara; Fan, Xiaohui; Chambers, Kenneth C.

    2016-01-01

    Quasars are the most luminous non-transient sources in the Universe. As such, they are ideal probes of the redshift range z=6-7, a critical phase in cosmic history, when the Universe is emerging from the dark ages. Over the last three years we have exploited the Pan-STARRS1 survey, more than doubling the number of known z>5.5 quasars (tripling the number of z>6 quasars in the southern sky, and discovering 4 of the 9 quasars known at z>6.5). This seach significantly extended the sampled parameter space in terms of quasar luminosities and redshift coverage. Pioneering studies already demostrate the intrumental role of QSOs in probing the very early phases of galaxy formation and black hole growth within 1 Gyr from the Big Bang: a) billion solar masses black holes are already in place, b) they are surrounded by massive reservoirs of cold gas, and c) the neutral fraction of the intergalactic medium rapidly drops after z~6, thus marking the end of the epoch of reionization. Our significantly enlarged sample marks the transition phase from studies of individual sources to statistical studies of the high-z quasar population. We present some of the comprehensive multiwavelength characterization of the high-z quasar population and their environment (our on-going efforts include deep NIR spectroscopy, ALMA, NOEMA, HST, Spitzer, and JVLA observations).

  3. Space Physics of Close-in Exoplanets and its Implications for Planet Habitability

    NASA Astrophysics Data System (ADS)

    Cohen, Ofer

    2015-04-01

    The search for habitable exoplanets is currently focused on planets orbiting M-dwarf stars, due to the close proximity of the habitable zone to the star. However, the traditional habitability definition does not account for the physical space environment near the planets, which can be extreme at close-in orbits, and can lead to erosion of te planetary atmosphere. In order to sustain their atmosphers, M-dwarf planets need to have either an intrinsic magnetic field, or a thick atmosphere. Here we present a set of numerical magnetohydrodynamic simulations of the interaction of an Earth-like magnetized planet and a Venus-like non-magnetized planet with the stellar wind of M-dwarf star. We study space physics aspects of these interactions and their implications for planet habitability

  4. METALLICITY AND QUASAR OUTFLOWS

    SciTech Connect

    Wang, Huiyuan; Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  5. A Quasar Turns On

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    The intermediate Palomar Transient Factory (iPTF) has discovered a quasar the brightly-shining, active nucleus of a galaxy abruptly turning on in what appears to be the fastest such transition ever seen in such an object.A Rapid TransitionQuasars are expected to show variations in brightness on timescales of hours to millions of years, but its not often that we get to study their major variability in real time! So far, weve discovered only a dozen changing-look quasars active galactic nuclei that exhibit major changes in their spectral class and brightness between observations. Roughly half of these were quasars that turned on and half were quasars that turned off, generally on timescales of maybe 5 or 10 years.The dramatic change in spectrum of iPTF 16bco between the archival SDSS data from 2004 (bottom) and the follow-up spectroscopy from Keck 2+DEIMOS in 2016 (top). [Adapted from Gezari et al. 2017]In June 2016, however, a team of scientists led by Suvi Gezari (University of Maryland) discovered iPTF 16bco, a nuclear transient that wasnt there the last time Palomar checked in 2012. A search through archival Sloan Digital Sky Survey and GALEX data in addition to some follow-up X-ray imaging and spectroscopic observations told the team what they needed to know: iPTF 16bco is a quasar that only just turned on within the 500 days preceding the iPTF observations.This source, in fact, is a 100-million-solar-mass black hole located at the center of a galaxy at a redshift of z= 0.237. In just over a year, the source changed classification from a galaxy with weak narrow-line emission to a quasar with characteristic strong, broad emission lines and a ten-fold increase in continuum brightness! What caused this sudden transition?Instabilities at Fault?iPTF 16bco and the other known changing-look quasars with disappearing (red circles) and appearing (blue circles) broad-line emission. [Adapted from Gezari et al. 2017]Gezari and collaborators used the large number of recent

  6. The luminosity function of quasars

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1995-01-01

    We propose a new evolutionary model for the optical luminosity function of quasars. Our analytical model is derived from fits to the empirical luminosity function estimated by Hartwick and Schade and Warren, Hewett, and Osmer on the basis of more than 1200 quasars over the range of redshifts 0 approximately less than z approximately less than 4.5. We find that the evolution of quasars over this entire redshift range can be well fitted by a Gaussian distribution, while the shape of the luminosity function can be well fitted by either a double power law or an exponential L(exp 1/4) law. The predicted number counts of quasars, as a function of either apparent magnitude or redshift, are fully consistent with the observed ones. Our model indicates that the evolution of quasars reaches its maximum at z approximately = 2.8 and declines at higher redshifts. An extrapolation of the evolution to z approximately greater than 4.5 implies that quasars may have started their cosmic fireworks at z(sub f) approximately = 5.2-5.5. Forthcoming surveys of quasars at these redshifts will be critical to constrain the epoch of quasar formation. All the results we derived are based on observed quasars and are therefore subject to the bias of obscuration by dust in damped Ly alpha systems. Future surveys of these absorption systems at z approximately greater than 3 will also be important if the formation epoch of quasars is to be known unambiguously.

  7. Quasar feedback revealed by giant molecular outflows

    NASA Astrophysics Data System (ADS)

    Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F.

    2010-07-01

    In the standard scenario for galaxy evolution young star-forming galaxies transform into red bulge-dominated spheroids, where star formation has been quenched. To explain this transformation, a strong negative feedback generated by accretion onto a central super-massive black hole is often invoked. The depletion of gas resulting from quasar-driven outflows should eventually stop star-formation across the host galaxy and lead the black hole to “suicide” by starvation. Direct observational evidence for a major quasar feedback onto the host galaxy is still missing, because outflows previously observed in quasars are generally associated with the ionized component of the gas, which only accounts for a minor fraction of the total gas content, and typically occurrs in the central regions. We used the IRAM PdB Interferometer to observe the CO(1-0) transition in Mrk 231, the closest quasar known. Thanks to the wide band we detected broad wings of the CO line, with velocities of up to 750 km s-1 and spatially resolved on the kpc scale. These broad CO wings trace a giant molecular outflow of about 700 M_⊙/year, far larger than the ongoing star-formation rate (~200 M_⊙/year) observed in the host galaxy. This wind will totally expel the cold gas reservoir in Mrk 231 in about 107 yrs, therefore halting the star-formation activity on the same timescale. The inferred kinetic energy in the molecular outflow is ~1.2 × 1044 erg/s, corresponding to a few percent of the AGN bolometric luminosity, which is very close to the fraction expected by models ascribing quasar feedback to highly supersonic shocks generated by radiatively accelerated nuclear winds. Instead, the contribution by the SNe associated with the starburst fall short by several orders of magnitude to account for the kinetic energy observed in the outflow. The direct observational evidence for quasar feedback reported here provides solid support to the scenarios ascribing the observed properties of local massive

  8. High-temperature nuclear closed Brayton cycle power conversion system for the space exploration initiative

    SciTech Connect

    Brandes, D.J. )

    1991-01-05

    The Space Exploration Initiative (SEI) has stated goals of colonizing the moon and conducting manned exploration of the planet Mars. Unlike previous ventures into space, both manned and unmanned, large quantities of electrical power will be required to provide the energy for lunar base sustenance and for highly efficient propulsion systems for the long trip to mars and return. Further, the requirement for electrical power of several megawatts will necessitate the use of nuclear reactor driven power conversion systems. This paper discusses a particle bed reactor closed Brayton cycle space power system that uses advanced materials technology to achieve a high-temperature, low-specific-weight modular system capable of providing the requisite electrical power for both a lunar base and a Mars flight vehicle propulsion system.

  9. High-temperature nuclear closed Brayton cycle power conversion system for the Space Exploration Initiative

    NASA Astrophysics Data System (ADS)

    Brandes, Donald J.

    The Space Exploration Initiative has stated goals of colonizing the moon and conducting manned exploration of the planet Mars. Unlike previous ventures into space, both manned and unmanned, large quantities of electrical power will be required to provide the energy for lunar base sustenance and for highly efficient propulsion systems for the long trip to Mars and return. Further, the requirement for electrical power of several megawatts will necessitate the use of nuclear reactor driven power conversion systems. This paper discusses a particle bed reactor closed Brayton cycle space power system that uses advanced materials technology to achieve a high-temperature, low-specific-weight modular system capable of providing the requisite electrical power for both a lunar base and a Mars flight vehicle propulsion system.

  10. High-temperature nuclear closed Brayton cycle power conversion system for the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Brandes, Donald J.

    1991-01-01

    The Space Exploration Initiative (SEI) has stated goals of colonizing the moon and conducting manned exploration of the planet Mars. Unlike previous ventures into space, both manned and unmanned, large quantities of electrical power will be required to provide the energy for lunar base sustenance and for highly efficient propulsion systems for the long trip to mars and return. Further, the requirement for electrical power of several megawatts will necessitate the use of nuclear reactor driven power conversion systems. This paper discusses a particle bed reactor closed Brayton cycle space power system that uses advanced materials technology to achieve a high-temperature, low-specific-weight modular system capable of providing the requisite electrical power for both a lunar base and a Mars flight vehicle propulsion system.

  11. The Clustering of Quasars at Redshift 2.5 from the Final SDSS-III/BOSS Sample

    NASA Astrophysics Data System (ADS)

    Eftekharzadeh, Sarah; Myers, Adam D.; White, Martin; Bovy, Jo; Fan, Xiaohui; Le Goff, Jean-Marc; Laurent, Pierre; McBride, Cameron; Miralda-Escude, Jordi; Palanque-Delabrouille, Nathalie; Petitjean, Patrick; Ross, Nicholas P.; Schneider, Donald P.; Shen, Yue; Strauss, Michael A.; Streblyanska, Alina; Weinberg, David H.; Wood-Vasey, W. Michael; Viel, Matteo; Yeche, Christophe; York, Don; Zehavi, Idit

    2014-06-01

    Measuring the mass of the dark matter halos that host quasars is a critical question in the field of galaxy evolution. Estimates of how the mean mass of the dark matter halos in which quasars are triggered evolves with time can potentially constrain scenarios in which the quasar phase is triggered in different dark-matter environments as the Universe progresses. Quasar clustering measurements on linear scales across a range of redshifts is a powerful tool with which to estimate the masses of the dark matter halos that are inhabited by the galaxies that host quasars. Although there are many measurements of quasar clustering at redshift z < 2.2, and a few at z > 3, there are very few precise measurements around 2.5, where the quasar phase appears to peak before declining at z < 2. The SDSS-III/BOSS survey targets redshifts of 2.2 < z < 3.5, and should therefore offer the most precise estimates of quasar clustering near the epoch of peak quasar activity. We use data from SDSS-III/BOSS to measure the clustering of quasars over the redshift range 2.2 < z < 2.8 via the real and redshift space two point correlation functions. The data consists of a homogeneously selected sample of 62960 BOSS CORE quasars drawn from SDSS DR11. Our homogeneous sample covers ~4460 (deg)^2 corresponding to a comoving volume of ~12 (Gpc/h)^3. We obtain the correlation length of quasars near 2.5 and derive the bias of the dark matter halos that host quasars. We study the mass of the dark matter environments of quasars using the formalism of the Halo Occupation Distribution (HOD). We will discuss our results at 2.5, and also results obtained by dividing the BOSS quasar sample into three redshift ranges to study how the correlation length, bias, and dark matter halo mass of quasars evolve over this key redshift range.

  12. Formation of the first stars and quasars

    NASA Astrophysics Data System (ADS)

    Haiman, Z.

    We examine various observable signatures of the first generation of stars and low-luminosity quasars, including the metal enrichment, radiation background, and dust opacity/emission that they produce. We calculate the formation history of collapsed baryonic halos, based on an extension of the Press-Schechter formalism, incorporating the effects of pressure and H2-dissociation. We then use the observed CH ratio at z=3 in the Lyman-α forest clouds to obtain an average the star formation efficiency in these halos. Similarly, we fit the efficiency of black-hole formation, and the shape of quasar light curves, to match the observed quasar luminosity function (LF) between z=2-4, and use this fit to extrapolate the quasar LF to faint magnitudes and high redshifts. To be consistent with the lack of faint point-sources in the Hubble Deep Field, we impose a lower limit of ~ 75 km s-1 for the circular velocities of halos harboring central black holes. We find that in a λCDM model, stars reionize the IGM at zreion=9-13, and quasars at z=12. Observationally, zreion can be measured by the forthcoming MAP and Planck Surveyor satellites, via the damping of CMB anisotropies by ~10% on small angular scales due to electron scattering. We show that if reionization occurs later, at 5 <~ zreion <~ 10, then it can be measured from the spectra of individual sources. We also find that the Next Generation Space Telescope will be able to directly image about 1-40 star clusters, and a few faint quasars, from z > 10 per square arcminute. The amount of dust produced by the first supernovae has an optical depth of τ=0.1-1 towards high redshift sources, and the reprocessed UV flux of stars and quasars distorts the cosmic microwave background radiation (CMB) by a Compton y-parameter comparable to the COBE limit, y ~ 1.5 × 10-5.

  13. THE ULTRAVIOLET-TO-MID-INFRARED SPECTRAL ENERGY DISTRIBUTION OF WEAK EMISSION LINE QUASARS

    SciTech Connect

    Lane, Ryan A.; Shemmer, Ohad; Diamond-Stanic, Aleksandar M.; Fan Xiaohui; Anderson, Scott F.; Brandt, W. N.; Schneider, Donald P.; Plotkin, Richard M.; Richards, Gordon T.; Strauss, Michael A. E-mail: ohad@unt.edu

    2011-12-20

    We present Spitzer Space Telescope photometry of 18 Sloan Digital Sky Survey (SDSS) quasars at 2.7 {<=} z {<=} 5.9 which have weak or undetectable high-ionization emission lines in their rest-frame ultraviolet (UV) spectra (hereafter weak-lined quasars, or WLQs). The Spitzer data are combined with SDSS spectra and ground-based, near-infrared (IR) photometry of these sources to produce a large inventory of spectral energy distributions (SEDs) of WLQs across the rest-frame {approx}0.1-5 {mu}m spectral band. The SEDs of our sources are inconsistent with those of BL Lacertae objects which are dominated by synchrotron emission due to a jet aligned close to our line of sight, but are consistent with the SED of ordinary quasars with similar luminosities and redshifts that exhibit a near-to-mid-IR 'bump', characteristic of hot dust emission. This indicates that broad emission lines in WLQs are intrinsically weak, rather than suffering continuum dilution from a jet, and that such sources cannot be selected efficiently from traditional photometric surveys.

  14. The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral

    NASA Technical Reports Server (NTRS)

    Wood, Bill; Pate, Dennis; Thelen, David

    2010-01-01

    This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.

  15. The QUASAR facility

    NASA Astrophysics Data System (ADS)

    Gates, David

    2013-10-01

    The QUAsi-Axisymmetric Research (QUASAR) stellarator is a new facility which can solve two critical problems for fusion, disruptions and steady-state, and which provides new insights into the role of magnetic symmetry in plasma confinement. If constructed it will be the only quasi-axisymmetric stellarator in the world. The innovative principle of quasi-axisymmetry (QA) will be used in QUASAR to study how ``tokamak-like'' systems can be made: 1) Disruption-free, 2) Steady-state with low recirculating power, while preserving or improving upon features of axisymmetric tokamaks, such as 1) Stable at high pressure simultaneous with 2) High confinement (similar to tokamaks), and 3) Scalable to a compact reactor Stellarator research is critical to fusion research in order to establish the physics basis for a magnetic confinement device that can operate efficiently in steady-state, without disruptions at reactor-relevant parameters. The two large stellarator experiments - LHD in Japan and W7-X under construction in Germany are pioneering facilities capable of developing 3D physics understanding at large scale and for very long pulses. The QUASAR design is unique in being QA and optimized for confinement, stability, and moderate aspect ratio (4.5). It projects to a reactor with a major radius of ~8 m similar to advanced tokamak concepts. It is striking that (a) the EU DEMO is a pulsed (~2.5 hour) tokamak with major R ~ 9 m and (b) the ITER physics scenarios do not presume steady-state behavior. Accordingly, QUASAR fills a critical gap in the world stellarator program. This work supported by DoE Contract No. DEAC02-76CH03073.

  16. Closed Cycle Magnetohydrodynamic Nuclear Space Power Generation Using Helium/Xenon Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Harada, N.

    2005-01-01

    A multimegawatt-class nuclear fission powered closed cycle magnetohydrodynamic space power plant using a helium/xenon working gas has been studied, to include a comprehensive system analysis. Total plant efficiency was expected to be 55.2 percent including pre-ionization power. The effects of compressor stage number, regenerator efficiency, and radiation cooler temperature on plant efficiency were investigated. The specific mass of the power generation plant was also examined. System specific mass was estimated to be 3 kg/kWe for a net electrical output power of 1 MWe, 2-3 kg/kWe at 2 MWe, and approx.2 kg/KWe at >3 MWe. Three phases of research and development plan were proposed: (1) Phase I-proof of principle, (2) Phase II-demonstration of power generation, and (3) Phase III-prototypical closed loop test.

  17. Correlations between different line-forming regions in quasar environments

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Hamann, Fred; Lundgren, Britt

    2017-01-01

    The early stage of massive galaxy evolution can involve outflows driven by a starburst or a central quasar plus cold mode accretion (infall) adding to the mass build-up in the galaxies. We are using SDSS-BOSS DR12 database to study the nature of infall and outflows in quasar environments by examining the relationships of their narrow absorption lines (NALs) at positive and negative velocity shifts to other quasar properties such as their broad absorption line (BAL) outflows, emission line characteristics, radio-loudness, and reddening by dust. We also test for extreme high-velocity NAL outflows (with speeds 0.1-0.2c) based on relationships to low-speed NALs and quasar properties, and we perform detailed analyses of particular cases of rich multi-component NAL complexes that might result from high-speed quasar outflows shredding and dispersing interstellar clouds in the host galaxies. Our results show that low-velocity NALs and rich NAL complexes correlate strongly with BALs, suggesting a physical relationship. Infalling systems are less common in quasars with BALs, suggesting that BAL outflows can halt or disrupt gas accretion. The extreme high-velocity NALs (at 0.1-0.2c) show a weak relationship to BALs and a strong dependence on low-velocity NALs, indicating that a significant fraction of these systems is ejected from the quasars (and are *not* unrelated intervening clouds). We find no correlations between radio flux and low-velocity NALs, infalling systems, or rich complexes, which indicates that none of these features are closely tied to quasar radio properties. We analyze the relationship of the N V/C IV line strengths (a possible abundance/metallicity probe) in emission versus absorption lines and find no correlation between them.

  18. Closed surfaces of constant visual acuity in symmetric dioptric power space.

    PubMed

    Rubin, A; Harris, W F

    2001-10-01

    This paper demonstrates a multivariate approach to understanding the complicated relations of visual acuity to refractive state or ametropia. Other approaches, as previously used, included graphical representations of lines or profiles of iso-oxyopia (Peters, 1961). But one limitation of Peters' method is that cylinder axis was ignored. However, here the relationship between visual acuity and refractive power will be represented by estimated closed surfaces of constant visual acuity in symmetric dioptric power space. At or near the common center (of several closed surfaces, for example) is the refractive compensation. Coming outwards from such a center, the visual acuity drops in all directions in the space. The primary purpose of this paper was to present estimated closed surfaces of constant visual acuity for several eyes. Various procedures were performed on several subjects including measurement of iris aperture diameter, subjective refraction, and autorefraction. Thereafter, an automated phoropter and either Jackson cross-cylinders or spheres were used to influence dioptric blur or defocus in the subjects. The visual stimulus was a computer-generated nondirectional or meridionally independent letter O. Ovoidal surfaces fit the measurements obtained (with Jackson cross-cylinders and spheres) better than ellipsoidal surfaces. The cross-section, in symmetric dioptric power space, at powers with the same nearest equivalent sphere as the refractive compensation is elliptical in many cases and reflects a dependence of visual acuity on cylinder axis. The surfaces differ when powers are changed so that one is moving away from (decompensation surfaces) or toward (accompensation surfaces) the refractive compensation. The multivariate and graphical methods used in this paper probably have implications for the direction of future research in a number of areas involving measures of vision function such as autorefraction, retinoscopy, subjective refraction, and visual

  19. Experimental Studies Of Pilot Performance At Collision Avoidance During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1997-01-01

    Efforts to increase airport capacity include studies of aircraft systems that would enable simultaneous approaches to closely spaced parallel runway in Instrument Meteorological Conditions (IMC). The time-critical nature of a parallel approach results in key design issues for current and future collision avoidance systems. Two part-task flight simulator studies have examined the procedural and display issues inherent in such a time-critical task, the interaction of the pilot with a collision avoidance system, and the alerting criteria and avoidance maneuvers preferred by subjects.

  20. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Nuclear Space Power Systems: A Feasibility Assessment

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2004-01-01

    The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.

  1. Close-spaced vapor transport and photoelectrochemistry of gallium arsenide for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Ritenour, Andrew J.

    The high balance-of-system costs of photovoltaic installations indicate that reductions in absorber cost alone are likely insufficient for photovoltaic electricity to reach grid parity unless energy conversion efficiency is also increased. Technologies which both yield high-efficiency cells (>25%) and maintain low costs are needed. GaAs and related III--V semiconductors are used in the highest-efficiency single- and multi-junction photovoltaics, but the technology is too expensive for non-concentrated terrestrial applications. This is due in part to the limited scalability of traditional syntheses, which rely on expensive reactors and employ toxic and pyrophoric gas-phase precursors such as arsine and trimethyl gallium. This work describes GaAs films made by close-spaced vapor transport, a potentially scalable technique which is carried out at atmospheric pressure and requires only bulk GaAs, water vapor, and a temperature gradient to deposit crystalline films with similar electronic properties to GaAs prepared using traditional syntheses. Although close-spaced vapor transport of GaAs was first developed in 1963, there were few examples of GaAs photovoltaic devices made using this method in the literature at the onset of this project. Furthermore, it was unclear whether close-spaced vapor transport could produce GaAs films appropriate for use in photovoltaics. The goal of this project was to create and study GaAs devices made using close-spaced vapor transport and determine whether the technique could be used for production of grid-connected GaAs photovoltaics. In Chapter I the design of the vapor transport reactor, the chemistry of crystal growth, and optoelectronic characterization techniques are discussed. Chapter II focuses on compositional measurements, doping, and improved electronic quality in CSVT GaAs. Chapter III describes several aspects of the interplay between structure and electronic properties of photoelectrochemical devices. Chapter IV addresses

  2. Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.

  3. Field flatness tuning of TM110 mode cavities with closely spaced modes

    SciTech Connect

    Leo Bellantoni et al.

    2003-10-31

    Superconducting cavities for the CKM RF separated kaon beamline at Fermilab have modes that are closely spaced compared to the resonance bandwidths when warm, and this complicates the field flatness (warm) tuning process. Additionally, it is necessary to maintain the azimuthal orientation of the mode during the tuning deformations. the authors present two analytic techniques to warm-tune cavities with overlapping modes, a finite-element analysis of the tuning process, the design of a warm tuner which maintains mode polarization, and the results of tuning a cavity in which initial manufacturing variations caused the desired {pi} and nearby {pi}-1 modes to be indistinguishable before field flatness tuning.

  4. GelBandFitter--a computer program for analysis of closely spaced electrophoretic and immunoblotted bands.

    PubMed

    Mitov, Mihail I; Greaser, Marion L; Campbell, Kenneth S

    2009-03-01

    GelBandFitter is a computer program that uses non-linear regression techniques to fit mathematical functions to densitometry profiles of protein gels. This allows for improved quantification of gels with partially overlapping and potentially asymmetric protein bands. The program can also be used to analyze immunoblots with closely spaced bands. GelBandFitter was developed in Matlab and the source code and/or a Windows executable file can be downloaded at no cost to academic users from http://www.gelbandfitter.org.

  5. Modeling the Observability of Recoiling Black Holes as Offset Quasars

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Torrey, Paul; Vogelsberger, Mark; Genel, Shy; Springel, Volker; Sijacki, Debora; Snyder, Gregory; Bird, Simeon; Nelson, Dylan; Xu, Dandan; Hernquist, Lars

    The merger of two supermassive black holes (SMBHs) imparts a gravitational-wave (GW) recoil kick to the remnant SMBH, which can even eject the SMBH from its host galaxy. An actively-accreting, recoiling SMBH may be observable as an offset quasar. Prior to the advent of a space-based GW observatory, detections of these offset quasars may offer the best chance for identifying recent SMBH mergers. Indeed, observational searches for recoiling quasars have already identified several promising candidates. However, systematic searches for recoils are currently hampered by large uncertainties regarding how often offset quasars should be observable and where they are most likely to be found. Motivated by this, we have developed a model for recoiling quasars in a cosmological framework, utilizing information about the progenitor galaxies from the Illustris cosmological hydrodynamic simulations. For the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas-richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. The rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. Nonetheless, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.

  6. Tracing dark energy with quasars

    NASA Astrophysics Data System (ADS)

    Šredzińska, Justyna; Czerny, Bożena; Bilicki, M.; Hryniewicz, K.; Krupa, M.; Kurcz, A.; Marziani, P.; Pollo, A.; Pych, W.; Udalski, A.

    2016-06-01

    The nature of dark energy, driving the accelerated expansion of the Universe, is one of the most important issues in modern astrophysics. In order to understand this phenomenon, we need precise astrophysical probes of the universal expansion spanning wide redshift ranges. Quasars have recently emerged as such a probe, thanks to their high intrinsic luminosities and, most importantly, our ability to measure their luminosity distances independently of redshifts. Here we report our ongoing work on observational reverberation mapping using the time delay of the Mg II line, performed with the South African Large Telescope (SALT). The concept of dark energy was introduced in the process of understanding the evolution of the Universe. This is one of the most interesting topic in modern astronomy followed by the discovery of the accelerated expansion of the Universe. Precise measurement of this effect is a key to understand the nature of this medium, and we need good probes to do that. Quasars appears as an ideal candidate for this purpose as these objects are highly luminous and detected in wide range of redshift. From Big Bang to present time a lot of things happened and we are able to see amazing structures of galaxies and stars. In the beginning of Universe everything was blurred in space and the concept of dark energy was introduced in the process of understanding its evolution. The discovery of the accelerated expansion of the Universe gives us possibility to define new interesting topics in modern astronomy. Although there are some theoretical explanation for the existence of dark energy, yet it has remained the biggest puzzle among the astronomers and physicist.

  7. Detecting space-time alternating biological signals close to the bifurcation point.

    PubMed

    Jia, Zhiheng; Bien, Harold; Entcheva, Emilia

    2010-02-01

    Time-alternating biological signals, i.e., alternans, arise in variety of physiological states marked by dynamic instabilities, e.g., period doubling. Normally, a sequence of large-small-large transients, they can exhibit variable patterns over time and space, including spatial discordance. Capture of the early formation of such alternating regions is challenging because of the spatiotemporal similarities between noise and the small-amplitude alternating signals close to the bifurcation point. We present a new approach for automatic detection of alternating signals in large noisy spatiotemporal datasets by exploiting quantitative measures of alternans evolution, e.g., temporal persistence, and by preserving phase information. The technique specifically targets low amplitude, relatively short alternating sequences and is validated by combinatorics-derived probabilities and empirical datasets with white noise. Using high-resolution optical mapping in live cardiomyocyte networks, exhibiting calcium alternans, we reveal for the first time early fine-scale alternans, close to the noise level, which are linked to the later formation of larger regions and evolution of spatially discordant alternans. This robust method aims at quantification and better understanding of the onset of cardiac arrhythmias and can be applied to general analysis of space-time alternating signals, including the vicinity of the bifurcation point.

  8. Multiport well design for sampling of ground water at closely spaced vertical intervals

    SciTech Connect

    Delin, G.N.; Landon, M.K.

    1996-11-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples form the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Trace experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorocarbon concentrations.

  9. Multiport well design for sampling of ground water at closely spaced vertical intervals

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    1996-01-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.

  10. Gigawatt, Closed Cycle, Vapor Core-Mhd Space Power System Conceptual Design Study

    NASA Astrophysics Data System (ADS)

    Wetch, Joseph R.; Rhee, Hyop S.; Koester, J. Kent; Goodman, Julius; Maya, Issac

    1988-04-01

    A conceptual design study for a closed cycle gigawatt electric space power system has been conducted. The closed cycle static operation reduces power system interaction effects upon the space craft. This system utilizes a very high temperature (5500 K) plasma core reactor and a magnetohydrodynamic (MHD) power conversion subsystem to provide a power density of about 8 kWe/kg (0.13 kg/kWe) for several kilo-seconds. Uranium vapor is the fuel. Candidate working fluids are metal vapors such as lithium or calcium. The system is based on a Rankine cycle to minimize the electromagnetic pumping power requirement. The fission fragment induced nonequilibrium ionization in the plasma in the MHD power duct provides the plasma electric conductivity for gigawatt power generation. Waste heat is rejected utilizing lithium heat pipes at temperatures just below 2000 K, thus minimizing the radiator area requirement. Key technology issues are identified, including the containment of the 5500 K 'sun-liken plasma at 4 to 0 MPa In a reflector moderated, gas/vapor filled cavity core reactor. A promising scheme to protect the refractory metal reactor inner wall is presented, together with a heating load analysis in the wall. This scheme utilizes an ablating film of liquid lithium/calcium that evaporates into the cavity core to become the working fluid of the cycle.

  11. Quasar induced galaxy formation: a new paradigm?

    NASA Astrophysics Data System (ADS)

    Elbaz, D.; Jahnke, K.; Pantin, E.; Le Borgne, D.; Letawe, G.

    2009-12-01

    Aims: We discuss observational evidence that quasars play a key role in the formation of galaxies, starting from the detailed study of the quasar HE0450-2958 and extending the discussion to a series of converging evidence that radio jets may trigger galaxy formation. Methods: We use mid infrared imaging with VISIR at the ESO-VLT to model the mid to far infrared energy distribution of the system and the stellar population of the companion galaxy using optical VLT-FORS spectroscopy. The results are combined with optical, CO, radio continuum imaging from ancillary data. Results: The direct detection with VISIR of the 7 kpc distant companion galaxy of HE0450-2958 allows us to spatially separate the sites of quasar and star formation activity in this composite system made of two ultra-luminous infrared galaxies (ULIRGs), where the quasar generates the bulk of the mid infrared light and the companion galaxy powered by star formation dominates in the far infrared. No host galaxy has yet been detected for this quasar, but the companion galaxy stellar mass would bring HE0450-2958 in the local M{BH} - Mstar^bulge relation if it were to merge with the QSO. This is bound to happen because of their close distance (7 kpc) and low relative velocity ( 60-200 km s-1). We conclude that we may be witnessing the building of the M{BH} - Mstar^bulge relation, or at least of a major event in that process. The star formation rate ( 340 M⊙ yr-1), age (40-200 Myr) and stellar mass ( [5-6]×1010 M⊙) are consistent with jet-induced formation of the companion galaxy. We suggest that HE0450-2958 may be fueled by fresh material from cold gas accretion from intergalactic filaments. We map the projected galaxy density surrounding the QSO as a potential tracer of intergalactic filaments and discuss a putative detection. Comparison to other systems suggest that an inside-out formation of quasar host galaxies and jet-induced galaxy formation may be a common process. Two tests are proposed for

  12. Astrophysical applications of quasar microlensing

    NASA Astrophysics Data System (ADS)

    Mediavilla, E.; Jiménez-Vicente, J.; Muñoz, J. A.

    2017-03-01

    We present a quick overview of several examples that illustrate the application of quasar microlensing to various problems of great interest in Astrophysics and Cosmology. We start introducing the main tool for simulating quasar microlensing, the magnification map. Then, the flux magnification statistics obtained from the magnification maps is used to study the quasar accretion disk size and temperature profile with results that challenge the thin disk model. The microlensing flux magnification statistics is also useful to determine the radial slope of the dark matter distribution in lens galaxies. The extremely high microlensing magnification at caustics allows to scan with horizon scale accuracy the quasar accretion disk, spiraling around the central super massive black hole, resolving the innermost stable circular orbit. Finally, transverse peculiar velocities of the lens galaxies, of great interest in cosmology, can be inferred either counting peaks in the microlensing light curves or directly from astrometric measurements of the highly magnified relative motions between lensed quasar images.

  13. Studies of Quasar Outflows

    NASA Technical Reports Server (NTRS)

    Arav, Nahum

    2002-01-01

    The main aim of this research program is to determine the ionization equilibrium and abundances in quasar outflows. Especially in the broad absorption line QSO PG 0946+301. We find that the outflow's metalicity is consistent with being solar, while the abundance ratio of phosphorus to other metals is at least ten times solar. These findings are based on diagnostics that are not sensitive to saturation and partial covering effects in the BALs (Broad Adsorption Lines), which considerably weakened previous claims for enhanced metalicity. Ample evidence for these effects is seen in the spectrum.

  14. The Quintuple Quasar: Radio and Optical Observations

    NASA Astrophysics Data System (ADS)

    Winn, Joshua N.; Kochanek, Christopher S.; Keeton, Charles R.; Lovell, James E. J.

    2003-06-01

    We present results from high-resolution radio and optical observations of PMN J0134-0931, a gravitational lens with a unique radio morphology and an extremely red optical counterpart. Our data support the theory of Keeton & Winn: five of the six observed radio components are multiple images of a single quasar, produced by a pair of lens galaxies. Multifrequency Very Long Baseline Array maps show that the sixth and faintest component has a different radio spectrum than the others, confirming that it represents a second component of the background source rather than a sixth image. The lens models predict that there should be additional faint images of this second source component, and we find evidence for one of the predicted images. The previously observed large angular sizes of two of the five bright components are not intrinsic (which would have excluded the possibility that they are lensed images) but are instead due to scatter broadening. Both the extended radio emission observed at low frequencies and the intrinsic image shapes observed at high frequencies can be explained by the lens models. The pair of lens galaxies is marginally detected in Hubble Space Telescope images. The differential extinction of the quasar images suggests that the extreme red color of the quasar is at least partly due to dust in the lens galaxies.

  15. QUASAR PG1115+080 AND GRAVITATIONAL LENS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left: The light from the single quasar PG 1115+080 is split and distorted in this infrared image. PG 1115+080 is at a distance of about 8 billion light years in the constellation Leo, and it is viewed through an elliptical galaxy lens at a distance of 3 billion light years. The NICMOS frame is taken at a wavelength of 1.6 microns and it shows the four images of the quasar (the two on the left are nearly merging) surrounding the galaxy that causes the light to be lensed. The quasar is a variable light source and the light in each image travels a different path to reach the Earth. The time delay of the variations allows the distance scale to be measured directly. The linear streaks on the image are diffraction artifacts in the NICMOS instrument (NASA/Space Telescope Science Institute). Right: In this NICMOS image, the four quasar images and the lens galaxy have been subtracted, revealing a nearly complete ring of infrared light. This ring is the stretched and amplified starlight of the galaxy that contains the quasar, some 8 billion light years away. (NASA/Space Telescope Science Institute). Credit: Christopher D. Impey (University of Arizona)

  16. A Closed Brayton Power Conversion Unit Concept for Nuclear Electric Propulsion for Deep Space Missions

    NASA Astrophysics Data System (ADS)

    Joyner, Claude Russell; Fowler, Bruce; Matthews, John

    2003-01-01

    In space, whether in a stable satellite orbit around a planetary body or traveling as a deep space exploration craft, power is just as important as the propulsion. The need for power is especially important for in-space vehicles that use Electric Propulsion. Using nuclear power with electric propulsion has the potential to provide increased payload fractions and reduced mission times to the outer planets. One of the critical engineering and design aspects of nuclear electric propulsion at required mission optimized power levels is the mechanism that is used to convert the thermal energy of the reactor to electrical power. The use of closed Brayton cycles has been studied over the past 30 or years and shown to be the optimum approach for power requirements that range from ten to hundreds of kilowatts of power. It also has been found to be scalable to higher power levels. The Closed Brayton Cycle (CBC) engine power conversion unit (PCU) is the most flexible for a wide range of power conversion needs and uses state-of-the-art, demonstrated engineering approaches. It also is in use with many commercial power plants today. The long life requirements and need for uninterrupted operation for nuclear electric propulsion demands high reliability from a CBC engine. A CBC engine design for use with a Nuclear Electric Propulsion (NEP) system has been defined based on Pratt & Whitney's data from designing long-life turbo-machines such as the Space Shuttle turbopumps and military gas turbines and the use of proven integrated control/health management systems (EHMS). An integrated CBC and EHMS design that is focused on using low-risk and proven technologies will over come many of the life-related design issues. This paper will discuss the use of a CBC engine as the power conversion unit coupled to a gas-cooled nuclear reactor and the design trends relative to its use for powering electric thrusters in the 25 kWe to 100kWe power level.

  17. Quasar-galaxy associations with discordant redshifts as a topological effect, Part 1

    NASA Astrophysics Data System (ADS)

    Fagundes, H. V.

    1984-09-01

    A previously advanced conjecture is developed, that may eventually solve the quasar redshift controversy in a constructive fashion. The claimed galaxy-quasar and other associations with discordant redshifts are recognized as such, but on the level of a little known possibility: that each associated group is the multiple image of a single source, produced by rays emitted along paths of different lengths. This is allowed by the multiply connected topologies of Friedman's closed models of negative spatial curvature. The distances indicated by the cosmological interpretation of the redshifts are now seen as image distances, only one of them being the source's separation from us. In this first part of a two-paper sequence the problem is dealt in the relatively simple context of a hyperbolic 2-dimensional space. This is physically unrealistic, but leads to a few qualitative observational suggestions; and it permits the introduction of the needed mathematical machinery, centered on the tesselations of hyperbolic spaces, in a visualizable way. Thus the reader will be prepared for the less intuitive 3-dimensional research, which is outlined in the last section and will be elaborated in Part II. Some related theoretical topics are discussed along the way. They include reinterpretations of the cosmic isotropy and of the homogeneity principle, and hints of an argumentation for the assumed closure of space.

  18. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.; Naples, Andrew G.

    2006-01-01

    The feasibility of using carbon-carbon (C-C) recuperators in conceptual closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance expectations were forecast based on notional thermodynamic cycle state values for potential planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 30 to 60 percent were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25 to 1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, 60 percent savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.

  19. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2006-01-01

    The use of carbon-carbon (C-C) recuperators in closed-Brayton-cycle space power conversion systems was assessed. Recuperator performance was forecast based on notional thermodynamic cycle state values for planetary missions. Resulting thermal performance, mass and volume for plate-fin C-C recuperators were estimated and quantitatively compared with values for conventional offset-strip-fin metallic designs. Mass savings of 40-55% were projected for C-C recuperators with effectiveness greater than 0.9 and thermal loads from 25-1400 kWt. The smaller thermal loads corresponded with lower mass savings; however, at least 50% savings were forecast for all loads above 300 kWt. System-related material challenges and compatibility issues were also discussed.

  20. Homojunction GaAs solar cells grown by close space vapor transport

    SciTech Connect

    Boucher, Jason W.; Ritenour, Andrew J.; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-06-08

    We report on the first pn junction solar cells grown by homoepitaxy of GaAs using close space vapor transport (CSVT). Cells were grown both on commercial wafer substrates and on a CSVT absorber film, and had efficiencies reaching 8.1%, open circuit voltages reaching 909 mV, and internal quantum efficiency of 90%. The performance of these cells is partly limited by the electron diffusion lengths in the wafer substrates, as evidenced by the improved peak internal quantum efficiency in devices fabricated on a CSVT absorber film. Unoptimized highly-doped n-type emitters also limit the photocurrent, indicating that thinner emitters with reduced doping, and ultimately wider band gap window or surface passivation layers, are required to increase the efficiency.

  1. TacSat-2: Path finder for a Close Space Support Asset

    NASA Astrophysics Data System (ADS)

    Bhopale, A.; Finley, C.

    2008-08-01

    With th e launch of TacSat-2, the Oper ationally Responsive Sp ace (O RS) commun ity had its f irst on- orbit asset and opportunity to prove or disprove the premise that small, in expensiv e, and quickly constructed spacecraf t could perform useful operation al missions when needed and for as long as need ed. All of the components of the comp lex TacSat-2 system had to work together to answer the basic questions, "In a crisis, can a lab-developed spacecraf t and ground architecture competen tly p erform th e mission of systems that cost twen ty times the price and tak e four times as long to develop? Mor eover, can th is system actu ally improve on the responsiveness of Nation al Systems to a certain set of underserv ed Oper ational customers?" When all w as said and done, TacSat-2 was a sp acecraf t that h ad to: 1) Carry th irteen tactical and scientific payloads to orbit, many of which doubled as essen tial, non-redundant subsystems; 2) Launch from an unproven launch base on a last minute "rep lacement" launch vehicle; and 3) Fulfill about 140 on-orbit mission requirements. It had tactical sensors, two unproven communication links, numerous next-gen eration single- string componen ts (e.g., h igh-efficiency propulsion system, thin-film so lar arrays, low-power versatile star camera) , and autonomous softw are to mak e the system more friendly and familiar to Tactical, rather than Spacecraf t Op erators. However, the mission was as mu ch about the implementation as it w as about the components. TacSat-2 was designed for and emp loyed with a different concept of operations ( CONOPS) than tradition al N ational Operational Assets. It w as designed to be th e fir st-ev er Clo se Space Support platform and operated in a manner more analogous to Close Air Support aircraf t than to tr aditional spacecraft. Therefore, th e primary objective of the TacSat-2 mission was to use th e TacSat-2 system to id entify those parts of the spacecr aft, ground system, and CON OPS

  2. Adaptive Filtering for Large Space Structures: A Closed-Form Solution

    NASA Technical Reports Server (NTRS)

    Rauch, H. E.; Schaechter, D. B.

    1985-01-01

    In a previous paper Schaechter proposes using an extended Kalman filter to estimate adaptively the (slowly varying) frequencies and damping ratios of a large space structure. The time varying gains for estimating the frequencies and damping ratios can be determined in closed form so it is not necessary to integrate the matrix Riccati equations. After certain approximations, the time varying adaptive gain can be written as the product of a constant matrix times a matrix derived from the components of the estimated state vector. This is an important savings of computer resources and allows the adaptive filter to be implemented with approximately the same effort as the nonadaptive filter. The success of this new approach for adaptive filtering was demonstrated using synthetic data from a two mode system.

  3. Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2006-01-01

    A number of potential NASA missions could benefit from closed-Brayton-cycle (CBC) power conversion systems. The human and robotic mission power applications include spacecraft, surface base, and rover scenarios. Modeling of CBC subsystems allows system engineers, mission planners and project managers to make informed decisions regarding power conversion system characteristics and capabilities. To promote thorough modeling efforts, a critical review of CBC modeling techniques is presented. Analysis of critical modeling elements, component influences and cycle sensitivities is conducted. The analysis leads to quantitative results addressing projections on converter efficiency and overall power conversion system mass. Even moderate modeling errors are shown to easily over-predict converter efficiencies by 30% and underestimate mass estimates by 20%. Both static and dynamic modeling regimes are evaluated. Key considerations in determining model fidelity requirements are discussed. Conclusions and recommendations are presented that directly address ongoing modeling efforts in solar and nuclear space power systems.

  4. Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2005-01-01

    A number of potential NASA missions could benefit from closed-Brayton-cycle (CBC) power conversion systems. The human and robotic mission power applications include spacecraft, surface base, and rover scenarios. Modeling of CBC subsystems allows system engineers, mission planners and project managers to make informed decisions regarding power conversion system characteristics and capabilities. To promote thorough modeling efforts, a critical review of CBC modeling techniques is presented. Analysis of critical modeling elements, component influences and cycle sensitivities is conducted. The analysis leads to quantitative results addressing projections on converter efficiency and overall power conversion system mass. Even moderate modeling errors are shown to easily over-predict converter efficiencies by 30 percent and underestimate mass estimates by 20 percent. Both static and dynamic modeling regimes are evaluated. Key considerations in determining model fidelity requirements are discussed. Conclusions and recommendations are presented that directly address ongoing modeling efforts in solar and nuclear space power systems.

  5. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

    PubMed Central

    Chen, Yun; Pai, Athma A.; Herudek, Jan; Lubas, Michal; Meola, Nicola; Järvelin, Aino I.; Andersson, Robin; Pelechano, Vicent; Steinmetz, Lars M.; Heick Jensen, Torben; Sandelin, Albin

    2016-01-01

    Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation sites, promoters often cluster so that the divergent activity of one might impact another. Here, we find that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT formation, but due to polyadenylation site constraints, these transcripts tend to spread into the neighboring mRNA on the same strand. This mechanism to derive new alternative mRNA transcription start sites (TSSs) is also evident at closely spaced promoters supporting convergent mRNA transcription. We suggest that basic building blocks of divergently transcribed core promoter pairs, in combination with the wealth of TSSs in mammalian genomes, provides a framework with which evolution shapes transcriptomes. PMID:27455346

  6. Comparison of Procedures for Dual and Triple Closely Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Verma, Savita; Ballinger, Deborah; Subramanian Shobana; Kozon, Thomas

    2012-01-01

    A human-in-the-loop high fidelity flight simulation experiment was conducted, which investigated and compared breakout procedures for Very Closely Spaced Parallel Approaches (VCSPA) with two and three runways. To understand the feasibility, usability and human factors of two and three runway VCSPA, data were collected and analyzed on the dependent variables of breakout cross track error and pilot workload. Independent variables included number of runways, cause of breakout and location of breakout. Results indicated larger cross track error and higher workload using three runways as compared to 2-runway operations. Significant interaction effects involving breakout cause and breakout location were also observed. Across all conditions, cross track error values showed high levels of breakout trajectory accuracy and pilot workload remained manageable. Results suggest possible avenues of future adaptation for adopting these procedures (e.g., pilot training), while also showing potential promise of the concept.

  7. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  8. Tunneling spectroscopy of close-spaced dangling-bond pairs in Si(001):H

    PubMed Central

    Engelund, Mads; Zuzak, Rafał; Godlewski, Szymon; Kolmer, Marek; Frederiksen, Thomas; García-Lekue, Aran; Sánchez-Portal, Daniel; Szymonski, Marek

    2015-01-01

    We present a combined experimental and theoretical study of the electronic properties of close-spaced dangling-bond (DB) pairs in a hydrogen-passivated Si(001):H p-doped surface. Two types of DB pairs are considered, called “cross” and “line” structures. Our scanning tunneling spectroscopy (STS) data show that, although the spectra taken over different DBs in each pair exhibit a remarkable resemblance, they appear shifted by a constant energy that depends on the DB-pair type. This spontaneous asymmetry persists after repeated STS measurements. By comparison with density functional theory (DFT) calculations, we demonstrate that the magnitude of this shift and the relative position of the STS peaks can be explained by distinct charge states for each DB in the pair. We also explain how the charge state is modified by the presence of the scanning tunneling microscopy (STM) tip and the applied bias. Our results indicate that, using the STM tip, it is possible to control the charge state of individual DBs in complex structures, even if they are in close proximity. This observation might have important consequences for the design of electronic circuits and logic gates based on DBs in passivated silicon surfaces. PMID:26404520

  9. Tracing Star Formation Around Quasars With Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Bilton, Lawrence Edward

    2016-09-01

    The feedback processes linking quasar activity to galaxy stellar mass growth are not well understood. If star formation is closely causally linked to black hole accretion, one may expect star formation confined to nuclear regions rather than extended over several kpc scales. Since Polycyclic Aromatic Hydrocarbon (PAH) emission features are widely used as tracers of stellar formation, it is, therefore, possible to use PAH emission detected around QSOs to help resolve this question. PAH data from a sample of 63 QSOs procured from the Spitzer Space Telescope’s Infrared Spectrograph (IRS) is used, employing the Spectroscopic Modelling Analysis and Reduction Tool’s (SMART) Advanced Optimal (AdOpt) extraction routines. A composite spectrum was also produced to help determine the average conditions and compositions of star forming regions. It is found, from our high redshift (>1) sample of QSOs, there is a marginally significant extended star formation on average of 34 scales. At low redshift, the median extension after deconvolving the instrumental point spread function is 3.2 , potentially showing evolutionary variations in star formation activity. However, limitations of the spatial resolving power constrain the ability to make any absolute conclusive remarks. It is also found that the QSO/AGN composite has more neutral PAHs than the starbursting and the main sequence galaxies, consistent with the AGN having no contribution to heating the PAH emission, and also consistent with the average PAH emission found on scales (i.e. not confined to the nuclear regions). A tentative detection of water vapour emission from the gravitationally lensed Einstein Cross quasar, QSO J2237+0305, is also presented suggesting a strong molecular outflow possibly driven by the active nucleus.

  10. Transcription termination between polo and snap, two closely spaced tandem genes of D. melanogaster.

    PubMed

    Henriques, Telmo; Ji, Zhe; Tan-Wong, Sue Mei; Carmo, Alexandre M; Tian, Bin; Proudfoot, Nicholas J; Moreira, Alexandra

    2012-01-01

    Transcription termination of RNA polymerase II between closely spaced genes is an important, though poorly understood, mechanism. This is true, in particular, in the Drosophila genome, where approximately 52% of tandem genes are separated by less than 1 kb. We show that a set of Drosophila tandem genes has a negative correlation of gene expression and display several molecular marks indicative of promoter pausing. We find that an intergenic spacing of 168 bp is sufficient for efficient transcription termination between the polo-snap tandem gene pair, by a mechanism that is independent of Pcf11 and Xrn2. In contrast, analysis of a tandem gene pair containing a longer intergenic region reveals that termination occurs farther downstream of the poly(A) signal and is, in this case, dependent on Pcf11 and Xrn2. For polo-snap, displacement of poised polymerase from the snap promoter by depletion of the initiation factor TFIIB results in an increase of polo transcriptional read-through. This suggests that poised polymerase is necessary for transcription termination. Interestingly, we observe that polo forms a TFIIB dependent gene loop between its promoter and terminator regions. Furthermore, in a plasmid containing the polo-snap locus, deletion of the polo promoter causes an increase in snap expression, as does deletion of polo poly(A) signals. Taken together, our results indicate that polo forms a gene loop and polo transcription termination occurs by an Xrn2 and Pcf11 independent mechanism that requires TFIIB.

  11. Effects of ATC automation on precision approaches to closely space parallel runways

    NASA Technical Reports Server (NTRS)

    Slattery, R.; Lee, K.; Sanford, B.

    1995-01-01

    Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.

  12. CONSTRAINTS ON THE FAINT END OF THE QUASAR LUMINOSITY FUNCTION AT z {approx} 5 IN THE COSMOS FIELD

    SciTech Connect

    Ikeda, H.; Matsuoka, K.; Kajisawa, M.; Nagao, T.; Taniguchi, Y.; Shioya, Y.; Enoki, M.; Capak, P.; Masters, D.; Scoville, N. Z.; Civano, F.; Koekemoer, A. M.; Morokuma, T.; Salvato, M.; Schinnerer, E.

    2012-09-10

    We present the result of our low-luminosity quasar survey in the redshift range of 4.5 {approx}< z {approx}< 5.5 in the COSMOS field. Using the COSMOS photometric catalog, we selected 15 quasar candidates with 22 < i' < 24 at z {approx} 5 that are {approx}3 mag fainter than the Sloan Digital Sky Survey quasars in the same redshift range. We obtained optical spectra for 14 of the 15 candidates using FOCAS on the Subaru Telescope and did not identify any low-luminosity type-1 quasars at z {approx} 5, while a low-luminosity type-2 quasar at z {approx} 5.07 was discovered. In order to constrain the faint end of the quasar luminosity function at z {approx} 5, we calculated the 1{sigma} confidence upper limits of the space density of type-1 quasars. As a result, the 1{sigma} confidence upper limits on the quasar space density are {Phi} < 1.33 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -24.52 < M{sub 1450} < -23.52 and {Phi} < 2.88 Multiplication-Sign 10{sup -7} Mpc{sup -3} mag{sup -1} for -23.52 < M{sub 1450} < -22.52. The inferred 1{sigma} confidence upper limits of the space density are then used to provide constraints on the faint-end slope and the break absolute magnitude of the quasar luminosity function at z {approx} 5. We find that the quasar space density decreases gradually as a function of redshift at low luminosity (M{sub 1450} {approx} -23), being similar to the trend found for quasars with high luminosity (M{sub 1450} < -26). This result is consistent with the so-called downsizing evolution of quasars seen at lower redshifts.

  13. Phase space matching and finite lifetime effects for top-pair production close to threshold

    SciTech Connect

    Hoang, Andre H.; Reisser, Christoph J.; Ruiz-Femenia, Pedro

    2010-07-01

    The top-pair tt production cross section close to threshold in e{sup +}e{sup -} collisions is strongly affected by the small lifetime of the top quark. Since the cross section is defined through final states containing the top decay products, a consistent definition of the cross section depends on prescriptions of how these final states are accounted for the cross section. Experimentally, these prescriptions are implemented, for example, through cuts on kinematic quantities such as the reconstructed top quark invariant masses. As long as these cuts do not reject final states that can arise from the decay of a top and an antitop quark with a small off-shellness compatible with the nonrelativistic power counting, they can be implemented through imaginary phase space matching conditions in nonrelativistic QCD. The prescription-dependent cross section can then be determined from the optical theorem using the e{sup +}e{sup -} forward scattering amplitude. We compute the phase space matching conditions associated to cuts on the top and antitop invariant masses at next-to-next-to-leading logarithmic order and partially at next-to-next-to-next-to-leading logarithmic order in the nonrelativistic expansion accounting also for higher order QCD effects. Together with finite lifetime and electroweak effects known from previous work, we analyze their numerical impact on the tt cross section. We show that the phase space matching contributions are essential to make reliable nonrelativistic QCD predictions, particularly for energies below the peak region, where the cross section is small. We find that irreducible background contributions associated to final states that do not come from top decays are strongly suppressed and can be neglected for the theoretical predictions.

  14. Neutrinos from flat-spectrum radio quasars

    NASA Technical Reports Server (NTRS)

    Mannheim, K.; Stanev, T.; Biermann, P. L.

    1992-01-01

    The GRO observation (Hartman et al., 1992) of a very strong flux of gamma rays with an energy index close to 2 from the distant quasar 3C279 and other extragalactic flat-spectrum radio sources is in very good agreement with models that advocate the important role of very high energy protons and nuclei in the energy transport in AGN. Protons and nuclei cool by interactions on the nonthermal fields in the nuclear jet of the AGN and generate gamma ray and neutrino fluxes. Ultra high energy neutrinos could be observed with sensitive air shower experiments in outbursts as powerful as the one seen by GRO.

  15. A Wealth of Dust Grains in Quasar Winds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version

    This plot of data captured by NASA's Spitzer Space Telescope reveals dust entrained in the winds rushing away from a quasar, or growing black hole. The quasar, called PG2112+059, is located deep inside a galaxy 8 billion light-years away. Astronomers believe the dust might have been forged in the winds, which would help explain where dust in the very early universe came from.

    The data were captured by Spitzer's infrared spectrograph, an instrument that splits apart light from the quasar into a spectrum that reveals telltale signs of different minerals. Each type of mineral, or dust grain, has a unique signature, as can be seen in the graph, or spectrum, above.

    The strongest features are from the mineral amorphous olivine, or glass (purple); the mineral forsterite found in sand (blue); and the mineral corundum found in rubies (light blue). The detection of forsterite and corundum is highly unusual in galaxies without quasars. Therefore, their presence is a key clue that these grains might have been created in the quasar winds and not by dying stars as they are in our Milky Way galaxy. Forsterite is destroyed quickly in normal galaxies by radiation, so it must be continually produced to be detected by Spitzer.

    Corundum is hard, and provides a seed that softer, more common minerals usually cover up. As a result, corundum is usually not seen in spectra of galaxies. Since Spitzer did detect the mineral, it is probably forming in a clumpy environment, which is expected in quasar winds. All together, the signatures of the unusual minerals in this spectrum point towards dust grains forming in the winds blowing away from quasars.

  16. Weighing obscured and unobscured quasar hosts with the cosmic microwave background

    NASA Astrophysics Data System (ADS)

    DiPompeo, M. A.; Myers, A. D.; Hickox, R. C.; Geach, J. E.; Holder, G.; Hainline, K. N.; Hall, S. W.

    2015-02-01

    We cross-correlate a cosmic microwave background (CMB) lensing map with the projected space densities of quasars to measure the bias and halo masses of a quasar sample split into obscured and unobscured populations, the first application of this method to distinct quasar subclasses. Several recent studies of the angular clustering of obscured quasars have shown that these objects likely reside in higher mass haloes compared to their unobscured counterparts. This has important implications for models of the structure and geometry of quasars, their role in growing supermassive black holes, and mutual quasar/host galaxy evolution. However, the magnitude and significance of this difference has varied from study to study. Using data from Planck, WISE, and Sloan Digital Sky Survey, we follow up on these results using the independent method of CMB lensing cross-correlations. The region and sample are identical to that used for recent angular clustering measurements, allowing for a direct comparison of the CMB-lensing and angular clustering methods. At z ˜ 1, we find that the bias of obscured quasars is bq = 2.57 ± 0.24, while that of unobscured quasars is bq = 1.89 ± 0.19. This corresponds to halo masses of log (M_h / M_{{⊙}} h^{-1}) = 13.24_{-0.15}^{+0.14} (obscured) and log (M_h / M_{{⊙}} h^{-1}) = 12.71_{-0.13}^{+0.15} (unobscured). These results agree well with those from angular clustering (well within 1σ), and confirm that obscured quasars reside in host haloes ˜3 times as massive as haloes hosting unobscured quasars. This implies that quasars spend a significant portion of their lifetime in an obscured state, possibly more than one-half of the entire active phase.

  17. Through BAL Quasars Brightly

    NASA Technical Reports Server (NTRS)

    Chartas, George

    2003-01-01

    We report on an observation of the broad absorption line (BAL) quasar PG 1115+080 performed with the XMM-Newton observatory. Spectral analysis reveals the second case of a relativistic X-ray-absorbing outflow in a BAL quasar. The first case was revealed in a recent observation of APM 08279+5255 with the Chandra X-Ray Observatory. As in the case of APM 08279+5255, the observed flux of PG 1115+080 is greatly magnified by gravitational lensing. The relatively high redshift (z=1.72) of the quasar places the redshifted energies of resonant absorption features in a sensitive portion of the XMM- Newton spectral response. The spectrum indicates the presence of complex low-energy absorption in the 0.2-0.6 keV observed energy band and high-energy absorption in the 2-5 keV observed energy band. The high-energy absorption is best modeled by two Gaussian absorption lines with rest-frame energies of 7.4 and 9.5 keV. Assuming that these two lines axe produced by resonant absorption due to Fe XXV, we infer that the X-ray absorbers are outflowing with velocities of approx. 0.10c and approx. 0.34c respectively. We have detected significant variability of the energies and widths of the X-ray BALs in PG 1115+080 and APM 08279+5255 over timescales of 19 and 1.8 weeks (proper time), respectively. The BAL variability observed from APM 08279+5255 supports our earlier conclusion that these absorbers are most likely launched at relatively small radii of less than 10(exp 16)(Mbh/M8)(sup 1/2) cm. A comparison of the ionization properties and column densities of the low-energy and high-energy absorbers indicates that these absorbers are likely distinct; however, higher spectral resolution is needed to confirm this result. Finally, we comment on prospects for constraining the kinematic and ionization properties of these X-ray BALs with the next generation of X-ray observatories.

  18. The High-Redshift Clustering of Photometrically Selected Quasars

    NASA Astrophysics Data System (ADS)

    Timlin, John

    2017-01-01

    We present the data from the Spitzer IRAC Equatorial Survey (SpIES) along with our first high-redshift (2.9quasar clustering results using these data. SpIES is a mid-infrared survey covering ~100 square degrees of the Sloan Digital Sky Survey (SDSS) Stripe 82 (S82) field. The SpIES field is optimally located to overlap with the optical data from SDSS and to complement the area of the pre-existing Spitzer data from the Spitzer-HETDEX Exploratory Large-area (SHELA) survey, which adds ~30 square degrees of infrared coverage on S82. Additionally, SpIES probes magnitudes significantly fainter than WISE; depth which is crucial to detect faint, high-redshift quasars. Using the infrared data from SpIES and SHELA, and the deep optical data from SDSS, we employ the multi-dimensional Bayesian selection algorithm outlined in Richards et al. 2015 to identify ~5000 high-redshift quasar candidates in this field. We then combine these candidates with spectroscopically confirmed high-redshift quasars and measure the redshift space correlation function and the projected correlation function. Finally, using these results, we compute the linear bias to try to constrain quasar feedback models akin to those in Hopkins et al. 2007.

  19. Kinematic Modeling of Separation Compression for Paired Approaches to Closely-Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2014-01-01

    In a simultaneous paired approach to closely-spaced parallel runways, a pair of aircraft flies in close proximity on parallel approach paths. The longitudinal separation between the aircraft must be maintained within a range that avoids wake encounters and, if one of the aircraft blunders, avoids collision. To increase operational availability, the approach procedure must accommodate a mixture of aircraft sizes and, consequently, approach speeds. In these procedures, the slower aircraft is placed in the lead position. The faster aircraft maintains separation from the slow aircraft in a dependent operation until final approach and flies independently afterward. Due to the higher approach speed of the fast aircraft, longitudinal separation will decrease during final approach. Therefore, the fast aircraft must position itself before the final approach so that it will remain within the safe range of separation as separation decreases. Given the approach geometry and speed schedule for each aircraft, one can use kinematics to estimate the separation loss between a pair of aircraft. A kinematic model can complement fast-time Monte-Carlo simulations of the approach by enabling a tailored reduction in the variation of starting position for the fast aircraft. One could also implement the kinematic model in ground-based or on-board decision support tools to compute the optimal initial separation for a given pair of aircraft. To better match the auto-coupled flight of real aircraft, the paper derives a kinematic model where the speed schedule is flown using equivalent airspeed. The predicted time of flight using the equivalent airspeed kinematic model compares well against a high-fidelity aircraft simulation performing the same approach. This model also demonstrates a modest increase in the predicted loss of separation when contrasted against a kinematic model that assumes the scheduled speed is true airspeed.

  20. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studies

    USGS Publications Warehouse

    Smith, R.L.; Harvey, R.W.; LeBlanc, D.R.

    1991-01-01

    Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, U.S.A. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume. A 27-fold change in bacterial abundance; a 35-fold change in frequency of dividing cells (FDC), an indicator of bacterial growth; a 23-fold change in 3H-glucose uptake, a measure of heterotrophic activity; and substantial changes in overall cell morphology were evident within a 9-m vertical interval at 250 m downgradient. The existence of these gradients argues for the need for closely spaced vertical sampling in groundwater studies because small differences in the vertical placement of a well screen can lead to incorrect conclusions about the chemical and microbiological processes within an aquifer.Vertical gradients of selected chemical constituents, bacterial populations, bacterial activity and electron acceptors were investigated for an unconfined aquifer contaminated with nitrate and organic compounds on Cape Cod, Massachusetts, USA. Fifteen-port multilevel sampling devices (MLS's) were installed within the contaminant plume at the source of the contamination, and at 250 and 2100 m downgradient from the source. Depth profiles of specific conductance and dissolved oxygen at the downgradient sites exhibited vertical gradients that were both steep and inversely related. Narrow zones (2-4 m thick) of high N2O and NH4+ concentrations were also detected within the contaminant plume

  1. Asteroids to Quasars

    NASA Astrophysics Data System (ADS)

    Lugger, Phyllis M.

    2004-12-01

    Asteroid dedication; William Liller: Biographical Sketch; William Liller: Autobiographical Meanderings; Preface; List of Participants; Conference Photo; Part I. 1. Solar System Astronomy: Asteroids Joseph Veverka; 2. Sixteen years of stellar occultations James Elliott; 3. Comets to Quasars: Surface photometry from standard stars and the morphology of the galaxy-quasar interface Peter Usher; 4. Observing Solar Eclipses Jay Pasachoff; Part II. 5. Planetary Nebulae: new insights and opportunities Lawrence Aller; 6. Studies of planetary nebulae at radio wavelengths Yervant Terzian; 7. Optical identifications of compact galactic X-ray sources: Liller Lore Jonathan Grindlay; 8. Ages of globular clusters derived from BVRI CCD photometry Gonzalo Alcaino; 9. Stellar spectrum synthesis Jun Jugaku; 10. Mass exchange and stellar abundance anomalies Benjamin Peery; Part III. Extragalactic Astronomy: 11. The M31 globular cluster system John Huchra; 12. Spiral structure and star formation in galaxies Debra Elmegreen; 13. The discovery of hot coronae around early type galaxies William Forman and Christine Jones; 14. The morphology of clusters of galaxies, the formation efficiency of galaxies and the origin of the intracluster medium Christine Jones and William Forman; 15. Testing models for the dynamical evolution of clusters of galaxies Phyllis Lugger; 16. What is in the X-ray sky? Rudolph Schild; 17. Einstein deep surveys Stephen Murray, Christine Jones and William Forman; Part IV. History, Lore and Archaeoastronomy: 18. Robert Wheeler Willson: His Life and Legacy Barbara Welther; 19. The great mnemonics contest Owen Gingerich; 20. Hetu'u Rapanui: The archaeoastronomy of Easter Island William Liller; Indexes; Names; Objects; Subjects.

  2. Nearby Quasars Result From Galactic Encounters, VLA Studies Indicate

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope have found previously unseen evidence that galaxy collisions trigger energetic quasar activity in relatively nearby galaxies. New radio images of galaxies with bright quasar cores show that, though the galaxies appear normal in visible-light images, their gas has been disrupted by encounters with other galaxies. "This is what theorists have believed for years, but even the best images from optical telescopes, including the Hubble Space Telescope, failed to show any direct evidence of interactions with other galaxies in many cases," said Jeremy Lim, of the Academia Sinica Institute of Astronomy & Astrophysics in Taipei, Taiwan. Lim, along with Paul Ho of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, reported their findings in the January 1 issue of Astrophysical Journal Letters. Quasars are among the most luminous objects in the universe, and generally are believed to be powered by material being drawn into a supermassive black hole at the center of a galaxy, releasing large amounts of energy. Many quasars are found at extremely great distances from Earth, billions of light-years away. Because the light from these quasars took billions of years to reach our telescopes, we see them as they were when they were much younger objects. These distant quasars are thought to "turn on" when the host galaxy's central black hole is "fueled" by material drawn in during an early stage of the galaxy's development, before the galaxy "settles down" to a more sedate life. However, other galaxies with quasar cores are much closer, and thus are older, more mature galaxies. Their quasar activity has been attributed to encounters with nearby galaxies -- encounters that disrupt material and provide new "fuel" to the black hole. The problem for this scenario was the lack of evidence for such galactic encounters in optical images of many nearby quasars. "Our VLA studies are the

  3. Wide-Angle Quasar Feedback

    NASA Astrophysics Data System (ADS)

    Chartas, George; Strickland, Sarah

    We present results from the detection of relativistic winds launched near the innermost stable circular orbits of supermassive black holes. A recent detection of a powerful wind in the X-ray-bright narrow absorption line (NAL) z=1.51 quasar HS 0810+2554 strengthens the case that quasars play a significant role in feedback. In both deep Chandra and XMM-Newton observations of HS 0810 we detected blueshifted absorption lines implying outflowing velocities ranging from 0.1c and 0.4c. The presence of both an emission line at 6.8 keV and an absorption line at 7.8 keV in the spectral line profile of HS 0810 is a characteristic feature of a P-Cygni profile supporting the presence of an expanding outflowing highly ionized Fe absorber. A hard excess component is detected in the XMM-Newton observation of HS 0810 possibly originating from reflection off the disk. Modelling of the XMM-Newton spectrum constrains the inclination angle to be < 35° (68% confidence). The presence of relativistic winds in both low inclination angle NAL quasars as well as in high inclination angle BAL quasars implies that the solid angle of quasar winds may be quite large. The larger solid angle of quasar winds would also indicate that their contribution to the regulation of the host galaxy may be more important than previously thought.

  4. Design of a Simplified Closed Brayton Cycle for a Space Reactor Application

    SciTech Connect

    Guimaraes, Lamartine N. F.; Camillo, Giannino Ponchio; Placco, Guilherme Moreira

    2009-03-16

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are: 1) to establish a starting concept for the CBCL components specifications, and 2) to build a demonstrative simulator of CBCL. This preliminary design study is been developed around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes details of the CBCL mechanical design and the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO2 and gas mixtures such as helium and xenon. However, for this first application pure helium will be used as working fluid. Simplified models of heat and mass transfer were developed to simulate thermal components. A new graphical interface was developed for the simulator to display the thermal process variables in steady state and to keep track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL. A set of new results are being produced. These new results help to establish the hot and cold source geometry allowing for price estimating costs for building the actual device. These fresh new results will be presented and discussed.

  5. Simulated Wake Characteristics Data for Closely Spaced Parallel Runway Operations Analysis

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Neitzke, Kurt W.

    2012-01-01

    A simulation experiment was performed to generate and compile wake characteristics data relevant to the evaluation and feasibility analysis of closely spaced parallel runway (CSPR) operational concepts. While the experiment in this work is not tailored to any particular operational concept, the generated data applies to the broader class of CSPR concepts, where a trailing aircraft on a CSPR approach is required to stay ahead of the wake vortices generated by a lead aircraft on an adjacent CSPR. Data for wake age, circulation strength, and wake altitude change, at various lateral offset distances from the wake-generating lead aircraft approach path were compiled for a set of nine aircraft spanning the full range of FAA and ICAO wake classifications. A total of 54 scenarios were simulated to generate data related to key parameters that determine wake behavior. Of particular interest are wake age characteristics that can be used to evaluate both time- and distance- based in-trail separation concepts for all aircraft wake-class combinations. A simple first-order difference model was developed to enable the computation of wake parameter estimates for aircraft models having weight, wingspan and speed characteristics similar to those of the nine aircraft modeled in this work.

  6. Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches

    DOE PAGES

    Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; ...

    2014-12-10

    A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface ofmore » the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.« less

  7. [Research on the polycrystalline CdS thin films prepared by close-spaced sublimation].

    PubMed

    Yang, Ding-Yu; Xia, Geng-Pei; Zheng, Jia-Gui; Feng, Liang-Huan; Cai, Ya-Ping

    2009-01-01

    In the present paper, the factors of influence on the deposition rate of CdS films prepared by close-spaced sublimation (CSS) were first studied systematically, and it was found from the experiments that the deposition rate increased with the raised temperature of sublimation source, while decreased with the raised substrate temperature and the deposition pressure. The structure, morphology and light transmittance of the prepared samples were tested subsequently, and the results show: (1) The CdS films deposited under different oxygen partial pressure all present predominating growth lattice orientation (103), and further more the films will be strengthened after annealed under CdCl2 atmosphere. (2) The AFM images of CdS show that the films are compact and uniform in grain diameter, and the grain size becomes larger with the increased substrate temperature. Along with it, the film roughness was also augmented. (3) The transmittance in the shortwave region of visible light through the CdS films would be enhanced when its thickness is reduced, and that will help improve the shortwave spectral response of CdTe solar cells. Finally, the prepared CdS films were employed to fabricate CdTe solar cells, which have achieved a conversion efficiency of 10.29%, and thus the feasibility of CSS process in the manufacture of CdTe solar cells was validated primarily.

  8. A Preliminary and Simplified Closed Brayton Cycle Modeling for a Space Reactor Application

    SciTech Connect

    Guimaraes, Lamartine Nogueira Frutuoso; Camillo, Giannino Ponchio

    2008-01-21

    The Nuclear Energy Division (ENU) of the Institute for Advanced Studies (IEAv) has started a preliminary design study for a Closed Brayton Cycle Loop (CBCL) aimed at a space reactor application. The main objectives of the study are: 1) to establish a starting concept for the CBCL components specifications, and 2) to build a demonstrative simulator of CBCL. This preliminary design study is developing the CBCL around the NOELLE 60290 turbo machine. The actual nuclear reactor study is being conducted independently. Because of that, a conventional heat source is being used for the CBCL, in this preliminary design phase. This paper describes the steady state simulator of the CBCL operating with NOELLE 60290 turbo machine. In principle, several gases are being considered as working fluid, as for instance: air, helium, nitrogen, CO{sub 2} and gas mixtures such as helium and xenon. However, for this first application pure helium will be used as working fluid. Simplified models of heat and mass transfer were developed to simulate thermal components. Future efforts will focus on implementing a graphical interface to display the thermal process variables in steady state and to keep track of the modifications being implemented at the NOELLE 60290 turbo machine in order to build the CBCL.

  9. Parallel Operation of Multiple Closely Spaced Small Aspect Ratio Rod Pinches

    SciTech Connect

    Harper-Slaboszewicz, Victor J.; Leckbee, Joshua; Bennett, Nichelle; Madrid, Elizabeth A.; Rose, David V.; Thoma, Carsten; Welch, Dale R.; Lake, Patrick W.; McCourt, Andrew L.

    2014-12-10

    A series of simulations and experiments to resolve questions about the operation of arrays of closely spaced small aspect ratio rod pinches has been performed. Design and post-shot analysis of the experimental results are supported by 3D particle-in-cell simulations. Both simulations and experiments support these conclusions. Penetration of current to the interior of the array appears to be efficient, as the current on the center rods is essentially equal to the current on the outer rods. Current loss in the feed due to the formation of magnetic nulls was avoided in these experiments by design of the feed surface of the cathode and control of the gap to keep the electric fields on the cathode below the emission threshold. Some asymmetry in the electron flow to the rod was observed, but the flow appeared to symmetrize as it reached the end of the rod. Interaction between the rod pinches can be controlled to allow the stable and consistent operation of arrays of rod pinches.

  10. The Optical Identification of Close White Dwarf Binaries in the Laser Interferometer Space Antenna Era

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha; Farmer, Alison J.; Seto, Naoki

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) is expected to detect close white dwarf binaries (CWDBs) through their gravitational radiation. Around 3000 binaries will be spectrally resolved at frequencies greater than 3 mHz, and their positions on the sky will be determined to an accuracy ranging from a few tens of arcminutes to a degree or more. Because of the small binary separation, the optical light curves of >~30% of these CWDBs are expected to show eclipses, giving a unique signature for identification in follow-up studies of the LISA error boxes. While the precise optical location improves binary parameter determination with LISA data, the optical light curve captures additional physics of the binary, including the individual sizes of the stars in terms of the orbital separation. To optically identify a substantial fraction of CWDBs and thus localize them very accurately, a rapid monitoring campaign is required, capable of imaging a square degree or more in a reasonable time, at intervals of 10-100 s, to magnitudes between 20 and 25. While the detectable fraction can be up to many tens of percent of the total resolved LISA CWDBs, the exact fraction is uncertain because of unknowns related to the WD spatial distribution and potentially interesting physics, such as induced tidal heating of the WDs due to their small orbital separation.

  11. Closely spaced multiple mutations as potential signatures of transient hypermutability in human genes.

    PubMed

    Chen, Jian-Min; Férec, Claude; Cooper, David N

    2009-10-01

    Data from diverse organisms suggests that transient hypermutability is a general mutational mechanism with the potential to generate multiple synchronous mutations, a phenomenon probably best exemplified by closely spaced multiple mutations (CSMMs). Here we have attempted to extend the concept of transient hypermutability from somatic cells to the germline, using human inherited disease-causing multiple mutations as a model system. Employing stringent criteria for data inclusion, we have retrospectively identified numerous potential examples of pathogenic CSMMs that exhibit marked similarities to the CSMMs reported in other systems. These examples include (1) eight multiple mutations, each comprising three or more components within a sequence tract of <100 bp; (2) three possible instances of "mutation showers"; and (3) numerous highly informative "homocoordinate" mutations. Using the proportion of CpG substitution as a crude indicator of the relative likelihood of transient hypermutability, we present evidence to suggest that CSMMs comprising at least one pair of mutations separated by < or =100 bp may constitute signatures of transient hypermutability in human genes. Although this analysis extends the generality of the concept of transient hypermutability and provides new insights into what may be considered a novel mechanism of mutagenesis underlying human inherited disease, it has raised serious concerns regarding current practices in mutation screening.

  12. Trapping of xenon gas in closed inner spaces of carbon nanomaterials for stable gas storage under high-vacuum condition

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keita; Yasuda, Hidehiro

    2017-01-01

    Xe gas can be trapped in the closed inner spaces of glassy carbon derived from C60 fullerene by thermal coalescence of C60 in Xe atmosphere and in cap-opened carbon nanotubes (CNTs) covered with an ionic liquid by soaking Xe-adsorbing CNTs in an ionic liquid. The trapped Xe gas is detected by energy dispersive X-ray spectrometry using a spectrometer mounted on an analytical transmission electron microscope. The closed inner spaces store gas molecules even under high-vacuum condition (˜10-5 Pa).

  13. Generalized Ψ;ρ-closed sets and generalized &Psiρ-open sets in double fuzzy topological spaces

    NASA Astrophysics Data System (ADS)

    Mohammed, Fatimah. M.; Noorani, M. S. M.; Ghareeb, A.

    2014-06-01

    The aim of this paper is to use the notion of Ψ-operations in double fuzzy topological spaces to study the concept of (r,s)-fuzzy generalized Ψρ-closed sets and (r,s)-fuzzy generalized Ψρ-open sets, some characterizations and properties of these concepts are given. Moreover, we discussed the relationship between these sets in double fuzzy topological spaces.

  14. DISCLOSING THE RADIO LOUDNESS DISTRIBUTION DICHOTOMY IN QUASARS: AN UNBIASED MONTE CARLO APPROACH APPLIED TO THE SDSS-FIRST QUASAR SAMPLE

    SciTech Connect

    Balokovic, M.; Smolcic, V.; Ivezic, Z.; Zamorani, G.; Schinnerer, E.; Kelly, B. C.

    2012-11-01

    We investigate the dichotomy in the radio loudness distribution of quasars by modeling their radio emission and various selection effects using a Monte Carlo approach. The existence of two physically distinct quasar populations, the radio-loud and radio-quiet quasars, is controversial and over the last decade a bimodal distribution of radio loudness of quasars has been both affirmed and disputed. We model the quasar radio luminosity distribution with simple unimodal and bimodal distribution functions. The resulting simulated samples are compared to a fiducial sample of 8300 quasars drawn from the SDSS DR7 Quasar Catalog and combined with radio observations from the FIRST survey. Our results indicate that the SDSS-FIRST sample is best described by a radio loudness distribution which consists of two components, with (12 {+-} 1)% of sources in the radio-loud component. On the other hand, the evidence for a local minimum in the loudness distribution (bimodality) is not strong and we find that previous claims for its existence were probably affected by the incompleteness of the FIRST survey close to its faint limit. We also investigate the redshift and luminosity dependence of the radio loudness distribution and find tentative evidence that at high redshift radio-loud quasars were rarer, on average louder, and exhibited a smaller range in radio loudness. In agreement with other recent work, we conclude that the SDSS-FIRST sample strongly suggests that the radio loudness distribution of quasars is not a universal function, and that more complex models than presented here are needed to fully explain available observations.

  15. Orbital stability of systems of closely-spaced planets, II: configurations with coorbital planets

    NASA Astrophysics Data System (ADS)

    Smith, Andrew W.; Lissauer, Jack J.

    2010-08-01

    We numerically investigate the stability of systems of 1 {M_{oplus}} planets orbiting a solar-mass star. The systems studied have either 2 or 42 planets per occupied semimajor axis, for a total of 6, 10, 126, or 210 planets, and the planets were started on coplanar, circular orbits with the semimajor axes of the innermost planets at 1 AU. For systems with two planets per occupied orbit, the longitudinal initial locations of planets on a given orbit were separated by either 60° (Trojan planets) or 180°. With 42 planets per semimajor axis, initial longitudes were uniformly spaced. The ratio of the semimajor axes of consecutive coorbital groups in each system was approximately uniform. The instability time for a system was taken to be the first time at which the orbits of two planets with different initial orbital distances crossed. Simulations spanned virtual times of up to 1 × 108, 5 × 105, and 2 × 105 years for the 6- and 10-planet, 126-planet, and 210-planet systems, respectively. Our results show that, for a given class of system (e.g., five pairs of Trojan planets orbiting in the same direction), the relationship between orbit crossing times and planetary spacing is well fit by the functional form log( t c / t 0) = b β + c, where t c is the crossing time, t 0 = 1 year, β is the separation in initial orbital semimajor axis (in terms of the mutual Hill radii of the planets), and b and c are fitting constants. The same functional form was observed in the previous studies of single planets on nested orbits (Smith and Lissauer 2009). Pairs of Trojan planets are more stable than pairs initially separated by 180°. Systems with retrograde planets (i.e., some planets orbiting in the opposite sense from others) can be packed substantially more closely than can systems with all planets orbiting in the same sense. To have the same characteristic lifetime, systems with 2 or 42 planets per orbit typically need to have about 1.5 or 2 times the orbital separation as

  16. SDSS J0246-0825: A New Gravitationally Lensed Quasar from the Sloan Digital Sky Survey

    SciTech Connect

    Inada, N; Burles, S; Gregg, M D; Becker, R H; Schechter, P L; Eisenstein, D J; Oguri, M; Castander, F J; Hall, P B; Johnston, D E; Pindor, B; Richards, G T; Schneider, D P; White, R L; Brinkmann, J; Szalay, A; York, D G

    2005-11-10

    We report the discovery of a new two-image gravitationally lensed quasar, SDSS J024634.11-082536.2 (SDSS J0246-0825). This object was selected as a lensed quasar candidate from the Sloan Digital Sky Survey (SDSS) by the same algorithm that was used to discover other SDSS lensed quasars (e.g., SDSS J0924+0219). Multicolor imaging with the Magellan Consortium's Walter Baade 6.5-m telescope and the spectroscopic observations using the W. M. Keck Observatory's Keck II telescope confirm that SDSS J0246-0825 consists of two lensed images ({Delta}{theta} = 1''.04) of a source quasar at z = 1.68. Imaging observations with the Keck telescope and the Hubble Space Telescope reveal an extended object between the two quasar components, which is likely to be a lensing galaxy of this system. From the absorption lines in the spectra of quasar components and the apparent magnitude of the galaxy, combined with the expected absolute magnitude from the Faber-Jackson relation, we estimate the redshift of the lensing galaxy to be z = 0.724. A highly distorted ring is visible in the Hubble Space Telescope images, which is likely to be the lensed host galaxy of the source quasar. Simple mass modeling predicts the possibility that there is a small (faint) lensing object near the primary lensing galaxy.

  17. High redshift quasars and high metallicities

    NASA Technical Reports Server (NTRS)

    Ferland, Gary J.

    1997-01-01

    A large-scale code called Cloudy was designed to simulate non-equilibrium plasmas and predict their spectra. The goal was to apply it to studies of galactic and extragalactic emission line objects in order to reliably deduce abundances and luminosities. Quasars are of particular interest because they are the most luminous objects in the universe and the highest redshift objects that can be observed spectroscopically, and their emission lines can reveal the composition of the interstellar medium (ISM) of the universe when it was well under a billion years old. The lines are produced by warm (approximately 10(sup 4)K) gas with moderate to low density (n less than or equal to 10(sup 12) cm(sup -3)). Cloudy has been extended to include approximately 10(sup 4) resonance lines from the 495 possible stages of ionization of the lightest 30 elements, an extension that required several steps. The charge transfer database was expanded to complete the needed reactions between hydrogen and the first four ions and fit all reactions with a common approximation. Radiative recombination rate coefficients were derived for recombination from all closed shells, where this process should dominate. Analytical fits to Opacity Project (OP) and other recent photoionization cross sections were produced. Finally, rescaled OP oscillator strengths were used to compile a complete set of data for 5971 resonance lines. The major discovery has been that high redshift quasars have very high metallicities and there is strong evidence that the quasar phenomenon is associated with the birth of massive elliptical galaxies.

  18. Pilot Non-Conformance to Alerting System Commands During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy Ruth; Hansman, R. John; Corker, Kevin (Technical Monitor)

    1997-01-01

    Cockpit alerting systems monitor potentially hazardous situations, both inside and outside the aircraft. When a hazard is projected to occur, the alerting system displays alerts and/or command decisions to the pilot. However, pilots have been observed to not conform to alerting system commands by delaying their response or by not following the automatic commands exactly. This non-conformance to the automatic alerting system can reduce its benefit. Therefore, a need exists to understand the causes and effects of pilot non-conformance in order to develop automatic alerting systems whose commands the pilots are more likely to follow. These considerations were examined through flight simulator evaluations of the collision avoidance task during closely spaced parallel approaches. This task provided a useful case-study because the effects of non-conformance can be significant, given the time-critical nature of the task. A preliminary evaluation of alerting systems identified non-conformance in over 40% of the cases and a corresponding drop in collision avoidance performance. A follow-on experiment found subjects' alerting and maneuver selection criteria were consistent with different strategies than those used by automatic systems, indicating the pilot may potentially disagree with the alerting system if the pilot attempts to verify automatic alerts and commanded avoidance maneuvers. A final experiment found supporting automatic alerts with the explicit display of its underlying criteria resulted in more consistent subject reactions. In light of these experimental results, a general discussion of pilot non-conformance is provided. Contributing factors in pilot non-conformance include a lack of confidence in the automatic system and mismatches between the alerting system's commands and the pilots' own decisions based on the information available to them. The effects of non-conformance on system performance are discussed. Possible methods of reconciling mismatches are

  19. Experimental Study of Collision Detection Schema Used by Pilots During Closely Spaced Parallel Approaches

    NASA Technical Reports Server (NTRS)

    Pritchett, Amy R.; Hansman, R. John

    1996-01-01

    An experimental flight simulator study was conducted to examine the mental alerting logic and thresholds used by subjects to issue an alert and execute an avoidance maneuver. Subjects flew a series of autopilot landing approaches with traffic on a closely-spaced parallel approach; during some runs, the traffic would deviate towards the subject and the subject was to indicate the point when they recognized the potential traffic conflict, and then indicate a direction of flight for an avoidance maneuver. A variety of subjects, including graduate students, general aviation pilots and airline pilots, were tested. Five traffic displays were evaluated, with a moving map TCAS-type traffic display as a baseline. A side-task created both high and low workload situations. Subjects appeared to use the lateral deviation of the intruder aircraft from its approach path as the criteria for an alert regardless of the display available. However, with displays showing heading and/or trend information, their alerting thresholds were significantly lowered. This type of range-only schema still resulted in many near misses, as a high convergence rate was often established by the time of the subject's alert. Therefore, the properties of the intruder's trajectory had the greatest effect on the resultant near miss rate; no display system reliably caused alerts timely enough for certain collision avoidance. Subjects' performance dropped significantly on a side-task while they analyzed the need for an alert, showing alert generation can be a high workload situation at critical times. No variation was found between subjects with and with out piloting experience. These results suggest the design of automatic alerting systems should take into account the range-type alerting schema used by the human, such that the rationale for the automatic alert should be obvious to, and trusted by, the operator. Although careful display design may help generate pilot/automation trust, issues such as user non

  20. Dynamical Instability and Accretion in the Closely-Spaced Inner Uranian Moon System

    NASA Astrophysics Data System (ADS)

    Meyer, J. A.; Lissauer, J. J.

    2005-08-01

    We have numerically integrated the 13 largest Uranian regular satellites, including mutual gravitation, for a period of three million years. We used the hybrid symplectic integrator in the Mercury package (Chambers 1999, MNRAS 304, 793). Each collision was modeled as completely inelastic. The simulations include the five classical moons as well as the eight brightest inner moons. The Voyager-discovered satellite masses are ill-constrained, due to the lack of observed gravitational perturbations. The masses are estimated using the observed radii combined with an assumed density. We simultaneously simulate these uncertainties in mass and explore the dynamical interactions of closely-spaced satellite systems by allowing the common density of the non-classical moons to run from 0.1 to 30 g/cc. For integrations neglecting Uranus's oblateness, the 3 Myr interval was sufficient time for one to six collisions, with smaller assumed densities resulting in later and fewer collisions. Calculations including the effects of Uranus's oblateness show fewer collisions, with almost all runs showing at least one collision within 3 Myr. While Uranus's classical moons appear stable for the duration of the integrations, the inner moons are much less stable and collide on a timescale well within the Solar System's lifetime. These short collision times imply that the non-classical moons are significantly younger than the rest of the Solar System and highly chaotic. First collision times agree qualitatively with the results of Duncan and Lissauer (1997, Icarus 125, 1). Our novel results include the study of subsequent collisions, the study of the low-density regime, and eccentricity analysis. I will also present the results of integrations that include tidal damping of eccentricities. These calculations constrain the importance of tidal effects in the system and allow us to draw conclusions about the formation history of the Uranian satellites.

  1. Dynamical Instability and Accretion in Systems of Closely-Spaced Inner Moons

    NASA Astrophysics Data System (ADS)

    Meyer, J. A.; Lissauer, J. J.

    2005-05-01

    We have numerically integrated the 13 largest Uranian regular satellites, including mutual gravitation, for a period of three million years. We used the hybrid symplectic integrator in the Mercury package (Chambers 1999, MNRAS 304, 793). The simulations include the five classical moons as well as the eight largest inner moons. The Voyager-discovered satellites' masses are ill-constrained, due to the lack of observed gravitational perturbations. The masses are estimated using the observed radii combined with an assumed density; for moons of unknown radii, the albedo was assumed to be similar to that of nearby moons. We simultaneously simulate these uncertainties in mass and explore the dynamical interactions of closely-spaced satellite systems by allowing the common density of the non-classical moons to run from 0.1 to 30 g/cc. For our initial integrations, which neglected Uranus's oblateness, the 3 Myr interval was sufficient time for one to six collisions, depending on the density assumed for the inner moons. Each collision was modeled as completely inelastic. While Uranus's outer classical moons appear stable for the duration of the integrations, the inner moons are much less stable and collide on a timescale well within the solar system's lifetime. Results of calculations including the effects of Uranus's oblateness will also be presented. Preliminary results indicate that including the J2 and J4 moments leads to later collision times in the low density range. First collision times agree qualitatively with the results of Duncan and Lissauer (Icarus 125, 1, 1997). Our novel results include the study of subsequent collisions and implications for the formation history of the Uranian satellites.

  2. Physiological Disorders in Closed Environment-Grown Crops for Space Life Support

    NASA Astrophysics Data System (ADS)

    Wheeler, Raymond; Morrow, Robert

    Crop production for life support systems in space will require controlled environments where temperature, humidity, CO2, and light might differ from natural environments where plants evolved. Physiological disorders, i.e., abnormal plant growth and development, can occur under these controlled environments. Among the most common of these disorders are Ca deficiency injuries such as leaf tipburn (e.g., lettuce), blossom-end-rot in fruits (e.g., tomato and pepper), and internal tissue necrosis in fruits or tubers (e.g., cucumber and potato). Increased Ca nutrition to the plants typically has little effect on these disorders, but slowing overall growth or providing better air circulation to increase transpiration can be effective. A second common disorder is oedema or intumescence, which appears as callus-like growth or galls on leaves (e.g., sweetpotato, potato, pepper, and tomato). This disorder can be reduced by increasing the near UV radiation ( 300-400 nm) to the plants. Leaf injury and necrosis can occur under long photoperiods (e.g., tomato, potato, and pepper) and at super-elevated (i.e., ¿ than 4000 mol mol-1) CO2 concentrations (e.g., soybean, potato, and radish), and these can be managed by reducing the photoperiod and CO2 concentration, respectively. Lack of blue light in the spectrum (e.g., under red LEDs or LPS lamps) can result in leggy growth and/or leaves lacking in chlorophyll (e.g., wheat, bean, and radish). Volatile organic compounds (VOCs), most commonly ethylene, can accumulate in tightly closed systems and result in a variety of negative responses. Most of these disorders can be mitigated by altering the environmental set-points or by using more resistant cultivars.

  3. CdZnS thin films sublimated by closed space using mechanical mixing: A new approach

    NASA Astrophysics Data System (ADS)

    Mahmood, Waqar; Shah, Nazar Abbas

    2014-06-01

    Cadmium sulfide (CdS) is a prominent material for its tunable band gap used as a window layer in II-VI semiconductor solar cells. The light trapping capability of window layer is one of the powerful tools to enhance the efficiency of the cell. CdS and zinc (Zn) powders were mixed mechanically with different weight percents to make CdZnS (CZS) powder. CZS was deposited onto an ultrasonically cleaned glass substrate using close spaced sublimation (CSS) technique. CZS as-deposited thin films were characterized for structural, surface morphology with energy dispersive X-rays (EDX) and optical properties for the use of window layer in CdS/CdTe based solar cells. The different Zn concentrations in CZS played a vital role on crystallite size in structural analysis and optical properties e.g. transmission, absorption coefficient and energy band gap, etc. The crystallite size of as-deposited CZS thin films were increased as Zn concentration was increased up to certain value. The energy band gap varies from 2.42 eV to 2.57 eV for as-deposited CZS thin films with increasing Zn concentrations and surface morphology changes also. These changes were occurred due to zinc diffusion in CdS thin films. An angle resolved transmission data was taken to check the behavior of CdS and CZS thin film at different angles. A comparative study was carried out between CdS thin films and CZS thin films for the use of good window layer material.

  4. Behind the Photos and the Tears: Media Images, Neoliberal Discourses, Racialized Constructions of Space and School Closings in Chicago

    ERIC Educational Resources Information Center

    Allweiss, Alexandra; Grant, Carl A.; Manning, Karla

    2015-01-01

    This critical article provides insights into how media frames influence our understandings of school reform in urban spaces by examining images of students during the 2013 school closings in Chicago. Using visual framing analysis and informed by framing theory and critiques of neoliberalism we seek to explore two questions: (1) What role do media…

  5. The ecology of microorganisms in a small closed system: Potential benefits and problems for space station

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.

    1986-01-01

    The inevitble presence on the space station of microorganisms associated with crew members and their environment will have the potential for both benefits and a range of problems including illness and corrosion of materials. This report reviews the literature presenting information about microorganisms pertinent to Environmental Control and Life Support (ECLS) on the space station. The perspective of the report is ecological, viewing the space station as an ecosystem in which biological relationships are affected by factors such as zero gravity and by closure of a small volume of space. Potential sites and activities of microorganisms on the space station and their environmental limits, microbial standards for the space station, monitoring and control methods, effects of space factors on microorganisms, and extraterrestrial contamination are discussed.

  6. a Glimpse Into the Time Before Quasars were Born

    NASA Astrophysics Data System (ADS)

    1996-11-01

    According to the widely accepted Big Bang theory, the first galaxies formed by gravitational accretion from slight irregularities in a primordial sea of matter, a process that required considerable time. Hence it would be expected that there would be a delay between the Big Bang and the appearance of the first galaxies. Or, looking back in time from the present, we would expect to find an epoch in the distant past when galaxies had not yet come into being. The space density of quasars An international group of astronomers 1 has now performed observations that seem to offer a glimpse into this very early period. They show that, when looking further and further into space and therefore successively farther back in time, the space density of quasars, after first increasing towards a maximum, then declines rapidly towards zero. Quasars are thought to be the nuclei of active galaxies , that is galaxies in the process of formation or undergoing violent interactions with other galaxies. Such objects are extremely bright and they can be seen across the Universe. That is the reason why quasars, rather than the much fainter normal galaxies , have been used to study the distant Universe. The possible existence of a rapid decline in the number of quasars as we look into the very distant Universe has been suspected for many years. Recent searches for distant quasars by means of optical telescopes observing their visible light have provided the strongest evidence. However, it has also been suggested that this decline could be merely due to obscuration caused by material in intervening galaxies - the distant Universe may be hidden from view. Observations of radio sources Radio waves are unaffected by dust, however, and many quasars are strong radio sources. Therefore, the group of astronomers from Germany, Great Britain, and the United States recently undertook a search for very distant quasars based on their radio emission. This involved measuring accurate positions of hundreds

  7. Drift velocity of the ionospheric irregularities measured by closely-spaced GNSS receivers in Tromsoe, Norway

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Otsuka, Y.; Shiokawa, K.; Hosokawa, K.; Ogawa, Y.

    2013-12-01

    estimated from the closely-spaced GNSS receivers. In this presentation, we discuss relationship of the irregularity drift velocity with aurora structure and movement based on these observations.

  8. Discovery of a very Lyman-α-luminous quasar at z = 6.62

    PubMed Central

    Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei

    2017-01-01

    Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 1012 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit. PMID:28150701

  9. Discovery of a very Lyman-α-luminous quasar at z = 6.62

    NASA Astrophysics Data System (ADS)

    Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei

    2017-02-01

    Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 1012 Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.

  10. Discovery of a very Lyman-α-luminous quasar at z = 6.62.

    PubMed

    Koptelova, Ekaterina; Hwang, Chorng-Yuan; Yu, Po-Chieh; Chen, Wen-Ping; Guo, Jhen-Kuei

    2017-02-02

    Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-α line redshifted to 0.9 microns at z > 6.5. Here, we report the discovery of a very Lyman-α luminous quasar, PSO J006.1240 + 39.2219 at redshift z = 6.618, selected based on its red colour and multi-epoch detection of the Lyman-α emission in a single near-infrared band. The Lyman-α line luminosity of PSO J006.1240 + 39.2219 is unusually high and estimated to be 0.8 × 10(12) Solar luminosities (about 3% of the total quasar luminosity). The Lyman-α emission of PSO J006.1240 + 39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-α line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.

  11. Extremely red quasars in BOSS

    NASA Astrophysics Data System (ADS)

    Hamann, Fred; Zakamska, Nadia L.; Ross, Nicholas; Paris, Isabelle; Alexandroff, Rachael M.; Villforth, Carolin; Richards, Gordon T.; Herbst, Hanna; Brandt, W. Niel; Cook, Ben; Denney, Kelly D.; Greene, Jenny E.; Schneider, Donald P.; Strauss, Michael A.

    2017-01-01

    Red quasars are candidate young objects in an early transition stage of massive galaxy evolution. Our team recently discovered a population of extremely red quasars (ERQs) in the Baryon Oscillation Spectroscopic Survey (BOSS) that has a suite of peculiar emission-line properties including large rest equivalent widths (REWs), unusual `wingless' line profiles, large N V/Lyα, N V/C IV, Si IV/C IV and other flux ratios, and very broad and blueshifted [O III] λ5007. Here we present a new catalogue of C IV and N V emission-line data for 216 188 BOSS quasars to characterize the ERQ line properties further. We show that they depend sharply on UV-to-mid-IR colour, secondarily on REW(C IV), and not at all on luminosity or the Baldwin Effect. We identify a `core' sample of 97 ERQs with nearly uniform peculiar properties selected via i-W3 ≥ 4.6 (AB) and REW(C IV) ≥ 100 Å at redshifts 2.0-3.4. A broader search finds 235 more red quasars with similar unusual characteristics. The core ERQs have median luminosity ˜ 47.1, sky density 0.010 deg-2, surprisingly flat/blue UV spectra given their red UV-to-mid-IR colours, and common outflow signatures including BALs or BAL-like features and large C IV emission-line blueshifts. Their SEDs and line properties are inconsistent with normal quasars behind a dust reddening screen. We argue that the core ERQs are a unique obscured quasar population with extreme physical conditions related to powerful outflows across the line-forming regions. Patchy obscuration by small dusty clouds could produce the observed UV extinctions without substantial UV reddening.

  12. The Geometry of Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib

    2012-10-01

    Quasar outflows are important for understanding the accretion and growth processes of the central black hole, but also potentially play a role in feedback to the galaxy, halting star formation and infall of gas. A big uncertainty lies in the geometry and density of these outflows, especially as a function of ionization and velocity. We aim to tackle this using the archival COS M grating spectra of 266 quasars. We separate the geometry of outflows into two parts: the solid angle subtended around the black hole, and the distance of the outflow from the central engine. Large numbers of quasars with high resolution spectra are required for each aspect of this statistical investigation. First, we will determine which/how many absorption-line systems are intrinsic through both partial covering methods and statistical assessments. Second, we will consider the incidence of intrinsic absorbers as a function of quasar property {e.g., radio-loudness, SED shape, black hole mass, bolometric luminosity}. This will reveal what determines the solid angle. This can only be done at moderate redshifts where quasars with a larger range of properties are observable, and hence requires HST/COS. Third, we will use the wide range of diagnostic lines to constrain the physical conditions of the absorbers. We will target the CIII*1175 complex and apply photoionization models to constrain the densities and ionization parameters. This will provide the largest set yet of intrinsic absorbers with systematic distance constraints. In tandem with the solid angles, this work will inform models regarding the geometry of quasar outflows.

  13. Infrared Reverberation Mapping of 17 Quasars from the SDSS Reverberation Mapping Project

    NASA Astrophysics Data System (ADS)

    Gorjian, Varoujan; Shen, Yue; Barth, Aaron J.; Brandt, W. Niel; Dawson, Kyle S.; Green, Paul J.; Ho, Luis; Horne, Keith D.; Jiang, Linhua; McGreer, Ian D.; Schneider, Donald P.; Tao, Charling

    2017-01-01

    The Spitzer Space Telescope Cycle 11/12 proposals allowed observations over a 20 month long period which opened up a new window for long term reverberation monitoring of high luminosity active galactic nuclei (AGN). Previous Spitzer reverberation monitoring projects looking for UV/optical light absorbed and re-emitted in the IR by dust had been limited to AGN that could potentially show reverberation within a single cycle (~1 year). This had narrowed the sample of sources to low luminosity AGN which would have a small dust sublimation radius thus having their dust close enough so that the light travel time from the UV/optical emitting region of the accretion disk to the IR emitting region of the dust would be on the 1-2 month timescale. With this new opportunity we monitored 17 quasars from the Sloan Digital Sky Survey Reverberation Mapping (SDSS-RM) project. This sample has photometric monitoring for 849 quasars starting in 2010 combining data from the Pan-STARRS, CFHT, and Steward Observatory telescopes. By combining these ground based observations with Spitzer data we can, for the first time, detect dust reverberation in high luminosity AGN.

  14. "Dead quasars" in nearby galaxies?

    PubMed

    Rees, M J

    1990-02-16

    The nuclei of some galaxies undergo violent activity, quasars being the most extreme instances of this phenomenon. Such activity is probably short-lived compared to galactic lifetimes, and was most prevalent when the universe was only about one-fifth of its present age. A massive black hole seems the inevitable end point of such activity, and dead quasars should greatly outnumber active ones. In recent years, studies of stellar motions in the cores of several nearby galaxies indicate the presence of central dark masses which could be black holes. This article discusses how such evidence might be corroborated, and the potential implications for our understanding of active galaxies and black holes.

  15. Quasar Winds Near the Peak in Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Chartas, George; Brandt, Niel; Saez, Cristian; Giustini, Margherita; Garmire, Gordon

    We present results from recent XMM-Newton, Chandra and Suzaku monitoring observations of the BAL quasar APM 08279+5255. We present constraints on the kinematic and photoion-ization properties of the wind in this z=3.91 quasar and find that it is capable of playing an important role in controlling the evolution of the host galaxy and central black hole close to the peak in galaxy merger rate. We place constraints of the X-ray emission region of APM08279 and find it to be comparable to its ISCO radius. The X-ray emission size of APM08279 is consistent with sizes derived from our analysis of microlensing lightcurves of several gravitationally lensed quasars. A possible trend found between the X-ray photon index and the maximum outflow veloc-ity points towards a plausible mechanism that may explain the acceleration of the wind in APM08279. We also present prospects for future advances in our understanding of the role of quasar winds in galaxy feedback with the International X-ray Observatory.

  16. Being a Closely Spaced Second Child Is Not So Bad. Child-Spacing Effects on Intelligence, Personality, and Social Competence.

    ERIC Educational Resources Information Center

    Nuttall, Ronald L.; Nuttall, Ena Vazquez

    This study focuses on the effects of family size and spacing on intellectual, social, and personality development of children. The sample consisted of 533 suburban, middle class, large family (five or more) and small two child family children. The children, 233 boys and 300 girls, were teenagers attending either junior or senior high school.…

  17. Potential Sedimentary Evidence of Two Closely Spaced Tsunamis on the West Coast of Aceh, Indonesia

    NASA Astrophysics Data System (ADS)

    Monecke, Katrin; Meilianda, Ella; Rushdy, Ibnu; Moena, Abudzar; Yolanda, Irvan P.

    2016-04-01

    Recent research in the coastal regions of Aceh, Indonesia, an area that was largely affected by the 2004 Sumatra Andaman earthquake and ensuing Indian Ocean tsunami, suggests the possibility that two closely spaced tsunamis occurred at the turn of the 14th to 15th century (Meltzner et al., 2010; Sieh et al., 2015). Here, we present evidence of two buried sand layers in the coastal marshes of West Aceh, possibly representing these penultimate predecessors of the 2004 tsunami. We discovered the sand layers in an until recently inaccessible area of a previously studied beach ridge plain about 15 km North of Meulaboh, West Aceh. Here, the 2004 tsunami left a continuous, typically a few cm thick sand sheet in the coastal hinterland in low-lying swales that accumulate organic-rich deposits and separate the sandy beach ridges. In keeping with the long-term progradation of the coastline, older deposits have to be sought after further inland. Using a hand auger, the buried sand layers were discovered in 3 cores in a flooded and highly vegetated swale in about 1 km distance to the shoreline. The pair of sand layers occurs in 70-100 cm depth and overlies 40-60 cm of dark-brown peat that rests on the basal sand of the beach ridge plain. The lower sand layer is only 1-6 cm thick, whereas the upper layer is consistently thicker, measuring 11-17 cm, with 8-14 cm of peat in between sand sheets. Both layers consist of massive, grey, medium sand and include plant fragments. They show very sharp upper and lower boundaries clearly distinguishing them from the surrounding peat and indicating an abrupt depositional event. A previously developed age model for sediments of this beach ridge plain suggest that this pair of layers could indeed correlate to a nearby buried sand sheet interpreted as tsunamigenic and deposited soon after 1290-1400AD (Monecke et al., 2008). The superb preservation at this new site allows the clear distinction of two depositional events, which, based on a first

  18. VTOL in ground effect flows for closely spaced jets. [to predict pressure and upwash forces on aircraft structures

    NASA Technical Reports Server (NTRS)

    Migdal, D.; Hill, W. G., Jr.; Jenkins, R. C.

    1979-01-01

    Results of a series of in ground effect twin jet tests are presented along with flow models for closely spaced jets to help predict pressure and upwash forces on simulated aircraft surfaces. The isolated twin jet tests revealed unstable fountains over a range of spacings and jet heights, regions of below ambient pressure on the ground, and negative pressure differential in the upwash flow field. A separate computer code was developed for vertically oriented, incompressible jets. This model more accurately reflects fountain behavior without fully formed wall jets, and adequately predicts ground isobars, upwash dynamic pressure decay, and fountain lift force variation with height above ground.

  19. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The results of the second year of a three year design project on the automation of the Environmental Control and Life Support System (ECLSS) of the Space Station Freedom (SSF) are presented. The results are applicable to other space missions that require long duration space habitats. A description of conceptual controls which are developed for the Water Recovery and Management (WRM) Subassembly is given. Mathematical modeling of the Air Revitalization (AR) Subassembly is presented. The work done by the Kansas State University NASA/USRA interdisciplinary student design team is concluded with a discussion of the expert system which was developed for the AR Subassembly.

  20. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station

    PubMed Central

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J.; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles. PMID:27029003

  1. Effects of a Closed Space Environment on Gene Expression in Hair Follicles of Astronauts in the International Space Station.

    PubMed

    Terada, Masahiro; Seki, Masaya; Takahashi, Rika; Yamada, Shin; Higashibata, Akira; Majima, Hideyuki J; Sudoh, Masamichi; Mukai, Chiaki; Ishioka, Noriaki

    2016-01-01

    Adaptation to the space environment can sometimes pose physiological problems to International Space Station (ISS) astronauts after their return to earth. Therefore, it is important to develop healthcare technologies for astronauts. In this study, we examined the feasibility of using hair follicles, a readily obtained sample, to assess gene expression changes in response to spaceflight adaptation. In order to investigate the gene expression changes in human hair follicles during spaceflight, hair follicles of 10 astronauts were analyzed by microarray and real time qPCR analyses. We found that spaceflight alters human hair follicle gene expression. The degree of changes in gene expression was found to vary among individuals. In some astronauts, genes related to hair growth such as FGF18, ANGPTL7 and COMP were upregulated during flight, suggesting that spaceflight inhibits cell proliferation in hair follicles.

  2. Photometric Determination of Quasar Candidates

    NASA Astrophysics Data System (ADS)

    Abraham, S.; Philip, N. S.

    2010-12-01

    We describe an efficient and fast method for the detection and classification of quasars using a machine learning tool, making use of photometric information from SDSS DR7 data release. The photometric information used are the ten independent colours that can be derived from the 5 filters available with SDSS and the machine learning algorithm used is a difference boosting neural network (DBNN) that uses Bayesian classification rule. An adaptive learning algorithm was used to prepare the training sample for each region. Cross validations were done with SDSS spectroscopy and it was found that the method could detect quasars with above 96.96% confidence regarding their true classification. The completeness at this stage was 99.01%. Contaminants were mainly stars and the incorrectly classified quasars belonged to a few specific patches of redshifts. Color plots indicated that the colors of some stars and quasars in those redshits were indistinguishable from each other and was the major cause of their incorrect classification. A confidence value (computed posterior Bayesian belief of the network) was assigned to every object that was classified. Most of the incorrect classifications had a low confidence value. This information may be used to filter out contaminants and improve the classification accuracy at the cost of reduced completeness.

  3. Incidence of strong Mg II absorbers towards different types of quasars

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi; Chand, Hum; Gopal-Krishna

    2013-10-01

    We report the first comparative study of strong Mg II absorbers (Wr ≥ 1.0 Å) seen towards radio-loud quasars of core-dominated (CDQ) and lobe-dominated (LDQ) types and normal quasars (QSOs). The CDQ and LDQ samples were derived from the Sloan Digital Sky Survey Data Release 7 after excluding known `broad-absorption-line' quasars and blazars. The Mg II associated absorption systems having a velocity offset v < 5000 km s-1 from the systemic velocity of the background quasar were also excluded. Existing spectroscopic data for redshift-matched sightlines of 3975 CDQs and 1583 LDQs, covering an emission redshift range 0.39-4.87, were analysed and 864 strong Mg II absorbers were found, covering the redshift range 0.45-2.17. The conclusions reached using this well-defined large data set of strong Mg II absorbers are (i) the number density, dN/dz, towards CDQs shows a small, marginally significant excess (˜9 per cent at 1.5σ significance) over the estimate available for QSOs; (ii) in the redshift space, this difference is reflected in terms of a 1.6σ excess of dN/dz over the QSOs, within the narrow redshift interval 1.2-1.8; (iii) the dN/dβ distribution (with β = v/c) for CDQs shows a significant excess (at 3.75σ level) over the distribution found for a redshift- and luminosity-matched sample of QSOs, at β in the range 0.05-0.1. This leads us to infer that a significant fraction of strong Mg II absorption systems seen in this offset velocity range are probably associated with the CDQs and might be accelerated into the line of sight by their powerful jets and/or due to the accretion-disc outflows close to our direction. Support to this scenario comes from a consistency check in which we consider only the spectral range corresponding to β > 0.2. The computed redshift distribution for strong Mg II absorbers towards CDQs now shows excellent agreement with that known for QSOs, as indeed is expected for purely intervening absorption systems. Thus, it appears that for

  4. PHOTOMETRIC REDSHIFTS AND QUASAR PROBABILITIES FROM A SINGLE, DATA-DRIVEN GENERATIVE MODEL

    SciTech Connect

    Bovy, Jo; Hogg, David W.; Weaver, Benjamin A.; Myers, Adam D.; Hennawi, Joseph F.; McMahon, Richard G.; Schiminovich, David; Sheldon, Erin S.; Brinkmann, Jon; Schneider, Donald P.

    2012-04-10

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques-which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data-and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  5. Photometric redshifts and quasar probabilities from a single, data-driven generative model

    SciTech Connect

    Bovy, Jo; Myers, Adam D.; Hennawi, Joseph F.; Hogg, David W.; McMahon, Richard G.; Schiminovich, David; Sheldon, Erin S.; Brinkmann, Jon; Schneider, Donald P.; Weaver, Benjamin A.

    2012-03-20

    We describe a technique for simultaneously classifying and estimating the redshift of quasars. It can separate quasars from stars in arbitrary redshift ranges, estimate full posterior distribution functions for the redshift, and naturally incorporate flux uncertainties, missing data, and multi-wavelength photometry. We build models of quasars in flux-redshift space by applying the extreme deconvolution technique to estimate the underlying density. By integrating this density over redshift, one can obtain quasar flux densities in different redshift ranges. This approach allows for efficient, consistent, and fast classification and photometric redshift estimation. This is achieved by combining the speed obtained by choosing simple analytical forms as the basis of our density model with the flexibility of non-parametric models through the use of many simple components with many parameters. We show that this technique is competitive with the best photometric quasar classification techniques—which are limited to fixed, broad redshift ranges and high signal-to-noise ratio data—and with the best photometric redshift techniques when applied to broadband optical data. We demonstrate that the inclusion of UV and NIR data significantly improves photometric quasar-star separation and essentially resolves all of the redshift degeneracies for quasars inherent to the ugriz filter system, even when included data have a low signal-to-noise ratio. For quasars spectroscopically confirmed by the SDSS 84% and 97% of the objects with Galaxy Evolution Explorer UV and UKIDSS NIR data have photometric redshifts within 0.1 and 0.3, respectively, of the spectroscopic redshift; this amounts to about a factor of three improvement over ugriz-only photometric redshifts. Our code to calculate quasar probabilities and redshift probability distributions is publicly available.

  6. A close look into the near/far space division: a real-distance ERP study.

    PubMed

    Valdés-Conroy, Berenice; Sebastián, Manuel; Hinojosa, José A; Román, Francisco J; Santaniello, Gerardo

    2014-07-01

    For the first time this study measures the electric brain activation in a semi-real scenario to investigate the representation of objects in the near/far space. We recorded electrical brain activity from a group of 22 participants who had to indicate whether or not they could reach or not several objects that appeared along a 52″ touchscreen display. We replicated previous results showing that reaction time to objects located in the near space was significantly faster than to objects located in far space. The effects of object location found here were significant even when their hand was not visible to them and retracted from the objects. ERP analysis showed a consistent N1 visual component with faster latencies and greater amplitudes for objects in near space. Importantly, this latency difference was not linked only to the physical distance but to a psychological division between near and far space based on their interactive potential (e.g. reachable vs. not reachable). At later stages LPP results showed significant effects of arousal at occipital electrode sites while parietal scalp locations were sensitive to spatial location supporting a ventral/dorsal dissociation of neuropsychological space.

  7. Atlas of quasar energy distributions

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Wilkes, Belinda J.; Mcdowell, Jonathan C.; Green, Richard F.; Bechtold, Jill; Willner, S. P.; Oey, M. S.; Polomski, Elisha; Cutri, Roc

    1994-01-01

    We present an atlas of the spectral energy distributions (SEDs) of normal, nonblazar, quasars over the whole available range (radio to 10 keV X-rays) of the electromagnetic spectrum. The primary (UVSX) sample includes 47 quasars for which the spectral energy distributions include X-ray spectral indices and UV data. Of these, 29 are radio quiet, and 18 are radio loud. The SEDs are presented both in figures and in tabular form, with additional tabular material published on CD-ROM. Previously unpublished observational data for a second set of quasars excluded from the primary sample are also tabulated. The effects of host galaxy starlight contamination and foreground extinction on the UVSX sample are considered and the sample is used to investigate the range of SED properties. Of course, the properties we derive are influenced strongly by the selection effects induced by quasar discovery techniques. We derive the mean energy distribution (MED) for radio-loud and radio-quiet objects and present the bolometric corrections derived from it. We note, however, that the dispersion about this mean is large (approximately one decade for both the infrared and ultraviolet components when the MED is normalized at the near-infrared inflection). At least part of the dispersion in the ultraviolet may be due to time variability, but this is unlikely to be important in the infrared. The existence of such a large dispersion indicates that the MED reflects only some of the properties of quasars and so should be used only with caution.

  8. Mid-infrared luminous quasars in the GOODS-Herschel fields: a large population of heavily obscured, Compton-thick quasars at z ≈ 2

    NASA Astrophysics Data System (ADS)

    Del Moro, A.; Alexander, D. M.; Bauer, F. E.; Daddi, E.; Kocevski, D. D.; McIntosh, D. H.; Stanley, F.; Brandt, W. N.; Elbaz, D.; Harrison, C. M.; Luo, B.; Mullaney, J. R.; Xue, Y. Q.

    2016-02-01

    We present the infrared (IR) and X-ray properties of a sample of 33 mid-IR luminous quasars (νL6 μm ≥ 6 × 1044 erg s-1) at redshift z ≈ 1-3, identified through detailed spectral energy distribution analyses of distant star-forming galaxies, using the deepest IR data from Spitzer and Herschel in the GOODS-Herschel fields. The aim is to constrain the fraction of obscured, and Compton-thick (CT, NH > 1.5 × 1024 cm-2) quasars at the peak era of nuclear and star formation activities. Despite being very bright in the mid-IR band, ≈30 per cent of these quasars are not detected in the extremely deep 2 and 4 Ms Chandra X-ray data available in these fields. X-ray spectral analysis of the detected sources reveals that the majority (≈67 per cent) are obscured by column densities NH > 1022 cm-2; this fraction reaches ≈80 per cent when including the X-ray-undetected sources (9 out of 33), which are likely to be the most heavily obscured, CT quasars. We constrain the fraction of CT quasars in our sample to be ≈24-48 per cent, and their space density to be Φ = (6.7 ± 2.2) × 10-6 Mpc-3. From the investigation of the quasar host galaxies in terms of star formation rates (SFRs) and morphological distortions, as a sign of galaxy mergers/interactions, we do not find any direct relation between SFRs and quasar luminosity or X-ray obscuration. On the other hand, there is tentative evidence that the most heavily obscured quasars have, on average, more disturbed morphologies than the unobscured/moderately obscured quasar hosts, which preferentially live in undisturbed systems. However, the fraction of quasars with disturbed morphology amongst the whole sample is ≈40 per cent, suggesting that galaxy mergers are not the main fuelling mechanism of quasars at z ≈ 2.

  9. A simple model to link the properties of quasars to the properties of dark matter haloes out to high redshift

    NASA Astrophysics Data System (ADS)

    Croton, Darren J.

    2009-04-01

    We present a simple model of how quasars occupy dark matter haloes from z = 0 to 5 using the observed mBH-σ relation and quasar luminosity functions. This provides a way for observers to statistically infer host halo masses for quasar observations using luminosity and redshift alone. Our model is deliberately simple and sidesteps any need to explicitly describe the physics. In spite of its simplicity, the model reproduces many key observations and has predictive power: (i) model quasars have the correct luminosity function (by construction) and spatial clustering (by consequence); (ii) we predict high-redshift quasars of a given luminosity live in less massive dark matter haloes than the same luminosity quasars at low redshifts; (iii) we predict a factor of ~5 more 108.5Msolar black holes at z ~ 2 than is currently observed; (iv) we predict a factor of ~20 evolution in the amplitude of the mBH-Mhalo relation between z = 5 and the present day; (v) we expect luminosity-dependent quasar lifetimes of between tQ ~ 107 and 108yr, but which may become as short as 105-6yr for quasars brighter than L* and (vi) while little luminosity-dependent clustering evolution is expected at z <~ 1, increasingly strong evolution is predicted for L > L* quasars at higher redshifts. These last two results arise from the narrowing distribution of halo masses that quasars occupy as the Universe ages. We also deconstruct both `downsizing' and `upsizing' trends predicted by the model at different redshifts and space densities. Importantly, this work illustrates how current observations cannot distinguish between more complicated physically motivated quasar models and our simple phenomenological approach. It highlights the opportunities such methodologies provide.

  10. A SIMPLE MODEL FOR QUASAR DEMOGRAPHICS

    SciTech Connect

    Conroy, Charlie; White, Martin

    2013-01-10

    We present a simple model for the relationship between quasars, galaxies, and dark matter halos from 0.5 < z < 6. In the model, black hole (BH) mass is linearly related to galaxy mass, and galaxies are connected to dark matter halos via empirically constrained relations. A simple 'scattered' light bulb model for quasars is adopted, wherein BHs shine at a fixed fraction of the Eddington luminosity during accretion episodes, and Eddington ratios are drawn from a lognormal distribution that is redshift independent. This model has two free, physically meaningful parameters at each redshift: the normalization of the M {sub BH}-M {sub gal} relation and the quasar duty cycle; these parameters are fit to the observed quasar luminosity function (LF) over the interval 0.5 < z < 6. This simple model provides an excellent fit to the LF at all epochs and also successfully predicts the observed projected two-point correlation of quasars from 0.5 < z < 2.5. It is significant that a single quasar duty cycle at each redshift is capable of reproducing the extant observations. The data are therefore consistent with a scenario wherein quasars are equally likely to exist in galaxies, and therefore dark matter halos, over a wide range in masses. The knee in the quasar LF is a reflection of the knee in the stellar-mass-halo-mass relation. Future constraints on the quasar LF and quasar clustering at high redshift will provide strong constraints on the model. In the model, the autocorrelation function of quasars becomes a strong function of luminosity only at the very highest luminosities and will be difficult to observe because such quasars are so rare. Cross-correlation techniques may provide useful constraints on the bias of such rare objects. The simplicity of the model allows for rapid generation of quasar mock catalogs from N-body simulations that match the observed LF and clustering to high redshift.

  11. Opening and Closing Interactive Spaces: Shaping Four-Year-Old Children's Participation in Two English Settings

    ERIC Educational Resources Information Center

    Payler, Jane

    2007-01-01

    This paper draws on an ESRC-funded study (Payler, 2005) of the sociocultural influences on learning processes of 10 four-year-old children in their second year of the Foundation Stage in England (DfEE, 2000). The children, very close in age, were in one of two early years settings: a pre-school playgroup with a largely invisible pedagogy…

  12. Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Johnson, Paul K.

    2005-01-01

    Contents include the following: 1. Closed-Brayton-cycle (CBC) thermal energy conversion is one available option for future spacecraft and surface systems. 2. Brayton system conceptual designs for milliwatt to megawatt power converters have been developed 3. Numerous features affect overall optimized power conversion system performance: Turbomachinery efficiency. Heat exchanger effectiveness. Working-fluid composition. Cycle temperatures and pressures.

  13. Application of Closed Loop Optimal Guidance for a Constant Thrust Space Vehicle

    NASA Astrophysics Data System (ADS)

    Rezaei Darestani, Mahdy; Abbasi Mahale, Mahdi

    2016-01-01

    This research presents derivation and implementation of the explicit guidance problem to steer a space vehicle into exo atmospheric phase of flight to develop three-dimensional optimal trajectory. The proposed guidance algorithm is in association with continuous powered flight of the space vehicle in ascent manoeuvre. Stability, accuracy and simplicity of this approach are the improved developments in comparison with the IGM approach. This algorithm uses the calculus of variation method for the two boundary-value injection problem to generate an optimal trajectory of space vehicle with online generation of steering command to inject to any desired orbit. Here the end conditions have been determined as the orbital height, inclination and eccentricity where the initial conditions are fixed. The simulation results are considered which shows the accuracy and simplicity of this method to reach to the desired orbit in minimum fuel.

  14. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The results are presented of the first year of a three year project on the automation of the Environmental Control and Life Support System (ECLSS) of the Space Station Freedom (SSF). The results are applicable to other future space mission. The work was done by the Kansas State University NASA/USRA interdisciplinary student design team. The six ECLSS subsystems and how they interact are discussed. Proposed control schemes and their rationale are discussed for the Atmosphere Revitalization (AR) subsystem. Finally, a description of the mathematical models for many components of the ECLSS control system is given.

  15. Quasar structure from microlensing in gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher Warren

    2008-02-01

    I analyze microlensing in gravitationally lensed quasars to yield measurements of the structure of their continuum emission regions. I first describe our lensed quasar monitoring program and RETROCAM, the auxiliary port camera I built for the 2.4m Hiltner telescope to monitor lensed quasars. I describe the application of our Monte Carlo microlensing analysis technique to SDSS 0924+0219, a system with a highly anomalous optical flux ratio. For an inclination angle i, I find an optical scale radius log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] . I extrapolate the best-fitting light curves into the future to find a roughly 45% probability that the anomalous image (D) will brighten by at least an order of magnitude during the next decade. I expand our method to make simultaneous estimates of the time delays and structure of HE1104-1805 and QJ0158-4325, two doubly-imaged quasars with microlensing and intrinsic variability on comparable time scales. For HE1104- 1805 I find a time delay of D t AB = t A - t B = [Special characters omitted.] days and estimate a scale radius of log[( r s /cm)[Special characters omitted.] ] = [Special characters omitted.] at 0.2mm in the rest frame. I am unable to measure a time delay for QJ0158-4325, but the scale radius is log[( r s /cm) [Special characters omitted.] ] = 14.9 ±1 0.3 at 0.3mm in the rest frame. I then apply our Monte Carlo microlensing analysis technique to the optical light curves of 11 lensed quasar systems to show that quasar accretion disk sizes at 2500Å are related to black hole mass ( M BH ) by log( R 2500 /cm) = (15.7 ± 0.16) + (0.64± 0.18) log( M BH /10 9 [Special characters omitted.] ). This scaling is consistent with the expectation from thin disk theory (R 0( [Special characters omitted.] ), but it implies that black holes radiate with relatively low efficiency, log(e) = -1.54 ± 0.36 + log( L/L E ) where e=3D L / ( M c 2 ). These sizes are also larger, by a factor of ~ 3, than

  16. Closely spaced nanomagnets by dual e-beam exposure for low-energy nanomagnet logic

    SciTech Connect

    Shah, Faisal A.; Csaba, Gyorgy; Butler, Katherine; Bernstein, Gary H.

    2013-05-07

    The effect of nanomagnet spacing on required clock field has been studied by micromagnetic simulation for supermalloy (Ni{sub 79}Fe{sub 16}Mo{sub 5}) dots with dimensions 90 Multiplication-Sign 60 Multiplication-Sign 20 nm{sup 3} and 120 Multiplication-Sign 60 Multiplication-Sign 20 nm{sup 3}. Reduction of the inter-magnet spacing for both dimensions has resulted in reduction of the required clock field in the simulation. A dual e-beam exposure technique has been developed to allow fabrication of ultra dense features using conventional poly(methylmethacrylate) e-beam resist. Nanomagnet logic (NML) datalines of supermalloy dots with {approx}10 nm and {approx}15 nm spacing have been fabricated using dual e-beam exposure with a 3{sigma} overlay accuracy of {approx}4 nm. Fabricated NML datalines have been characterized using magnetic force microscopy for various clock fields. Datalines of both spacing have shown proper NML functionality with a clock field as low as 60 mT.

  17. Tropospheric gravity waves observed by three closely-spaced ST radars

    NASA Technical Reports Server (NTRS)

    Carter, D. A.; Eriddle, A. C. AFGARELLO, R.ly stable thro; Eriddle, A. C. AFGARELLO, R.ly stable thro

    1985-01-01

    During a 6 week period in 1982, 3 ST (Stratosphere-Troposphere) radars measured horizontal and vertical wavelengths of small scale tropospheric gravity waves. These 50 MHz, vertically-directed radars were located in a trianglar network with approximately 5 km spacing on the southern coast of France at the mouth of the Rhone River during the ALPEX (Alpine Experiment) program.

  18. How big and how close? Habitat patch size and spacing to conserve a threatened species

    EPA Science Inventory

    We present results of a spatially-explicit, individual-based stochastic dispersal model (HexSim) to evaluate effects of size and spacing of patches of habitat of Northern Spotted Owls (NSO; Strix occidentalis caurina) in Pacific Northwest, USA, to help advise USDI Fish and Wildli...

  19. The closing window of opportunity: Addressing the US space launch vehicle crisis

    NASA Astrophysics Data System (ADS)

    Mosher, Todd

    The United States must decide if it wishes to continue as a leader or assume a lesser role in yet another high technology market. This market is for commercial space launch services and the window of opportunity to remain competitive is quickly eroding. It is clear that the current US space fleet can not meet the schedule demands, operability characteristics or reduced cost requirements to compete with the foreign competition and to meet future launch needs. Almost every recent blue ribbon panel or study has recommended a new launch vehicle development. Yet the US government has failed to embark on a new launch system program. This lack of action is already threatening to put the United States even further behind unless a new program is initiated immediately. The latest incarnation of this idea, the 'Spacelifter', is a concept that must be embraced and accelerated if the United States is to meet the market challenge. Waiting for 'leap frog' solutions will not allow the commercial industry to survive until its arrival. To ensure that this new space launch system meets its goals and requirements new approaches must be used. These include rapid prototyping of hardware, operational demonstrations to prove the hardware's characteristics and a new industry/government relationship that ensures the maximum efficiency in this austere environment. The United States must take action to remain competitive in the space launch system business or accept a relegated market position.

  20. Discovery of three z > 6.5 quasars in the VISTA kilo-degree infrared galaxy (VIKING) survey

    SciTech Connect

    Venemans, B. P.; Findlay, J. R.; Sutherland, W. J.; De Rosa, G.; McMahon, R. G.; González-Solares, E. A.; Lewis, J. R.; Simcoe, R.; Kuijken, K.

    2013-12-10

    Studying quasars at the highest redshifts can constrain models of galaxy and black hole formation, and it also probes the intergalactic medium in the early universe. Optical surveys have to date discovered more than 60 quasars up to z ≅ 6.4, a limit set by the use of the z-band and CCD detectors. Only one z ≳ 6.4 quasar has been discovered, namely the z = 7.08 quasar ULAS J1120+0641, using near-infrared imaging. Here we report the discovery of three new z ≳ 6.4 quasars in 332 deg{sup 2} of the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, thus extending the number from 1 to 4. The newly discovered quasars have redshifts of z = 6.60, 6.75, and 6.89. The absolute magnitudes are between –26.0 and –25.5, 0.6-1.1 mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the Mg II emission line in all three objects. The quasars are powered by black holes with masses of ∼(1-2) × 10{sup 9} M {sub ☉}. In our probed redshift range of 6.44 < z < 7.44 we can set a lower limit on the space density of supermassive black holes of ρ(M {sub BH} > 10{sup 9} M {sub ☉}) > 1.1 × 10{sup –9} Mpc{sup –3}. The discovery of three quasars in our survey area is consistent with the z = 6 quasar luminosity function when extrapolated to z ∼ 7. We do not find evidence for a steeper decline in the space density of quasars with increasing redshift from z = 6 to z = 7.

  1. A Multi-Wavelength Approach to Quasar Variability: New Insights Into Their Physics, Evolution, and Selection Effects

    NASA Astrophysics Data System (ADS)

    Djorgovski, Stanislav

    Quasars and other active galactic nuclei play a key role in our understanding of the physical universe and its major constituents. They are interesting astrophysical phenomena in their own right, and a probe of relativistic physics. They co-evolve with their host galaxies, and trace the evolution of cosmic structure. Our insights into their physics and evolution keep improving, thanks in large part to systematic surveys, spanning a broad range of wavelengths, both from the ground and from space. Variability of quasars is one of their key observable characteristics, and it is present at all wavelengths and at all time scales probed so far. It reflects directly the physics of their fueling and beaming, and can thus be used to provide unique observational constraints to theoretical models. The field is being transformed by the availability of massive data sets from synoptic sky surveys, both from the ground and space that cover a large portion of the sky repeatedly, over a broad range of time baselines. Some of the recent results include: "A discovery of a characteristic time scale for a stochastic variability of quasars that anticorrelates with their luminosity, and thus the physics of their accretion disks, which is still not fully understood. "A discovery of periodic variability in quasar light curves (for approx. 1 in 3,000 objects) as a likely signature of close binary supermassive black holes (SMBH) en route to a merger. With the estimated milliparsec separations, these binaries are spatially unresolvable by any anticipated technology, and variability represents the only way of probing this population. These are the progenitors of the expected sources of long-wavelength gravitational wave bursts that should result from such SMBH mergers, one of the key predictions of the models of their hierarchical assembly and evolution. The current sample favors a population of an uneven mass ratio (q=0.01) binaries, with the presence of gas which would speed up the final

  2. Discovery of a narrow line quasar

    NASA Technical Reports Server (NTRS)

    Stocke, J.; Liebert, J.; Maccacaro, T.; Griffiths, R. E.; Steiner, J. E.

    1982-01-01

    A stellar object is reported which, while having X-ray and optical luminosities typical of quasars, has narrow permitted and forbidden emission lines over the observed spectral range. The narrow-line spectrum is high-excitation, the Balmer lines seem to be recombinational, and a redder optical spectrum than that of most quasars is exhibited, despite detection as a weak radio source. The object does not conform to the relationships between H-beta parameters and X-ray flux previously claimed for a large sample of the active galactic nuclei. Because reddish quasars with narrow lines, such as the object identified, may not be found by the standard techniques for the discovery of quasars, the object may be a prototype of a new class of quasars analogous to high-luminosity Seyfert type 2 galaxies. It is suggested that these objects cannot comprise more than 10% of all quasars.

  3. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    Cogley, Allen C.; Tucker, Nathan P.

    1992-01-01

    For prolonged missions into space and colonization outside the Earth's atmosphere, development of Environmental Control and Life Support Systems (ECLSS) are essential to provide astronauts with habitable environments. The Kansas State University Advanced Design Team have researched and designed a control system for an ECLSS like that on Space Station Freedom. The following milestones have been accomplished: (1) completed computer simulation of the CO2 Removal Assembly; (2) created a set of rules for the expert control system of the CO2 Removal Assembly; (3) created a classical controls system for the CO2 Removal Assembly; (4) established a means of communication between the mathematical model and the two controls systems; and (5) analyzed the dynamic response of the simulation and compared the two methods of control.

  4. Closing the gap in systems engineering education for the space industry

    NASA Technical Reports Server (NTRS)

    Carlisle, R.

    1986-01-01

    The education of system engineers with emphasis on designing systems for space applications is discussed. System engineers determine the functional requirements, performance needs, and implementation procedures for proposed systems and their education is based on aeronautics and mathematics. Recommendations from industry for improving the curriculum of system engineers at the undergraduate and graduate levels are provided. The assistance provided by companies to the education of system engineers is examined.

  5. The diversity of quasars unified by accretion and orientation.

    PubMed

    Shen, Yue; Ho, Luis C

    2014-09-11

    Quasars are rapidly accreting supermassive black holes at the centres of massive galaxies. They display a broad range of properties across all wavelengths, reflecting the diversity in the physical conditions of the regions close to the central engine. These properties, however, are not random, but form well-defined trends. The dominant trend is known as 'Eigenvector 1', in which many properties correlate with the strength of optical iron and [O III] emission. The main physical driver of Eigenvector 1 has long been suspected to be the quasar luminosity normalized by the mass of the hole (the 'Eddington ratio'), which is an important parameter of the black hole accretion process. But a definitive proof has been missing. Here we report an analysis of archival data that reveals that the Eddington ratio indeed drives Eigenvector 1. We also find that orientation plays a significant role in determining the observed kinematics of the gas in the broad-line region, implying a flattened, disk-like geometry for the fast-moving clouds close to the black hole. Our results show that most of the diversity of quasar phenomenology can be unified using two simple quantities: Eddington ratio and orientation.

  6. Solving close-coupling equations in momentum space without singularities for charged targets

    NASA Astrophysics Data System (ADS)

    Bray, A. W.; Abdurakhmanov, I. B.; Kadyrov, A. S.; Fursa, D. V.; Bray, I.

    2017-03-01

    The analytical treatment of the Green's function in the convergent close-coupling method (Bray et al., 2016) has been extended to charged targets. Furthermore, we show that this approach allows for calculation of cross sections at zero channel energy. For neutral targets this means the electron scattering length may be obtained from a single calculation with zero incident energy. For charged targets the non-zero excitation cross sections at thresholds can also be calculated by simply setting the incident energy to the exact threshold value. These features are demonstrated by considering electron scattering on H and He+ .

  7. Quasars and Active Galaxies: A Reading List.

    ERIC Educational Resources Information Center

    Fraknoi, Andrew

    1988-01-01

    Contains the annotated bibliographies of introductory books and sections of books, recent introductory articles, more advanced articles, and more advanced books dealing with quasars and active galaxies. (CW)

  8. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  9. OPTOPUS observations of quasar candidates.

    NASA Astrophysics Data System (ADS)

    Cristiani, S.

    1987-06-01

    OPTOPUS is a fiber-optic instrument for multiple-object spectroscopy with the Boiler & Chivens spectrograph and a CCD detector at the 3.6-m telescope. The system has been described in detail by the Optical Instrumentation Group (1985, The Messenger 41,25). Its application for observing Halley's comet has been reported by Lund and Surdej (1986, The Messenger 43, 1). Here another "classical" use of multiple-object spectroscopy is presented: followup observations of quasar candidates.

  10. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The development of Environmental Control and Life Support Systems (ECLSS) for Space Station Freedom, future colonization of the Moon, and Mars missions presents new challenges for present technologies. ECLSS that operate during long-duration missions must be semi-autonomous to allow crew members environmental control without constant supervision. A control system for the ECLSS must address these issues as well as being reliable. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The ECLSS for Freedom is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire-sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort.

  11. Quasar target selection fiber efficiency

    SciTech Connect

    Newberg, H.; Yanny, B.

    1996-05-01

    We present estimates of the efficiency for finding QSOs as a function of limiting magnitude and galactic latitude. From these estimates, we have formulated a target selection strategy that should net 80,000 QSOs in the north galactic cap with an average of 70 fibers per plate, not including fibers reserved for high-redshift quasars. With this plan, we expect 54% of the targets to be QSOs. The North Galactic Cap is divided into two zones of high and low stellar density. We use about five times as many fibers for QSO candidates in the half of the survey with the lower stellar density as we use in the half with higher stellar density. The current plan assigns 15% of the fibers to FIRST radio sources; if these are not available, those fibers would be allocated to lower probability QSO sources, dropping the total number of QSOs by a small factor (5%). We will find about 17,000 additional quasars in the southern strips, and maybe a few more at very high redshift. Use was made of two data sets: the star and quasar simulated test data generated by Don Schneider, and the data from UJFN plate surveys by Koo (1986) and Kron (1980). This data was compared to results from the Palomar-Green Survey and a recent survey by Pat Osmer and collaborators.

  12. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Environmental Control and Life Support System (ECLSS) for the Space Station Freedom and future colonization of the Moon and Mars presents new challenges for present technologies. Current plans call for a crew of 8 to live in a safe, shirt-sleeve environment for 90 days without ground support. Because of these requirements, all life support systems must be self-sufficient and reliable. The ECLSS is composed of six subsystems. The temperature and humidity control (THC) subsystem maintains the cabin temperature and humidity at a comfortable level. The atmosphere control and supply (ACS) subsystem insures proper cabin pressure and partial pressures of oxygen and nitrogen. To protect the space station from fire damage, the fire detection and suppression (FDS) subsystem provides fire sensing alarms and extinguishers. The waste management (WM) subsystem compacts solid wastes for return to Earth, and collects urine for water recovery. Because it is impractical, if not impossible, to supply the station with enough fresh air and water for the duration of the space station's extended mission, these elements are recycled. The atmosphere revitalization (AR) subsystem removes CO2 and other dangerous contaminants from the air. The water recovery and management (WRM) subsystem collects and filters condensate from the cabin to replenish potable water supplies, and processes urine and other waste waters to replenish hygiene water supplies. These subsystems are not fully automated at this time. Furthermore, the control of these subsystems is not presently integrated; they are largely independent of one another. A fully integrated and automated ECLSS would increase astronauts' productivity and contribute to their safety and comfort. The Kansas State University Advanced Design Team is in the process of researching and designing controls for the automation of the ECLSS for Space Station Freedom and beyond. The approach chosen to solve this problem is to divide the design into three

  13. HST Observations of the Luminous IRAS Source FSC10214+4724: A gravitationally Lensed Infrared Quasar

    NASA Technical Reports Server (NTRS)

    Eisenhardt, P. R.; Armus, L.; Hogg, D. W.; Soifer, B. T.; Neugebauer, G.; Werner, M. W.

    1995-01-01

    Observations of a distant object in space with the data being taken by the Hubble Space Telescope (HST) Wide Field Planetary Camera. Scientific examination and hypothesis related to this object which appears to be either an extremely luminous dust embedded quasar, or a representative of a new class of astronomical objects (a primeval galaxy).

  14. Ozone concentration in leaf intercellular air spaces is close to zero

    SciTech Connect

    Laisk, A.; Moldau, H. ); Kull, O. )

    1989-07-01

    Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly bu supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma.

  15. Preliminary Human-in-the-Loop Assessment of Procedures for Very-Closely-Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Verma, Savita; Lozito, Sandra C.; Ballinger, Deborah S.; Trot, Greg; Hardy, Gordon H.; Panda, Ramesh C.; Lehmer, Ronald D.; Kozon, Thomas E.

    2010-01-01

    Demand in the future air transportation system concept is expected to double or triple by 2025 [1]. Increasing airport arrival rates will help meet the growing demand that could be met with additional runways but the expansion airports is met with environmental challenges for the surrounding communities when using current standards and procedures. Therefore, changes to airport operations can improve airport capacity without adding runways. Building additional runways between current ones, or moving them closer, is a potential solution to meeting the increasing demand, as addressed by the Terminal Area Capacity Enhancing Concept (TACEC). TACEC requires robust technologies and procedures that need to be tested such that operations are not compromised under instrument meteorological conditions. The reduction of runway spacing for independent simultaneous operations dramatically exacerbates the criticality of wake vortex incursion and the calculation of a safe and proper breakout maneuver. The study presented here developed guidelines for such operations by performing a real-time, human-in-the-loop simulation using precision navigation, autopilot-flown approaches, with the pilot monitoring aircraft spacing and the wake vortex safe zone during the approach.

  16. Space-Bounded Church-Turing Thesis and Computational Tractability of Closed Systems.

    PubMed

    Braverman, Mark; Schneider, Jonathan; Rojas, Cristóbal

    2015-08-28

    We report a new limitation on the ability of physical systems to perform computation-one that is based on generalizing the notion of memory, or storage space, available to the system to perform the computation. Roughly, we define memory as the maximal amount of information that the evolving system can carry from one instant to the next. We show that memory is a limiting factor in computation even in lieu of any time limitations on the evolving system-such as when considering its equilibrium regime. We call this limitation the space-bounded Church-Turing thesis (SBCT). The SBCT is supported by a simulation assertion (SA), which states that predicting the long-term behavior of bounded-memory systems is computationally tractable. In particular, one corollary of SA is an explicit bound on the computational hardness of the long-term behavior of a discrete-time finite-dimensional dynamical system that is affected by noise. We prove such a bound explicitly.

  17. Ozone Concentration in Leaf Intercellular Air Spaces Is Close to Zero 1

    PubMed Central

    Laisk, Agu; Kull, Olevi; Moldau, Heino

    1989-01-01

    Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly by supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma. PMID:16666867

  18. Hg1-xCdxTe vapor deposition on CdZnTe substrates by Closed Space Sublimation technique

    NASA Astrophysics Data System (ADS)

    Rubio, Sandra; Sochinskii, Nikolai V.; Repiso, Eva; Tsybrii, Zinoviia; Sizov, Fiodor; Plaza, Jose Luis; Diéguez, Ernesto

    2017-01-01

    Closed Space Sublimation (CSS) technique has been studied to deposit Hg1-xCdxTe polycrystalline films on CdZnTe substrates at the improved pressure-temperature conditions. The experimental results on film characterization suggest that the CSS optimal conditions are the argon atmospheric pressure (1013 mbar) and the deposition temperature in the range of 500-550 °C. These conditions provide macro-defect free Hg1-xCdxTe films with the uniform size and surface distribution of polycrystals.

  19. Closed Artificial ecosystems as a means of ecosystem studies for Earth and space needs.

    PubMed

    Pechurkin, N S; Shirobokova, I M

    2001-01-01

    Closed Artificial ecosystems (CAES) have good prospects for wide use as new means for quantitative studies of different types of both natural ecosystems and man-made ones. The paper deals with the discussion of three points of CAES applications. The first one is of importance for theoretical ecology development and is connected with bringing together "holistic" and "merological" approaches in ecosystems studies. Using CAES, we can combine both approaches, taking into account the biotic turnover of limiting substrates which few in number even for complicated natural ecosystems. The second CAES use concerns the development of "ecosystems health" concept and application of a key-factor-approach for the indication and measurement of healthy unhealthy state and functioning of ecosystems or their links. The third use is more of an applied nature, oriented to the intensification of bioremediation or biodepollution processes in different types of ecosystems, including the global biosphere. Grant numbers: N 99-04-96017, N25.

  20. Quantum field theory in spaces with closed time-like curves

    NASA Astrophysics Data System (ADS)

    Boulware, D. G.

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27(pi). A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  1. Spitzer Observations of a Gravitationally Lensed Quasar, QSO 2237+0305

    NASA Astrophysics Data System (ADS)

    Agol, Eric; Gogarten, Stephanie M.; Gorjian, Varoujan; Kimball, Amy

    2009-06-01

    The four-image gravitationally lensed quasar QSO 2237+0305 is microlensed by stars in the lens galaxy. The amplitude of microlensing variability can be used to infer the relative size of the quasar as a function of wavelength; this provides a test of quasar models. Toward this end, we present Spitzer Space Telescope Infrared Spectrograph and Infrared Array Camera (IRAC) observations of QSO 2237+0305, finding the following. (1) The infrared (IR) spectral energy distribution (SED) is similar to that of other bright radio-quiet quasars, contrary to an earlier claim. (2) A dusty torus model with a small opening angle fits the overall shape of the IR SED well, but the quantitative agreement is poor due to an offset in wavelength of the silicate feature. (3) The flux ratios of the four lensed images can be derived from the IRAC data despite being unresolved. We find that the near-IR fluxes are increasingly affected by microlensing toward shorter wavelengths. (4) The wavelength dependence of the IRAC flux ratios is consistent with the standard quasar model in which an accretion disk and a dusty torus both contribute near 1 μm in the rest frame. This is also consistent with recent IR spectropolarimetry of nearby quasars.

  2. Discovery of low-redshift X-ray selected quasars - New clues to the QSO phenomenon

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Forman, W. R.; Steiner, J. E.; Canizares, C. R.; Mcclintock, J. E.

    1980-01-01

    The identification of six X-ray sources discovered by the Einstein Observatory with X-ray quasars is reported, and the properties of these X-ray selected quasars are discussed. The four high-latitude fields of 1 sq deg each in which the Einstein imaging proportional counter detected serendipitous X-ray sources at intermediate exposures of 10,000 sec were observed by 4-m and 1.5-m telescopes, and optical sources with uv excesses and emission line spectra typical of many low-redshift quasars and Seyfert 1 galaxies were found within the 1-arcsec error boxes of the X-ray sources. All six quasars identified were found to be radio quiet, with low redshift and relatively faint optical magnitudes, and to be similar in space density, colors and magnitude versus redshift relation to an optically selected sample at the same mean magnitude. X-ray luminosity was found to be well correlated with both continuum and broad-line emission luminosities for the known radio-quiet quasars and Seyfert 1 galaxies, and it was observed that the five objects with the lowest redshifts have very similar X-ray/optical luminosity ratios despite tenfold variations in X-ray luminosity. It is concluded that photoionization by a continuum extending to X-ray energies is the dominant excitation mechanism in radio-quiet quasars.

  3. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  4. Toward a Complete Picture of Quasar Outflows: from BALs to mini-BALs

    NASA Astrophysics Data System (ADS)

    Moravec, Emily; Hamann, Fred; Capellupo, Daniel M.; McGraw, Sean; Shields, Joseph C.; Rodriguez Hidalgo, Paola

    2016-01-01

    Accretion disk outflows are important for galaxy evolution and an integral part of the quasar phenomenon, but they remain poorly understood. In order to construct a more complete picture of the quasar phenomenon, we need to understand the full range of different types of quasar outflows and how they correlate with one another. We examine seven SDSS quasars with CIV 1548,1551 Å outflow lines that span a range from strong BALs to weak mini-BALs. They have moderate redshifts (1.68 < z < 1.91) to minimize contamination from the Lyα forest while still allowing measurements of CIV from the ground and other important lines like OVI 1031,1038 Å and PV 1118,1128 Å with HST. We use archival SDSS and BOSS spectra in combination with HST COS G230L observations and multi-epoch ground-based spectra obtained at the MDM and Kitt Peak observatories to measure a variety of ions across the rest UV wavelength range. Our preliminary analysis shows OVI is present and stronger than CIV in all seven quasars. In one case, we detect an OVI mini-BAL with no accompanying CIV, requiring a highly-ionized outflow. In the strongest BAL quasar, we detect resolved PV doublet absorption that requires PV optical depths > 3 and in outflow gas with a line-of-sight covering fraction of only 0.27. Thus, the total column density in this outflow component might exceed N_H > 1023 cm-2 which has important consequences for the outflow kinetic energies and feedback. The multi-epoch CIV data reveal CIV outflow variability in all seven quasars; four become weaker, one becomes stronger, and two become both stronger and weaker over the different epochs. This variability happens across time scales of ~1-12 years in the quasar rest frames which is consistent with outflow locations close to the central quasar engines. We use these and other results to constrain the ionization, column density, and location of the absorbers with the broader goals of understanding accretion physics, the integrated structure of

  5. The black hole-host galaxy relation for very low mass quasars

    NASA Astrophysics Data System (ADS)

    Sanghvi, J.; Kotilainen, J. K.; Falomo, R.; Decarli, R.; Karhunen, K.; Uslenghi, M.

    2014-12-01

    Recently, the relation between the masses of the black hole (MBH) and the host galaxy (Mhost) in quasars has been probed down to the parameter space of MBH ˜ 108 M⊙ and Mhost ˜ 1011 M⊙ at z < 0.5. In this study, we have investigated the MBH-Mhost log-linear relation for a sample of 37 quasars with low black hole masses (107 M⊙ < MBH < 108.3 M⊙) at 0.5 < z < 1.0. The black hole masses were derived using virial mass estimates from Sloan Digital Sky Survey (SDSS) optical spectra. For 25 quasars, we detected the presence of the host galaxy from deep near-infrared H-band imaging, whereas upper limits for the host galaxy luminosity (mass) were estimated for the 12 unresolved quasars. We combined our previous studies with the results from this work to create a sample of 89 quasars at z < 1.0 having a large range of black hole masses (107 M⊙ < MBH < 1010 M⊙) and host galaxy masses (1010 M⊙ < Mhost < 1013 M⊙). Most of the quasars at the low-mass end lie below the extrapolation of the local relation. This apparent break in the linearity of the entire sample is due to increasing fraction of disc-dominated host galaxies in the low-mass quasars. After correcting for the disc component, and considering only the bulge component, the bilinear regression for the entire quasar sample holds over 3.5 dex in both the black hole mass and the bulge mass, and is in very good agreement with the local relation. We advocate secular evolution of discs of galaxies being responsible for the relatively strong disc domination.

  6. Quasar emission lines as probes of orientation: implications for disc wind geometries and unification

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Knigge, C.; Long, K. S.

    2017-01-01

    The incidence of broad absorption lines (BALs) in quasar samples is often interpreted in the context of a geometric unification model consisting of an accretion disc and an associated outflow. We use the the Sloan Digital Sky Survey (SDSS) quasar sample to test this model by examining the equivalent widths (EWs) of C IV 1550 Å, Mg II 2800 Å, [O III] 5007 Å and C III] 1909 Å. We find that the emission line EW distributions in BAL and non-BAL quasars are remarkably similar - a property that is inconsistent with scenarios in which a BAL outflow rises equatorially from a geometrically thin, optically thick accretion disc. We construct simple models to predict the distributions from various geometries; these models confirm the above finding and disfavour equatorial geometries. We show that obscuration, line anisotropy and general relativistic effects on the disc continuum are unlikely to hide an EW inclination dependence. We carefully examine the radio and polarisation properties of BAL quasars. Both suggest that they are most likely viewed (on average) from intermediate inclinations, between type 1 and type 2 AGN. We also find that the low-ionization BAL quasars in our sample are not confined to one region of `Eigenvector I' parameter space. Overall, our work leads to one of the following conclusions, or some combination thereof: (i) the continuum does not emit like a geometrically thin, optically thick disc; (ii) BAL quasars are viewed from similar angles to non-BAL quasars, i.e. low inclinations; (iii) geometric unification does not explain the fraction of BALs in quasar samples.

  7. Clustering of intermediate redshift quasars using the final SDSS III-BOSS sample

    NASA Astrophysics Data System (ADS)

    Eftekharzadeh, Sarah; Myers, Adam D.; White, Martin; Weinberg, David H.; Schneider, Donald P.; Shen, Yue; Font-Ribera, Andreu; Ross, Nicholas P.; Paris, Isabelle; Streblyanska, Alina

    2015-11-01

    We measure the two-point clustering of spectroscopically confirmed quasars from the final sample of the Baryon Oscillation Spectroscopic Survey (BOSS) on comoving scales of 4 ≲ s ≲ 22 h-1 Mpc. The sample covers 6950 deg2 [ ˜ 19 (h- 1Gpc)3] and, over the redshift range 2.2 ≤ z ≤ 2.8, contains 55 826 homogeneously selected quasars, which is twice as many as in any similar work. We deduce bQ = 3.54 ± 0.10; the most precise measurement of quasar bias to date at these redshifts. This corresponds to a host halo mass of ˜2 × 1012 h-1 M⊙ with an implied quasar duty cycle of ˜1 per cent. The real-space projected correlation function is well fitted by a power law of index 2 and correlation length r0 = (8.12 ± 0.22) h- 1 Mpc over scales of 4 ≲ rp ≲ 25 h-1 Mpc. To better study the evolution of quasar clustering at moderate redshift, we extend the redshift range of our study to z ˜ 3.4 and measure the bias and correlation length of three subsamples over 2.2 ≤ z ≤ 3.4. We find no significant evolution of r0 or bias over this range, implying that the host halo mass of quasars decreases somewhat with increasing redshift. We find quasar clustering remains similar over a decade in luminosity, contradicting a scenario in which quasar luminosity is monotonically related to halo mass at z ≈ 2.5. Our results are broadly consistent with previous BOSS measurements, but they yield more precise constraints based upon a larger and more uniform data set.

  8. The Closed Aquatic System AquaHab® as part of a CELSS for Exploration, Space and Earth Application

    NASA Astrophysics Data System (ADS)

    Slenzka, Klaus

    AquaHab R is a small, self-sustaining closed microcosm, based on the former space shuttle payload C.E.B.A.S. (Closed Equilibrated Biological Aquatic System). AquaHab R contains on laboratory scale within 8 liters of water volume different groups of organisms (fish, snails, amphipods, plants). During the last years, it was developed to a system for the risk assessment of chemicals as well as an early warning tool for air and water contamination, major concerns during long-term stays in closed habitats for example on Earth's subsurface (deep sea) or later on the Moon or Mars. AquaHab R is now enhanced developed for exploratory missions having implemented an algae reactor system for biomass production etc.. During first tests, the transport of oxygen from the algae reactor into the AquaHab R was demonstrated successfully. In the common AquaHab R - bioreactor system, the different subsystems will serve for several tasks. In the AquaHab R - tank, the removal of waste water (mainly nutrients) as well as the production of some higher plants and fish as food source will be most beneficial; additionally the AquaHab R -tank is supporting astronauts psychological health recovery (home aquaria effect, taking care for pets). The beneficially output of the algae reactors will e.g. be the increased delivery of oxygen and metabolic products with application potential for humans (as e.g. vitamins, drug like acting substances) as well as being a food source in general and also the removal of carbon dioxide. Furthermore, specialized algae can also serve as early warning tool, as all the organisms in the AquaHab R do, or producing energy equivalents. The different subsystems will interact with each other to treat the products of humans being in the closed habitat in the most effective way. This new life support subsystem will be bioregenerative and sustainable in the meaning, that no material transport into the system is needed, and non-usable and maybe toxic end products won‘t be

  9. The luminosity function of quasars and its evolution: A comparison of optically selected quasars and quasars found in radio catalogs

    NASA Technical Reports Server (NTRS)

    Petrosian, V.

    1973-01-01

    The luminosity function of quasars and its evolution are discussed, based on comparison of available data on optically selected quasars and quasars found in radio catalogs. It is assumed that the red shift of quasars is cosmological and the results are expressed in the framework of the Lambda = 0, Q sub Q = 1 cosmological model. The predictions of various density evolution laws are compared with observations of an optically selected sample of quasars and quasar samples from radio catalogs. The differences between the optical luminosity functions, the red shift distributions and the radio to optical luminosity ratios of optically selected quasars and radio quasars rule out luminosity functions where there is complete absence of correlation between radio and optical luminosities. These differences also imply that Schmidt's (1970) luminosity function, where there exists a statistical correlation between radio and optical luminosities, although may be correct for high red shift objects, disagrees with observation at low red shifts. These differences can be accounted for by postulating existence of two classes (1 and 2) of objects.

  10. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report culminates the work accomplished during a three year design project on the automation of an Environmental Control and Life Support System (ECLSS) suitable for space travel and colonization. The system would provide a comfortable living environment in space that is fully functional with limited human supervision. A completely automated ECLSS would increase astronaut productivity while contributing to their safety and comfort. The first section of this report, section 1.0, briefly explains the project, its goals, and the scheduling used by the team in meeting these goals. Section 2.0 presents an in-depth look at each of the component subsystems. Each subsection describes the mathematical modeling and computer simulation used to represent that portion of the system. The individual models have been integrated into a complete computer simulation of the CO2 removal process. In section 3.0, the two simulation control schemes are described. The classical control approach uses traditional methods to control the mechanical equipment. The expert control system uses fuzzy logic and artificial intelligence to control the system. By integrating the two control systems with the mathematical computer simulation, the effectiveness of the two schemes can be compared. The results are then used as proof of concept in considering new control schemes for the entire ECLSS. Section 4.0 covers the results and trends observed when the model was subjected to different test situations. These results provide insight into the operating procedures of the model and the different control schemes. The appendix, section 5.0, contains summaries of lectures presented during the past year, homework assignments, and the completed source code used for the computer simulation and control system.

  11. Insights into quasar UV spectra using unsupervised clustering analysis

    NASA Astrophysics Data System (ADS)

    Tammour, A.; Gallagher, S. C.; Daley, M.; Richards, G. T.

    2016-06-01

    Machine learning techniques can provide powerful tools to detect patterns in multidimensional parameter space. We use K-means - a simple yet powerful unsupervised clustering algorithm which picks out structure in unlabelled data - to study a sample of quasar UV spectra from the Quasar Catalog of the 10th Data Release of the Sloan Digital Sky Survey (SDSS-DR10) of Paris et al. Detecting patterns in large data sets helps us gain insights into the physical conditions and processes giving rise to the observed properties of quasars. We use K-means to find clusters in the parameter space of the equivalent width (EW), the blue- and red-half-width at half-maximum (HWHM) of the Mg II 2800 Å line, the C IV 1549 Å line, and the C III] 1908 Å blend in samples of broad absorption line (BAL) and non-BAL quasars at redshift 1.6-2.1. Using this method, we successfully recover correlations well-known in the UV regime such as the anti-correlation between the EW and blueshift of the C IV emission line and the shape of the ionizing spectra energy distribution (SED) probed by the strength of He II and the Si III]/C III] ratio. We find this to be particularly evident when the properties of C III] are used to find the clusters, while those of Mg II proved to be less strongly correlated with the properties of the other lines in the spectra such as the width of C IV or the Si III]/C III] ratio. We conclude that unsupervised clustering methods (such as K-means) are powerful methods for finding `natural' binning boundaries in multidimensional data sets and discuss caveats and future work.

  12. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays

    PubMed Central

    Huang, Yu; Zhang, Xian; Ringe, Emilie; Hou, Mengjing; Ma, Lingwei; Zhang, Zhengjun

    2016-01-01

    Considering the nanogap and lattice effects, there is an attractive structure in plasmonics: closely spaced metallic nanoarrays. In this work, we demonstrate experimentally and theoretically the lattice coupling of multipole plasmon modes for closely spaced gold nanorod arrays, offering a new insight into the higher order cavity modes coupled with each other in the lattice. The resonances can be greatly tuned by changes in inter-rod gaps and nanorod heights while the influence of the nanorod diameter is relatively insignificant. Experimentally, pronounced suppressions of the reflectance are observed. Meanwhile, the near-field enhancement can be further enhanced, as demonstrated through surface enhanced Raman scattering (SERS). We then confirm the correlation between the near-field and far-field plasmonic responses, which is significantly important for maximizing the near-field enhancement at a specific excitation wavelength. This lattice coupling of multipole plasmon modes is of broad interest not only for SERS but also for other plasmonic applications, such as subwavelength imaging or metamaterials. PMID:26983501

  13. System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  14. System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  15. The ISO view of Palomar-Green quasars

    NASA Astrophysics Data System (ADS)

    Haas, M.; Klaas, U.; Müller, S. A. H.; Bertoldi, F.; Camenzind, M.; Chini, R.; Krause, O.; Lemke, D.; Meisenheimer, K.; Richards, P. J.; Wilkes, B. J.

    2003-04-01

    ULIRGs and quasars, but also the details and a possible evolution of the dust distribution and emission even among the optically selected PG sample. Regarding cosmic evolution, our hyperluminous quasars in the ``local'' universe at z=1 do not show the hyperluminous (LFIR >≈ 1013 Lsun) starburst activity inferred for z=4 quasars detected in several (sub-)millimetre surveys. In view of several caveats this difference should be established further, but it already suggests that in the early dense universe stronger merger events led to more powerful starbursts accompanying the quasar phenomenon, while at later cosmic epochs any coeval starbursts obviously do not reach that high power and are outshone by the AGN. Based on observations with the Infrared Space Observatory ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands and the UK) and with the participation of ISAS and NASA.

  16. Quasars: Active nuclei of young galaxies

    NASA Technical Reports Server (NTRS)

    Komberg, B. V.

    1980-01-01

    The hypothetical properties of 'young' galaxies and possible methods of observing them are discussed. It is proposed that star formation first takes place in the central regions of protogalaxies which may appear as quasar-like objects. An evolutionary scheme is outlined in which the radio quasars are transformed in time into the nuclei of radio galaxies.

  17. Quasar Lifetimes and Black Hole Spins

    NASA Astrophysics Data System (ADS)

    Rafiee, Alireza; Hall, P. B.

    2007-12-01

    Wang et al. (2006) estimated a high average radiative efficiency of 30% to 35% for quasars (actively accreting black holes) at moderate redshift, strongly suggesting that all supermassive black holes are rotating very rapidly. Their method for determining radiative efficiencies has two advantages: it deals with changes in quantities rather than absolutes and it is independent of obscured sources. However, we have investigated the reliability of the assumptions made by Wang et al. and have found that their method is not independent of quasar lifetimes. Nonetheless, given constraints on quasar lifetimes, their method can be used to constrain quasar radiative efficiencies and black hole spins. Conversely, the range of radiative efficiencies possible for the full range of black hole spins can be used to constrain the average lifetimes of quasars (assuming that luminous quasars are not powered by radiatively inefficient accretion flows). We will present interrelated constraints on quasar lifetimes, Eddington ratios and radiative efficiencies (black hole spins) from a statistically complete sample of SDSS quasars with black hole mass estimates from Mg II. PBH and AR are supported in part by NSERC.

  18. The Walk on Floor Eyes Closed Tandem Step Test as a Quantitative Measure of Ataxia After Space Flight

    NASA Technical Reports Server (NTRS)

    Fisher, E. A.; Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.; Harm, D. L.

    2010-01-01

    INTRODUCTION Posture and locomotion are among the functions most affected by space flight. Postflight ataxia can be quantified easily by using the walk on the floor line test with the eyes closed (WOFEC). Data from a modified WOFEC were obtained as part of an ongoing interdisciplinary pre- and postflight study (Functional Task Test, FTT) designed to evaluate both postflight functional performance of astronauts and related physiological changes. METHODS Five astronauts with flight durations of 12 to 16 days participated in this study. Performance measurements were obtained in 2 preflight sessions, on landing day, and 1, 6, and 30 days after landing. The WOFEC test consisted of walking with the feet placed heel to toe in tandem, arms folded across the chest and eyes closed, for 10 steps. A trial was initiated after the eyes were closed and the front foot was aligned with the rear foot. The performance metric was the average percentage of correct steps completed over 3 trials. A step was not counted as correct if the crewmember sidestepped, opened eyes, or paused for more than 3 seconds between steps. Step accuracy was scored independently by 3 examiners. RESULTS Immediately after landing subjects seemed to be unaware of their foot position relative to their body or the floor. The percentage of correct steps was significantly decreased on landing day. Partial recovery was observed the next day, and full recovery to baseline on the sixth day post landing. CONCLUSION These data clearly demonstrate the sensorimotor challenges facing crewmembers after they return from space flight. Although this simple test is intended to complement the FTT battery of tests, it has some stand-alone value as it provides investigators with a means to quantify vestibular ataxia as well as provide instant feedback on postural stability without the use of complex test equipment.

  19. Closely Spaced Pregnancies Are Associated With Increased Odds of Autism in California Sibling Births

    PubMed Central

    Liu, Kayuet; Bearman, Peter S.

    2011-01-01

    OBJECTIVE: To determine whether the interpregnancy interval (IPI) is associated with the risk of autism in subsequent births. METHODS: Pairs of first- and second-born singleton full siblings were identified from all California births that occurred from 1992 to 2002 using birth records, and autism diagnoses were identified by using linked records of the California Department of Developmental Services. IPI was calculated as the time interval between birth dates minus the gestational age of the second sibling. In the primary analysis, logistic regression models were used to determine whether odds of autism in second-born children varied according to IPI. To address potential confounding by unmeasured family-level factors, a case-sibling control analysis determined whether affected sibling (first versus second) varied with IPI. RESULTS: An inverse association between IPI and odds of autism among 662 730 second-born children was observed. In particular, IPIs of <12, 12 to 23, and 24 to 35 months were associated with odds ratios (95% confidence intervals) for autism of 3.39 (3.00–3.82), 1.86 (1.65–2.10), and 1.26 (1.10–1.45) relative to IPIs of ≥36 months. The association was not mediated by preterm birth or low birth weight and persisted across categories of sociodemographic characteristics, with some attenuation in the oldest and youngest parents. Second-born children were at increased risk of autism relative to their firstborn siblings only in pairs with short IPIs. CONCLUSIONS: These results suggest that children born after shorter intervals between pregnancies are at increased risk of developing autism; the highest risk was associated with pregnancies spaced <1 year apart. PMID:21220394

  20. EVIDENCE OF THE DYNAMICS OF RELATIVISTIC JET LAUNCHING IN QUASARS

    SciTech Connect

    Punsly, Brian

    2015-06-10

    Hubble Space Telescope (HST) spectra of the EUV, the optically thick emission from the innermost accretion flow onto the central supermassive black hole, indicate that radio loud quasars (RLQs) tend to be EUV weak compared to the radio-quiet quasars; yet the remainder of the optically thick thermal continuum is indistinguishable. The deficit of EUV emission in RLQs has a straightforward interpretation as a missing or a suppressed innermost region of local energy dissipation in the accretion flow. This article is an examination of the evidence for a distribution of magnetic flux tubes in the innermost accretion flow that results in magnetically arrested accretion (MAA) and creates the EUV deficit. These same flux tubes and possibly the interior magnetic flux that they encircle are the sources of the jet power as well. In the MAA scenario, islands of large-scale vertical magnetic flux perforate the innermost accretion flow of RLQs. The first prediction of the theory that is supported by the HST data is that the strength of the (large-scale poloidal magnetic fields) jets in the MAA region is regulated by the ram pressure of the accretion flow in the quasar environment. The second prediction that is supported by the HST data is that the rotating magnetic islands remove energy from the accretion flow as a Poynting flux dominated jet in proportion to the square of the fraction of the EUV emitting gas that is displaced by these islands.

  1. LBQS 0103-2753: A BINARY QUASAR IN A MAJOR MERGER

    SciTech Connect

    Shields, G. A.; Rosario, D. J.; Junkkarinen, V.; Chapman, S. C.; Bonning, E. W.; Chiba, T. E-mail: rosario@mpe.mpg.de E-mail: schapman@ast.cam.ac.uk E-mail: tamara.chiba@yale.edu

    2012-01-10

    We present Hubble Space Telescope (HST) and United Kingdom Infrared Telescope spectra and images of the 2 kpc (0.''3) binary quasar LBQS 0103-2753 (z = 0.858). The HST images (V and I bands) show tidal features demonstrating that this system is a major galaxy merger in progress. A two-color composite image brings out knots of star formation along the tidal arc and elsewhere. The infrared spectrum shows that both objects are at the same redshift and that the discrepant redshift of C IV in component A is not representative of the true systemic redshift of this component. LBQS 0103-2753 is one of the most closely spaced binary QSOs known and is one of the relatively few dual active galactic nuclei showing confirmed broad emission lines from both components. While statistical studies of binary QSOs suggest that simultaneous fueling of both black holes during a merger may be relatively rare, LBQS 0103-2753 demonstrates that such fueling can occur at high luminosity at a late stage in the merger at nuclear spacing of only a few kpc, without severe obscuration of the nuclei.

  2. The role of oxygen in CdS/CdTe solar cells deposited by close-spaced sublimation

    SciTech Connect

    Rose, D.H.; Levi, D.H.; Matson, R.J.

    1996-05-01

    The presence of oxygen during close-spaced sublimation (CSS) of CdTe has been previously reported to be essential for high-efficiency CdS/CdTe solar cells because it increases the acceptor density in the absorber. The authors find that the presence of oxygen during CSS increases the nucleation site density of CdTe, thus decreasing pinhole density and grain size. Photoluminescence showed that oxygen decreases material quality in the bulk of the CdTe film, but positively impacts the critical CdS/CdTe interface. Through device characterization the authors were unable to verify an increase in acceptor density with increased oxygen. These results, along with the achievement of high-efficiency cells (13% AM1.5) without the use of oxygen, led the authors to conclude that the use of oxygen during CSS deposition of CdTe can be useful but is not essential.

  3. Low-Cost Growth of III-V Layers on Si Using Close-Spaced Vapor Transport

    SciTech Connect

    Boucher, Jason W.; Greenaway, Ann L.; Ritenour, Andrew J.; Davis, Allison L.; Bachman, Benjamin F.; Aloni, Shaul; Boettcher, Shannon W.

    2015-06-14

    Close-spaced vapor transport (CSVT) uses solid precursors to deposit material at high rates and with high precursor utilization. The use of solid precursors could significantly reduce the costs associated with III-V photovoltaics, particularly if growth on Si substrates can be demonstrated. We present preliminary results of the growth of GaAs1-xPx with x ≈ 0.3 and 0.6, showing that CSVT can be used to produce III-V-V’ alloys with band gaps suitable for tandem devices. Additionally, we have grown GaAs on Si by first thermally depositing films of Ge and subsequently depositing GaAs by CSVT. Patterning the Ge into islands prevents cracking due to thermal mismatch and is useful for potential tandem structures.

  4. Heat transfer from combustion gases to a single row of closely spaced tubes in a swirl crossflow Stirling engine heater

    NASA Technical Reports Server (NTRS)

    Bankston, C. P.; Back, L. H.

    1982-01-01

    This paper describes an experimental program to determine the heat-transfer characteristics of a combustor and heat-exchanger system in a hybrid solar receiver which utilizes a Stirling engine. The system consists of a swirl combustor with a crossflow heat exchanger composed of a single row of 48 closely spaced curved tubes. In the present study, heat-transfer characteristics of the combustor/heat-exchanger system without a Stirling engine have been studied over a range of operating conditions and output levels using water as the working fluid. Nondimensional heat-transfer coefficients based on total heat transfer have been obtained and are compared with available literature data. The results show significantly enhanced heat transfer for the present geometry and test conditions. Also, heat transfer along the length of the tubes is found to vary, the effect depending upon test condition.

  5. Differential tolerance to biological and subjective effects of four closely spaced doses of N,N-dimethyltryptamine in humans.

    PubMed

    Strassman, R J; Qualls, C R; Berg, L M

    1996-05-01

    Tolerance of the behavioral effects of the short-acting, endogenous hallucinogen, N,N-dimethyltryptamine (DMT) is seen inconsistently in animals, and has not been produced in humans. The nature and time course of responses to repetitive, closely spaced administrations of an hallucinogenic dose of DMT were characterized. Thirteen experienced hallucinogen users received intravenous 0.3 mg/kg DMT fumarate, or saline placebo, four times, at 30 min intervals, on 2 separate days, in a randomized, double-blind, design. Tolerance to "psychedelic" subjective effects did not occur according to either clinical interview or Hallucinogen Rating Scale scores. Adrenocorticotropic hormone (ACTH), prolactin, cortisol, and heart rate responses decreased with repeated DMT administration, although blood pressure did not. These data demonstrate the unique properties of DMT relative to other hallucinogens and underscore the differential regulation of the multiple processes mediating the effects of DMT.

  6. A direct measurement of the mean occupation function of quasars: Breaking degeneracies between halo occupation distribution models

    SciTech Connect

    Chatterjee, Suchetana; Nguyen, My L.; Myers, Adam D.; Zheng, Zheng

    2013-12-20

    Recent work on quasar clustering suggests a degeneracy in the halo occupation distribution constrained from two-point correlation functions. To break this degeneracy, we make the first empirical measurement of the mean occupation function (MOF) of quasars at z ∼ 0.2 by matching quasar positions with groups and clusters identified in the MaxBCG sample. We fit two models to the MOF, a power law and a four-parameter model. The number distribution of quasars in host halos is close to Poisson, and the slopes of the MOF obtained from our best-fit models (for the power-law case) favor an MOF that monotonically increases with halo mass. The best-fit slopes are 0.53 ± 0.04 and 1.03 ± 1.12 for the power-law model and the four-parameter model, respectively. We measure the radial distribution of quasars within dark matter halos and find it to be adequately described by a power law with a slope –2.3 ± 0.4. We measure the conditional luminosity function (CLF) of quasars and show that there is no evidence that quasar luminosity depends on host halo mass, similar to the inferences drawn from clustering measurements. We also measure the conditional black hole mass function (CMF) of our quasars. Although the results are consistent with no dependence on halo mass, we observe a slight indication of downsizing of the black hole mass function. The lack of halo mass dependence in the CLF and CMF shows that quasars residing in galaxy clusters have characteristic luminosity and black hole mass scales.

  7. The FIRST-2MASS Red Quasar Survey

    SciTech Connect

    Glikman, E; Helfand, D J; White, R L; Becker, R H; Gregg, M D; Lacy, M

    2007-06-28

    Combining radio observations with optical and infrared color selection--demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars--we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria--J-K > 1.7,R-K > 4.0--yield a {approx} 50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that {approx}> 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K {le} 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of > 20-30%.

  8. Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters

    NASA Astrophysics Data System (ADS)

    Jia, Ying-Hong; Hu, Quan; Xu, Shi-Jie

    2014-02-01

    A dynamics-based adaptive control approach is proposed for a planar dual-arm space robot in the presence of closed-loop constraints and uncertain inertial parameters of the payload. The controller is capable of controlling the position and attitude of both the satellite base and the payload grasped by the manipulator end effectors. The equations of motion in reduced-order form for the constrained system are derived by incorporating the constraint equations in terms of accelerations into Kane's equations of the unconstrained system. Model analysis shows that the resulting equations perfectly meet the requirement of adaptive controller design. Consequently, by using an indirect approach, an adaptive control scheme is proposed to accomplish position/attitude trajectory tracking control with the uncertain parameters being estimated on-line. The actuator redundancy due to the closed-loop constraints is utilized to minimize a weighted norm of the joint torques. Global asymptotic stability is proven by using Lyapunov's method, and simulation results are also presented to demonstrate the effectiveness of the proposed approach. [Figure not available: see fulltext.

  9. What BOSS has taught us about Quasars.

    NASA Astrophysics Data System (ADS)

    Ross, Nicholas; SDSS-III BOSS Quasar Science Working Group

    2015-01-01

    This talk presents science highlights from the SDSS-III BOSS Quasar Survey, which has obtained spectra for over 300,000 quasars, 200,000 of which are at redshift z>2. Using this dataset, new measurements of the luminosity function have been made, with the faint end of the luminosity function now measured to z~5. New clustering results from DR12 are presented, and the weak luminosity dependence of quasar clustering at z~0.5 is also discussed.New studies of the broad absorption line (BAL) quasar population have also been performed, with a sample of BAL quasars from the original SDSS being re-observed. These new data have shown the disappearance of CIV BAL troughs and indeed the transformation of BAL QSOs to non-BAL QSOs. BAL disappearance, and emergence, events appear to be extremes of general BAL variability, and have shed light on accretion-disk wind models.We highlight the discovery of new classes of quasars including: a population of broad-line Mg II emitters found in a passive galaxy sample; objects with extremely red optical-to-mid infrared colors; objects with very curious UV line (LyA:NV) ratios and potentially the long-sought after high-redshift Type 2 Quasar population.Finally, we describe two new dedicated programs, one focusing on reverberation mapping, the other on X-ray selected quasars.A full list of papers connected to the BOSS Quasar Survey is given at: http://www.sdss3.org/science/publications.php

  10. The large-scale quasar-Lyman α forest cross-correlation from BOSS

    SciTech Connect

    Font-Ribera, Andreu; Arnau, Eduard; Miralda-Escudé, Jordi E-mail: edu.arnau.lazaro@gmail.com; and others

    2013-05-01

    We measure the large-scale cross-correlation of quasars with the Lyα forest absorption in redshift space, using ∼ 60000 quasar spectra from Data Release 9 (DR9) of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is detected over a wide range of scales, up to comoving separations r of 80 h{sup −1}Mpc. For r > 15 h{sup −1}Mpc, we show that the cross-correlation is well fitted by the linear theory prediction for the mean overdensity around a quasar host halo in the standard ΛCDM model, with the redshift distortions indicative of gravitational evolution detected at high confidence. Using previous determinations of the Lyα forest bias factor obtained from the Lyα autocorrelation, we infer the quasar bias factor to be b{sub q} = 3.64{sup +0.13}{sub −0.15} at a mean redshift z = 2.38, in agreement with previous measurements from the quasar auto-correlation. We also obtain a new estimate of the Lyα forest redshift distortion factor, β{sub F} = 1.1±0.15, slightly larger than but consistent with the previous measurement from the Lyα forest autocorrelation. The simple linear model we use fails at separations r < 15h{sup −1}Mpc, and we show that this may reasonably be due to the enhanced ionization due to radiation from the quasars. We also provide the expected correction that the mass overdensity around the quasar implies for measurements of the ionizing radiation background from the line-of-sight proximity effect.

  11. Moderate resolution spectrophotometry of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1991-01-01

    A uniform set of photometry and high signal-to-noise moderate resolution spectroscopy of 33 quasars with redshifts larger than 3.1 is presented. The sample consists of 17 newly discovered quasars (two with redshifts in excess of 4.4) and 16 sources drawn from the literature. The objects in this sample have r magnitudes between 17.4 and 21.4; their luminosities range from -28.8 to -24.9. Three of the 33 objects are broad absorption line quasars. A number of possible high redshift damped Ly-alpha systems were found.

  12. The Ultimate Multiwavelength Quasar Survey (ROSES-2011)

    NASA Astrophysics Data System (ADS)

    Richards, Gordon

    Our objective is to create the ultimate multi-wavelength quasar catalog by combining moderatelydeep, wide-field data in the NASA archives (from GALEX, 2MASS, Spitzer, and WISE) with public optical imaging data from the Sloan Digital Sky Survey. This catalog will extend from deep samples with signficant multi-wavelength coverage in a small area (e.g., SDSS "Stripe 82"), to shallower samples over a larger area with less multiwavelength coverage. Our efforts are a crucial step to bridging between existing spectroscopic surveys and future photometric surveys. Using this catalog, we will investigate the clustering and luminosity function of faint (i »21-23), high-redshift (z > 2.5) quasars in order to break degeneracies between different models of "feedback" from active galactic nuclei (AGN). Our approach is unique in its application of a Bayesian quasar selection algorithm that has been demonstrated to out-perform standard methods and that has been tested on multi-wavelength data. Once quasars have been identified, we will apply our existing photometric redshift algorithms. Richards and Myers are among the world's experts in finding quasars and using their clustering and luminosity function to do cutting-edge science. Quasar clustering analysis will make use of the team's existing algorithms, which are designed to handle the inherently photometric nature of the quasar sample. The quasar luminosity function algorithms are already in place, allowing for timely completion of this project once the multi-wavelength NASA data have been incorporated. As with all quasar catalogs that represent the next generation in improvements, this multi-wavelength quasar catalog will have an impact that extends far beyond our own science goals. This time is ripe for the construction of such a catalog as only in the past year has this dataset covered such a large range of wavelengths and area. In terms of our own science, understanding the form of AGN feedback and the extent to which it

  13. New quasar surveys with WIRO: UV variability of known quasars behind M33

    NASA Astrophysics Data System (ADS)

    Deam, Sophie; Bassett, Neil; Dixon, Don; Griffith, Emily; Harvey, William Bradford; Lee, Daniel; Lyke, Bradley; Haze Nunez, Evan; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    Bright quasars are of particular interest when detected through the extended gaseous regions of local galaxies. Spectroscopy of UV-bright quasars, in particular, can be used to map the properties of the gas surrounding foreground galaxies in absorption. As our atmosphere absorbs UV flux, UV-bright quasars behind galaxies have been a regular target of spectroscopic campaigns with HST. The utility of such quasars is usually predicated on their UV emission at a single epoch. But, some quasars vary significantly in the UV, so objects which have shown a recent increase in UV flux may also be good candidates for spectroscopic follow-up with HST. We have analyzed the changes in u-band measurements of known quasars within a recent observational survey of quasars behind M33. Imaging in the u-band of a region around M33 containing ~35 known quasars was conducted at the Wyoming Infrared Observatory (WIRO) in the summer of 2016. We report on the known quasars which show the most u-band variability between our WIRO campaign and earlier SDSS observations. By correlating u-band observations with GALEX NUV, we determine the likelihood that an increase in u-band flux is a good indicator of an increase in flux further in the UV. This work is supported by the National Science Foundation under REU grant AST 1560461.

  14. The Composite Spectrum of BOSS Quasars Selected for Studies of the Lyα Forest

    NASA Astrophysics Data System (ADS)

    Harris, David W.; Jensen, Trey W.; Suzuki, Nao; Bautista, Julian E.; Dawson, Kyle S.; Vivek, M.; Brownstein, Joel R.; Ge, Jian; Hamann, Fred; Herbst, H.; Jiang, Linhua; Moran, Sarah E.; Myers, Adam D.; Olmstead, Matthew D.; Schneider, Donald P.

    2016-06-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) has collected more than 150,000 2.1 ≤ z ≤ 3.5 quasar spectra since 2009. Using this unprecedented sample, we create a composite spectrum in the rest-frame of 102,150 quasar spectra from 800-3300 Å at a signal-to-noise ratio close to 1000 per pixel (Δv of 69 km s-1). Included in this analysis is a correction to account for flux calibration residuals in the BOSS spectrophotometry. We determine the spectral index as a function of redshift of the full sample, warp the composite spectrum to match the median spectral index, and compare the resulting spectrum to Sloan Digital Sky Survey (SDSS) photometry used in target selection. The quasar composite matches the color of the quasar population to 0.02 mag in g - r, 0.03 mag in r - i, and 0.01 mag in i - z over the redshift range 2.2 < z < 2.6. The composite spectrum deviates from the imaging photometry by 0.05 mag around z = 2.7, likely due to differences in target selection as the quasar colors become similar to the stellar locus at this redshift. Finally, we characterize the line features in the high signal-to-noise composite and identify nine faint lines not found in the previous composite spectrum from SDSS.

  15. Initial Results from a COS Survey of PG Quasars

    NASA Astrophysics Data System (ADS)

    Dinh To, Anthony; Rupke, David; Veilleux, Sylvain

    2016-01-01

    We investigate 27 low-redshift (z<0.3) quasars in the far ultraviolet with high signal-to-noise spectra from the Cosmic Origins Spectrograph on the Hubble Space Telescope. One quarter of these galaxies are found to have O VI (1032, 1038 Å) or N V (1239, 1243 Å) doublet absorption features, often with corresponding Ly α and Ly β absorption. Some of these profiles are indicative of outflowing, highly-ionized gas. We find both narrow and broad, blended features. We will present the results from preliminary fits of the absorption profiles.

  16. Connecting the Silicate Dust and Gas Properties of Distant Galaxies Using Quasar Absorption Systems

    NASA Astrophysics Data System (ADS)

    Aller, Monique C.; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; Morrison, Sean

    2016-01-01

    We present recent results from our program investigating the silicate dust properties in distant galaxies using quasar absorption systems. The dust and gas properties of distant galaxies can be characterized by studying the absorption features produced by them along the sightlines to luminous background quasars. Based on our prior finding that silicate dust absorption in z<1.5 quasar absorption systems exhibits a range of optical depths and absorption feature substructures, suggestive of silicate grain property variations, we are investigating silicate dust absorption in quasar absorption systems toward quasars with archival Spitzer Space Telescope Infrared Spectrograph (IRS) spectra. We present our measurements of the 10 and/or 18 micron silicate dust absorption feature(s) in these systems, and discuss constraints on the grain properties, such as composition and crystallinity, based on the shape and substructure present in these features. We also investigate the correlations between the silicate dust properties and the reddening. Connections between the silicate dust and gas phase metal absorption properties can also be probed for some of our targets with archival ground-based spectra. These relationships will yield valuable insights into the star formation history and evolution of metals and dust. This work is supported by NASA through ADAP grant NNX14AG74G and by an award issued by JPL/Caltech, and from US-NSF grant AST-1108830 to the University of South Carolina.

  17. A Bayesian Method For Finding Galaxies That Cause Quasar Absorption Lines

    NASA Astrophysics Data System (ADS)

    Shoemaker, Emileigh Suzanne; Laubner, David Andrew; Scott, Jennifer E.

    2016-01-01

    We present a study of candidate absorber-galaxy pairs for 39 low redshift quasar sightlines (0.06 < z < 0.85) using a statistical approach to match absorbers with galaxies near the quasar lines of sight. Of the 75 quasars observed with HST/Cosmic Origins Spectrograph (COS) and archived on the Mikulski Archive for Space Telescopes (MAST), 39 overlap with the footprint of the Sloan Digital Sky Survey (SDSS). We downloaded the COS linelists for these quasar spectra from MAST and queried the SDSS DR12 database for photometric data on all galaxies within 1 Mpc of each of these quasar lines of sight. We calculated photometric redshifts for all the SDSS galaxies using the Bayesian Photometric Redshift code. We used all these absorber and galaxy data as input into an absorber-galaxy matching code which also employs a Bayesian scheme, along with known statistics of the intergalactic medium and circumgalactic media of galaxies, for finding the most probable galaxy match for each absorber. We compare our candidate absorber-galaxy matches to existing studies in the literature and explore trends in the absorber and galaxy properties among the matched and non-matched populations. This method of matching absorbers and galaxies can be used to find targets for follow up spectroscopic studies.

  18. The B3-VLA quasar sample

    NASA Astrophysics Data System (ADS)

    Vigotti, M.; Vettolani, G.; Merighi, R.; Lahulla, J. F.; Pedani, M.

    1997-06-01

    A new low frequency radio selected Sample of 125 Quasars complete down to 100 mJy at 408 MHz is presented in this paper. The sample is a part of the B3-VLA sample: 1050 radiosources selected from the B3 catalogue at 408 MHz and observed at the VLA (1465 MHz, C and A configurations). Out of the 352 sources, identified on the POSS-I down to mr ~20.0, 172 are quasar candidates. In this paper we give the final assessment of the quasar sample from spectroscopic observations of the candidates. The final complete quasar sample consists of 125 objects. Furthermore 3 Bl Lac objects have been identified and two Bl Lac candidates. Tables 4, 5, 6 and Figs. 1, 2, 3, 4, 6 are also available in electronic form at the CDS via anonymous ftp to: cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

  19. Black-Hole Feedback in Quasars

    NASA Video Gallery

    This animation illustrates how black-hole feedback works in quasars. Dense gas and dust in the center simultaneously fuels the black hole and shrouds it from view. The black-hole wind propels large...

  20. Quasars, pulsars, black holes and HEAO's

    NASA Technical Reports Server (NTRS)

    Doolitte, R. F.; Moritz, K.; Whilden, R. D. C.

    1974-01-01

    Astronomical surveys are discussed by large X-ray, gamma ray, and cosmic ray instruments carried onboard high-energy astronomy observatories. Quasars, pulsars, black holes, and the ultimate benefits of the new astronomy are briefly discussed.

  1. Broad Absorption Line Quasars and Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Wills, B. J.

    2009-12-01

    Luminous QSOs are signposts to galaxy evolution. Local supermassive black holes are the faded relics of quasars in their heyday at redshifts ˜2. Relationships between the masses of these local supermassive black holes and their host galaxy bulges reveal an intimate link, fundamental to galaxy evolution: the newly evolving galaxy fuels the seed black hole through its accretion disk and by loss of angular momentum and energy in the form of outflowing winds. As the central engine approaches Eddington luminosities, winds drive away dusty gas, revealing a luminous QSO and halting star formation in the galaxy bulge. Relativistic winds are manifested in powerful radio jets in ˜10% of quasars, and sub-relativistic winds are revealed by broad blueshifted absorption troughs in the “broad absorption line” (BAL) quasars. Historically, BALs avoid powerful radio quasars. Here we examine the BALs to investigate this inverse connection.

  2. Narrow UV Absorption Line Outflows from Quasars

    NASA Astrophysics Data System (ADS)

    Hamann, F.; Simon, L.; Rodriguez Hidalgo, P.; Capellupo, D.

    2012-08-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ˜5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ˜100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ˜43% of bright quasars have a C IV NAL outflow while ˜68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  3. Quasars as tracers of cosmic flows

    NASA Astrophysics Data System (ADS)

    Modzelewska, J.; Czerny, B.; Bilicki, M.; Hryniewicz, K.; Krupa, M.; Petrogalli, F.; Pych, W.; Kurcz, A.; Udalski, A.

    2016-10-01

    Quasars, as the most luminous persistent sources in the Universe, have broad applications for cosmological studies. In particular, they can be employed to directly measure the expansion history of the Universe, similarly to SNe Ia. The advantage of quasars is that they are numerous, cover a broad range of redshifts, up to z = 7, and do not show significant evolution of metallicity with redshift. The idea is based on the relation between the time delay of an emission line and the continuum, and the absolute monochromatic luminosity of a quasar. For intermediate redshift quasars, the suitable line is Mg II. Between December 2012 and March 2014, we performed five spectroscopic observations of the QSO CTS C30.10 (z = 0.900) using the South African Large Telesope (SALT), supplemented with photometric monitoring, with the aim of determining the variability of the line shape, changes in the total line intensity and in the continuum. We show that the method is very promising.

  4. Hidden quasars in ultraluminous infared galaxies

    SciTech Connect

    Brotherton, M S; Stanford, S A; Tran, H; van Breugel, W

    1998-08-27

    Abstract. Many ultraluminous infrared galaxies (ULIRGS) are pow- ered by quasars hidden in the center, but many are also powered by starbursts. A simply diagnostic diagram is proposed that can iden- tify obscured quasars in ULIRGs by their high-ionization emission lines ([O III]λ5007/Hβ ≳ 5), and "warm" IR color (ƒ2560 ≳ 0.25).

  5. Are there two types of quasars.

    NASA Technical Reports Server (NTRS)

    Chiu, B. C.; Morrison, P.; Sartori, L.

    1973-01-01

    Two types of quasars are postulated: type I, the vast majority of quasars, which are highly luminous and cosmologically distant, as shown by their redshifts; type II, a dwarf branch, that are products of a few remarkable explosions in nearby galaxies. It is shown that this hypothesis is consistent with redshift statistics and suggests a possible interpretation of such objects as BL Lac and OJ 287.

  6. Quasar x-ray spectra revisited

    NASA Technical Reports Server (NTRS)

    Shastri, P.; Wilkes, B. J.; Elvis, M.; Mcdowell, J.

    1992-01-01

    A sample of 45 quasars observed by the Imaging Proportional Counter (IPC) on the Einstein satellite is used to re-examine the relationship between the soft (0.2-3.5 keV) X-ray energy index and radio-loudness. We found the following: (1) the tendency for radio-loud quasars to have systematically flatter X-ray slopes than radio-quiet quasars (RQQ's) is confirmed with the soft X-ray excess having negligible effect; (2) there is a tendency for the flatness of the X-ray slope to correlate with radio core-dominance for radio-loud quasars, suggesting that a component of the X-ray emission is relativistically beamed; (3) for the RQQ's the soft X-ray slopes, with a mean of approximately 1.0, are consistent with the slopes found at higher energies (2-10 keV) although steeper than those observed for Seyfert 1 galaxies (also 2-10 keV) where the reflection model gives a good fit to the data; (4) the correlation of FeII emission line strength with X-ray energy index is confirmed for radio-quiet quasars using a subset of 18 quasars. The radio-loud quasars show no evidence for a correlation. This relation suggests a connection between the ionizing continuum and the line emission from the broad emission line region (BELR) of radio-quiet quasars, but in the opposite sense to that predicted by current photoionization models; and (5) the correlations of X-ray slope with radio core dominance and FeII equivalent width within the radio-loud and radio-quiet sub-classes respectively imply that the observed wide range of X-ray spectral slopes is real rather than due to the large measuring uncertainties for individual objects.

  7. Chandra Observes Cosmic Traffic Pile-Up In Energetic Quasar Jet

    NASA Astrophysics Data System (ADS)

    2000-11-01

    Using the unrivaled high resolution of NASA's Chandra X-ray Observatory, astronomers have seen important new details in the powerful jet shooting from the quasar 3C273. This research, coupled with optical and radio data, may reveal how these very high velocity jets are driven from the supermassive black holes that scientists believe lurk in the center of quasars. "For the first time, Chandra has given us an X-ray view into the area between 3C273's core and the beginning of the jet," says MIT's Herman Marshall, lead author on the paper submitted to Astrophysical Journal Letters. "Instead of being void of X-ray emission, Chandra has enabled us to detect a faint, but definite, stream of energy." The high-powered jets driven from quasars, often at velocities very close to the speed of light, have long been perplexing for scientists. Instead of seeing a smooth stream of material driven from the core of the quasar, most optical, radio, and earlier X-ray observations have revealed inconsistent, "lumpy" clouds of gas. This newly discovered continuous X-ray flow in 3C273 from the core to the jet may reveal insight on the physical processes that power these jets. Scientists would like to learn why matter is violently ejected from the quasar's core, then appears to suddenly slow down. "If there is a slower car in front on a highway, a faster one from behind will eventually catch up and maybe cause a wreck," says Marshall. "If the jet flow velocity changes, then gas shocks may result, which are akin to car collisions. These gigantic clouds of high-energy electrons, now seen in X rays with Chandra, may indeed be the result of some sort of cosmic traffic pile-up." The X-ray power produced in one of these pile-ups is tremendous. For example, the X-ray output of the first knot in the jet is greater than that of most Seyfert galaxies, which are thought to be powered by supermassive black holes. The abundance of X-ray emission suggests that large amounts of energy may also be

  8. Survey For Very High-Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Lemley, S.; MacAlpine, G.

    1997-12-01

    I will present the results from the deep, three color survey for very high redshift quasars. The survey involved direct imaging through Gunn gri filters using a 2048 x 2048 STIS ccd chip and Cerro Tololo's Curtis Scmidt Telescope. Quasar candidates in the range 4.0 < z < 5.4 were selected based on the detection of the Lyman alpha line and the strong drop in the spectrum blueward of this. Because of this response, quasars are clearly located away from the stellar locus on g - r vs. r - i diagrams. Quasar candidates in this redshift range have large values of g - r and small values of r - i. To confirm the candidates as quasars, the multi-fiber spectroscope Hydra, located on the WIYN telescope, was used. To date, spectral confirmation has been completed for ten degrees out of the approximately fifteen square degress of survey area. Several quasars were discovered, and I will present their spectra and information on the viability of this technique.

  9. The quasars 1038 + 528 A and B

    NASA Technical Reports Server (NTRS)

    Marcaide, J. M.; Shapiro, I. I.; Gorenstein, M. V.; Corey, B. E.; Cotton, W. D.; Rogers, A. E. E.; Romney, J. D.; Schild, R. E.; Clark, T. A.; Preston, R. A.

    1985-01-01

    The results of VLBI observations of the quasars 1038 + 528 A and B at 2.8, 3.6, 13, and 18 cm at various times between November 1979 and March 1981 are reported. The observations and data calibration are described, as are the mapping and astrometric techniques applied in the study. Both quasars are found to have 'core-jet' morphologies. The core of the A quasar dominates its morphology at centrimetric wavelengths with the brightness temperature of its 400 pc long jet being about 1/100 that of the core. By contrast, the 'jet' in the B quasar is very short (about 70 pc); the tail of this jet has the steepest spectral index found to date in extragalactic compact sources, indicating that high electron losses are responsible for the shortness of the jet. No evidence for appreciable morphological change in the B quasar was found over the time span of the study, whereas a new feature may be emerging from the A quasar core at superluminal speed.

  10. The Stacked LYα Emission Profile from the Circum-Galactic Medium of z ˜ 2 Quasars

    NASA Astrophysics Data System (ADS)

    Arrigoni Battaia, Fabrizio; Hennawi, Joseph F.; Cantalupo, Sebastiano; Prochaska, J. Xavier

    2016-09-01

    In the context of the FLASHLIGHT survey, we obtained deep narrowband images of 15 z ˜ 2 quasars with the Gemini Multi-object Spectrograph on Gemini South in an effort to measure Lyα emission from circum- and intergalactic gas on scales of hundreds of kpc from the central quasar. We do not detect bright giant Lyα nebulae (SB ˜ 10-17 erg s-1 cm-2 arcsec-2 at distances >50 kpc) around any of our sources, although we routinely (≃47%) detect smaller-scale <50 kpc Lyα emission at this surface brightness level emerging from either the extended narrow emission line regions powered by the quasars or by star formation in their host galaxies. We stack our 15 deep images to study the average extended Lyα surface brightness profile around z ˜ 2 quasars, carefully PSF-subtracting the unresolved emission component and paying close attention to sources of systematic error. Our analysis, which achieves an unprecedented depth, reveals a surface brightness of SBLyα ˜ 10-19 erg s-1 cm-2 arcsec-2 at ˜200 kpc, with a 2.3σ detection of Lyα emission at SB {}{Lyα }=(5.5+/- 3.1)× {10}-20 erg s-1 cm-2 arcsec-2 within an annulus spanning 50 kpc < R < 500 kpc from the quasars. Assuming that this Lyα emission is powered by fluorescence from highly ionized gas illuminated by the bright central quasar, we deduce an average volume density of n H = 0.6 × 10-2 cm-3 on these large scales. Our results are in broad agreement with the densities suggested by cosmological hydrodynamical simulations of massive (M ≃ 1012.5 M ⊙) quasar hosts; however, they indicate that the typical quasars at these redshifts are surrounded by gas that is a factor of ˜100 times less dense than the (˜1 cm-3) gas responsible for the giant bright Lyα nebulae around quasars recently discovered by our group. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of

  11. Determining Quasar Black Hole Mass Functions from their Broad Emission Lines: Application to the Bright Quasar Survey

    NASA Astrophysics Data System (ADS)

    Kelly, Brandon C.; Vestergaard, Marianne; Fan, Xiaohui

    2009-02-01

    We describe a Bayesian approach to estimating quasar black hole mass functions (BHMF) using the broad emission lines to estimate black hole mass. We show how using the broad-line mass estimates in combination with statistical techniques developed for luminosity function estimation (e.g., the 1/Va correction) leads to statistically biased results. We derive the likelihood function for the BHMF based on the broad-line mass estimates, and derive the posterior distribution for the BHMF, given the observed data. We develop our statistical approach for a flexible model where the BHMF is modeled as a mixture of Gaussian functions. Statistical inference is performed using Markov chain Monte Carlo (MCMC) methods, and we describe a Metropolis-Hastings algorithm to perform the MCMC. The MCMC simulates random draws from the probability distribution of the BHMF parameters, given the data, and we use a simulated data set to show how these random draws may be used to estimate the probability distribution for the BHMF. In addition, we show how the MCMC output may be used to estimate the probability distribution of any quantities derived from the BHMF, such as the peak in the space density of quasars. Our method has the advantage that it is able to constrain the BHMF even beyond the survey detection limits at the adopted confidence level, accounts for measurement errors and the intrinsic uncertainty in broad-line mass estimates, and provides a natural way of estimating the probability distribution of any quantities derived from the BHMF. We conclude by using our method to estimate the local active BHMF using the z < 0.5 Bright Quasar Survey sources. At z ~ 0.2, the quasar BHMF falls off approximately as a power law with slope ~2 for M BH gsim 108 M sun. Our analysis implies that at a given M BH, z < 0.5 broad-line quasars have a typical Eddington ratio of ~0.4 and a dispersion in Eddington ratio of lsim0.5 dex.

  12. THE HALO OCCUPATION DISTRIBUTION OF SDSS QUASARS

    SciTech Connect

    Richardson, Jonathan; Chatterjee, Suchetana; Nagai, Daisuke; Zheng Zheng; Shen Yue

    2012-08-10

    We present an estimate of the projected two-point correlation function (2PCF) of quasars in the Sloan Digital Sky Survey (SDSS) over the full range of one- and two-halo scales, 0.02 h{sup -1} Mpc < r{sub p} < 120 h{sup -1} Mpc. This was achieved by combining data from SDSS DR7 on large scales and Hennawi et al. (with appropriate statistical corrections) on small scales. Our combined clustering sample is the largest spectroscopic quasar clustering sample to date, containing {approx}48, 000 quasars in the redshift range 0.4 {approx}< z {approx}< 2.5 with median redshift 1.4. We interpret these precise 2PCF measurements within the halo occupation distribution (HOD) framework and constrain the occupation functions of central and satellite quasars in dark matter halos. In order to explain the small-scale clustering, the HOD modeling requires that a small fraction of z {approx} 1.4 quasars, f{sub sat} = (7.4 {+-} 1.4) Multiplication-Sign 10{sup -4}, be satellites in dark matter halos. At z {approx} 1.4, the median masses of the host halos of central and satellite quasars are constrained to be M{sub cen} = 4.1{sup +0.3}{sub -0.4} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun} and M{sub sat} = 3.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 14} h{sup -1} M{sub Sun }, respectively. To investigate the redshift evolution of the quasar-halo relationship, we also perform HOD modeling of the projected 2PCF measured by Shen et al. for SDSS quasars with median redshift 3.2. We find tentative evidence for an increase in the mass scale of quasar host halos-the inferred median mass of halos hosting central quasars at z {approx} 3.2 is M{sub cen} = 14.1{sup +5.8}{sub -6.9} Multiplication-Sign 10{sup 12} h{sup -1} M{sub Sun }. The cutoff profiles of the mean occupation functions of central quasars reveal that quasar luminosity is more tightly correlated with halo mass at higher redshifts. The average quasar duty cycle around the median host halo mass is inferred to be f{sub q

  13. Unsteady Reynolds averaged Navier-Stokes simulation of the post-critical flow around a closely spaced group of silos

    NASA Astrophysics Data System (ADS)

    Hillewaere, J.; Dooms, D.; Van Quekelberghe, B.; Degroote, J.; Vierendeels, J.; De Roeck, G.; Lombaert, G.; Degrande, G.

    2012-04-01

    During a storm in October 2002, wind induced ovalling vibrations were observed on several empty silos of a closely spaced group (pitch-to-diameter ratio of 1.05) consisting of 8 by 5 silos in the port of Antwerp (Belgium). Numerical simulations of the turbulent wind flow are performed to clarify the occurrence of the observed ovalling vibrations near the lee side corner of the group by studying the dynamic wind pressures on the silo surfaces and linking to the dynamic properties of the silo structures. As the orientation of the group largely affects the pressure distribution around the cylinders of the group, the influence of the angle of incidence of the wind flow on these ovalling vibrations is examined while other parameters, such as spacing ratio and Reynolds number are unchanged. To achieve results within a reasonable computation time, 2D unsteady Reynolds averaged Navier-Stokes (URANS) equations using Menter's shear stress transport turbulence model were performed. In order to elucidate the influence of the applied turbulence model and to qualitatively validate the spatial and temporal discretization of the 2D highly turbulent post-critical (Re=1.24×107) flow simulations for the silo group, single cylinder simulations were used. The geometric resemblance of the group arrangement with rectangular cylinders on the one hand and of the interstitial spaces with tube arrays (e.g. heat exchangers) on the other hand is used to qualitatively compare the observed flow phenomena. The simulations show that the silo group can be treated neither as a tube array nor as a solid bluff body. Subsequent linking of dynamic wind pressures to dynamic properties of the silo structures reveals strong narrow band frequency peaks in the turbulent pressure coefficient spectra of the silos near the lee side corners of the group that match the structural natural frequencies of the third and fourth ovalling mode shape of the silos. This match indicates a forced, resonant response which

  14. Probing the radio loud/quiet AGN dichotomy with quasar clustering

    NASA Astrophysics Data System (ADS)

    Retana-Montenegro, E.; Röttgering, H. J. A.

    2017-04-01

    We investigate the clustering properties of 45 441 radio-quiet quasars (RQQs) and 3493 radio-loud quasars (RLQs) drawn from a joint use of the Sloan Digital Sky Survey (SDSS) and Faint Images of the Radio Sky at 20 cm (FIRST) surveys in the range 0.3 < z < 2.3. This large spectroscopic quasar sample allow us to investigate the clustering signal dependence on radio-loudness and black hole (BH) virial mass. We find that RLQs are clustered more strongly than RQQs in all the redshift bins considered. We find a real-space correlation length of and for RQQs and RLQs, respectively, for the full redshift range. This implies that RLQs are found in more massive host haloes than RQQs in our samples, with mean host halo masses of 4.9 × 1013h-1M⊙ and 1.9 × 1012h-1M⊙, respectively. Comparison with clustering studies of different radio source samples indicates that this mass scale of ≳ 1 × 1013h-1M⊙ is characteristic for the bright radio-population, which corresponds to the typical mass of galaxy groups and galaxy clusters. The similarity we find in correlation lengths and host halo masses for RLQs, radio galaxies and flat-spectrum radio quasars agrees with orientation-driven unification models. Additionally, the clustering signal shows a dependence on BH mass, with the quasars powered by the most massive BHs clustering more strongly than quasars having less massive BHs. We suggest that the current virial BH mass estimates may be a valid BH proxies for studying quasar clustering. We compare our results to a previous theoretical model that assumes that quasar activity is driven by cold accretion via mergers of gas-rich galaxies. While the model can explain the bias and halo masses for RQQs, it cannot reproduce the higher bias and host halo masses for RLQs. We argue that other BH properties such as BH spin, environment, magnetic field configuration, and accretion physics must be considered to fully understand the origin of radio-emission in quasars and its relation to

  15. FR-II Broad Absorption Line Quasars and the Life Cycle of Quasars

    SciTech Connect

    Gregg, M D; Becker, R H; de Vries, W

    2006-01-05

    By combining the Sloan Digitized Sky Survey Third Data Release quasar list with the VLA FIRST survey, we have identified five objects having both broad absorption lines in their optical spectra and FR-II radio morphologies. We identify an additional example of this class from the FIRST Bright Quasar Survey, J1408+3054. Including the original FR-II-BAL object, J1016+5209, brings the number of such objects to eight. These quasars are relatively rare; finding this small handful has required the 45,000-large quasar sample of SDSS. The FR-II-BAL quasars exhibit a significant anti-correlation between radio-loudness and the strength of the BAL features. This is easily accounted for by the evolutionary picture in which quasars emerge from cocoons of BAL-producing material which stifle the development of radio jets and lobes. There is no such simple explanation for the observed properties of FR-II-BALs in the unification-by-orientation model of quasars. The rarity of the FR-II-BAL class implies that the two phases do not coexist for very long in a single quasar, perhaps less than 10{sup 5} years, with the combined FR-II, high ionization broad absorption phase being even shorter by another factor of 10 or more.

  16. Arsenic antisite and oxygen incorporation trends in GaAs grown by water-mediated close-spaced vapor transport

    NASA Astrophysics Data System (ADS)

    Boucher, Jason; Boettcher, Shannon

    2017-03-01

    Close-spaced vapor transport (CSVT) provides a plausible path to lower the costs of GaAs deposition as it uses only solid precursors and provides precursor utilization in principle approaching 100%. However, the use of H2O as a transport agent causes O to be incorporated in CSVT films, and O has been associated with a number of electrically active defect centers in GaAs, which decrease minority carrier lifetimes. Using deep-level transient spectroscopy, we study the effect of H2O concentration and substrate temperature on electron trap concentrations in n-type GaAs. We find that the most-prominent O-related center (ELO) typically has a much higher concentration than the center usually associated with As antisites (EL2), but that overall defect concentrations can be as low as those in films deposited by common vapor phase techniques. The trends with increasing H2O concentration suggest that ELO is most likely a defect complex with two As antisites. We also consider the optimal conditions for achieving high growth rates and low defect concentrations using CSVT. The results of this study have implications for the future CSVT growth using halide transport agents, where the ELO defect would be eliminated but EL2 might have a higher concentration.

  17. The Space Operations Simulation Center (SOSC) and Closed-Loop Hardware Testing for Orion Rendezvous System Design

    NASA Technical Reports Server (NTRS)

    Milenkovic, Zoran; DSouza, Christopher; Huish, David; Bendle, John; Kibler, Angela

    2012-01-01

    The exploration goals of Orion / MPCV Project will require a mature Rendezvous, Proximity Operations and Docking (RPOD) capability. Ground testing autonomous docking with a next-generation sensor such as the Vision Navigation Sensor (VNS) is a critical step along the path of ensuring successful execution of autonomous RPOD for Orion. This paper will discuss the testing rationale, the test configuration, the test limitations and the results obtained from tests that have been performed at the Lockheed Martin Space Operations Simulation Center (SOSC) to evaluate and mature the Orion RPOD system. We will show that these tests have greatly increased the confidence in the maturity of the Orion RPOD design, reduced some of the latent risks and in doing so validated the design philosophy of the Orion RPOD system. This paper is organized as follows: first, the objectives of the test are given. Descriptions of the SOSC facility, and the Orion RPOD system and associated components follow. The details of the test configuration of the components in question are presented prior to discussing preliminary results of the tests. The paper concludes with closing comments.

  18. Efficient n-GaAs photoelectrodes grown by close-spaced vapor transport from a solid source.

    PubMed

    Ritenour, Andrew J; Cramer, Richard C; Levinrad, Solomon; Boettcher, Shannon W

    2012-01-01

    n-GaAs films were grown epitaxially on n(+)-GaAs substrates by a close-spaced vapor transport method and their photoelectrochemical energy conversion properties studied. Under 100 mW cm(-2) of ELH solar simulation, conversion efficiencies up to 9.3% for CSVT n-GaAs photoanodes were measured in an unoptimized ferrocene/ferrocenium test cell. This value was significantly higher than the 5.7% measured for similarly doped commercial n-GaAs wafers. Spectral response experiments showed that the higher performance of CSVT n-GaAs films relative to the commercial wafers was due to longer minority carrier diffusion lengths (L(D)), up to 1,020 nm in the CSVT films compared to 260 nm in the commercial n-GaAs wafers. Routes to improve the performance of CSVT GaAs and the implications of these results for the development of scalable GaAs-based solar energy conversion devices are discussed.

  19. Characterization of CdMnTe films deposited from polycrystalline powder source using closed-space sublimation method

    SciTech Connect

    Lai, Jianming; Wang, Junnan; Wang, Lin; Ji, Huanhuan; Xu, Run; Zhang, Jijun; Huang, Jian; Shen, Yue; Min, Jiahua; Wang, Linjun Xia, Yiben

    2015-09-15

    CdMnTe films were prepared on quartz substrates by closed-space sublimation of polycrystalline Cd{sub 0.74}Mn{sub 0.26}Te powders. This was performed at different substrate temperatures (T{sub s} = 200, 300, 350, and 400 °C). The interfacial adhesion strength between the films and substrates, when fabricated from polycrystalline powders, was greater than that of films grown using a bulk source. X-ray diffraction studies revealed that the as-deposited films had a zinc blende structure with a preferential (111) orientation. Precipitation of Te occurred in the films deposited at T{sub s} = 200 °C, as confirmed using scanning electron microscopy, x-ray diffraction, and Raman spectroscopy. The growth mode and re-evaporation dependence on the value of T{sub s} of the films were investigated. Our results suggested that materials suitable for radiation detection can be grown from a powder source at lower substrate temperatures then when grown from a bulk source.

  20. Growth and magnetic properties of epitaxial Fe4N films on insulators possessing lattice spacing close to Si(001) plane

    NASA Astrophysics Data System (ADS)

    Ito, Keita; Higashikozono, Soma; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi

    2016-12-01

    We grew ferromagnetic Fe4N films by molecular beam epitaxy on MgO(001), MgAl2O4(MAO)(001), SrTiO3(STO)(001), and CaF2(001) substrates, possessing the lattice spacing close to Si(001) plane. Highly oriented epitaxial growth was confirmed for the Fe4N films on the MgO, MAO, and STO by reflection high-energy electron diffraction and x-ray diffractions. The degree of orientation of the Fe4N film on the STO was the best among these samples. This was attributed to the smallest lattice mismatch of -2.8% between Fe4N(001) and STO(001). On the other hand, crystallinity of the Fe4N film on the CaF2(001) substrate was poor due to a very large lattice mismatch of -30% between Fe4N(001) and CaF2(001) arising from the unexpected epitaxial relationship as Fe4N(001)[100] || CaF2(001)[100]. The saturation magnetization of the Fe4N films was approximately 1200 emu/cm3 at room temperature for all the samples, and the magnetization easy axis was in-plane Fe4N[100]. We consider that STO is the suitable buffer layer for the growth of Fe4N on Si(001), hence to realize the Si-based spintronics devices using highly spin-polarized Fe4N.

  1. 12% efficient CdTe/CdS thin film solar cells deposited by low-temperature close space sublimation

    NASA Astrophysics Data System (ADS)

    Schaffner, Judith; Motzko, Markus; Tueschen, Alexander; Swirschuk, Andreas; Schimper, Hermann-Josef; Klein, Andreas; Modes, Thomas; Zywitzki, Olaf; Jaegermann, Wolfram

    2011-09-01

    We report 12% efficient CdS/CdTe thin film solar cells prepared by low temperature close space sublimation (CSS). Both semiconductor films, CdS and CdTe, were deposited by high vacuum CSS in superstrate configuration on glass substrates with fluorine doped tin oxide (FTO) front contact. The CdTe deposition was carried out at a substrate temperature (Tsub) of ≤340 ∘C, which is much lower than that used in conventional processes (>500 ∘C). The CdTe films were treated with the usual CdCl2 activation process. Different optimal annealing times and temperatures were found for low-temperature cells (Tsub≤ 340 ∘C) compared to high-temperature cells (Tsub = 520 ∘C). The influence of the activation step on the morphology of high-temperature and low-temperature CdTe is determined by XRD, AFM, SEM top views, and SEM cross-sections. Grain growth, strong recrystallization, and a reduction of planar defects during the activation step are observed, especially for low-temperature CdTe. Further, the influence of CdS deposition parameters on the solar cell performance is investigated by using three different sets of parameters with different deposition rates and substrate temperatures for the CdS preparation. Efficiencies about 10.9% with a copper-free back contact and 12.0% with a copper-containing back contact were achieved using the low temperature CdTe process.

  2. Performance Expectations of Closed-Brayton-Cycle Heat Exchangers in 100-kWe Nuclear Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.

    2003-01-01

    Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-kWe nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter s moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98,0.95 and 0.97, respectively. Performance parameters such as number of thermal units (Nm), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19,23 to 39 kWK, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat-transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-countefflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.

  3. Performance Expectations of Closed-Brayton-Cycle Heat Exchangers in 100-kWe Nuclear Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.

    2003-01-01

    Performance expectations of closed-Brayton-cycle heat exchangers to be used in 100-k We nuclear space power systems were forecast. Proposed cycle state points for a system supporting a mission to three of Jupiter's moons required effectiveness values for the heat-source exchanger, recuperator and rejection exchanger (gas cooler) of 0.98, 0.95, and 0.97, respectively. Performance parameters such as number of thermal units (Ntu), equivalent thermal conductance (UA), and entropy generation numbers (Ns) varied from 11 to 19, 23 to 39 kW/K, and 0.019 to 0.023 for some standard heat exchanger configurations. Pressure-loss contributions to entropy generation were significant; the largest frictional contribution was 114% of the heat transfer irreversibility. Using conventional recuperator designs, the 0.95 effectiveness proved difficult to achieve without exceeding other performance targets; a metallic, plate-fin counterflow solution called for 15% more mass and 33% higher pressure-loss than the target values. Two types of gas-coolers showed promise. Single-pass counterflow and multipass cross-counterflow arrangements both met the 0.97 effectiveness requirement. Potential reliability-related advantages of the cross-counterflow design were noted. Cycle modifications, enhanced heat transfer techniques and incorporation of advanced materials were suggested options to reduce system development risk. Carbon-carbon sheeting or foam proved an attractive option to improve overall performance.

  4. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light

    NASA Astrophysics Data System (ADS)

    Wu, Z. W.; Volotka, A. V.; Surzhykov, A.; Dong, C. Z.; Fritzsche, S.

    2016-06-01

    The angular distribution and linear polarization of the fluorescence light following the resonant photoexcitation is investigated within the framework of density matrix and second-order perturbation theory. Emphasis has been placed on "signatures" for determining the level sequence and splitting of intermediate (partially) overlapping resonances, if analyzed as a function of photon energy of incident light. Detailed computations within the multiconfiguration Dirac-Fock method have been performed, especially for the 1 s22 s22 p63 s ,Ji=1 /2 +γ1→(1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 →1 s22 s22 p63 s ,Jf=1 /2 +γ2 photoexcitation and subsequent fluorescence emission of atomic sodium. A remarkably strong dependence of the angular distribution and linear polarization of the γ2 fluorescence emission is found upon the level sequence and splitting of the intermediate (1s22 s 2 p63 s ) 13 p3 /2,J =1 /2 ,3 /2 overlapping resonances owing to their finite lifetime (linewidth). We therefore suggest that accurate measurements of the angular distribution and linear polarization might help identify the sequence and small splittings of closely spaced energy levels, even if they cannot be spectroscopically resolved.

  5. The Final SDSS High-redshift Quasar Sample of 52 Quasars at z>5.7

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; McGreer, Ian D.; Fan, Xiaohui; Strauss, Michael A.; Bañados, Eduardo; Becker, Robert H.; Bian, Fuyan; Farnsworth, Kara; Shen, Yue; Wang, Feige; Wang, Ran; Wang, Shu; White, Richard L.; Wu, Jin; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian

    2016-12-01

    We present the discovery of nine quasars at z∼ 6 identified in the Sloan Digital Sky Survey (SDSS) imaging data. This completes our survey of z∼ 6 quasars in the SDSS footprint. Our final sample consists of 52 quasars at 5.7\\lt z≤slant 6.4, including 29 quasars with {z}{AB}≤slant 20 mag selected from 11,240 deg2 of the SDSS single-epoch imaging survey (the main survey), 10 quasars with 20≤slant {z}{AB}≤slant 20.5 selected from 4223 deg2 of the SDSS overlap regions (regions with two or more imaging scans), and 13 quasars down to {z}{AB}≈ 22 mag from the 277 deg2 in Stripe 82. They span a wide luminosity range of -29.0≤slant {M}1450≤slant -24.5. This well-defined sample is used to derive the quasar luminosity function (QLF) at z∼ 6. After combining our SDSS sample with two faint ({M}1450≥slant -23 mag) quasars from the literature, we obtain the parameters for a double power-law fit to the QLF. The bright-end slope β of the QLF is well constrained to be β =-2.8+/- 0.2. Due to the small number of low-luminosity quasars, the faint-end slope α and the characteristic magnitude {M}1450* are less well constrained, with α =-{1.90}-0.44+0.58 and {M}* =-{25.2}-3.8+1.2 mag. The spatial density of luminous quasars, parametrized as ρ ({M}1450\\lt -26,z)=ρ (z=6){10}k(z-6), drops rapidly from z∼ 5 to 6, with k=-0.72+/- 0.11. Based on our fitted QLF and assuming an intergalactic medium (IGM) clumping factor of C = 3, we find that the observed quasar population cannot provide enough photons to ionize the z∼ 6 IGM at ∼90% confidence. Quasars may still provide a significant fraction of the required photons, although much larger samples of faint quasars are needed for more stringent constraints on the quasar contribution to reionization.

  6. Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.

    PubMed

    Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P

    1995-01-01

    Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.

  7. HOST GALAXIES OF LUMINOUS TYPE 2 QUASARS AT z {approx} 0.5

    SciTech Connect

    Liu Xin; Greene, Jenny E.; Strauss, Michael A.; Zakamska, Nadia L.; Krolik, Julian H.; Heckman, Timothy M.

    2009-09-10

    We present deep Gemini GMOS optical spectroscopy of nine luminous quasars at redshifts z {approx} 0.5, drawn from the Sloan Digital Sky Survey type 2 quasar sample. Our targets were selected to have high intrinsic luminosities (M{sub V} < -26 mag) as indicated by the [O III] {lambda}5007 A emission-line luminosity (L[{sub OIII}]). Our sample has a median black hole mass of {approx}10{sup 8.8} M{sub sun} inferred assuming the local M {sub BH}-{sigma}{sub *} relation and a median Eddington ratio of {approx}0.7, using stellar velocity dispersions {sigma}{sub *} measured from the G band. We estimate the contamination of the stellar continuum from scattered quasar light based on the strength of broad H{beta}, and provide an empirical calibration of the contamination as a function of L {sub [OIII]}; the scattered-light fraction is {approx}30% of L{sub 5100} for objects with L {sub [OIII]} = 10{sup 9.5} L{sub sun}. Population synthesis indicates that young poststarburst populations (<0.1 Gyr) are prevalent in luminous type 2 quasars, in addition to a relatively old population (>1 Gyr) which dominates the stellar mass. Broad emission complexes around He II {lambda}4686 A with luminosities up to 10{sup 8.3} L{sub sun} are unambiguously detected in three out of the nine targets, indicative of Wolf-Rayet (WR) populations. Population synthesis shows that {approx}5 Myr poststarburst populations contribute substantially to the luminosities (>50% of L{sub 5100}) of all three objects with WR detections. We find two objects with double cores and four with close companions. Our results may suggest that luminous type 2 quasars trace an early stage of galaxy interaction, perhaps responsible for both the quasar and the starburst activity.

  8. INFRARED SPECTRA AND PHOTOMETRY OF COMPLETE SAMPLES OF PALOMAR-GREEN AND TWO MICRON ALL SKY SURVEY QUASARS

    SciTech Connect

    Shi, Yong; Rieke, G. H.; Su, K. Y. L.; Ogle, P. M.; Balog, Z.

    2014-10-01

    As a step toward a comprehensive overview of the infrared (IR) diagnostics of the central engines and host galaxies of quasars at low redshift, we present Spitzer Space Telescope spectroscopic (5-40 μm) and photometric (24, 70, and 160 μm) measurements of all Palomar-Green (PG) quasars at z < 0.5 and Two Micron All Sky Survey (2MASS) quasars at z < 0.3. We supplement these data with Herschel measurements at 160 μm. The sample is composed of 87 optically selected PG quasars and 52 near-IR-selected 2MASS quasars. Here we present the data, measure the prominent spectral features, and separate emission due to star formation from that emitted by the dusty circumnuclear torus. We find that the mid-IR (5-30 μm) spectral shape for the torus is largely independent of quasar IR luminosity with scatter in the spectral energy distribution (SED) shape of ≲0.2 dex. Except for the silicate features, no large difference is observed between PG (unobscured—silicate emission) and 2MASS (obscured—silicate absorption) quasars. Only mild silicate features are observed in both cases. When in emission, the peak wavelength of the silicate feature tends to be longer than 9.7 μm, possibly indicating effects on grain properties near the active galactic nucleus. The IR color is shown to correlate with the equivalent width of the aromatic features, indicating that the slope of the quasar mid- to far-IR SED is to first order driven by the fraction of radiation from star formation in the IR bands.

  9. Infrared Spectra and Photometry Of Complete Samples of Palomar-Green and Two Micron All Sky Survey Quasars

    NASA Astrophysics Data System (ADS)

    Shi, Yong; Rieke, G. H.; Ogle, P. M.; Su, K. Y. L.; Balog, Z.

    2014-10-01

    As a step toward a comprehensive overview of the infrared (IR) diagnostics of the central engines and host galaxies of quasars at low redshift, we present Spitzer Space Telescope spectroscopic (5-40 μm) and photometric (24, 70, and 160 μm) measurements of all Palomar-Green (PG) quasars at z < 0.5 and Two Micron All Sky Survey (2MASS) quasars at z < 0.3. We supplement these data with Herschel measurements at 160 μm. The sample is composed of 87 optically selected PG quasars and 52 near-IR-selected 2MASS quasars. Here we present the data, measure the prominent spectral features, and separate emission due to star formation from that emitted by the dusty circumnuclear torus. We find that the mid-IR (5-30 μm) spectral shape for the torus is largely independent of quasar IR luminosity with scatter in the spectral energy distribution (SED) shape of lsim0.2 dex. Except for the silicate features, no large difference is observed between PG (unobscured—silicate emission) and 2MASS (obscured—silicate absorption) quasars. Only mild silicate features are observed in both cases. When in emission, the peak wavelength of the silicate feature tends to be longer than 9.7 μm, possibly indicating effects on grain properties near the active galactic nucleus. The IR color is shown to correlate with the equivalent width of the aromatic features, indicating that the slope of the quasar mid- to far-IR SED is to first order driven by the fraction of radiation from star formation in the IR bands.

  10. Discovery of a bright quasar without a massive host galaxy.

    PubMed

    Magain, Pierre; Letawe, Géraldine; Courbin, Frédéric; Jablonka, Pascale; Jahnke, Knud; Meylan, Georges; Wisotzki, Lutz

    2005-09-15

    A quasar is thought to be powered by the infall of matter onto a supermassive black hole at the centre of a massive galaxy. Because the optical luminosity of quasars exceeds that of their host galaxy, disentangling the two components can be difficult. This led in the 1990s to the controversial claim of the discovery of 'naked' quasars. Since then, the connection between quasars and galaxies has been well established. Here we report the discovery of a quasar lying at the edge of a gas cloud, whose size is comparable to that of a small galaxy, but whose spectrum shows no evidence for stars. The gas in the cloud is excited by the quasar itself. If a host galaxy is present, it is at least six times fainter than would normally be expected for such a bright quasar. The quasar is interacting dynamically with a neighbouring galaxy, whose gas might be feeding the black hole.

  11. Beacons in Time: Maarten Schmidt and the Discovery of Quasars.

    ERIC Educational Resources Information Center

    Preston, Richard

    1988-01-01

    Tells the story of Maarten Schmidt and the discovery of quasars. Discusses the decomposition of light, crucial observations and solving astronomical mysteries. Describes spectroscopic analysis used in astronomy and its application to quasars. (CW)

  12. Cadmium sulfide thin films deposited by close spaced sublimation and cadmium sulfide/cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Marinskiy, Dmitriy Nikolaevich

    1998-12-01

    One of the applications of CdS films is as a window layer in CdTe and Cu(In,Ga)Sesb2 solar cells. The study of the optical and structural properties of CdS films deposited by close spaced sublimation as well as their influence on CdS/CdTe solar cell performance is part of the CdTe solar cell program at the University of South Florida. CdS films have been deposited by the close-spaced sublimation technique. The influence of the main process parameters, the substrate and source temperatures, and the ambient in the deposition chamber has been investigated. As-deposited films have been subjected to heat treatments in Hsb2 ambient, in CdClsb2 atmosphere, and in atmosphere with small amounts of oxygen. A special annealing chamber was built to carry out the annealing experiments in the presence of CdClsb2 vapor and oxygen. Several CSS chambers were assembled to study the influence of various process parameters simultaneously and validate the results. Results of scanning electron microscopy and photoluminescence measurements have been used as the primary characterization techniques. X-ray diffraction, electron microprobe analysis, and transmission measurements have also been carried out. It was found that as deposited CdS films have a hexagonal structure independent of the process parameters used. The presence of a CdO phase was detected in the samples grown with the highest oxygen concentration in the ambient. The resistivity of CdS films is controlled by intergrain barriers. Photoluminescence measurements showed the presence of oxygen-acceptor transition and a wide variation in the intensity of deep emission bands. The variation in the intensities was correlated with the variation in the deposition and annealing conditions. However, no correlation was found between the PL intensities of defect bands and cell performance. CdS/CdTe junctions have been fabricated using standard deposition and postgrowth techniques developed in the USF solar cells laboratory. All cells have

  13. THE SUBARU HIGH-z QUASAR SURVEY: DISCOVERY OF FAINT z ∼ 6 QUASARS

    SciTech Connect

    Kashikawa, Nobunari; Furusawa, Hisanori; Niino, Yuu; Ishizaki, Yoshifumi; Onoue, Masafusa; Toshikawa, Jun; Ishikawa, Shogo; Willott, Chris J.; Im, Myungshin; Shimasaku, Kazuhiro; Ouchi, Masami; Hibon, Pascale

    2015-01-01

    We present the discovery of one or two extremely faint z ∼ 6 quasars in 6.5 deg{sup 2} utilizing a unique capability of the wide-field imaging of the Subaru/Suprime-Cam. The quasar selection was made in (i'-z{sub B} ) and (z{sub B} -z{sub R} ) colors, where z{sub B} and z{sub R} are bandpasses with central wavelengths of 8842 Å and 9841 Å, respectively. The color selection can effectively isolate quasars at z ∼ 6 from M/L/T dwarfs without the J-band photometry down to z{sub R} < 24.0, which is 3.5 mag deeper than the Sloan Digital Sky Survey (SDSS). We have selected 17 promising quasar candidates. The follow-up spectroscopy for seven targets identified one apparent quasar at z = 6.156 with M {sub 1450} = –23.10. We also identified one possible quasar at z = 6.041 with a faint continuum of M {sub 1450} = –22.58 and a narrow Lyα emission with HWHM =427 km s{sup –1}, which cannot be distinguished from Lyman α emitters. We derive the quasar luminosity function at z ∼ 6 by combining our faint quasar sample with the bright quasar samples by SDSS and CFHQS. Including our data points invokes a higher number density in the faintest bin of the quasar luminosity function than the previous estimate employed. This suggests a steeper faint-end slope than lower z, though it is yet uncertain based on a small number of spectroscopically identified faint quasars, and several quasar candidates still remain to be diagnosed. The steepening of the quasar luminosity function at the faint end does increase the expected emission rate of the ionizing photon; however, it only changes by a factor of approximately two to six. This was found to still be insufficient for the required photon budget of reionization at z ∼ 6.

  14. Giant enhancement of noncontact friction between closely spaced bodies by dielectric films and two-dimensional systems

    SciTech Connect

    Volokitin, A. I. Persson, B. N. J.; Ueba, H.

    2007-02-15

    The effect of an external bias voltage and spatial variations of the surface potential on the damping of cantilever vibrations in an atomic force microscope (AFM) is considered. The damping is due to an electrostatic friction that arises due to dissipation of the energy of an electromagnetic field generated in the sample by oscillating static charges induced on the surface of the AFM probe tip by the bias voltage or spatial variations of the surface potential. A similar effect appears when the tip is oscillating in an electrostatic field created by charged defects present in the dielectric sample. The electrostatic friction is compared to the van der Waals (vdW) friction between closely spaced bodies, which is caused by a fluctuating electromagnetic field related to the quantum and thermal fluctuations of current density inside the bodies. It is shown that the electrostatic friction and the vdW friction can be strongly enhanced in the presence of dielectric films or two-dimensional (2D) structures-such as a 2D electron system or an incommensurate layer of adsorbed ions exhibiting acoustic oscillations-on the probe tip and sample surfaces. It is also shown that the damping of cantilever oscillations caused by the electrostatic friction in the presence of such 2D structures can have the same order of magnitude and the same dependence on the distance as observed in experiment by Stipe et al. [Phys. Rev. Lett. 87, 096801 (2001)]. At small distances, the vdW friction can be large enough to be measured in experiment. In interpreting the experimental data that obey a quadratic dependence on the bias voltage, one can reject a phonon mechanism according to which the friction depends on the fourth power of the voltage.

  15. Relativistic redshifts in quasar broad lines

    SciTech Connect

    Tremaine, Scott; Shen, Yue; Liu, Xin; Loeb, Abraham E-mail: yshen@obs.carnegiescience.edu E-mail: aloeb@cfa.harvard.edu

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  16. The large bright quasar survey. 6: Quasar catalog and survey parameters

    NASA Astrophysics Data System (ADS)

    Hewett, Paul C.; Foltz, Craig B.; Chaffee, Frederic H.

    1995-04-01

    Positions, redshifts, and magnitudes for the 1055 quasars in the Large Bright Quasar Survey (LBQS) are presented in a single catalog. Celestial positions have been derived using the PPM catalog to provide an improved reference frame. J2000.0 coordinates are given together with improved b1950.0 positions. Redshifts calculated via cross correlation with a high signal-to-noise ratio composite quasar spectrum are included and the small number of typographic and redshift misidentifications in the discovery papers are corrected. Spectra of the 12 quasars added to the sample since the publication of the discovery papers are included. Discriptions of the plate material, magnitude calibration, quasar candidate selection procedures, and the identification spectroscopy are given. Calculation of the effective area of the survey for the 1055 quasars comprising the well-defined LBQS sample specified in detail. Number-redshift and number-magnitude relations for the quasars are derived and the strengths and limitastions of the LBSQ sample summarized. Comparison with existing surveys is made and a qualitative assessment of the effectiveness of the LBQS undertaken. Positions, magnitudes, and optical spectra of the eight objects (less than 1%) in the survey that remain unidentified are also presented.

  17. Quasar feedback and the origin of radio emission in radio-quiet quasars

    NASA Astrophysics Data System (ADS)

    Zakamska, Nadia L.; Greene, Jenny E.

    2014-07-01

    We analyse Sloan Digital Sky Survey spectra of 568 obscured luminous quasars. The [O III] λ5007 Å emission line shows blueshifts and blue excess, indicating that some of the narrow-line gas is undergoing an organized outflow. The velocity width containing 90 per cent of line power ranges from 370 to 4780 km s-1, suggesting outflow velocities up to ˜2000 km s-1, and is strongly correlated with the radio luminosity among the radio-quiet quasars. We propose that radio emission in radio-quiet quasars is due to relativistic particles accelerated in the shocks within the quasar-driven outflows; star formation in quasar hosts is insufficient to explain the observed radio emission. The median radio luminosity of the sample of νLν[1.4 GHz] = 1040 erg s-1 suggests a median kinetic luminosity of the quasar-driven wind of Lwind = 3 × 1044 erg s-1, or about 4 per cent of the estimated median bolometric luminosity Lbol = 8 × 1045 erg s-1. Furthermore, the velocity width of [O III] is positively correlated with mid-infrared luminosity, which suggests that outflows are ultimately driven by the radiative output of the quasar. Emission lines characteristic of shocks in quasi-neutral medium increase with the velocity of the outflow, which we take as evidence of quasar-driven winds propagating into the interstellar medium of the host galaxy. Quasar feedback appears to operate above the threshold luminosity of Lbol ˜ 3 × 1045 erg s-1.

  18. A large sample of binary quasars: Does quasar bias tracks from Mpc scale to kpc scales?

    NASA Astrophysics Data System (ADS)

    Eftekharzadeh, Sarah; Myers, Adam D.; Djorgovski, Stanislav G.; Graham, Matthew J.

    2017-01-01

    We present the most precise estimate to date of the bias of quasars on very small scales, based on a measurement of the clustering of 47 spectroscopically confirmed binary quasars with proper transverse separations of ~25 h^{-1} kpc. The quasars in our sample, which is an order-of-magnitude larger than previous samples, are targeted using a Kernel Density Estimation technique (KDE) applied to Sloan Digital Sky Survey (SDSS) imaging over most of the SDSS area. Our sample is "complete," in that all possible pairs of binary quasars across our area of interest have been spectroscopically confirmed from a combination of previous surveys and our own long-slit observational campaign. We determine the projected correlation function of quasars (\\bar W_p) in four bins of proper transverse scale over the range 17.0 \\lesssim R_{prop} \\lesssim 36.2 h^{-1} kpc. Due to our large sample size, our measured projected correlation function in each of these four bins of scale is more than twice as precise as any previous measurement made over our {\\em full} range of scales. We also measure the bias of our quasar sample in four slices of redshift across the range 0.43 \\le z \\le 2.26 and compare our results to similar measurements of how quasar bias evolves on Mpc-scales. This measurement addresses the question of whether it is reasonable to assume that quasar bias evolves with redshift in a similar fashion on both Mpc and kpc scales. Our results can meaningfully constrain the one-halo term of the Halo Occupation Distribution (HOD) of quasars and how it evolves with redshift. This work was partially supported by NSF grant 1515404.

  19. Clinical outcomes, toxicity, and cosmesis in breast cancer patients with close skin spacing treated with accelerated partial breast irradiation (APBI) using multi-lumen/catheter applicators

    PubMed Central

    Akhtari, Mani; Abboud, Mirna; Szeja, Sean; Pino, Ramiro; Lewis, Gary D.; Bass, Barbara L.; Miltenburg, Darlene M.; Butler, E. Brian

    2016-01-01

    Purpose Accelerated partial breast irradiation (APBI) using a single-lumen device is associated with better cosmetic outcomes if the spacing between the applicator and skin is > 7 mm. However, there are no reports addressing the late toxicity and clinical outcomes in patients treated with single-entry multi-lumen/catheter applicators who had close skin spacing (7 mm or less). We undertook this study to report clinical outcome, acute and late toxicity as well as cosmesis of early stage breast cancer patients with close skin spacing treated with APBI using multi-lumen or multi-catheter devices. Material and methods This is a retrospective study of all breast cancer patients who had undergone APBI using single-entry multi-lumen/catheter devices in a single institution between 2008 to 2012. The study was limited to those with ≤ 7 mm spacing between the device and skin. Results We identified 37 patients and 38 lesions with skin spacing of ≤ 7 mm. Seven lesions (18%) had spacing of ≤ 3 mm. Median follow-up was 47.5 months. There was one case of ipsilateral breast recurrence and one ipsilateral axillary recurrence. Based on RTOG criteria, 22 treated lesions experienced grade 1 and 9 lesions experienced grade 2 toxicity. Twenty-one lesions experienced late grade 1 toxicity. One patient had to undergo mastectomy due to mastitis. Twenty-four treated breasts showed excellent and 11 had good cosmetic outcome. Overall cosmesis trended towards a significant correlation with skin spacing. However, all patients with ≤ 3 mm skin spacing experienced acute and late toxicities. Conclusions Accelerated partial breast irradiation can be safely performed in patients with skin spacing of ≤ 7 mm using single-entry multi-lumen/catheter applicators with excellent cosmetic outcomes and an acceptable toxicity profile. However, skin spacing of ≤ 3 mm is associated with acute and late toxicity and should be avoided if possible. PMID:28115955

  20. Closing the reduced position-space Fokker-Planck equation for shear-induced diffusion using the Physalis method

    NASA Astrophysics Data System (ADS)

    Sierakowski, Adam J.; Lukassen, Laura J.

    2016-11-01

    In the shear flow of non-Brownian particles, we describe the long-time diffusive processes stochastically using a Fokker-Planck equation. Previous work has indicated that a Fokker-Planck equation coupling the probability densities of position and velocity spaces may be appropriate for describing this phenomenon. The stochastic description, integrated over velocity space to obtain a reduced position-space Fokker-Planck equation, contains unknown space diffusion coefficients. In this work, we use the Physalis method for simulating disperse particle flows to verify the colored-noise velocity space model (an Ornstein-Uhlenbeck process) by comparing the simulated long-time diffusion rate with the diffusion rate proposed by the theory. We then use the simulated data to calculate the unknown space diffusion coefficients that appear in the reduced position-space Fokker-Planck equation and summarize the results. This study was partially supported by US NSF Grant CBET1335965.

  1. A Survey of z>5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6

    NASA Astrophysics Data System (ADS)

    Fan, Xiaohui; Narayanan, Vijay K.; Lupton, Robert H.; Strauss, Michael A.; Knapp, Gillian R.; Becker, Robert H.; White, Richard L.; Pentericci, Laura; Leggett, S. K.; Haiman, Zoltán; Gunn, James E.; Ivezić, Željko; Schneider, Donald P.; Anderson, Scott F.; Brinkmann, J.; Bahcall, Neta A.; Connolly, Andrew J.; Csabai, István; Doi, Mamoru; Fukugita, Masataka; Geballe, Tom; Grebel, Eva K.; Harbeck, Daniel; Hennessy, Gregory; Lamb, Don Q.; Miknaitis, Gajus; Munn, Jeffrey A.; Nichol, Robert; Okamura, Sadanori; Pier, Jeffrey R.; Prada, Francisco; Richards, Gordon T.; Szalay, Alex; York, Donald G.

    2001-12-01

    ~6. The luminous quasars discussed in the paper have central black hole masses of several times 109 Msolar by the Eddington argument, with likely dark halo masses on the order of 1013 Msolar. Their observed space density provides a sensitive test of models of quasar and galaxy formation at high redshift. Based on observations obtained with the Sloan Digital Sky Survey and with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium; on observations obtained by staff of the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation (NSF) on behalf of the Gemini partnership: the NSF (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina) on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, made possible by the generous financial support of the W. M. Keck Foundation; on observations obtained at the German-Spanish Astronomical Centre, Calar Alto Observatory, operated by the Max Planck Institute for Astronomy, Heidelberg, jointly with the Spanish National Commission for Astronomy; and on observations obtained at UKIRT, which is operated by the Joint Astronomy Centre on behalf of the UK Particle Physics and Astronomy Research Council.

  2. THE SUDDEN DEATH OF THE NEAREST QUASAR

    SciTech Connect

    Schawinski, Kevin; Virani, Shanil; Megan Urry, C.; Natarajan, Priyamvada; Coppi, Paolo; Evans, Daniel A.; Keel, William C.; Manning, Anna; Lintott, Chris J.; Kaviraj, Sugata; Bamford, Steven P.; Jozsa, Gyula I. G.; Garrett, Michael; Van Arkel, Hanny; Gay, Pamela; Fortson, Lucy

    2010-11-20

    Galaxy formation is significantly modulated by energy output from supermassive black holes at the centers of galaxies which grow in highly efficient luminous quasar phases. The timescale on which black holes transition into and out of such phases is, however, unknown. We present the first measurement of the shutdown timescale for an individual quasar using X-ray observations of the nearby galaxy IC 2497, which hosted a luminous quasar no more than 70,000 years ago that is still seen as a light echo in 'Hanny's Voorwerp', but whose present-day radiative output is lower by at least two, and more likely by over four, orders of magnitude. This extremely rapid shutdown provides new insight into the physics of accretion in supermassive black holes and may signal a transition of the accretion disk to a radiatively inefficient state.

  3. 3C 57 as an atypical radio-loud quasar: implications for the radio-loud/radio-quiet dichotomy

    NASA Astrophysics Data System (ADS)

    Sulentic, J. W.; Martínez-Carballo, M. A.; Marziani, P.; del Olmo, A.; Stirpe, G. M.; Zamfir, S.; Plauchu-Frayn, I.

    2015-06-01

    Lobe-dominated radio-loud (LD RL) quasars occupy a restricted domain in the 4D Eigenvector 1 (4DE1) parameter space which implies restricted geometry/physics/kinematics for this subclass compared to the radio-quiet (RQ) majority of quasars. We discuss how this restricted domain for the LD RL parent population supports the notion for a RQ-RL dichotomy among type 1 sources. 3C 57 is an atypical RL quasar that shows both uncertain radio morphology and falls in a region of 4DE1 space where RL quasars are rare. We present new radio flux and optical spectroscopic measures designed to verify its atypical optical/UV spectroscopic behaviour and clarify its radio structure. The former data confirms that 3C 57 falls off the 4DE1 quasar `main sequence' with both extreme optical Fe II emission (R_{Fe II} ˜ 1) and a large C IV λ1549 profile blueshift (˜-1500 km s-1). These parameter values are typical of extreme Population A sources which are almost always RQ. New radio measures show no evidence for flux change over a 50+ year time-scale consistent with compact steep-spectrum (or young LD) over core-dominated morphology. In the 4DE1 context where LD RL are usually low L/LEdd quasars, we suggest that 3C 57 is an evolved RL quasar (i.e. large blackhole mass) undergoing a major accretion event leading to a rejuvenation reflected by strong Fe II emission, perhaps indicating significant heavy metal enrichment, high bolometric luminosity for a low-redshift source and resultant unusually high Eddington ratio giving rise to the atypical C IV λ1549.

  4. Lens Model and Time Delay Predictions for the Sextuply Lensed Quasar SDSS J2222+2745

    NASA Astrophysics Data System (ADS)

    Sharon, Keren; Bayliss, Matthew B.; Dahle, Håkon; Florian, Michael K.; Gladders, Michael D.; Johnson, Traci L.; Paterno-Mahler, Rachel; Rigby, Jane R.; Whitaker, Katherine E.; Wuyts, Eva

    2017-01-01

    SDSS J2222+2745 is a galaxy cluster at z = 0.49, strongly lensing a quasar at z = 2.805 into six widely separated images. In recent Hubble Space Telescope imaging of the field, we identify additional multiply lensed galaxies and confirm the sixth quasar image that was identified by Dahle et al. We used the Gemini-North telescope to measure a spectroscopic redshift of z = 4.56 of one of the lensed galaxies. These data are used to refine the lens model of SDSS J2222+2745, compute the time delay and magnifications of the lensed quasar images, and reconstruct the source image of the quasar host and a lensed galaxy at z = 2.3. This galaxy also appears in absorption in our Gemini spectra of the lensed quasar, at a projected distance of 34 kpc. Our model is in agreement with the recent time delay measurements of Dahle et al., who found τAB = 47.7 ± 6.0 days and τAC = ‑722 ± 24 days. We use the observed time delays to further constrain the model, and find that the model-predicted time delays of the three faint images of the quasar are τAD = 502 ± 68 days, τAE = 611 ± 75 days, and τAF = 415 ± 72 days. We have initiated a follow-up campaign to measure these time delays with Gemini North. Finally, we present initial results from an X-ray monitoring program with Swift, indicating the presence of hard X-ray emission from the lensed quasar, as well as extended X-ray emission from the cluster itself, which is consistent with the lensing mass measurement and the cluster velocity dispersion. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-13337.

  5. Intergalactic Helium Absorption toward High-Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael

    1995-01-01

    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.

  6. A Validated Set of MIDAS V5 Task Network Model Scenarios to Evaluate Nextgen Closely Spaced Parallel Operations Concepts

    NASA Technical Reports Server (NTRS)

    Gore, Brian Francis; Hooey, Becky Lee; Haan, Nancy; Socash, Connie; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The Closely Spaced Parallel Operations (CSPO) scenario is a complex, human performance model scenario that tested alternate operator roles and responsibilities to a series of off-nominal operations on approach and landing (see Gore, Hooey, Mahlstedt, Foyle, 2013). The model links together the procedures, equipment, crewstation, and external environment to produce predictions of operator performance in response to Next Generation system designs, like those expected in the National Airspaces NextGen concepts. The task analysis that is contained in the present report comes from the task analysis window in the MIDAS software. These tasks link definitions and states for equipment components, environmental features as well as operational contexts. The current task analysis culminated in 3300 tasks that included over 1000 Subject Matter Expert (SME)-vetted, re-usable procedural sets for three critical phases of flight; the Descent, Approach, and Land procedural sets (see Gore et al., 2011 for a description of the development of the tasks included in the model; Gore, Hooey, Mahlstedt, Foyle, 2013 for a description of the model, and its results; Hooey, Gore, Mahlstedt, Foyle, 2013 for a description of the guidelines that were generated from the models results; Gore, Hooey, Foyle, 2012 for a description of the models implementation and its settings). The rollout, after landing checks, taxi to gate and arrive at gate illustrated in Figure 1 were not used in the approach and divert scenarios exercised. The other networks in Figure 1 set up appropriate context settings for the flight deck.The current report presents the models task decomposition from the tophighest level and decomposes it to finer-grained levels. The first task that is completed by the model is to set all of the initial settings for the scenario runs included in the model (network 75 in Figure 1). This initialization process also resets the CAD graphic files contained with MIDAS, as well as the embedded

  7. Diverse lavas from closely spaced volcanoes drawing from a common parent: Emmons Lake Volcanic Center, Eastern Aleutian Arc

    USGS Publications Warehouse

    Mangan, M.; Miller, T.; Waythomas, C.; Trusdell, F.; Calvert, A.; Layer, P.

    2009-01-01

    Emmons Lake Volcanic Center (ELVC) on the lower Alaskan Peninsula is one of the largest and most diverse volcanic centers in the Aleutian Arc. Since the Middle Pleistocene, eruption of ~ 350 km3 of basalt through rhyolite has produced a 30 km, arc front chain of nested calderas and overlapping stratovolcanoes. ELVC has experienced as many as five major caldera-forming eruptions, the most recent, at ~ 27 ka, produced ~ 50 km3 of rhyolitic ignimbrite and ash fall. These violent silicic events were interspersed with less energetic, but prodigious, outpourings of basalt through dacite. Holocene eruptions are mostly basaltic andesite to andesite and historically recorded activity includes over 40 eruptions within the last 200 yr, all from Pavlof volcano, the most active site in the Aleutian Arc. Geochemical and geophysical observations suggest that although all ELVC eruptions derive from a common clinopyroxene + spinel + plagioclase fractionating high-aluminum basalt parent in the lower crust, magma follows one of two closely spaced, but distinct paths to the surface. Under the eastern end of the chain, magma moves rapidly and cleanly through a relatively young (~ 28 ka), hydraulically connected dike plexus. Steady supply, short magma residence times, and limited interaction with crustal rocks preserve the geochemistry of deep crustal processes. Below the western part of the chain, magma moves haltingly through a long-lived (~ 500 ka) and complex intrusive column in which many generations of basaltic to andesitic melts have mingled and fractionated. Buoyant, silicic melts periodically separate from the lower parts of the column to feed voluminous eruptions of dacite and rhyolite. Mafic lavas record a complicated passage through cumulate zones and hydrous silicic residues as manifested by disequilibrium phenocryst textures, incompatible element enrichments, and decoupling of REEs and HFSEs ratios. Such features are absent in mafic lavas from the younger part of the chain

  8. Flickering Quasar Helps Chandra Measure the Expansion Rate of the universe

    NASA Astrophysics Data System (ADS)

    2000-11-01

    Astronomers using the Chandra X-ray Observatory have identified a flickering, four-way mirage image of a distant quasar. A carefully planned observation of this mirage may be used to determine the expansion rate of the universe as well as to measure the distances to extragalactic objects, arguably two of the most important pursuits in modern astronomy. quasar RX J0911.4+0551 This figure is a composite of the X-ray image of the gravitational lens RX J0911.4+551 (top panel) and the light curves of the lensed images A2 (left panel) and A1 (right panel). Credit: NASA George Chartas, senior research associate at The Pennsylvania State University (Penn State) and Marshall W. Bautz, principal research scientist at the Massachusetts Institute of Technology (MIT) Center for Space Research, present their findings today at the meeting of the High Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. "With a carefully planned follow-up, the Chandra observation of quasar RX J0911.4+0551 may lead to a measurement of the Hubble constant, the expansion rate of the universe, in less than a day," said Chartas. The observation would be done not with mirrors but with mirages--four images of a single quasar that capture the quasar's light at different moments of time due to the speed of light and the location of the mirages. Quasars are extremely distant galaxies with cores that glow with the intensity of 10 trillion Suns, a phenomenon likely powered by a supermassive black hole in the heart of the galaxy. This single "point source" image of a quasar may appear as four or five sources when the quasar--from our vantage point on Earth--is behind a massive intervening deflector, such as a dim galaxy. A mirage of images form when the gravity of the intervening deflector forces light rays to bend and take different paths to reach us. The time it takes for light to reach us from the distant object will depend on which path a ray decides to take. "An

  9. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    SciTech Connect

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  10. Possible evolution of supermassive black holes from FRI quasars

    NASA Astrophysics Data System (ADS)

    Kim, Matthew I.; Christian, Damian J.; Garofalo, David; D'Avanzo, Jaclyn

    2016-08-01

    We explore the question of the rapid buildup of black hole mass in the early universe employing a growing black hole mass-based determination of both jet and disc powers predicted in recent theoretical work on black hole accretion and jet formation. Despite simplified, even artificial assumptions about accretion and mergers, we identify an interesting low probability channel for the growth of one billion solar mass black holes within hundreds of millions of years of the big bang without appealing to super Eddington accretion. This result is made more compelling by the recognition of a connection between this channel and an end product involving active galaxies with FRI radio morphology but weaker jet powers in mildly sub-Eddington accretion regimes. While FRI quasars have already been shown to occupy a small region of the available parameter space for black hole feedback in the paradigm, we further suggest that the observational dearth of FRI quasars is also related to their connection to the most massive black hole growth due to both these FRIs high redshifts and relative weakness. Our results also allow us to construct the AGN (active galactic nucleus) luminosity function at high redshift, that agree with recent studies. In short, we produce a connection between the unexplained paucity of a given family of AGNs and the rapid growth of supermassive black holes, two heretofore seemingly unrelated aspects of the physics of AGNs.

  11. A Ly{alpha} HALO AROUND A QUASAR AT REDSHIFT z = 6.4

    SciTech Connect

    Willott, Chris J.; Chet, Savironi; Hutchings, John B.; Bergeron, Jacqueline

    2011-12-15

    We present long-slit spectroscopic data that reveal extended Ly{alpha} emission around the z = 6.417 radio-quiet quasar CFHQS J2329-0301. The Ly{alpha} emission is extended over 15 kpc and has a luminosity of >8 Multiplication-Sign 10{sup 36} W, comparable to the most luminous Ly{alpha} halos known. The emission has complex kinematics, in part due to foreground absorption, which only partly covers the extended nebula. The velocity ranges from -500 km s{sup -1} to +500 km s{sup -1}, with a peak remarkably close to the systemic velocity identified by broad Mg II emission of the quasar. There is no evidence for infall or outflow of the halo gas. We speculate that the Ly{alpha} emission mechanism is recombination after quasar photoionization of gas sitting within a high-mass dark matter halo. The immense Ly{alpha} luminosity indicates a higher covering factor of cold gas compared with typical radio-quiet quasars at lower redshift.

  12. Using quasar physics to improve the celestial reference frame

    NASA Astrophysics Data System (ADS)

    Shabala, Stanislav; Plank, Lucia; McCallum, Jamie; Boehm, Johannes

    2015-08-01

    Radio-loud quasars making up the International Celestial Reference Frame (ICRF) are dynamic objects with significant structure that changes on timescales of months and years. This is a problem for reference frame stability, as realised through the geodetic and astrometric Very Long Baseline Interferometry (VLBI) technique, which has so far largely treated quasars as point sources in analysis. I will describe the source structure simulator recently implemented in the Vienna VLBI Software (VieVS) package, and quantify the effects of various levels of source structure on the celestial and terrestrial reference frames, and Earth Orientation Parameters linking these two frames. We find that even relatively modest levels of quasar structure can produce systematic effects that affect derived quasar positions significantly in excess of the noise floor of the present ICRF realisation, ICRF2.I will also discuss the observed relationship between astrophysical properties of quasars, their structure and geodetic stability. By simulating quasar structure and evolution in VieVS, we have devised various quasar mitigation strategies. These include: (1) astrophysically-based quasar selection techniques; (2) scheduling sources by taking into account quasar structure; and (3) analyzing geodetic and astrometric VLBI observations using knowledge of quasar structure. I will describe our simulation results, and outline promising quasar structure mitigation strategies.

  13. Using quasars as standard clocks for measuring cosmological redshift.

    PubMed

    Dai, De-Chang; Starkman, Glenn D; Stojkovic, Branislav; Stojkovic, Dejan; Weltman, Amanda

    2012-06-08

    We report hitherto unnoticed patterns in quasar light curves. We characterize segments of the quasar's light curves with the slopes of the straight lines fit through them. These slopes appear to be directly related to the quasars' redshifts. Alternatively, using only global shifts in time and flux, we are able to find significant overlaps between the light curves of different pairs of quasars by fitting the ratio of their redshifts. We are then able to reliably determine the redshift of one quasar from another. This implies that one can use quasars as standard clocks, as we explicitly demonstrate by constructing two independent methods of finding the redshift of a quasar from its light curve.

  14. STRUCTURE FUNCTION ANALYSIS OF LONG-TERM QUASAR VARIABILITY

    SciTech Connect

    de Vries, W; Becker, R; White, R; Loomis, C

    2004-11-15

    In our second paper on long-term quasar variability, we employ a much larger database of quasars than in de Vries, Becker & White. This expanded sample, containing 35,165 quasars from the Sloan Digital Sky Survey Data Release 2, and 6,413 additional quasars in the same area of the sky taken from the 2dF QSO Redshift Survey, allows us to significantly improve on our earlier conclusions. As before, all the historic quasar photometry has been calibrated onto the SDSS scale by using large numbers of calibration stars around each quasar position. We find the following: (1) the outbursts have an asymmetric light-curve profile, with a fast-rise, slow-decline shape; this argues against a scenario in which micro-lensing events along the line-of-sight to the quasars are dominating the long-term variations in quasars; (2) there is no turnover in the Structure Function of the quasars up to time-scales of {approx}40 years, and the increase in variability with increasing time-lags is monotonic and constant; and consequently, (3) there is not a single preferred characteristic outburst time-scale for the quasars, but most likely a continuum of outburst time-scales, (4) the magnitude of the quasar variability is a function of wavelength: variability increases toward the blue part of the spectrum, (5) high-luminosity quasars vary less than low-luminosity quasars, consistent with a scenario in which variations have limited absolute magnitude. Based on this, we conclude that quasar variability is intrinsic to the Active Galactic Nucleus, is caused by chromatic outbursts/flares with a limited luminosity range and varying time-scales, and which have an overall asymmetric light-curve shape. Currently the model that has the most promise of fitting the observations is based on accretion disk instabilities.

  15. Modeling the Dust Properties of z ~ 6 Quasars with ART2—All-Wavelength Radiative Transfer with Adaptive Refinement Tree

    NASA Astrophysics Data System (ADS)

    Li, Yuexing; Hopkins, Philip F.; Hernquist, Lars; Finkbeiner, Douglas P.; Cox, Thomas J.; Springel, Volker; Jiang, Linhua; Fan, Xiaohui; Yoshida, Naoki

    2008-05-01

    The detection of large quantities of dust in z ~ 6 quasars by infrared and radio surveys presents puzzles for the formation and evolution of dust in these early systems. Previously, Li et al. showed that luminous quasars at zgtrsim 6 can form through hierarchical mergers of gas-rich galaxies, and that these systems are expected to evolve from starburst through quasar phases. Here, we calculate the dust properties of simulated quasars and their progenitors using a three-dimensional Monte Carlo radiative transfer code, ART2 (All-wavelength Radiative Transfer with Adaptive Refinement Tree). ART2 incorporates a radiative equilibrium algorithm which treats dust emission self-consistently, an adaptive grid method which can efficiently cover a large dynamic range in both spatial and density scales, a multiphase model of the interstellar medium which accounts for the observed scaling relations of molecular clouds, and a supernova-origin model for dust which can explain the existence of dust in cosmologically young objects. By applying ART2 to the hydrodynamic simulations of Li et al., we reproduce the observed spectral energy distribution (SED) and inferred dust properties of SDSS J1148+5251, the most distant Sloan quasar. We find that the dust and infrared emission are closely associated with the formation and evolution of the quasar host. The system evolves from a cold to a warm ultraluminous infrared galaxy (ULIRG) owing to heating and feedback from stars and the active galactic nucleus (AGN). Furthermore, the AGN activity has significant implications for the interpretation of observation of the hosts. Our results suggest that vigorous star formation in merging progenitors is necessary to reproduce the observed dust properties of z ~ 6 quasars, supporting a merger-driven origin for luminous quasars at high redshifts and the starburst-to-quasar evolutionary hypothesis.

  16. The Host Galaxies of High-Luminosity Obscured Quasars at 2.5

    NASA Astrophysics Data System (ADS)

    Ross, Nicholas; Strauss, M. A.; Greene, J. E.; Zakamska, N. L.; Brandt, W. N.; Alexandroff, R.; Liu, G.; Smith, P. S.; The SDSS-III BOSS Quasar Working Group

    2014-01-01

    Active Galactic Nuclei play a key role in the evolution of galaxies. However, very little is known about the host galaxies of the most luminous quasars at redshift 2.5, the epoch when massive black hole growth peaked. The brightness of the quasar itself, which can easily outshine a galaxy by a large factor, makes it very difficult to study emission from extended gas or stars in the host galaxy. However, we have imaged the extended emission from the host galaxies of a unique sample of six optically extinguished (Type II) luminous quasars with 2.5, with the Hubble Space Telescope (Cycle 20, GO 13014) using ACS/F814W to access the rest-frame near-ultraviolet, and WFC3/F160W for the rest-frame optical longward of 4000A. These objects are selected from the spectroscopic database of the SDSS/Baryon Oscillation Spectroscopic Survey to have strong, narrow emission lines and weak continua. With these images, we have quantified the luminosity, morphology, and dynamical state of the host galaxies, and searched for extended scattered light from the obscured central engine. These observations are the first comprehensive study of both host galaxy light and scattered light in high-luminosity quasars at the epoch of maximum black hole growth, and give insights into the relationship between host galaxies and black holes during this important, and yet largely unexplored period.

  17. Limits on MACHOs from microlensing in the double quasar Q0957+561

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert; Wambsganss, Joachim

    1998-07-01

    The light curves of the two images of the double quasar Q0957+561 as obtained by Kundicet al. (1997) are almost identical, except for an overall time delay and scaling factor. This allows us to put limits on the amount of microlensing that took place during the time interval corresponding to the monitoring observations. We perform numerical simulations in which we model the microlensing behaviour of the (halo of the) lensing galaxy in the system. We test ``MACHO-masses'' ranging from 10(-8) to 10(-1) Msun and quasar sizes from 10(14) to 3x 10(15) cm. Statistically comparing the expected microlensing-induced changes from 100 000 simulated light curves over a period of 160 days with the (lack of) observed fluctuations, we can constrain regions in the parameter space of MACHO mass and quasar size with various degrees of confidence. In particular, a halo consisting of objects at the low end of our mass scale can be ruled out with high confidence for a small quasar size. A halo consisting of objects with 10(-2) or 10(-1) Msun cannot be ruled out yet, but it should produce MACHO induced fluctuations in future observations. We also test halos with only 50% or 25% of the mass in compact objects; constraints here are a bit less stringent.

  18. New quasar surveys with WIRO: Searching for high redshift (z~6) quasar candidates

    NASA Astrophysics Data System (ADS)

    Haze Nunez, Evan; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Harvey, William Bradford; Lee, Daniel; Lyke, Bradley; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    High redshift quasars (z~6) are of great interest to fundamental astronomy due to the information they hold about the early universe. With their low number density in the sky, however, they are elusive objects. Reported here is our search for these high redshift quasars using the Wyoming Infrared Observatory (WIRO) 2.3m telescope. We search for potential candidates that have been detected by surveys such as WISE, which have been mostly redshifted out of the optical. The main emission feature of these quasars (the Lyman-Alpha line at ~1216 Angstroms rest-frame) would be redshifted to the z-band or beyond. This means that the quasars should have very low levels of i-band flux. These objects are known as i-dropouts. By imaging the quasars in the i-band and running photometric analysis on our fields, candidates can be identified or rejected by whether or not they appear in our fields. We also provide an analysis of the colors of our candidate high-redshift quasars.This work is supported by the National Science Foundation under REU grant AST1560461

  19. THE LARGE SKY AREA MULTI-OBJECT FIBER SPECTROSCOPIC TELESCOPE QUASAR SURVEY: QUASAR PROPERTIES FROM THE FIRST DATA RELEASE

    SciTech Connect

    Ai, Y. L.; Wu, Xue-Bing; Yang, Jinyi; Yang, Qian; Wang, Feige; Guo, Rui; Dong, Xiaoyi; Zuo, Wenwen; Shen, S.-Y.; Zhang, Y.-X.; Yuan, H.-L.; Song, Y.-H.; Yang, M.; Wu, H.; Shi, J.-R.; He, B.-L.; Lei, Y.-J.; Li, Y.-B.; Wang, Jianguo; Dong, Xiaobo; and others

    2016-02-15

    We present preliminary results of the quasar survey in the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) first data release (DR1), which includes the pilot survey and the first year of the regular survey. There are 3921 quasars reliably identified, among which 1180 are new quasars discovered in the survey. These quasars are at low to median redshifts, with a highest z of 4.83. We compile emission line measurements around the Hα, Hβ, Mg ii, and C iv regions for the new quasars. The continuum luminosities are inferred from SDSS photometric data with model fitting, as the spectra in DR1 are non-flux-calibrated. We also compile the virial black hole mass estimates, with flags indicating the selection methods, and broad absorption line quasars. The catalog and spectra for these quasars are also available. Of the 3921 quasars, 28% are independently selected with optical–infrared colors, indicating that the method is quite promising for the completeness of the quasar survey. LAMOST DR1 and the ongoing quasar survey will provide valuable data for studies of quasars.

  20. THE RADIO PROPERTIES OF TYPE 2 QUASARS

    SciTech Connect

    Lal, Dharam Vir; Ho, Luis C.

    2010-03-15

    This paper presents the first high-resolution and high-sensitivity study of the radio properties of optically selected type 2 quasars. We used the Very Large Array at 8.4 GHz to observe 59 sources drawn from the Sloan Digital Sky Survey sample of Zakamska et al.. The detection rate of our survey is 59% (35/59), comparable to the detection rate in FIRST at 1.4 GHz. Ongoing star formation, although present, contributes negligible radio emission at the current sensitivity limit. Comparing the radio powers with the [O III] {lambda}5007 luminosities, we find that roughly 15% {+-} 5% of the sample can be considered radio loud. Intriguingly, the vast majority of the detected sources in our sample fall in a region intermediate between those traditionally occupied by radio loud and radio quiet quasars. Moreover, most of these 'radio intermediate' sources tend to have flat or inverted radio spectra, which we speculate may be caused by free-free absorption by ionized gas in the narrow-line region. The incidence of flat-spectrum sources in type 2 quasars appears to be much higher than in type 1 quasars, in apparent violation of the simple orientation-based unified model for active galaxies.

  1. Measuring Distances to Remote Galaxies and Quasars.

    ERIC Educational Resources Information Center

    McCarthy, Patrick J.

    1988-01-01

    Describes the use of spectroscopy and the redshift to measure how far an object is by measuring how fast it is receding from earth. Lists the most distant quasars yet found. Tables include "Redshift vs. Distance" and "Distances to Celestial Objects for Various Cosmologies." (CW)

  2. A SPECTACULAR OUTFLOW IN AN OBSCURED QUASAR

    SciTech Connect

    Greene, Jenny E.; Zakamska, Nadia L.; Smith, Paul S.

    2012-02-10

    SDSS J1356+1026 is a pair of interacting galaxies at redshift z = 0.123 that hosts a luminous obscured quasar in its northern nucleus. Here we present two long-slit Magellan LDSS-3 spectra that reveal a pair of symmetric {approx}10 kpc size outflows emerging from this nucleus, with observed expansion velocities of {approx}250 km s{sup -1} in projection. We present a kinematic model of these outflows and argue that the deprojected physical velocities of expansion are likely {approx}1000 km s{sup -1} and that the kinetic energy of the expanding shells is likely 10{sup 44-45} erg s{sup -1}, with an absolute minimum of >10{sup 42} erg s{sup -1}. Although a radio counterpart is detected at 1.4 GHz, it is faint enough that the quasar is considered to be radio quiet by all standard criteria, and there is no evidence of extended emission due to radio lobes, whether aged or continuously powered by an ongoing jet. We argue that the likely level of star formation is insufficient to power the observed energetic outflow and that SDSS J1356+1026 is a good case for radio-quiet quasar feedback. In further support of this hypothesis, polarimetric observations show that the direction of quasar illumination is coincident with the direction of the outflow.

  3. Quasar H II Regions During Cosmic Reionization

    SciTech Connect

    Alvarez, Marcelo A.; Abel, Tom; /KIPAC, Menlo Park

    2007-03-30

    Cosmic reionization progresses as HII regions form around sources of ionizing radiation. Their average size grows continuously until they percolate and complete reionization. We demonstrate how this typical growth can be calculated around the largest, biased sources of UV emission such as quasars by further developing an analytical model based on the excursion set formalism. This approach allows us to calculate the sizes and growth of the HII regions created by the progenitors of any dark matter halo of given mass and redshift with a minimum of free parameters. Statistical variations in the size of these pre-existing HII regions are an additional source of uncertainty in the determination of very high redshift quasar properties from their observed HII region sizes. We use this model to demonstrate that the transmission gaps seen in very high redshift quasars can be understood from the radiation of only their progenitors and associated clustered small galaxies. The fit requires the epoch of overlap to be at z = 5.8 {+-} 0.1. This interpretation makes the transmission gaps independent of the age of the quasars observed. If this interpretation were correct it would raise the prospects of using radio interferometers currently under construction to detect the epoch of reionization.

  4. Blue Fermi flat spectrum radio quasars

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Tavecchio, F.; Foschini, L.; Sbarrato, T.; Ghirlanda, G.; Maraschi, L.

    2012-09-01

    Many blazars detected by the Fermi satellite, observed spectroscopically in the optical, are line-less, and have been classified as BL Lac objects. Optical-ultraviolet (UV) photometry of nearly 100 of them allowed us to determine the redshift for a handful of objects and redshift upper limits in the great majority. A few of these are candidates to be 'blue quasars', namely flat spectrum radio quasars whose broad emission lines are hidden by an overwhelming synchrotron emission peaking in the UV. This implies that the emitting electrons have high energies. In turn, this requires relatively weak radiative cooling, a condition that can be met if the main radiative dissipation of the jet power occurs outside the broad-line region. We confirm this hypothesis by studying and modelling the spectral energy distributions of the four 'blue quasars' recently discovered. Furthermore, we discuss the distribution of Fermi blazars in the γ-ray spectral index-γ-ray luminosity plane, and argue that 'blue quasars' objects are a minority within the blazar populations.

  5. Polarization and Broad Absorption Lines in Quasars

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1990-12-01

    OI 287 is a unique extragalactic source. It appears to take one property from each class of object. It is either some kind of missing link, or a new type of activity. Because of the high optical polarization, OI 287 has been classified with the blazars. However, every other blazar is variable in optical flux, polarization, and polarization angle., while OI 287 is constant at V=17, P=8%, and theta=145 degrees. Also, every other blazar has a radio source dominated by an intense flat-spectrum core, while OI 287 has an upper limit of 2% of the total 20cm flux in the core. The only group of quasars which ever shows even moderate (2-5%) constant optical polarization is the broad absorption line (BAL) objects, e.g. PHL 5200 and H1413+113. Among the BAL quasars, PHL 5200 and H1413+113 have exceptionally smooth deep, attached absorption lines, and also the highest polarization. We want to know whether OI 287 is a BAL quasar. It would be the first definite radio loud example. If it is a BAL quasar then the high polarization is really related to (and perhaps the key to) the BAL phenomenon, and we can use the techniques of spectropolarimetry to help unlock the BAL geometry. The UV spectral shape would also provide help determining the cause of polarization.

  6. Ecology of micro-organisms in a small closed system - Potential benefits and problems for Space Station

    NASA Technical Reports Server (NTRS)

    Rodgers, E. B.; Seale, D. B.; Boraas, M. E.; Sommer, C. V.

    1989-01-01

    The probable sources and implications of microbial contamination on the proposed Space Station are discussed. Because of the limited availability of material, facilities and time on the Space Station, we are exploring the feasibility of replacing traditional incubation methods for assessing microbial contamination with rapid, automated methods. Some possibilities include: ATP measurement, microscopy and telecommunications, and molecular techniques such as DNA probes or monoclonal antibodies. Some of the important ecological factors that could alter microbes in space include microgravity, exposure to radiation, and antibiotic resistance.

  7. CLUSTERING OF OBSCURED AND UNOBSCURED QUASARS IN THE BOOeTES FIELD: PLACING RAPIDLY GROWING BLACK HOLES IN THE COSMIC WEB

    SciTech Connect

    Hickox, Ryan C.; Alexander, David M.; Goulding, Andrew D.; Myers, Adam D.; Brodwin, Mark; Forman, William R.; Jones, Christine; Murray, Stephen S.; Eisenstein, Daniel; Caldwell, Nelson; Brown, Michael J. I.; Cool, Richard J.; Kochanek, Christopher S.; Dey, Arjun; Jannuzi, Buell T.; Assef, Roberto J.; Eisenhardt, Peter R.; Gorjian, Varoujan; Stern, Daniel; Le Floc'h, Emeric

    2011-04-20

    We present the first measurement of the spatial clustering of mid-infrared-selected obscured and unobscured quasars, using a sample in the redshift range 0.7 < z < 1.8 selected from the 9 deg{sup 2} Booetes multiwavelength survey. Recently, the Spitzer Space Telescope and X-ray observations have revealed large populations of obscured quasars that have been inferred from models of the X-ray background and supermassive black hole evolution. To date, little is known about obscured quasar clustering, which allows us to measure the masses of their host dark matter halos and explore their role in the cosmic evolution of black holes and galaxies. In this study, we use a sample of 806 mid-infrared-selected quasars and {approx}250,000 galaxies to calculate the projected quasar-galaxy cross-correlation function w{sub p} (R). The observed clustering yields characteristic dark matter halo masses of log(M{sub halo} [h {sup -1} M{sub sun}]) = 12.7{sup +0.4}{sub -0.6} and 13.3{sup +0.3}{sub -0.4} for unobscured quasars (QSO-1s) and obscured quasars (Obs-QSOs), respectively. The results for QSO-1s are in excellent agreement with previous measurements for optically selected quasars, while we conclude that the Obs-QSOs are at least as strongly clustered as the QSO-1s. We test for the effects of photometric redshift errors on the optically faint Obs-QSOs, and find that our method yields a robust lower limit on the clustering; photo-z errors may cause us to underestimate the clustering amplitude of the Obs-QSOs by at most {approx}20%. We compare our results to previous studies, and speculate on physical implications of stronger clustering for obscured quasars.

  8. Clustering of Obscured and Unobscured Quasars in the Boötes Field: Placing Rapidly Growing Black Holes in the Cosmic Web

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Myers, Adam D.; Brodwin, Mark; Alexander, David M.; Forman, William R.; Jones, Christine; Murray, Stephen S.; Brown, Michael J. I.; Cool, Richard J.; Kochanek, Christopher S.; Dey, Arjun; Jannuzi, Buell T.; Eisenstein, Daniel; Assef, Roberto J.; Eisenhardt, Peter R.; Gorjian, Varoujan; Stern, Daniel; Le Floc'h, Emeric; Caldwell, Nelson; Goulding, Andrew D.; Mullaney, James R.

    2011-04-01

    We present the first measurement of the spatial clustering of mid-infrared-selected obscured and unobscured quasars, using a sample in the redshift range 0.7 < z < 1.8 selected from the 9 deg2 Boötes multiwavelength survey. Recently, the Spitzer Space Telescope and X-ray observations have revealed large populations of obscured quasars that have been inferred from models of the X-ray background and supermassive black hole evolution. To date, little is known about obscured quasar clustering, which allows us to measure the masses of their host dark matter halos and explore their role in the cosmic evolution of black holes and galaxies. In this study, we use a sample of 806 mid-infrared-selected quasars and ≈250,000 galaxies to calculate the projected quasar-galaxy cross-correlation function wp (R). The observed clustering yields characteristic dark matter halo masses of log(M halo [h -1 M sun]) = 12.7+0.4 -0.6 and 13.3+0.3 -0.4 for unobscured quasars (QSO-1s) and obscured quasars (Obs-QSOs), respectively. The results for QSO-1s are in excellent agreement with previous measurements for optically selected quasars, while we conclude that the Obs-QSOs are at least as strongly clustered as the QSO-1s. We test for the effects of photometric redshift errors on the optically faint Obs-QSOs, and find that our method yields a robust lower limit on the clustering; photo-z errors may cause us to underestimate the clustering amplitude of the Obs-QSOs by at most ~20%. We compare our results to previous studies, and speculate on physical implications of stronger clustering for obscured quasars.

  9. The use of cortical screw anchorage for closing a space resulting from the loss of a lower molar--a case report.

    PubMed

    Janiszewska-Olszowska, Joanna; Socha, Alina; Bińczak, Paulina

    2013-01-01

    Orthodontic microscrews are temporary implants providing skeletal anchorage, which may be used for en-masse incisor retraction, as well as for the protraction of posterior segments in order to close spaces without retracting anterior teeth. A patient, aged 16 was reported in whom a miniscrew of 9.5 mm length and 2 mm dimension was inserted distal to the lower left second premolar 2 months after extracting the first molar with periapical bone lesion after failed endodontic treatment. The lower third molar was mesialised using direct anchorage and a power arm to minimize mesial tipping. The space closed within 20 months, followed by a spontaneous eruption of the adjacent third molar. This treatment method constitutes a good alternative to third molar autotransplantation, allowing the avoidance of the risk of surgical procedure.

  10. Remarks of Ruth Bates Harris, Deputy Assistant Administrator, National Aeronautics and Space Administration at summer institute closing activity

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Applications of experience and knowledge gained from aeronautical and space research and exploration are discussed briefly. Spinoffs are presented which improve the quality of life by contributing to advances in health, transportation, foods, communications, energy, safety, and manufacturing.

  11. The radio-optical correlation in steep-spectrum quasars

    NASA Astrophysics Data System (ADS)

    Serjeant, Stephen; Rawlings, Steve; Lacy, Mark; Maddox, Stephen J.; Baker, Joanne C.; Clements, Dave; Lilje, Per B.

    1998-03-01

    Using complete samples of steep-spectrum quasars, we present evidence for a correlation between radio and optical luminosity which is not caused by selection effects, nor caused by an orientation dependence (such as relativistic beaming), nor a by-product of cosmic evolution. We argue that this rules out models of jet formation in which there are no parameters in common with the production of the optical continuum. This is arguably the most direct evidence to date for a close link between accretion onto a black hole and the fuelling of relativistic jets. The correlation also provides a natural explanation for the presence of aligned optical/radio structures in only the most radio-luminous high-redshift galaxies.

  12. Ionized Absorbers in Active Galactic Nuclei and Very Steap Soft X-Ray Quasars

    NASA Technical Reports Server (NTRS)

    Fiore, Fabrizio; White, Nicholas (Technical Monitor)

    2000-01-01

    Steep soft X-ray (0.1-2 keV) quasars share several unusual properties: narrow Balmer lines, strong Fe II emission, large and fast X-ray variability, and a rather steep 2-10 keV spectrum. These intriguing objects have been suggested to be the analogues of Galactic black hole candidates in the high, soft state. We present here results from ASCA observations for two of these quasars: NAB 0205 + 024 and PG 1244 + 026. Both objects show similar variations (factor of approximately 2 in 10 ks), despite a factor of approximately 10 difference in the 0.5-10 keV luminosity (7.3 x 10(exp 43) erg/s for PG 1244 + 026 and 6.4 x 10(exp 44) erg/s for NAB 0205 + 024, assuming isotropic emission, H(sub 0) = 50.0 and q(sub 0) = 0.0). The X-ray continuum of the two quasars flattens by 0.5-1 going from the 0.1-2 keV band towards higher energies, strengthening recent results on another half-dozen steep soft X-ray active galactic nuclei. PG 1244 + 026 shows a significant feature in the '1-keV' region, which can be described either as a broad emission line centered at 0.95 keV (quasar frame) or as edge or line absorption at 1.17 (1.22) keV. The line emission could be a result of reflection from a highly ionized accretion disc, in line with the view that steep soft X-ray quasars are emitting close to the Eddington luminosity. Photoelectric edge absorption or resonant line absorption could be produced by gas outflowing at a large velocity (0.3-0.6 c).

  13. X-ray spectral evolution of high redshift quasars

    NASA Technical Reports Server (NTRS)

    Bechtold, Jill; Elvis, Martin; Fiore, Fabrizio; Kuhn, Olga; Cutri, Roc M.; Mcdowell, Jonathan C.; Rieke, Marcia; Siemiginowska, Aneta; Wilkes, Belinda J.

    1994-01-01

    At z approx. equals 3, the x-ray spectra of radio-loud and radio-quiet quasars are different. High-redshift radio-quiet quasars either have large absorbing columns, N(sub H), and steeper power law spectral indices, alpha(sub epsilon), than low redshift quasars, or no absorption and similar alpha(sub epsilon)'s. In contrast, the radio-loud quasars at high redshift have substantial absorption and similar alpha(sub epsilon)'s to low redshift quasars. Implications for the interpretation of the evolution of the luminosity function of quasars are discussed. If the absorption arises outside the central engine for both radio-loud and radio-quiet quasars, then radio-quiet quasars differ from the radio-loud quasars in that their emitted power law spectrum has evolved with redshift. We argue that this favors models where quasars are numerous and short-lived, rather than rare and long-lived.

  14. ACCRETION RATES OF RED QUASARS FROM THE HYDROGEN Pβ LINE

    SciTech Connect

    Kim, Dohyeong; Im, Myungshin; Glikman, Eilat; Woo, Jong-Hak; Urrutia, Tanya E-mail: mim@astro.snu.ac.kr

    2015-10-10

    Red quasars are thought to be an intermediate population between merger-driven star-forming galaxies in dust-enshrouded phase and normal quasars. If so, they are expected to have high accretion ratios, but their intrinsic dust extinction hampers reliable determination of Eddington ratios. Here, we compare the accretion rates of 16 red quasars at z ∼ 0.7 to those of normal type 1 quasars at the same redshift range. The red quasars are selected by their red colors in optical through near-infrared (NIR) and radio detection. The accretion rates of the red quasars are derived from the Pβ line in NIR spectra, which is obtained by the SpeX on the Infrared Telescope Facility in order to avoid the effects of dust extinction. We find that the measured Eddington ratios (L{sub bol}/L{sub Edd} ≃ 0.69) of red quasars are significantly higher than those of normal type 1 quasars, which is consistent with a scenario in which red quasars are the intermediate population and the black holes of red quasars grow very rapidly during such a stage.

  15. On the Accretion Rates and Radiative Efficiencies of the Highest-redshift Quasars

    NASA Astrophysics Data System (ADS)

    Trakhtenbrot, Benny; Volonteri, Marta; Natarajan, Priyamvada

    2017-02-01

    We estimate the accretion rates onto the supermassive black holes that power 20 of the highest-redshift quasars, at z≳ 5.8, including the quasar with the highest redshift known to date—ULAS J1120 at z = 7.09. The analysis is based on the observed (rest-frame) optical luminosities and reliable “virial” estimates of the BH masses of the quasars, and utilizes scaling relations derived from thin accretion disk theory. The mass accretion rates through the postulated disks cover a wide range, {\\dot{M}}{disk}≃ 4{--}190 {M}ȯ {{yr}}-1, with most of the objects (80%) having {\\dot{M}}{disk}≃ 10{--}65 {M}ȯ {{yr}}-1, confirming the Eddington-limited nature of the accretion flows. By combining our estimates of {\\dot{M}}{disk} with conservative, lower limits on the bolometric luminosities of the quasars, we investigate which alternative values of η best account for all the available data. We find that the vast majority of quasars (∼85%) can be explained with radiative efficiencies in the range η ≃ 0.03{--}0.3, with a median value close to the commonly assumed η = 0.1. Within this range, we obtain conservative estimates of η ≳ 0.14 for ULAS J1120 and SDSS J0100 (at z = 6.3), and of ≳ 0.19 for SDSS J1148 (at z=6.41; assuming their BH masses are accurate). The implied accretion timescales are generally in the range {t}{acc}\\equiv {M}{BH}/{\\dot{M}}{BH}≃ 0.1{--}1 {Gyr}, suggesting that most quasars could have had ∼ 1{--}10 mass e-foldings since BH seed formation. Our analysis therefore demonstrates that the available luminosities and masses for the highest-redshift quasars can be explained self-consistently within the thin, radiatively efficient accretion disk paradigm. Episodes of radiatively inefficient, “super-critical” accretion may have occurred at significantly earlier epochs (i.e., z≳ 10).

  16. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  17. Photometric redshift techniques of quasars in big-data era

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxia

    2015-08-01

    With the availability of the huge amounts of data from ground- and space-based large multiband photometric surveys, photometric redshifts provide an estimate for the distance of an astronomical object and have become a crucial tool for extragalactic astronomy and cosmology. Various phtometric redshift approaches are in bloom. Their performance and efficiency not only depend on completeness and quality of data, but also on the volume of data. The increase of data volume lead to different choice of techniques. We present various data mining methods used for photometric redshift estimation of quasars and compare their advantages and disadvantages. In the big-data era, the methods fit for large-scale data are in great requirement.

  18. A remarkable jet in the quasar 0800 + 608

    NASA Astrophysics Data System (ADS)

    Shone, D. L.; Browne, I. W. A.

    1986-09-01

    VLA observations of the quasar 0800 + 608 (redshift, z = 0.689) show that it has a remarkable one-sided jet, and an apparently uncollimated structure on the opposite side of the radio/optical core. Such structure is difficult to reconcile with a model in which two symmetric oppositely directed jets are present. The jet itself displays a number of evenly spaced emission-knots, a pseudosinusoidal wiggle and a large-scale bend. This well-defined structure can be compared with analytical models and numerical simulations of jets. If the knots and wiggle can be attributed to MHD Kelvin-Helmholtz pinching and helical modes respectively, then the jet's flow speed is likely to be hypersonic, and its density is greater than that of its surroundings. The latter is consistent with the jet's lack of any well-defined lobe or cocoon.

  19. Herschel-ATLAS: the link between accretion luminosity and star formation in quasar host galaxies

    NASA Astrophysics Data System (ADS)

    Bonfield, D. G.; Jarvis, M. J.; Hardcastle, M. J.; Cooray, A.; Hatziminaoglou, E.; Ivison, R. J.; Page, M. J.; Stevens, J. A.; de Zotti, G.; Auld, R.; Baes, M.; Buttiglione, S.; Cava, A.; Dariush, A.; Dunlop, J. S.; Dunne, L.; Dye, S.; Eales, S.; Fritz, J.; Hopwood, R.; Ibar, E.; Maddox, S. J.; Michałowski, M. J.; Pascale, E.; Pohlen, M.; Rigby, E. E.; Rodighiero, G.; Serjeant, S.; Smith, D. J. B.; Temi, P.; van der Werf, P.

    2011-09-01

    We use the science demonstration field data of the Herschel Astrophysical Terahertz Large Area Survey to study how star formation, traced by the far-infrared Herschel data, is related to both the accretion luminosity and redshift of quasars selected from the Sloan Digital Sky Survey (SDSS) and the 2dF-SDSS luminous red galaxy (LRG) and Quasar Spectroscopic Catalogue survey. By developing a maximum-likelihood estimator to investigate the presence of correlations between the far-infrared and optical luminosities, we find evidence that the star formation in quasar hosts is correlated with both redshift and quasar accretion luminosity. Assuming a relationship of the form LIR∝LθQSO(1 +z)ζ, we find θ= 0.22 ± 0.08 and ζ= 1.6 ± 0.4, although there is substantial additional uncertainty in ζ of the order of ±1, due to uncertainties in the host galaxy dust temperature. We find evidence for a large intrinsic dispersion in the redshift dependence, but no evidence for intrinsic dispersion in the correlation between LQSO and LIR, suggesting that the latter may be due to a direct physical connection between star formation and black hole accretion. This is consistent with the idea that both the quasar activity and star formation are dependent on the same reservoir of cold gas, so that they are both affected by the influx of cold gas during mergers or heating of gas via feedback processes. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  20. The first ultraviolet quasar-stacked spectrum at z ≃ 2.4 from WFC3

    NASA Astrophysics Data System (ADS)

    Lusso, E.; Worseck, G.; Hennawi, J. F.; Prochaska, J. X.; Vignali, C.; Stern, J.; O'Meara, J. M.

    2015-06-01

    The ionizing continuum from active galactic nuclei is fundamental for interpreting their broad emission lines and understanding their impact on the surrounding gas. Furthermore, it provides hints on how matter accretes on to supermassive black holes. Using Hubble Space Telescope's Wide Field Camera 3, we have constructed the first stacked ultraviolet (rest-frame wavelengths 600-2500 Å) spectrum of 53 luminous quasars at z ≃ 2.4, with a state-of-the-art correction for the intervening Lyman forest and Lyman continuum absorption. The continuum slope (f_ν ∝ ν ^{α _ν }) of the full sample shows a break at ˜912 Å with spectral index αν = -0.61 ± 0.01 at λ > 912 Å and a softening at shorter wavelengths (αν = -1.70 ± 0.61 at λ ≤ 912 Å). Our analysis proves that a proper intergalactic medium absorption correction is required to establish the intrinsic continuum emission of quasars. We interpret our average ultraviolet spectrum in the context of photoionization, accretion disc models, and quasar contribution to the ultraviolet background. We find that observed broad line ratios are consistent with those predicted assuming an ionizing slope of αion = -2.0, similar to the observed ionizing spectrum in the same wavelength range. The continuum break and softening are consistent with accretion disc plus X-ray corona models when black hole spin is taken into account. Our spectral energy distribution yields a 30 per cent increase to previous estimates of the specific quasar emissivity, such that quasars may contribute significantly to the total specific Lyman limit emissivity estimated from the Lyα forest at z < 3.2.

  1. Using observations of distant quasars to constrain quantum gravity

    NASA Astrophysics Data System (ADS)

    Perlman, E. S.; Ng, Y. J.; Floyd, D. J. E.; Christiansen, W. A.

    2011-11-01

    Aims: The small-scale nature of spacetime can be tested with observations of distant quasars. We comment on a recent paper by Tamburini et al. (2011, A&A, 533, A71) which claims that Hubble Space Telescope (HST) observations of the most distant quasars place severe constraints on models of foamy spacetime. Methods: If space is foamy on the Planck scale, photons emitted from distant objects will accumulate uncertainties in distance and propagation directions thus affecting the expected angular size of a compact object as a function of redshift. We discuss the geometry of foamy spacetime, and the appropriate distance measure for calculating the expected angular broadening. We also address the mechanics of carrying out such a test. We draw upon our previously published work on this subject, which carried out similar tests as Tamburini et al. and also went considerably beyond their work in several respects. Results: When calculating the path taken by photons as they travel from a distant source to Earth, one must use the comoving distance rather than the luminosity distance. This then also becomes the appropriate distance to use when calculating the angular broadening expected in a distant source. The use of the wrong distance measure causes Tamburini et al. to overstate the constraints that can be placed on models of spacetime foam. In addition, we consider the impact of different ways of parametrizing and measuring the effects of spacetime foam. Given the variation of the shape of the point-spread function on the chip, as well as observation-specific factors, it is important to select carefully - and document - the comparison stars used as well as the methods used to compute the Strehl ratio.

  2. Subnanosecond GPS-based clock synchronization and precision deep-space tracking

    NASA Technical Reports Server (NTRS)

    Dunn, C. E.; Lichten, S. M.; Jefferson, D. C.; Border, J. S.

    1992-01-01

    Interferometric spacecraft tracking is accomplished by the Deep Space Network (DSN) by comparing the arrival time of electromagnetic spacecraft signals at ground antennas separated by baselines on the order of 8000 km. Clock synchronization errors within and between DSN stations directly impact the attainable tracking accuracy, with a 0.3-nsec error in clock synchronization resulting in an 11-nrad angular position error. This level of synchronization is currently achieved by observing a quasar which is angularly close to the spacecraft just after the spacecraft observations. By determining the differential arrival times of the random quasar signal at the stations, clock offsets and propagation delays within the atmosphere and within the DSN stations are calibrated. Recent developments in time transfer techniques may allow medium accuracy (50-100 nrad) spacecraft tracking without near-simultaneous quasar-based calibrations. Solutions are presented for a worldwide network of Global Positioning System (GPS) receivers in which the formal errors for DSN clock offset parameters are less than 0.5 nsec. Comparisons of clock rate offsets derived from GPS measurements and from very long baseline interferometry (VLBI), as well as the examination of clock closure, suggest that these formal errors are a realistic measure of GPS-based clock offset precision and accuracy. Incorporating GPS-based clock synchronization measurements into a spacecraft differential ranging system would allow tracking without near-simultaneous quasar observations. The impact on individual spacecraft navigation-error sources due to elimination of quasar-based calibrations is presented. System implementation, including calibration of station electronic delays, is discussed.

  3. Variations in illumination, closed wall transparency and/or extramaze space influence both baseline anxiety and response to diazepam in the rat elevated plus-maze.

    PubMed

    Violle, Nicolas; Balandras, Frédérique; Le Roux, Yves; Desor, Didier; Schroeder, Henri

    2009-10-12

    Numerous methodological-related variables have been demonstrated to influence the baseline anxiety level of rodents exposed to the elevated plus-maze (EPM), raising questions about the sensitivity of this test for the detection of the effects of anxiolytic drugs. Thus, the present study was designed (1) to assess the combined effects of illumination (40-lx red or white light), closed wall type (walls made of translucent or opaque material) and extramaze space size (small or spacious experimental room) on rat behaviour, and (2) to investigate the effects of such parameters on the relevance of the maze for detecting the effects of diazepam orally administrated at the anxiolytic dose of 3 mg/kg. Results indicate that illumination and closed wall type are two main independent parameters that are able to modify the open arm avoidance. Moreover, the closed wall type interacts with the extramaze space size since the reduction of the open arm exploration induced by opaque closed walls is two-fold stronger in the spacious experimental room than in the small one. Finally, the diazepam anxiolytic activity is significantly detected in our laboratory in specific EPM conditions (maze with opaque walls, use of a red light, maze located in a spacious experimental room). In conclusion, the present study demonstrates that an inappropriate baseline anxiety level due to the methodological use of the EPM can dramatically reduce the sensitivity of the maze for the detection of benzodiazepine-related compounds. This study also provides new insights into the perception of the EPM open space in rats.

  4. Shielding of longitudinal magnetic fields with thin, closely, spaced concentric cylindrical shells with applications to atomic clocks

    NASA Technical Reports Server (NTRS)

    Wolf, S. A.; Gubser, D. U.; Cox, J. E.

    1978-01-01

    A general formula is given for the longitudinal shielding effectiveness of N closed concentric cylinders. The use of these equations is demonstrated by application to the design of magnetic shields for hydrogen maser atomic clocks. Examples of design tradeoffs such as size, weight, and material thickness are discussed. Experimental results on three sets of shields fabricated by three manufacturers are presented. Two of the sets were designed employing the techniques described. Agreement between the experimental results and the design calculations is then demonstrated.

  5. New quasar survey with WIRO: The light curves of quasars over ~15 year timescales

    NASA Astrophysics Data System (ADS)

    Griffith, Emily; Bassett, Neil; Deam, Sophie; Dixon, Don; Harvey, William; Lee, Daniel; Lyke, Bradley; Haze Nunez, Evan; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    Quasars, a type of active galactic nuclei (AGN), are known to vary in brightness on 10 day to 7 year timescales. While it has been proposed that this variability is caused by instability in the accretion disk, Poisson processes, or microlensing, the exact cause remains mysterious. Understanding the physical mechanisms that drive quasar variability will require imaging of quasars over a wide range of timescales. In particular, the observations required to constrain longer timescales can be difficult to conduct. This summer ~1000 quasars in Stripe 82 were observed in ugriz wavelength bands using WIRO, the University of Wyoming’s 2.3-meter telescope. Using these images, earlier data from the Sloan Digital Sky Survey's observations of Stripe 82, as well as various data reduction methods, the quasars’ magnitude can be studied on our extended 3 day to 15 year timescale. Here, we present the light curves of ~1000 quasars in ugriz bands as observed over the last 15 years. Thiswork is supported by the National Science Foundation under REU grant AST 1560461.

  6. Experimental investigation on the performance of closely spaced multi-carrier PDM-QPSK with digital coherent detection.

    PubMed

    Chandrasekhar, S; Liu, Xiang

    2009-11-23

    We experimentally investigate the performance of a spectrally efficient multi-carrier channel consisting of two or more optical carriers spaced around the baud rate, with each carrier modulated with polarization division multiplexed (PDM) quadrature phase shift keyed (QPSK) format. We first study the performance of a 100-Gb/s 2-carrier PDM-QPSK channel with each carrier modulated at 12.5 Gbaud as a function of various design parameters such as the time alignment between the modulated carriers, the frequency separation between the carriers, the oversampling factor at the receiver, and the bandwidth of the digital pre-filter used for carrier separation. While the measurements confirm the previously reported observations, they also reveal some interesting additional features. The coherent crosstalk between the modulated carriers is found to be minimized when these carriers are symbol aligned. Spacing the carriers at the baud rate, corresponding to the orthogonal frequency-division multiplexing (OFDM) condition, leads to a local maximum in performance only for some specific cases where large oversampling (>2 x ) is applied. It is found that 4 x oversampling, together with a constant modulus algorithm (CMA) based digital equalizer having multiple quarter-symbol (T/4) spaced taps, gives much better overall performance than 2 x oversampling with a CMA-based equalizer having T/2 spaced taps. In addition, using a T/4-delay-and-add filter (DAF) as a pre-filter for assist carrier separation is found to give better performance than the commonly used T/2-DAF. In addition, it is possible to set the carrier spacing to be as small as 80% of the baud rate while incurring negligible penalty at BER approximately 10(-3). 3-carrier and 5-carrier PDM-QPSK channels at 12.5-Gbaud with frequency-locked carriers spaced at 12.5 GHz and 4 x oversampling are also studied, and shown to perform reasonably well with small relative penalties. Finally, increasing the baud rate of the 2-carrier PDM

  7. QUality Assessment of System Architectures and their Requirements (QUASAR)

    DTIC Science & Technology

    2010-05-18

    2010 Carnegie Mellon University QUality Assessment of System Architectures and their Requirements ( QUASAR ) DoD and NDIA System-of-Systems...Architectures and their Requirements ( QUASAR ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Prescribed by ANSI Std Z39-18 2 QUASAR Version 3.1, 1 Hour Overview Donald Firesmith, 18 May 2010 © 2010 Carnegie Mellon University Topics History

  8. The host galaxies and black hole-to-galaxy mass ratios of luminous quasars at z≃ 4

    NASA Astrophysics Data System (ADS)

    Targett, Thomas A.; Dunlop, James S.; McLure, Ross J.

    2012-03-01

    Deep K-band imaging of the most luminous z≃ 4 quasars currently offers the earliest possible view of the mass-dominant stellar populations of the host galaxies which house the first supermassive black holes in the Universe. This is because, until the advent of the James Webb Space Telescope, it is not possible to obtain the necessary deep, sub-arcsec resolution imaging at rest-frame wavelengths λrest > 4000 Å at any higher redshift. We here present and analyse the deepest, high-quality KS-band images ever obtained of luminous quasars at z≃ 4, in an attempt to determine the basic properties of their host galaxies less than 1 Gyr after the first recorded appearance of black holes with Mbh > 109 M⊙. To maximize the robustness of our results, we have carefully selected two Sloan Digital Sky Survey quasars at z≃ 4. With absolute magnitudes Mi < -28, these quasars are representative of the most luminous quasars known at this epoch, but they also, crucially, lie within 40 arcsec of comparably bright foreground stars (required for accurate point spread function definition), and have redshifts which ensure line-free KS-band imaging. The data were obtained in excellent seeing conditions (<0.4 arcsec) at the European Southern Observatory on the Very Large Telescope with integration times of ≃5.5 h per source. Via carefully controlled separation of host galaxy and nuclear light, we estimate the luminosities and stellar masses of the host galaxies, and set constraints on their half-light radii. The apparent KS-band magnitudes of the quasar host galaxies are consistent with those of luminous radio galaxies at comparable redshifts, suggesting that these quasar hosts are also among the most massive galaxies in existence at this epoch. However, the quasar hosts are a factor ˜5 smaller (= 1.8 kpc) than the host galaxies of luminous low-redshift quasars. We estimate the stellar masses of the z≃ 4 host galaxies to lie in the range 2-10 × 1011 M⊙, and use the C

  9. Joint-space adaptive control of a 6 DOF end-effector with closed-kinematic chain mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1989-01-01

    The development is presented for a joint-space adaptive scheme that controls the joint position of a six-degree-of-freedom (DOF) robot end-effector performing fine and precise motion within a very limited workspace. The end-effector was built to study autonomous assembly of NASA hardware in space. The design of the adaptive controller is based on the concept of model reference adaptive control (MRAC) and Lyapunov direct method. In the development, it is assumed that the end-effector performs slowly varying motion. Computer simulation is performed to investigate the performance of the developed control scheme on position control of the end-effector. Simulation results manifest that the adaptive control scheme provides excellent tracking of several test paths.

  10. Closed-cell foams produced from sputter-deposited aluminum. [experiments on earth and in space environment

    NASA Technical Reports Server (NTRS)

    Patten, J. W.; Greenwell, E. N.

    1977-01-01

    Sputter deposited aluminum containing argon was melted to produce foam, both in the earth's gravitational field and in a zero-gravity space environment. Experiments leading to trapping of up to 270 ppm argon sputtering gas in pure aluminum during high-rate dc triode sputter deposition are discussed. Conduct of the melting experiments and design of the furnace used are described. Metallography; an analysis of bubble size, distribution, and morphology; and a preliminary description of the kinetics are also presented.

  11. Microlensing of quasar ultraviolet iron emission

    SciTech Connect

    Guerras, E.; Mediavilla, E.; Kochanek, C. S.; Muñoz, J. A.; Falco, E.; Motta, V.; Rojas, K.

    2013-12-01

    We measure the differential microlensing of the UV Fe II and Fe III emission line blends between 14 quasar image pairs in 13 gravitational lenses. We find that the UV iron emission is strongly microlensed in four cases with amplitudes comparable to that of the continuum. Statistically modeling the magnifications, we infer a typical size of r{sub s}∼4√(M/M{sub ⊙}) light-days for the Fe line-emitting regions, which is comparable to the size of the region generating the UV continuum (∼3-7 light-days). This may indicate that a significant part of the UV Fe II and Fe III emission originates in the quasar accretion disk.

  12. The evolution of the quasar continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1992-01-01

    We now have in hand a large data base of Roentgen Satellite (ROSAT), optical, and IR complementary data. We are in the process of obtaining a large amount of the International Ultraviolet Explorer (IUE) data for the same quasar sample. For our complementary sample at high redshifts, where the UV was redshifted into the optical, we have just had approved large amounts of observing time to cover the quasar continuum in the near-IR using the new Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) array spectrographs. Ten micron, optical, and VLA radio, data also have approved time. An ISO US key program was approved to extend this work into the far-IR, and the launch of ASTRO-D (early in 1993) promises to extend it to higher energy X-rays.

  13. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    PubMed

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  14. A catalogue of quasars and active nuclei (8th edition).

    NASA Astrophysics Data System (ADS)

    Véron-Cetty, M.-P.; Véron, P.

    1998-03-01

    Because of the fast increase in the number of known quasars, the authors have prepared an updated version of their catalogue of quasars and active nuclei (Véron-Cetty & Véron, 1984, 1985, 1987, 1989, 1991, 1993, 1996) which now contains 11358 quasars, 357 BL Lac objects and 3334 active galaxies (of which 1111 are Seyfert 1), compared with 8609 quasars, 220 BL Lac objects and 2833 Seyfert and related galaxies in the seventh edition. Like the seventh edition, it includes positions and redshift as well as photometry (U,B,V) and 6 and 11 cm flux densities when available.

  15. Magnified Views of Relativistic Outflows in Gravitationally Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Chartas, G.; Cappi, M.; Hamann, F.; Eracleous, M.; Strickland, S.; Vignali, C.; Dadina, M.; Giustini, M.; Saez, C.; Misawa, T.

    2016-06-01

    We presents results from X-ray observations of relativistic outflows in lensed quasars. The lensing magnification of the observed objects provides high signal-to-noise X-ray spectra of quasars showing the absorption signatures of relativistic outflows at redshifts near a crucial phase of black hole growth and the peak of cosmic AGN activity. We summarise the properties of the wide-angle relativistic outflow of the z = 1.51 NAL quasar HS 0810 detected in recent deep XMM-Newton and Chandra observations of this object. We also present preliminary results from a mini-survey of gravitationally lensed mini-BAL quasars performed with XMM-Newton.

  16. The dayside open/closed field line boundary as seen from space- and ground-based instrumentation

    NASA Astrophysics Data System (ADS)

    Johnsen, M. G.; Lorentzen, D. A.

    2012-03-01

    In this paper we validate the method of Johnsen et al. (2012) for obtaining the cusp open/closed field line boundary (OCB) by the means of a single meridian scanning photometer (MSP). Three cases of conjugate measurements between the Longyearbyen MSP and the NOAA-16 satellite are presented. The satellite OCB as obtained by the energetic particle detectors carried onboard the NOAA-16 satellite is well co-located with the OCB as obtained by the ground-based MSP and well within the calculated uncertainties. We conclude that the method presented by Johnsen et al. (2012) for deriving the cusp OCB using a single MSP produces conscientious results.

  17. Indications and counterindications for applying different versions of closed ecosystems for space and terrestrial problems of life support.

    PubMed

    Mezhevikin, V V; Okhonin, V A; Bartsev, S I; Gitelson, J I

    1994-11-01

    Different versions of manned closed ecosystems (CES) based on photosynthesis of unicellular and/or higher plants and chemosynthesis or bacteria are considered. Different versions of CES have been compared for applying them on Earth, Moon, Mars and Venus orbital stations, for Mars missions and planetary stations as well as to provide high-quality life in extreme conditions on the Earth. In microgravity [correction of mycrogravity] we recommend CES with unicellular organisms based on photosynthesis or chemosynthesis (depending of the availability of the light or electric energy). For the planetary stations with Moon gravity and higher CES with higher plants are recommended. Improvement of indoor air quality by CES biotechnology is considered.

  18. Mining for Dust in Type 1 Quasars

    NASA Astrophysics Data System (ADS)

    Krawczyk, Coleman M.; Richards, Gordon T.; Gallagher, S. C.; Leighly, Karen M.; Hewett, Paul C.; Ross, Nicholas P.; Hall, P. B.

    2015-06-01

    We explore the extinction/reddening of ˜35,000 uniformly selected quasars with 0\\lt z≤slant 5.3 in order to better understand their intrinsic optical/ultraviolet (UV) spectral energy distributions. Using rest-frame optical-UV photometry taken from the Sloan Digital Sky Survey’s (SDSS) 7th data release, cross-matched to WISE in the mid-infrared, 2MASS and UKIDSS in the near-infrared, and GALEX in the UV, we isolate outliers in the color distribution and find them well described by an SMC-like reddening law. A hierarchical Bayesian model with a Markov Chain Monte Carlo sampling method was used to find distributions of power law indices and E(B-V) consistent with both the broad absorption line (BAL) and non-BAL samples. We find that, of the ugriz color-selected type 1 quasars in SDSS, 2.5% (13%) of the non-BAL (BAL) sample are consistent with E(B-V)\\gt 0.1 and 0.1% (1.3%) with E(B-V)\\gt 0.2. Simulations show both populations of quasars are intrinsically bluer than the mean composite, with a mean spectral index ({{α }λ }) of -1.79 (-1.83). The emission and absorption-line properties of both samples reveal that quasars with intrinsically red continua have narrower Balmer lines and stronger high-ionization emission lines, the latter indicating a harder continuum in the extreme-UV and the former pointing to differences in black hole mass and/or orientation.

  19. Quasars in the Life of Astronomers

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Mauro; Marziani, Paola; Sulentic, Jack W.; Collin, Suzy; Setti, Giancarlo; Gaskell, Martin; Wampler, Joe; Elvis, Martin; Pronik, Iraida; Pronik, Vladimir; Sergeev, Sergey; Volvach, Aleksander; Krolik, Julian; Netzer, Hagai; Cavaliere, Alfonso; Padovani, Paolo; Arp, Halton; Narlikar, Jayant

    We are approaching the 50th anniversary of the discovery of quasars. Those old enough to have been cognizant of astronomy in 1962-1963 can remember the sense of excitement connected with this finding. There was talk of a major new constituent of the universe. The excitement of the discovery was palpable even to one of us (the most senior of the editors) who was then a high school teenager.

  20. The WISSH Quasars Project: Probing the AGN-Galaxy Coevolution In the Most Luminous Quasars

    NASA Astrophysics Data System (ADS)

    Bischetti, Manuela; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Duras, F.; Martocchia, S.; Zappacosta, L.; Brusa, M.; Vignali, C.; Marconi, A.; Cresci, G.; WISSH Collaboration

    2016-10-01

    The WISE/SDSS selected hyper-luminous (WISSH) quasars survey is an extensive multiband observing program (from millimeter wavelengths to hard X rays) to investigate the role of nuclear activity in SMBH-galaxy self-regulated growth via extended outflows. Our ongoing project is designed to accurately constrain both AGN and host galaxy ISM properties in a large sample of 90 broad-line quasars at the brightest end of the AGN luminosity function (L_bol > 1e14 L_sun) and at the peak of their number density (z 2 - 4)I will review the most relevant results obtained to date with emphasis on the discovery of extremely powerful (up to 4% of L_bol) ionized outflows, the relation between AGN properties (obscuration, luminosity and Eddington ratio) and large-scale winds, and the SED of these hyper-luminous quasars.

  1. X-ray emission from red quasars

    NASA Technical Reports Server (NTRS)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Kinney, A. L.

    1985-01-01

    A dozen red quasars were observed with the Einstein Observatory in order to determine their X-ray properties. The observations show that for all these sources, the infrared-optical continuum is so steep that when extrapolated to higher frequencies, it passes orders of magnitude below the measured X-ray flux. The X-ray emission is better correlated with the radio than with the infrared flux, suggesting a connection between the two. By applying the synchrotron-self-Compton model to the data, it is found that the infrared-optical region has a size of 0.01 pc or more and a magnetic field more than 0.1 G, values considerably different than are found in the radio region. Unlike other quasars, the ionizing continuum is dominated by the X-ray emission. The peculiar line ratios seen in these objects can be understood with a photoionization model, provided that the photon to gas density ratio (ionization parameter) is an order of magnitude less than in typical quasars.

  2. Spectral Energy Distributions of Red Quasars

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat

    We propose to study the spectral energy distributions (SEDs) of a sample of dust-reddened quasars, which are transitional objects, triggered by and residing in recently-merged host galaxies, and are therefore ideal laboratories for addressing fundamental questions on the co-evolution of black holes and their host galaxies. We will obtain flux measurements at 89 and 154 microns - the expected peak of dust emission - with the HAWK+ instrument for a sample of these red quasars. We will combine these measurements with already-existing photometric data from SDSS, 2MASS and WISE to construct SEDs from the near-UV to the far-infrared. We will fit these SEDs to models of AGN and host galaxy emission as well as dust obscuration and re-radiation in the infrared using self-consistent Bayesian SED fitting codes to disentangle their underlying physical processes. Our current SEDs extend only to the WISE 22 micron band, resulting in model fits that underestimate the AGN contribution and overestimate the host galaxy's stellar mass and star formation rate. The proposed data will better constrain these properties, and when applied to the full sample, will produce a clearer picture of the complex processes of quasar/galaxy co-evolution. Furthermore, the SEDs for the targeted AGN can be leveraged to provide much-improved bolometric corrections for larger samples of AGN where no infrared data exist. This program utilizes the unique capabilities of SOFIA, the only facility able to observe at these long wavelengths.

  3. NuSTAR Observations of Reddened Quasars

    NASA Astrophysics Data System (ADS)

    LaMassa, Stephanie M.; Ricarte, Angelo; Glikman, Eilat; Urry, C. Megan; Stern, Daniel; Yaqoob, Tahir; Lansbury, George; Civano, Francesca M.; Boggs, Steven E.; Brandt, W. Niel; Chen, Chien-Ting J.; Christensen, Finn; Craig, William W.; Hailey, Charles James; Harrison, Fiona; Hickox, Ryan C.; Koss, Michael; Ricci, Claudio; Treister, Ezequiel; Zhang, William

    2016-04-01

    Reddened quasars selected from the FIRST and 2MASS surveys appear to be in a transitional link in the merger-induced black hole growth/galaxy evolution model. We present the NuSTAR and XMM-Newton/Chandra observations of 2 FIRST-2MASS red quasars, F2M 0830+3759 and F2M 1227+3214. The combination of broad-band X-ray coverage and physically-motivated spectral models allow us to characterize the X-ray obscuration in these systems. We find that much heavier obscuration is present globally than along the line-of-sight for F2M 0830+3759, and that F2M 1227+3214 may also have much higher amounts of global versus line-of-sight obscuration. These results are consistent with the paradigm that red quasars are evacuating their heavy cocoon of dust and gas, unveiling the central nucleus while higher column densities of gas are present globally, playing a role in reprocessing the intrinsic emission.

  4. Thermal phases of interstellar and quasar gas

    NASA Technical Reports Server (NTRS)

    Lepp, S.; Mccray, R.; Shull, J. M.; Woods, D. T.; Kallman, T.

    1985-01-01

    Interstellar gas may be in a variety of thermal phases, depending on how it is heated and ionized; here a unified picture of the equation of state of interstellar and quasar gas is presented for a variety of such mechanisms over a broad range of temperatures, densities, and column densities of absorbing matter. It is found that for select ranges of gas pressure, photoionizing flux, and heating, three thermally stable phases are allowed: coronal gas (T above 100,000 K); warm gas (T about 10,000 K); and cold gas (T less than 100 K). With attenuation of ultraviolet and X-ray radiation, the cold phase may undergo a transition to molecules. In quasar broad-line clouds, this transition occurs at column density N(H) = about 10 to the 23rd/sq cm and could result in warm molecular cores and observable emission from H2 and OH. The underlying atomic physics behind each of these phase transitions and their relevance to interstellar matter and quasars are discussed.

  5. O I and Ca II Observations in Intermediate Redshift Quasars

    NASA Astrophysics Data System (ADS)

    Martínez-Aldama, Mary Loli; Dultzin, Deborah; Marziani, Paola; Sulentic, Jack W.; Bressan, Alessandro; Chen, Yang; Stirpe, Giovanna M.

    2015-03-01

    We present an unprecedented spectroscopic survey of the Ca II triplet + O i for a sample of 14 luminous (-26≳ {{M}V}≳ -29), intermediate redshift (0.85 ≲ z ≲ 1.65) quasars. The Infrared Spectrometer and Array Camera spectrometer on the ESO Very Large Telescope allowed us to cover the Ca II near-infrared spectral region redshifted into the H and K windows. We describe in detail our data analysis which enabled us to detect Ca II triplet emission in all 14 sources (with the possible exception of HE0048-2804) and to retrieve accurate line widths and fluxes of the triplet and O i λ8446. The new measurements show trends consistent with previous lower-z observations, indicating that Ca II and optical Fe II emission are probably closely related. The ratio between the Ca II triplet and the optical Fe II blend at λ4570 Å is apparently systematically larger in our intermediate redshift sample relative to a low-z control sample. Even if this result needs a larger sample for adequate interpretation, higher Ca II/optical Fe II should be associated with recent episodes of star formation in intermediate redshift quasars and, at least in part, explain the apparent correlation of Ca II triplet equivalent width with z and L. The Ca II triplet measures yield significant constraints on the emitting region density and ionization parameter, implying Ca II triplet emission from log {{n}H} ≳ 11 [cm-3] and ionization parameter log U≲ -1.5. The line width and intensity ratios suggest properties consistent with emission from the outer part of a high-density broad line region (a line emitting accretion disk?). Based on observations collected at the European Organization for Astronomical Research in the southern hemisphere, Chile, under programme ID 085.B-0158(A).

  6. Extragalactic Extinction Laws and Quasar Structure from Color differences Between Images of Lensed Quasars

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio

    2011-11-01

    The action of the mean gravitational field of an intervening galaxy sufficiently aligned with a distant quasar can form several images of this object (multiple imaged quasar). Random fluctuations of the gravitational field induced by the highly inhomogeneous granulation of stars or in dark matter clumps of the lens galaxy mass distribution can subdivide the images in scales of microarcsecs (microlensing by stars) or miliarcsecs (mililensing by dark matter clumps). Anomalies induced by microlensing in the flux brightness of the images can be very strong for small sources or be averaged out by sufficiently large sources. Thus, microlensing magnification of the flux of a radially stratified source can be wavelength dependent (chromaticity). On the other hand, in their path through the lens galaxy the photons of the quasar images are also affected by the patchily distributed interstellar medium (dust extinction). Thus, the wavelength dependence of extinction can be obtained from the flux ratios between two images. In this work we review the use of quasar spectra to disentangle microlensing and dust extinction (based in the comparison between the continuum and emission line flux ratios for different images of the quasar) discussing the impact of the intrinsic source variability in this procedure. We will also review some results derived using this technique like the low fraction of mass in MACHOS in the dark halos of lens galaxies, the unexpected large sizes of the accretion disks present in the central region of lensed quasars or the derivation of extinction curves in the extragalactic domain that reveals a variability in dust properties similar to the one found in the Local Group of galaxies.

  7. Biodiversity and Ecology of Amphibians and Reptiles of the Kennedy Space Center: 1998 Close-Out Report to NASA

    NASA Technical Reports Server (NTRS)

    Sigel, Richard A.

    1999-01-01

    Since 1992, there have been researchers have been studying the population ecology and conservation biology of the amphibians and reptiles of the Kennedy Space Center (KSC) This research is an outgrowth of my Master's work in the late 1970's under Lew Ehrhart at UCF. The primary emphasis of our studies are (1) examination of long-term changes in the abundance of amphibians and reptile populations, (2) occurrence and effects of Upper Respiratory Tract Disease (URTD) in gopher tortoises (Gopherus polyphemus), and (3) ecological studies of selected species.

  8. Systems efficiency and specific mass estimates for direct and indirect solar-pumped closed-cycle high-energy lasers in space

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1978-01-01

    Based on expected advances in technology, the maximum system efficiency and minimum specific mass have been calculated for closed-cycle CO and CO2 electric-discharge lasers (EDL's) and a direct solar-pumped laser in space. The efficiency calculations take into account losses from excitation gas heating, ducting frictional and turning losses, and the compressor efficiency. The mass calculations include the power source, radiator, compressor, fluids, ducting, laser channel, optics, and heat exchanger for all of the systems; and in addition the power conditioner for the EDL's and a focusing mirror for the solar-pumped laser. The results show the major component masses in each system, show which is the lightest system, and provide the necessary criteria for solar-pumped lasers to be lighter than the EDL's. Finally, the masses are compared with results from other studies for a closed-cycle CO2 gasdynamic laser (GDL) and the proposed microwave satellite solar power station (SSPS).

  9. Black Holes and Starbursts in the Cosmic Web: Clustering and Evolution of Quasars and Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Myers, A. D.; Bootes Survey Collaboration

    2011-01-01

    The growth of massive galaxies and their central supermassive black holes is linked to the their surrounding dark matter halos, whose masses can be inferred from measurements of spatial clustering. I will present a a novel technique for deriving real-space clustering using full photometric-redshift probability distributions, and discuss a recent study using this technique to measure clustering of dust-obscured (Type 2) and unobscured (Type 1) luminous quasars. I will present a similar measurement of the clustering of submillimeter galaxies, and will place the results in context of current models for the co-evolution of quasars and rapid starbursts. Finally I will briefly point toward future observational opportunities with Herschel and the proposed Wide Field X-ray Telescope mission. RCH is funded by an STFC Postdoctoral Fellowship.

  10. THE UNIFICATION OF POWERFUL QUASARS AND RADIO GALAXIES AND THEIR RELATION TO OTHER MASSIVE GALAXIES

    SciTech Connect

    Podigachoski, Pece; Barthel, Peter; Haas, Martin; Leipski, Christian; Wilkes, Belinda

    2015-06-10

    The unification model for powerful radio galaxies (RGs) and radio-loud quasars postulates that these objects are intrinsically the same but viewed along different angles. Herschel Space Observatory data permit the assessment of that model in the far-infrared spectral window. We analyze photometry from Spitzer and Herschel for the distant 3CR hosts, and find that RGs and quasars have different mid-infrared, but indistinguishable far-infrared colors. Both these properties, the former being orientation dependent and the latter orientation invariant, are in line with expectations from the unification model. Adding powerful radio-quiet active galaxies and typical massive star-forming (SF) galaxies to the analysis, we demonstrate that infrared colors not only provide an orientation indicator, but can also distinguish active from SF galaxies.

  11. Close-up of test panels covered with advanced spray-on foam insulation material for the Space Shuttl

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Test panels covered with an advanced foam insulation material for the Space Shuttle's giant external fuel tank were test flown aboard an F-15B research aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. Six panels were mounted on the left side of a heavily instrumented Flight Text Fixture mounted underneath the F-15B's fuselage. Insulation on this panel was finely machined over a horizontal rib structure to simulate in-line airflow past the tank; other panels had the ribs mounted vertically or had the insulation left in a rough as-sprayed surface. The tests were part of an effort by NASA's Marshall Space Flight Center to determine why small particles of the new insulation flaked off the tank on recent Shuttle missions. The tests with Dryden's F-15B were designed to replicate the pressure environment the Shuttle encounters during the first minute after launch. No noticeable erosion of the insulation material was noted after the flight experiment at Dryden.

  12. THE z = 5 QUASAR LUMINOSITY FUNCTION FROM SDSS STRIPE 82

    SciTech Connect

    McGreer, Ian D.; Fan Xiaohui; Jiang Linhua; Richards, Gordon T.; Strauss, Michael A.; Ross, Nicholas P.; White, Martin; Shen Yue; Schneider, Donald P.; Brandt, W. Niel; Myers, Adam D.; DeGraf, Colin; Glikman, Eilat; Ge Jian; Streblyanska, Alina

    2013-05-10

    We present a measurement of the Type I quasar luminosity function at z = 5 using a large sample of spectroscopically confirmed quasars selected from optical imaging data. We measure the bright end (M{sub 1450} < -26) with Sloan Digital Sky Survey (SDSS) data covering {approx}6000 deg{sup 2}, then extend to lower luminosities (M{sub 1450} < -24) with newly discovered, faint z {approx} 5 quasars selected from 235 deg{sup 2} of deep, coadded imaging in the SDSS Stripe 82 region (the celestial equator in the Southern Galactic Cap). The faint sample includes 14 quasars with spectra obtained as ancillary science targets in the SDSS-III Baryon Oscillation Spectroscopic Survey, and 59 quasars observed at the MMT and Magellan telescopes. We construct a well-defined sample of 4.7 < z < 5.1 quasars that is highly complete, with 73 spectroscopic identifications out of 92 candidates. Our color selection method is also highly efficient: of the 73 spectra obtained, 71 are high-redshift quasars. These observations reach below the break in the luminosity function (M{sub 1450}{sup *}{approx}-27). The bright-end slope is steep ({beta} {approx}< -4), with a constraint of {beta} < -3.1 at 95% confidence. The break luminosity appears to evolve strongly at high redshift, providing an explanation for the flattening of the bright-end slope reported previously. We find a factor of {approx}2 greater decrease in the number density of luminous quasars (M{sub 1450} < -26) from z = 5 to z = 6 than from z = 4 to z = 5, suggesting a more rapid decline in quasar activity at high redshift than found in previous surveys. Our model for the quasar luminosity function predicts that quasars generate {approx}30% of the ionizing photons required to keep hydrogen in the universe ionized at z = 5.

  13. Helium Reionization Simulations. I. Modeling Quasars as Radiation Sources

    NASA Astrophysics Data System (ADS)

    La Plante, Paul; Trac, Hy

    2016-09-01

    We introduce a new project to understand helium reionization using fully coupled N-body, hydrodynamics, and radiative transfer simulations. This project aims to capture correctly the thermal history of the intergalactic medium as a result of reionization and make predictions about the Lyα forest and baryon temperature-density relation. The dominant sources of radiation for this transition are quasars, so modeling the source population accurately is very important for making reliable predictions. In this first paper, we present a new method for populating dark matter halos with quasars. Our set of quasar models includes two different light curves, a lightbulb (simple on/off) and symmetric exponential model, and luminosity-dependent quasar lifetimes. Our method self-consistently reproduces an input quasar luminosity function given a halo catalog from an N-body simulation, and propagates quasars through the merger history of halo hosts. After calibrating quasar clustering using measurements from the Baryon Oscillation Spectroscopic Survey, we find that the characteristic mass of quasar hosts is {M}h˜ 2.5× {10}12 {h}-1 {M}⊙ for the lightbulb model, and {M}h˜ 2.3× {10}12 {h}-1 {M}⊙ for the exponential model. In the latter model, the peak quasar luminosity for a given halo mass is larger than that in the former, typically by a factor of 1.5-2. The effective lifetime for quasars in the lightbulb model is 59 Myr, and in the exponential case, the effective time constant is about 15 Myr. We include semi-analytic calculations of helium reionization, and discuss how to include these quasars as sources of ionizing radiation for full hydrodynamics with radiative transfer simulations in order to study helium reionization.

  14. Seeking the epoch of maximum luminosity for dusty quasars

    SciTech Connect

    Vardanyan, Valeri; Weedman, Daniel; Sargsyan, Lusine E-mail: dweedman@isc.astro.cornell.edu

    2014-08-01

    Infrared luminosities νL{sub ν}(7.8 μm) arising from dust reradiation are determined for Sloan Digital Sky Survey (SDSS) quasars with 1.4 quasar Gpc{sup –3} having νL{sub ν}(7.8 μm) > 10{sup 46.6} erg s{sup –1} for all 2 quasars first reached their maximum luminosity has not yet been identified at any redshift below 5. The most ultraviolet luminous quasars, defined by rest frame νL{sub ν}(0.25 μm), have the largest values of the ratio νL{sub ν}(0.25 μm)/νL{sub ν}(7.8 μm) with a maximum ratio at z = 2.9. From these results, we conclude that the quasars most luminous in the ultraviolet have the smallest dust content and appear luminous primarily because of lessened extinction. Observed ultraviolet/infrared luminosity ratios are used to define 'obscured' quasars as those having >5 mag of ultraviolet extinction. We present a new summary of obscured quasars discovered with the Spitzer Infrared Spectrograph and determine the infrared luminosity function of these obscured quasars at z ∼ 2.1. This is compared with infrared luminosity functions of optically discovered, unobscured quasars in the SDSS and in the AGN and Galaxy Evolution Survey. The comparison indicates comparable numbers of obscured and unobscured quasars at z ∼ 2.1 with a possible excess of obscured quasars at fainter luminosities.

  15. VLBA Observations Put New Twist on Quasar Jet Model

    NASA Astrophysics Data System (ADS)

    2005-06-01

    Greenstein, who was studying another quasar, in a hallway. In a matter of another few minutes, they found that the second one also was quite distant. 3C 273 is about two billion light-years from Earth in the constellation Virgo, and is visible in moderate-sized amateur telescopes. The VLBA is a system of ten radio-telescope antennas, each with a dish 25 meters (82 feet) in diameter and weighing 240 tons. From Mauna Kea on the Big Island of Hawaii to St. Croix in the U.S. Virgin Islands, the VLBA spans more than 5,000 miles, providing astronomers with the sharpest vision of any telescope on Earth or in space. Dedicated in 1993, the VLBA has an ability to see fine detail equivalent to being able to stand in New York and read a newspaper in Los Angeles. "The extremely sharp radio 'vision' of the VLBA was absolutely necessary to do this work," Zavala explained. "We used the highest radio frequencies at which we could detect 3C273's jet to maximize the detail we could get, and this effort paid off with great science," he added. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  16. 3D Position and Velocity Vector Computations of Objects Jettisoned from the International Space Station Using Close-Range Photogrammetry Approach

    NASA Technical Reports Server (NTRS)

    Papanyan, Valeri; Oshle, Edward; Adamo, Daniel

    2008-01-01

    Measurement of the jettisoned object departure trajectory and velocity vector in the International Space Station (ISS) reference frame is vitally important for prompt evaluation of the object s imminent orbit. We report on the first successful application of photogrammetric analysis of the ISS imagery for the prompt computation of the jettisoned object s position and velocity vectors. As post-EVA analyses examples, we present the Floating Potential Probe (FPP) and the Russian "Orlan" Space Suit jettisons, as well as the near-real-time (provided in several hours after the separation) computations of the Video Stanchion Support Assembly Flight Support Assembly (VSSA-FSA) and Early Ammonia Servicer (EAS) jettisons during the US astronauts space-walk. Standard close-range photogrammetry analysis was used during this EVA to analyze two on-board camera image sequences down-linked from the ISS. In this approach the ISS camera orientations were computed from known coordinates of several reference points on the ISS hardware. Then the position of the jettisoned object for each time-frame was computed from its image in each frame of the video-clips. In another, "quick-look" approach used in near-real time, orientation of the cameras was computed from their position (from the ISS CAD model) and operational data (pan and tilt) then location of the jettisoned object was calculated only for several frames of the two synchronized movies. Keywords: Photogrammetry, International Space Station, jettisons, image analysis.

  17. ALMA Examines a Distant Quasar Host

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-04-01

    The dust continuum (top) and the [CII] emission (bottom) maps for the region around J1120+0641. [Adapted from Venemans et al. 2017]A team of scientists has used the Atacama Large Millimeter/submillimeter Array (ALMA) to explore the host galaxy of the most distant quasar known. Their observations may help us to build a picture of how the first supermassive black holes in the universe formed and evolved.Faraway Monsters and Their GalaxiesWe know that quasars the incredibly luminous and active centers of some distant galaxies are powered by accreting, supermassive black holes. These monstrous powerhouses have been detected out to redshifts of z 7, when the universe was younger than a billion years old.Though weve observed over a hundred quasars at high redshift, we still dont understand how these early supermassive black holes formed, or whether the black holes and the galaxies that host them co-evolved. In order to answer questions like these, however, we first need to gather information about the properties and behavior of various supermassive black holes and their host galaxies.A team of scientists led by Bram Venemans (Max-Planck Institute for Astronomy, Germany) recently used the unprecedented sensitivity and angular resolution of ALMA as well as the Very Large Array and the IRAM Plateau de Bure Interferometer to examine the most distant quasar currently known, J1120+0641, located at a redshift of z = 7.1.A High-Resolution LookThe teams observations of the dust and gas emission from the quasars host galaxy revealed a number of intriguing things:The red and blue sides of the [CII] emission line are shown here as contours, demonstrating that theres no ordered rotational motion of the gas on kpc scales. [Adapted from Venemans et al. 2017]The majority of the galaxys emission is very compact. Around 80% of the observed flux came from a region of only 11.5 kpc in diameter.Despite the fact that the 2.4-billion-solar-mass black hole at the galaxys center is accreting at

  18. Statistical properties of multi-epoch spectral variability of SDSS stripe 82 quasars

    SciTech Connect

    Kokubo, Mitsuru; Morokuma, Tomoki; Minezaki, Takeo; Doi, Mamoru; Kawaguchi, Toshihiro; Sameshima, Hiroaki; Koshida, Shintaro

    2014-03-01

    We investigate the UV-optical (longward of Lyα 1216 Å) spectral variability of nearly 9000 quasars (0 < z < 4) using multi-epoch photometric data within the SDSS Stripe 82 region. The regression slope in the flux-flux space of a quasar light curve directly measures the color of the flux difference spectrum, then the spectral shape of the flux difference spectra can be derived by taking a careful look at the redshift dependence of the regression slopes. First, we confirm that the observed quasar spectrum becomes bluer when the quasar becomes brighter. We infer the spectral index of the composite difference spectrum as α{sub ν}{sup dif}∼+1/3 (in the form of f{sub ν}∝ν{sup α{sub ν}}), which is significantly bluer than that of the composite spectrum α{sub ν}{sup com}∼−0.5. We also show that the continuum variability cannot be explained by accretion disk models with varying mass accretion rates. Second, we examine the effects of broad emission line variability on the color-redshift space. The variability of the 'Small Blue Bump' is extensively discussed. We show that the low-ionization lines of Mg II and Fe II are less variable compared to Balmer emission lines and high-ionization lines, and the Balmer continuum is the dominant variable source around ∼3000 Å. These results are compared with previous studies, and the physical mechanisms of the variability of the continuum and emission lines are discussed.

  19. The extreme ultraviolet spectra of low-redshift radio-loud quasars

    NASA Astrophysics Data System (ADS)

    Punsly, Brian; Reynolds, Cormac; Marziani, Paola; O'Dea, Christopher P.

    2016-07-01

    This paper reports on the extreme ultraviolet (EUV) spectrum of three low-redshift (z ˜ 0.6) radio-loud quasars, 3C 95, 3C 57 and PKS 0405-123. The spectra were obtained with the Cosmic Origins Spectrograph of the Hubble Space Telescope. The bolometric thermal emission, Lbol, associated with the accretion flow is a large fraction of the Eddington limit for all of these sources. We estimate the long-term time-averaged jet power, overline{Q}, for the three sources. overline{Q}/L_{bol}, is shown to lie along the correlation of overline{Q}/L_{bol}, and αEUV found in previous studies of the EUV continuum of intermediate and high-redshift quasars, where the EUV continuum flux density between 1100 and 700 Å is defined by F_{ν } ˜ ν ^{-α _{EUV}}. The high Eddington ratios of the three quasars extend the analysis into a wider parameter space. Selecting quasars with high Eddington ratios has accentuated the statistical significance of the partial correlation analysis of the data. Namely, the correlation of overline{Q}/L_{bol} and αEUV is fundamental, and the correlation of overline{Q} and αEUV is spurious at a very high statistical significance level (99.8 per cent). This supports the regulating role of ram pressure of the accretion flow in magnetically arrested accretion models of jet production. In the process of this study, we use multifrequency and multiresolution Very Large Array radio observations to determine that one of the bipolar jets in 3C 57 is likely frustrated by galactic gas that keeps the jet from propagating outside the host galaxy.

  20. Host Galaxies of Luminous Type 2 Quasars at z ~ 0.5

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Zakamska, Nadia L.; Greene, Jenny E.; Strauss, Michael A.; Krolik, Julian H.; Heckman, Timothy M.

    2009-09-01

    We present deep Gemini GMOS optical spectroscopy of nine luminous quasars at redshifts z ~ 0.5, drawn from the Sloan Digital Sky Survey type 2 quasar sample. Our targets were selected to have high intrinsic luminosities (MV < -26 mag) as indicated by the [O III] λ5007 Å emission-line luminosity (L [O III]). Our sample has a median black hole mass of ~108.8 M sun inferred assuming the local M BH-σ* relation and a median Eddington ratio of ~0.7, using stellar velocity dispersions σ* measured from the G band. We estimate the contamination of the stellar continuum from scattered quasar light based on the strength of broad Hβ, and provide an empirical calibration of the contamination as a function of L [O III]; the scattered-light fraction is ~30% of L 5100 for objects with L [O III] = 109.5 L sun. Population synthesis indicates that young poststarburst populations (<0.1 Gyr) are prevalent in luminous type 2 quasars, in addition to a relatively old population (>1 Gyr) which dominates the stellar mass. Broad emission complexes around He II λ4686 Å with luminosities up to 108.3 L sun are unambiguously detected in three out of the nine targets, indicative of Wolf-Rayet (WR) populations. Population synthesis shows that ~5 Myr poststarburst populations contribute substantially to the luminosities (>50% of L 5100) of all three objects with WR detections. We find two objects with double cores and four with close companions. Our results may suggest that luminous type 2 quasars trace an early stage of galaxy interaction, perhaps responsible for both the quasar and the starburst activity. Based, in part, on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada

  1. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    NASA Technical Reports Server (NTRS)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  2. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics

    SciTech Connect

    Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; Greenaway, Ann L.; Aloni, Shaul; Boettcher, Shannon W.

    2014-09-01

    We report the use of a simple close-spaced vapor transport technique for the growth of high-quality epitaxial GaAs films using potentially inexpensive GaAs powders as precursors. The free carrier type and density (1016 to 1019 cm–3) of the films were adjusted by addition of Te or Zn powder to the GaAs source powder. We show using photoelectrochemical and electron beam-induced current analyses that the minority carrier diffusion lengths of the n- and p-GaAs films reached ~3 μm and ~8 μm, respectively. Hall mobilities approach those achieved for GaAs grown by metal–organic chemical vapor deposition, 1000–4200 cm2 V–1 s–1 for n-GaAs and 50–240 cm V–1 s–1 for p-GaAs depending on doping level. We conclude that the electronic quality of GaAs grown by close-spaced vapor transport is similar to that of GaAs made using conventional techniques and is thus sufficient for high-performance photovoltaic applications.

  3. Doping and electronic properties of GaAs grown by close-spaced vapor transport from powder sources for scalable III–V photovoltaics

    DOE PAGES

    Ritenour, Andrew J.; Boucher, Jason W.; DeLancey, Robert; ...

    2014-09-01

    We report the use of a simple close-spaced vapor transport technique for the growth of high-quality epitaxial GaAs films using potentially inexpensive GaAs powders as precursors. The free carrier type and density (1016 to 1019 cm–3) of the films were adjusted by addition of Te or Zn powder to the GaAs source powder. We show using photoelectrochemical and electron beam-induced current analyses that the minority carrier diffusion lengths of the n- and p-GaAs films reached ~3 μm and ~8 μm, respectively. Hall mobilities approach those achieved for GaAs grown by metal–organic chemical vapor deposition, 1000–4200 cm2 V–1 s–1 for n-GaAsmore » and 50–240 cm V–1 s–1 for p-GaAs depending on doping level. We conclude that the electronic quality of GaAs grown by close-spaced vapor transport is similar to that of GaAs made using conventional techniques and is thus sufficient for high-performance photovoltaic applications.« less

  4. Structural-acoustic optimum design of shell structures in open/closed space based on a free-form optimization method

    NASA Astrophysics Data System (ADS)

    Shimoda, Masatoshi; Shimoide, Kensuke; Shi, Jin-Xing

    2016-03-01

    Noise reduction by structural geometry optimization has attracted much attention among designers. In the present work, we propose a free-form optimization method for the structural-acoustic design optimization of shell structures to reduce the noise of a targeted frequency or frequency range in an open or closed space. The objective of the design optimization is to minimize the average structural vibration-induced sound pressure at the evaluation points in the acoustic field under a volume constraint. For the shape design optimization, we carry out structural-acoustic coupling analysis and adjoint analysis to calculate the shape gradient functions. Then, we use the shape gradient functions in velocity analysis to update the shape of shell structures. We repeat this process until convergence is confirmed to obtain the optimum shape of the shell structures in a structural-acoustic coupling system. The numerical results for the considered examples showed that the proposed design optimization process can significantly reduce the noise in both open and closed spaces.

  5. Rapid, Single-Molecule Assays in Nano/Micro-Fluidic Chips with Arrays of Closely Spaced Parallel Channels Fabricated by Femtosecond Laser Machining

    PubMed Central

    Canfield, Brian K.; King, Jason K.; Robinson, William N.; Hofmeister, William H.; Davis, Lloyd M.

    2014-01-01

    Cost-effective pharmaceutical drug discovery depends on increasing assay throughput while reducing reagent needs. To this end, we are developing an ultrasensitive, fluorescence-based platform that incorporates a nano/micro-fluidic chip with an array of closely spaced channels for parallelized optical readout of single-molecule assays. Here we describe the use of direct femtosecond laser machining to fabricate several hundred closely spaced channels on the surfaces of fused silica substrates. The channels are sealed by bonding to a microscope cover slip spin-coated with a thin film of poly(dimethylsiloxane). Single-molecule detection experiments are conducted using a custom-built, wide-field microscope. The array of channels is epi-illuminated by a line-generating red diode laser, resulting in a line focus just a few microns thick across a 500 micron field of view. A dilute aqueous solution of fluorescently labeled biomolecules is loaded into the device and fluorescence is detected with an electron-multiplying CCD camera, allowing acquisition rates up to 7 kHz for each microchannel. Matched digital filtering based on experimental parameters is used to perform an initial, rapid assessment of detected fluorescence. More detailed analysis is obtained through fluorescence correlation spectroscopy. Simulated fluorescence data is shown to agree well with experimental values. PMID:25140634

  6. Luminous, High-z, Type-2 Quasars are Still Missing

    NASA Astrophysics Data System (ADS)

    Richards, Gordon T.; Hennawi, Joseph F.; Rivera, Angelica

    2017-01-01

    A simple unified model suggests that there should be roughly equal numbers of type-1 (unobscured) and type 2 (obscured) quasars. However, we argue that the expected population of luminous, high-z, type-2 quasars are still missing. While large numbers of type-2 AGNs have now been identified (both via spectroscopy and through color-based arguments in the optical, IR, and X-ray), the vast majority of these are low-luminosity objects at z<1, whereas only handfuls of bonafide type-2 quasars are confirmed at redshifts z~2 with bolometric luminosities that are comparable to the typical luminosity of SDSS type-1 quasars. Although some analyses find the density of high-z, type-2 candidates to be much higher than the type-1 population (at similar bolometric luminosity), our revisiting of the problem through an archival spectroscopic search reveals that the confirmed high-z, type-2 population is only a fraction of the high-z, type-1 quasar population to a depth of WISE W4<8. As most interpretations of the "unified model" predict similar numbers of type-1 and type-2 quasars, this conspicuous lack of luminous type-2 quasars at high-redshift constitutes a major unsolved problem. To uncover these missing type-2 quasars, we explore a candidate selection algorithm that utilizes the sky area of AllWISE, the depth/resolution of large-area Spitzer-IRAC surveys, and optical data from the SDSS.

  7. The Space Operations Simulation Center (SOSC) and Closed-loop Hardware Testing for Orion Rendezvous System Design

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Milenkovich, Zoran; Wilson, Zachary; Huich, David; Bendle, John; Kibler, Angela

    2011-01-01

    The Space Operations Simulation Center (SOSC) at the Lockheed Martin (LM) Waterton Campus in Littleton, Colorado is a dynamic test environment focused on Autonomous Rendezvous and Docking (AR&D) development testing and risk reduction activities. The SOSC supports multiple program pursuits and accommodates testing Guidance, Navigation, and Control (GN&C) algorithms for relative navigation, hardware testing and characterization, as well as software and test process development. The SOSC consists of a high bay (60 meters long by 15.2 meters wide by 15.2 meters tall) with dual six degree-of-freedom (6DOF) motion simulators and a single fixed base 6DOF robot. The large testing area (maximum sensor-to-target effective range of 60 meters) allows for large-scale, flight-like simulations of proximity maneuvers and docking events. The facility also has two apertures for access to external extended-range outdoor target test operations. In addition, the facility contains four Mission Operations Centers (MOCs) with connectivity to dual high bay control rooms and a data/video interface room. The high bay is rated at Class 300,000 (. 0.5 m maximum particles/m3) cleanliness and includes orbital lighting simulation capabilities.

  8. Unexpected spatial intensity distributions and onset timing of solar electron events observed by closely spaced STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Klassen, A.; Dresing, N.; Gómez-Herrero, R.; Heber, B.; Müller-Mellin, R.

    2016-09-01

    We present multi-spacecraft observations of four solar electron events using measurements from the Solar Electron Proton Telescope (SEPT) and the Electron Proton Helium INstrument (EPHIN) on board the STEREO and SOHO spacecraft, respectively, occurring between 11 October 2013 and 1 August 2014, during the approaching superior conjunction period of the two STEREO spacecraft. At this time the longitudinal separation angle between STEREO-A (STA) and STEREO-B (STB) was less than 72°. The parent particle sources (flares) of the four investigated events were situated close to, in between, or to the west of the STEREO's magnetic footpoints. The STEREO measurements revealed a strong difference in electron peak intensities (factor ≤12) showing unexpected intensity distributions at 1 AU, although the two spacecraft had nominally nearly the same angular magnetic footpoint separation from the flaring active region (AR) or their magnetic footpoints were both situated eastwards from the parent particle source. Furthermore, the events detected by the two STEREO imply a strongly unexpected onset timing with respect to each other: the spacecraft magnetically best connected to the flare detected a later arrival of electrons than the other one. This leads us to suggest the concept of a rippled peak intensity distribution at 1 AU formed by narrow peaks (fingers) superposed on a quasi-uniform Gaussian distribution. Additionally, two of the four investigated solar energetic particle (SEP) events show a so-called circumsolar distribution and their characteristics make it plausible to suggest a two-component particle injection scenario forming an unusual, non-uniform intensity distribution at 1 AU.

  9. Cowpeas and pinto beans: yields and light efficiency of candidate space crops in the Laboratory Biosphere closed ecological system

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.

    An experiment utilizing cowpeas Vigna unguiculata pinto beans Phaseolus vulgaris L and Apogee ultra-dwarf wheat was conducted in the soil-based closed ecological facility Laboratory Biosphere from February to May 2005 The lighting regime was 13 hours light 11 hours dark at a light intensity of 960 mu mol m -2 s -1 45 moles m -2 day -1 supplied by high-pressure sodium lamps The pinto beans and cowpeas were grown at two different plant densities The pinto bean produced 710 g m -2 total aboveground biomass and 341 g m -2 at 33 5 plants per m 2 and at 37 5 plants per m 2 produced 1092 g m -2 total biomass and 537 g m -2 of dry seed an increase of almost 50 Cowpeas at 28 plants m -2 yielded 1060 g m -2 of total biomass and 387 g seed m -2 outproducing the less dense planting by more than double 209 in biomass and 86 more seed as the planting of 21 plants m -2 produced 508 g m-2 of total biomass and 209 g m-2 of seed Edible yield rate EYR for the denser cowpea bean was 4 6 g m -2 day -1 vs 2 5 g m -2 day -1 for the less dense stand average yield was 3 5 g m -2 day -1 EYR for the denser pinto bean was 8 5 g m -2 day -1 vs 5 3 g m -2 day -1 average EYR for the pinto beans was 7 0 g m -2 day -1 Yield efficiency rate YER the ratio of edible to non-edible biomass was 0 97 for the dense pinto bean 0 92 for the less dense pinto bean and average 0 94 for the entire crop The cowpeas

  10. Quasars, their host galaxies and their central black holes

    NASA Astrophysics Data System (ADS)

    Dunlop, J. S.; McLure, R. J.; Kukula, M. J.; Baum, S. A.; O'Dea, C. P.; Hughes, D. H.

    2003-04-01

    We present the final results from our deep Hubble Space Telescope (HST) imaging study of the host galaxies of radio-quiet quasars (RQQs), radio-loud quasars (RLQs) and radio galaxies (RGs). We describe and analyse new Wide Field & Planetary Camera 2 (WFPC2) R-band observations for 14 objects, which when combined with the first tranche of HST imaging reported in McLure et al., provide a complete and consistent set of deep, red, line-free images for statistically matched samples of 13 RQQs, 10 RLQs and 10 RGs in the redshift band 0.1 < z < 0.25. We also report the results of new deep VLA imaging that has yielded a 5-GHz detection of all but one of the 33 active galactic nuclei (AGN) in our sample. Careful modelling of our images, aided by a high dynamic-range point spread function, has allowed us to determine accurately the morphology, luminosity, scalelength and axial ratio of every host galaxy in our sample. Armed with this information we have undertaken a detailed comparison of the properties of the hosts of these three types of powerful AGN, both internally and with the galaxy population in general. We find that spheroidal hosts become more prevalent with increasing nuclear luminosity such that, for nuclear luminosities MV < -23.5, the hosts of both radio-loud and radio-quiet AGN are virtually all massive ellipticals. Moreover, we demonstrate that the basic properties of these hosts are indistinguishable from those of quiescent, evolved, low-redshift ellipticals of comparable mass. This result rules out the possibility that radio-loudness is determined by host-galaxy morphology, and also sets severe constraints on evolutionary schemes that attempt to link low-z ultraluminous infrared galaxies with RQQs. Instead, we show that our results are as expected given the relationship between black hole and spheroid mass established for nearby galaxies, and apply this relation to estimate the mass of the black hole in each object. The results agree remarkably well with

  11. New quasar survey with WIRO: Color-selection of quasar candidates behind M33

    NASA Astrophysics Data System (ADS)

    Harvey, William Bradford; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Lee, Daniel; Lyke, Bradley; Haze Nunez, Evan; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    We report new quasar candidates in the extended gaseous region of the Triangulum (M33) Galaxy as observed with WIRO (The Wyoming Infrared Observatory) in the ugri bands during the Summer of 2016. Our survey produced a sample of 14042 point sources to a limiting depth of g ≤ 21.7 in a region of ~16 square degrees, 34 of which are UVX-selected, known quasars with redshifts up to z < 2.2. Color-color plots were created using extinction-corrected magnitudes of ugri as well as NUV and W1 as taken from GALEX (Galaxy Evolution Explorer) and WISE (Wide-field Infrared Survey Explorer) respectively. Using a series of color cuts in NUV, u, g, r, i, and W1 bands, we recover high-quality quasar candidates. Based on optical colors alone we project ~30 new candidates per square degree. Spectroscopic follow-up of these candidates could yield new, bright quasars behind M33. This work is supported by the National Science Foundation under REU grant AST 1560461.

  12. The WISSH quasars project. I. Powerful ionised outflows in hyper-luminous quasars

    NASA Astrophysics Data System (ADS)

    Bischetti, M.; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Sani, E.; Marconi, A.; Duras, F.; Zappacosta, L.; Brusa, M.; Comastri, A.; Cresci, G.; Feruglio, C.; Giallongo, E.; La Franca, F.; Mainieri, V.; Mannucci, F.; Martocchia, S.; Ricci, F.; Schneider, R.; Testa, V.; Vignali, C.

    2017-02-01

    Models and observations suggest that both the power and effects of AGN feedback should be maximised in hyper-luminous (LBol > 1047 erg s-1) quasars, i.e. objects at the brightest end of the AGN luminosity function. In this paper, we present the first results of a multiwavelength observing programme, focusing on a sample of WISE/SDSS selected hyper-luminous (WISSH) broad-line quasars at z ≈ 1.5-5. The WISSH quasars project has been designed to reveal the most energetic AGN-driven outflows, estimate their occurrence at the peak of quasar activity, and extend the study of correlations between outflows and nuclear properties up to poorly investigated, extreme AGN luminosities, i.e. LBol 1047 - 1048 erg s-1. We present near-infrared, long-slit LBT/LUCI1 spectroscopy of five WISSH quasars at z ≈ 2.3 - 3.5, showing prominent [OIII] emission lines with broad (FWHM 1200-2200 km s-1) and skewed profiles. The luminosities of these broad [OIII] wings are the highest measured so far, with L[OIII]broad ≳ 5 × 1044 erg s-1, and reveal the presence of powerful ionised outflows with associated mass outflow rates Ṁ ≳ 1700M⊙ yr-1 and kinetic powers Ėkin ≳ 1045 erg s-1. Although these estimates are affected by large uncertainties because of the use of [OIII] as a tracer of ionised outflows and the very basic outflow model adopted here, these results suggest that in our hyper-luminous targets the AGN is highly efficient at pushing large amounts of ionised gas outwards. Furthermore, the mechanical outflow luminosities measured for WISSH quasars correspond to higher percentages ( 1-3%) of LBol than those derived for AGN with lower LBol. Our targets host very massive (MBH ≳ 2 × 109M⊙) black holes that are still accreting at a high rate (i.e. a factor of 0.4-3 of the Eddington limit). These findings clearly demonstrate that WISSH quasars offer the opportunity to probe the extreme end of both luminosity and supermassive black holes (SMBH) mass functions and revealing

  13. X-ray studies of quasars with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Branduardi, G.; Fabbiano, G.; Feigelson, E.; Giacconi, R.; Henry, J. P.; Avni, Y.; Elvis, M.; Pye, J. P.; Soltan, A.

    1979-01-01

    Results of an investigation of the X-ray properties of quasars conducted using the Einstein Observatory (HEAO 2) are reported. The positions, fluxes and luminosities of 35 known quasars were observed by the Einstein high-resolution imaging detector and the imaging proportional counter. Assuming optical redshifts as valid distance indicators, 0.5-4.5 keV X-ray luminosities ranging from 10 to the 43rd to 10 to the 47 ergs/sec are obtained, with evidence of very little cold gas absorption. Flux variability on a time scale of less than 10,000 sec is observed for the quasar OX 169, which implies a mass between 8 x 10 to the 5th and 2 x 10 to the 8th solar masses for the black hole assumed to be responsible for the emission. Preliminary results of the quasar survey also indicate that quasars contribute significantly to the diffuse X-ray background.

  14. Infrared/optical energy distributions of high redshifted quasars

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Oke, J. B.; Matthews, K.; Lacy, J. H.

    1982-01-01

    Measurements at 1.2, 1.6 and 2.2 microns were combined with visual spectrophotometry of 21 quasars having redshifts z or = 2.66. The primary result is that the rest frame visual/ultraviolet continua of the high redshift quasars are well described by a sum of a power law continuum with slope of approximately -0.4 and a 3000 A bump. The rest frame visual/ultraviolet continua of these quasars are quite similar to that of 3C273, the archetype of low redshift quasars. There does not appear to be any visual/ultraviolet properties distinguishing high redshift quasars selected via visual or radio techniques.

  15. Low-Cost Blast Wave Generator for Studies of Hearing Loss and Brain Injury: Blast Wave Effects in Closed Spaces

    PubMed Central

    Newman, Andrew J.; Hayes, Sarah H.; Rao, Abhiram S.; Allman, Brian L.; Manohar, Senthilvelan; Ding, Dalian; Stolzberg, Daniel; Lobarinas, Edward; Mollendorf, Joseph C.; Salvi, Richard

    2015-01-01

    Background Military personnel and civilians living in areas of armed conflict have increased risk of exposure to blast overpressures that can cause significant hearing loss and/or brain injury. The equipment used to simulate comparable blast overpressures in animal models within laboratory settings is typically very large and prohibitively expensive. New Method To overcome the fiscal and space limitations introduced by previously reported blast wave generators, we developed a compact, low-cost blast wave generator to investigate the effects of blast exposures on the auditory system and brain. Results The blast wave generator was constructed largely from off the shelf components, and reliably produced blasts with peak sound pressures of up to 198 dB SPL (159.3 kPa) that were qualitatively similar to those produced from muzzle blasts or explosions. Exposure of adult rats to 3 blasts of 188 dB peak SPL (50.4 kPa) resulted in significant loss of cochlear hair cells, reduced outer hair cell function and a decrease in neurogenesis in the hippocampus. Comparison to existing methods Existing blast wave generators are typically large, expensive, and are not commercially available. The blast wave generator reported here provides a low-cost method of generating blast waves in a typical laboratory setting. Conclusions This compact blast wave generator provides scientists with a low cost device for investigating the biological mechanisms involved in blast wave injury to the rodent cochlea and brain that may model many of the damaging effects sustained by military personnel and civilians exposed to intense blasts. PMID:25597910

  16. INCIDENCE OF Mg II ABSORPTION SYSTEMS TOWARD FLAT-SPECTRUM RADIO QUASARS

    SciTech Connect

    Chand, Hum; Gopal-Krishna E-mail: krishna@ncra.tifr.res.in

    2012-07-20

    The conventional wisdom that the rate of incidence of Mg II absorption systems, dN/dz (excluding 'associated systems' having a velocity {beta}c relative to the active galactic nucleus (AGN) of less than {approx}5000 km s{sup -1}), is totally independent of the background AGNs has been challenged by a recent finding that dN/dz for strong Mg II absorption systems toward distant blazars is 2.2 {+-} {sup 0.8}{sub 0.6} times the value known for normal optically selected quasars (QSOs). This has led to the suggestion that a significant fraction of even the absorption systems with {beta} as high as {approx}0.1 may have been ejected by the relativistic jets in the blazars, which are expected to be pointed close to our direction. Here, we investigate this scenario using a large sample of 115 flat-spectrum radio-loud quasars (FSRQs) that also possess powerful jets, but are only weakly polarized. We show, for the first time, that dN/dz toward FSRQs is, on the whole, quite similar to that known for QSOs and that the comparative excess of strong Mg II absorption systems seen toward blazars is mainly confined to {beta} < 0.15. The excess relative to FSRQs probably results from a likely closer alignment of blazar jets with our direction; hence, any gas clouds accelerated by them are more likely to be on the line of sight to the active quasar nucleus.

  17. Extinction due to amorphous carbon grains in red quasars from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Czerny, B.; Li, J.; Loska, Z.; Szczerba, R.

    2004-03-01

    We construct a quasar extinction curve based on the blue and red composite quasar spectra of Richards et al. prepared from the Sloan Digital Sky Survey. This extinction curve does not show any traces of the 2200-Å feature characteristic of the interstellar medium, and this indicates that graphite grains are likely to be absent close to quasar nuclei. The extinction is best modelled by an AC sample of amorphous carbon grains, assuming a standard distribution of grain sizes (p= 3.5) but slightly larger minimum grain size (amin= 0.016 μm) and lower maximum grain size (amin= 0.12 μm) than the respective canonical values for the interstellar medium. The dust composition is thus similar to that of the dust in carbon reach asymptotic giant branch stars. Since graphite grains form from amorphous carbon exposed to strong ultraviolet irradiation, the results indicate that the dust forms either surprisingly far from the active nucleus or in a wind that leaves the nucleus quickly enough to avoid crystallization into graphite.

  18. Impact of instrumental systematic errors on fine-structure constant measurements with quasar spectra

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan B.; Murphy, Michael T.

    2015-02-01

    We present a new `supercalibration' technique for measuring systematic distortions in the wavelength scales of high-resolution spectrographs. By comparing spectra of `solar twin' stars or asteroids with a reference laboratory solar spectrum, distortions in the standard thorium-argon calibration can be tracked with ˜10 m s-1 precision over the entire optical wavelength range on scales of both echelle orders (˜50-100 Å) and entire spectrographs arms (˜1000-3000 Å). Using archival spectra from the past 20 yr, we have probed the supercalibration history of the Very Large Telescope-Ultraviolet and Visible Echelle Spectrograph (VLT-UVES) and Keck-High Resolution Echelle Spectrograph (HIRES) spectrographs. We find that systematic errors in their wavelength scales are ubiquitous and substantial, with long-range distortions varying between typically ±200 m s-1 per 1000 Å. We apply a simple model of these distortions to simulated spectra that characterize the large UVES and HIRES quasar samples which previously indicated possible evidence for cosmological variations in the fine-structure constant, α. The spurious deviations in α produced by the model closely match important aspects of the VLT-UVES quasar results at all redshifts and partially explain the HIRES results, though not self-consistently at all redshifts. That is, the apparent ubiquity, size and general characteristics of the distortions are capable of significantly weakening the evidence for variations in α from quasar absorption lines.

  19. Some observations on colocated and closely spaced strong ground-motion records of the 1999 Chi-Chi, Taiwan, earthquake

    USGS Publications Warehouse

    Wang, G.-Q.; Boore, D.M.; Igel, H.; Zhou, X.-Y.

    2003-01-01

    information regarding the permanent displacements is lost. The causative mechanisms of the baseline offsets are unknown presently. Hence, it is very difficult to recover the permanent displacements from the modern digital records, although for records close to large earthquakes, the signal-to-noise ratio should theoretically be adequate to obtain ground motions with periods of hundreds of seconds. This study reinforces our conclusion from previous studies that the sources of baseline offsets occurring in digital strong-motion records are very complex and often unpredictable, and that, therefore, it is difficult to remove the baseline effects to maximize the information content of the record. The baseline offsets only affect very long period motions (e.g., >20 sec), however, and therefore are of little or no engineering concern.

  20. Vegetable production facility as a part of a closed life support system in a Russian Martian space flight scenario

    NASA Astrophysics Data System (ADS)

    Berkovich, Yu. A.; Smolyanina, S. O.; Krivobok, N. M.; Erokhin, A. N.; Agureev, A. N.; Shanturin, N. A.

    2009-07-01

    A Manned Mars Mission scenario had been developed in frame of the Project 1172 supported International Science & Technology Center in Moscow. The Mars transit vehicle (MTV) supposed to have a crew of 4-6 with Pilot Laboratory compartment volume of 185 m 3 and with inner diameter of 4.1 m. A vegetable production facility with power consumption up to 10 kW is being considered as a component of the life support system to supply crew members by fresh vegetables during the mission. Proposed design of conveyor-type plant growth facility (PGF) comprised of 4-modules. Each module has a cylindrical planting surface and spiral cylindrical LED assembly to provide a high specific productivity relative to utilized onboard resources. Each module has a growth chamber that will be from 0.7 m to 1.5 m in length, and a crop illuminated area from 1.7 m 2 to 4.0 m 2. Leafy crops (cabbage, lettuce, spinach, chard, etc.) have been selected for module 1, primarily because of the highest specific productivity per consumed resources. Dietitians have recommended also carrot crop for module 2, pepper for module 3 and tomato for module 4. The maximal total PGF light energy estimated as 1.16 kW and total power consumption as about 7 kW. The module 1 characteristics have been calculated using own experimental data, information from the best on ground plant growth experiments with artificial light were used to predict crop productivity and biomass composition in the another modules. 4-module PGF could produce nearly 0.32 kg per crew member per day of fresh edible biomass, which would be about 50% of recommended daily vegetable supplement. An average crop harvest index is estimated as 0.75. The MTV food system could be entirely closed in terms of vitamins C and A with help of the PGF. In addition the system could provide 10-25% of essential minerals and vitamins of group B, and about 20% of food fibers. The present state of plant growth technology allows formulating of requirements specification

  1. Cowpeas and pinto beans: Performance and yields of candidate space crops in the laboratory biosphere closed ecological system

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Dempster, W. F.; Allen, J. P.; Silverstone, S.; Alling, A.; Thillo, M. van

    An experiment utilizing cowpeas ( Vigna unguiculata L.), pinto beans ( Phaseolus vulgaris L.) and Apogee ultra-dwarf wheat ( Triticum sativa L.) was conducted in the soil-based closed ecological facility, Laboratory Biosphere, from February to May 2005. The lighting regime was 13 h light/11 h dark at a light intensity of 960 μmol m -2 s -1, 45 mol m -2 day -1 supplied by high-pressure sodium lamps. The pinto beans and cowpeas were grown at two different planting densities. Pinto bean production was 341.5 g dry seed m -2 (5.42 g m -2 day -1) and 579.5 dry seed m -2 (9.20 g m -2 day -1) at planted densities of 32.5 plants m -2 and 37.5 plants m -2, respectively. Cowpea yielded 187.9 g dry seed m -2 (2.21 g m -2 day -1) and 348.8 dry seed m -2 (4.10 g m -2 day -1) at planted densities of 20.8 plants m -2 and 27.7 plants m -2, respectively. The crop was grown at elevated atmospheric carbon dioxide levels, with levels ranging from 300-3000 ppm daily during the majority of the crop cycle. During early stages (first 10 days) of the crop, CO 2 was allowed to rise to 7860 ppm while soil respiration dominated, and then was brought down by plant photosynthesis. CO 2 was injected 27 times during days 29-71 to replenish CO 2 used by the crop during photosynthesis. Temperature regime was 24-28 °C day/deg 20-24 °C night. Pinto bean matured and was harvested 20 days earlier than is typical for this variety, while the cowpea, which had trouble establishing, took 25 days more for harvest than typical for this variety. Productivity and atmospheric dynamic results of these studies contribute toward the design of an envisioned ground-based test bed prototype Mars base.

  2. ON THE LINK BETWEEN ASSOCIATED Mg II ABSORBERS AND STAR FORMATION IN QUASAR HOSTS

    SciTech Connect

    Shen Yue; Menard, Brice E-mail: menard@pha.jhu.edu

    2012-04-01

    A few percent of quasars show strong associated Mg II absorption, with velocities (v{sub off}) lying within a few thousand km s{sup -1} from the quasar systemic redshift. These associated absorption line (AAL) systems are usually interpreted as absorbers that are either intrinsic to the quasar and its host, or arising from external galaxies clustering around the quasar. Using composite spectra of {approx}1800 Mg II AAL quasars selected from SDSS DR7 at 0.4 {approx}< z {approx}< 2, we show that quasars with AALs with v{sub off} < 1500 km s{sup -1} have a prominent excess in [O II] {lambda}3727 emission (detected at >7{sigma}) at rest relative to the quasar host, compared to unabsorbed quasars. We interpret this [O II] excess as due to enhanced star formation in the quasar host. Our results suggest that a significant fraction of AALs with v{sub off} < 1500 km s{sup -1} are physically associated with the quasar and its host. AAL quasars also have dust reddening lying between normal quasars and the so-called dust-reddened quasars. We suggest that the unique properties of AAL quasars can be explained if they are the transitional population from heavily dust-reddened quasars to normal quasars in the formation process of quasars and their hosts. This scenario predicts a larger fraction of young bulges, disturbed morphologies, and interactions of AAL quasar hosts compared to normal quasars. The intrinsic link between associated absorbers and quasar hosts opens a new window to probe massive galaxy formation and galactic-scale feedback processes, and provides a crucial test of the evolutionary picture of quasars.

  3. A Census of Intrinsic Narrow Absorption Lines in the Spectra of Quasars at z = 2-4

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael; Ganguly, Rajib; Tytler, David; Kirkman, David; Suzuki, Nao; Lubin, Dan

    2007-07-01

    We use Keck HIRES spectra of 37 optically bright quasars at z=2-4 to study narrow absorption lines that are intrinsic to the quasars (intrinsic NALs, produced in gas that is physically associated with the quasar central engine). We identify 150 NAL systems, which contain 124 C IV, 12 N V, and 50 Si IV doublets, of which 18 are associated systems (within 5000 km s-1 of the quasar redshift). We use partial coverage analysis to separate intrinsic NALs from NALs produced in cosmologically intervening structures. We find 39 candidate intrinsic systems (28 reliable determinations and 11 that are possibly intrinsic). We estimate that 10%-17% of C IV systems at blueshifts of 5000-70,000 km s-1 relative to quasars are intrinsic. At least 32% of quasars contain one or more intrinsic C IV NALs. Considering N V and Si IV doublets showing partial coverage as well, at least 50% of quasars host intrinsic NALs. This result constrains the solid angle subtended by the absorbers to the background source(s). We identify two families of intrinsic NAL systems, those with strong N V absorption and those with negligible absorption in N V but with partial coverage in the C IV doublet. We discuss the idea that these two families represent different regions or conditions in accretion disk winds. Of the 26 intrinsic C IV NAL systems, 13 have detectable low-ionization absorption lines at similar velocities, suggesting that these are two-phase structures in the wind rather than absorbers in the host galaxy. We also compare possible models for quasar outflows, including radiatively accelerated disk-driven winds, magnetocentrifugally accelerated winds, and pressure-driven winds, and we discuss ways of distinguishing between these models observationally. The data presented here were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration

  4. Is there any evidence that ionized outflows quench star formation in type 1 quasars at z < 1?

    NASA Astrophysics Data System (ADS)

    Balmaverde, B.; Marconi, A.; Brusa, M.; Carniani, S.; Cresci, G.; Lusso, E.; Maiolino, R.; Mannucci, F.; Nagao, T.

    2016-01-01

    Aims: The aim of this paper is to test the basic model of negative active galactic nuclei (AGN) feedback. According to this model, once the central black hole accretes at the Eddington limit and reaches a certain critical mass, AGN driven outflows blow out gas, suppressing star formation in the host galaxy and self-regulating black hole growth. Methods: We consider a sample of 224 quasars selected from the Sloan Digital Sky Survey (SDSS) at z< 1 observed in the infrared band by the Herschel Space Observatory in point source photometry mode. We evaluate the star formation rate in relation to several outflow signatures traced by the [O III] λ4959, 5007 and [O II] λ3726, 3729 emission lines in about half of the sample with high quality spectra. Results: Most of the quasars show asymmetric and broad wings in [O III], which we interpret as outflow signatures. We separate the quasars in two groups, "weakly" and "strongly" outflowing, using three different criteria. When we compare the mean star formation rate in five redshift bins in the two groups, we find that the star formation rate (SFR) are comparable or slightly larger in the strongly outflowing quasars. We estimate the stellar mass from spectral energy distribution (SED) fitting and the quasars are distributed along the star formation main sequence, although with a large scatter. The scatter from this relation is uncorrelated with respect to the kinematic properties of the outflow. Moreover, for quasars dominated in the infrared by starburst or by AGN emission, we do not find any correlation between the star formation rate and the velocity of the outflow, a trend previously reported in the literature for pure starburst galaxies. Conclusions: We conclude that the basic AGN negative feedback scenario seems not to agree with our results. Although we use a large sample of quasars, we did not find any evidence that the star formation rate is suppressed in the presence of AGN driven outflows on large scale. A

  5. The high-z quasar Hubble Diagram

    SciTech Connect

    Melia, Fulvio

    2014-01-01

    Two recent discoveries have made it possible for us to begin using high-z quasars as standard candles to construct a Hubble Diagram (HD) at z > 6. These are (1) the recognition from reverberation mapping that a relationship exists between the optical/UV luminosity and the distance of line-emitting gas from the central ionizing source. Thus, together with a measurement of the velocity of the line-emitting gas, e.g., via the width of BLR lines, such as Mg II, a single observation can therefore in principle provide a determination of the black hole's mass; and (2) the identification of quasar ULAS J1120+0641 at z = 7.085, which has significantly extended the redshift range of these sources, providing essential leverage when fitting theoretical luminosity distances to the data. In this paper, we use the observed fluxes and Mg II line-widths of these sources to show that one may reasonably test the predicted high-z distance versus redshift relationship, and we assemble a sample of 20 currently available high-z quasars for this exercise. We find a good match between theory and observations, suggesting that a more complete, high-quality survey may indeed eventually produce an HD to complement the highly-detailed study already underway (e.g., with Type Ia SNe, GRBs, and cosmic chronometers) at lower redshifts. With the modest sample we have here, we show that the R{sub h} = ct Universe and ΛCDM both fit the data quite well, though the smaller number of free parameters in the former produces a more favorable outcome when we calculate likelihoods using the Akaike, Kullback, and Bayes Information Criteria. These three statistical tools result in similar probabilities, indicating that the R{sub h} = ct Universe is more likely than ΛCDM to be correct, by a ratio of about 85% to 15%.

  6. Host Galaxies of z=4 Quasars

    NASA Astrophysics Data System (ADS)

    McLeod, Kim K.; Bechtold, J.

    2010-01-01

    We have undertaken a project to investigate the host galaxies and environments of a sample of quasars at z 4. In this paper, we describe deep near-infrared imaging of 34 targets using the Magellan I and Gemini North telescopes. We discuss in detail special challenges of distortion and nonlinearity that must be addressed when performing PSF subtraction with data from these telescopes and their IR cameras, especially in very good seeing. We derive black hole masses from emission-line spectroscopy, and we calculate accretion rates from our Ks-band photometry, which directly samples the rest-frame B for these objects. We introduce a new isophotal diameter technique for estimating host galaxy luminosities. We report the detection of four host galaxies on our deepest, sharpest images, and present upper limits for the others. We find that if host galaxies passively evolve such that they brighten by 2 magnitudes or more in the rest-frame B band between the present and z=4, then high-z hosts are less massive at a given black hole mass than are their low-z counterparts. We argue that the most massive hosts plateau at < 10L*. We estimate the importance of selection effects on this survey and the subsequent limitations of our conclusions. These results are in broad agreement with recent semi-analytical models for the formation of luminous quasars and their host spheroids by mergers of gas-rich galaxies, with significant dissipation, and self-regulation of black hole growth and star-formation by the burst of merger-induced quasar activity.

  7. Data mining for gravitationally lensed quasars

    NASA Astrophysics Data System (ADS)

    Agnello, Adriano; Kelly, Brandon C.; Treu, Tommaso; Marshall, Philip J.

    2015-04-01

    Gravitationally lensed quasars are brighter than their unlensed counterparts and produce images with distinctive morphological signatures. Past searches and target-selection algorithms, in particular the Sloan Quasar Lens Search (SQLS), have relied on basic morphological criteria, which were applied to samples of bright, spectroscopically confirmed quasars. The SQLS techniques are not sufficient for searching into new surveys (e.g. DES, PS1, LSST), because spectroscopic information is not readily available and the large data volume requires higher purity in target/candidate selection. We carry out a systematic exploration of machine-learning techniques and demonstrate that a two-step strategy can be highly effective. In the first step, we use catalogue-level information (griz+WISE magnitudes, second moments) to pre-select targets, using artificial neural networks. The accepted targets are then inspected with pixel-by-pixel pattern recognition algorithms (gradient-boosted trees), to form a final set of candidates. The results from this procedure can be used to further refine the simpler SQLS algorithms, with a twofold (or threefold) gain in purity and the same (or 80 per cent) completeness at target-selection stage, or a purity of 70 per cent and a completeness of 60 per cent after the candidate-selection step. Simpler photometric searches in griz+WISE based on colour cuts would provide samples with 7 per cent purity or less. Our technique is extremely fast, as a list of candidates can be obtained from a Stage III experiment (e.g. DES catalogue/data base) in a few CPU hours. The techniques are easily extendable to Stage IV experiments like LSST with the addition of time domain information.

  8. Quasar Outflows and Black Hole Masses

    NASA Astrophysics Data System (ADS)

    Coatman, Liam; Hewett, Paul; Banerji, Manda; Richards, Gordon; Hennawi, Joseph; Prochaska, Jason X.

    2016-08-01

    Black-hole masses are crucial to understanding the physics of the connection between quasars and their host galaxies and measuring cosmic black hole-growth. At high redshift, z > 2, black hole masses are normally derived using the velocity-width of the CIV broad emission line, based on the assumption that the observed velocity-widths arise from virial-induced motions. In many quasars, the CIV-emission line exhibits significant blue asymmetries ('blueshifts') with the line centroid displaced by up to thousands of km/s to the blue. These blueshifts almost certainly signal the presence of strong outflows, most likely originating in a disc wind. Using both archival data and new observations, we have obtained near-infrared spectra, including the Ha and/or Hb emission lines, for ~400 luminous (L_Bol = 45.5-48.5 erg/s) SDSS quasars, at redshifts 1.5 < z < 4, with CIV emission lines spanning the full-range of blueshifts present in the population. A strong correlation between CIV-velocity width and blueshift is found and, at large blueshifts, >2000 km/s, the velocity-widths appear to be dominated by non-virial motions. Using the Ha/Hb emission to provide black hole masses free from non-virial contributions, we are able to derive a quantitative correction to the CIV-based black-hole masses as a function of blueshift. This correction reduces the scatter between Ha/Hb and CIV velocity widths to just ~0.1 dex. Without the correction, black hole masses would be overestimated by a factor of nine at the largest blueshifts. With a suitable systemic redshift-estimation algorithm, this correction can be straightforwardly applied based only on information contained in the rest-frame UV spectra.

  9. SDSS QUASARS IN THE WISE PRELIMINARY DATA RELEASE AND QUASAR CANDIDATE SELECTION WITH OPTICAL/INFRARED COLORS

    SciTech Connect

    Wu Xuebing; Hao Guoqiang; Jia Zhendong; Zhang Yanxia; Peng Nanbo

    2012-08-15

    We present a catalog of 37,842 quasars in the Sloan Digital Sky Survey (SDSS) Data Release 7, which have counterparts within 6'' in the Wide-field Infrared Survey Explorer (WISE) Preliminary Data Release. The overall WISE detection rate of the SDSS quasars is 86.7%, and it decreases to less than 50.0% when the quasar magnitude is fainter than i = 20.5. We derive the median color-redshift relations based on this SDSS-WISE quasar sample and apply them to estimate the photometric redshifts of the SDSS-WISE quasars. We find that by adding the WISE W1- and W2-band data to the SDSS photometry we can increase the photometric redshift reliability, defined as the percentage of sources with photometric and spectroscopic redshift difference less than 0.2, from 70.3% to 77.2%. We also obtain the samples of WISE-detected normal and late-type stars with SDSS spectroscopy, and present a criterion in the z - W1 versus g - z color-color diagram, z - W1 > 0.66(g - z) + 2.01, to separate quasars from stars. With this criterion we can recover 98.6% of 3089 radio-detected SDSS-WISE quasars with redshifts less than four and overcome the difficulty in selecting quasars with redshifts between 2.2 and 3 from SDSS photometric data alone. We also suggest another criterion involving the WISE color only, W1 - W2 > 0.57, to efficiently separate quasars with redshifts less than 3.2 from stars. In addition, we compile a catalog of 5614 SDSS quasars detected by both WISE and UKIDSS surveys and present their color-redshift relations in the optical and infrared bands. By using the SDSS ugriz, UKIDSS, YJHK, and WISE W1- and W2-band photometric data, we can efficiently select quasar candidates and increase the photometric redshift reliability up to 87.0%. We discuss the implications of our results on the future quasar surveys. An updated SDSS-WISE quasar catalog consisting of 101,853 quasars with the recently released WISE all-sky data is also provided.

  10. Parsec-scale radio structures in Quasars

    NASA Astrophysics Data System (ADS)

    Coldwell, G.; Paragi, Z.; Gurvits, L.

    Very Long Baseline Interferometry (VLBI) con su nueva extensión para el radio telescopio orbital, VSOP/HALCA, ofrece una incomparable resolución angular alcanzando escalas de milisegundos y submilisegundos de arco a longitudes de onda de centímetros. En este trabajo presentamos observaciones y análisis de estructuras en radio, en escalas de parsec, para 3 radio fuentes extragalácticas de la muestra de VSOP Survey y 1 quasar, 1442+101, del proyecto `VSOP High Redshift'.

  11. Powerful Winds in Extreme RBS quasars (POWER)

    NASA Astrophysics Data System (ADS)

    Piconcelli, Enrico

    2013-10-01

    This proposal aims at studying powerful outflows in ultra-luminous (log Lx >45) Radio-Quiet Quasars (RQQ). We propose to observe four objects extracted from a luminosity limited sample in the ROSAT Bright Survey for a full orbit (130 ks) each. Both models and observations suggest that the efficiency of driving energetic outflows increases with the AGN luminosity. Therefore, our targets are potentially the best objects to hunt for very powerful outflows expected in the AGN/galaxy feedback scenario. Our observations represent the first attempt ever to obtain deep, high-resolution-driven spectroscopy of a representative sample of RQQ in this high-luminosity regime.

  12. Euclidean Closed Linear Transformations of Complex Spacetime and generally of Complex Spaces of dimension four endowed with the Same or Different Metric

    NASA Astrophysics Data System (ADS)

    Vossos, Spyridon; Vossos, Elias

    2016-08-01

    closed LSTT is reduced, if one RIO has small velocity wrt another RIO. Thus, we have infinite number of closed LSTTs, each one with the corresponding SR theory. In case that we relate accelerated observers with variable metric of spacetime, we have the case of General Relativity (GR). For being that clear, we produce a generalized Schwarzschild metric, which is in accordance with any SR based on this closed complex LSTT and Einstein equations. The application of this kind of transformations to the SR and GR is obvious. But, the results may be applied to any linear space of dimension four endowed with steady or variable metric, whose elements (four- vectors) have spatial part (vector) with Euclidean metric.

  13. The Third Image of the Large-Separation Lensed Quasar SDSS J1029+2623

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune; Ofek, Eran O.; Inada, Naohisa; Morokuma, Tomoki; Falco, Emilio E.; Kochanek, Christopher S.; Kayo, Issha; Broadhurst, Tom; Richards, Gordon T.

    2008-03-01

    We identify a third image in the unique quasar lens SDSS J1029+2623, the second known quasar lens produced by a massive cluster of galaxies. The spectrum of the third image shows similar emission and absorption features but has a redder continuum than the other two images, which can be explained by differential extinction or microlensing. We also identify several lensed arcs. Our observations suggest a complicated structure of the lens cluster at z ≈ 0.6. We argue that the three lensed images are produced by a naked cusp on the basis of successful mass models, the distribution of cluster member galaxies, and the shapes and locations of the lensed arcs. Lensing by a naked cusp is quite rare among galaxy-scale lenses but is predicted to be common among large-separation lensed quasars. Thus the discovery can be viewed as support for an important theoretical prediction of the standard cold dark matter model. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. This work is based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan. Use of the UH 2.2 m telescope for the observations is supported by NAOJ.

  14. Image of the Quasar 3C 273 Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This image is an observation of Quasar 3C 273 by the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory. It reveals the presence of a new source (upper left) with a red shift that indicates that it is about 10 billion light years away. Quasars are mysterious, bright, star-like objects apparently located at the very edge of the visible universe. Although no bigger than our solar system, they radiate as much visible light as a thousand galaxies. Quasars also emit radio signals and were previously recognized as x-ray sources. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2 was designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center.

  15. THE NEXT GENERATION ATLAS OF QUASAR SPECTRAL ENERGY DISTRIBUTIONS FROM RADIO TO X-RAYS

    SciTech Connect

    Shang Zhaohui; Li Jun; Xie Yanxia; Brotherton, Michael S.; Cales, Sabrina L.; Dale, Daniel A.; Runnoe, Jessie C.; Kelly, Benjamin J.; Wills, Beverley J.; Wills, D.; Green, Richard F.; Nemmen, Rodrigo S.; Ganguly, Rajib; Hines, Dean C.; Kriss, Gerard A.; Tang, Baitian

    2011-09-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  16. Subaru Telescope adaptive optics observations of gravitationally lensed quasars in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Rusu, Cristian E.; Oguri, Masamune; Minowa, Yosuke; Iye, Masanori; Inada, Naohisa; Oya, Shin; Kayo, Issha; Hayano, Yutaka; Hattori, Masayuki; Saito, Yoshihiko; Ito, Meguru; Pyo, Tae-Soo; Terada, Hiroshi; Takami, Hideki; Watanabe, Makoto

    2016-05-01

    We present the results of an imaging observation campaign conducted with the Subaru Telescope adaptive optics system (IRCS+AO188) on 28 gravitationally lensed quasars and candidates (23 doubles, 1 quad, 1 possible triple, and 3 candidates) from the SDSS Quasar Lens Search. We develop a novel modelling technique that fits analytical and hybrid point spread functions (PSFs), while simultaneously measuring the relative astrometry, photometry, as well as the lens galaxy morphology. We account for systematics by simulating the observed systems using separately observed PSF stars. The measured relative astrometry is comparable with that typically achieved with the Hubble Space Telescope, even after marginalizing over the PSF uncertainty. We model for the first time the quasar host galaxies in five systems, without a priori knowledge of the PSF, and show that their luminosities follow the known correlation with the mass of the supermassive black hole. For each system, we obtain mass models far more accurate than those previously published from low-resolution data, and we show that in our sample of lensing galaxies the observed light profile is more elliptical than the mass, for ellipticity ≳0.25. We also identify eight doubles for which the sources of external and internal shear are more reliably separated, and should therefore be prioritized in monitoring campaigns aimed at measuring time delays in order to infer the Hubble constant.

  17. The VLBI structure of radio-loud Broad Absorption Line quasars

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, D. R.; Gu, M.

    2016-02-01

    The nature and origin of Broad Absorption Line (BAL) quasars and their relationship to non-BAL quasars are an open question. The BAL quasars are probably normal quasars seen along a particular line of sight. Alternatively, they are young or recently refueled. The high resolution radio morphology of BAL quasars is very important to understand the radio properties of BAL quasars. We present VLBA observations at L and C bands for a sample of BAL quasars. The observations will help us to explore the VLBI radio properties, and distinguish the present models of explaining BAL phenomena.

  18. Definition of the metric on the space clos{sub ∅}(X) of closed subsets of a metric space X and properties of mappings with values in clos{sub ∅}(R{sup n})

    SciTech Connect

    Zhukovskii, E S; Panasenko, E A

    2014-09-30

    The paper is concerned with the extension of tests for superpositional measurability, Filippov's implicit function lemma and the Scorza Dragoni property to set-valued (and, as a corollary, to single-valued) mappings that fail to satisfy the Carathéodory conditions (the upper Carathéodory conditions) and are not continuous (upper semicontinuous) in the phase variable. The corresponding results depend on the introduction of the space clos{sub ∅}(X) of all closed subsets (including the empty set) of an arbitrary metric space X; a metric on clos{sub ∅}(X) is proposed; the space clos{sub ∅}(X) is shown to be complete whenever the original space X is; a criterion for convergence of a sequence is put forward; mappings with values in clos{sub ∅}(X) are studied. Some results on set-valued mappings satisfying the Carathéodory conditions and having compact values in R{sup n} are shown to hold for mappings with values in clos{sub ∅}(R{sup n}), measurable in the first argument, and continuous in the proposed metric in the second argument. Bibliography: 22 titles.

  19. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    SciTech Connect

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R.

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  20. [Life support of the Mars exploration crew. Control of a zeolite system for carbon dioxide removal from space cabin air within a closed air regeneration cycle].

    PubMed

    Chekov, Iu F

    2009-01-01

    The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers.

  1. The effect of substrate temperature on material properties and the device performance of close-spaced sublimation deposited CdTe/CdS devices

    NASA Astrophysics Data System (ADS)

    Li, X.; Albin, D.; Asher, S.; Moutinho, H.; Keyes, B.; Matson, R.; Hasoon, F.; Sheldon, P.

    1996-01-01

    High-efficiency polycrystalline CdS/CdTe solar cells have been fabricated using CdTe absorber layers deposited by close-spaced sublimation (CSS). CSS employs high substrate temperatures (Tsub) during film growth, which can promote the formation of larger grains and higher Voc's yielding better device performance. However, as Tsub increases beyond 610 °C, voids or pinholes begin to form in the CdTe layer. When the back contact is applied, these voids serve as shunt paths that effectively lower Voc. In this fashion, benefits associated with higher substrate temperatures are seriously compromised. Concurrent with voiding is the observation that higher temperatures promote interdiffusion at the CdS/CdTe interface such that the effective thickness of the CdS layer is reduced. Variations in processing that correct for these detrimental effects have led to a total-area device efficiency of 12%.

  2. Exploring Redshifts of Galaxies in the Sightline Towards the z=0.223 Quasar PKS0312-770

    NASA Astrophysics Data System (ADS)

    Giandoni, S. S.; Kobulnicky, H. A.; Prochaska, J.; Hwang, S.; Kiminki, D. C.

    2003-12-01

    The study of quasars and the systems around them is one method of exploring how galaxies are formed and the overall large-scale structure of matter in the universe. Ultraviolet Hubble Space Telescope spectra taken toward the z=0.223 quasar PKS0312-770 have revealed intergalactic absorption lines at redshifts of z=0.2028, z=0.1983, z=1589, and z=0.1575. The purpose of this research was to measure the redshifts of a large number of galaxies in the sightline towards this quasar to search for clusters or groups of galaxies which are responsible for producing absorption lines at these specific redshifts. Redshifts were measured using data from 132 spectra that were taken with the Wide Field Reimaging CCD Camera on the 2.5 m Irènèe du Pont telescope at Las Campanas Observatory on October 30 through November 3, 2002. We detect an excess of galaxies at redshifts of z=0.15, z=0.19, and z=0.20 which may be responsible for the absorption line systems seen in the HST data and we identify probable galaxies associated with these intervening absorbers. We also identify an excess of galaxies near z=0.05 which may indicate a nearby cluster of galaxies which does not produce an absorption signature in the quasar's spectrum.

  3. Outflows of stars due to quasar feedback

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; Nayakshin, Sergei; Sazonov, Sergey; Sunyaev, Rashid

    2013-05-01

    Quasar feedback outflows are commonly invoked to drive gas out of galaxies in the early gas-rich epoch to terminate growth of galaxies. Here we present simulations that show that AGN feedback may drive not only gas but also stars out of their host galaxies under certain conditions. The mechanics of this process is as follows: (1) AGN-driven outflows accelerate and compress gas filling the host galaxy; (2) the accelerated dense shells become gravitationally unstable and form stars on radial trajectories. For the spherically symmetric initial conditions explored here, the black hole needs to exceed the host's Mσ mass by a factor of a few to accelerate the shells and the new stars to escape velocities. We discuss potential implications of these effects for the host galaxies: (i) radial mixing of bulge stars with the rest of the host; (ii) contribution of quasar outflows to galactic fountains as sources of high-velocity clouds; (iii) wholesale ejection of hypervelocity stars out of their hosts, giving rise to Type II supernovae on galactic outskirts, and contributing to reionization and metal enrichment of the Universe; (iv) bulge erosion and even complete destruction in extreme cases resulting in overweight or bulgeless SMBHs.

  4. The EGRET detection of quasar 1633 + 382

    NASA Technical Reports Server (NTRS)

    Mattox, J. R.; Bertsch, D. L.; Chiang, J.; Dingus, B. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.

    1993-01-01

    In the course of a full-sky survey, the EGRET instrument aboard the Compton Observatory detected an intense, high Galactic latitude source, which is identified as the OVV (optically violent variable) quasar 1633 + 382. The spectrum is represented by a power law with an energy spectral index of 0.9 between 30 MeV and 30 GeV. The gamma-ray power per decade is about 100 times larger than typical values at any longer wavelength. Significant variation of the gamma-ray flux density on a time scale as short as two days was observed, limiting the size of the region in which the gamma-rays are produced. Assuming the X-rays detected by the Einstein Observatory from this quasar are produced in the same region as the gamma-rays, and a similar X-ray flux density was extant at the time of the EGRET observation, the emission must be beamed to avoid a pair-production optical depth of 10 exp 4 which would exist otherwise. If beaming arises from bulk relativistic motion, the min