PDEs on moving surfaces via the closest point method and a modified grid based particle method
NASA Astrophysics Data System (ADS)
Petras, A.; Ruuth, S. J.
2016-05-01
Partial differential equations (PDEs) on surfaces arise in a wide range of applications. The closest point method (Ruuth and Merriman (2008) [20]) is a recent embedding method that has been used to solve a variety of PDEs on smooth surfaces using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. The original closest point method (CPM) was designed for problems posed on static surfaces, however the solution of PDEs on moving surfaces is of considerable interest as well. Here we propose solving PDEs on moving surfaces using a combination of the CPM and a modification of the grid based particle method (Leung and Zhao (2009) [12]). The grid based particle method (GBPM) represents and tracks surfaces using meshless particles and an Eulerian reference grid. Our modification of the GBPM introduces a reconstruction step into the original method to ensure that all the grid points within a computational tube surrounding the surface are active. We present a number of examples to illustrate the numerical convergence properties of our combined method. Experiments for advection-diffusion equations that are strongly coupled to the velocity of the surface are also presented.
Du, Shaoyi; Xu, Yiting; Wan, Teng; Hu, Huaizhong; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao
2017-01-01
The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm.
Du, Shaoyi; Xu, Yiting; Wan, Teng; Zhang, Sirui; Xu, Guanglin; Zhang, Xuetao
2017-01-01
The iterative closest point (ICP) algorithm is efficient and accurate for rigid registration but it needs the good initial parameters. It is easily failed when the rotation angle between two point sets is large. To deal with this problem, a new objective function is proposed by introducing a rotation invariant feature based on the Euclidean distance between each point and a global reference point, where the global reference point is a rotation invariant. After that, this optimization problem is solved by a variant of ICP algorithm, which is an iterative method. Firstly, the accurate correspondence is established by using the weighted rotation invariant feature distance and position distance together. Secondly, the rigid transformation is solved by the singular value decomposition method. Thirdly, the weight is adjusted to control the relative contribution of the positions and features. Finally this new algorithm accomplishes the registration by a coarse-to-fine way whatever the initial rotation angle is, which is demonstrated to converge monotonically. The experimental results validate that the proposed algorithm is more accurate and robust compared with the original ICP algorithm. PMID:29176780
Extension of the tridiagonal reduction (FEER) method for complex eigenvalue problems in NASTRAN
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1978-01-01
As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum were extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order was much lower than that of the full size problem. The reduction process was effected automatically, and thus avoided the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admitted mass, damping, and stiffness matrices which were unrestricted in character, i.e., they might be real, symmetric or nonsymmetric, singular or nonsingular.
Billings, Seth D.; Boctor, Emad M.; Taylor, Russell H.
2015-01-01
We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP) algorithm is formed as a variant of the popular Iterative Closest Point (ICP) algorithm, which iterates between point-correspondence and point-registration steps. IMLP’s probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD)-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS) sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP), and Coherent Point Drift (CPD), as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes. PMID:25748700
Identification of stable areas in unreferenced laser scans for automated geomorphometric monitoring
NASA Astrophysics Data System (ADS)
Wujanz, Daniel; Avian, Michael; Krueger, Daniel; Neitzel, Frank
2018-04-01
Current research questions in the field of geomorphology focus on the impact of climate change on several processes subsequently causing natural hazards. Geodetic deformation measurements are a suitable tool to document such geomorphic mechanisms, e.g. by capturing a region of interest with terrestrial laser scanners which results in a so-called 3-D point cloud. The main problem in deformation monitoring is the transformation of 3-D point clouds captured at different points in time (epochs) into a stable reference coordinate system. In this contribution, a surface-based registration methodology is applied, termed the iterative closest proximity algorithm (ICProx), that solely uses point cloud data as input, similar to the iterative closest point algorithm (ICP). The aim of this study is to automatically classify deformations that occurred at a rock glacier and an ice glacier, as well as in a rockfall area. For every case study, two epochs were processed, while the datasets notably differ in terms of geometric characteristics, distribution and magnitude of deformation. In summary, the ICProx algorithm's classification accuracy is 70 % on average in comparison to reference data.
Liu, Wanli
2017-03-08
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.
Index Theory-Based Algorithm for the Gradiometer Inverse Problem
2015-03-28
greatest distance from the center of mass to an equipotential surface occurs when the generating mass of the admissible potential is from two equal point...point on an equipotential surface to the center of mass occurs when the generating mass is contained in an equatorial great circle with the closest...false, it still has practical utility for our purposes. One can also define DC in any Tangent Plane (TP) to the equipotential surface normal to the
GPU surface extraction using the closest point embedding
NASA Astrophysics Data System (ADS)
Kim, Mark; Hansen, Charles
2015-01-01
Isosurface extraction is a fundamental technique used for both surface reconstruction and mesh generation. One method to extract well-formed isosurfaces is a particle system; unfortunately, particle systems can be slow. In this paper, we introduce an enhanced parallel particle system that uses the closest point embedding as the surface representation to speedup the particle system for isosurface extraction. The closest point embedding is used in the Closest Point Method (CPM), a technique that uses a standard three dimensional numerical PDE solver on two dimensional embedded surfaces. To fully take advantage of the closest point embedding, it is coupled with a Barnes-Hut tree code on the GPU. This new technique produces well-formed, conformal unstructured triangular and tetrahedral meshes from labeled multi-material volume datasets. Further, this new parallel implementation of the particle system is faster than any known methods for conformal multi-material mesh extraction. The resulting speed-ups gained in this implementation can reduce the time from labeled data to mesh from hours to minutes and benefits users, such as bioengineers, who employ triangular and tetrahedral meshes
A Stochastic Approach to Path Planning in the Weighted-Region Problem
1991-03-01
polynomial time. However, the polyhedrons in this three-dimensional obstacle-avoidance problem are all obstacles (i.e. travel is not permitted within...them). Therefore, optimal paths tend to avoid their vertices, and settle into closest approach tangents across polyhedron edges. So, in a sense...intersection update map database with new vertex for this edge 3. IF (C1 > D) and (C2 > D) THEN edge intersects ellipse at two points OR edge is
Complex eigenvalue extraction in NASTRAN by the tridiagonal reduction (FEER) method
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1977-01-01
An extension of the Tridiagonal Reduction (FEER) method to complex eigenvalue analysis in NASTRAN is described. As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum are extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order is much lower than that of the full size problem. The reduction process is effected automatically, and thus avoids the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admits mass, damping and stiffness matrices which are unrestricted in character, i.e., they may be real, complex, symmetric or unsymmetric, singular or non-singular.
47 CFR 68.105 - Minimum point of entry (MPOE) and demarcation point.
Code of Federal Regulations, 2010 CFR
2010-10-01
... be either the closest practicable point to where the wiring crosses a property line or the closest practicable point to where the wiring enters a multiunit building or buildings. The reasonable and... situations. (c) Single unit installations. For single unit installations existing as of August 13, 1990, and...
An Efficient Rank Based Approach for Closest String and Closest Substring
2012-01-01
This paper aims to present a new genetic approach that uses rank distance for solving two known NP-hard problems, and to compare rank distance with other distance measures for strings. The two NP-hard problems we are trying to solve are closest string and closest substring. For each problem we build a genetic algorithm and we describe the genetic operations involved. Both genetic algorithms use a fitness function based on rank distance. We compare our algorithms with other genetic algorithms that use different distance measures, such as Hamming distance or Levenshtein distance, on real DNA sequences. Our experiments show that the genetic algorithms based on rank distance have the best results. PMID:22675483
Liu, Wanli
2017-01-01
The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897
The Curvature-Augmented Closest Point method with vesicle inextensibility application
Vogl, Christopher J.
2017-06-06
Here, the Closest Point method, initially developed by Ruuth and Merriman, allows for the numerical solution of surface partial differential equations without the need for a parameterization of the surface itself. Surface quantities are embedded into the surrounding domain by assigning each value at a given spatial location to the corresponding value at the closest point on the surface. This embedding allows for surface derivatives to be replaced by their Cartesian counterparts (e.g. ∇ s=∇). This equivalence is only valid on the surface, and thus, interpolation is used to enforce what is known as the side condition away from themore » surface. To improve upon the method, this work derives an operator embedding that incorporates curvature information, making it valid in a neighborhood of the surface. With this, direct enforcement of the side condition is no longer needed. Comparisons in R 2 and R 3 show that the resulting Curvature-Augmented Closest Point method has better accuracy and requires less memory, through increased matrix sparsity, than the Closest Point method, while maintaining similar matrix condition numbers. To demonstrate the utility of the method in a physical application, simulations of inextensible, bi-lipid vesicles evolving toward equilibrium shapes are also included.« less
An RBF-FD closest point method for solving PDEs on surfaces
NASA Astrophysics Data System (ADS)
Petras, A.; Ling, L.; Ruuth, S. J.
2018-10-01
Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.
An information geometric approach to least squares minimization
NASA Astrophysics Data System (ADS)
Transtrum, Mark; Machta, Benjamin; Sethna, James
2009-03-01
Parameter estimation by nonlinear least squares minimization is a ubiquitous problem that has an elegant geometric interpretation: all possible parameter values induce a manifold embedded within the space of data. The minimization problem is then to find the point on the manifold closest to the origin. The standard algorithm for minimizing sums of squares, the Levenberg-Marquardt algorithm, also has geometric meaning. When the standard algorithm fails to efficiently find accurate fits to the data, geometric considerations suggest improvements. Problems involving large numbers of parameters, such as often arise in biological contexts, are notoriously difficult. We suggest an algorithm based on geodesic motion that may offer improvements over the standard algorithm for a certain class of problems.
Summary Diagrams for Coupled Hydrodynamic-Ecosystem Model Skill Assessment
2009-01-01
reference point have the smallest unbiased RMSD value (Fig. 3). It would appear that the cluster of model points closest to the reference point may...total RMSD values. This is particularly the case for phyto- plankton absorption (Fig. 3B) where the cluster of points closest to the reference...pattern statistics and the bias (difference of mean values) each magnitude of the total Root-Mean-Square Difference ( RMSD ). An alternative skill score and
Distributed Computation of the knn Graph for Large High-Dimensional Point Sets
Plaku, Erion; Kavraki, Lydia E.
2009-01-01
High-dimensional problems arising from robot motion planning, biology, data mining, and geographic information systems often require the computation of k nearest neighbor (knn) graphs. The knn graph of a data set is obtained by connecting each point to its k closest points. As the research in the above-mentioned fields progressively addresses problems of unprecedented complexity, the demand for computing knn graphs based on arbitrary distance metrics and large high-dimensional data sets increases, exceeding resources available to a single machine. In this work we efficiently distribute the computation of knn graphs for clusters of processors with message passing. Extensions to our distributed framework include the computation of graphs based on other proximity queries, such as approximate knn or range queries. Our experiments show nearly linear speedup with over one hundred processors and indicate that similar speedup can be obtained with several hundred processors. PMID:19847318
Feature-based three-dimensional registration for repetitive geometry in machine vision
Gong, Yuanzheng; Seibel, Eric J.
2016-01-01
As an important step in three-dimensional (3D) machine vision, 3D registration is a process of aligning two or multiple 3D point clouds that are collected from different perspectives together into a complete one. The most popular approach to register point clouds is to minimize the difference between these point clouds iteratively by Iterative Closest Point (ICP) algorithm. However, ICP does not work well for repetitive geometries. To solve this problem, a feature-based 3D registration algorithm is proposed to align the point clouds that are generated by vision-based 3D reconstruction. By utilizing texture information of the object and the robustness of image features, 3D correspondences can be retrieved so that the 3D registration of two point clouds is to solve a rigid transformation. The comparison of our method and different ICP algorithms demonstrates that our proposed algorithm is more accurate, efficient and robust for repetitive geometry registration. Moreover, this method can also be used to solve high depth uncertainty problem caused by little camera baseline in vision-based 3D reconstruction. PMID:28286703
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogl, Christopher J.
Here, the Closest Point method, initially developed by Ruuth and Merriman, allows for the numerical solution of surface partial differential equations without the need for a parameterization of the surface itself. Surface quantities are embedded into the surrounding domain by assigning each value at a given spatial location to the corresponding value at the closest point on the surface. This embedding allows for surface derivatives to be replaced by their Cartesian counterparts (e.g. ∇ s=∇). This equivalence is only valid on the surface, and thus, interpolation is used to enforce what is known as the side condition away from themore » surface. To improve upon the method, this work derives an operator embedding that incorporates curvature information, making it valid in a neighborhood of the surface. With this, direct enforcement of the side condition is no longer needed. Comparisons in R 2 and R 3 show that the resulting Curvature-Augmented Closest Point method has better accuracy and requires less memory, through increased matrix sparsity, than the Closest Point method, while maintaining similar matrix condition numbers. To demonstrate the utility of the method in a physical application, simulations of inextensible, bi-lipid vesicles evolving toward equilibrium shapes are also included.« less
A method to approximate a closest loadability limit using multiple load flow solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yorino, Naoto; Harada, Shigemi; Cheng, Haozhong
A new method is proposed to approximate a closest loadability limit (CLL), or closest saddle node bifurcation point, using a pair of multiple load flow solutions. More strictly, the obtainable points by the method are the stationary points including not only CLL but also farthest and saddle points. An operating solution and a low voltage load flow solution are used to efficiently estimate the node injections at a CLL as well as the left and right eigenvectors corresponding to the zero eigenvalue of the load flow Jacobian. They can be used in monitoring loadability margin, in identification of weak spotsmore » in a power system and in the examination of an optimal control against voltage collapse. Most of the computation time of the proposed method is taken in calculating the load flow solution pair. The remaining computation time is less than that of an ordinary load flow.« less
Investigation of deformation at a centrifugal compressor rotor in process of interference on shaft
NASA Astrophysics Data System (ADS)
Shamim, M. R.; Berezhnoi, D. V.
2016-11-01
In this paper, according to the finite element method, we had implemented “master- slave” method of contact interaction in elastic deformable bodies, with consider of the friction in the contact zone. We had compiled the orientation of solving extremum problems with inequality restrictions, projection algorithm, which called “the closest point projection algorithm”. Finally, an example, had brought to show the calculation of the rotor nozzle centrifugal compressor on the shaft with interference.
ERIC Educational Resources Information Center
Yamana, Shukichi
1987-01-01
Illustrates the 29 steps involved in the development of a model of a coordination polyhedron that represents the hexagonal closest packed structure. Points out it is useful in teaching stereochemistry. (TW)
A hybrid metaheuristic for closest string problem.
Mousavi, Sayyed Rasoul
2011-01-01
The Closest String Problem (CSP) is an optimisation problem, which is to obtain a string with the minimum distance from a number of given strings. In this paper, a new metaheuristic algorithm is investigated for the problem, whose main feature is relatively high speed in obtaining good solutions, which is essential when the input size is large. The proposed algorithm is compared with four recent algorithms suggested for the problem, outperforming them in more than 98% of the cases. It is also remarkably faster than all of them, running within 1 s in most of the experimental cases.
Photogrammetric 3d Building Reconstruction from Thermal Images
NASA Astrophysics Data System (ADS)
Maset, E.; Fusiello, A.; Crosilla, F.; Toldo, R.; Zorzetto, D.
2017-08-01
This paper addresses the problem of 3D building reconstruction from thermal infrared (TIR) images. We show that a commercial Computer Vision software can be used to automatically orient sequences of TIR images taken from an Unmanned Aerial Vehicle (UAV) and to generate 3D point clouds, without requiring any GNSS/INS data about position and attitude of the images nor camera calibration parameters. Moreover, we propose a procedure based on Iterative Closest Point (ICP) algorithm to create a model that combines high resolution and geometric accuracy of RGB images with the thermal information deriving from TIR images. The process can be carried out entirely by the aforesaid software in a simple and efficient way.
Generating Broad-Scale Forest Ownership Maps: A Closest-Neighbor Approach
Brett J. Butler
2005-01-01
A closest-neighbor method for producing a forest ownership map using remotely sensed imagery and point-based ownership information is presented for the Northeastern United States. Based on a validation data set, this method had an accuracy rate of 58 percent.
Particle Filtering for Obstacle Tracking in UAS Sense and Avoid Applications
Moccia, Antonio
2014-01-01
Obstacle detection and tracking is a key function for UAS sense and avoid applications. In fact, obstacles in the flight path must be detected and tracked in an accurate and timely manner in order to execute a collision avoidance maneuver in case of collision threat. The most important parameter for the assessment of a collision risk is the Distance at Closest Point of Approach, that is, the predicted minimum distance between own aircraft and intruder for assigned current position and speed. Since assessed methodologies can cause some loss of accuracy due to nonlinearities, advanced filtering methodologies, such as particle filters, can provide more accurate estimates of the target state in case of nonlinear problems, thus improving system performance in terms of collision risk estimation. The paper focuses on algorithm development and performance evaluation for an obstacle tracking system based on a particle filter. The particle filter algorithm was tested in off-line simulations based on data gathered during flight tests. In particular, radar-based tracking was considered in order to evaluate the impact of particle filtering in a single sensor framework. The analysis shows some accuracy improvements in the estimation of Distance at Closest Point of Approach, thus reducing the delay in collision detection. PMID:25105154
30 CFR 285.543 - Example of how the inverse distance formula works.
Code of Federal Regulations, 2011 CFR
2011-07-01
... works. 285.543 Section 285.543 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE RENEWABLE ENERGY ALTERNATE USES OF EXISTING FACILITIES ON THE... project area lies 12 miles from the closest coastline point of State A and 4 miles from the closest...
NASA Astrophysics Data System (ADS)
Schmitt, Oliver; Steinmann, Paul
2018-06-01
We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.
NASA Astrophysics Data System (ADS)
Schmitt, Oliver; Steinmann, Paul
2017-09-01
We introduce a manufacturing constraint for controlling the minimum member size in structural shape optimization problems, which is for example of interest for components fabricated in a molding process. In a parameter-free approach, whereby the coordinates of the FE boundary nodes are used as design variables, the challenging task is to find a generally valid definition for the thickness of non-parametric geometries in terms of their boundary nodes. Therefore we use the medial axis, which is the union of all points with at least two closest points on the boundary of the domain. Since the effort for the exact computation of the medial axis of geometries given by their FE discretization highly increases with the number of surface elements we use the distance function instead to approximate the medial axis by a cloud of points. The approximation is demonstrated on three 2D examples. Moreover, the formulation of a minimum thickness constraint is applied to a sensitivity-based shape optimization problem of one 2D and one 3D model.
He, Ying; Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin
2017-08-11
The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value.
Liang, Bin; Yang, Jun; Li, Shunzhi; He, Jin
2017-01-01
The Iterative Closest Points (ICP) algorithm is the mainstream algorithm used in the process of accurate registration of 3D point cloud data. The algorithm requires a proper initial value and the approximate registration of two point clouds to prevent the algorithm from falling into local extremes, but in the actual point cloud matching process, it is difficult to ensure compliance with this requirement. In this paper, we proposed the ICP algorithm based on point cloud features (GF-ICP). This method uses the geometrical features of the point cloud to be registered, such as curvature, surface normal and point cloud density, to search for the correspondence relationships between two point clouds and introduces the geometric features into the error function to realize the accurate registration of two point clouds. The experimental results showed that the algorithm can improve the convergence speed and the interval of convergence without setting a proper initial value. PMID:28800096
Object recognition and localization from 3D point clouds by maximum-likelihood estimation
NASA Astrophysics Data System (ADS)
Dantanarayana, Harshana G.; Huntley, Jonathan M.
2017-08-01
We present an algorithm based on maximum-likelihood analysis for the automated recognition of objects, and estimation of their pose, from 3D point clouds. Surfaces segmented from depth images are used as the features, unlike `interest point'-based algorithms which normally discard such data. Compared to the 6D Hough transform, it has negligible memory requirements, and is computationally efficient compared to iterative closest point algorithms. The same method is applicable to both the initial recognition/pose estimation problem as well as subsequent pose refinement through appropriate choice of the dispersion of the probability density functions. This single unified approach therefore avoids the usual requirement for different algorithms for these two tasks. In addition to the theoretical description, a simple 2 degrees of freedom (d.f.) example is given, followed by a full 6 d.f. analysis of 3D point cloud data from a cluttered scene acquired by a projected fringe-based scanner, which demonstrated an RMS alignment error as low as 0.3 mm.
Nonrigid iterative closest points for registration of 3D biomedical surfaces
NASA Astrophysics Data System (ADS)
Liang, Luming; Wei, Mingqiang; Szymczak, Andrzej; Petrella, Anthony; Xie, Haoran; Qin, Jing; Wang, Jun; Wang, Fu Lee
2018-01-01
Advanced 3D optical and laser scanners bring new challenges to computer graphics. We present a novel nonrigid surface registration algorithm based on Iterative Closest Point (ICP) method with multiple correspondences. Our method, called the Nonrigid Iterative Closest Points (NICPs), can be applied to surfaces of arbitrary topology. It does not impose any restrictions on the deformation, e.g. rigidity or articulation. Finally, it does not require parametrization of input meshes. Our method is based on an objective function that combines distance and regularization terms. Unlike the standard ICP, the distance term is determined based on multiple two-way correspondences rather than single one-way correspondences between surfaces. A Laplacian-based regularization term is proposed to take full advantage of multiple two-way correspondences. This term regularizes the surface movement by enforcing vertices to move coherently with their 1-ring neighbors. The proposed method achieves good performances when no global pose differences or significant amount of bending exists in the models, for example, families of similar shapes, like human femur and vertebrae models.
An evolving effective stress approach to anisotropic distortional hardening
Lester, B. T.; Scherzinger, W. M.
2018-03-11
A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less
An evolving effective stress approach to anisotropic distortional hardening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, B. T.; Scherzinger, W. M.
A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less
NASA Astrophysics Data System (ADS)
Deng, Dongdong; Jiao, Peifeng; Shou, Guofa; Xia, Ling
2009-10-01
Myocardial electrical excitation propagation is anisotropic, with the most rapid spread of current along the direction of the long axis of the fiber. Fiber orientation is also an important determinant of myocardial mechanics. So myocardial fiber orientations are very important to heart modeling and simulation. Accurately construction of myocardial fiber orientations, however, is still a challenge. The purpose of this paper is to construct a heart geometrical model with myocardial fiber orientations based on CT and 3D laser scanned pictures. The iterative closest points (ICP) algorithms were used to register the fiber orientations with the heart geometry.
The Registration and Segmentation of Heterogeneous Laser Scanning Data
NASA Astrophysics Data System (ADS)
Al-Durgham, Mohannad M.
Light Detection And Ranging (LiDAR) mapping has been emerging over the past few years as a mainstream tool for the dense acquisition of three dimensional point data. Besides the conventional mapping missions, LiDAR systems have proven to be very useful for a wide spectrum of applications such as forestry, structural deformation analysis, urban mapping, and reverse engineering. The wide application scope of LiDAR lead to the development of many laser scanning technologies that are mountable on multiple platforms (i.e., airborne, mobile terrestrial, and tripod mounted), this caused variations in the characteristics and quality of the generated point clouds. As a result of the increased popularity and diversity of laser scanners, one should address the heterogeneous LiDAR data post processing (i.e., registration and segmentation) problems adequately. Current LiDAR integration techniques do not take into account the varying nature of laser scans originating from various platforms. In this dissertation, the author proposes a methodology designed particularly for the registration and segmentation of heterogeneous LiDAR data. A data characterization and filtering step is proposed to populate the points' attributes and remove non-planar LiDAR points. Then, a modified version of the Iterative Closest Point (ICP), denoted by the Iterative Closest Projected Point (ICPP) is designed for the registration of heterogeneous scans to remove any misalignments between overlapping strips. Next, a region-growing-based heterogeneous segmentation algorithm is developed to ensure the proper extraction of planar segments from the point clouds. Validation experiments show that the proposed heterogeneous registration can successfully align airborne and terrestrial datasets despite the great differences in their point density and their noise level. In addition, similar testes have been conducted to examine the heterogeneous segmentation and it is shown that one is able to identify common planar features in airborne and terrestrial data without resampling or manipulating the data in any way. The work presented in this dissertation provides a framework for the registration and segmentation of airborne and terrestrial laser scans which has a positive impact on the completeness of the scanned feature. Therefore, the derived products from these point clouds have higher accuracy as seen in the full manuscript.
NASA Astrophysics Data System (ADS)
Wang, Lusheng; Yang, Yong; Lin, Guohui
Finding the closest object for a query in a database is a classical problem in computer science. For some modern biological applications, computing the similarity between two objects might be very time consuming. For example, it takes a long time to compute the edit distance between two whole chromosomes and the alignment cost of two 3D protein structures. In this paper, we study the nearest neighbor search problem in metric space, where the pair-wise distance between two objects in the database is known and we want to minimize the number of distances computed on-line between the query and objects in the database in order to find the closest object. We have designed two randomized approaches for indexing metric space databases, where objects are purely described by their distances with each other. Analysis and experiments show that our approaches only need to compute O(logn) objects in order to find the closest object, where n is the total number of objects in the database.
Automatic extraction of the mid-sagittal plane using an ICP variant
NASA Astrophysics Data System (ADS)
Fieten, Lorenz; Eschweiler, Jörg; de la Fuente, Matías; Gravius, Sascha; Radermacher, Klaus
2008-03-01
Precise knowledge of the mid-sagittal plane is important for the assessment and correction of several deformities. Furthermore, the mid-sagittal plane can be used for the definition of standardized coordinate systems such as pelvis or skull coordinate systems. A popular approach for mid-sagittal plane computation is based on the selection of anatomical landmarks located either directly on the plane or symmetrically to it. However, the manual selection of landmarks is a tedious, time-consuming and error-prone task, which requires great care. In order to overcome this drawback, previously it was suggested to use the iterative closest point (ICP) algorithm: After an initial mirroring of the data points on a default mirror plane, the mirrored data points should be registered iteratively to the model points using rigid transforms. Finally, a reflection transform approximating the cumulative transform could be extracted. In this work, we present an ICP variant for the iterative optimization of the reflection parameters. It is based on a closed-form solution to the least-squares problem of matching data points to model points using a reflection. In experiments on CT pelvis and skull datasets our method showed a better ability to match homologous areas.
Secure and Efficient k-NN Queries⋆
Asif, Hafiz; Vaidya, Jaideep; Shafiq, Basit; Adam, Nabil
2017-01-01
Given the morass of available data, ranking and best match queries are often used to find records of interest. As such, k-NN queries, which give the k closest matches to a query point, are of particular interest, and have many applications. We study this problem in the context of the financial sector, wherein an investment portfolio database is queried for matching portfolios. Given the sensitivity of the information involved, our key contribution is to develop a secure k-NN computation protocol that can enable the computation k-NN queries in a distributed multi-party environment while taking domain semantics into account. The experimental results show that the proposed protocols are extremely efficient. PMID:29218333
Bidirectional Elastic Image Registration Using B-Spline Affine Transformation
Gu, Suicheng; Meng, Xin; Sciurba, Frank C.; Wang, Chen; Kaminski, Naftali; Pu, Jiantao
2014-01-01
A registration scheme termed as B-spline affine transformation (BSAT) is presented in this study to elastically align two images. We define an affine transformation instead of the traditional translation at each control point. Mathematically, BSAT is a generalized form of the affine transformation and the traditional B-Spline transformation (BST). In order to improve the performance of the iterative closest point (ICP) method in registering two homologous shapes but with large deformation, a bi-directional instead of the traditional unidirectional objective / cost function is proposed. In implementation, the objective function is formulated as a sparse linear equation problem, and a sub-division strategy is used to achieve a reasonable efficiency in registration. The performance of the developed scheme was assessed using both two-dimensional (2D) synthesized dataset and three-dimensional (3D) volumetric computed tomography (CT) data. Our experiments showed that the proposed B-spline affine model could obtain reasonable registration accuracy. PMID:24530210
A spacecraft attitude and articulation control system design for the Comet Halley intercept mission
NASA Technical Reports Server (NTRS)
Key, R. W.
1981-01-01
An attitude and articulation control system design for the Comet Halley 1986 intercept mission is presented. A spacecraft dynamics model consisting of five hinge-connected rigid bodies is used to analyze the spacecraft attitude and articulation control system performance. Inertial and optical information are combined to generate scan platform pointing commands. The comprehensive spacecraft model has been developed into a digital computer simulation program, which provides performance characteristics and insight pertaining to the control and dynamics of a Halley Intercept spacecraft. It is shown that scan platform pointing error has a maximum value of 1.8 milliradians during the four minute closest approach interval. It is also shown that the jitter or scan platform pointing rate error would have a maximum value of 2.5 milliradians/second for the nominal 1000 km closest approach distance trajectory and associated environment model.
Application of Second-Moment Source Analysis to Three Problems in Earthquake Forecasting
NASA Astrophysics Data System (ADS)
Donovan, J.; Jordan, T. H.
2011-12-01
Though earthquake forecasting models have often represented seismic sources as space-time points (usually hypocenters), a more complete hazard analysis requires the consideration of finite-source effects, such as rupture extent, orientation, directivity, and stress drop. The most compact source representation that includes these effects is the finite moment tensor (FMT), which approximates the degree-two polynomial moments of the stress glut by its projection onto the seismic (degree-zero) moment tensor. This projection yields a scalar space-time source function whose degree-one moments define the centroid moment tensor (CMT) and whose degree-two moments define the FMT. We apply this finite-source parameterization to three forecasting problems. The first is the question of hypocenter bias: can we reject the null hypothesis that the conditional probability of hypocenter location is uniformly distributed over the rupture area? This hypothesis is currently used to specify rupture sets in the "extended" earthquake forecasts that drive simulation-based hazard models, such as CyberShake. Following McGuire et al. (2002), we test the hypothesis using the distribution of FMT directivity ratios calculated from a global data set of source slip inversions. The second is the question of source identification: given an observed FMT (and its errors), can we identify it with an FMT in the complete rupture set that represents an extended fault-based rupture forecast? Solving this problem will facilitate operational earthquake forecasting, which requires the rapid updating of earthquake triggering and clustering models. Our proposed method uses the second-order uncertainties as a norm on the FMT parameter space to identify the closest member of the hypothetical rupture set and to test whether this closest member is an adequate representation of the observed event. Finally, we address the aftershock excitation problem: given a mainshock, what is the spatial distribution of aftershock probabilities? The FMT representation allows us to generalize the models typically used for this purpose (e.g., marked point process models, such as ETAS), which will again be necessary in operational earthquake forecasting. To quantify aftershock probabilities, we compare mainshock FMTs with the first and second spatial moments of weighted aftershock hypocenters. We will describe applications of these results to the Uniform California Earthquake Rupture Forecast, version 3, which is now under development by the Working Group on California Earthquake Probabilities.
Farrow, Lutul D; Parker, Richard D
2010-06-01
Anatomic reconstruction of the anterior cruciate ligament through an accessory medial portal has become increasingly popular. The purpose of this study is to describe the relationship of guide pin exit points to the lateral anatomic structures when preparing the anterior cruciate ligament femoral tunnel through an accessory medial portal. We utilized seven fresh frozen cadaveric knees. Utilizing an anteromedial approach, a guide wire was placed into the center of each bundle's footprint. Each guide wire was advanced through the lateral femoral cortex. The guide pins were passed at 90, 110, and 130 degrees of knee flexion. The distances from each guide pin to the closest relevant structures on the lateral side of the knee were measured. At 90 degrees the posterolateral bundle guide pin was closest to the lateral condyle articular cartilage (mean 5.4 +/- 2.2 mm) and gastrocnemius tendon (mean 5.7 +/- 2.1 mm). At 110 degrees the posterolateral bundle pin was closest to the gastrocnemius tendon (mean 4.5 +/- 3.4 mm). At 130 degrees the posterolateral bundle pin was closest to the gastrocnemius tendon (mean 7.2 +/- 5.5 mm) and lateral collateral ligament (mean 6.8 +/- 2.1 mm). At 90 degrees the anteromedial bundle guide pin was closest to the articular cartilage (mean 2.0 +/- 2.0 mm). At 110 degrees the anteromedial bundle pin was closest to the articular cartilage (mean 7.4 +/- 3.5 mm) and gastrocnemius tendon (mean 12.3 +/- 3.1 mm). At 130 degrees the AM bundle pin was closest to the gastrocnemius tendon (mean 8.2 +/- 3.2 mm) and LCL (mean 15.1 +/- 2.9 mm). Neither guide pin (anteromedial or posterolateral bundle) put the peroneal nerve at risk at any knee flexion angle. At low knee flexion angles the anteromedial and posterolateral bundle guide pins closely approximated multiple lateral structures when using an accessory medial arthroscopic portal. Utilizing higher flexion angles increases the margin of error when preparing both femoral tunnels. During preparation of the anterior cruciate ligament femoral tunnel through an accessory anteromedial portal the tunnels should be drilled in at least 110 degrees of knee flexion in order to move guide pin exit points away from important lateral knee structures.
NASA Astrophysics Data System (ADS)
Delmelle, Eric M.; Thill, Jean-Claude; Peeters, Dominique; Thomas, Isabelle
2014-07-01
In rapidly growing urban areas, it is deemed vital to expand (or contract) an existing network of public facilities to meet anticipated changes in the level of demand. We present a multi-period capacitated median model for school network facility location planning that minimizes transportation costs, while functional costs are subject to a budget constraint. The proposed Vintage Flexible Capacitated Location Problem (ViFCLP) has the flexibility to account for a minimum school-age closing requirement, while the maximum capacity of each school can be adjusted by the addition of modular units. Non-closest assignments are controlled by the introduction of a parameter penalizing excess travel. The applicability of the ViFCLP is illustrated on a large US school system (Charlotte-Mecklenburg, North Carolina) where high school demand is expected to grow faster with distance to the city center. Higher school capacities and greater penalty on travel impedance parameter reduce the number of non-closest assignments. The proposed model is beneficial to policy makers seeking to improve the provision and efficiency of public services over a multi-period planning horizon.
Direct endoscopic video registration for sinus surgery
NASA Astrophysics Data System (ADS)
Mirota, Daniel; Taylor, Russell H.; Ishii, Masaru; Hager, Gregory D.
2009-02-01
Advances in computer vision have made possible robust 3D reconstruction of monocular endoscopic video. These reconstructions accurately represent the visible anatomy and, once registered to pre-operative CT data, enable a navigation system to track directly through video eliminating the need for an external tracking system. Video registration provides the means for a direct interface between an endoscope and a navigation system and allows a shorter chain of rigid-body transformations to be used to solve the patient/navigation-system registration. To solve this registration step we propose a new 3D-3D registration algorithm based on Trimmed Iterative Closest Point (TrICP)1 and the z-buffer algorithm.2 The algorithm takes as input a 3D point cloud of relative scale with the origin at the camera center, an isosurface from the CT, and an initial guess of the scale and location. Our algorithm utilizes only the visible polygons of the isosurface from the current camera location during each iteration to minimize the search area of the target region and robustly reject outliers of the reconstruction. We present example registrations in the sinus passage applicable to both sinus surgery and transnasal surgery. To evaluate our algorithm's performance we compare it to registration via Optotrak and present closest distance point to surface error. We show our algorithm has a mean closest distance error of .2268mm.
Target matching based on multi-view tracking
NASA Astrophysics Data System (ADS)
Liu, Yahui; Zhou, Changsheng
2011-01-01
A feature matching method is proposed based on Maximally Stable Extremal Regions (MSER) and Scale Invariant Feature Transform (SIFT) to solve the problem of the same target matching in multiple cameras. Target foreground is extracted by using frame difference twice and bounding box which is regarded as target regions is calculated. Extremal regions are got by MSER. After fitted into elliptical regions, those regions will be normalized into unity circles and represented with SIFT descriptors. Initial matching is obtained from the ratio of the closest distance to second distance less than some threshold and outlier points are eliminated in terms of RANSAC. Experimental results indicate the method can reduce computational complexity effectively and is also adapt to affine transformation, rotation, scale and illumination.
Point Cloud Based Relative Pose Estimation of a Satellite in Close Range
Liu, Lujiang; Zhao, Gaopeng; Bo, Yuming
2016-01-01
Determination of the relative pose of satellites is essential in space rendezvous operations and on-orbit servicing missions. The key problems are the adoption of suitable sensor on board of a chaser and efficient techniques for pose estimation. This paper aims to estimate the pose of a target satellite in close range on the basis of its known model by using point cloud data generated by a flash LIDAR sensor. A novel model based pose estimation method is proposed; it includes a fast and reliable pose initial acquisition method based on global optimal searching by processing the dense point cloud data directly, and a pose tracking method based on Iterative Closest Point algorithm. Also, a simulation system is presented in this paper in order to evaluate the performance of the sensor and generate simulated sensor point cloud data. It also provides truth pose of the test target so that the pose estimation error can be quantified. To investigate the effectiveness of the proposed approach and achievable pose accuracy, numerical simulation experiments are performed; results demonstrate algorithm capability of operating with point cloud directly and large pose variations. Also, a field testing experiment is conducted and results show that the proposed method is effective. PMID:27271633
A portable foot-parameter-extracting system
NASA Astrophysics Data System (ADS)
Zhang, MingKai; Liang, Jin; Li, Wenpan; Liu, Shifan
2016-03-01
In order to solve the problem of automatic foot measurement in garment customization, a new automatic footparameter- extracting system based on stereo vision, photogrammetry and heterodyne multiple frequency phase shift technology is proposed and implemented. The key technologies applied in the system are studied, including calibration of projector, alignment of point clouds, and foot measurement. Firstly, a new projector calibration algorithm based on plane model has been put forward to get the initial calibration parameters and a feature point detection scheme of calibration board image is developed. Then, an almost perfect match of two clouds is achieved by performing a first alignment using the Sampled Consensus - Initial Alignment algorithm (SAC-IA) and refining the alignment using the Iterative Closest Point algorithm (ICP). Finally, the approaches used for foot-parameterextracting and the system scheme are presented in detail. Experimental results show that the RMS error of the calibration result is 0.03 pixel and the foot parameter extracting experiment shows the feasibility of the extracting algorithm. Compared with the traditional measurement method, the system can be more portable, accurate and robust.
An atomistic geometrical model of the B-DNA configuration for DNA-radiation interaction simulations
NASA Astrophysics Data System (ADS)
Bernal, M. A.; Sikansi, D.; Cavalcante, F.; Incerti, S.; Champion, C.; Ivanchenko, V.; Francis, Z.
2013-12-01
In this paper, an atomistic geometrical model for the B-DNA configuration is explained. This model accounts for five organization levels of the DNA, up to the 30 nm chromatin fiber. However, fragments of this fiber can be used to construct the whole genome. The algorithm developed in this work is capable to determine which is the closest atom with respect to an arbitrary point in space. It can be used in any application in which a DNA geometrical model is needed, for instance, in investigations related to the effects of ionizing radiations on the human genetic material. Successful consistency checks were carried out to test the proposed model. Catalogue identifier: AEPZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPZ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1245 No. of bytes in distributed program, including test data, etc.: 6574 Distribution format: tar.gz Programming language: FORTRAN. Computer: Any. Operating system: Multi-platform. RAM: 2 Gb Classification: 3. Nature of problem: The Monte Carlo method is used to simulate the interaction of ionizing radiation with the human genetic material in order to determine DNA damage yields per unit absorbed dose. To accomplish this task, an algorithm to determine if a given energy deposition lies within a given target is needed. This target can be an atom or any other structure of the genetic material. Solution method: This is a stand-alone subroutine describing an atomic-resolution geometrical model of the B-DNA configuration. It is able to determine the closest atom to an arbitrary point in space. This model accounts for five organization levels of the human genetic material, from the nucleotide pair up to the 30 nm chromatin fiber. This subroutine carries out a series of coordinate transformations to find which is the closest atom containing an arbitrary point in space. Atom sizes are according to the corresponding van der Waals radii. Restrictions: The geometrical model presented here does not include the chromosome organization level but it could be easily build up by using fragments of the 30 nm chromatin fiber. Unusual features: To our knowledge, this is the first open source atomic-resolution DNA geometrical model developed for DNA-radiation interaction Monte Carlo simulations. In our tests, the current model took into account the explicit position of about 56×106 atoms, although the user may enhance this amount according to the necessities. Running time: This subroutine can process about 2 million points within a few minutes in a typical current computer.
NASA Astrophysics Data System (ADS)
Casasent, David P.; Shenoy, Rajesh
1997-10-01
Classification and pose estimation of distorted input objects are considered. The feature space trajectory representation of distorted views of an object is used with a new eigenfeature space. For a distorted input object, the closest trajectory denotes the class of the input and the closest line segment on it denotes its pose. If an input point is too far from a trajectory, it is rejected as clutter. New methods for selecting Fukunaga-Koontz discriminant vectors, the number of dominant eigenvectors per class and for determining training, and test set compatibility are presented.
40 CFR 60.613 - Monitoring of emissions and operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Air Oxidation Unit Processes § 60.613 Monitoring of emissions and operations. (a) The owner or... from each air oxidation reactor within an affected facility at a point closest to the inlet of each...
40 CFR 60.613 - Monitoring of emissions and operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Air Oxidation Unit Processes § 60.613 Monitoring of emissions and operations. (a) The owner or... from each air oxidation reactor within an affected facility at a point closest to the inlet of each...
40 CFR 60.613 - Monitoring of emissions and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Air Oxidation Unit Processes § 60.613 Monitoring of emissions and operations. (a) The owner or... from each air oxidation reactor within an affected facility at a point closest to the inlet of each...
NASA Astrophysics Data System (ADS)
Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo
2014-02-01
In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.
Retinal biometrics based on Iterative Closest Point algorithm.
Hatanaka, Yuji; Tajima, Mikiya; Kawasaki, Ryo; Saito, Koko; Ogohara, Kazunori; Muramatsu, Chisako; Sunayama, Wataru; Fujita, Hiroshi
2017-07-01
The pattern of blood vessels in the eye is unique to each person because it rarely changes over time. Therefore, it is well known that retinal blood vessels are useful for biometrics. This paper describes a biometrics method using the Jaccard similarity coefficient (JSC) based on blood vessel regions in retinal image pairs. The retinal image pairs were rough matched by the center of their optic discs. Moreover, the image pairs were aligned using the Iterative Closest Point algorithm based on detailed blood vessel skeletons. For registration, perspective transform was applied to the retinal images. Finally, the pairs were classified as either correct or incorrect using the JSC of the blood vessel region in the image pairs. The proposed method was applied to temporal retinal images, which were obtained in 2009 (695 images) and 2013 (87 images). The 87 images acquired in 2013 were all from persons already examined in 2009. The accuracy of the proposed method reached 100%.
NASA Technical Reports Server (NTRS)
Schubert, G.; Anderson, J. D.; Jacobson, R. A.; Lau, E. L.; Moore, W. B.; Palguta, J.
2004-01-01
Radio Doppler data from two Ganymede encounters (G1 and G2) on the first two orbits in the Galileo mission have been analyzed previously for gravity information . For a satellite in hydrostatic equilibrium, its gravitational field can be modeled adequately by a truncated spherical harmonic series of degree two. However, a fourth degree field is required in order to fit the second Galileo flyby (G2). This need for a higher degree field strongly suggests that Ganymede s gravitational field is perturbed by a gravity anomaly near the G2 closest approach point (79.29 latitude, 123.68 west longitude). In fact, a plot of the Doppler residuals , after removal of the best-fit model for the zero degree term (GM) and the second degree moments (J2 and C22), suggests that if an anomaly exists, it is located downtrack of the closest approach point, closer to the equator.
The power of social structure: how we became an intelligent lineage
NASA Astrophysics Data System (ADS)
de Sousa António, Marina Resendes; Schulze-Makuch, Dirk
2011-01-01
New findings pertinent to the human lineage origin (Ardipithecus ramidus) prompt a new analysis of the extrapolation of the social behavior of our closest relatives, the great apes, into human ‘natural social behavior’. With the new findings it becomes clear that human ancestors had very divergent social arrangements from the ones we observe today in our closest genetic relatives. The social structure of chimpanzees and gorillas is characterized by male competition. Aggression and the instigation of fear are common place. The morphology of A. ramidus points in the direction of a social system characterized by female-choice instead of male-male competition. This system tends to be characterized by reduced aggression levels, leading to more stable arrangements. It is postulated here that the social stability with accompanying group cohesion propitiated by this setting is favorable to the investment in more complex behaviors, the development of innovative approaches to solve familiar problems, an increase in exploratory behavior, and eventually higher intelligence and the use of sophisticated tools and technology. The concentration of research efforts into the study of social animals with similar social systems (e.g., New World social monkeys (Callitrichidae), social canids (Canidae) and social rodents (Rodentia)) are likely to provide new insights into the understanding of what factors determined our evolution into an intelligent species capable of advanced technology.
Air development update: AIR-902A
DOT National Transportation Integrated Search
2015-05-04
This document describes a practical system to determine the observer-to-aircraft closest point of approach (CPA) distance during acoustic flyby tests. The system uses a digital camera to record an image of the test aircraft. A method converting the i...
Pace's Maxims for Homegrown Library Projects. Coming Full Circle
ERIC Educational Resources Information Center
Pace, Andrew K.
2005-01-01
This article discusses six maxims by which to run library automation. The following maxims are discussed: (1) Solve only known problems; (2) Avoid changing data to fix display problems; (3) Aut viam inveniam aut faciam; (4) If you cannot make it yourself, buy something; (5) Kill the alligator closest to the boat; and (6) Just because yours is…
Obstacle avoidance for redundant robots using configuration control
NASA Technical Reports Server (NTRS)
Seraji, Homayoun (Inventor); Colbaugh, Richard D. (Inventor); Glass, Kristin L. (Inventor)
1992-01-01
A redundant robot control scheme is provided for avoiding obstacles in a workspace during the motion of an end effector along a preselected trajectory by stopping motion of the critical point on the robot closest to the obstacle when the distance between is reduced to a predetermined sphere of influence surrounding the obstacle. Algorithms are provided for conveniently determining the critical point and critical distance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicable leased tract and, using the great circle distance method, will determine the closest distance from... total, over all applicable leased tracts, the mathematical inverses of the distances between the points...
Exploring biomedical ontology mappings with graph theory methods.
Kocbek, Simon; Kim, Jin-Dong
2017-01-01
In the era of semantic web, life science ontologies play an important role in tasks such as annotating biological objects, linking relevant data pieces, and verifying data consistency. Understanding ontology structures and overlapping ontologies is essential for tasks such as ontology reuse and development. We present an exploratory study where we examine structure and look for patterns in BioPortal, a comprehensive publicly available repository of live science ontologies. We report an analysis of biomedical ontology mapping data over time. We apply graph theory methods such as Modularity Analysis and Betweenness Centrality to analyse data gathered at five different time points. We identify communities, i.e., sets of overlapping ontologies, and define similar and closest communities. We demonstrate evolution of identified communities over time and identify core ontologies of the closest communities. We use BioPortal project and category data to measure community coherence. We also validate identified communities with their mutual mentions in scientific literature. With comparing mapping data gathered at five different time points, we identified similar and closest communities of overlapping ontologies, and demonstrated evolution of communities over time. Results showed that anatomy and health ontologies tend to form more isolated communities compared to other categories. We also showed that communities contain all or the majority of ontologies being used in narrower projects. In addition, we identified major changes in mapping data after migration to BioPortal Version 4.
A Well-Clear Volume Based on Time to Entry Point
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony J.; Munoz, Cesar A.; Upchurch, Jason M.; Chamberlain, James P.; Consiglio, Maria C.
2014-01-01
A well-clear volume is a key component of NASA's Separation Assurance concept for the integration of UAS in the NAS. This paper proposes a mathematical definition of the well-clear volume that uses, in addition to distance thresholds, a time threshold based on time to entry point (TEP). The mathematical model that results from this definition is more conservative than other candidate definitions of the wellclear volume that are based on range over closure rate and time to closest point of approach.
ERIC Educational Resources Information Center
Modry-Mandell, Kerri L.; Gamble, Wendy C.; Taylor, Angela R.
2007-01-01
We examined the impact of family emotional climate and sibling relationship quality on behavioral problems and adaptation in preschool-aged children. Participants were 63 mothers with a preschool-aged child enrolled in a Southern Arizona Head Start Program. Siblings were identified as children closest in age to target child. Mothers of…
Liang, Tengfei; Li, Qi; Ye, Wenjing
2013-07-01
A systematic study on the performance of two empirical gas-wall interaction models, the Maxwell model and the Cercignani-Lampis (CL) model, in the entire Knudsen range is conducted. The models are evaluated by examining the accuracy of key macroscopic quantities such as temperature, density, and pressure, in three benchmark thermal problems, namely the Fourier thermal problem, the Knudsen force problem, and the thermal transpiration problem. The reference solutions are obtained from a validated hybrid DSMC-MD algorithm developed in-house. It has been found that while both models predict temperature and density reasonably well in the Fourier thermal problem, the pressure profile obtained from Maxwell model exhibits a trend that opposes that from the reference solution. As a consequence, the Maxwell model is unable to predict the orientation change of the Knudsen force acting on a cold cylinder embedded in a hot cylindrical enclosure at a certain Knudsen number. In the simulation of the thermal transpiration coefficient, although all three models overestimate the coefficient, the coefficient obtained from CL model is the closest to the reference solution. The Maxwell model performs the worst. The cause of the overestimated coefficient is investigated and its link to the overly constrained correlation between the tangential momentum accommodation coefficient and the tangential energy accommodation coefficient inherent in the models is pointed out. Directions for further improvement of models are suggested.
1990-02-14
Range : 1.4 to 2 million miles These are enhanced versions of four views of Venus taken by Galileo's Solid State Imaging System. The pictures in the top row were taken about 4 and 5 days after closest approach, and those in the bottom row 6 days after closest approach, 2 hours apart. These show the faint Venusian cloud features vary clearly. A high-pass filter way applied to bring out broader global variations in tone. The bright polar hoods are a well-known feature of Venus. Of particular interest to planetary atmospheric scientists are the complex cloud patterns near the equator, in the vicinity of the bright subsolar point, where convection is most prevalent.
Environmental Monitoring Networks Optimization Using Advanced Active Learning Algorithms
NASA Astrophysics Data System (ADS)
Kanevski, Mikhail; Volpi, Michele; Copa, Loris
2010-05-01
The problem of environmental monitoring networks optimization (MNO) belongs to one of the basic and fundamental tasks in spatio-temporal data collection, analysis, and modeling. There are several approaches to this problem, which can be considered as a design or redesign of monitoring network by applying some optimization criteria. The most developed and widespread methods are based on geostatistics (family of kriging models, conditional stochastic simulations). In geostatistics the variance is mainly used as an optimization criterion which has some advantages and drawbacks. In the present research we study an application of advanced techniques following from the statistical learning theory (SLT) - support vector machines (SVM) and the optimization of monitoring networks when dealing with a classification problem (data are discrete values/classes: hydrogeological units, soil types, pollution decision levels, etc.) is considered. SVM is a universal nonlinear modeling tool for classification problems in high dimensional spaces. The SVM solution is maximizing the decision boundary between classes and has a good generalization property for noisy data. The sparse solution of SVM is based on support vectors - data which contribute to the solution with nonzero weights. Fundamentally the MNO for classification problems can be considered as a task of selecting new measurement points which increase the quality of spatial classification and reduce the testing error (error on new independent measurements). In SLT this is a typical problem of active learning - a selection of the new unlabelled points which efficiently reduce the testing error. A classical approach (margin sampling) to active learning is to sample the points closest to the classification boundary. This solution is suboptimal when points (or generally the dataset) are redundant for the same class. In the present research we propose and study two new advanced methods of active learning adapted to the solution of MNO problem: 1) hierarchical top-down clustering in an input space in order to remove redundancy when data are clustered, and 2) a general method (independent on classifier) which gives posterior probabilities that can be used to define the classifier confidence and corresponding proposals for new measurement points. The basic ideas and procedures are explained by applying simulated data sets. The real case study deals with the analysis and mapping of soil types, which is a multi-class classification problem. Maps of soil types are important for the analysis and 3D modeling of heavy metals migration in soil and prediction risk mapping. The results obtained demonstrate the high quality of SVM mapping and efficiency of monitoring network optimization by using active learning approaches. The research was partly supported by SNSF projects No. 200021-126505 and 200020-121835.
Beyond learning fixed rules and social cues: abstraction in the social arena.
Call, Joseph
2003-01-01
Abstraction is a central idea in many areas of physical comparative cognition such as categorization, numerical competence or problem solving. This idea, however, has rarely been applied to comparative social cognition. In this paper, I propose that the notion of abstraction can be applied to the social arena and become an important tool to investigate the social cognition and behaviour processes in animals. To make this point, I present recent evidence showing that chimpanzees know about what others can see and about what others intend. These data do not fit either low-level mechanisms based on stimulus-response associations or high-level explanations based on metarepresentational mechanisms such as false belief attribution. Instead, I argue that social abstraction, in particular the development of concepts such as seeing in others, is key to explaining the behaviour of our closest relative in a variety of situations. PMID:12903652
Enhanced ICP for the Registration of Large-Scale 3D Environment Models: An Experimental Study
Han, Jianda; Yin, Peng; He, Yuqing; Gu, Feng
2016-01-01
One of the main applications of mobile robots is the large-scale perception of the outdoor environment. One of the main challenges of this application is fusing environmental data obtained by multiple robots, especially heterogeneous robots. This paper proposes an enhanced iterative closest point (ICP) method for the fast and accurate registration of 3D environmental models. First, a hierarchical searching scheme is combined with the octree-based ICP algorithm. Second, an early-warning mechanism is used to perceive the local minimum problem. Third, a heuristic escape scheme based on sampled potential transformation vectors is used to avoid local minima and achieve optimal registration. Experiments involving one unmanned aerial vehicle and one unmanned surface vehicle were conducted to verify the proposed technique. The experimental results were compared with those of normal ICP registration algorithms to demonstrate the superior performance of the proposed method. PMID:26891298
Beating-heart registration for organ-mounted robots.
Wood, Nathan A; Schwartzman, David; Passineau, Michael J; Moraca, Robert J; Zenati, Marco A; Riviere, Cameron N
2018-03-06
Organ-mounted robots address the problem of beating-heart surgery by adhering to the heart, passively providing a platform that approaches zero relative motion. Because of the quasi-periodic deformation of the heart due to heartbeat and respiration, registration must address not only spatial registration but also temporal registration. Motion data were collected in the porcine model in vivo (N = 6). Fourier series models of heart motion were developed. By comparing registrations generated using an iterative closest-point approach at different phases of respiration, the phase corresponding to minimum registration distance is identified. The spatiotemporal registration technique presented here reduces registration error by an average of 4.2 mm over the 6 trials, in comparison with a more simplistic static registration that merely averages out the physiological motion. An empirical metric for spatiotemporal registration of organ-mounted robots is defined and demonstrated using data from animal models in vivo. Copyright © 2018 John Wiley & Sons, Ltd.
Two-stage color palettization for error diffusion
NASA Astrophysics Data System (ADS)
Mitra, Niloy J.; Gupta, Maya R.
2002-06-01
Image-adaptive color palettization chooses a decreased number of colors to represent an image. Palettization is one way to decrease storage and memory requirements for low-end displays. Palettization is generally approached as a clustering problem, where one attempts to find the k palette colors that minimize the average distortion for all the colors in an image. This would be the optimal approach if the image was to be displayed with each pixel quantized to the closest palette color. However, to improve the image quality the palettization may be followed by error diffusion. In this work, we propose a two-stage palettization where the first stage finds some m << k clusters, and the second stage chooses palette points that cover the spread of each of the M clusters. After error diffusion, this method leads to better image quality at less computational cost and with faster display speed than full k-means palettization.
NASA Astrophysics Data System (ADS)
Oniga, E.
2012-07-01
The result of the terrestrial laser scanning is an impressive number of spatial points, each of them being characterized as position by the X, Y and Z co-ordinates, by the value of the laser reflectance and their real color, expressed as RGB (Red, Green, Blue) values. The color code for each LIDAR point is taken from the georeferenced digital images, taken with a high resolution panoramic camera incorporated in the scanner system. In this article I propose a new algorithm for the semiautomatic texture generation, using the color information, the RGB values of every point that has been taken by terrestrial laser scanning technology and the 3D surfaces defining the buildings facades, generated with the Leica Cyclone software. The first step is when the operator defines the limiting value, i.e. the minimum distance between a point and the closest surface. The second step consists in calculating the distances, or the perpendiculars drawn from each point to the closest surface. In the third step we associate the points whose 3D coordinates are known, to every surface, depending on the limiting value. The fourth step consists in computing the Voronoi diagram for the points that belong to a surface. The final step brings automatic association between the RGB value of the color code and the corresponding polygon of the Voronoi diagram. The advantage of using this algorithm is that we can obtain, in a semi-automatic manner, a photorealistic 3D model of the building.
Validation of non-rigid point-set registration methods using a porcine bladder pelvic phantom
NASA Astrophysics Data System (ADS)
Zakariaee, Roja; Hamarneh, Ghassan; Brown, Colin J.; Spadinger, Ingrid
2016-01-01
The problem of accurate dose accumulation in fractionated radiotherapy treatment for highly deformable organs, such as bladder, has garnered increasing interest over the past few years. However, more research is required in order to find a robust and efficient solution and to increase the accuracy over the current methods. The purpose of this study was to evaluate the feasibility and accuracy of utilizing non-rigid (affine or deformable) point-set registration in accumulating dose in bladder of different sizes and shapes. A pelvic phantom was built to house an ex vivo porcine bladder with fiducial landmarks adhered onto its surface. Four different volume fillings of the bladder were used (90, 180, 360 and 480 cc). The performance of MATLAB implementations of five different methods were compared, in aligning the bladder contour point-sets. The approaches evaluated were coherent point drift (CPD), gaussian mixture model, shape context, thin-plate spline robust point matching (TPS-RPM) and finite iterative closest point (ICP-finite). The evaluation metrics included registration runtime, target registration error (TRE), root-mean-square error (RMS) and Hausdorff distance (HD). The reference (source) dataset was alternated through all four points-sets, in order to study the effect of reference volume on the registration outcomes. While all deformable algorithms provided reasonable registration results, CPD provided the best TRE values (6.4 mm), and TPS-RPM yielded the best mean RMS and HD values (1.4 and 6.8 mm, respectively). ICP-finite was the fastest technique and TPS-RPM, the slowest.
1983-12-01
national gateway closest to an MCI interconnection point would be chosen.) Another significant principle is that mobile users area to be addresses the...duplication with E.16n. It was agreed that, from an addressing viewpoint, mobile subscribers are .. like fixed subscribers; i.e., mobile subscribers have TEs...reference points S and T, NTl, and may have NT2. Therefore, an ISDN number has the same ability to unambiguously identify points in mobile subscriber
Parallel simulations of Grover's algorithm for closest match search in neutron monitor data
NASA Astrophysics Data System (ADS)
Kussainov, Arman; White, Yelena
We are studying the parallel implementations of Grover's closest match search algorithm for neutron monitor data analysis. This includes data formatting, and matching quantum parameters to a conventional structure of a chosen programming language and selected experimental data type. We have employed several workload distribution models based on acquired data and search parameters. As a result of these simulations, we have an understanding of potential problems that may arise during configuration of real quantum computational devices and the way they could run tasks in parallel. The work was supported by the Science Committee of the Ministry of Science and Education of the Republic of Kazakhstan Grant #2532/GF3.
Ray propagation in oblate atmospheres. [for Jupiter
NASA Technical Reports Server (NTRS)
Hubbard, W. B.
1976-01-01
Phinney and Anderson's (1968) exact theory for the inversion of radio-occultation data for planetary atmospheres breaks down seriously when applied to occultations by oblate atmospheres because of departures from Bouguer's law. It has been proposed that this breakdown can be overcome by transforming the theory to a local spherical symmetry which osculates a ray's point of closest approach. The accuracy of this transformation procedure is assessed by evaluating the size of terms which are intrinsic to an oblate atmosphere and which are not eliminated by a local spherical approximation. The departures from Bouguer's law are analyzed, and it is shown that in the lowest-order deviation from that law, the plane of refraction is defined by the normal to the atmosphere at closest approach. In the next order, it is found that the oblateness of the atmosphere 'warps' the ray path out of a single plane, but the effect appears to be negligible for most purposes. It is concluded that there seems to be no source of serious error in making an approximation of local spherical symmetry with the refraction plane defined by the normal at closest approach.
Rapid mapping of ultrafine fault zone topography with structure from motion
Johnson, Kendra; Nissen, Edwin; Saripalli, Srikanth; Arrowsmith, J. Ramón; McGarey, Patrick; Scharer, Katherine M.; Williams, Patrick; Blisniuk, Kimberly
2014-01-01
Structure from Motion (SfM) generates high-resolution topography and coregistered texture (color) from an unstructured set of overlapping photographs taken from varying viewpoints, overcoming many of the cost, time, and logistical limitations of Light Detection and Ranging (LiDAR) and other topographic surveying methods. This paper provides the first investigation of SfM as a tool for mapping fault zone topography in areas of sparse or low-lying vegetation. First, we present a simple, affordable SfM workflow, based on an unmanned helium balloon or motorized glider, an inexpensive camera, and semiautomated software. Second, we illustrate the system at two sites on southern California faults covered by existing airborne or terrestrial LiDAR, enabling a comparative assessment of SfM topography resolution and precision. At the first site, an ∼0.1 km2 alluvial fan on the San Andreas fault, a colored point cloud of density mostly >700 points/m2 and a 3 cm digital elevation model (DEM) and orthophoto were produced from 233 photos collected ∼50 m above ground level. When a few global positioning system ground control points are incorporated, closest point vertical distances to the much sparser (∼4 points/m2) airborne LiDAR point cloud are mostly 530 points/m2 and a 2 cm DEM and orthophoto were produced from 450 photos taken from ∼60 m above ground level. Closest point vertical distances to existing terrestrial LiDAR data of comparable density are mostly <6 cm. Each SfM survey took ∼2 h to complete and several hours to generate the scene topography and texture. SfM greatly facilitates the imaging of subtle geomorphic offsets related to past earthquakes as well as rapid response mapping or long-term monitoring of faulted landscapes.
a Fast and Flexible Method for Meta-Map Building for Icp Based Slam
NASA Astrophysics Data System (ADS)
Kurian, A.; Morin, K. W.
2016-06-01
Recent developments in LiDAR sensors make mobile mapping fast and cost effective. These sensors generate a large amount of data which in turn improves the coverage and details of the map. Due to the limited range of the sensor, one has to collect a series of scans to build the entire map of the environment. If we have good GNSS coverage, building a map is a well addressed problem. But in an indoor environment, we have limited GNSS reception and an inertial solution, if available, can quickly diverge. In such situations, simultaneous localization and mapping (SLAM) is used to generate a navigation solution and map concurrently. SLAM using point clouds possesses a number of computational challenges even with modern hardware due to the shear amount of data. In this paper, we propose two strategies for minimizing the cost of computation and storage when a 3D point cloud is used for navigation and real-time map building. We have used the 3D point cloud generated by Leica Geosystems's Pegasus Backpack which is equipped with Velodyne VLP-16 LiDARs scanners. To improve the speed of the conventional iterative closest point (ICP) algorithm, we propose a point cloud sub-sampling strategy which does not throw away any key features and yet significantly reduces the number of points that needs to be processed and stored. In order to speed up the correspondence finding step, a dual kd-tree and circular buffer architecture is proposed. We have shown that the proposed method can run in real time and has excellent navigation accuracy characteristics.
Estimating Aircraft Heading Based on Laserscanner Derived Point Clouds
NASA Astrophysics Data System (ADS)
Koppanyi, Z.; Toth, C., K.
2015-03-01
Using LiDAR sensors for tracking and monitoring an operating aircraft is a new application. In this paper, we present data processing methods to estimate the heading of a taxiing aircraft using laser point clouds. During the data acquisition, a Velodyne HDL-32E laser scanner tracked a moving Cessna 172 airplane. The point clouds captured at different times were used for heading estimation. After addressing the problem and specifying the equation of motion to reconstruct the aircraft point cloud from the consecutive scans, three methods are investigated here. The first requires a reference model to estimate the relative angle from the captured data by fitting different cross-sections (horizontal profiles). In the second approach, iterative closest point (ICP) method is used between the consecutive point clouds to determine the horizontal translation of the captured aircraft body. Regarding the ICP, three different versions were compared, namely, the ordinary 3D, 3-DoF 3D and 2-DoF 3D ICP. It was found that 2-DoF 3D ICP provides the best performance. Finally, the last algorithm searches for the unknown heading and velocity parameters by minimizing the volume of the reconstructed plane. The three methods were compared using three test datatypes which are distinguished by object-sensor distance, heading and velocity. We found that the ICP algorithm fails at long distances and when the aircraft motion direction perpendicular to the scan plane, but the first and the third methods give robust and accurate results at 40m object distance and at ~12 knots for a small Cessna airplane.
Characteristics of Adolescents at Risk for Compulsive Overeating on a Brief Screening Test.
ERIC Educational Resources Information Center
Marston, Albert R.; And Others
1988-01-01
Surveyed addictive behavior, finding 26% of male and 57% of female high school students scored above cutoff point on the Overeaters Anonymous scale for assessing compulsive overeating. At-risk students perceived their life quality and relationship with person closest to them as significantly less positive, indicated overeating's defensive…
High-order time-marching reinitialization for regional level-set functions
NASA Astrophysics Data System (ADS)
Pan, Shucheng; Lyu, Xiuxiu; Hu, Xiangyu Y.; Adams, Nikolaus A.
2018-02-01
In this work, the time-marching reinitialization method is extended to compute the unsigned distance function in multi-region systems involving arbitrary number of regions. High order and interface preservation are achieved by applying a simple mapping that transforms the regional level-set function to the level-set function and a high-order two-step reinitialization method which is a combination of the closest point finding procedure and the HJ-WENO scheme. The convergence failure of the closest point finding procedure in three dimensions is addressed by employing a proposed multiple junction treatment and a directional optimization algorithm. Simple test cases show that our method exhibits 4th-order accuracy for reinitializing the regional level-set functions and strictly satisfies the interface-preserving property. The reinitialization results for more complex cases with randomly generated diagrams show the capability our method for arbitrary number of regions N, with a computational effort independent of N. The proposed method has been applied to dynamic interfaces with different types of flows, and the results demonstrate high accuracy and robustness.
Xu, Xidong; Wickens, Christopher D; Rantanen, Esa M
2007-01-15
A total of 24 pilots viewed dynamic encounters between their own aircraft and an intruder aircraft on a 2-D cockpit display of traffic information (CDTI) and estimated the point and time of closest approach. A three-level alerting system provided a correct categorical estimate of the projected miss distance on 83% of the trials. The remaining 17% of alerts were equally divided between misses and false alarms, of large and small magnitude. Roughly half the pilots depended on automation to improve estimation of miss distance relative to the baseline pilots, who viewed identical trials without the aid of automated alerts. Moreover, they did so more on the more difficult traffic trials resulting in improved performance on the 83% correct automation trials without causing harm on the 17% automation-error trials, compared to the baseline group. The automated alerts appeared to lead pilots to inspect the raw data more closely. While assisting the accurate prediction of miss distance, the automation led to an underestimate of the time remaining until the point of closest approach. The results point to the benefits of even imperfect automation in the strategic alerts characteristic of the CDTI, at least as long as this reliability remains high (above 80%).
Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap
Li, M.; Breizman, B. N.; Zheng, L. J.; ...
2015-12-04
Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less
NASA Astrophysics Data System (ADS)
Wichmann, Andreas; Kada, Martin
2016-06-01
There are many applications for 3D city models, e.g., in visualizations, analysis, and simulations; each one requiring a certain level of detail to be effective. The overall trend goes towards including various kinds of anthropogenic and natural objects therein with ever increasing geometric and semantic details. A few years back, the featured 3D building models had only coarse roof geometry. But nowadays, they are expected to include detailed roof superstructures like dormers and chimneys. Several methods have been proposed for the automatic reconstruction of 3D building models from airborne based point clouds. However, they are usually unable to reliably recognize and reconstruct small roof superstructures as these objects are often represented by only few point measurements, especially in low-density point clouds. In this paper, we propose a recognition and reconstruction approach that overcomes this problem by identifying and simultaneously reconstructing regularized superstructures of similar shape. For this purpose, candidate areas for superstructures are detected by taking into account virtual sub-surface points that are assumed to lie on the main roof faces below the measured points. The areas with similar superstructures are detected, extracted, grouped together, and registered to one another with the Iterative Closest Point (ICP) algorithm. As an outcome, the joint point density of each detected group is increased, which helps to recognize the shape of the superstructure more reliably and in more detail. Finally, all instances of each group of superstructures are modeled at once and transformed back to their original position. Because superstructures are reconstructed in groups, symmetries, alignments, and regularities can be enforced in a straight-forward way. The validity of the approach is presented on a number of example buildings from the Vaihingen test data set.
A Low-Cost Approach to Automatically Obtain Accurate 3D Models of Woody Crops.
Bengochea-Guevara, José M; Andújar, Dionisio; Sanchez-Sardana, Francisco L; Cantuña, Karla; Ribeiro, Angela
2017-12-24
Crop monitoring is an essential practice within the field of precision agriculture since it is based on observing, measuring and properly responding to inter- and intra-field variability. In particular, "on ground crop inspection" potentially allows early detection of certain crop problems or precision treatment to be carried out simultaneously with pest detection. "On ground monitoring" is also of great interest for woody crops. This paper explores the development of a low-cost crop monitoring system that can automatically create accurate 3D models (clouds of coloured points) of woody crop rows. The system consists of a mobile platform that allows the easy acquisition of information in the field at an average speed of 3 km/h. The platform, among others, integrates an RGB-D sensor that provides RGB information as well as an array with the distances to the objects closest to the sensor. The RGB-D information plus the geographical positions of relevant points, such as the starting and the ending points of the row, allow the generation of a 3D reconstruction of a woody crop row in which all the points of the cloud have a geographical location as well as the RGB colour values. The proposed approach for the automatic 3D reconstruction is not limited by the size of the sampled space and includes a method for the removal of the drift that appears in the reconstruction of large crop rows.
A Low-Cost Approach to Automatically Obtain Accurate 3D Models of Woody Crops
Andújar, Dionisio; Sanchez-Sardana, Francisco L.; Cantuña, Karla
2017-01-01
Crop monitoring is an essential practice within the field of precision agriculture since it is based on observing, measuring and properly responding to inter- and intra-field variability. In particular, “on ground crop inspection” potentially allows early detection of certain crop problems or precision treatment to be carried out simultaneously with pest detection. “On ground monitoring” is also of great interest for woody crops. This paper explores the development of a low-cost crop monitoring system that can automatically create accurate 3D models (clouds of coloured points) of woody crop rows. The system consists of a mobile platform that allows the easy acquisition of information in the field at an average speed of 3 km/h. The platform, among others, integrates an RGB-D sensor that provides RGB information as well as an array with the distances to the objects closest to the sensor. The RGB-D information plus the geographical positions of relevant points, such as the starting and the ending points of the row, allow the generation of a 3D reconstruction of a woody crop row in which all the points of the cloud have a geographical location as well as the RGB colour values. The proposed approach for the automatic 3D reconstruction is not limited by the size of the sampled space and includes a method for the removal of the drift that appears in the reconstruction of large crop rows. PMID:29295536
Chen, Chin-Sheng; Chen, Po-Chun; Hsu, Chih-Ming
2016-01-01
This paper presents a novel 3D feature descriptor for object recognition and to identify poses when there are six-degrees-of-freedom for mobile manipulation and grasping applications. Firstly, a Microsoft Kinect sensor is used to capture 3D point cloud data. A viewpoint feature histogram (VFH) descriptor for the 3D point cloud data then encodes the geometry and viewpoint, so an object can be simultaneously recognized and registered in a stable pose and the information is stored in a database. The VFH is robust to a large degree of surface noise and missing depth information so it is reliable for stereo data. However, the pose estimation for an object fails when the object is placed symmetrically to the viewpoint. To overcome this problem, this study proposes a modified viewpoint feature histogram (MVFH) descriptor that consists of two parts: a surface shape component that comprises an extended fast point feature histogram and an extended viewpoint direction component. The MVFH descriptor characterizes an object’s pose and enhances the system’s ability to identify objects with mirrored poses. Finally, the refined pose is further estimated using an iterative closest point when the object has been recognized and the pose roughly estimated by the MVFH descriptor and it has been registered on a database. The estimation results demonstrate that the MVFH feature descriptor allows more accurate pose estimation. The experiments also show that the proposed method can be applied in vision-guided robotic grasping systems. PMID:27886080
Glisson, Courtenay L; Altamar, Hernan O; Herrell, S Duke; Clark, Peter; Galloway, Robert L
2011-11-01
Image segmentation is integral to implementing intraoperative guidance for kidney tumor resection. Results seen in computed tomography (CT) data are affected by target organ physiology as well as by the segmentation algorithm used. This work studies variables involved in using level set methods found in the Insight Toolkit to segment kidneys from CT scans and applies the results to an image guidance setting. A composite algorithm drawing on the strengths of multiple level set approaches was built using the Insight Toolkit. This algorithm requires image contrast state and seed points to be identified as input, and functions independently thereafter, selecting and altering method and variable choice as needed. Semi-automatic results were compared to expert hand segmentation results directly and by the use of the resultant surfaces for registration of intraoperative data. Direct comparison using the Dice metric showed average agreement of 0.93 between semi-automatic and hand segmentation results. Use of the segmented surfaces in closest point registration of intraoperative laser range scan data yielded average closest point distances of approximately 1 mm. Application of both inverse registration transforms from the previous step to all hand segmented image space points revealed that the distance variability introduced by registering to the semi-automatically segmented surface versus the hand segmented surface was typically less than 3 mm both near the tumor target and at distal points, including subsurface points. Use of the algorithm shortened user interaction time and provided results which were comparable to the gold standard of hand segmentation. Further, the use of the algorithm's resultant surfaces in image registration provided comparable transformations to surfaces produced by hand segmentation. These data support the applicability and utility of such an algorithm as part of an image guidance workflow.
[A cephalometric study on determining the orientation of occlusal plane].
Xie, J; Zhao, Y; Chao, Y; Luo, W
1993-12-01
A study of the parallel relationship between the occlusal plane and the line connecting nasal alar and tragus was made in 90 dentulous cases by using cephalometry. The results show that the line connecting the inferior point of nasal alar and the mid-point of tragus runs much more parallel with the occlusal plane. The regression equation reveals a "line of closest fitting". It was used in the prosthetic treatment for 50 edentulous patients with good clinical results. The line connecting the inferior point of nasal alar and the mid-point of tragus therefore represents a proper reference plane for determining occlusal plane and hence should be still a valuable index in clinical dentistry.
Lemaire, Patrick; Brun, Fleur
2014-07-01
The present study investigates how children's better strategy selection and strategy execution on a given problem are influenced by which strategy was used on the immediately preceding problem and by the duration between their answer to the previous problem and current problem display. These goals are pursued in the context of an arithmetic problem solving task. Third and fifth graders were asked to select the better strategy to find estimates to two-digit addition problems like 36 + 78. On each problem, children could choose rounding-down (i.e., rounding both operands down to the closest smaller decades, like doing 40 + 60 to solve 42 + 67) or rounding-up strategies (i.e., rounding both operands up to the closest larger decades, like doing 50 + 70 to solve 42 + 67). Children were tested under a short RSI condition (i.e., the next problem was displayed 900 ms after participants' answer) or under a long RSI condition (i.e., the next problem was displayed 1,900 ms after participants' answer). Results showed that both strategy selection (e.g., children selected the better strategy more often under long RSI condition and after selecting the poorer strategy on the immediately preceding problem) and strategy execution (e.g., children executed strategy more efficiently under long RSI condition and were slower when switching strategy over two consecutive problems) were influenced by RSI and which strategy was used on the immediately preceding problem. Moreover, data showed age-related changes in effects of RSI and strategy sequence on mean percent better strategy selection and on strategy performance. The present findings have important theoretical and empirical implications for our understanding of general and specific processes involved in strategy selection, strategy execution, and strategic development.
NSSEFF Designing New Higher Temperature Superconductors
2017-04-13
electronic structure calculations are integrated with the synthesis of new superconducting materials, with the aim of providing a rigorous test of the...apparent association of high temperature superconductivity with electron delocalization transitions occurring at quantum critical points. We will use...realistic electronic structure calculations to assess which transition metal monopnictides are closest to electron delocalization, and hence optimal for
Using Stellar Spectra to Illustrate Thermal Radiation Laws
ERIC Educational Resources Information Center
Kaltcheva, N. T.; Pritzl, B. J.
2018-01-01
Stars are point-source emitters that are the closest to the definition of a blackbody in comparison to all other similar sources of radiation found in nature. Existing libraries on stellar spectra are thus a valuable resource that can be used to introduce the laws of thermal radiation in a classroom setting. In this article we briefly describe…
Polar decomposition for attitude determination from vector observations
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.
1993-01-01
This work treats the problem of weighted least squares fitting of a 3D Euclidean-coordinate transformation matrix to a set of unit vectors measured in the reference and transformed coordinates. A closed-form analytic solution to the problem is re-derived. The fact that the solution is the closest orthogonal matrix to some matrix defined on the measured vectors and their weights is clearly demonstrated. Several known algorithms for computing the analytic closed form solution are considered. An algorithm is discussed which is based on the polar decomposition of matrices into the closest unitary matrix to the decomposed matrix and a Hermitian matrix. A somewhat longer improved algorithm is suggested too. A comparison of several algorithms is carried out using simulated data as well as real data from the Upper Atmosphere Research Satellite. The comparison is based on accuracy and time consumption. It is concluded that the algorithms based on polar decomposition yield a simple although somewhat less accurate solution. The precision of the latter algorithms increase with the number of the measured vectors and with the accuracy of their measurement.
Systematic Error in Seed Plant Phylogenomics
Zhong, Bojian; Deusch, Oliver; Goremykin, Vadim V.; Penny, David; Biggs, Patrick J.; Atherton, Robin A.; Nikiforova, Svetlana V.; Lockhart, Peter James
2011-01-01
Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinaceae conifers), we report sequences from three new chloroplast (cp) genomes of Southern Hemisphere conifers. We have applied a site pattern sorting criterion to study compositional heterogeneity, heterotachy, and the fit of conifer chloroplast genome sequences to a general time reversible + G substitution model. We show that non-time reversible properties of aligned sequence positions in the chloroplast genomes of Gnetales mislead phylogenetic reconstruction of these seed plants. When 2,250 of the most varied sites in our concatenated alignment are excluded, phylogenetic analyses favor a close evolutionary relationship between the Gnetales and Pinaceae—the Gnepine hypothesis. Our analytical protocol provides a useful approach for evaluating the robustness of phylogenomic inferences. Our findings highlight the importance of goodness of fit between substitution model and data for understanding seed plant phylogeny. PMID:22016337
NASA Technical Reports Server (NTRS)
Mutambara, Arthur G. O.; Litt, Jonathan
1998-01-01
This report addresses the problem of path planning and control of robotic manipulators which have joint-position limits and joint-rate limits. The manipulators move autonomously and carry out variable tasks in a dynamic, unstructured and cluttered environment. The issue considered is whether the robotic manipulator can achieve all its tasks, and if it cannot, the objective is to identify the closest achievable goal. This problem is formalized and systematically solved for generic manipulators by using inverse kinematics and forward kinematics. Inverse kinematics are employed to define the subspace, workspace and constrained workspace, which are then used to identify when a task is not achievable. The closest achievable goal is obtained by determining weights for an optimal control redistribution scheme. These weights are quantified by using forward kinematics. Conditions leading to joint rate limits are identified, in particular it is established that all generic manipulators have singularities at the boundary of their workspace, while some have loci of singularities inside their workspace. Once the manipulator singularity is identified the command redistribution scheme is used to compute the closest achievable Cartesian velocities. Two examples are used to illustrate the use of the algorithm: A three link planar manipulator and the Unimation Puma 560. Implementation of the derived algorithm is effected by using a supervisory expert system to check whether the desired goal lies in the constrained workspace and if not, to evoke the redistribution scheme which determines the constraint relaxation between end effector position and orientation, and then computes optimal gains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamba, G.M.; Jacques, E.; Patigny, J.
1995-12-31
Literature is rather abundant on the topic of steady-state network analysis programs. Many versions exist, some of them have real extended facilities such as full graphical manipulation, fire simulation in motion, etc. These programs are certainly of great help to any ventilation planning and often assist the ventilation engineer in his operational decision making. However, what ever the efficiency of the calculation algorithms might be, their weak point still is the overall validity of the model. This numerical model, apart from maybe the questionable application of some physical laws, depends directly on the quality of the data used to identifymore » its most influencing parameters such as the passive (resistance) or active (fan) characteristic of each of the branches in the network. Considering the non-linear character of the problem and the great number of variables involved, finding the closest numerical model of a real mine ventilation network is without any doubt a very difficult problem. This problem, often referred to as the parameter adjustment problem, is in almost every practical case solved on an experimental and {open_quotes}feeling{close_quotes} basis. Only a few papers put forward a mathematical solution based on a least square approach as the best fit criterion. The aim of this paper is to examine the possibility to apply the well-known simplex method to this problem. The performance of this method and its capability to reach the global optimum which corresponds to the best fit is discussed and compared to that of other methods.« less
Improvements to Level Set, Immersed Boundary methods for Interface Tracking
NASA Astrophysics Data System (ADS)
Vogl, Chris; Leveque, Randy
2014-11-01
It is not uncommon to find oneself solving a moving boundary problem under flow in the context of some application. Of particular interest is when the moving boundary exerts a curvature-dependent force on the liquid. Such a force arises when observing a boundary that is resistant to bending or has surface tension. Numerically speaking, stable numerical computation of the curvature can be difficult as it is often described in terms of high-order derivatives of either marker particle positions or of a level set function. To address this issue, the level set method is modified to track not only the position of the boundary, but the curvature as well. The definition of the signed-distance function that is used to modify the level set method is also used to develop an interpolation-free, closest-point method. These improvements are used to simulate a bending-resistant, inextensible boundary under shear flow to highlight area and volume conservation, as well as stable curvature calculation. Funded by a NSF MSPRF grant.
1977-04-26
less energy than in tha case of a takeoff from the surface of the Sarth. during such a takeoff from the earth the rocket motor ought to accomplish a...the energy point of view to set the roc- ket in motion* at the point closest to the *arth, the perigee, or at the most distant from it,—the apogee...than 1/33 parts of tbat energy that is necjfjessary during initial braking at the nearest-to-the»eaa?tfl ’:■’■- :,’-::::-:’.. :’.-:--:’.--£. ■■K
Teaching about International Issues, Geography, and Multiple Points of View Using the Internet
ERIC Educational Resources Information Center
Risinger, C. Frederick
2006-01-01
Many Muslims truly believe that the United States is leading a new "Crusade" (to use President Bush's term) against all Islamic peoples. Many European citizens, including those in Britain, America's closest ally, believe that U.S. unilateral actions in the Middle East and elsewhere have made the world less safe than it was prior to…
"Vergara v. State of California": A Political Analysis and Implications for Principal Practice
ERIC Educational Resources Information Center
Tabron, Lolita A.; Irby, Beverly J.
2015-01-01
This political analysis uses the Vergara case as an example of how principals can be dynamic leaders who are well prepared for and engaged in their political terrain. This will be important to decrease judicial dependency and legislative interference to better ensure that reform begins with those closest to the problem.
Data-Driven Hint Generation from Peer Debugging Solutions
ERIC Educational Resources Information Center
Liu, Zhongxiu
2015-01-01
Data-driven methods have been a successful approach to generating hints for programming problems. However, the majority of previous studies are focused on procedural hints that aim at moving students to the next closest state to the solution. In this paper, I propose a data-driven method to generate remedy hints for BOTS, a game that teaches…
USSR Report, International Affairs, Peoples of Asia and Africa No 4, July-August 1986.
1986-12-10
and the romantics of the 19th century. The gnosiological explanation of this priority is undoubted: Eastern thought tends toward that which is closest...greatest comedy of the 20th century« and the like. The essence of the problem was the irreconcilable contradictions between the two g™ups, each of
On-line range images registration with GPGPU
NASA Astrophysics Data System (ADS)
Będkowski, J.; Naruniec, J.
2013-03-01
This paper concerns implementation of algorithms in the two important aspects of modern 3D data processing: data registration and segmentation. Solution proposed for the first topic is based on the 3D space decomposition, while the latter on image processing and local neighbourhood search. Data processing is implemented by using NVIDIA compute unified device architecture (NIVIDIA CUDA) parallel computation. The result of the segmentation is a coloured map where different colours correspond to different objects, such as walls, floor and stairs. The research is related to the problem of collecting 3D data with a RGB-D camera mounted on a rotated head, to be used in mobile robot applications. Performance of the data registration algorithm is aimed for on-line processing. The iterative closest point (ICP) approach is chosen as a registration method. Computations are based on the parallel fast nearest neighbour search. This procedure decomposes 3D space into cubic buckets and, therefore, the time of the matching is deterministic. First technique of the data segmentation uses accele-rometers integrated with a RGB-D sensor to obtain rotation compensation and image processing method for defining pre-requisites of the known categories. The second technique uses the adapted nearest neighbour search procedure for obtaining normal vectors for each range point.
Transformation to equivalent dimensions—a new methodology to study earthquake clustering
NASA Astrophysics Data System (ADS)
Lasocki, Stanislaw
2014-05-01
A seismic event is represented by a point in a parameter space, quantified by the vector of parameter values. Studies of earthquake clustering involve considering distances between such points in multidimensional spaces. However, the metrics of earthquake parameters are different, hence the metric in a multidimensional parameter space cannot be readily defined. The present paper proposes a solution of this metric problem based on a concept of probabilistic equivalence of earthquake parameters. Under this concept the lengths of parameter intervals are equivalent if the probability for earthquakes to take values from either interval is the same. Earthquake clustering is studied in an equivalent rather than the original dimensions space, where the equivalent dimension (ED) of a parameter is its cumulative distribution function. All transformed parameters are of linear scale in [0, 1] interval and the distance between earthquakes represented by vectors in any ED space is Euclidean. The unknown, in general, cumulative distributions of earthquake parameters are estimated from earthquake catalogues by means of the model-free non-parametric kernel estimation method. Potential of the transformation to EDs is illustrated by two examples of use: to find hierarchically closest neighbours in time-space and to assess temporal variations of earthquake clustering in a specific 4-D phase space.
Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm
NASA Astrophysics Data System (ADS)
Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian
2018-03-01
In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.
Skull registration for prone patient position using tracked ultrasound
NASA Astrophysics Data System (ADS)
Underwood, Grace; Ungi, Tamas; Baum, Zachary; Lasso, Andras; Kronreif, Gernot; Fichtinger, Gabor
2017-03-01
PURPOSE: Tracked navigation has become prevalent in neurosurgery. Problems with registration of a patient and a preoperative image arise when the patient is in a prone position. Surfaces accessible to optical tracking on the back of the head are unreliable for registration. We investigated the accuracy of surface-based registration using points accessible through tracked ultrasound. Using ultrasound allows access to bone surfaces that are not available through optical tracking. Tracked ultrasound could eliminate the need to work (i) under the table for registration and (ii) adjust the tracker between surgery and registration. In addition, tracked ultrasound could provide a non-invasive method in comparison to an alternative method of registration involving screw implantation. METHODS: A phantom study was performed to test the feasibility of tracked ultrasound for registration. An initial registration was performed to partially align the pre-operative computer tomography data and skull phantom. The initial registration was performed by an anatomical landmark registration. Surface points accessible by tracked ultrasound were collected and used to perform an Iterative Closest Point Algorithm. RESULTS: When the surface registration was compared to a ground truth landmark registration, the average TRE was found to be 1.6+/-0.1mm and the average distance of points off the skull surface was 0.6+/-0.1mm. CONCLUSION: The use of tracked ultrasound is feasible for registration of patients in prone position and eliminates the need to perform registration under the table. The translational component of error found was minimal. Therefore, the amount of TRE in registration is due to a rotational component of error.
Real time three dimensional sensing system
Gordon, S.J.
1996-12-31
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.
Real time three dimensional sensing system
Gordon, Steven J.
1996-01-01
The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.
[Medicolegal problems of "dyadic death"].
Kunz, Jerzy; Bolechała, Filip; Kaliszczak, Paweł
2002-01-01
The authors present 9 cases of homicide followed by suicide of the perpetrator--so called dyadic death from the practice of the Cracow Forensic Medicine Chair. The circumstances of the event, medico legal and psychiatric problems were discussed in view of the literature. A typical picture of the perpetrator is male of the average age 49, killing his spouse or children. The major reasons of dyadic death are: breakdown in a relationship, mental and somatic diseases, financial stress. Very uncommon in dyadic death are cases of murder of people from outside the closest family.
Automatic ground control point recognition with parallel associative memory
NASA Technical Reports Server (NTRS)
Al-Tahir, Raid; Toth, Charles K.; Schenck, Anton F.
1990-01-01
The basic principle of the associative memory is to match the unknown input pattern against a stored training set, and responding with the 'closest match' and the corresponding label. Generally, an associative memory system requires two preparatory steps: selecting attributes of the pattern class, and training the system by associating patterns with labels. Experimental results gained from using Parallel Associative Memory are presented. The primary concern is an automatic search for ground control points in aerial photographs. Synthetic patterns are tested followed by real data. The results are encouraging as a relatively high level of correct matches is reached.
Liu, Liang-Ying; Salamova, Amina; Venier, Marta; Hites, Ronald A
2016-01-01
Air (vapor and particle phase) samples were collected every 12days at five sites near the North American Great Lakes from 1 January 2005 to 31 December 2013 as a part of the Integrated Atmospheric Deposition Network (IADN). The concentrations of 35 polybrominated diphenyl ethers (PBDEs) and eight other halogenated flame retardants were measured in each of the ~1,300 samples. The levels of almost all of these flame retardants, except for pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), and Dechlorane Plus (DP), were significantly higher in Chicago, Cleveland, and Sturgeon Point. The concentrations of PBEB and HBB were relatively high at Eagle Harbor and Sturgeon Point, respectively, and the concentrations of DP were relatively high at Cleveland and Sturgeon Point, the two sites closest to this compound's production site. The data were analyzed using a multiple linear regression model to determine significant temporal trends in these atmospheric concentrations. The concentrations of PBDEs were decreasing at the urban sites, Chicago and Cleveland, but were generally unchanging at the remote sites, Sleeping Bear Dunes and Eagle Harbor. The concentrations of PBEB were decreasing at almost all sites except for Eagle Harbor, where the highest PBEB levels were observed. HBB concentrations were decreasing at all sites except for Sturgeon Point, where HBB levels were the highest. DP concentrations were increasing with doubling times of 3-9years at all sites except those closest to its source (Cleveland and Sturgeon Point). The levels of 1,2-bis(2,4,6-tribromophenoxy)ethane (TBE) were unchanging at the urban sites, Chicago and Cleveland, but decreasing at the suburban and remote sites, Sturgeon Point and Eagle Harbor. The atmospheric concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB) and bis(2-ethylhexyl)-tetrabromophthalate (BEHTBP) were increasing at almost every site with doubling times of 3-6years. Copyright © 2016 Elsevier Ltd. All rights reserved.
An enhanced inertial navigation system based on a low-cost IMU and laser scanner
NASA Astrophysics Data System (ADS)
Kim, Hyung-Soon; Baeg, Seung-Ho; Yang, Kwang-Woong; Cho, Kuk; Park, Sangdeok
2012-06-01
This paper describes an enhanced fusion method for an Inertial Navigation System (INS) based on a 3-axis accelerometer sensor, a 3-axis gyroscope sensor and a laser scanner. In GPS-denied environments, indoor or dense forests, a pure INS odometry is available for estimating the trajectory of a human or robot. However it has a critical implementation problem: a drift error of velocity, position and heading angles. Commonly the problem can be solved by fusing visual landmarks, a magnetometer or radio beacons. These methods are not robust in diverse environments: darkness, fog or sunlight, an unstable magnetic field and an environmental obstacle. We propose to overcome the drift problem using an Iterative Closest Point (ICP) scan matching algorithm with a laser scanner. This system consists of three parts. The first is the INS. It estimates attitude, velocity, position based on a 6-axis Inertial Measurement Unit (IMU) with both 'Heuristic Reduction of Gyro Drift' (HRGD) and 'Heuristic Reduction of Velocity Drift' (HRVD) methods. A frame-to-frame ICP matching algorithm for estimating position and attitude by laser scan data is the second. The third is an extended kalman filter method for multi-sensor data fusing: INS and Laser Range Finder (LRF). The proposed method is simple and robust in diverse environments, so we could reduce the drift error efficiently. We confirm the result comparing an odometry of the experimental result with ICP and LRF aided-INS in a long corridor.
Probabilistic Open Set Recognition
NASA Astrophysics Data System (ADS)
Jain, Lalit Prithviraj
Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary support vector machines. Building from the success of statistical EVT based recognition methods such as PI-SVM and W-SVM on the open set problem, we present a new general supervised learning algorithm for multi-class classification and multi-class open set recognition called the Extreme Value Local Basis (EVLB). The design of this algorithm is motivated by the observation that extrema from known negative class distributions are the closest negative points to any positive sample during training, and thus should be used to define the parameters of a probabilistic decision model. In the EVLB, the kernel distribution for each positive training sample is estimated via an EVT distribution fit over the distances to the separating hyperplane between positive training sample and closest negative samples, with a subset of the overall positive training data retained to form a probabilistic decision boundary. Using this subset as a frame of reference, the probability of a sample at test time decreases as it moves away from the positive class. Possessing this property, the EVLB is well-suited to open set recognition problems where samples from unknown or novel classes are encountered at test. Our experimental evaluation shows that the EVLB provides a substantial improvement in scalability compared to standard radial basis function kernel machines, as well as P I-SVM and W-SVM, with improved accuracy in many cases. We evaluate our algorithm on open set variations of the standard visual learning benchmarks, as well as with an open subset of classes from Caltech 256 and ImageNet. Our experiments show that PI-SVM, WSVM and EVLB provide significant advances over the previous state-of-the-art solutions for the same tasks.
Augmented Reality for Maintenance and Repair (ARMAR)
2007-08-01
800×600 resolution monocular display, whose small size and lack of an opaque “ frame ”, provides the closest experience to an eyeglass form factor, and...Alternatively, fiducials could be mounted on lightweight rigid frames that are attached to predetermined points on the maintained system. Figure...stereo at 800×600 resolution, thirty frames per second, creating a compelling experience of an augmented workspace. Based on our preliminary
Point cloud registration from local feature correspondences-Evaluation on challenging datasets.
Petricek, Tomas; Svoboda, Tomas
2017-01-01
Registration of laser scans, or point clouds in general, is a crucial step of localization and mapping with mobile robots or in object modeling pipelines. A coarse alignment of the point clouds is generally needed before applying local methods such as the Iterative Closest Point (ICP) algorithm. We propose a feature-based approach to point cloud registration and evaluate the proposed method and its individual components on challenging real-world datasets. For a moderate overlap between the laser scans, the method provides a superior registration accuracy compared to state-of-the-art methods including Generalized ICP, 3D Normal-Distribution Transform, Fast Point-Feature Histograms, and 4-Points Congruent Sets. Compared to the surface normals, the points as the underlying features yield higher performance in both keypoint detection and establishing local reference frames. Moreover, sign disambiguation of the basis vectors proves to be an important aspect in creating repeatable local reference frames. A novel method for sign disambiguation is proposed which yields highly repeatable reference frames.
The detailed measurement of foot clearance by young adults during stair descent.
Telonio, A; Blanchet, S; Maganaris, C N; Baltzopoulos, V; McFadyen, B J
2013-04-26
Foot clearance is an important variable for understanding safe stair negotiation, but few studies have provided detailed measures of it. This paper presents a new method to calculate minimal shoe clearance during stair descent and compares it to previous literature. Seventeen healthy young subjects descended a five step staircase with step treads of 300 mm and step heights of 188 mm. Kinematic data were collected with an Optotrak system (model 3020) and three non-colinear infrared markers on the feet. Ninety points were digitized on the foot sole prior to data collection using a 6 marker probe and related to the triad of markers on the foot. The foot sole was reconstructed using the Matlab (version 7.0) "meshgrid" function and minimal distance to each step edge was calculated for the heel, toe and foot sole. Results showed significant differences in minimum clearance between sole, heel and toe, with the shoe sole being the closest and the toe the furthest. While the hind foot sole was closest for 69% of the time, the actual minimum clearance point on the sole did vary across subjects and staircase steps. This new method, and the findings on healthy young subjects, can be applied to future studies of other populations and staircase dimensions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Polansky, Leo; Kilian, Werner; Wittemyer, George
2015-01-01
Spatial memory facilitates resource acquisition where resources are patchy, but how it influences movement behaviour of wide-ranging species remains to be resolved. We examined African elephant spatial memory reflected in movement decisions regarding access to perennial waterholes. State–space models of movement data revealed a rapid, highly directional movement behaviour almost exclusively associated with visiting perennial water. Behavioural change point (BCP) analyses demonstrated that these goal-oriented movements were initiated on average 4.59 km, and up to 49.97 km, from the visited waterhole, with the closest waterhole accessed 90% of the time. Distances of decision points increased when switching to different waterholes, during the dry season, or for female groups relative to males, while selection of the closest waterhole decreased when switching. Overall, our analyses indicated detailed spatial knowledge over large scales, enabling elephants to minimize travel distance through highly directional movement when accessing water. We discuss the likely cognitive and socioecological mechanisms driving these spatially precise movements that are most consistent with our findings. By applying modern analytic techniques to high-resolution movement data, this study illustrates emerging approaches for studying how cognition structures animal movement behaviour in different ecological and social contexts. PMID:25808888
NASA Astrophysics Data System (ADS)
Yue, Haosong; Chen, Weihai; Wu, Xingming; Wang, Jianhua
2016-03-01
Three-dimensional (3-D) simultaneous localization and mapping (SLAM) is a crucial technique for intelligent robots to navigate autonomously and execute complex tasks. It can also be applied to shape measurement, reverse engineering, and many other scientific or engineering fields. A widespread SLAM algorithm, named KinectFusion, performs well in environments with complex shapes. However, it cannot handle translation uncertainties well in highly structured scenes. This paper improves the KinectFusion algorithm and makes it competent in both structured and unstructured environments. 3-D line features are first extracted according to both color and depth data captured by Kinect sensor. Then the lines in the current data frame are matched with the lines extracted from the entire constructed world model. Finally, we fuse the distance errors of these line-pairs into the standard KinectFusion framework and estimate sensor poses using an iterative closest point-based algorithm. Comparative experiments with the KinectFusion algorithm and one state-of-the-art method in a corridor scene have been done. The experimental results demonstrate that after our improvement, the KinectFusion algorithm can also be applied to structured environments and has higher accuracy. Experiments on two open access datasets further validated our improvements.
2015-07-16
As one NASA spacecraft sailed past the distant ice world of Pluto, collecting never-before-seen vistas and invaluable science data, another spacecraft turned its gaze in that direction from its outpost at Saturn. NASA's Cassini spacecraft took a momentary break from its duties to capture this far-off portrait around the time of the New Horizons encounter with Pluto. The image was taken within a few minutes of New Horizons' closest approach to Pluto. After New Horizons, Cassini was the closest spacecraft to Pluto at the time of the flyby. Pluto is the bright dot closest to the center of the field of stars seen in this view. A labeled version of the image, indicating Pluto's position, is also presented here. The four stars identified in the labeled view have visual magnitudes between about 11 and 12. The entire Pluto system -- the dwarf planet and all of its moons -- is below the resolution of this image, thus the small bright specks near the main dot representing Pluto are likely noise (possibly due to what astronomers call the point-spread function). Charon and the other moons would not be resolved at this scale. The image was obtained using the Cassini spacecraft narrow-angle camera on July 14, 2015 at a distance of about 2.4 billion miles (3.9 billion kilometers) from Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA19641
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers
Goodrich, Payton J.; Sharifi, Farrokh; Hashemi, Nastaran
2015-08-14
Microfluidic technology has provided innovative solutions to numerous problems, but the cost of designing and fabricating microfluidic channels is impeding its expansion. In this study, Shrinky-Dink thermoplastic sheets are used to create multilayered complex templates for microfluidic channels. We also used inkjet and laserjet printers to raise a predetermined microchannel geometry by depositing several layers of ink for each feature consecutively. We achieved feature heights over 100 μm, which were measured and compared with surface profilometry. Templates closest to the target geometry were then used to create microfluidic devices from soft-lithography with the molds as a template. These microfluidic devicesmore » were, futhermore used to fabricate polymer microfibers using the microfluidic focusing approach to demonstrate the potential that this process has for microfluidic applications. Finally, an economic analysis was conducted to compare the price of common microfluidic template manufacturing methods. We showed that multilayer microchannels can be created significantly quicker and cheaper than current methods for design prototyping and point-of-care applications in the biomedical area.« less
Numerical taxonomy on data: Experimental results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, J.; Farach, M.
1997-12-01
The numerical taxonomy problems associated with most of the optimization criteria described above are NP - hard [3, 5, 1, 4]. In, the first positive result for numerical taxonomy was presented. They showed that if e is the distance to the closest tree metric under the L{sub {infinity}} norm. i.e., e = min{sub T} [L{sub {infinity}} (T-D)], then it is possible to construct a tree T such that L{sub {infinity}} (T-D) {le} 3e, that is, they gave a 3-approximation algorithm for this problem. We will refer to this algorithm as the Single Pivot (SP) heuristic.
NASA Astrophysics Data System (ADS)
Xin, Meiting; Li, Bing; Yan, Xiao; Chen, Lei; Wei, Xiang
2018-02-01
A robust coarse-to-fine registration method based on the backpropagation (BP) neural network and shift window technology is proposed in this study. Specifically, there are three steps: coarse alignment between the model data and measured data, data simplification based on the BP neural network and point reservation in the contour region of point clouds, and fine registration with the reweighted iterative closest point algorithm. In the process of rough alignment, the initial rotation matrix and the translation vector between the two datasets are obtained. After performing subsequent simplification operations, the number of points can be reduced greatly. Therefore, the time and space complexity of the accurate registration can be significantly reduced. The experimental results show that the proposed method improves the computational efficiency without loss of accuracy.
Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope
NASA Astrophysics Data System (ADS)
Gong, Yuanzheng; Johnston, Richard S.; Melville, C. David; Seibel, Eric J.
2015-07-01
As the rapid progress in the development of optoelectronic components and computational power, 3-D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This article proposed a new approach to measure tiny internal 3-D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3-D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm.
The Development of Military Night Aviation to 1919
1991-01-01
aerodrome. At the center of the airfield was positioned a large square glass window, flush with the ground, and sufficiently thick to withstand the...impact of an aircraft landing. At night an electric lamp located beneath the glass continuously radiated white light into the darkened sky, acting as a...to the east would be illuminated. If the wind was blowing in a direction between cardinal points, the two outer lamps closest to the actual wind
Buried Underwater Munitions and Clutter Discrimination
2010-10-01
closest point of approach of the cylinder. The k space amplitude beam pattern, sin Δ( ) Δ , in Stanton’s treatment is obtained from the Fourier ...simple modifications to be useful here. First, the amplitude of the incident plane wave P0 should be replaced by P1r0/r, where P1 is the magnitude of...Instrument Source Information Site Selec- tion MACC Phase I Input Location Resolution Age Bathymetry SEA Ltd. SWATHPlus McNinch
Anatomical relation between S1 sacroiliac screws' entrance points and superior gluteal artery.
Zhao, Yong; You, Libo; Lian, Wei; Zou, Dexin; Dong, Shengjie; Sun, Tao; Zhang, Shudong; Wang, Dan; Li, Jingning; Li, Wenliang; Zhao, Yuchi
2018-01-18
To conduct radiologic anatomical study on the relation between S1 sacroiliac screws' entry points and the route of the pelvic outer superior gluteal artery branches with the aim to provide the anatomical basis and technical reference for the avoidance of damage to the superior gluteal artery during the horizontal sacroiliac screw placement. Superior gluteal artery CTA (CT angiography) vascular imaging of 74 healthy adults (37 women and 37 men) was done with 128-slice spiral CT (computed tomography). The CT attendant-measuring software was used to portray the "safe bony entrance area" (hereinafter referred to as "Safe Area") of the S1 segment in the standard lateral pelvic view of three-dimensional reconstruction. The anatomical relation between S1 sacroiliac screws' Safe Area and the pelvic outer superior gluteal artery branches was observed and recorded. The number of cases in which artery branches intersected the Safe Area was counted. The cases in which superior gluteal artery branches disjointed from the Safe Area were identified, and the shortest distance between the Safe Area and the superior gluteal artery branch closest to the Safe Area was measured. Three cases out of the 74 sample cases were excluded from this study as they were found to have no bony space for horizontal screw placement in S1 segment. Among the remaining 71 sample cases, there are 32 cases (45.1%) where the deep superior branch of superior gluteal artery passes through the Safe Area of S1 entrance point. There was no distinguishing feature and rule on how the deep superior branches and the Safe Area overlapped. In the 39 cases in which superior gluteal artery branches disjointed from the Safe Area, the deep superior branches of superior gluteal artery were the branches closest to the Safe Area and the part of the branch closest to the Safe Area was located in front of the widest part of the Safe Area. The shortest distance between the deep superior branch and the Safe Area is 0.86 ± 0.84 cm. There is a high risk of accidental injury of the deep superior branches of superior gluteal artery in the process of S1 sacroiliac screw placement. Even if the entry points are located in the safe bony entrance area, the absolute secure placement cannot be assured. We suggest that great attention should be paid to make thorough preoperative plans.
Obstacle avoidance handling and mixed integer predictive control for space robots
NASA Astrophysics Data System (ADS)
Zong, Lijun; Luo, Jianjun; Wang, Mingming; Yuan, Jianping
2018-04-01
This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector's desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance strategy and MIPC control method of space robots.
A global optimization algorithm for protein surface alignment
2010-01-01
Background A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved. Results In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation) that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional (3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach. Conclusions Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites. PMID:20920230
Svensson, Jessika; Romild, Ulla; Shepherdson, Emma
2013-11-21
Research into the impact of problem gambling on close social networks is scarce with the majority of studies only including help-seeking populations. To date only one study has examined concerned significant others (CSOs) from an epidemiological perspective and it did not consider gender. The aim of this study is to examine the health, social support, and financial situations of CSOs in a Swedish representative sample and to examine gender differences. A population study was conducted in Sweden in 2008/09 (n = 15,000, response rate 63%). Respondents were defined as CSOs if they reported that someone close to them currently or previously had problems with gambling. The group of CSOs was further examined in a 1-year follow up (weighted response rate 74% from the 8,165 respondents in the original sample). Comparisons were also made between those defined as CSOs only at baseline (47.7%, n = 554) and those defined as CSOs at both time points. In total, 18.2% of the population were considered CSOs, with no difference between women and men. Male and female CSOs experienced, to a large extent, similar problems including poor mental health, risky alcohol consumption, economic hardship, and arguments with those closest to them. Female CSOs reported less social support than other women and male CSOs had more legal problems and were more afraid of losing their jobs than other men. One year on, several problems remained even if some improvements were found. Both male and female CSOs reported more negative life events in the 1 year follow-up. Although some relationships are unknown, including between the CSOs and the individuals with gambling problems and the causal relationships between being a CSO and the range of associated problems, the results of this study indicate that gambling problems not only affect the gambling individual and their immediate close family but also the wider social network. A large proportion of the population can be defined as a CSO, half of whom are men. While male and female CSOs share many common problems, there are gender differences which need to be considered in prevention and treatment.
NASA Astrophysics Data System (ADS)
Stöcker, Claudia; Eltner, Anette
2016-04-01
Advances in computer vision and digital photogrammetry (i.e. structure from motion) allow for fast and flexible high resolution data supply. Within geoscience applications and especially in the field of small surface topography, high resolution digital terrain models and dense 3D point clouds are valuable data sources to capture actual states as well as for multi-temporal studies. However, there are still some limitations regarding robust registration and accuracy demands (e.g. systematic positional errors) which impede the comparison and/or combination of multi-sensor data products. Therefore, post-processing of 3D point clouds can heavily enhance data quality. In this matter the Iterative Closest Point (ICP) algorithm represents an alignment tool which iteratively minimizes distances of corresponding points within two datasets. Even though tool is widely used; it is often applied as a black-box application within 3D data post-processing for surface reconstruction. Aiming for precise and accurate combination of multi-sensor data sets, this study looks closely at different variants of the ICP algorithm including sub-steps of point selection, point matching, weighting, rejection, error metric and minimization. Therefore, an agricultural utilized field was investigated simultaneously by terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) sensors two times (once covered with sparse vegetation and once bare soil). Due to different perspectives both data sets show diverse consistency in terms of shadowed areas and thus gaps so that data merging would provide consistent surface reconstruction. Although photogrammetric processing already included sub-cm accurate ground control surveys, UAV point cloud exhibits an offset towards TLS point cloud. In order to achieve the transformation matrix for fine registration of UAV point clouds, different ICP variants were tested. Statistical analyses of the results show that final success of registration and therefore data quality depends particularly on parameterization and choice of error metric, especially for erroneous data sets as in the case of sparse vegetation cover. At this, the point-to-point metric is more sensitive to data "noise" than the point-to-plane metric which results in considerably higher cloud-to-cloud distances. Concluding, in order to comply with accuracy demands of high resolution surface reconstruction and the aspect that ground control surveys can reach their limits both in time exposure and terrain accessibility ICP algorithm represents a great tool to refine rough initial alignment. Here different variants of registration modules allow for individual application according to the quality of the input data.
Sources of Wind Variability at a Single Station in Complex Terrain During Tropical Cyclone Passage
2013-12-01
Mesoscale Prediction System CPA Closest point of approach ET Extratropical transition FNMOC Fleet Numerical Meteorology and Oceanography Center...forecasts. However, 2 the TC forecast tracks and warnings they issue necessarily focus on the large-scale structure of the storm , and are not...winds at one station. Also, this technique is a storm - centered forecast and even if the grid spacing is on order of one kilometer, it is unlikely
VizieR Online Data Catalog: NIR proper motion catalogue from UKIDSS-LAS (Smith+, 2014)
NASA Astrophysics Data System (ADS)
Smith, L.; Lucas, P. W.; Burningham, B.; Jones, H. R. A.; Smart, R. L.; Andrei, A. H.; Catalan, S.; Pinfield, D. J.
2015-07-01
We constructed two epoch catalogues for each pointing by matching sources within the pairs of multiframes using the Starlink Tables Infrastructure Library Tool Set (STILTS; Taylor 2006, ASP conf. Ser. 351, 666). We required pairs of sources to be uniquely paired to their closest match within 6-arcsec, and we required the J band magnitudes for the two epochs to agree within 0.5mag, to minimize mismatches. (1 data file).
VizieR Online Data Catalog: Outer satellites occultation predictions (Gomes-Junior+, 2016)
NASA Astrophysics Data System (ADS)
Gomes-Junior, A. R.; Assafin, M.; Beauvalet, L.; Desmars, J.; Vieira-Martins, R.; Camargo, J. I. B.; Morgado, B. E.; Braga-Ribas, F.
2016-07-01
Tables contain the day of the year and UTC central instant of the prediction; right ascension and declination of the occulted star - at the central instant of the occultation (corrected by proper motions); C/A: apparent geocentric distance between the satellite and the star (a.k.a. the distance between the shadow and the center of the Earth) at the moment of the geocentric closest approach, in arcseconds; P/A: the satellite position angle with respect to the occulted star at C/A, in degrees (zero at north of the star, increasing clockwise); v: relative velocity of event in km/s: positive = prograde, negative = retrograde; D: Geocentric distance to the occulting object in AU; R*: normalized UCAC4 magnitude in the R-band to a common shadow of 20km/s by the relationship R*=RUCAC4+2.5xlog(velocity/(20km/s)), the value 20km/s is typical of events around the opposition; long: east longitude of subplanet point in degrees, positive towards east, at the instant of the geocentric closest approach; LST: UT + long: local solar time at subplanet point, hh:mm; pmra and pmdec: proper motions in right ascension and declination, respectively (mas/year). For more detailed information about the definition and use of these stellar occultation geometric elements see Assafin et al. (2010, Cat. J/A+A/515/A32). (2 data files).
Object Recognition and Localization: The Role of Tactile Sensors
Aggarwal, Achint; Kirchner, Frank
2014-01-01
Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087
An automated algorithm for determining photometric redshifts of quasars
NASA Astrophysics Data System (ADS)
Wang, Dan; Zhang, Yanxia; Zhao, Yongheng
2010-07-01
We employ k-nearest neighbor algorithm (KNN) for photometric redshift measurement of quasars with the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). KNN is an instance learning algorithm where the result of new instance query is predicted based on the closest training samples. The regressor do not use any model to fit and only based on memory. Given a query quasar, we find the known quasars or (training points) closest to the query point, whose redshift value is simply assigned to be the average of the values of its k nearest neighbors. Three kinds of different colors (PSF, Model or Fiber) and spectral redshifts are used as input parameters, separatively. The combination of the three kinds of colors is also taken as input. The experimental results indicate that the best input pattern is PSF + Model + Fiber colors in all experiments. With this pattern, 59.24%, 77.34% and 84.68% of photometric redshifts are obtained within ▵z < 0.1, 0.2 and 0.3, respectively. If only using one kind of colors as input, the model colors achieve the best performance. However, when using two kinds of colors, the best result is achieved by PSF + Fiber colors. In addition, nearest neighbor method (k = 1) shows its superiority compared to KNN (k ≠ 1) for the given sample.
ERIC Educational Resources Information Center
Johnston, James Scott
2008-01-01
My task in this paper is to demonstrate, contra Nel Noddings, that Kantian ethics does not have an expectation of treating those closest to one the same as one would a stranger. In fact, Kantian ethics has what I would consider a robust statement of how it is that those around us come to figure prominently in the development of one's ethics. To…
NASA Astrophysics Data System (ADS)
Hahn, Matthias; Pätzold, Martin; Andert, Tom; Bird, Michael K.; Tyler, Leonard G.; Linscott, Ivan; Hinson, Dave P.; Stern, Alan; Weaver, Hal; Olkin, Cathrin; Young, Leslie; Ennico, Kimberly
2015-11-01
One objective of the New Horizons Radio Science Experiment REX is the determination of the system mass and the individual masses of Pluto and Charon. About four weeks of two-way radio tracking centered around the closest approach of New Horizons to the Pluto system were processed. Major problems during the processing were caused by the small net forces of the spacecraft thruster activity, which produce extra Δv on the spacecraft motion superposed onto the continuously perturbed motion caused by the attracting forces of the Pluto system. The times of spacecraft thruster activity are known but the applied Δv needs to be specifically adjusted. No two-way tracking was available for the day of the flyby, but slots of REX one-way uplink tracking are used to cover the most important times near closest approach, e.g. during occultation entries and exits. This will help to separate the individual masses of Pluto and Charon from the system mass.
Assessing modelled spatial distributions of ice water path using satellite data
NASA Astrophysics Data System (ADS)
Eliasson, S.; Buehler, S. A.; Milz, M.; Eriksson, P.; John, V. O.
2010-05-01
The climate models used in the IPCC AR4 show large differences in monthly mean cloud ice. The most valuable source of information that can be used to potentially constrain the models is global satellite data. For this, the data sets must be long enough to capture the inter-annual variability of Ice Water Path (IWP). PATMOS-x was used together with ISCCP for the annual cycle evaluation in Fig. 7 while ECHAM-5 was used for the correlation with other models in Table 3. A clear distinction between ice categories in satellite retrievals, as desired from a model point of view, is currently impossible. However, long-term satellite data sets may still be used to indicate the climatology of IWP spatial distribution. We evaluated satellite data sets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, to determine which data sets can be used to evaluate the climate models. IWP data from CloudSat cloud profiling radar provides the most advanced data set on clouds. As CloudSat data are too short to evaluate the model data directly, it was mainly used here to evaluate IWP from the other satellite data sets. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the best of the two. As PATMOS-x extends over more than 25 years and is in fairly close agreement with CloudSat, it was chosen as the reference data set for the model evaluation. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is the GCM from IPCC AR4 closest to satellite observations.
Alford-Teaster, Jennifer; Lange, Jane M; Hubbard, Rebecca A; Lee, Christoph I; Haas, Jennifer S; Shi, Xun; Carlos, Heather A; Henderson, Louise; Hill, Deirdre; Tosteson, Anna N A; Onega, Tracy
2016-02-18
Characterizing geographic access depends on a broad range of methods available to researchers and the healthcare context to which the method is applied. Globally, travel time is one frequently used measure of geographic access with known limitations associated with data availability. Specifically, due to lack of available utilization data, many travel time studies assume that patients use the closest facility. To examine this assumption, an example using mammography screening data, which is considered a geographically abundant health care service in the United States, is explored. This work makes an important methodological contribution to measuring access--which is a critical component of health care planning and equity almost everywhere. We analyzed one mammogram from each of 646,553 women participating in the US based Breast Cancer Surveillance Consortium for years 2005-2012. We geocoded each record to street level address data in order to calculate travel time to the closest and to the actually used mammography facility. Travel time between the closest and the actual facility used was explored by woman-level and facility characteristics. Only 35% of women in the study population used their closest facility, but nearly three-quarters of women not using their closest facility used a facility within 5 min of the closest facility. Individuals that by-passed the closest facility tended to live in an urban core, within higher income neighborhoods, or in areas where the average travel times to work was longer. Those living in small towns or isolated rural areas had longer closer and actual median drive times. Since the majority of US women accessed a facility within a few minutes of their closest facility this suggests that distance to the closest facility may serve as an adequate proxy for utilization studies of geographically abundant services like mammography in areas where the transportation networks are well established.
NASA Astrophysics Data System (ADS)
Audenaert, Koenraad M. R.; Mosonyi, Milán
2014-10-01
We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ1, …, σr. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ1, …, σr), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov's classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min _{j
Mullen, Michael T; Pajerowski, William; Messé, Steven R; Mechem, C Crawford; Jia, Judy; Abboud, Michael; David, Guy; Carr, Brendan G; Band, Roger
2018-04-01
We evaluated the impact of a primary stroke center (PSC) destination policy in a major metropolitan city and used geographic modeling to evaluate expected changes for a comprehensive stroke center policy. We identified suspected stroke emergency medical services encounters from 1/1/2004 to 12/31/2013 in Philadelphia, PA. Transport times were compared before and after initiation of a PSC destination policy on 10/3/2011. Geographic modeling estimated the impact of bypassing the closest hospital for the closest PSC and for the closest comprehensive stroke center. There were 2 326 943 emergency medical services runs during the study period, of which 15 099 had a provider diagnosis of stroke. Bypassing the closest hospital for a PSC was common before the official policy and increased steadily over time. Geographic modeling suggested that bypassing the closest hospital in favor of the closest PSC adds a median of 3.1 minutes to transport time. Bypassing to the closest comprehensive stroke center would add a median of 8.3 minutes. Within a large metropolitan area, the time cost of routing patients preferentially to PSCs and comprehensive stroke centers is low. © 2018 American Heart Association, Inc.
NASA Astrophysics Data System (ADS)
Mohamed, Adel M. E.; Mohamed, Abuo El-Ela A.
2013-06-01
Ground vibrations induced by blasting in the cement quarries are one of the fundamental problems in the quarrying industry and may cause severe damage to the nearby utilities and pipelines. Therefore, a vibration control study plays an important role in the minimization of environmental effects of blasting in quarries. The current paper presents the influence of the quarry blasts at the National Cement Company (NCC) on the two oil pipelines of SUMED Company southeast of Helwan City, by measuring the ground vibrations in terms of Peak Particle Velocity (PPV). The seismic refraction for compressional waves deduced from the shallow seismic survey and the shear wave velocity obtained from the Multi channel Analysis of Surface Waves (MASW) technique are used to evaluate the closest site of the two pipelines to the quarry blasts. The results demonstrate that, the closest site of the two pipelines is of class B, according to the National Earthquake Hazard Reduction Program (NEHRP) classification and the safe distance to avoid any environmental effects is 650 m, following the deduced Peak Particle Velocity (PPV) and scaled distance (SD) relationship (PPV = 700.08 × SD-1.225) in mm/s and the Air over Pressure (air blast) formula (air blast = 170.23 × SD-0.071) in dB. In the light of prediction analysis, the maximum allowable charge weight per delay was found to be 591 kg with damage criterion of 12.5 mm/s at the closest site of the SUMED pipelines.
Using stellar spectra to illustrate thermal radiation laws
NASA Astrophysics Data System (ADS)
Kaltcheva, N. T.; Pritzl, B. J.
2018-05-01
Stars are point-source emitters that are the closest to the definition of a blackbody in comparison to all other similar sources of radiation found in nature. Existing libraries on stellar spectra are thus a valuable resource that can be used to introduce the laws of thermal radiation in a classroom setting. In this article we briefly describe some of the opportunities that available databases on stellar spectra provide for students to gain a deeper understanding on thermal radiation and spectral line characteristics.
Maritime Mobile Force Protection (MMFP) Program
2010-05-28
to draw or write on the screen. Thin design has a starting weight of 4.65lbs. Capture handwriting : scrawl onscreen with the included dockable...Will say “Past CPA” if CPA has already occurred. Range at CPA DDD Yards Range at Closest Point of Approach to HVU Closing Speed DDD knots Speed of...closing to HVU, if greater than or equal to zero. Will say “Opening” if the closing speed is less than zero. Data Source Radar, AIS, Correlated Source
Pearl Harbor and South Coast of OAHU Hurricane Haven Study.
1984-09-01
LASNIS. (TERN Is. NEKE 1 /AA*s**OAH/ DISAPPEARING IS. /NIHOA MOLOKAI NIIHAU MU 20ON LANAI-’ ’ KAHOOLAWE 0 0 lo HAWAII (0 U) Figure 1...of Niihau and Kauai near 240300Z. Its closest point of approach to Oahu occurred when it was northwest of the island at approximatly 240430Z and...Section 4.2, the most exten- sively documented occurrence of storm surge in the Hawaiian Islands came with Hurricane Iwa. Kauai and Niihau bore the
An Independent and Coordinated Criterion for Kinematic Aircraft Maneuvers
NASA Technical Reports Server (NTRS)
Narkawicz, Anthony J.; Munoz, Cesar A.; Hagen, George
2014-01-01
This paper proposes a mathematical definition of an aircraft-separation criterion for kinematic-based horizontal maneuvers. It has been formally proved that kinematic maneu- vers that satisfy the new criterion are independent and coordinated for repulsiveness, i.e., the distance at closest point of approach increases whether one or both aircraft maneuver according to the criterion. The proposed criterion is currently used in NASA's Airborne Coordinated Resolution and Detection (ACCoRD) set of tools for the design and analysis of separation assurance systems.
Voyager planetary radio astronomy at neptune.
Warwick, J W; Evans, D R; Peltzer, G R; Peltzer, R G; Romig, J H; Sawyer, C B; Riddle, A C; Schweitzer, A E; Desch, M D; Kaiser, M L; Farrell, W M; Carr, T D; de Pater, I; Staelin, D H; Gulkis, S; Poynter, R L; Boischot, A; Genova, F; Leblanc, Y; Lecacheux, A; Pedersen, B M; Zarka, P
1989-12-15
Detection of very intense short radio bursts from Neptune was possible as early as 30 days before closest approach and at least 22 days after closest approach. The bursts lay at frequencies in the range 100 to 1300 kilohertz, were narrowband and strongly polarized, and presumably originated in southern polar regions ofthe planet. Episodes of smooth emissions in the frequency range from 20 to 865 kilohertz were detected during an interval of at least 10 days around closest approach. The bursts and the smooth emissions can be described in terms of rotation in a period of 16.11 +/- 0.05 hours. The bursts came at regular intervals throughout the encounter, including episodes both before and after closest approach. The smooth emissions showed a half-cycle phase shift between the five episodes before and after closest approach. This experiment detected the foreshock of Neptune's magnetosphere and the impacts of dust at the times of ring-plane crossings and also near the time of closest approach. Finally, there is no evidence for Neptunian electrostatic discharges.
A Spectral Algorithm for Envelope Reduction of Sparse Matrices
NASA Technical Reports Server (NTRS)
Barnard, Stephen T.; Pothen, Alex; Simon, Horst D.
1993-01-01
The problem of reordering a sparse symmetric matrix to reduce its envelope size is considered. A new spectral algorithm for computing an envelope-reducing reordering is obtained by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. This Laplacian eigenvector solves a continuous relaxation of a discrete problem related to envelope minimization called the minimum 2-sum problem. The permutation vector computed by the spectral algorithm is a closest permutation vector to the specified Laplacian eigenvector. Numerical results show that the new reordering algorithm usually computes smaller envelope sizes than those obtained from the current standard algorithms such as Gibbs-Poole-Stockmeyer (GPS) or SPARSPAK reverse Cuthill-McKee (RCM), in some cases reducing the envelope by more than a factor of two.
The computational complexity of elliptic curve integer sub-decomposition (ISD) method
NASA Astrophysics Data System (ADS)
Ajeena, Ruma Kareem K.; Kamarulhaili, Hailiza
2014-07-01
The idea of the GLV method of Gallant, Lambert and Vanstone (Crypto 2001) is considered a foundation stone to build a new procedure to compute the elliptic curve scalar multiplication. This procedure, that is integer sub-decomposition (ISD), will compute any multiple kP of elliptic curve point P which has a large prime order n with two low-degrees endomorphisms ψ1 and ψ2 of elliptic curve E over prime field Fp. The sub-decomposition of values k1 and k2, not bounded by ±C√n , gives us new integers k11, k12, k21 and k22 which are bounded by ±C√n and can be computed through solving the closest vector problem in lattice. The percentage of a successful computation for the scalar multiplication increases by ISD method, which improved the computational efficiency in comparison with the general method for computing scalar multiplication in elliptic curves over the prime fields. This paper will present the mechanism of ISD method and will shed light mainly on the computation complexity of the ISD approach that will be determined by computing the cost of operations. These operations include elliptic curve operations and finite field operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, Brian; Scherzinger, William
2017-01-19
Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, andmore » compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, Brian T.; Scherzinger, William M.
2017-01-19
A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and comparedmore » to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less
Significance testing - are we ready yet to abandon its use?
The, Bertram
2011-11-01
Understanding of the damaging effects of significance testing has steadily grown. Reporting p values without dichotomizing the result to be significant or not, is not the solution. Confidence intervals are better, but are troubled by a non-intuitive interpretation, and are often misused just to see whether the null value lies within the interval. Bayesian statistics provide an alternative which solves most of these problems. Although criticized for relying on subjective models, the interpretation of a Bayesian posterior probability is more intuitive than the interpretation of a p value, and seems to be closest to intuitive patterns of human decision making. Another alternative could be using confidence interval functions (or p value functions) to display a continuum of intervals at different levels of confidence around a point estimate. Thus, better alternatives to significance testing exist. The reluctance to abandon this practice might be both preference of clinging to old habits as well as the unfamiliarity with better methods. Authors might question if using less commonly exercised, though superior, techniques will be well received by the editors, reviewers and the readership. A joint effort will be needed to abandon significance testing in clinical research in the future.
Lightning Reporting at 45th Weather Squadron: Recent Improvements
NASA Technical Reports Server (NTRS)
Finn, Frank C.; Roeder, William P.; Buchanan, Michael D.; McNamara, Todd M.; McAllenan, Michael; Winters, Katherine A.; Fitzpatrick, Michael E.; Huddleston, Lisa L.
2010-01-01
The 45th Weather Squadron (45 WS) provides daily lightning reports to space launch customers at CCAFS/KSC. These reports are provided to assess the need to inspect the electronics of satellite payloads, space launch vehicles, and ground support equipment for induced current damage from nearby lightning strokes. The 45 WS has made several improvements to the lightning reports during 2008-2009. The 4DLSS, implemented in April 2008, provides all lightning strokes as opposed to just one stroke per flash as done by the previous system. The 45 WS discovered that the peak current was being truncated to the nearest kilo amp in the database used to generate the daily lightning reports, which led to an up to 4% underestimate in the peak current for average lightning. This error was corrected and led to elimination of this underestimate. The 45 WS and their mission partners developed lightning location error ellipses for 99% and 95% location accuracies tailored to each individual stroke and began providing them in the spring of 2009. The new procedure provides the distance from the point of interest to the best location of the stroke (the center of the error ellipse) and the distance to the closest edge of the ellipse. This information is now included in the lightning reports, along with the peak current of the stroke. The initial method of calculating the error ellipses could only be used during normal duty hours, i.e. not during nights, weekends, or holidays. This method was improved later to provide lightning reports in near real-time, 24/7. The calculation of the distance to the closest point on the ellipse was also significantly improved later. Other improvements were also implemented. A new method to calculate the probability of any nearby lightning stroke. being within any radius of any point of interest was developed and is being implemented. This may supersede the use of location error ellipses. The 45 WS is pursuing adding data from nine NLDN sensors into 4DLSS in real-time. This will overcome the problem of 4DLSS missing some of the strong local strokes. This will also improve the location accuracy, reduce the size and eccentricity of the location error ellipses, and reduce the probability of nearby strokes being inside the areas of interest when few of the 4DLSS sensors are used in the stroke solution. This will not reduce 4DLSS performance when most of the 4DLSS sensors are used in the stroke solution. Finally, several possible future improvements were discussed, especially for improving the peak current estimate and the error estimate for peak current, and upgrading the 4DLSS. Some possible approaches for both of these goals were discussed.
Battling demons with medical authority: werewolves, physicians and rationalization.
Metzger, Nadine
2013-09-01
Werewolves and physicians experienced their closest contact in the context of early modern witch and werewolf trials. For medical critics of the trials, melancholic diseases served as reference points for medical explanations of both individual cases and werewolf beliefs in general. This paper attempts to construct a conceptual history of werewolf beliefs and their respective medical responses. After differentiating the relevant terms, pre-modern werewolf concepts and medical lycanthropy are introduced. The early modern controversy between medical and demonological explanations forms the main part of this study. The history of werewolves and their medical explanations is then traced through to present times. An important point of discussion is to what extent the physicians' engagements with werewolves can be characterized as rationalization.
Battling demons with medical authority: werewolves, physicians and rationalization
Metzger, Nadine
2014-01-01
Werewolves and physicians experienced their closest contact in the context of early modern witch and werewolf trials. For medical critics of the trials, melancholic diseases served as reference points for medical explanations of both individual cases and werewolf beliefs in general. This paper attempts to construct a conceptual history of werewolf beliefs and their respective medical responses. After differentiating the relevant terms, pre-modern werewolf concepts and medical lycanthropy are introduced. The early modern controversy between medical and demonological explanations forms the main part of this study. The history of werewolves and their medical explanations is then traced through to present times. An important point of discussion is to what extent the physicians’ engagements with werewolves can be characterized as rationalization. PMID:24573449
User oriented data processing at the University of Michigan
NASA Technical Reports Server (NTRS)
Thomson, F. J.
1970-01-01
The multispectral techniques have shown themselves capable of solving problems in a large number of user areas. The results obtained are in some instances quite impressive. In many instances, the multispectral detection of various phenomena is an empirical fact for which there is little physical explanation today. To date, most of the user applications that have been addressed are exploratory in nature. The closest approximation to an operational situation encountered so far is that of the survey of wetlands in North Dakota reported in this paper.
On spinodal points and Lee-Yang edge singularities
NASA Astrophysics Data System (ADS)
An, X.; Mesterházy, D.; Stephanov, M. A.
2018-03-01
We address a number of outstanding questions associated with the analytic properties of the universal equation of state of the φ4 theory, which describes the critical behavior of the Ising model and ubiquitous critical points of the liquid–gas type. We focus on the relation between spinodal points that limit the domain of metastability for temperatures below the critical temperature, i.e. T < Tc , and Lee-Yang edge singularities that restrict the domain of analyticity around the point of zero magnetic field H for T > Tc . The extended analyticity conjecture (due to Fonseca and Zamolodchikov) posits that, for T < Tc , the Lee-Yang edge singularities are the closest singularities to the real H axis. This has interesting implications, in particular, that the spinodal singularities must lie off the real H axis for d < 4 , in contrast to the commonly known result of the mean-field approximation. We find that the parametric representation of the Ising equation of state obtained in the \\renewcommandε{\\varepsilon} \
Ayaz, Shirazi Muhammad; Kim, Min Young
2018-01-01
In this article, a multi-view registration approach for the 3D handheld profiling system based on the multiple shot structured light technique is proposed. The multi-view registration approach is categorized into coarse registration and point cloud refinement using the iterative closest point (ICP) algorithm. Coarse registration of multiple point clouds was performed using relative orientation and translation parameters estimated via homography-based visual navigation. The proposed system was evaluated using an artificial human skull and a paper box object. For the quantitative evaluation of the accuracy of a single 3D scan, a paper box was reconstructed, and the mean errors in its height and breadth were found to be 9.4 μm and 23 μm, respectively. A comprehensive quantitative evaluation and comparison of proposed algorithm was performed with other variants of ICP. The root mean square error for the ICP algorithm to register a pair of point clouds of the skull object was also found to be less than 1 mm. PMID:29642552
In Vivo Talocrural Joint Contact Mechanics With Functional Ankle Instability.
Kobayashi, Takumi; Suzuki, Eiichi; Yamazaki, Naohito; Suzukawa, Makoto; Akaike, Atsushi; Shimizu, Kuniaki; Gamada, Kazuyoshi
2015-12-01
Functional ankle instability (FAI) may involve abnormal kinematics and contact mechanics during ankle internal rotation. Understanding of these abnormalities is important to prevent secondary problems in patients with FAI. However, there are no in vivo studies that have investigated talocrural joint contact mechanics during weightbearing ankle internal rotation. The objective of this study to determine talocrural contact mechanics during weightbearing ankle internal rotation in patients with FAI. Twelve male subjects with unilateral FAI (age range, 18-26 years) were enrolled. Computed tomography and fluoroscopic imaging of both lower extremities were obtained during weightbearing passive ankle joint complex rotation. Three-dimensional bone models created from the computed tomographic images were matched to the fluoroscopic images to compute 6 degrees of freedom for talocrural joint kinematics. The closest contact area in the talocrural joint in ankle neutral rotation and maximum internal rotation during either dorsiflexion or plantar flexion was determined using geometric bone models and talocrural joint kinematics data. The closest contact area in the talus shifted anteromedially during ankle dorsiflexion-internal rotation, whereas it shifted posteromedially during ankle plantar flexion-internal rotation. The closest contact area in FAI joints was significantly more medial than that in healthy joints during maximum ankle internal rotation and was associated with excessive talocrural internal rotation or inversion. This study demonstrated abnormal talocrural kinematics and contact mechanics in FAI subjects. Such abnormal kinematics may contribute to abnormal contact mechanics and may increase cartilage stress in FAI joints. Therapeutic, Level IV: cross-sectional case-control study. © 2015 The Author(s).
Multibeam 3D Underwater SLAM with Probabilistic Registration.
Palomer, Albert; Ridao, Pere; Ribas, David
2016-04-20
This paper describes a pose-based underwater 3D Simultaneous Localization and Mapping (SLAM) using a multibeam echosounder to produce high consistency underwater maps. The proposed algorithm compounds swath profiles of the seafloor with dead reckoning localization to build surface patches (i.e., point clouds). An Iterative Closest Point (ICP) with a probabilistic implementation is then used to register the point clouds, taking into account their uncertainties. The registration process is divided in two steps: (1) point-to-point association for coarse registration and (2) point-to-plane association for fine registration. The point clouds of the surfaces to be registered are sub-sampled in order to decrease both the computation time and also the potential of falling into local minima during the registration. In addition, a heuristic is used to decrease the complexity of the association step of the ICP from O(n2) to O(n) . The performance of the SLAM framework is tested using two real world datasets: First, a 2.5D bathymetric dataset obtained with the usual down-looking multibeam sonar configuration, and second, a full 3D underwater dataset acquired with a multibeam sonar mounted on a pan and tilt unit.
Hierarchical Higher Order Crf for the Classification of Airborne LIDAR Point Clouds in Urban Areas
NASA Astrophysics Data System (ADS)
Niemeyer, J.; Rottensteiner, F.; Soergel, U.; Heipke, C.
2016-06-01
We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: the distance and the orientation of a segment with respect to the closest road. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.
Giłka, Wojciech; Dobosz, Roland
2015-06-26
First specific records of chironomids of the tribe Tanytarsini from New Caledonia based on detailed descriptions of new species are presented. Cladotanytarsus (Cladotanytarsus) stylifer sp. nov. and its closest relatives, i.a. Cladotanytarsus (C.) isigacedeus (Sasa et Suzuki, 2000), comb. nov., known from males bearing extraordinarily elongate hypopygial anal points are diagnosed. Paratanytarsus mirificus sp. nov. is described as adult male with unique structure of its hypopygium and shortened antennae. Diagnostic description of Tanytarsus fuscithorax Skuse, 1889 is also complemented.
Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target.
Yin, Fang; Chou, Wusheng; Wu, Yun; Yang, Guang; Xu, Song
2018-03-28
This paper proposes an autonomous algorithm to determine the relative pose between the chaser spacecraft and the uncooperative space target, which is essential in advanced space applications, e.g., on-orbit serving missions. The proposed method, named Congruent Tetrahedron Align (CTA) algorithm, uses the very sparse unorganized 3D point cloud acquired by a LIDAR sensor, and does not require any prior pose information. The core of the method is to determine the relative pose by looking for the congruent tetrahedron in scanning point cloud and model point cloud on the basis of its known model. The two-level index hash table is built for speeding up the search speed. In addition, the Iterative Closest Point (ICP) algorithm is used for pose tracking after CTA. In order to evaluate the method in arbitrary initial attitude, a simulated system is presented. Specifically, the performance of the proposed method to provide the initial pose needed for the tracking algorithm is demonstrated, as well as their robustness against noise. Finally, a field experiment is conducted and the results demonstrated the effectiveness of the proposed method.
Automated Point Cloud Correspondence Detection for Underwater Mapping Using AUVs
NASA Technical Reports Server (NTRS)
Hammond, Marcus; Clark, Ashley; Mahajan, Aditya; Sharma, Sumant; Rock, Stephen
2015-01-01
An algorithm for automating correspondence detection between point clouds composed of multibeam sonar data is presented. This allows accurate initialization for point cloud alignment techniques even in cases where accurate inertial navigation is not available, such as iceberg profiling or vehicles with low-grade inertial navigation systems. Techniques from computer vision literature are used to extract, label, and match keypoints between "pseudo-images" generated from these point clouds. Image matches are refined using RANSAC and information about the vehicle trajectory. The resulting correspondences can be used to initialize an iterative closest point (ICP) registration algorithm to estimate accumulated navigation error and aid in the creation of accurate, self-consistent maps. The results presented use multibeam sonar data obtained from multiple overlapping passes of an underwater canyon in Monterey Bay, California. Using strict matching criteria, the method detects 23 between-swath correspondence events in a set of 155 pseudo-images with zero false positives. Using less conservative matching criteria doubles the number of matches but introduces several false positive matches as well. Heuristics based on known vehicle trajectory information are used to eliminate these.
Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target
Chou, Wusheng; Wu, Yun; Yang, Guang; Xu, Song
2018-01-01
This paper proposes an autonomous algorithm to determine the relative pose between the chaser spacecraft and the uncooperative space target, which is essential in advanced space applications, e.g., on-orbit serving missions. The proposed method, named Congruent Tetrahedron Align (CTA) algorithm, uses the very sparse unorganized 3D point cloud acquired by a LIDAR sensor, and does not require any prior pose information. The core of the method is to determine the relative pose by looking for the congruent tetrahedron in scanning point cloud and model point cloud on the basis of its known model. The two-level index hash table is built for speeding up the search speed. In addition, the Iterative Closest Point (ICP) algorithm is used for pose tracking after CTA. In order to evaluate the method in arbitrary initial attitude, a simulated system is presented. Specifically, the performance of the proposed method to provide the initial pose needed for the tracking algorithm is demonstrated, as well as their robustness against noise. Finally, a field experiment is conducted and the results demonstrated the effectiveness of the proposed method. PMID:29597323
Optimisation in radiotherapy. III: Stochastic optimisation algorithms and conclusions.
Ebert, M
1997-12-01
This is the final article in a three part examination of optimisation in radiotherapy. Previous articles have established the bases and form of the radiotherapy optimisation problem, and examined certain types of optimisation algorithm, namely, those which perform some form of ordered search of the solution space (mathematical programming), and those which attempt to find the closest feasible solution to the inverse planning problem (deterministic inversion). The current paper examines algorithms which search the space of possible irradiation strategies by stochastic methods. The resulting iterative search methods move about the solution space by sampling random variates, which gradually become more constricted as the algorithm converges upon the optimal solution. This paper also discusses the implementation of optimisation in radiotherapy practice.
An analysis of spectral envelope-reduction via quadratic assignment problems
NASA Technical Reports Server (NTRS)
George, Alan; Pothen, Alex
1994-01-01
A new spectral algorithm for reordering a sparse symmetric matrix to reduce its envelope size was described. The ordering is computed by associating a Laplacian matrix with the given matrix and then sorting the components of a specified eigenvector of the Laplacian. In this paper, we provide an analysis of the spectral envelope reduction algorithm. We described related 1- and 2-sum problems; the former is related to the envelope size, while the latter is related to an upper bound on the work involved in an envelope Cholesky factorization scheme. We formulate the latter two problems as quadratic assignment problems, and then study the 2-sum problem in more detail. We obtain lower bounds on the 2-sum by considering a projected quadratic assignment problem, and then show that finding a permutation matrix closest to an orthogonal matrix attaining one of the lower bounds justifies the spectral envelope reduction algorithm. The lower bound on the 2-sum is seen to be tight for reasonably 'uniform' finite element meshes. We also obtain asymptotically tight lower bounds for the envelope size for certain classes of meshes.
Charge interaction between particle-laden fluid interfaces.
Xu, Hui; Kirkwood, John; Lask, Mauricio; Fuller, Gerald
2010-03-02
Experiments are described where two oil/water interfaces laden with charged particles move at close proximity relative to one another. The particles on one of the interfaces were observed to be attracted toward the point of closest approach, forming a denser particle monolayer, while the particles on the opposite interface were repelled away from this point, forming a particle depletion zone. Such particle attraction/repulsion was observed even if one of the interfaces was free of particles. This phenomenon can be explained by the electrostatic interaction between the two interfaces, which causes surface charges (charged particles and ions) to redistribute in order to satisfy surface electric equipotential at each interface. In a forced particle oscillation experiment, we demonstrated the control of charged particle positions on the interface by manipulating charge interaction between interfaces.
Visual Mislocalization of Moving Objects in an Audiovisual Event.
Kawachi, Yousuke
2016-01-01
The present study investigated the influence of an auditory tone on the localization of visual objects in the stream/bounce display (SBD). In this display, two identical visual objects move toward each other, overlap, and then return to their original positions. These objects can be perceived as either streaming through or bouncing off each other. In this study, the closest distance between object centers on opposing trajectories and tone presentation timing (none, 0 ms, ± 90 ms, and ± 390 ms relative to the instant for the closest distance) were manipulated. Observers were asked to judge whether the two objects overlapped with each other and whether the objects appeared to stream through, bounce off each other, or reverse their direction of motion. A tone presented at or around the instant of the objects' closest distance biased judgments toward "non-overlapping," and observers overestimated the physical distance between objects. A similar bias toward direction change judgments (bounce and reverse, not stream judgments) was also observed, which was always stronger than the non-overlapping bias. Thus, these two types of judgments were not always identical. Moreover, another experiment showed that it was unlikely that this observed mislocalization could be explained by other previously known mislocalization phenomena (i.e., representational momentum, the Fröhlich effect, and a turn-point shift). These findings indicate a new example of crossmodal mislocalization, which can be obtained without temporal offsets between audiovisual stimuli. The mislocalization effect is also specific to a more complex stimulus configuration of objects on opposing trajectories, with a tone that is presented simultaneously. The present study promotes an understanding of relatively complex audiovisual interactions beyond simple one-to-one audiovisual stimuli used in previous studies.
Visual Mislocalization of Moving Objects in an Audiovisual Event
Kawachi, Yousuke
2016-01-01
The present study investigated the influence of an auditory tone on the localization of visual objects in the stream/bounce display (SBD). In this display, two identical visual objects move toward each other, overlap, and then return to their original positions. These objects can be perceived as either streaming through or bouncing off each other. In this study, the closest distance between object centers on opposing trajectories and tone presentation timing (none, 0 ms, ± 90 ms, and ± 390 ms relative to the instant for the closest distance) were manipulated. Observers were asked to judge whether the two objects overlapped with each other and whether the objects appeared to stream through, bounce off each other, or reverse their direction of motion. A tone presented at or around the instant of the objects’ closest distance biased judgments toward “non-overlapping,” and observers overestimated the physical distance between objects. A similar bias toward direction change judgments (bounce and reverse, not stream judgments) was also observed, which was always stronger than the non-overlapping bias. Thus, these two types of judgments were not always identical. Moreover, another experiment showed that it was unlikely that this observed mislocalization could be explained by other previously known mislocalization phenomena (i.e., representational momentum, the Fröhlich effect, and a turn-point shift). These findings indicate a new example of crossmodal mislocalization, which can be obtained without temporal offsets between audiovisual stimuli. The mislocalization effect is also specific to a more complex stimulus configuration of objects on opposing trajectories, with a tone that is presented simultaneously. The present study promotes an understanding of relatively complex audiovisual interactions beyond simple one-to-one audiovisual stimuli used in previous studies. PMID:27111759
NASA Astrophysics Data System (ADS)
You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo
2013-06-01
In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.
GSFC_20180130_M12842_Supermoon
2018-01-30
Get ready for the Super Blue Blood Moon! Our closest celestial neighbor is always a wondrous sight, but on the morning of Jan. 31, 2018, three special lunar events are all happening at the same time, providing an excellent excuse to go out and enjoy the nighttime sky. 1 - The full Moon is near the closest point of its orbit so it appears a little larger than usual, what many call a Supermoon. 2 - It’s the second full Moon of the month, what many call a Blue Moon, though the Moon is not literally blue. 3 - There’s a total lunar eclipse, what many call a Blood Moon, visible before sunrise for the western half of the U.S. and other countries near the Pacific. During a total lunar eclipse, the Moon crosses through the shadow of the Earth and LITERALLY appears red as it reflects all of Earth’s sunrises and sunsets. Join NASA scientists Michelle Thaller and Noah Petro live from the Goddard Space Flight Center as we discuss where, when, and how to view this lunar extravaganza and the latest Moon science brought to us by NASA’s Lunar Reconnaissance Orbiter.
Clustering by soft-constraint affinity propagation: applications to gene-expression data.
Leone, Michele; Sumedha; Weigt, Martin
2007-10-15
Similarity-measure-based clustering is a crucial problem appearing throughout scientific data analysis. Recently, a powerful new algorithm called Affinity Propagation (AP) based on message-passing techniques was proposed by Frey and Dueck (2007a). In AP, each cluster is identified by a common exemplar all other data points of the same cluster refer to, and exemplars have to refer to themselves. Albeit its proved power, AP in its present form suffers from a number of drawbacks. The hard constraint of having exactly one exemplar per cluster restricts AP to classes of regularly shaped clusters, and leads to suboptimal performance, e.g. in analyzing gene expression data. This limitation can be overcome by relaxing the AP hard constraints. A new parameter controls the importance of the constraints compared to the aim of maximizing the overall similarity, and allows to interpolate between the simple case where each data point selects its closest neighbor as an exemplar and the original AP. The resulting soft-constraint affinity propagation (SCAP) becomes more informative, accurate and leads to more stable clustering. Even though a new a priori free parameter is introduced, the overall dependence of the algorithm on external tuning is reduced, as robustness is increased and an optimal strategy for parameter selection emerges more naturally. SCAP is tested on biological benchmark data, including in particular microarray data related to various cancer types. We show that the algorithm efficiently unveils the hierarchical cluster structure present in the data sets. Further on, it allows to extract sparse gene expression signatures for each cluster.
NASA Astrophysics Data System (ADS)
Wu, Yu-Xia; Zhang, Xi; Xu, Xiao-Pan; Liu, Yang; Zhang, Guo-Peng; Li, Bao-Juan; Chen, Hui-Jun; Lu, Hong-Bing
2017-02-01
Ischemic stroke has great correlation with carotid atherosclerosis and is mostly caused by vulnerable plaques. It's particularly important to analysis the components of plaques for the detection of vulnerable plaques. Recently plaque analysis based on multi-contrast magnetic resonance imaging has attracted great attention. Though multi-contrast MR imaging has potentials in enhanced demonstration of carotid wall, its performance is hampered by the misalignment of different imaging sequences. In this study, a coarse-to-fine registration strategy based on cross-sectional images and wall boundaries is proposed to solve the problem. It includes two steps: a rigid step using the iterative closest points to register the centerlines of carotid artery extracted from multi-contrast MR images, and a non-rigid step using the thin plate spline to register the lumen boundaries of carotid artery. In the rigid step, the centerline was extracted by tracking the crosssectional images along the vessel direction calculated by Hessian matrix. In the non-rigid step, a shape context descriptor is introduced to find corresponding points of two similar boundaries. In addition, the deterministic annealing technique is used to find a globally optimized solution. The proposed strategy was evaluated by newly developed three-dimensional, fast and high resolution multi-contrast black blood MR imaging. Quantitative validation indicated that after registration, the overlap of two boundaries from different sequences is 95%, and their mean surface distance is 0.12 mm. In conclusion, the proposed algorithm has improved the accuracy of registration effectively for further component analysis of carotid plaques.
Reconsidering the "Good Divorce"
Amato, Paul R; Kane, Jennifer B; James, Spencer
2011-12-01
This study attempted to assess the notion that a "good divorce" protects children from the potential negative consequences of marital dissolution. A cluster analysis of data on postdivorce parenting from 944 families resulted in three groups: cooperative coparenting, parallel parenting, and single parenting. Children in the cooperative coparenting (good divorce) cluster had the smallest number of behavior problems and the closest ties to their fathers. Nevertheless, children in this cluster did not score significantly better than other children on 10 additional outcomes. These findings provide only modest support for the good divorce hypothesis.
Reconsidering the “Good Divorce”
Amato, Paul R.; Kane, Jennifer B.; James, Spencer
2011-01-01
This study attempted to assess the notion that a “good divorce” protects children from the potential negative consequences of marital dissolution. A cluster analysis of data on postdivorce parenting from 944 families resulted in three groups: cooperative coparenting, parallel parenting, and single parenting. Children in the cooperative coparenting (good divorce) cluster had the smallest number of behavior problems and the closest ties to their fathers. Nevertheless, children in this cluster did not score significantly better than other children on 10 additional outcomes. These findings provide only modest support for the good divorce hypothesis. PMID:22125355
Vignais, Nicolas; Bideau, Benoit; Craig, Cathy; Brault, Sébastien; Multon, Franck; Delamarche, Paul; Kulpa, Richard
2009-01-01
The authors investigated how different levels of detail (LODs) of a virtual throwing action can influence a handball goalkeeper’s motor response. Goalkeepers attempted to stop a virtual ball emanating from five different graphical LODs of the same virtual throwing action. The five levels of detail were: a textured reference level (L0), a non-textured level (L1), a wire-frame level (L2), a point-light-display (PLD) representation (L3) and a PLD level with reduced ball size (L4). For each motor response made by the goalkeeper we measured and analyzed the time to respond (TTR), the percentage of successful motor responses, the distance between the ball and the closest limb (when the stopping motion was incorrect) and the kinematics of the motion. Results showed that TTR, percentage of successful motor responses and distance with the closest limb were not significantly different for any of the five different graphical LODs. However the kinematics of the motion revealed that the trajectory of the stopping limb was significantly different when comparing the L1 and L3 levels, and when comparing the L1 and L4 levels. These differences in the control of the goalkeeper’s actions suggests that the different level of information available in the PLD representations (L3 and L4) are causing the goalkeeper to adopt different motor strategies to control the approach of their limb to stop the ball. Key points Virtual reality technology can be used to analyze sport performance because it enables standardization and reproduction of sport situations. Defining a minimal graphical level of detail of a virtual action could decrease the real time calculation of a virtual reality system. A Point Light Display graphical representation of a virtual throwing motion seems to influence the regulation of action of real handball goalkeepers. PMID:24149589
Necpalova, M; Fenton, O; Casey, I; Humphreys, J
2012-08-15
This study investigated concentrations of various N species in shallow groundwater (<2.2m below ground level) and N losses from dairy production involving grazing over the winter period on a clay loam soil with a high natural attenuation capacity in southern Ireland (52°51'N, 08°21'W) over a 2-year period. A dense network of shallow groundwater piezometers was installed to determine groundwater flow direction and N spatial and temporal variation. Estimated vertical travel times through the unsaturated zone (<0.5 yr, time lag) allowed the correlation of management with groundwater N within a short space of time. There was a two way interaction of the system and sampling date (P<0.05) on concentrations of DON, oxidised N and NO(3)(-)-N. In contrast, concentrations of NH(4)(+)-N and NO(2)(-)-N were unaffected by the dairy system. Grazing over the winter had no effect on N losses to groundwater. Mean concentrations of DON, NH(4)(+)-N, NO(2)(-)-N and NO(3)(-)-N were 2.16, 0.35, 0.01 and 0.37 mg L(-1) respectively. Soil attenuation processes such as denitrification and DNRA resulted in increased NH(4)(+)-N levels. For this reason, DON and NH(4)(+)-N represented the highest proportion of N losses from the site. Some of the spatial and temporal variation of N concentrations was explained by correlations with selected chemical and hydro-topographical parameters (NO(3)(-)-N/Cl(-) ratio, distance of the sampling point from the closest receptor, watertable depth, depth of sampling piezometer, DOC concentration). A high explanatory power of NO(3)(-)-N/Cl(-) ratio and the distance of the sampling point from the closest receptor indicated the influence of point sources and groundwater-surface water interactions. Copyright © 2012 Elsevier B.V. All rights reserved.
Renner, Susanne S; Zhang, Li-Bing
2004-06-01
Pistia stratiotes (water lettuce) and Lemna (duckweeds) are the only free-floating aquatic Araceae. The geographic origin and phylogenetic placement of these unrelated aroids present long-standing problems because of their highly modified reproductive structures and wide geographical distributions. We sampled chloroplast (trnL-trnF and rpl20-rps12 spacers, trnL intron) and mitochondrial sequences (nad1 b/c intron) for all genera implicated as close relatives of Pistia by morphological, restriction site, and sequencing data, and present a hypothesis about its geographic origin based on the consensus of trees obtained from the combined data, using Bayesian, maximum likelihood, parsimony, and distance analyses. Of the 14 genera closest to Pistia, only Alocasia, Arisaema, and Typhonium are species-rich, and the latter two were studied previously, facilitating the choice of representatives that span the roots of these genera. Results indicate that Pistia and the Seychelles endemic Protarum sechellarum are the basalmost branches in a grade comprising the tribes Colocasieae (Ariopsis, Steudnera, Remusatia, Alocasia, Colocasia), Arisaemateae (Arisaema, Pinellia), and Areae (Arum, Biarum, Dracunculus, Eminium, Helicodiceros, Theriophonum, Typhonium). Unexpectedly, all Areae genera are embedded in Typhonium, which throws new light on the geographic history of Areae. A Bayesian analysis of divergence times that explores the effects of multiple fossil and geological calibration points indicates that the Pistia lineage is 90 to 76 million years (my) old. The oldest fossils of the Pistia clade, though not Pistia itself, are 45-my-old leaves from Germany; the closest outgroup, Peltandreae (comprising a few species in Florida, the Mediterranean, and Madagascar), is known from 60-my-old leaves from Europe, Kazakhstan, North Dakota, and Tennessee. Based on the geographic ranges of close relatives, Pistia likely originated in the Tethys region, with Protarum then surviving on the Seychelles, which became isolated from Madagascar and India in the Late Cretaceous (85 my ago). Pistia and Protarum provide striking examples of ancient lineages that appear to have survived in unique or isolated habitats.
NASA Technical Reports Server (NTRS)
Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)
1979-01-01
The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Rockwell, S. T.; Yee, J. G.
1976-01-01
The 1976 Pioneer II Solar Conjunction provided the opportunity to accumulate a substantial quantity of doppler noise data over a dynamic range of signal closest approach point heliographic latitudes. The observed doppler noise data were fit to the doppler noise model ISED, and the deviations of the observed doppler noise data from the model were used to construct a (multiplicative) function to describe the effect of heliographic latitude. This expression was then incorporated into the ISED model to produce a new doppler noise model-ISEDB.
NASA Technical Reports Server (NTRS)
2004-01-01
This elevation map of a soil target called 'Peak' was created from images taken by the microscopic imager located on the Mars Exploration Rover Spirit's instrument deployment device or 'arm.' The image reveals the various high and low points of this spot of soil after the Moessbauer spectrometer, another instrument on the rover's arm, was gently placed down on it. The blue areas are farthest away from the instrument; the red areas are closest. The variation in distance between blue and red areas is only 2 millimeters, or .08 of an inch. The images were acquired on sol 39 (February 11, 2004).
Configuration interaction of hydropathic waves enables ubiquitin functionality
NASA Astrophysics Data System (ADS)
Allan, Douglas C.; Phillips, J. C.
2018-02-01
Ubiquitin, discovered less than 50 years ago, tags thousands of diseased proteins for destruction. It is small (only 76 amino acids), and is found unchanged in mammals, birds, fish and even worms. Key features of its functionality are identified here using critical point thermodynamic scaling theory. These include Fano interference between first- and second-order elements of correlated long-range globular surface shape transitions. Comparison with its closest relative, 76 amino acid Nedd8, shows that the latter lacks these features. A cracked elastic network model is proposed for the common target shared by many diseased proteins.
Combing VFH with bezier for motion planning of an autonomous vehicle
NASA Astrophysics Data System (ADS)
Ye, Feng; Yang, Jing; Ma, Chao; Rong, Haijun
2017-08-01
Vector Field Histogram (VFH) is a method for mobile robot obstacle avoidance. However, due to the nonholonomic constraints of the vehicle, the algorithm is seldom applied to autonomous vehicles. Especially when we expect the vehicle to reach target location in a certain direction, the algorithm is often unsatisfactory. Fortunately, the Bezier Curve is defined by the states of the starting point and the target point. We can use this feature to make the vehicle in the expected direction. Therefore, we propose an algorithm to combine the Bezier Curve with the VFH algorithm, to search for the collision-free states with the VFH search method, and to select the optimal trajectory point with the Bezier Curve as the reference line. This means that we will improve the cost function in the VFH algorithm by comparing the distance between candidate directions and reference line. Finally, select the closest direction to the reference line to be the optimal motion direction.
An Effective Algorithm Research of Scenario Voxelization Organization and Occlusion Culling
NASA Astrophysics Data System (ADS)
Lai, Guangling; Ding, Lu; Qin, Zhiyuan; Tong, Xiaochong
2016-11-01
Compared with the traditional triangulation approaches, the voxelized point cloud data can reduce the sensitivity of scenario and complexity of calculation. While on the base of the point cloud data, implementation scenario organization could be accomplishment by subtle voxel, but it will add more memory consumption. Therefore, an effective voxel representation method is very necessary. At present, the specific study of voxel visualization algorithm is less. This paper improved the ray tracing algorithm by the characteristics of voxel configuration. Firstly, according to the scope of point cloud data, determined the scope of the pixels on the screen. Then, calculated the light vector came from each pixel. Lastly, used the rules of voxel configuration to calculate all the voxel penetrated through by light. The voxels closest to viewpoint were named visible ones, the rest were all obscured ones. This experimental showed that the method could realize voxelization organization and voxel occlusion culling of implementation scenario efficiently, and increased the render efficiency.
Cutter, Asher D
2008-04-01
Accurate inference of the dates of common ancestry among species forms a central problem in understanding the evolutionary history of organisms. Molecular estimates of divergence time rely on the molecular evolutionary prediction that neutral mutations and substitutions occur at the same constant rate in genomes of related species. This underlies the notion of a molecular clock. Most implementations of this idea depend on paleontological calibration to infer dates of common ancestry, but taxa with poor fossil records must rely on external, potentially inappropriate, calibration with distantly related species. The classic biological models Caenorhabditis and Drosophila are examples of such problem taxa. Here, I illustrate internal calibration in these groups with direct estimates of the mutation rate from contemporary populations that are corrected for interfering effects of selection on the assumption of neutrality of substitutions. Divergence times are inferred among 6 species each of Caenorhabditis and Drosophila, based on thousands of orthologous groups of genes. I propose that the 2 closest known species of Caenorhabditis shared a common ancestor <24 MYA (Caenorhabditis briggsae and Caenorhabditis sp. 5) and that Caenorhabditis elegans diverged from its closest known relatives <30 MYA, assuming that these species pass through at least 6 generations per year; these estimates are much more recent than reported previously with molecular clock calibrations from non-nematode phyla. Dates inferred for the common ancestor of Drosophila melanogaster and Drosophila simulans are roughly concordant with previous studies. These revised dates have important implications for rates of genome evolution and the origin of self-fertilization in Caenorhabditis.
Mercury at First Encounter Closest Approach
2000-08-24
This picture, taken only minutes after NASA Mariner 10 made its closest approach to Mercury, is one of the highest resolution pictures obtained. Abundant craters in various stages of degradation dot the surface.
Highest Resolution Image of Europa
NASA Technical Reports Server (NTRS)
1998-01-01
During its twelfth orbit around Jupiter, on Dec. 16, 1997, NASA's Galileo spacecraft made its closest pass of Jupiter's icy moon Europa, soaring 200 kilometers (124 miles) kilometers above the icy surface. This image was taken near the closest approach point, at a range of 560 kilometers (335 miles) and is the highest resolution picture of Europa that will be obtained by Galileo. The image was taken at a highly oblique angle, providing a vantage point similar to that of someone looking out an airplane window. The features at the bottom of the image are much closer to the viewer than those at the top of the image. Many bright ridges are seen in the picture, with dark material in the low-lying valleys. In the center of the image, the regular ridges and valleys give way to a darker region of jumbled hills, which may be one of the many dark pits observed on the surface of Europa. Smaller dark, circular features seen here are probably impact craters.
North is to the right of the picture, and the sun illuminates the surface from that direction. This image, centered at approximately 13 degrees south latitude and 235 degrees west longitude, is approximately 1.8 kilometers (1 mile) wide. The resolution is 6 meters (19 feet) per picture element. This image was taken on December 16, 1997 by the solid state imaging system camera on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuselier, Stephen A.; Cairns, Iver H.
2013-07-10
Recent Interstellar Boundary Explorer (IBEX) observations indicate that the total dynamic pressure in the interstellar medium is closely partitioned between the plasma and the magnetic field, with an Alfven Mach number M{sub A} {approx} 1 and a sonic Mach number {approx}2. Observations of the IBEX Ribbon provide a unique determination of the orientation of the undraped interstellar magnetic field along the heliopause. There is also a striking correspondence between the Ribbon location and the source locations of 2-3 kHz radiation determined from Voyager observations: the radiation sources north of the ecliptic form a line parallel to but offset by aboutmore » 30 Degree-Sign from the Ribbon. A general Rankine-Hugoniot analysis is used to argue that the heliopause should not be symmetric about the velocity vector V{sub ISM} of the interstellar medium relative to the Sun (the nominal nose direction). Furthermore, the closest point on the heliopause to the Sun should be on the Ribbon for M{sub A} = 0 and at least 9 Degree-Sign from the nominal nose direction toward the Ribbon for M{sub A} = 1. These new results are combined into a conceptual model of the heliopause that includes (1) a plasma depletion layer formed as the interstellar magnetic field drapes against the heliopause, (2) a minimum inner heliosheath thickness and closest point between the Sun and heliopause along (or close to) the Ribbon rather than in the nominal nose direction (along V{sub ISM}), and (3) inference of an asymmetric heliopause shape from the angular offset of the radio sources and Ribbon and from the Rankine-Hugoniot analysis.« less
NASA Astrophysics Data System (ADS)
Chow, J. C. K.
2017-09-01
In the absence of external reference position information (e.g. surveyed targets or Global Navigation Satellite Systems) Simultaneous Localization and Mapping (SLAM) has proven to be an effective method for indoor navigation. The positioning drift can be reduced with regular loop-closures and global relaxation as the backend, thus achieving a good balance between exploration and exploitation. Although vision-based systems like laser scanners are typically deployed for SLAM, these sensors are heavy, energy inefficient, and expensive, making them unattractive for wearables or smartphone applications. However, the concept of SLAM can be extended to non-optical systems such as magnetometers. Instead of matching features such as walls and furniture using some variation of the Iterative Closest Point algorithm, the local magnetic field can be matched to provide loop-closure and global trajectory updates in a Gaussian Process (GP) SLAM framework. With a MEMS-based inertial measurement unit providing a continuous trajectory, and the matching of locally distinct magnetic field maps, experimental results in this paper show that a drift-free navigation solution in an indoor environment with millimetre-level accuracy can be achieved. The GP-SLAM approach presented can be formulated as a maximum a posteriori estimation problem and it can naturally perform loop-detection, feature-to-feature distance minimization, global trajectory optimization, and magnetic field map estimation simultaneously. Spatially continuous features (i.e. smooth magnetic field signatures) are used instead of discrete feature correspondences (e.g. point-to-point) as in conventional vision-based SLAM. These position updates from the ambient magnetic field also provide enough information for calibrating the accelerometer bias and gyroscope bias in-use. The only restriction for this method is the need for magnetic disturbances (which is typically not an issue for indoor environments); however, no assumptions are required for the general motion of the sensor (e.g. static periods).
ROSAT X-Ray Observation of the Second Error Box for SGR 1900+14
NASA Technical Reports Server (NTRS)
Li, P.; Hurley, K.; Vrba, F.; Kouveliotou, C.; Meegan, C. A.; Fishman, G. J.; Kulkarni, S.; Frail, D.
1997-01-01
The positions of the two error boxes for the soft gamma repeater (SGR) 1900+14 were determined by the "network synthesis" method, which employs observations by the Ulysses gamma-ray burst and CGRO BATSE instruments. The location of the first error box has been observed at optical, infrared, and X-ray wavelengths, resulting in the discovery of a ROSAT X-ray point source and a curious double infrared source. We have recently used the ROSAT HRI to observe the second error box to complete the counterpart search. A total of six X-ray sources were identified within the field of view. None of them falls within the network synthesis error box, and a 3 sigma upper limit to any X-ray counterpart was estimated to be 6.35 x 10(exp -14) ergs/sq cm/s. The closest source is approximately 3 min. away, and has an estimated unabsorbed flux of 1.5 x 10(exp -12) ergs/sq cm/s. Unlike the first error box, there is no supernova remnant near the second error box. The closest one, G43.9+1.6, lies approximately 2.dg6 away. For these reasons, we believe that the first error box is more likely to be the correct one.
A Fast Robot Identification and Mapping Algorithm Based on Kinect Sensor.
Zhang, Liang; Shen, Peiyi; Zhu, Guangming; Wei, Wei; Song, Houbing
2015-08-14
Internet of Things (IoT) is driving innovation in an ever-growing set of application domains such as intelligent processing for autonomous robots. For an autonomous robot, one grand challenge is how to sense its surrounding environment effectively. The Simultaneous Localization and Mapping with RGB-D Kinect camera sensor on robot, called RGB-D SLAM, has been developed for this purpose but some technical challenges must be addressed. Firstly, the efficiency of the algorithm cannot satisfy real-time requirements; secondly, the accuracy of the algorithm is unacceptable. In order to address these challenges, this paper proposes a set of novel improvement methods as follows. Firstly, the ORiented Brief (ORB) method is used in feature detection and descriptor extraction. Secondly, a bidirectional Fast Library for Approximate Nearest Neighbors (FLANN) k-Nearest Neighbor (KNN) algorithm is applied to feature match. Then, the improved RANdom SAmple Consensus (RANSAC) estimation method is adopted in the motion transformation. In the meantime, high precision General Iterative Closest Points (GICP) is utilized to register a point cloud in the motion transformation optimization. To improve the accuracy of SLAM, the reduced dynamic covariance scaling (DCS) algorithm is formulated as a global optimization problem under the G2O framework. The effectiveness of the improved algorithm has been verified by testing on standard data and comparing with the ground truth obtained on Freiburg University's datasets. The Dr Robot X80 equipped with a Kinect camera is also applied in a building corridor to verify the correctness of the improved RGB-D SLAM algorithm. With the above experiments, it can be seen that the proposed algorithm achieves higher processing speed and better accuracy.
Barnett, Melissa A.; Scaramella, Laura V.
2014-01-01
Sex differences in rates of behavior problems, including internalizing and externalizing problems, begin to emerge during early childhood. These sex differences may occur because mothers parent their sons and daughters differently, or because the impact of parenting on behavior problems is different for boys and girls. This study examines whether associations between observations of mothers’ positive and negative parenting and children’s externalizing and internalizing behaviors vary as a function of child sex. The sample consists of 137 African American, low-income families with one sibling approximately two-years-old and the closest aged older sibling who is approximately four-years-old. Results from fixed-effects within-family models indicate clear sex differences regardless of child age. Mothers were observed to use less positive parenting with sons than with daughters. Higher levels of observed negative parenting were linked to more externalizing behaviors for boys, while lower levels of positive parenting were linked to more externalizing behaviors for girls. No child sex differences emerged regarding associations between observed positive and negative parenting and internalizing behaviors. PMID:23937420
Image-Based Navigation for Functional Endoscopic Sinus Surgery Using Structure From Motion.
Leonard, Simon; Reiter, Austin; Sinha, Ayushi; Ishii, Masaru; Taylor, Russel H; Hager, Gregory D
2016-01-01
Functional Endoscopic Sinus Surgery (FESS) is a challenging procedure for otolaryngologists and is the main surgical approach for treating chronic sinusitis, to remove nasal polyps and open up passageways. To reach the source of the problem and to ultimately remove it, the surgeons must often remove several layers of cartilage and tissues. Often, the cartilage occludes or is within a few millimeters of critical anatomical structures such as nerves, arteries and ducts. To make FESS safer, surgeons use navigation systems that register a patient to his/her CT scan and track the position of the tools inside the patient. Current navigation systems, however, suffer from tracking errors greater than 1 mm, which is large when compared to the scale of the sinus cavities, and errors of this magnitude prevent from accurately overlaying virtual structures on the endoscope images. In this paper, we present a method to facilitate this task by 1) registering endoscopic images to CT data and 2) overlaying areas of interests on endoscope images to improve the safety of the procedure. First, our system uses structure from motion (SfM) to generate a small cloud of 3D points from a short video sequence. Then, it uses iterative closest point (ICP) algorithm to register the points to a 3D mesh that represents a section of a patients sinuses. The scale of the point cloud is approximated by measuring the magnitude of the endoscope's motion during the sequence. We have recorded several video sequences from five patients and, given a reasonable initial registration estimate, our results demonstrate an average registration error of 1.21 mm when the endoscope is viewing erectile tissues and an average registration error of 0.91 mm when the endoscope is viewing non-erectile tissues. Our implementation SfM + ICP can execute in less than 7 seconds and can use as few as 15 frames (0.5 second of video). Future work will involve clinical validation of our results and strengthening the robustness to initial guesses and erectile tissues.
Image-based navigation for functional endoscopic sinus surgery using structure from motion
NASA Astrophysics Data System (ADS)
Leonard, Simon; Reiter, Austin; Sinha, Ayushi; Ishii, Masaru; Taylor, Russell H.; Hager, Gregory D.
2016-03-01
Functional Endoscopic Sinus Surgery (FESS) is a challenging procedure for otolaryngologists and is the main surgical approach for treating chronic sinusitis, to remove nasal polyps and open up passageways. To reach the source of the problem and to ultimately remove it, the surgeons must often remove several layers of cartilage and tissues. Often, the cartilage occludes or is within a few millimeters of critical anatomical structures such as nerves, arteries and ducts. To make FESS safer, surgeons use navigation systems that register a patient to his/her CT scan and track the position of the tools inside the patient. Current navigation systems, however, suffer from tracking errors greater than 1 mm, which is large when compared to the scale of the sinus cavities, and errors of this magnitude prevent from accurately overlaying virtual structures on the endoscope images. In this paper, we present a method to facilitate this task by 1) registering endoscopic images to CT data and 2) overlaying areas of interests on endoscope images to improve the safety of the procedure. First, our system uses structure from motion (SfM) to generate a small cloud of 3D points from a short video sequence. Then, it uses iterative closest point (ICP) algorithm to register the points to a 3D mesh that represents a section of a patients sinuses. The scale of the point cloud is approximated by measuring the magnitude of the endoscope's motion during the sequence. We have recorded several video sequences from five patients and, given a reasonable initial registration estimate, our results demonstrate an average registration error of 1.21 mm when the endoscope is viewing erectile tissues and an average registration error of 0.91 mm when the endoscope is viewing non-erectile tissues. Our implementation SfM + ICP can execute in less than 7 seconds and can use as few as 15 frames (0.5 second of video). Future work will involve clinical validation of our results and strengthening the robustness to initial guesses and erectile tissues.
Simulation study into the identification of nuclear materials in cargo containers using cosmic rays
NASA Astrophysics Data System (ADS)
Blackwell, T. B.; Kudryavtsev, V. A.
2015-04-01
Muon tomography represents a new type of imaging technique that can be used in detecting high-Z materials. Monte Carlo simulations for muon scattering in different types of target materials are presented. The dependence of the detector capability to identify high-Z targets on spatial resolution has been studied. Muon tracks are reconstructed using a basic point of closest approach (PoCA) algorithm. In this article we report the development of a secondary analysis algorithm that is applied to the reconstructed PoCA points. This algorithm efficiently ascertains clusters of voxels with high average scattering angles to identify `areas of interest' within the inspected volume. Using this approach the effect of other parameters, such as the distance between detectors and the number of detectors per set, on material identification is also presented. Finally, false positive and false negative rates for detecting shielded HEU in realistic scenarios with low-Z clutter are presented.
Simulation of rockfalls triggered by earthquakes
Kobayashi, Y.; Harp, E.L.; Kagawa, T.
1990-01-01
A computer program to simulate the downslope movement of boulders in rolling or bouncing modes has been developed and applied to actual rockfalls triggered by the Mammoth Lakes, California, earthquake sequence in 1980 and the Central Idaho earthquake in 1983. In order to reproduce a movement mode where bouncing predominated, we introduced an artificial unevenness to the slope surface by adding a small random number to the interpolated value of the mid-points between the adjacent surveyed points. Three hundred simulations were computed for each site by changing the random number series, which determined distances and bouncing intervals. The movement of the boulders was, in general, rather erratic depending on the random numbers employed, and the results could not be seen as deterministic but stochastic. The closest agreement between calculated and actual movements was obtained at the site with the most detailed and accurate topographic measurements. ?? 1990 Springer-Verlag.
Certification trails and software design for testability
NASA Technical Reports Server (NTRS)
Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.
1993-01-01
Design techniques which may be applied to make program testing easier were investigated. Methods for modifying a program to generate additional data which we refer to as a certification trail are presented. This additional data is designed to allow the program output to be checked more quickly and effectively. Certification trails were described primarily from a theoretical perspective. A comprehensive attempt to assess experimentally the performance and overall value of the certification trail method is reported. The method was applied to nine fundamental, well-known algorithms for the following problems: convex hull, sorting, huffman tree, shortest path, closest pair, line segment intersection, longest increasing subsequence, skyline, and voronoi diagram. Run-time performance data for each of these problems is given, and selected problems are described in more detail. Our results indicate that there are many cases in which certification trails allow for significantly faster overall program execution time than a 2-version programming approach, and also give further evidence of the breadth of applicability of this method.
The molecular structure and conformation of tetrabromoformaldazine: ab initio and DFT calculations
NASA Astrophysics Data System (ADS)
Jeong, Myongho; Kwon, Younghi
2000-06-01
Ab initio and density functional theory methods are applied to investigate the molecular structure and conformational nature of tetrabromoformaldazine. The calculations including the effects of the electron correlation at the B3LYP and MP2 levels with the basis set 6-311+G(d) can reproduce the experimental geometrical parameters at the skew conformation. The N-N bond torsional angle φ calculated at the MP2/6-311+G(d) level is found to be closest to the observed angle. The scanning of the potential energy surface suggests that the anti-conformation is at a saddle point corresponding to the transition state.
Commissioning of the ATLAS pixel detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
ATLAS Collaboration; Golling, Tobias
2008-09-01
The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of themore » ATLAS pixel system are presented.« less
NASA Astrophysics Data System (ADS)
Rusdiana, Lili; Marfuah
2017-12-01
K-Nearest Neighbors method is one of methods used for classification which calculate a value to find out the closest in distance. It is used to group a set of data such as students’ graduation status that are got from the amount of course credits taken by them, the grade point average (AVG), and the mini-thesis grade. The study is conducted to know the results of using K-Nearest Neighbors method on the application of determining students’ graduation status, so it can be analyzed from the method used, the data, and the application constructed. The aim of this study is to find out the application results by using K-Nearest Neighbors concept to determine students’ graduation status using the data of STMIK Palangkaraya students. The development of the software used Extreme Programming, since it was appropriate and precise for this study which was to quickly finish the project. The application was created using Microsoft Office Excel 2007 for the training data and Matlab 7 to implement the application. The result of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5%. It could determine the predicate graduation of 94 data used from the initial data before the processing as many as 136 data which the maximal training data was 50data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study. The results of K-Nearest Neighbors method on the application of determining students’ graduation status was 92.5% could determine the predicate graduation which is the maximal training data. The K-Nearest Neighbors method is one of methods used to group a set of data based on the closest value, so that using K-Nearest Neighbors method agreed with this study.
Current-State Constrained Filter Bank for Wald Testing of Spacecraft Conjunctions
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Markley, F. Landis
2012-01-01
We propose a filter bank consisting of an ordinary current-state extended Kalman filter, and two similar but constrained filters: one is constrained by a null hypothesis that the miss distance between two conjuncting spacecraft is inside their combined hard body radius at the predicted time of closest approach, and one is constrained by an alternative complementary hypothesis. The unconstrained filter is the basis of an initial screening for close approaches of interest. Once the initial screening detects a possibly risky conjunction, the unconstrained filter also governs measurement editing for all three filters, and predicts the time of closest approach. The constrained filters operate only when conjunctions of interest occur. The computed likelihoods of the innovations of the two constrained filters form a ratio for a Wald sequential probability ratio test. The Wald test guides risk mitigation maneuver decisions based on explicit false alarm and missed detection criteria. Since only current-state Kalman filtering is required to compute the innovations for the likelihood ratio, the present approach does not require the mapping of probability density forward to the time of closest approach. Instead, the hard-body constraint manifold is mapped to the filter update time by applying a sigma-point transformation to a projection function. Although many projectors are available, we choose one based on Lambert-style differential correction of the current-state velocity. We have tested our method using a scenario based on the Magnetospheric Multi-Scale mission, scheduled for launch in late 2014. This mission involves formation flight in highly elliptical orbits of four spinning spacecraft equipped with antennas extending 120 meters tip-to-tip. Eccentricities range from 0.82 to 0.91, and close approaches generally occur in the vicinity of perigee, where rapid changes in geometry may occur. Testing the method using two 12,000-case Monte Carlo simulations, we found the method achieved a missed detection rate of 0.1%, and a false alarm rate of 2%.
Barnett, Melissa A; Scaramella, Laura V
2015-11-01
Reduced supportive parenting and elevated negative parenting behaviors increase risks for maladaptive social adjustment during early childhood (e.g., Campbell, Shaw, & Gilliom, 2000). However, the magnitude of these risks may vary according to children's individual characteristics, such as sex and temperament. The current study examines whether children's sex and fear reactivity moderate the associations between mothers' observed parenting and children's behavior problems 1 year later. The sample consists of 151 predominantly African American, low-income families with one sibling who is approximately 2 years old and the closest aged older sibling who is approximately 4 years old. Results from fixed-effects within-family models indicate that fear distress (i.e., fearfulness) moderated associations between mothers' observed negative parenting and children's increased behavior problems, such that only those children with mean or higher observed fear distress scores showed increased behavior problems when exposed to mother's negative parenting. Child sex moderated associations between fear approach reactivity (i.e., fearlessness) and mothers' observed supportive parenting. Specifically, low fear approach combined with supportive parenting was associated with fewer behavior problems for boys only. Implications of these findings for preventive intervention are discussed.
Optimization-based mesh correction with volume and convexity constraints
D'Elia, Marta; Ridzal, Denis; Peterson, Kara J.; ...
2016-02-24
In this study, we consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this paper we formulate volume correction as a constrained optimizationmore » problem in which the distance to the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or cell convexity specify the constraints. We solve this problem numerically using a sequential quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in the application of the SQP method to the volume correction problem. Numerical examples illustrate the importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.« less
NASA Astrophysics Data System (ADS)
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; Viehland, Dwight; Winn, Barry; Ren, Yang; Li, Xiaobing; Luo, Haosu; Delaire, Olivier
2017-11-01
Neutron and x-ray scattering measurements were performed on (N a1 /2B i1 /2 ) Ti O3-x at %BaTi O3 (NBT-x BT ) single crystals (x =4 , 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the Γ points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. In samples with compositions closest to the MPB, our inelastic neutron scattering investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and Γ points, respectively. These critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; ...
2017-11-10
Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang
Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less
NASA Astrophysics Data System (ADS)
Hahn, M.; Paetzold, M.; Andert, T.; Bird, M. K.; Tyler, G. L.; Hinson, D. P.; Linscott, I.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.
2016-12-01
One objective of the New Horizons Radio Science Experiment REX is the direct determination of the system mass and the individual masses of Pluto and Charon. About four weeks of two-way radio tracking centered around the closest approach of New Horizons to the Pluto system were processed. Major problems during the processing were the changes in spacecraft attitude by thrusters which applied extra Δv to the spacecraft motion masking partially the continuously perturbed motion caused by the attracting forces of the Pluto system members. The times of the spacecraft thruster activity are known but the applied Δv magnitude needed to be specifically adjusted. No two-way tracking was available during the flyby day on 14th July but slots of the REX one-way uplink observations cover the most important time near closest approach, these are for example the Pluto and Charon Earth occultation entries and exits. The REX data during the flyby day allowed to extract the individual masses of Pluto and Charon from the system mass at high precision. The relative errors of the mass determinations are below 0.02% and 0.2%, respectively. The masses of the 4 small satellites in the Pluto system could not be resolved.
A Novel Real-Time Reference Key Frame Scan Matching Method.
Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu
2017-05-07
Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions' environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems.
Huang, Rongyong; Zheng, Shunyi; Hu, Kun
2018-06-01
Registration of large-scale optical images with airborne LiDAR data is the basis of the integration of photogrammetry and LiDAR. However, geometric misalignments still exist between some aerial optical images and airborne LiDAR point clouds. To eliminate such misalignments, we extended a method for registering close-range optical images with terrestrial LiDAR data to a variety of large-scale aerial optical images and airborne LiDAR data. The fundamental principle is to minimize the distances from the photogrammetric matching points to the terrestrial LiDAR data surface. Except for the satisfactory efficiency of about 79 s per 6732 × 8984 image, the experimental results also show that the unit weighted root mean square (RMS) of the image points is able to reach a sub-pixel level (0.45 to 0.62 pixel), and the actual horizontal and vertical accuracy can be greatly improved to a high level of 1/4⁻1/2 (0.17⁻0.27 m) and 1/8⁻1/4 (0.10⁻0.15 m) of the average LiDAR point distance respectively. Finally, the method is proved to be more accurate, feasible, efficient, and practical in variety of large-scale aerial optical image and LiDAR data.
Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications
Moussa, Adel; El-Sheimy, Naser; Habib, Ayman
2017-01-01
Landslides are major and constantly changing threats to urban landscapes and infrastructure. It is essential to detect and capture landslide changes regularly. Traditional methods for monitoring landslides are time-consuming, costly, dangerous, and the quality and quantity of the data is sometimes unable to meet the necessary requirements of geotechnical projects. This motivates the development of more automatic and efficient remote sensing approaches for landslide progression evaluation. Automatic change detection involving low-altitude unmanned aerial vehicle image-based point clouds, although proven, is relatively unexplored, and little research has been done in terms of accounting for volumetric changes. In this study, a methodology for automatically deriving change displacement rates, in a horizontal direction based on comparisons between extracted landslide scarps from multiple time periods, has been developed. Compared with the iterative closest projected point (ICPP) registration method, the developed method takes full advantage of automated geometric measuring, leading to fast processing. The proposed approach easily processes a large number of images from different epochs and enables the creation of registered image-based point clouds without the use of extensive ground control point information or further processing such as interpretation and image correlation. The produced results are promising for use in the field of landslide research. PMID:29057847
Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications.
Al-Rawabdeh, Abdulla; Moussa, Adel; Foroutan, Marzieh; El-Sheimy, Naser; Habib, Ayman
2017-10-18
Landslides are major and constantly changing threats to urban landscapes and infrastructure. It is essential to detect and capture landslide changes regularly. Traditional methods for monitoring landslides are time-consuming, costly, dangerous, and the quality and quantity of the data is sometimes unable to meet the necessary requirements of geotechnical projects. This motivates the development of more automatic and efficient remote sensing approaches for landslide progression evaluation. Automatic change detection involving low-altitude unmanned aerial vehicle image-based point clouds, although proven, is relatively unexplored, and little research has been done in terms of accounting for volumetric changes. In this study, a methodology for automatically deriving change displacement rates, in a horizontal direction based on comparisons between extracted landslide scarps from multiple time periods, has been developed. Compared with the iterative closest projected point (ICPP) registration method, the developed method takes full advantage of automated geometric measuring, leading to fast processing. The proposed approach easily processes a large number of images from different epochs and enables the creation of registered image-based point clouds without the use of extensive ground control point information or further processing such as interpretation and image correlation. The produced results are promising for use in the field of landslide research.
ERIC Educational Resources Information Center
Yamana, Shukichi
1987-01-01
Illustrates the 18 steps to the development of a model of a coordination polyhedron that represents the cubic closest-packed structure. Uses a sealed, empty envelope in developing the model in teaching about stereochemistry. (TW)
Why glass elasticity affects the thermodynamics and fragility of supercooled liquids
Yan, Le; Düring, Gustavo; Wyart, Matthieu
2013-01-01
Supercooled liquids are characterized by their fragility: The slowing down of the dynamics under cooling is more sudden and the jump of specific heat at the glass transition is generally larger in fragile liquids than in strong ones. Despite the importance of this quantity in classifying liquids, explaining what aspects of the microscopic structure controls fragility remains a challenge. Surprisingly, experiments indicate that the linear elasticity of the glass—a purely local property of the free energy landscape—is a good predictor of fragility. In particular, materials presenting a large excess of soft elastic modes, the so-called boson peak, are strong. This is also the case for network liquids near the rigidity percolation, known to affect elasticity. Here we introduce a model of the glass transition based on the assumption that particles can organize locally into distinct configurations that are coupled spatially via elasticity. The model captures the mentioned observations connecting elasticity and fragility. We find that materials presenting an abundance of soft elastic modes have little elastic frustration: Energy is insensitive to most directions in phase space, leading to a small jump of specific heat. In this framework strong liquids turn out to lie the closest to a critical point associated with a rigidity or jamming transition, and their thermodynamic properties are related to the problem of number partitioning and to Hopfield nets in the limit of small memory. PMID:23576746
Why glass elasticity affects the thermodynamics and fragility of supercooled liquids.
Yan, Le; Düring, Gustavo; Wyart, Matthieu
2013-04-16
Supercooled liquids are characterized by their fragility: The slowing down of the dynamics under cooling is more sudden and the jump of specific heat at the glass transition is generally larger in fragile liquids than in strong ones. Despite the importance of this quantity in classifying liquids, explaining what aspects of the microscopic structure controls fragility remains a challenge. Surprisingly, experiments indicate that the linear elasticity of the glass--a purely local property of the free energy landscape--is a good predictor of fragility. In particular, materials presenting a large excess of soft elastic modes, the so-called boson peak, are strong. This is also the case for network liquids near the rigidity percolation, known to affect elasticity. Here we introduce a model of the glass transition based on the assumption that particles can organize locally into distinct configurations that are coupled spatially via elasticity. The model captures the mentioned observations connecting elasticity and fragility. We find that materials presenting an abundance of soft elastic modes have little elastic frustration: Energy is insensitive to most directions in phase space, leading to a small jump of specific heat. In this framework strong liquids turn out to lie the closest to a critical point associated with a rigidity or jamming transition, and their thermodynamic properties are related to the problem of number partitioning and to Hopfield nets in the limit of small memory.
An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent.
Pietrzyński, G; Graczyk, D; Gieren, W; Thompson, I B; Pilecki, B; Udalski, A; Soszyński, I; Kozłowski, S; Konorski, P; Suchomska, K; Bono, G; Moroni, P G Prada; Villanova, S; Nardetto, N; Bresolin, F; Kudritzki, R P; Storm, J; Gallenne, A; Smolec, R; Minniti, D; Kubiak, M; Szymański, M K; Poleski, R; Wyrzykowski, L; Ulaczyk, K; Pietrukowicz, P; Górski, M; Karczmarek, P
2013-03-07
In the era of precision cosmology, it is essential to determine the Hubble constant to an accuracy of three per cent or better. At present, its uncertainty is dominated by the uncertainty in the distance to the Large Magellanic Cloud (LMC), which, being our second-closest galaxy, serves as the best anchor point for the cosmic distance scale. Observations of eclipsing binaries offer a unique opportunity to measure stellar parameters and distances precisely and accurately. The eclipsing-binary method was previously applied to the LMC, but the accuracy of the distance results was lessened by the need to model the bright, early-type systems used in those studies. Here we report determinations of the distances to eight long-period, late-type eclipsing systems in the LMC, composed of cool, giant stars. For these systems, we can accurately measure both the linear and the angular sizes of their components and avoid the most important problems related to the hot, early-type systems. The LMC distance that we derive from these systems (49.97 ± 0.19 (statistical) ± 1.11 (systematic) kiloparsecs) is accurate to 2.2 per cent and provides a firm base for a 3-per-cent determination of the Hubble constant, with prospects for improvement to 2 per cent in the future.
Key node selection in minimum-cost control of complex networks
NASA Astrophysics Data System (ADS)
Ding, Jie; Wen, Changyun; Li, Guoqi
2017-11-01
Finding the key node set that is connected with a given number of external control sources for driving complex networks from initial state to any predefined state with minimum cost, known as minimum-cost control problem, is critically important but remains largely open. By defining an importance index for each node, we propose revisited projected gradient method extension (R-PGME) in Monte-Carlo scenario to determine key node set. It is found that the importance index of a node is strongly correlated to occurrence rate of that node to be selected as a key node in Monte-Carlo realizations for three elementary topologies, Erdős-Rényi and scale-free networks. We also discover the distribution patterns of key nodes when the control cost reaches its minimum. Specifically, the importance indices of all nodes in an elementary stem show a quasi-periodic distribution with high peak values in the beginning and end of a quasi-period while they approach to a uniform distribution in an elementary cycle. We further point out that an elementary dilation can be regarded as two elementary stems whose lengths are the closest, and the importance indices in each stem present similar distribution as in an elementary stem. Our results provide a better understanding and deep insight of locating the key nodes in different topologies with minimum control cost.
Application of a Terrestrial LIDAR System for Elevation Mapping in Terra Nova Bay, Antarctica.
Cho, Hyoungsig; Hong, Seunghwan; Kim, Sangmin; Park, Hyokeun; Park, Ilsuk; Sohn, Hong-Gyoo
2015-09-16
A terrestrial Light Detection and Ranging (LIDAR) system has high productivity and accuracy for topographic mapping, but the harsh conditions of Antarctica make LIDAR operation difficult. Low temperatures cause malfunctioning of the LIDAR system, and unpredictable strong winds can deteriorate data quality by irregularly shaking co-registration targets. For stable and efficient LIDAR operation in Antarctica, this study proposes and demonstrates the following practical solutions: (1) a lagging cover with a heating pack to maintain the temperature of the terrestrial LIDAR system; (2) co-registration using square planar targets and two-step point-merging methods based on extracted feature points and the Iterative Closest Point (ICP) algorithm; and (3) a georeferencing module consisting of an artificial target and a Global Navigation Satellite System (GNSS) receiver. The solutions were used to produce a topographic map for construction of the Jang Bogo Research Station in Terra Nova Bay, Antarctica. Co-registration and georeferencing precision reached 5 and 45 mm, respectively, and the accuracy of the Digital Elevation Model (DEM) generated from the LIDAR scanning data was ±27.7 cm.
Photon absorption potential coefficient as a tool for materials engineering
NASA Astrophysics Data System (ADS)
Akande, Raphael Oluwole; Oyewande, Emmanuel Oluwole
2016-09-01
Different atoms achieve ionizations at different energies. Therefore, atoms are characterized by different responses to photon absorption in this study. That means there exists a coefficient for their potential for photon absorption from a photon source. In this study, we consider the manner in which molecular constituents (atoms) absorb photon from a photon source. We observe that there seems to be a common pattern of variation in the absorption of photon among the electrons in all atoms on the periodic table. We assume that the electrons closest to the nucleus (En) and the electrons closest to the outside of the atom (Eo) do not have as much potential for photon absorption as the electrons at the middle of the atom (Em). The explanation we give to this effect is that the En electrons are embedded within the nuclear influence, and similarly, Eo electrons are embedded within the influence of energies outside the atom that there exists a low potential for photon absorption for them. Unlike En and Eo, Em electrons are conditioned, such that there is a quest for balance between being influenced either by the nuclear force or forces external to the atom. Therefore, there exists a higher potential for photon absorption for Em electrons than for En and Eo electrons. The results of our derivations and analysis always produce a bell-shaped curve, instead of an increasing curve as in the ionization energies, for all elements in the periodic table. We obtained a huge data of PAPC for each of the several materials considered. The point at which two or more PAPC values cross one another is termed to be a region of conflicting order of ionization, where all the atoms absorb equal portion of the photon source at the same time. At this point, a greater fraction of the photon source is pumped into the material which could lead to an explosive response from the material. In fact, an unimaginable and unreported phenomenon (in physics) could occur, when two or more PAPCs cross, and the material is able to absorb more than that the photon source could provide, at this point. These resulting effects might be of immense materials engineering applications.
Liang, Shanshan; Yuan, Fusong; Luo, Xu; Yu, Zhuoren; Tang, Zhihui
2018-04-05
Marginal discrepancy is key to evaluating the accuracy of fixed dental prostheses. An improved method of evaluating marginal discrepancy is needed. The purpose of this in vitro study was to evaluate the absolute marginal discrepancy of ceramic crowns fabricated using conventional and digital methods with a digital method for the quantitative evaluation of absolute marginal discrepancy. The novel method was based on 3-dimensional scanning, iterative closest point registration techniques, and reverse engineering theory. Six standard tooth preparations for the right maxillary central incisor, right maxillary second premolar, right maxillary second molar, left mandibular lateral incisor, left mandibular first premolar, and left mandibular first molar were selected. Ten conventional ceramic crowns and 10 CEREC crowns were fabricated for each tooth preparation. A dental cast scanner was used to obtain 3-dimensional data of the preparations and ceramic crowns, and the data were compared with the "virtual seating" iterative closest point technique. Reverse engineering software used edge sharpening and other functional modules to extract the margins of the preparations and crowns. Finally, quantitative evaluation of the absolute marginal discrepancy of the ceramic crowns was obtained from the 2-dimensional cross-sectional straight-line distance between points on the margin of the ceramic crowns and the standard preparations based on the circumferential function module along the long axis. The absolute marginal discrepancy of the ceramic crowns fabricated using conventional methods was 115 ±15.2 μm, and 110 ±14.3 μm for those fabricated using the digital technique was. ANOVA showed no statistical difference between the 2 methods or among ceramic crowns for different teeth (P>.05). The digital quantitative evaluation method for the absolute marginal discrepancy of ceramic crowns was established. The evaluations determined that the absolute marginal discrepancies were within a clinically acceptable range. This method is acceptable for the digital evaluation of the accuracy of complete crowns. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Cortical Surface Registration for Image-Guided Neurosurgery Using Laser-Range Scanning
Sinha, Tuhin K.; Cash, David M.; Galloway, Robert L.; Weil, Robert J.
2013-01-01
In this paper, a method of acquiring intraoperative data using a laser range scanner (LRS) is presented within the context of model-updated image-guided surgery. Registering textured point clouds generated by the LRS to tomographic data is explored using established point-based and surface techniques as well as a novel method that incorporates geometry and intensity information via mutual information (SurfaceMI). Phantom registration studies were performed to examine accuracy and robustness for each framework. In addition, an in vivo registration is performed to demonstrate feasibility of the data acquisition system in the operating room. Results indicate that SurfaceMI performed better in many cases than point-based (PBR) and iterative closest point (ICP) methods for registration of textured point clouds. Mean target registration error (TRE) for simulated deep tissue targets in a phantom were 1.0 ± 0.2, 2.0 ± 0.3, and 1.2 ± 0.3 mm for PBR, ICP, and SurfaceMI, respectively. With regard to in vivo registration, the mean TRE of vessel contour points for each framework was 1.9 ± 1.0, 0 9 ± 0.6, and 1.3 ± 0.5 for PBR, ICP, and SurfaceMI, respectively. The methods discussed in this paper in conjunction with the quantitative data provide impetus for using LRS technology within the model-updated image-guided surgery framework. PMID:12906252
Models of Uranium continuum radio emission
NASA Technical Reports Server (NTRS)
Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.
1987-01-01
Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.
A Summary of the NASA ISS Space Debris Collision Avoidance Program
NASA Technical Reports Server (NTRS)
Frisbee, Joseph
2002-01-01
Creating and implementing a process for the mitigation of the impact hazards due to cornets and asteroids will prove to be a complex and involved process. The closest similar program is the collision avoidance process currently used for protection of the International Space Station (ISS). This process, in operation for over three years, has many similarities to the NEG risk problem. By reviewing the ISS program, a broader perspective on the complications of and requirements for a NEO risk mitigation program might be obtained. Specifically, any lessons learned and continuing issues of concern might prove useful in the development of a NEO risk assessment and mitigation program.
Robust Assignment Of Eigensystems For Flexible Structures
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Lim, Kyong B.; Junkins, John L.
1992-01-01
Improved method for placement of eigenvalues and eigenvectors of closed-loop control system by use of either state or output feedback. Applied to reduced-order finite-element mathematical model of NASA's MAST truss beam structure. Model represents deployer/retractor assembly, inertial properties of Space Shuttle, and rigid platforms for allocation of sensors and actuators. Algorithm formulated in real arithmetic for efficient implementation. Choice of open-loop eigenvector matrix and its closest unitary matrix believed suitable for generating well-conditioned eigensystem with small control gains. Implication of this approach is that element of iterative search for "optimal" unitary matrix appears unnecessary in practice for many test problems.
Imaging During MESSENGER's Second Flyby of Mercury
NASA Astrophysics Data System (ADS)
Chabot, N. L.; Prockter, L. M.; Murchie, S. L.; Robinson, M. S.; Laslo, N. R.; Kang, H. K.; Hawkins, S. E.; Vaughan, R. M.; Head, J. W.; Solomon, S. C.; MESSENGER Team
2008-12-01
During MESSENGER's second flyby of Mercury on October 6, 2008, the Mercury Dual Imaging System (MDIS) will acquire 1287 images. The images will include coverage of about 30% of Mercury's surface not previously seen by spacecraft. A portion of the newly imaged terrain will be viewed during the inbound portion of the flyby. On the outbound leg, MDIS will image additional previously unseen terrain as well as regions imaged under different illumination geometry by Mariner 10. These new images, when combined with images from Mariner 10 and from MESSENGER's first Mercury flyby, will enable the first regional- resolution global view of Mercury constituting a combined total coverage of about 96% of the planet's surface. MDIS consists of both a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). During MESSENGER's second Mercury flyby, the following imaging activities are planned: about 86 minutes before the spacecraft's closest pass by the planet, the WAC will acquire images through 11 different narrow-band color filters of the approaching crescent planet at a resolution of about 5 km/pixel. At slightly less than 1 hour to closest approach, the NAC will acquire a 4-column x 11-row mosaic with an approximate resolution of 450 m/pixel. At 8 minutes after closest approach, the WAC will obtain the highest-resolution multispectral images to date of Mercury's surface, imaging a portion of the surface through 11 color filters at resolutions of about 250-600 m/pixel. A strip of high-resolution NAC images, with a resolution of approximately 100 m/pixel, will follow these WAC observations. The NAC will next acquire a 15-column x 13- row high-resolution mosaic of the northern hemisphere of the departing planet, beginning approximately 21 minutes after closest approach, with resolutions of 140-300 m/pixel; this mosaic will fill a large gore in the Mariner 10 data. At about 42 minutes following closest approach, the WAC will acquire a 3x3, 11-filter, full- planet mosaic with an average resolution of 2.5 km/pixel. Two NAC mosaics of the entire departing planet will be acquired beginning about 66 minutes after closest approach, with resolutions of 500-700 m/pixel. About 89 minutes following closest approach, the WAC will acquire a multispectral image set with a resolution of about 5 km/pixel. Following this WAC image set, MDIS will continue to acquire occasional images with both the WAC and NAC until 20 hours after closest approach, at which time the flyby data will begin being transmitted to Earth.
Lavallee, Kristen L; Parker, Jeffrey G
2009-08-01
Two focal social cognitive processes were evaluated in a structural model for their direct and indirect roles in early adolescents' jealousy surrounding their closest friend in a sample of 325 early adolescents (169 girls and 156 boys) ages 11-14 years. Individuals who are rigid and unrealistic about meeting their friendship needs were more vulnerable to feelings of jealousy than individuals who think more flexibly. Inflexible individuals also engage in more jealousy-driven surveillance and other problem behavior towards their friends. Stronger jealous feelings and behavior were related, in turn, to greater conflict with friends and to a vulnerability to emotional maladjustment. In addition, young adolescents who tended to ruminate over friendship problems were also more vulnerable to jealousy. Inflexible attitudes and friendship rumination were positively associated. Results extend recent models of friendship jealousy that focus only on early adolescents' self-worth.
NASA Astrophysics Data System (ADS)
Patton, David R.; Qamar, Farid D.; Ellison, Sara L.; Bluck, Asa F. L.; Simard, Luc; Mendel, J. Trevor; Moreno, Jorge; Torrey, Paul
2016-09-01
We describe a statistical approach for measuring the influence that a galaxy's closest companion has on the galaxy's properties out to arbitrarily wide separations. We begin by identifying the closest companion for every galaxy in a large spectroscopic sample of Sloan Digital Sky Survey galaxies. We then characterize the local environment of each galaxy by using the number of galaxies within 2 Mpc and by determining the isolation of the galaxy pair from other neighbouring galaxies. We introduce a sophisticated algorithm for creating a statistical control sample for each galaxy, matching on stellar mass, redshift, local density and isolation. Unlike traditional studies of close galaxy pairs, this approach is effective in a wide range of environments, regardless of how faraway the closest companion is (although a very distant closest companion is unlikely to have a measurable influence on the galaxy in question). We apply this methodology to measurements of galaxy asymmetry, and find that the presence of nearby companions drives a clear enhancement in galaxy asymmetries. The asymmetry excess peaks at the smallest projected separations (<10 kpc), where the mean asymmetry is enhanced by a factor of 2.0 ± 0.2. Enhancements in mean asymmetry decline as pair separation increases, but remain statistically significant (1σ-2σ) out to projected separations of at least 50 kpc.
Frontier Chemical Waste Process facility is located in a heavy industrial/commercial area. Several large industrial facilities surround the facility. The closest residential area is located about ½ mile west and the closest off-site building is located 300
Collaborative Joins in a Pervasive Computing Environment
2003-07-28
the available resources of each device. For example, CQP allows a tourist to use her handheld device to ask for the closest cheapest laundromat that is...open, given her current location, time of the day and a price range. The protocol also allows the tourist to ask for the closest laundromat adjacent
What did domestication do to dogs? A new account of dogs' sensitivity to human actions.
Udell, Monique A R; Dorey, Nicole R; Wynne, Clive D L
2010-05-01
Over the last two decades increasing evidence for an acute sensitivity to human gestures and attentional states in domestic dogs has led to a burgeoning of research into the social cognition of this highly familiar yet previously under-studied animal. Dogs (Canis lupus familiaris) have been shown to be more successful than their closest relative (and wild progenitor) the wolf, and than man's closest relative, the chimpanzee, on tests of sensitivity to human social cues, such as following points to a container holding hidden food. The "Domestication Hypothesis" asserts that during domestication dogs evolved an inherent sensitivity to human gestures that their non-domesticated counterparts do not share. According to this view, sensitivity to human cues is present in dogs at an early age and shows little evidence of acquisition during ontogeny. A closer look at the findings of research on canine domestication, socialization, and conditioning, brings the assumptions of this hypothesis into question. We propose the Two Stage Hypothesis, according to which the sensitivity of an individual animal to human actions depends on acceptance of humans as social companions, and conditioning to follow human limbs. This offers a more parsimonious explanation for the domestic dog's sensitivity to human gestures, without requiring the use of additional mechanisms. We outline how tests of this new hypothesis open directions for future study that offer promise of a deeper understanding of mankind's oldest companion.
Automatic initialization for 3D bone registration
NASA Astrophysics Data System (ADS)
Foroughi, Pezhman; Taylor, Russell H.; Fichtinger, Gabor
2008-03-01
In image-guided bone surgery, sample points collected from the surface of the bone are registered to the preoperative CT model using well-known registration methods such as Iterative Closest Point (ICP). These techniques are generally very sensitive to the initial alignment of the datasets. Poor initialization significantly increases the chances of getting trapped local minima. In order to reduce the risk of local minima, the registration is manually initialized by locating the sample points close to the corresponding points on the CT model. In this paper, we present an automatic initialization method that aligns the sample points collected from the surface of pelvis with CT model of the pelvis. The main idea is to exploit a mean shape of pelvis created from a large number of CT scans as the prior knowledge to guide the initial alignment. The mean shape is constant for all registrations and facilitates the inclusion of application-specific information into the registration process. The CT model is first aligned with the mean shape using the bilateral symmetry of the pelvis and the similarity of multiple projections. The surface points collected using ultrasound are then aligned with the pelvis mean shape. This will, in turn, lead to initial alignment of the sample points with the CT model. The experiments using a dry pelvis and two cadavers show that the method can align the randomly dislocated datasets close enough for successful registration. The standard ICP has been used for final registration of datasets.
NASA Astrophysics Data System (ADS)
Riggi, S.; Antonuccio-Delogu, V.; Bandieramonte, M.; Becciani, U.; Costa, A.; La Rocca, P.; Massimino, P.; Petta, C.; Pistagna, C.; Riggi, F.; Sciacca, E.; Vitello, F.
2013-11-01
Muon tomographic visualization techniques try to reconstruct a 3D image as close as possible to the real localization of the objects being probed. Statistical algorithms under test for the reconstruction of muon tomographic images in the Muon Portal Project are discussed here. Autocorrelation analysis and clustering algorithms have been employed within the context of methods based on the Point Of Closest Approach (POCA) reconstruction tool. An iterative method based on the log-likelihood approach was also implemented. Relative merits of all such methods are discussed, with reference to full GEANT4 simulations of different scenarios, incorporating medium and high-Z objects inside a container.
SMM/HXRBS observations of Cygnus X-1 from 1986 December to 1988 April
NASA Technical Reports Server (NTRS)
Schwartz, R. A.; Orwig, L. E.; Dennis, B. R.; Ling, J. C.; Wheaton, W. A.
1991-01-01
The Solar Maximum Mission's Hard X-ray Burst Spectrometer made 30 measurements of Cygnus X-1 from December, 1986 to April, 1988, yielding a data set of broad synoptic coverage but limited duration for each data point. The hard X-ray intensity was found to be between the gamma(2) and gamma(3) levels, with a range of fluctuations about the average intensity level. The shape of the photon spectrum was found to be closest to that reported by Ling et al. (1983, 1987) during the time of the gamma(3) level emission, although the spectral shapes reported for the gamma(2) and gamma(1) levels were not precluded.
Bandelt, Hans-Jürgen; Yao, Yong-Gang; Bravi, Claudio M; Salas, Antonio; Kivisild, Toomas
2009-03-01
Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive problems, caused by sample mix-up, contamination, biochemical problems, incomplete sequencing, misdocumentation and insufficient reference to previously published data. To assess data quality in case studies of mitochondrial diseases, it is recommended to compare any mtDNA sequence under consideration to their phylogenetically closest lineages available in the Web. The median network method has proven useful for visualizing potential problems with the data. We contrast some early reports of complete mtDNA sequences to more recent total mtDNA sequencing efforts in studies of various mitochondrial diseases. We conclude that the quality of complete mtDNA sequences generated in the medical field in the past few years is somewhat unsatisfactory and may even fall behind that of pioneer manual sequencing in the early nineties. Our study provides a paradigm for an a posteriori evaluation of sequence quality and for detection of potential problems with inferring a pathogenic status of a particular mutation.
A Novel Real-Time Reference Key Frame Scan Matching Method
Mohamed, Haytham; Moussa, Adel; Elhabiby, Mohamed; El-Sheimy, Naser; Sesay, Abu
2017-01-01
Unmanned aerial vehicles represent an effective technology for indoor search and rescue operations. Typically, most indoor missions’ environments would be unknown, unstructured, and/or dynamic. Navigation of UAVs in such environments is addressed by simultaneous localization and mapping approach using either local or global approaches. Both approaches suffer from accumulated errors and high processing time due to the iterative nature of the scan matching method. Moreover, point-to-point scan matching is prone to outlier association processes. This paper proposes a low-cost novel method for 2D real-time scan matching based on a reference key frame (RKF). RKF is a hybrid scan matching technique comprised of feature-to-feature and point-to-point approaches. This algorithm aims at mitigating errors accumulation using the key frame technique, which is inspired from video streaming broadcast process. The algorithm depends on the iterative closest point algorithm during the lack of linear features which is typically exhibited in unstructured environments. The algorithm switches back to the RKF once linear features are detected. To validate and evaluate the algorithm, the mapping performance and time consumption are compared with various algorithms in static and dynamic environments. The performance of the algorithm exhibits promising navigational, mapping results and very short computational time, that indicates the potential use of the new algorithm with real-time systems. PMID:28481285
Luo, Xiongbiao; Wan, Ying; He, Xiangjian; Mori, Kensaku
2015-02-01
Registration of pre-clinical images to physical space is indispensable for computer-assisted endoscopic interventions in operating rooms. Electromagnetically navigated endoscopic interventions are increasingly performed at current diagnoses and treatments. Such interventions use an electromagnetic tracker with a miniature sensor that is usually attached at an endoscope distal tip to real time track endoscope movements in a pre-clinical image space. Spatial alignment between the electromagnetic tracker (or sensor) and pre-clinical images must be performed to navigate the endoscope to target regions. This paper proposes an adaptive marker-free registration method that uses a multiple point selection strategy. This method seeks to address an assumption that the endoscope is operated along the centerline of an intraluminal organ which is easily violated during interventions. We introduce an adaptive strategy that generates multiple points in terms of sensor measurements and endoscope tip center calibration. From these generated points, we adaptively choose the optimal point, which is the closest to its assigned the centerline of the hollow organ, to perform registration. The experimental results demonstrate that our proposed adaptive strategy significantly reduced the target registration error from 5.32 to 2.59 mm in static phantoms validation, as well as from at least 7.58 mm to 4.71 mm in dynamic phantom validation compared to current available methods. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
3D craniofacial registration using thin-plate spline transform and cylindrical surface projection
Chen, Yucong; Deng, Qingqiong; Duan, Fuqing
2017-01-01
Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate. PMID:28982117
3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.
Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing
2017-01-01
Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngjun; Li, Ruijiang; Na, Yong Hum
2014-12-15
Purpose: 3D optical surface imaging has been applied to patient positioning in radiation therapy (RT). The optical patient positioning system is advantageous over conventional method using cone-beam computed tomography (CBCT) in that it is radiation free, frameless, and is capable of real-time monitoring. While the conventional radiographic method uses volumetric registration, the optical system uses surface matching for patient alignment. The relative accuracy of these two methods has not yet been sufficiently investigated. This study aims to investigate the theoretical accuracy of the surface registration based on a simulation study using patient data. Methods: This study compares the relative accuracymore » of surface and volumetric registration in head-and-neck RT. The authors examined 26 patient data sets, each consisting of planning CT data acquired before treatment and patient setup CBCT data acquired at the time of treatment. As input data of surface registration, patient’s skin surfaces were created by contouring patient skin from planning CT and treatment CBCT. Surface registration was performed using the iterative closest points algorithm by point–plane closest, which minimizes the normal distance between source points and target surfaces. Six degrees of freedom (three translations and three rotations) were used in both surface and volumetric registrations and the results were compared. The accuracy of each method was estimated by digital phantom tests. Results: Based on the results of 26 patients, the authors found that the average and maximum root-mean-square translation deviation between the surface and volumetric registrations were 2.7 and 5.2 mm, respectively. The residual error of the surface registration was calculated to have an average of 0.9 mm and a maximum of 1.7 mm. Conclusions: Surface registration may lead to results different from those of the conventional volumetric registration. Only limited accuracy can be achieved for patient positioning with an approach based solely on surface information.« less
Color of low-fat cheese influences flavor perception and consumer liking.
Wadhwani, R; McMahon, D J
2012-05-01
The present study examines the effect of color on low-fat cheese flavor perception and consumer acceptability. To understand the flavor preferences of the consumer population participating in the sensory testing, 4 brands of retail full-fat Cheddar cheeses labeled as mild, medium, or sharp were obtained. These cheeses were evaluated by a trained descriptive panel to generate a flavor profile for each cheese and then by consumer sensory panels. Overall and color liking were measured using a 9-point hedonic scale, and flavor, chewiness, level of sharpness measured using a 5-point just-about-right (JAR) scale (with 1 being not enough, 3 being just about right, and 5 being too much of the attribute). Subsequently, 9 low-fat Cheddar cheeses were manufactured using 3 levels of annatto (0, 7.34, and 22 g/100 kg) and 3 levels of titanium dioxide (0, 7.67, and 40 g/100 kg) using a randomized block design in duplicate. Cheeses were then evaluated by descriptive and consumer sensory panels. Each consumer testing consisted of 120 panelists who were mainly 18 to 35 yr of age (>90% of total populace) with >60% being frequent cheese consumers. Overall liking preference of the consumer group was for mild to medium cheese. Using the JAR scale, the medium cheeses were considered closest to JAR with a mean score of 3.0, compared with 2.4 for mild cheese and 3.6 for sharp cheese. Among low-fat cheeses, color was shown to be important with consumer liking being negatively influenced when the cheese appearance was too translucent (especially when normal levels of annatto were used) or too white. Matching the level of titanium dioxide with the annatto level gave the highest liking scores and flavor perception closest to JAR. This study established a significant effect of color on overall liking of low-fat versions of Cheddar cheese. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Mass Determination of Pluto and Charon from New Horizon REX Radio Science Observations
NASA Astrophysics Data System (ADS)
Paetzold, Martin; Andert, T. P.; Tyler, G.; Bird, M. K.; Hinson, D. P.; Linscott, I. R.
2013-10-01
The anticipated 14 July 2015 New Horizons fly-through of the Pluto system provides the first opportunity to determine both the total system mass and the individual masses of Pluto and Charon by direct observation. This will be accomplished by use of: i) two-way Doppler radio frequency tracking data during intervals along the fly-in and -out trajectory, and ii) one-way uplink Doppler frequency recorded by the on-board radio science instrument, REX, during the day of closest approaches to Pluto and Charon. Continuous tracking is not feasible as a result of pointing sharing with the instruments during the encounter phase. Needed radio tracking will be obtained during time slots shared with i) two-way Doppler tracking for navigation, ii) 'plasma rolls' with the spacecraft antenna pointing to Earth, and iii) during the ingress and egress phases of the occultations. Simulations of the NH encounter indicate the potential accuracies of the combined and individual mass determinations of Pluto and Charon in the order of 0.1%.
Mass Determination of Pluto and Charon from New Horizon REX Radio Science Observations
NASA Astrophysics Data System (ADS)
Pätzold, M.; Andert, T. P.; Tyler, G. L.; Bird, M. K.; Hinson, D. H.; Linscott, I. R.
2013-09-01
The anticipated 14 July 2015 New Horizons flythrough of the Pluto system provides the first opportunity to determine both the total system mass and the individual masses of Pluto and Charon by direct observation. This will be accomplished by use of: i) two-way Doppler radio frequency tracking data during intervals along the fly-in and -out trajectory, and ii) one-way uplink Doppler frequency recorded by the on-board radio science instrument, REX, during the day of closest approaches to Pluto and Charon. Continuous tracking is not feasible as a result of pointing sharing with the instruments during the encounter phase. Needed radio tracking will be obtained during time slots shared with i) two-way Doppler tracking for navigation, ii) 'plasma rolls' with the spacecraft antenna pointing to Earth, and iii) during the ingress and egress phases of the occultations. Simulations of the NH encounter indicate the potential accuracies of the combined and individual mass determinations of Pluto and Charon in the order of 0.1%.
Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6
Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.
2015-01-01
The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018
Real-time depth camera tracking with geometrically stable weight algorithm
NASA Astrophysics Data System (ADS)
Fu, Xingyin; Zhu, Feng; Qi, Feng; Wang, Mingming
2017-03-01
We present an approach for real-time camera tracking with depth stream. Existing methods are prone to drift in sceneries without sufficient geometric information. First, we propose a new weight method for an iterative closest point algorithm commonly used in real-time dense mapping and tracking systems. By detecting uncertainty in pose and increasing weight of points that constrain unstable transformations, our system achieves accurate and robust trajectory estimation results. Our pipeline can be fully parallelized with GPU and incorporated into the current real-time depth camera tracking system seamlessly. Second, we compare the state-of-the-art weight algorithms and propose a weight degradation algorithm according to the measurement characteristics of a consumer depth camera. Third, we use Nvidia Kepler Shuffle instructions during warp and block reduction to improve the efficiency of our system. Results on the public TUM RGB-D database benchmark demonstrate that our camera tracking system achieves state-of-the-art results both in accuracy and efficiency.
The Development of Mobile Application to Introduce Historical Monuments in Manado
NASA Astrophysics Data System (ADS)
Rupilu, Moshe Markhasi; Suyoto; Santoso, Albertus Joko
2018-02-01
Learning the historical value of a monument is important because it preserves cultural and historical values, as well as expanding our personal insight. In Indonesia, particularly in Manado, North Sulawesi, there are many monuments. The monuments are erected for history, religion, culture and past war, however these aren't written in detail in the monuments. To get information on specific monument, manual search was required, i.e. asking related people or sources. Based on the problem, the development of an application which can utilize LBS (Location Based Service) method and some algorithmic methods specifically designed for mobile devices such as Smartphone, was required so that information on every monument in Manado can be displayed in detail using GPS coordinate. The application was developed by KNN method with K-means algorithm and collaborative filtering to recommend monument information to tourist. Tourists will get recommended options filtered by distance. Then, this method was also used to look for the closest monument from user. KNN algorithm determines the closest location by making comparisons according to calculation of longitude and latitude of several monuments tourist wants to visit. With this application, tourists who want to know and find information on monuments in Manado can do them easily and quickly because monument information is recommended directly to user without having to make selection. Moreover, tourist can see recommended monument information and search several monuments in Manado in real time.
Surface registration technique for close-range mapping applications
NASA Astrophysics Data System (ADS)
Habib, Ayman F.; Cheng, Rita W. T.
2006-08-01
Close-range mapping applications such as cultural heritage restoration, virtual reality modeling for the entertainment industry, and anatomical feature recognition for medical activities require 3D data that is usually acquired by high resolution close-range laser scanners. Since these datasets are typically captured from different viewpoints and/or at different times, accurate registration is a crucial procedure for 3D modeling of mapped objects. Several registration techniques are available that work directly with the raw laser points or with extracted features from the point cloud. Some examples include the commonly known Iterative Closest Point (ICP) algorithm and a recently proposed technique based on matching spin-images. This research focuses on developing a surface matching algorithm that is based on the Modified Iterated Hough Transform (MIHT) and ICP to register 3D data. The proposed algorithm works directly with the raw 3D laser points and does not assume point-to-point correspondence between two laser scans. The algorithm can simultaneously establish correspondence between two surfaces and estimates the transformation parameters relating them. Experiment with two partially overlapping laser scans of a small object is performed with the proposed algorithm and shows successful registration. A high quality of fit between the two scans is achieved and improvement is found when compared to the results obtained using the spin-image technique. The results demonstrate the feasibility of the proposed algorithm for registering 3D laser scanning data in close-range mapping applications to help with the generation of complete 3D models.
NASA Technical Reports Server (NTRS)
Trainor, J. H.; Teegarden, B. J.
1971-01-01
Demonstration that meaningful galactic and solar cosmic radiation measurements can be carried out on deep space missions. The radioisotopic thermoelectric generators (RTGs) which must be used as a source of power and perhaps of heat are a problem, but with proper separation from the experiments, with orientation, and with some shielding the damage effects can be reduced to an acceptable level. The Pioneer spacecraft are crucial in that they are targeted at the heart of Jupiter's radiation belts, and should supply the details of those belts. The subsequent Grand Tour opportunities can be selected for those periods which result in larger distances of closest approach to Jupiter if necessary.
Fieldwork and social science research ethics.
Contractor, Qudsiya
2008-01-01
Fieldwork as a part of social science research brings the researcher closest to the subject of research. It is a dynamic process where there is an exchange between the researcher, participants, stakeholders, gatekeepers, the community and the larger sociopolitical context in which the research problem is located. Ethical dilemmas that surface during fieldwork often pose a unique challenge to the researcher. This paper is based on field experiences during an action research study conducted with a human rights perspective. It discusses the role conflict that researchers face during fieldwork in a situation of humanitarian crisis. It raises issues pertaining to the need to extend the ethical decision-making paradigm to address ethical dilemmas arising during the course of fieldwork.
Estimating rupture distances without a rupture
Thompson, Eric M.; Worden, Charles
2017-01-01
Most ground motion prediction equations (GMPEs) require distances that are defined relative to a rupture model, such as the distance to the surface projection of the rupture (RJB) or the closest distance to the rupture plane (RRUP). There are a number of situations in which GMPEs are used where it is either necessary or advantageous to derive rupture distances from point-source distance metrics, such as hypocentral (RHYP) or epicentral (REPI) distance. For ShakeMap, it is necessary to provide an estimate of the shaking levels for events without rupture models, and before rupture models are available for events that eventually do have rupture models. In probabilistic seismic hazard analysis, it is often convenient to use point-source distances for gridded seismicity sources, particularly if a preferred orientation is unknown. This avoids the computationally cumbersome task of computing rupture-based distances for virtual rupture planes across all strikes and dips for each source. We derive average rupture distances conditioned on REPI, magnitude, and (optionally) back azimuth, for a variety of assumed seismological constraints. Additionally, we derive adjustment factors for GMPE standard deviations that reflect the added uncertainty in the ground motion estimation when point-source distances are used to estimate rupture distances.
Burgner, J.; Simpson, A. L.; Fitzpatrick, J. M.; Lathrop, R. A.; Herrell, S. D.; Miga, M. I.; Webster, R. J.
2013-01-01
Background Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. Methods We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Results Experiments agree with model predictions, producing point RMS errors consistently < 1 mm, surface-based registration with mean closest point error < 1 mm in the phantom and a RMS target registration error of 0.8 mm in the human cadaver kidney. Conclusions Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. PMID:22761086
Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery
Fuerst, Bernhard; Tateno, Keisuke; Johnson, Alex; Fotouhi, Javad; Osgood, Greg; Tombari, Federico; Navab, Nassir
2017-01-01
Orthopaedic surgeons are still following the decades old workflow of using dozens of two-dimensional fluoroscopic images to drill through complex 3D structures, e.g. pelvis. This Letter presents a mixed reality support system, which incorporates multi-modal data fusion and model-based surgical tool tracking for creating a mixed reality environment supporting screw placement in orthopaedic surgery. A red–green–blue–depth camera is rigidly attached to a mobile C-arm and is calibrated to the cone-beam computed tomography (CBCT) imaging space via iterative closest point algorithm. This allows real-time automatic fusion of reconstructed surface and/or 3D point clouds and synthetic fluoroscopic images obtained through CBCT imaging. An adapted 3D model-based tracking algorithm with automatic tool segmentation allows for tracking of the surgical tools occluded by hand. This proposed interactive 3D mixed reality environment provides an intuitive understanding of the surgical site and supports surgeons in quickly localising the entry point and orienting the surgical tool during screw placement. The authors validate the augmentation by measuring target registration error and also evaluate the tracking accuracy in the presence of partial occlusion. PMID:29184659
NASA Astrophysics Data System (ADS)
Balsamo, Erin Rose
A long standing need to resolve the equation of state (EOS) of neutron stars motivated the Neutron Star Interior Composition Explorer's (NICER) mission goals, including determining stellar radii to within +/-5%. This can be accomplished by observing the change in photon flux over time from pulsars (rotating neutron stars with a magnetic field) in the soft X-ray energy band (0.2-12.0 keV) using NICER's highly effective photon focusing system comprised of 56 X-ray concentrators (XRC). In this thesis, I prove the efficiency and functionally of the specialized fabrication process which allowed for the success of producing flight ready XRCs in a cost effective manner, which have been shown to exceed mission requirements through ground calibration. I have also conducted simulations of a challenging yet advantageous observation of the closest millisecond pulsar (MSP) which will provide astronomers with useful NICER data to further constrain the EOS. X-rays are focused by grazing incident reflection with incident angles on the order of a degree. The NICER optics were designed as singly-reflecting concentrators with a curved axial profile for improved photon concentration and a sturdy full shell structure for enhanced module stability. I assisted in developing a new substrate forming technique to accommodate these unique design elements. By analyzing hundreds of substrates' profiles post-forming, I found the profiles were copied, on average, to within 4.6% +/- 3.7%, i.e. with >95% accuracy. My ground calibration results and this analysis has shown that the heat shrink tape method is reliable, repeatable, and could be used in future missions to increase production rate and performance. NICER's 6 arcminute field-of-view poses a challenge in resolving the energy spectra and light curves of the closest MSP, PSR J0437-4715, due to the bright nearby X-ray source, the Active Galactic Nucleus (AGN) RX J0437.4-4711, with an angular distance of 4.2 arcmintues from the pulsar. Since the optics function as concentrators, all image resolution is lost. However, due to the energy dependency of the XRC's point spread function (PSF), I have found that the best way to observe the MSP is to point the instrument 2.7 arcmintues off-axis from the pulsar, away from the AGN; the pulsar to AGN flux is maximized at this point. Within the simulations, I carefully consider the multi-dimensional instrument pointing statistics, calibrated XRC PSFs, and a current theory of neutron star emission processes.
VizieR Online Data Catalog: PCA-based inversion of stellar parameters (Gebran+, 2016)
NASA Astrophysics Data System (ADS)
Gebran, M.; Farah, W.; Paletou, F.; Monier, R.; Watson, V.
2016-03-01
Inverted effective temperatures, surface gravities, projected rotational velocities, metalicities, and radial velocities for the selected A stars. The "closest" are the values found in Vizier catalogues closest to our inverted parameters, while "median" are the median of the catalogue values. Outliers are marked as "1" in the "outliers" column (see sect. 6) (1 data file).
Impact of natural gas extraction on PAH levels in ambient air.
Paulik, L Blair; Donald, Carey E; Smith, Brian W; Tidwell, Lane G; Hobbie, Kevin A; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A
2015-04-21
Natural gas extraction, often referred to as "fracking," has increased rapidly in the U.S. in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. PAH levels were highest when samplers were closest to active wells. Additionally, PAH levels closest to natural gas activity were an order of magnitude higher than levels previously reported in rural areas. Sourcing ratios indicate that PAHs were predominantly petrogenic, suggesting that elevated PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. Closest to active wells, the risk estimated for maximum residential exposure was 2.9 in 10 000, which is above the U.S. EPA's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest. This work suggests that natural gas extraction may be contributing significantly to PAHs in air, at levels that are relevant to human health.
Impact of natural gas extraction on Pah levels in ambient air
Paulik, L. Blair; Donald, Carey E.; Smith, Brian W.; Tidwell, Lane G.; Hobbie, Kevin A.; Kincl, Laurel; Haynes, Erin N.; Anderson, Kim A.
2015-01-01
Natural gas extraction, often referred to as “fracking,” has increased rapidly in the U.S. in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. PAH levels were highest when samplers were closest to active wells. Additionally, PAH levels closest to natural gas activity were an order of magnitude higher than levels previously reported in rural areas. Sourcing ratios indicate that PAHs were predominantly petrogenic, suggesting that elevated PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. Closest to active wells, the risk estimated for maximum residential exposure was 2.9 in 10,000, which is above the U.S. EPA's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest. This work suggests that natural gas extraction may be contributing significantly to PAHs in air, at levels that are relevant to human health. PMID:25810398
Virányi, Zsófia; Gácsi, Márta; Kubinyi, Eniko; Topál, József; Belényi, Beatrix; Ujfalussy, Dorottya; Miklósi, Adám
2008-07-01
Dogs have a remarkable skill to use human-given cues in object-choice tasks, but little is known to what extent their closest wild-living relative, the wolf can achieve this performance. In Study 1, we compared wolf and dog pups hand-reared individually and pet dogs of the same age in their readiness to form eye-contact with a human experimenter in an object-choice task and to follow her pointing gesture. The results showed that dogs already at 4 months of age use momentary distal pointing to find hidden food even without intensive early socialization. Wolf pups, on the contrary, do not attend to this subtle pointing. Accordingly in Studies 2 and 3, these wolves were tested longitudinally with this and four other (easier) human-given cues. This revealed that wolves socialized at a comparable level to dogs are able to use simple human-given cues spontaneously if the human's hand is close to the baited container (e.g. touching, proximal pointing). Study 4 showed that wolves can follow also momentary distal pointing similarly to dogs if they have received extensive formal training. Comparing the wolves to naïve pet dogs of the same age revealed that during several months of formal training wolves can reach the level of dogs in their success of following momentary distal pointing in parallel with improving their readiness to form eye-contact with a human experimenter. We assume that the high variability in the wolves' communicative behaviour might have provided a basis for selection during the course of domestication of the dog.
Detection of Northern Hemisphere transient eddies at Gale Crater Mars
NASA Astrophysics Data System (ADS)
Haberle, Robert M.; Juárez, Manuel de la Torre; Kahre, Melinda A.; Kass, David M.; Barnes, Jeffrey R.; Hollingsworth, Jeffery L.; Harri, Ari-Matti; Kahanpää, Henrik
2018-06-01
The Rover Environmental Monitoring Station (REMS) on the Curiosity Rover is operating in the Southern Hemisphere of Mars and is detecting synoptic period oscillations in the pressure data that we attribute to Northern Hemisphere transient eddies. We base this interpretation on the similarity in the periods of the eddies and their seasonal variations with those observed in northern midlatitudes by Viking Lander 2 (VL-2) 18 Mars years earlier. Further support for this interpretation comes from global circulation modeling which shows similar behavior in the transient eddies at the grid points closest to Curiosity and VL-2. These observations provide the first in situ evidence that the frontal systems often associated with "Flushing Dust Storms" do cross the equator and extend into the Southern Hemisphere.
Shear wave speed estimation by adaptive random sample consensus method.
Lin, Haoming; Wang, Tianfu; Chen, Siping
2014-01-01
This paper describes a new method for shear wave velocity estimation that is capable of extruding outliers automatically without preset threshold. The proposed method is an adaptive random sample consensus (ARANDSAC) and the metric used here is finding the certain percentage of inliers according to the closest distance criterion. To evaluate the method, the simulation and phantom experiment results were compared using linear regression with all points (LRWAP) and radon sum transform (RS) method. The assessment reveals that the relative biases of mean estimation are 20.00%, 4.67% and 5.33% for LRWAP, ARANDSAC and RS respectively for simulation, 23.53%, 4.08% and 1.08% for phantom experiment. The results suggested that the proposed ARANDSAC algorithm is accurate in shear wave speed estimation.
Westbrook, K W; Pedrick, D; Bush, V
1996-01-01
This study defines a company's quality orientation as "all process-related activities that can be discerned by customers." This even includes certain processes internal to the company that can be seen and evaluated by customers. One significant contribution this study provides is scale development centered on customer rather than employee perceptions. To generate scale items, input was gathered from experts involved in the study, senior managers employed with the target company, focus groups of employees working on the front line with customers, and users of the services. Because the sale measures customer perceptions of quality in comparison with the firm's closest competitor, it provides managers with information for benchmarking performance relative to others in the marketplace.
A Search for Binary Systems in the Magellanic Clouds
NASA Astrophysics Data System (ADS)
Brown, Cody; Nidever, David L.
2018-06-01
The Large and Small Magellanic Clouds are two of the closest dwarf galaxies to our Milky Way and offer an excellent laboratory to study the evolution of galaxies. The close proximity of these galaxies provide a chance to study individual stars in detail and learn about stellar properties and galactic formation of the Clouds. The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the SDSS-IV, has gathered high quality, multi-epoch, spectroscopic data on a multitude of stars in the Magellanic Clouds. The time-series data can be used to detect and characterize binary stars and make the first spectroscopic measurements of the field binary fraction of the Clouds. I will present preliminary results from this project.
NASA Astrophysics Data System (ADS)
Hinojosa-Corona, A.; Nissen, E.; Limon-Tirado, J. F.; Arrowsmith, R.; Krishnan, A.; Saripalli, S.; Oskin, M. E.; Glennie, C. L.; Arregui, S. M.; Fletcher, J. M.; Teran, O. J.
2013-05-01
Aerial LiDAR surveys reconstruct with amazing fidelity the sinuosity of terrain relief. In this research we explore the 3D deformation field at the surface after a big earthquake (M7.2) by comparing pre- to post-event aerial LiDAR point clouds. The April 4 2010 earthquake produced a NW-SE surface rupture ~110km long with right-lateral normal slip up to 3m in magnitude over a very favorable target: scarcely vegetated and unaltered desert mountain range, sierras El Mayor and Cucapah, in northern Baja California, close to the US-México border. It is a plate boundary region between the Pacific and North American plates. The pre-event LiDAR with lower point density (0.013-0.033 pts m-2) required filtering and post-processing before comparing with the denser (9-18 pts m-2) more accurate post event dataset. The 3D surface displacement field was determined using an adaptation of the Iterative Closest Point (ICP) algorithm, implemented in the open source Point Cloud Library (PCL). The LiDAR datasets are first split into a grid of windows, and for each one, ICP iteratively converges on the rigid body transformation (comprising translations and rotations) that best aligns the pre- to post-event points. Perturbing the pre- and post-event point clouds independently with a synthetic right lateral inverse displacements of known magnitude along a proposed fault, ICP recovered the synthetically introduced translations. Windows with dimensions of 100-200m gave the best results for datasets with these densities. The simplified surface rupture photo interpreted and mapped in the field, delineates very well the vertical displacements patterns unveiled by ICP. The method revealed block rotations, some with clockwise and others counter clockwise direction along the simplified surface rupture. As ground truth, displacements from ICP have similar values as those measured in the field along the main rupture by Fletcher and collaborators. The vertical component was better estimated than the horizontal having the latter problems in flat areas as expected. Hybrid approaches, as simple differencing, could be taken in these areas. Outliers were removed from results. ICP detected extraction from quarries developed between the two dates of LiDAR collection and expressed as a negative vertical displacement close to the sites. To improve the accuracy of the 3D displacement field, we intend to reprocess the pre-event source survey data to reduce the systematic error introduced by the sensor. Multidisciplinary approach will be needed to make tectonic inferences from the 3D displacement field revealed by ICP, about the processes at depth expressed at surface.
New Horizons Very Best View of Pluto
2015-12-05
This frame from a movie is composed of the sharpest views of Pluto that NASA's New Horizons spacecraft obtained during its flyby of the distant planet on July 14, 2015. The pictures are part of a sequence taken near New Horizons' closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel -- revealing features smaller than half a city block on Pluto's diverse surface. The images include a wide variety of spectacular, cratered, mountainous and glacial terrains -- giving scientists and the public alike a breathtaking, super-high resolution window on Pluto's geology. The images form a strip 50 miles (80 kilometers) wide trending from Pluto's jagged horizon about 500 miles (800 kilometers) northwest of the informally named Sputnik Planum, across the al-Idrisi mountains, onto the shoreline of Sputnik Planum and then across its icy plains. They were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, over a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto -- from a range of just 10,000 miles (17,000 kilometers). They were obtained with an unusual observing mode; instead of working in the usual "point and shoot," LORRI snapped pictures every three seconds while the Ralph/Multispectral Visual Imaging Camera (MVIC) aboard New Horizons was scanning the surface. This mode requires unusually short exposures to avoid blurring the images. http://photojournal.jpl.nasa.gov/catalog/PIA20202
New Horizons Very Best View of Pluto Mosiac
2015-12-05
This mosaic is composed of the sharpest views of Pluto that NASA's New Horizons spacecraft obtained during its flyby of the distant planet on July 14, 2015. The pictures are part of a sequence taken near New Horizons' closest approach to Pluto, with resolutions of about 250-280 feet (77-85 meters) per pixel -- revealing features smaller than half a city block on Pluto's diverse surface. The images include a wide variety of spectacular, cratered, mountainous and glacial terrains -- giving scientists and the public alike a breathtaking, super-high resolution window on Pluto's geology. The images form a strip 50 miles (80 kilometers) wide trending from Pluto's jagged horizon about 500 miles (800 kilometers) northwest of the informally named Sputnik Planum, across the al-Idrisi mountains, onto the shoreline of Sputnik Planum and then across its icy plains. They were made with the telescopic Long Range Reconnaissance Imager (LORRI) aboard New Horizons, over a timespan of about a minute centered on 11:36 UT on July 14 -- just about 15 minutes before New Horizons' closest approach to Pluto -- from a range of just 10,000 miles (17,000 kilometers). They were obtained with an unusual observing mode; instead of working in the usual "point and shoot," LORRI snapped pictures every three seconds while the Ralph/Multispectral Visual Imaging Camera (MVIC) aboard New Horizons was scanning the surface. This mode requires unusually short exposures to avoid blurring the images. http://photojournal.jpl.nasa.gov/catalog/PIA20201
Fischer, Gerrit; Stadie, Axel; Schwandt, Eike; Gawehn, Joachim; Boor, Stephan; Marx, Juergen; Oertel, Joachim
2009-05-01
The aim of the authors in this study was to introduce a minimally invasive superficial temporal artery to middle cerebral artery (STA-MCA) bypass surgery by the preselection of appropriate donor and recipient branches in a 3D virtual reality setting based on 3-T MR angiography data. An STA-MCA anastomosis was performed in each of 5 patients. Before surgery, 3-T MR imaging was performed with 3D magnetization-prepared rapid acquisition gradient echo sequences, and a high-resolution CT 3D dataset was obtained. Image fusion and the construction of a 3D virtual reality model of each patient were completed. In the 3D virtual reality setting, the skin surface, skull surface, and extra- and intracranial arteries as well as the cortical brain surface could be displayed in detail. The surgical approach was successfully visualized in virtual reality. The anatomical relationship of structures of interest could be evaluated based on different values of translucency in all cases. The closest point of the appropriate donor branch of the STA and the most suitable recipient M(3) or M(4) segment could be calculated with high accuracy preoperatively and determined as the center point of the following minicraniotomy. Localization of the craniotomy and the skin incision on top of the STA branch was calculated with the system, and these data were transferred onto the patient's skin before surgery. In all cases the preselected arteries could be found intraoperatively in exact agreement with the preoperative planning data. Successful extracranial-intracranial bypass surgery was achieved without stereotactic neuronavigation via a preselected minimally invasive approach in all cases. Subsequent enlargement of the craniotomy was not necessary. Perioperative complications were not observed. All bypasses remained patent on follow-up. With the application of a 3D virtual reality planning system, the extent of skin incision and tissue trauma as well as the size of the bone flap was minimal. The closest point of the appropriate donor branch of the STA and the most suitable recipient M(3) or M(4) segment could be preoperatively determined with high accuracy so that the STA-MCA bypass could be safely and effectively performed through an optimally located minicraniotomy with a mean diameter of 22 mm without the need for stereotactic guidance.
Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy
Alexopoulou, Dimitra; Andreopoulos, Bill; Dietze, Heiko; Doms, Andreas; Gandon, Fabien; Hakenberg, Jörg; Khelif, Khaled; Schroeder, Michael; Wächter, Thomas
2009-01-01
Background Ontology term labels can be ambiguous and have multiple senses. While this is no problem for human annotators, it is a challenge to automated methods, which identify ontology terms in text. Classical approaches to word sense disambiguation use co-occurring words or terms. However, most treat ontologies as simple terminologies, without making use of the ontology structure or the semantic similarity between terms. Another useful source of information for disambiguation are metadata. Here, we systematically compare three approaches to word sense disambiguation, which use ontologies and metadata, respectively. Results The 'Closest Sense' method assumes that the ontology defines multiple senses of the term. It computes the shortest path of co-occurring terms in the document to one of these senses. The 'Term Cooc' method defines a log-odds ratio for co-occurring terms including co-occurrences inferred from the ontology structure. The 'MetaData' approach trains a classifier on metadata. It does not require any ontology, but requires training data, which the other methods do not. To evaluate these approaches we defined a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The 'MetaData' approach performed best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The 'Term Cooc' approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The 'Closest Sense' approach achieves on average 80% success rate. Conclusion Metadata is valuable for disambiguation, but requires high quality training data. Closest Sense requires no training, but a large, consistently modelled ontology, which are two opposing conditions. Term Cooc achieves greater 90% success given a consistently modelled ontology. Overall, the results show that well structured ontologies can play a very important role to improve disambiguation. Availability The three benchmark datasets created for the purpose of disambiguation are available in Additional file 1. PMID:19159460
Ecology and Population Structure of Vibrionaceae in the Coastal Ocean
2010-02-01
population is closest to V. gazogenes at atpA (Fig. 2) and V. kanoleae at gyrB (Fig. 3). The relationship with other species at all genetic loci is...Closest named relative varies by gene: V pacinii (recA), V kanaloae (gyrB) and V gazogenes (atpA) F11 L V. splendidus cluster 1 atpA, gyrB, pyrH, recA
Basic issues related to quantity and quality of health care, and quality assurance in Indonesia.
Jacobalis, S
1989-01-01
Issues and problems related to the needs for quantity and quality in health care have been presented. The need for quantity has been quite successfully addressed in the last 20 years. Better quality of health care is very much in the minds of policy makers, providers and the informed public. Quality assessment and assurance as a programmed and on-going process in individual hospitals is systematically promoted and developed. An accreditation system for hospitals is planned for the future. This paper has not been able to contribute anything of value to the current practice of quality assurance. The industrialized world has passed the stages Indonesia is now going through. To some Australian colleagues, this presentation perhaps has revealed that one of their closest neighbours is struggling hard to improve the quality of life of its people, despite the tremendous problems and constraints with which it is confronted. Australia has always provided a helping hand in this struggle.
Li, Xia; Guo, Meifang; Su, Yongfu
2016-01-01
In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. Strong convergence theorems for finding a solution of the split common null point problem are derived. This iteration algorithm can accelerate the convergence speed of iterative sequence. The results of this paper improve and extend the recent results of Takahashi and Yao (Fixed Point Theory Appl 2015:87, 2015) and many others .
Solving multi-objective optimization problems in conservation with the reference point method
Dujardin, Yann; Chadès, Iadine
2018-01-01
Managing the biodiversity extinction crisis requires wise decision-making processes able to account for the limited resources available. In most decision problems in conservation biology, several conflicting objectives have to be taken into account. Most methods used in conservation either provide suboptimal solutions or use strong assumptions about the decision-maker’s preferences. Our paper reviews some of the existing approaches to solve multi-objective decision problems and presents new multi-objective linear programming formulations of two multi-objective optimization problems in conservation, allowing the use of a reference point approach. Reference point approaches solve multi-objective optimization problems by interactively representing the preferences of the decision-maker with a point in the criteria (objectives) space, called the reference point. We modelled and solved the following two problems in conservation: a dynamic multi-species management problem under uncertainty and a spatial allocation resource management problem. Results show that the reference point method outperforms classic methods while illustrating the use of an interactive methodology for solving combinatorial problems with multiple objectives. The method is general and can be adapted to a wide range of ecological combinatorial problems. PMID:29293650
Fast time-of-flight camera based surface registration for radiotherapy patient positioning.
Placht, Simon; Stancanello, Joseph; Schaller, Christian; Balda, Michael; Angelopoulou, Elli
2012-01-01
This work introduces a rigid registration framework for patient positioning in radiotherapy, based on real-time surface acquisition by a time-of-flight (ToF) camera. Dynamic properties of the system are also investigated for future gating/tracking strategies. A novel preregistration algorithm, based on translation and rotation-invariant features representing surface structures, was developed. Using these features, corresponding three-dimensional points were computed in order to determine initial registration parameters. These parameters became a robust input to an accelerated version of the iterative closest point (ICP) algorithm for the fine-tuning of the registration result. Distance calibration and Kalman filtering were used to compensate for ToF-camera dependent noise. Additionally, the advantage of using the feature based preregistration over an "ICP only" strategy was evaluated, as well as the robustness of the rigid-transformation-based method to deformation. The proposed surface registration method was validated using phantom data. A mean target registration error (TRE) for translations and rotations of 1.62 ± 1.08 mm and 0.07° ± 0.05°, respectively, was achieved. There was a temporal delay of about 65 ms in the registration output, which can be seen as negligible considering the dynamics of biological systems. Feature based preregistration allowed for accurate and robust registrations even at very large initial displacements. Deformations affected the accuracy of the results, necessitating particular care in cases of deformed surfaces. The proposed solution is able to solve surface registration problems with an accuracy suitable for radiotherapy cases where external surfaces offer primary or complementary information to patient positioning. The system shows promising dynamic properties for its use in gating/tracking applications. The overall system is competitive with commonly-used surface registration technologies. Its main benefit is the usage of a cost-effective off-the-shelf technology for surface acquisition. Further strategies to improve the registration accuracy are under development.
Dragone, Maria Lúcia Suzigan
2011-01-01
To investigate the perception of voice impairment in professional and social contexts, to correlate these data with existing data in the literature, and to explore the perception of voice problems and the adherence to vocal health programs. 502 Brazilian educators working in municipal public schools responded to the Voice Activity and Participation Profile (VAPP) questionnaire. Then a correlation was made with previous results in the literature dealing with a dysphonic and a nondysphonic group. The VAPP data showed that self-perception of voice problems had a higher vocal impact on daily communication and lower scores for activity limitation and participation restriction. The educators' scores were closer to those of the nondysphonic group with regard to daily and social communication, and emotional and activity limitation, but perception of the voice problem was closest to that of the dysphonic group. Nevertheless, the opposite was the case for participation restriction. The educators perceive vocal problems but do not perceive participation restriction to the same extent. This may explain the decreasing participation in the Vocal Health Program. It probably occurs because adults voluntarily apply for training when they feel that their work performance needs to improve so that they can carry out their job properly. Copyright © 2010 S. Karger AG, Basel.
Travel burden to breast MRI and utilization: are risk and sociodemographics related
Onega, Tracy; Lee, Christoph I.; Benkeser, David; Alford-Teaster, Jennifer; Haas, Jennifer S.; Tosteson, Anna N. A.; Hill, Deirdre; Shi, Xun; Henderson, Louise M.; Hubbard, Rebecca A.
2016-01-01
Background Mammograms, unlike magnetic resonance imaging (MRI), are relatively geographically accessible. Additional travel time is often required to access breast MRI. However, the amount of additional travel time and whether it varies based on sociodemographic or breast cancer risk factors is unknown. Methods We examine screening mammograms and MRIs between 2005 and 2012 in the Breast Cancer Surveillance Consortium (BCSC) by a) travel time to the closest and actual mammography facility used, and the difference between the two; b) woman's breast cancer risk factors and c) socio-demographic characteristics. We used logistic regression to examine the odds of traveling farther than the closest facility in relation to women's characteristics. Results Among 821,683 screening mammograms, 76.6% occurred at the closest facility compared to 51.9% of screening MRIs (N=3,687). The median differential travel time among women not using the closest facility for mammography was 14 minutes (IQR: 8-25) versus 20 minutes (IQR 11-40) for breast MRI. Differential travel time for both imaging modalities did not vary notably by breast cancer risk factors, but was significantly longer for non-urban residents. For non-Hispanic black, compared to non-Hispanic white women, the adjusted odds of traveling farther than the closest facility were 9% lower for mammography (OR 0.91; 95% CI:0.87-0.95), but more than two times higher for MRI (OR 2.64; 95% CI:1.36-5.13). Conclusions Breast cancer risk factors were not related to excess travel time for screening MRI, but sociodemographic factors were, suggesting the possibility that geographic distribution of advanced imaging may exacerbated disparities for some vulnerable populations. PMID:27026577
Travel Burden to Breast MRI and Utilization: Are Risk and Sociodemographics Related?
Onega, Tracy; Lee, Christoph I; Benkeser, David; Alford-Teaster, Jennifer; Haas, Jennifer S; Tosteson, Anna N A; Hill, Deirdre; Shi, Xun; Henderson, Louise M; Hubbard, Rebecca A
2016-06-01
Mammography, unlike MRI, is relatively geographically accessible. Additional travel time is often required to access breast MRI. However, the amount of additional travel time and whether it varies on the basis of sociodemographic or breast cancer risk factors is unknown. The investigators examined screening mammography and MRI between 2005 and 2012 in the Breast Cancer Surveillance Consortium by (1) travel time to the closest and actual mammography facility used and the difference between the two, (2) women's breast cancer risk factors, and (3) sociodemographic characteristics. Logistic regression was used to examine the odds of traveling farther than the closest facility in relation to women's characteristics. Among 821,683 screening mammographic examinations, 76.6% occurred at the closest facility, compared with 51.9% of screening MRI studies (n = 3,687). The median differential travel time among women not using the closest facility for mammography was 14 min (interquartile range, 8-25 min) versus 20 min (interquartile range, 11-40 min) for breast MRI. Differential travel time for both imaging modalities did not vary notably by breast cancer risk factors but was significantly longer for nonurban residents. For non-Hispanic black compared with non-Hispanic white women, the adjusted odds of traveling farther than the closest facility were 9% lower for mammography (odds ratio, 0.91; 95% confidence interval, 0.87-0.95) but more than two times higher for MRI (odds ratio, 2.64; 95% confidence interval, 1.36-5.13). Breast cancer risk factors were not related to excess travel time for screening MRI, but sociodemographic factors were, suggesting the possibility that geographic distribution of advanced imaging may exacerbated disparities for some vulnerable populations. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Uniscale multi-view registration using double dog-leg method
NASA Astrophysics Data System (ADS)
Chen, Chao-I.; Sargent, Dusty; Tsai, Chang-Ming; Wang, Yuan-Fang; Koppel, Dan
2009-02-01
3D computer models of body anatomy can have many uses in medical research and clinical practices. This paper describes a robust method that uses videos of body anatomy to construct multiple, partial 3D structures and then fuse them to form a larger, more complete computer model using the structure-from-motion framework. We employ the Double Dog-Leg (DDL) method, a trust-region based nonlinear optimization method, to jointly optimize the camera motion parameters (rotation and translation) and determine a global scale that all partial 3D structures should agree upon. These optimized motion parameters are used for constructing local structures, and the global scale is essential for multi-view registration after all these partial structures are built. In order to provide a good initial guess of the camera movement parameters and outlier free 2D point correspondences for DDL, we also propose a two-stage scheme where multi-RANSAC with a normalized eight-point algorithm is first performed and then a few iterations of an over-determined five-point algorithm is used to polish the results. Our experimental results using colonoscopy video show that the proposed scheme always produces more accurate outputs than the standard RANSAC scheme. Furthermore, since we have obtained many reliable point correspondences, time-consuming and error-prone registration methods like the iterative closest points (ICP) based algorithms can be replaced by a simple rigid-body transformation solver when merging partial structures into a larger model.
Ghaffariyeh, Alireza; Peyman, Alireza; Puyan, Sadollah; Honarpisheh, Nazafarin; Bagheri, Babak; Peyman, Mohammadreza
2009-08-01
To evaluate the efficacy, and safety of transcutaneous electrical stimulation (TES) to accelerate corneal nerve regeneration and improved recovery from corneal hypesthasia after laser-assisted in situ keratomileusis (LASIK). Khodadoust Eye Hospital, Shiraz, Fars, Iran This prospective, randomized, clinical study comprised 40 eyes of 20 patients scheduled to undergo bilateral LASIK. In each patient, one eye was randomly assigned to receive transcutaneous electrical stimulation (20 HZ) for 60 minutes, and the other eye allocated as control. Corneal sensitivity was measured using the Cochet-Bonnet esthesiometer in four areas outside and five areas inside the LASIK flap preoperatively, and at 1 day, 1 week, 1 month, and 3 months postoperatively. Best-corrected visual acuity and the incidence of adverse events were noted at each visit. For all four points outside the LASIK flap, normal corneal sensitivity was maintained throughout the study; no significant difference was found between the study eyes and the control eyes at these points (P > 0.05). All points within the LASIK flap except the point closest to the hinge demonstrated profound corneal hypoesthesia at 1 day, 1 week, and 1 month postoperatively, with no differences noted between the control and study eyes (P > 0.05). After 3 months, points within the flap had statistically significantly better corneal sensitivity in the study group than in the control group (P < 0.05). Transcutaneous electrical stimulation significantly improves corneal sensitivity at 3 months after LASIK. This may be due to accelerated corneal nerve regeneration by electrical stimulation.
NASA Astrophysics Data System (ADS)
Monnier, F.; Vallet, B.; Paparoditis, N.; Papelard, J.-P.; David, N.
2013-10-01
This article presents a generic and efficient method to register terrestrial mobile data with imperfect location on a geographic database with better overall accuracy but less details. The registration method proposed in this paper is based on a semi-rigid point to plane ICP ("Iterative Closest Point"). The main applications of such registration is to improve existing geographic databases, particularly in terms of accuracy, level of detail and diversity of represented objects. Other applications include fine geometric modelling and fine façade texturing, object extraction such as trees, poles, road signs marks, facilities, vehicles, etc. The geopositionning system of mobile mapping systems is affected by GPS masks that are only partially corrected by an Inertial Navigation System (INS) which can cause an important drift. As this drift varies non-linearly, but slowly in time, it will be modelled by a translation defined as a piecewise linear function of time which variation over time will be minimized (rigidity term). For each iteration of the ICP, the drift is estimated in order to minimise the distance between laser points and planar model primitives (data attachment term). The method has been tested on real data (a scan of the city of Paris of 3.6 million laser points registered on a 3D model of approximately 71,400 triangles).
Hofreiter, Michael
2011-02-01
Ten years after the first draft versions of the human genome were announced, technical progress in both DNA sequencing and ancient DNA analyses has allowed a research team around Ed Green and Svante Pääbo to complete this task from infinitely more difficult hominid samples: a few pieces of bone originating from our closest, albeit extinct, relatives, the Neanderthals. Pulling the Neanderthal sequences out of a sea of contaminating environmental DNA impregnating the bones and at the same time avoiding the problems of contamination with modern human DNA is in itself a remarkable accomplishment. However, the crucial question in the long run is, what can we learn from such genomic data about hominid evolution?
Centaurus A, the core of the problem
NASA Technical Reports Server (NTRS)
Tingay, S. J.; Jauncey, D. L.; Preston, R. A.; Reynolds, J. E.; Meier, D. L.; Tzioumis, A. K.; Jones, D. L.; King, E. A.; Amy, S. W.; Biggs, J. D.
1994-01-01
The bright, peculiar elliptical galaxy Centaurus A (NGC 5128, PKS 1322-427) was one of the first extragalactic radio sources to be optically identified (Bolton et al. 1949). At a distance of 4 Mpc, Centaurus A is the closest active radio galaxy and affords the highest linear imaging resolution (1 mas approximately equal to 0.02 pc) and hence the best prospects for studying an active nucleus close to the central radio source. We present the results of multi-epoch, 8.4-GHz, very long baseline interferometry (VLBI), imaging observations of the nucleus made over the past three years. The nucleus possesses a core-jet structure where the inner portion of the jet shows apparent linear motion with a velocity substantially less than the speed of light.
Emissions of Polycyclic Aromatic Hydrocarbons from Natural Gas Extraction into Air.
Paulik, L Blair; Donald, Carey E; Smith, Brian W; Tidwell, Lane G; Hobbie, Kevin A; Kincl, Laurel; Haynes, Erin N; Anderson, Kim A
2016-07-19
Natural gas extraction, often referred to as "fracking", has increased rapidly in the United States in recent years. To address potential health impacts, passive air samplers were deployed in a rural community heavily affected by the natural gas boom. Samplers were analyzed for 62 polycyclic aromatic hydrocarbons (PAHs). Results were grouped based on distance from each sampler to the nearest active well. Levels of benzo[a]pyrene, phenanthrene, and carcinogenic potency of PAH mixtures were highest when samplers were closest to active wells. PAH levels closest to natural gas activity were comparable to levels previously reported in rural areas in winter. Sourcing ratios indicated that PAHs were predominantly petrogenic, suggesting that PAH levels were influenced by direct releases from the earth. Quantitative human health risk assessment estimated the excess lifetime cancer risks associated with exposure to the measured PAHs. At sites closest to active wells, the risk estimated for maximum residential exposure was 0.04 in a million, which is below the U.S. Environmental Protection Agency's acceptable risk level. Overall, risk estimates decreased 30% when comparing results from samplers closest to active wells to those farthest from them. This work suggests that natural gas extraction is contributing PAHs to the air, at levels that would not be expected to increase cancer risk.
Rethinking culture and self-construal: China as a middle land.
Li, Han Z; Zhang, Zhi; Bhatt, Gira; Yum, Young-Ok
2006-10-01
Amid criticisms of current paper-and-pencil type questionnaires measuring self-construal across cultural groups, the authors used a graphic representation scale to examine whether Anglo Canadians (N = 220) were more independent than Mainland Chinese (N = 196) and Indians (N = 212) in construing their relationships with closest family member, family members, closest friend, friends, (other) relatives, colleagues, and neighbors. Data generated 5 intriguing findings: (a) Chinese were more interdependent than Canadians but less so than Indians, indicating that Chinese culture has become more individualistic. (b) Canadians were more independent than Chinese in 6 relationship dimensions but were as interdependent as Chinese in self-closest-friend connectedness, somewhat contradicting 1 assumption of theories of independent-interdependent self-construal and individualism-collectivism (I-C). (c) Canadians were more independent than Indians in all relationship dimensions, supporting theories of independent-interdependent self-construal and I-C. (d) Chinese were as interdependent as Indians in self-closest-family-member, self-close-family-members, and self-relatives connectedness but more independent than Indians in the other categories of self-other relationships. (e) Participants' age did not have strong correlations with variables measuring self-construal in any sample, indicating that a person's attachment style may not change greatly over a lifespan. The authors discussed theoretical and methodological implications.
Multi-Depth-Map Raytracing for Efficient Large-Scene Reconstruction.
Arikan, Murat; Preiner, Reinhold; Wimmer, Michael
2016-02-01
With the enormous advances of the acquisition technology over the last years, fast processing and high-quality visualization of large point clouds have gained increasing attention. Commonly, a mesh surface is reconstructed from the point cloud and a high-resolution texture is generated over the mesh from the images taken at the site to represent surface materials. However, this global reconstruction and texturing approach becomes impractical with increasing data sizes. Recently, due to its potential for scalability and extensibility, a method for texturing a set of depth maps in a preprocessing and stitching them at runtime has been proposed to represent large scenes. However, the rendering performance of this method is strongly dependent on the number of depth maps and their resolution. Moreover, for the proposed scene representation, every single depth map has to be textured by the images, which in practice heavily increases processing costs. In this paper, we present a novel method to break these dependencies by introducing an efficient raytracing of multiple depth maps. In a preprocessing phase, we first generate high-resolution textured depth maps by rendering the input points from image cameras and then perform a graph-cut based optimization to assign a small subset of these points to the images. At runtime, we use the resulting point-to-image assignments (1) to identify for each view ray which depth map contains the closest ray-surface intersection and (2) to efficiently compute this intersection point. The resulting algorithm accelerates both the texturing and the rendering of the depth maps by an order of magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazic, Predrag; Stefancic, Hrvoje; Abraham, Hrvoje
2006-03-20
We introduce a novel numerical method, named the Robin Hood method, of solving electrostatic problems. The approach of the method is closest to the boundary element methods, although significant conceptual differences exist with respect to this class of methods. The method achieves equipotentiality of conducting surfaces by iterative non-local charge transfer. For each of the conducting surfaces, non-local charge transfers are performed between surface elements, which differ the most from the targeted equipotentiality of the surface. The method is tested against analytical solutions and its wide range of application is demonstrated. The method has appealing technical characteristics. For the problemmore » with N surface elements, the computational complexity of the method essentially scales with N {sup {alpha}}, where {alpha} < 2, the required computer memory scales with N, while the error of the potential decreases exponentially with the number of iterations for many orders of magnitude of the error, without the presence of the Critical Slowing Down. The Robin Hood method could prove useful in other classical or even quantum problems. Some future development ideas for possible applications outside electrostatics are addressed.« less
Shadow poles in coupled-channel problems calculated with the Berggren basis
NASA Astrophysics Data System (ADS)
Id Betan, R. M.; Kruppa, A. T.; Vertse, T.
2018-02-01
Background: In coupled-channels models the poles of the scattering S matrix are located on different Riemann sheets. Physical observables are affected mainly by poles closest to the physical region but sometimes shadow poles have considerable effect too. Purpose: The purpose of this paper is to show that in coupled-channels problems all poles of the S matrix can be located by an expansion in terms of a properly constructed complex-energy basis. Method: The Berggren basis is used for expanding the coupled-channels solutions. Results: The locations of the poles of the S matrix for the Cox potential, constructed for coupled-channels problems, were numerically calculated and compared with the exact ones. In a nuclear physics application the Jπ=3 /2+ resonant poles of 5He were calculated in a phenomenological two-channel model. The properties of both the normal and shadow resonances agree with previous findings. Conclusions: We have shown that, with an appropriately chosen Berggren basis, all poles of the S matrix including the shadow poles can be determined. We have found that the shadow pole of 5He migrates between Riemann sheets if the coupling strength is varied.
Waspe, A C; Holdsworth, D W; Lacefield, J C; Fenster, A
2008-07-01
Preclinical research protocols often require the delivery of biological substances to specific targets in small animal disease models. To target biologically relevant locations in mice accurately, the needle positioning error needs to be < 200 μm. If targeting is inaccurate, experimental results can be inconclusive or misleading. We have developed a robotic manipulator that is capable of positioning a needle with a mean error < 100 μm. An apparatus and method were developed for integrating the needle-positioning robot with volumetric micro-computed tomography image guidance for interventions in small animals. Accurate image-to-robot registration is critical for integration as it enables targets identified in the image to be mapped to physical coordinates inside the animal. Registration is accomplished by injecting barium sulphate into needle tracks as the robot withdraws the needle from target points in a tissue-mimicking phantom. Registration accuracy is therefore affected by the positioning error of the robot and is assessed by measuring the point-to-line fiducial and target registration errors (FRE, TRE). Centroid points along cross-sectional slices of the track are determined using region growing segmentation followed by application of a center-of-mass algorithm. The centerline points are registered to needle trajectories in robot coordinates by applying an iterative closest point algorithm between points and lines. Implementing this procedure with four fiducial needle tracks produced a point-to-line FRE and TRE of 246 ± 58 μm and 194 ± 18 μm, respectively. The proposed registration technique produced a TRE < 200 μm, in the presence of robot positioning error, meeting design specification. © 2008 American Association of Physicists in Medicine.
Simons-Morton, Bruce; Haynie, Denise; Bible, Joe; Liu, Danping
2018-02-05
Descriptive norms are commonly associated with participant drinking. However, study participants may incorrectly perceive that their peers drink about the same amount as they do, which would bias estimates of drinking homogeneity. This research examined the magnitude of associations between emerging adults' reports of their own drinking and peer drinking measured the previous year by measures of (1) participants' perceptions of friends' drinking; and (2) actual drinking reported by nominated peers. The data are from annual surveys conducted in 2014 and 2015, Waves 4 and 5 (the first 2 years after high school) of 7 annual assessments as part of the NEXT Generation Health Study (n = 323). Associations of participant alcohol use with perceived friend use (five closest, closest male, and closest female friends), and with actual peer use. Logistic regression analyses estimated the magnitudes of prospective associations between each measure of peer drinking at W4 and participant drinking at W5.
NASA Astrophysics Data System (ADS)
Tobochnik, Jan; Chapin, Phillip M.
1988-05-01
Monte Carlo simulations were performed for hard disks on the surface of an ordinary sphere and hard spheres on the surface of a four-dimensional hypersphere. Starting from the low density fluid the density was increased to obtain metastable amorphous states at densities higher than previously achieved. Above the freezing density the inverse pressure decreases linearly with density, reaching zero at packing fractions equal to 68% for hard spheres and 84% for hard disks. Using these new estimates for random closest packing and coefficients from the virial series we obtain an equation of state which fits all the data up to random closest packing. Usually, the radial distribution function showed the typical split second peak characteristic of amorphous solids and glasses. High density systems which lacked this split second peak and showed other sharp peaks were interpreted as signaling the onset of crystal nucleation.
Large outbreak of Legionnaires' disease and Pontiac fever at a military base.
Ambrose, J; Hampton, L M; Fleming-Dutra, K E; Marten, C; McClusky, C; Perry, C; Clemmons, N A; McCormic, Z; Peik, S; Mancuso, J; Brown, E; Kozak, N; Travis, T; Lucas, C; Fields, B; Hicks, L; Cersovsky, S B
2014-11-01
We investigated a mixed outbreak of Legionnaires' disease (LD) and Pontiac fever (PF) at a military base to identify the outbreak's environmental source as well as known legionellosis risk factors. Base workers with possible legionellosis were interviewed and, if consenting, underwent testing for legionellosis. A retrospective cohort study collected information on occupants of the buildings closest to the outbreak source. We identified 29 confirmed and probable LD and 38 PF cases. All cases were exposed to airborne pathogens from a cooling tower. Occupants of the building closest to the cooling tower were 6·9 [95% confidence interval (CI) 2·2-22·0] and 5·5 (95% CI 2·1-14·5) times more likely to develop LD and PF, respectively, than occupants of the next closest building. Thorough preventive measures and aggressive responses to outbreaks, including searching for PF cases in mixed legionellosis outbreaks, are essential for legionellosis control.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.
2009-01-01
This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.
De Wever, Aaike; Leliaert, Frederik; Verleyen, Elie; Vanormelingen, Pieter; Van der Gucht, Katleen; Hodgson, Dominic A.; Sabbe, Koen; Vyverman, Wim
2009-01-01
Recent data revealed that metazoans such as mites and springtails have persisted in Antarctica throughout several glacial–interglacial cycles, which contradicts the existing paradigm that terrestrial life was wiped out by successive glacial events and that the current inhabitants are recent colonizers. We used molecular phylogenetic techniques to study Antarctic microchlorophyte strains isolated from lacustrine habitats from maritime and continental Antarctica. The 14 distinct chlorophycean and trebouxiophycean lineages observed point to a wide phylogenetic diversity of apparently endemic Antarctic lineages at different taxonomic levels. This supports the hypothesis that long-term survival took place in glacial refugia, resulting in a specific Antarctic flora. The majority of the lineages have estimated ages between 17 and 84 Ma and probably diverged from their closest relatives around the time of the opening of Drake Passage (30–45 Ma), while some lineages with longer branch lengths have estimated ages that precede the break-up of Gondwana. The variation in branch length and estimated age points to several independent but rare colonization events. PMID:19625320
Underwater terrain-aided navigation system based on combination matching algorithm.
Li, Peijuan; Sheng, Guoliang; Zhang, Xiaofei; Wu, Jingqiu; Xu, Baochun; Liu, Xing; Zhang, Yao
2018-07-01
Considering that the terrain-aided navigation (TAN) system based on iterated closest contour point (ICCP) algorithm diverges easily when the indicative track of strapdown inertial navigation system (SINS) is large, Kalman filter is adopted in the traditional ICCP algorithm, difference between matching result and SINS output is used as the measurement of Kalman filter, then the cumulative error of the SINS is corrected in time by filter feedback correction, and the indicative track used in ICCP is improved. The mathematic model of the autonomous underwater vehicle (AUV) integrated into the navigation system and the observation model of TAN is built. Proper matching point number is designated by comparing the simulation results of matching time and matching precision. Simulation experiments are carried out according to the ICCP algorithm and the mathematic model. It can be concluded from the simulation experiments that the navigation accuracy and stability are improved with the proposed combinational algorithm in case that proper matching point number is engaged. It will be shown that the integrated navigation system is effective in prohibiting the divergence of the indicative track and can meet the requirements of underwater, long-term and high precision of the navigation system for autonomous underwater vehicles. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Bowling, T. J.; Calais, E.; Dautermann, T.
2010-12-01
Rocket launches are known to produce infrasonic pressure waves that propagate into the ionosphere where coupling between electrons and neutral particles induces fluctuations in ionospheric electron density observable in GPS measurements. We have detected ionospheric perturbations following the launch of space shuttle Atlantis on 11 May 2009 using an array of continually operating GPS stations across the Southeastern coast of the United States and in the Caribbean. Detections are prominent to the south of the westward shuttle trajectory in the area of maximum coupling between the acoustic wave and Earth’s magnetic field, move at speeds consistent with the speed of sound, and show coherency between stations covering a large geographic range. We model the perturbation as an explosive source located at the point of closest approach between the shuttle path and each sub-ionospheric point. The neutral pressure wave is propagated using ray tracing, resultant changes in electron density are calculated at points of intersection between rays and satellite-to-reciever line-of-sight, and synthetic integrated electron content values are derived. Arrival times of the observed and synthesized waveforms match closely, with discrepancies related to errors in the apriori sound speed model used for ray tracing. Current work includes the estimation of source location and energy.
[Climatic analysis of heavy metal concentration associated with urban road-deposited sediment].
Zafra-Mejía, Carlos; Santamaría-Galindo, Diana M; Torres-Galindo, Cristian D
2015-05-01
Objective To climatically assess (daily) the concentration of heavy metals (Pb and Cu) in sediment deposited on road surfaces of the localities of Kennedy and Puente Aranda (Bogota, D.C., Colombia). Additionally, the detected concentrations are to be evaluated with respect to the legislation chosen as reference point for the protection of human health in urban areas. Methods The concentration was determined by flame atomic absorption spectrometry. The samples were previously digested in a mixture of hydrochloric and nitric acid (3:1; aqua regia). Results The results show, with respect to road sediment closest to the size that could be potentially inhaled from the point of view of public health (≤ 10 µm), that the metal concentrations on average tend to increase in dry weather (29 %). In this regard, the concentrations during these time periods are on average 1.69 times higher than the lowest limit value set by the reference legislation. However, it is suggested that the metal concentrations are mostly due to the use of the land rather than weather conditions. Conclusions The findings are a reference point in Colombia for the discussion and publication of environmental regulations associated with the protection of human health from heavy metals and for visualizing future lines of research about the effect of climate change on metal concentrations in urban environments.
Facial expression identification using 3D geometric features from Microsoft Kinect device
NASA Astrophysics Data System (ADS)
Han, Dongxu; Al Jawad, Naseer; Du, Hongbo
2016-05-01
Facial expression identification is an important part of face recognition and closely related to emotion detection from face images. Various solutions have been proposed in the past using different types of cameras and features. Microsoft Kinect device has been widely used for multimedia interactions. More recently, the device has been increasingly deployed for supporting scientific investigations. This paper explores the effectiveness of using the device in identifying emotional facial expressions such as surprise, smile, sad, etc. and evaluates the usefulness of 3D data points on a face mesh structure obtained from the Kinect device. We present a distance-based geometric feature component that is derived from the distances between points on the face mesh and selected reference points in a single frame. The feature components extracted across a sequence of frames starting and ending by neutral emotion represent a whole expression. The feature vector eliminates the need for complex face orientation correction, simplifying the feature extraction process and making it more efficient. We applied the kNN classifier that exploits a feature component based similarity measure following the principle of dynamic time warping to determine the closest neighbors. Preliminary tests on a small scale database of different facial expressions show promises of the newly developed features and the usefulness of the Kinect device in facial expression identification.
Multigrid methods for bifurcation problems: The self adjoint case
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1987-01-01
This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.
The locations of recent supernovae near the Sun from modelling (60)Fe transport.
Breitschwerdt, D; Feige, J; Schulreich, M M; de Avillez, M A; Dettbarn, C; Fuchs, B
2016-04-07
The signature of (60)Fe in deep-sea crusts indicates that one or more supernovae exploded in the solar neighbourhood about 2.2 million years ago. Recent isotopic analysis is consistent with a core-collapse or electron-capture supernova that occurred 60 to 130 parsecs from the Sun. Moreover, peculiarities in the cosmic ray spectrum point to a nearby supernova about two million years ago. The Local Bubble of hot, diffuse plasma, in which the Solar System is embedded, originated from 14 to 20 supernovae within a moving group, whose surviving members are now in the Scorpius-Centaurus stellar association. Here we report calculations of the most probable trajectories and masses of the supernova progenitors, and hence their explosion times and sites. The (60)Fe signal arises from two supernovae at distances between 90 and 100 parsecs. The closest occurred 2.3 million years ago at present-day galactic coordinates l = 327°, b = 11°, and the second-closest exploded about 1.5 million years ago at l = 343°, b = 25°, with masses of 9.2 and 8.8 times the solar mass, respectively. The remaining supernovae, which formed the Local Bubble, contribute to a smaller extent because they happened at larger distances and longer ago ((60)Fe has a half-life of 2.6 million years). There are uncertainties relating to the nucleosynthesis yields and the loss of (60)Fe during transport, but they do not influence the relative distribution of (60)Fe in the crust layers, and therefore our model reproduces the measured relative abundances very well.
2017-05-25
This sequence of enhanced-color images shows how quickly the viewing geometry changes for NASA's Juno spacecraft as it swoops by Jupiter. The images were obtained by JunoCam. Once every 53 days the Juno spacecraft swings close to Jupiter, speeding over its clouds. In just two hours, the spacecraft travels from a perch over Jupiter's north pole through its closest approach (perijove), then passes over the south pole on its way back out. This sequence shows 14 enhanced-color images. The first image on the left shows the entire half-lit globe of Jupiter, with the north pole approximately in the center. As the spacecraft gets closer to Jupiter, the horizon moves in and the range of visible latitudes shrinks. The third and fourth images in this sequence show the north polar region rotating away from our view while a band of wavy clouds at northern mid-latitudes comes into view. By the fifth image of the sequence the band of turbulent clouds is nicely centered in the image. The seventh and eighth images were taken just before the spacecraft was at its closest point to Jupiter, near Jupiter's equator. Even though these two pictures were taken just four minutes apart, the view is changing quickly. As the spacecraft crossed into the southern hemisphere, the bright "south tropical zone" dominates the ninth, 10th and 11th images. The white ovals in a feature nicknamed Jupiter's "String of Pearls" are visible in the 12th and 13th images. In the 14th image Juno views Jupiter's south poles. https://photojournal.jpl.nasa.gov/catalog/PIA21645
Cantuaria, Manuella Lech; Suh, Helen; Løfstrøm, Per; Blanes-Vidal, Victoria
2016-11-01
The assignment of exposure is one of the main challenges faced by environmental epidemiologists. However, misclassification of exposures has not been explored in population epidemiological studies on air pollution from biodegradable wastes. The objective of this study was to investigate the use of different approaches for assessing exposure to air pollution from biodegradable wastes by analyzing (1) the misclassification of exposure that is committed by using these surrogates, (2) the existence of differential misclassification (3) the effects that misclassification may have on health effect estimates and the interpretation of epidemiological results, and (4) the ability of the exposure measures to predict health outcomes using 10-fold cross validation. Four different exposure assessment approaches were studied: ammonia concentrations at the residence (Metric I), distance to the closest source (Metric II), number of sources within certain distances from the residence (Metric IIIa,b) and location in a specific region (Metric IV). Exposure-response models based on Metric I provided the highest predictive ability (72.3%) and goodness-of-fit, followed by IV, III and II. When compared to Metric I, Metric IV yielded the best results for exposure misclassification analysis and interpretation of health effect estimates, followed by Metric IIIb, IIIa and II. The study showed that modelled NH 3 concentrations provide more accurate estimations of true exposure than distances-based surrogates, and that distance-based surrogates (especially those based on distance to the closest point source) are imprecise methods to identify exposed populations, although they may be useful for initial studies. Copyright © 2016 Elsevier GmbH. All rights reserved.
The Closest Alligator to the Boat: Mexico’s Drug-Fueled Violence
2011-01-28
outside stimulus. This plays into why cartels are able to so freely recruit new members into their ranks. Machismo , a learned response and a real...part of Hispanic culture, is one of the overriding forces driving the Latin American male psyche. Machismo , directly translated from Spanish...closest English word to machismo is macho which seems to be an out of vogue word in 2010 America. In America, it is acceptable to be in touch with
Pricing of Staple Foods at Supermarkets versus Small Food Stores
Caspi, Caitlin E.; Pelletier, Jennifer E.; Harnack, Lisa J.; Erickson, Darin J.; Laska, Melissa N.
2017-01-01
Prices affect food purchase decisions, particularly in lower-income communities, where access to a range of food retailers (including supermarkets) is limited. The aim of this study was to examine differences in staple food pricing between small urban food stores and the closest supermarkets, as well as whether pricing differentials varied based on proximity between small stores and larger retailers. In 2014, prices were measured for 15 staple foods during store visits in 140 smaller stores (corner stores, gas-marts, dollar stores, and pharmacies) in Minneapolis/St. Paul, MN and their closest supermarket. Mixed models controlling for store type were used to estimate the average price differential between: (a) smaller stores and supermarkets; (b) isolated smaller stores (>1 mile to closest supermarket) and non-isolated smaller stores; and (c) isolated smaller stores inside versus outside USDA-identified food deserts. On average, all items except white bread were 10–54% more expensive in smaller stores than in supermarkets (p < 0.001). Prices were generally not significantly different in isolated stores compared with non-isolated stores for most items. Among isolated stores, there were no price differences inside versus outside food deserts. We conclude that smaller food stores have higher prices for most staple foods compared to their closest supermarket, regardless of proximity. More research is needed to examine staple food prices in different retail spaces. PMID:28809795
Pricing of Staple Foods at Supermarkets versus Small Food Stores.
Caspi, Caitlin E; Pelletier, Jennifer E; Harnack, Lisa J; Erickson, Darin J; Lenk, Kathleen; Laska, Melissa N
2017-08-15
Prices affect food purchase decisions, particularly in lower-income communities, where access to a range of food retailers (including supermarkets) is limited. The aim of this study was to examine differences in staple food pricing between small urban food stores and the closest supermarkets, as well as whether pricing differentials varied based on proximity between small stores and larger retailers. In 2014, prices were measured for 15 staple foods during store visits in 140 smaller stores (corner stores, gas-marts, dollar stores, and pharmacies) in Minneapolis/St. Paul, MN and their closest supermarket. Mixed models controlling for store type were used to estimate the average price differential between: (a) smaller stores and supermarkets; (b) isolated smaller stores (>1 mile to closest supermarket) and non-isolated smaller stores; and (c) isolated smaller stores inside versus outside USDA-identified food deserts. On average, all items except white bread were 10-54% more expensive in smaller stores than in supermarkets ( p < 0.001). Prices were generally not significantly different in isolated stores compared with non-isolated stores for most items. Among isolated stores, there were no price differences inside versus outside food deserts. We conclude that smaller food stores have higher prices for most staple foods compared to their closest supermarket, regardless of proximity. More research is needed to examine staple food prices in different retail spaces.
Fuhrer, R; Stansfeld, S A
2002-03-01
Numerous studies have reported gender differences in the effects of social relations on morbidity and mortality. When studying health and associated factors, one cannot ignore that sex differences exist and methods that are not "gender-fair" may lead to erroneous conclusions. This paper presents a critical analysis of the health/social relations association from a measurement perspective, including the definitions of people's networks and how they differ by gender. Findings from the Whitehall II Study of Civil Servants illustrate that women report more close persons in their primary networks, and are less likely to nominate their spouse as the closest person, but both men and women report the same proportion of women among their four closest persons. Women have a wider range of sources of emotional support. To date, most epidemiological studies have habitually analysed support provided by the closest person or confidant(e). We compared the health effects of social support when measured for the closest person only and when information from up to four close persons was incorporated into a weighted index. Information from up to four close persons offered a more accurate portrayal of support exchanged, and gender differences were attenuated, if not eliminated, when this support index was used to predict physical and psychological health.
Tehrani, Joubin Nasehi; O'Brien, Ricky T; Poulsen, Per Rugaard; Keall, Paul
2013-12-07
Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of -0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring real-time measurement and adaptation to tumor rotation.
NASA Astrophysics Data System (ADS)
Nasehi Tehrani, Joubin; O'Brien, Ricky T.; Rugaard Poulsen, Per; Keall, Paul
2013-12-01
Previous studies have shown that during cancer radiotherapy a small translation or rotation of the tumor can lead to errors in dose delivery. Current best practice in radiotherapy accounts for tumor translations, but is unable to address rotation due to a lack of a reliable real-time estimate. We have developed a method based on the iterative closest point (ICP) algorithm that can compute rotation from kilovoltage x-ray images acquired during radiation treatment delivery. A total of 11 748 kilovoltage (kV) images acquired from ten patients (one fraction for each patient) were used to evaluate our tumor rotation algorithm. For each kV image, the three dimensional coordinates of three fiducial markers inside the prostate were calculated. The three dimensional coordinates were used as input to the ICP algorithm to calculate the real-time tumor rotation and translation around three axes. The results show that the root mean square error was improved for real-time calculation of tumor displacement from a mean of 0.97 mm with the stand alone translation to a mean of 0.16 mm by adding real-time rotation and translation displacement with the ICP algorithm. The standard deviation (SD) of rotation for the ten patients was 2.3°, 0.89° and 0.72° for rotation around the right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively. The correlation between all six degrees of freedom showed that the highest correlation belonged to the AP and SI translation with a correlation of 0.67. The second highest correlation in our study was between the rotation around RL and rotation around AP, with a correlation of -0.33. Our real-time algorithm for calculation of rotation also confirms previous studies that have shown the maximum SD belongs to AP translation and rotation around RL. ICP is a reliable and fast algorithm for estimating real-time tumor rotation which could create a pathway to investigational clinical treatment studies requiring real-time measurement and adaptation to tumor rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cazeca, Mario J.; Medich, David C.; Munro, John J. III
2010-08-15
Purpose: To study the effects of the breast-air and breast-lung interfaces on the absorbed dose within the planning target volume (PTV) of a MammoSite balloon dose delivery system as well as the effect of contrast material on the dose rate in the PTV. Methods: The Monte Carlo MCNP5 code was used to simulate dose rate in the PTV of a 2 cm radius MammoSite balloon dose delivery system. The simulations were carried out using an average female chest phantom (AFCP) and a semi-infinite water phantom for both Yb-169 and Ir-192 high dose rate sources for brachytherapy application. Gastrografin was introducedmore » at varying concentrations to study the effect of contrast material on the dose rate in the PTV. Results: The effect of the density of the materials surrounding the MammoSite balloon containing 0% contrast material on the calculated dose rate at different radial distances in the PTV was demonstrated. Within the PTV, the ratio of the calculated dose rate for the AFCP and the semi-infinite water phantom for the point closest to the breast-air interface (90 deg.) is less than that for the point closest to the breast-lung interface (270 deg.) by 11.4% and 4% for the HDR sources of Yb-169 and Ir-192, respectively. When contrast material was introduced into the 2 cm radius MammoSite balloon at varying concentrations, (5%, 10%, 15%, and 20%), the dose rate in the AFCP at 3.0 cm radial distance at 90 deg. was decreased by as much as 14.8% and 6.2% for Yb-169 and Ir-192, respectively, when compared to that of the semi-infinite water phantom with contrast concentrations of 5%, 10%, 15%, and 20%, respectively. Conclusions: Commercially available software used to calculate dose rate in the PTV of a MammoSite balloon needs to account for patient anatomy and density of surrounding materials in the dosimetry analyses in order to avoid patient underdose.« less
Automated Stitching of Microtubule Centerlines across Serial Electron Tomograms
Weber, Britta; Tranfield, Erin M.; Höög, Johanna L.; Baum, Daniel; Antony, Claude; Hyman, Tony; Verbavatz, Jean-Marc; Prohaska, Steffen
2014-01-01
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort. PMID:25438148
Thomas, Funmilola Clara; Mudaliar, Manikhandan; Tassi, Riccardo; McNeilly, Tom N; Burchmore, Richard; Burgess, Karl; Herzyk, Pawel; Zadoks, Ruth N; Eckersall, P David
2016-08-16
Intramammary infection leading to bovine mastitis is the leading disease problem affecting dairy cows and has marked effects on the milk produced by infected udder quarters. An experimental model of Streptococcus uberis mastitis has previously been investigated for clinical, immunological and pathophysiological alteration in milk, and has been the subject of peptidomic and quantitative proteomic investigation. The same sample set has now been investigated with a metabolomics approach using liquid chromatography and mass spectrometry. The analysis revealed over 3000 chromatographic peaks, of which 690 were putatively annotated with a metabolite. Hierarchical clustering analysis and principal component analysis demonstrated that metabolite changes due to S. uberis infection were maximal at 81 hours post challenge with metabolites in the milk from the resolution phase at 312 hours post challenge being closest to the pre-challenge samples. Metabolic pathway analysis revealed that the majority of the metabolites mapped to carbohydrate and nucleotide metabolism show a decreasing trend in concentration up to 81 hours post-challenge whereas an increasing trend was found in lipid metabolites and di-, tri- and tetra-peptides up to the same time point. The increase in these peptides coincides with an increase in larger peptides found in the previous peptidomic analysis and is likely to be due to protease degradation of milk proteins. Components of bile acid metabolism, linked to the FXR pathway regulating inflammation, were also increased. Metabolomic analysis of the response in milk during mastitis provides an essential component to the full understanding of the mammary gland's response to infection.
Automated stitching of microtubule centerlines across serial electron tomograms.
Weber, Britta; Tranfield, Erin M; Höög, Johanna L; Baum, Daniel; Antony, Claude; Hyman, Tony; Verbavatz, Jean-Marc; Prohaska, Steffen
2014-01-01
Tracing microtubule centerlines in serial section electron tomography requires microtubules to be stitched across sections, that is lines from different sections need to be aligned, endpoints need to be matched at section boundaries to establish a correspondence between neighboring sections, and corresponding lines need to be connected across multiple sections. We present computational methods for these tasks: 1) An initial alignment is computed using a distance compatibility graph. 2) A fine alignment is then computed with a probabilistic variant of the iterative closest points algorithm, which we extended to handle the orientation of lines by introducing a periodic random variable to the probabilistic formulation. 3) Endpoint correspondence is established by formulating a matching problem in terms of a Markov random field and computing the best matching with belief propagation. Belief propagation is not generally guaranteed to converge to a minimum. We show how convergence can be achieved, nonetheless, with minimal manual input. In addition to stitching microtubule centerlines, the correspondence is also applied to transform and merge the electron tomograms. We applied the proposed methods to samples from the mitotic spindle in C. elegans, the meiotic spindle in X. laevis, and sub-pellicular microtubule arrays in T. brucei. The methods were able to stitch microtubules across section boundaries in good agreement with experts' opinions for the spindle samples. Results, however, were not satisfactory for the microtubule arrays. For certain experiments, such as an analysis of the spindle, the proposed methods can replace manual expert tracing and thus enable the analysis of microtubules over long distances with reasonable manual effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenyang; Cheung, Yam; Sawant, Amit
2016-05-15
Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparsemore » regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.« less
Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan
2016-05-01
To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.
Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan
2016-01-01
Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications. PMID:27147347
Thombare, Ram
2013-01-01
PURPOSE The purpose of this study was to decide the most appropriate point on tragus to be used as a reference point at time of marking ala tragus line while establishing occlusal plane. MATERIALS AND METHODS The data was collected in two groups of subjects: 1) Dentulous 2) Edentulous group having sample size of 30 for each group with equal gender distribution (15 males, 15 females each). Downs analysis was used for base value. Lateral cephalographs were taken for all selected subjects. Three points were marked on tragus as Superior (S), Middle (M), and Inferior (I) and were joined with ala (A) of the nose to form ala-tragus lines. The angle formed by each line (SA plane, MA plane, IA plane) with Frankfort Horizontal (FH) plane was measured by using custom made device and modified protractor in all dentulous and edentulous subjects. Also, in dentulous subjects angle between Frankfort Horizontal plane and natural occlusal plane was measured. The measurements obtained were subjected to the following statistical tests; descriptive analysis, Student's unpaired t-test and Pearson's correlation coefficient. RESULTS The results demonstrated, the mean angle COO (cant of occlusal plane) as 9.76°, inferior point on tragus had given the mean angular value of IFH [Angle between IA plane (plane formed by joining inferior point-I on tragus and ala of nose- A) and FH plane) as 10.40° and 10.56° in dentulous and edentulous subjects respectively which was the closest value to the angle COO and was comparable with the values of angle COO value in Downs analysis. Angulations of ala-tragus line marked from inferior point with occlusal plane in dentulous subject had given the smallest value 2.46° which showed that this ala-tragus line was nearly parallel to occlusal plane. CONCLUSION The inferior point marked on tragus is the most appropriate point for marking ala-tragus line. PMID:23508068
The limits of boundaries: unpacking localization and cognitive mapping relative to a boundary.
Zhou, Ruojing; Mou, Weimin
2018-05-01
Previous research (Zhou, Mou, Journal of Experimental Psychology: Learning, Memory and Cognition 42(8):1316-1323, 2016) showed that learning individual locations relative to a single landmark, compared to learning relative to a boundary, led to more accurate inferences of inter-object spatial relations (cognitive mapping of multiple locations). Following our past findings, the current study investigated whether the larger number of reference points provided by a homogeneous circular boundary, as well as less accessible knowledge of direct spatial relations among the multiple reference points, would lead to less effective cognitive mapping relative to the boundary. Accordingly, we manipulated (a) the number of primary reference points (one segment drawn from a circular boundary, four such segments, vs. the complete boundary) available when participants were localizing four objects sequentially (Experiment 1) and (b) the extendedness of each of the four segments (Experiment 2). The results showed that cognitive mapping was the least accurate in the whole boundary condition. However, expanding each of the four segments did not affect the accuracy of cognitive mapping until the four were connected to form a continuous boundary. These findings indicate that when encoding locations relative to a homogeneous boundary, participants segmented the boundary into differentiated pieces and subsequently chose the most informative local part (i.e., the segment closest in distance to one location) as the primary reference point for a particular location. During this process, direct spatial relations among the reference points were likely not attended to. These findings suggest that people might encode and represent bounded space in a fragmented fashion when localizing within a homogeneous boundary.
The use of virtual fiducials in image-guided kidney surgery
NASA Astrophysics Data System (ADS)
Glisson, Courtenay; Ong, Rowena; Simpson, Amber; Clark, Peter; Herrell, S. D.; Galloway, Robert
2011-03-01
The alignment of image-space to physical-space lies at the heart of all image-guided procedures. In intracranial surgery, point-based registrations can be used with either skin-affixed or bone-implanted extrinsic objects called fiducial markers. The advantages of point-based registration techniques are that they are robust, fast, and have a well developed mathematical foundation for the assessment of registration quality. In abdominal image-guided procedures such techniques have not been successful. It is difficult to accurately locate sufficient homologous intrinsic points in imagespace and physical-space, and the implantation of extrinsic fiducial markers would constitute "surgery before the surgery." Image-space to physical-space registration for abdominal organs has therefore been dominated by surfacebased registration techniques which are iterative, prone to local minima, sensitive to initial pose, and sensitive to percentage coverage of the physical surface. In our work in image-guided kidney surgery we have developed a composite approach using "virtual fiducials." In an open kidney surgery, the perirenal fat is removed and the surface of the kidney is dotted using a surgical marker. A laser range scanner (LRS) is used to obtain a surface representation and matching high definition photograph. A surface to surface registration is performed using a modified iterative closest point (ICP) algorithm. The dots are extracted from the high definition image and assigned the three dimensional values from the LRS pixels over which they lie. As the surgery proceeds, we can then use point-based registrations to re-register the spaces and track deformations due to vascular clamping and surgical tractions.
NASA Astrophysics Data System (ADS)
Brown, Gerrard M.; Labrosse, Nicolas
2018-02-01
Coronal structures receive radiation not only from the solar disc, but also from the corona. This height-dependent incident radiation plays a crucial role in the excitation and the ionisation of the illuminated plasma. The aim of this article is to present a method for computing the detailed incident radiation coming from the solar corona, which is perceived at a point located at an arbitrary height. The coronal radiation is calculated by integrating the radiation received at a point in the corona over all of the corona visible from this point. The emission from the corona at all wavelengths of interest is computed using atomic data provided by CHIANTI. We obtain the spectrum illuminating points located at varying heights in the corona at wavelengths between 100 and 912 Å when photons can ionise H or He atoms and ions in their ground states. As expected, individual spectral lines will contribute most at the height within the corona where the local temperature is closest to their formation temperature. As there are many spectral lines produced by many ions, the coronal intensity cannot be assumed to vary in the same way at all wavelengths and so must be calculated for each separate height that is to be considered. This code can be used to compute the spectrum from the corona illuminating a point at any given height above the solar surface. This brings a necessary improvement to models where an accurate determination of the excitation and ionisation states of coronal plasma structures is crucial.
A 3D Laser Profiling System for Rail Surface Defect Detection
Li, Qingquan; Mao, Qingzhou; Zou, Qin
2017-01-01
Rail surface defects such as the abrasion, scratch and peeling often cause damages to the train wheels and rail bearings. An efficient and accurate detection of rail defects is of vital importance for the safety of railway transportation. In the past few decades, automatic rail defect detection has been studied; however, most developed methods use optic-imaging techniques to collect the rail surface data and are still suffering from a high false recognition rate. In this paper, a novel 3D laser profiling system (3D-LPS) is proposed, which integrates a laser scanner, odometer, inertial measurement unit (IMU) and global position system (GPS) to capture the rail surface profile data. For automatic defect detection, first, the deviation between the measured profile and a standard rail model profile is computed for each laser-imaging profile, and the points with large deviations are marked as candidate defect points. Specifically, an adaptive iterative closest point (AICP) algorithm is proposed to register the point sets of the measured profile with the standard rail model profile, and the registration precision is improved to the sub-millimeter level. Second, all of the measured profiles are combined together to form the rail surface through a high-precision positioning process with the IMU, odometer and GPS data. Third, the candidate defect points are merged into candidate defect regions using the K-means clustering. At last, the candidate defect regions are classified by a decision tree classifier. Experimental results demonstrate the effectiveness of the proposed laser-profiling system in rail surface defect detection and classification. PMID:28777323
Efficient Control Law Simulation for Multiple Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driessen, B.J.; Feddema, J.T.; Kotulski, J.D.
1998-10-06
In this paper we consider the problem of simulating simple control laws involving large numbers of mobile robots. Such simulation can be computationally prohibitive if the number of robots is large enough, say 1 million, due to the 0(N2 ) cost of each time step. This work therefore uses hierarchical tree-based methods for calculating the control law. These tree-based approaches have O(NlogN) cost per time step, thus allowing for efficient simulation involving a large number of robots. For concreteness, a decentralized control law which involves only the distance and bearing to the closest neighbor robot will be considered. The timemore » to calculate the control law for each robot at each time step is demonstrated to be O(logN).« less
Rotational rural surgery for the poor in developing countries.
Aderounmu, A O A; Afolayan, S A; Nasiru, T A; Olaore, J A; Adeoti, M L; Adelasoye, M
2008-07-01
Radio and television announcements advised patients with surgical problems in the rural areas of Osun State, Nigeria, to report at any of the nine zonal headquarters of the state which were closest to their homes in order to receive free treatment. Over 1000 patients reported and 801 received operations on a rotational basis within nine weeks. We studied 719 of these patients, ages between 4 months and 87 years, who had detailed follow-up records. There were 14 different procedures ranging from a hernia repair to the separation of syndactyly. Complications included postoperative pain, haematoma and late superficial wound infection. We concluded that rotational free surgery can help the poor in the third-world countries to receive treatment that they would otherwise not be able to afford.
NASA Astrophysics Data System (ADS)
Reitman, N. G.; Briggs, R.; Gold, R. D.; DuRoss, C. B.
2015-12-01
Post-earthquake, field-based assessments of surface displacement commonly underestimate offsets observed with remote sensing techniques (e.g., InSAR, image cross-correlation) because they fail to capture the total deformation field. Modern earthquakes are readily characterized by comparing pre- and post-event remote sensing data, but historical earthquakes often lack pre-event data. To overcome this challenge, we use historical aerial photographs to derive pre-event digital surface models (DSMs), which we compare to modern, post-event DSMs. Our case study focuses on resolving on- and off-fault deformation along the Lost River fault that accompanied the 1983 M6.9 Borah Peak, Idaho, normal-faulting earthquake. We use 343 aerial images from 1952-1966 and vertical control points selected from National Geodetic Survey benchmarks measured prior to 1983 to construct a pre-event point cloud (average ~ 0.25 pts/m2) and corresponding DSM. The post-event point cloud (average ~ 1 pt/m2) and corresponding DSM are derived from WorldView 1 and 2 scenes processed with NASA's Ames Stereo Pipeline. The point clouds and DSMs are coregistered using vertical control points, an iterative closest point algorithm, and a DSM coregistration algorithm. Preliminary results of differencing the coregistered DSMs reveal a signal spanning the surface rupture that is consistent with tectonic displacement. Ongoing work is focused on quantifying the significance of this signal and error analysis. We expect this technique to yield a more complete understanding of on- and off-fault deformation patterns associated with the Borah Peak earthquake along the Lost River fault and to help improve assessments of surface deformation for other historical ruptures.
Knee point search using cascading top-k sorting with minimized time complexity.
Wang, Zheng; Tseng, Shian-Shyong
2013-01-01
Anomaly detection systems and many other applications are frequently confronted with the problem of finding the largest knee point in the sorted curve for a set of unsorted points. This paper proposes an efficient knee point search algorithm with minimized time complexity using the cascading top-k sorting when a priori probability distribution of the knee point is known. First, a top-k sort algorithm is proposed based on a quicksort variation. We divide the knee point search problem into multiple steps. And in each step an optimization problem of the selection number k is solved, where the objective function is defined as the expected time cost. Because the expected time cost in one step is dependent on that of the afterwards steps, we simplify the optimization problem by minimizing the maximum expected time cost. The posterior probability of the largest knee point distribution and the other parameters are updated before solving the optimization problem in each step. An example of source detection of DNS DoS flooding attacks is provided to illustrate the applications of the proposed algorithm.
Multiple Solutions of a Problem: Find the Best Point of the Shot
ERIC Educational Resources Information Center
Zelenskiy, Alexander S.
2013-01-01
In a recent issue of "Australian Senior Mathematics Journal" there has been published an interesting article by Galbraith and Lockwood (2010). In that article the problem of finding the most favorable points for a shot at goal in Australian football is considered from different points of view. A similar problem was considered by…
An Improved Aerial Target Localization Method with a Single Vector Sensor
Zhao, Anbang; Bi, Xuejie; Hui, Juan; Zeng, Caigao; Ma, Lin
2017-01-01
This paper focuses on the problems encountered in the actual data processing with the use of the existing aerial target localization methods, analyzes the causes of the problems, and proposes an improved algorithm. Through the processing of the sea experiment data, it is found that the existing algorithms have higher requirements for the accuracy of the angle estimation. The improved algorithm reduces the requirements of the angle estimation accuracy and obtains the robust estimation results. The closest distance matching estimation algorithm and the horizontal distance estimation compensation algorithm are proposed. The smoothing effect of the data after being post-processed by using the forward and backward two-direction double-filtering method has been improved, thus the initial stage data can be filtered, so that the filtering results retain more useful information. In this paper, the aerial target height measurement methods are studied, the estimation results of the aerial target are given, so as to realize the three-dimensional localization of the aerial target and increase the understanding of the underwater platform to the aerial target, so that the underwater platform has better mobility and concealment. PMID:29135956
2016-09-02
This image from NASA's Juno spacecraft provides a never-before-seen perspective on Jupiter's south pole. The JunoCam instrument acquired the view on August 27, 2016, when the spacecraft was about 58,700 miles (94,500 kilometers) above the polar region. At this point, the spacecraft was about an hour past its closest approach, and fine detail in the south polar region is clearly resolved. Unlike the equatorial region's familiar structure of belts and zones, the poles are mottled by clockwise and counterclockwise rotating storms of various sizes, similar to giant versions of terrestrial hurricanes. The south pole has never been seen from this viewpoint, although the Cassini spacecraft was able to observe most of the polar region at highly oblique angles as it flew past Jupiter on its way to Saturn in 2000. http://photojournal.jpl.nasa.gov/catalog/PIA21032
Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits.
Connerney, J E P; Adriani, A; Allegrini, F; Bagenal, F; Bolton, S J; Bonfond, B; Cowley, S W H; Gerard, J-C; Gladstone, G R; Grodent, D; Hospodarsky, G; Jorgensen, J L; Kurth, W S; Levin, S M; Mauk, B; McComas, D J; Mura, A; Paranicas, C; Smith, E J; Thorne, R M; Valek, P; Waite, J
2017-05-26
The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno's passage over the poles and traverse of Jupiter's hazardous inner radiation belts. Juno's energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator. Copyright © 2017, American Association for the Advancement of Science.
Jupiter’s magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Adriani, A.; Allegrini, F.; Bagenal, F.; Bolton, S. J.; Bonfond, B.; Cowley, S. W. H.; Gerard, J.-C.; Gladstone, G. R.; Grodent, D.; Hospodarsky, G.; Jorgensen, J. L.; Kurth, W. S.; Levin, S. M.; Mauk, B.; McComas, D. J.; Mura, A.; Paranicas, C.; Smith, E. J.; Thorne, R. M.; Valek, P.; Waite, J.
2017-05-01
The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno’s capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context for Juno’s passage over the poles and traverse of Jupiter’s hazardous inner radiation belts. Juno’s energetic particle and plasma detectors measured electrons precipitating in the polar regions, exciting intense aurorae, observed simultaneously by the ultraviolet and infrared imaging spectrographs. Juno transited beneath the most intense parts of the radiation belts, passed about 4000 kilometers above the cloud tops at closest approach, well inside the jovian rings, and recorded the electrical signatures of high-velocity impacts with small particles as it traversed the equator.
Mendoza-Palmero, Carlos A; Sereno-Uribe, Ana L; Salgado-Maldonado, Guillermo
2009-04-01
Gyrodactylus mexicanus n. sp. and Gyrodactylus lamothei n. sp. are described from the fins and skin of Girardinichthys multiradiatus, an endemic freshwater fish from central Mexico. Gyrodactylus mexicanus is compared to other Gyrodactylus species that parasitize Fundulus spp., the phylogenetically closest group to the Goodeidae from North America. Gyrodactylus mexicanus is distinguished by having large anchors with well-developed superficial roots, enlarged hooks with a proximally disrupted shank (ligament), and a ventral bar with 2 poorly developed anterolateral projections and a small medial process. Gyrodactylus lamothei is distinguished from G. mexicanus and from other species of Gyrodactylus on the North American continent by having anchors with a sclerite on the superficial root and robust hooks with a straight shaft and a recurved point.
Trending in Pc Measurements via a Bayesian Zero-Inflated Mixed Model
NASA Technical Reports Server (NTRS)
Vallejo, Jonathon; Hejduk, Matthew; Stamey, James
2015-01-01
Two satellites predicted to come within close proximity of one another, usually a high-value satellite and a piece of space debris moving the active satellite is a means of reducing collision risk but reduces satellite lifetime, perturbs satellite mission, and introduces its own risks. So important to get a good statement of the risk of collision in order to determine whether a maneuver is truly necessary. Two aspects of this Calculation of the Probability of Collision (Pc) based on the most recent set of position velocity and uncertainty data for both satellites. Examination of the changes in the Pc value as the event develops. Events should follow a canonical development (Pc vs time to closest approach (TCA)). Helpful to be able to guess where the present data point fits in the canonical development in order to guide operational response.
Vehicle Counting and Moving Direction Identification Based on Small-Aperture Microphone Array.
Zu, Xingshui; Zhang, Shaojie; Guo, Feng; Zhao, Qin; Zhang, Xin; You, Xing; Liu, Huawei; Li, Baoqing; Yuan, Xiaobing
2017-05-10
The varying trend of a moving vehicle's angles provides much important intelligence for an unattended ground sensor (UGS) monitoring system. The present study investigates the capabilities of a small-aperture microphone array (SAMA) based system to identify the number and moving direction of vehicles travelling on a previously established route. In this paper, a SAMA-based acoustic monitoring system, including the system hardware architecture and algorithm mechanism, is designed as a single node sensor for the application of UGS. The algorithm is built on the varying trend of a vehicle's bearing angles around the closest point of approach (CPA). We demonstrate the effectiveness of our proposed method with our designed SAMA-based monitoring system in various experimental sites. The experimental results in harsh conditions validate the usefulness of our proposed UGS monitoring system.
Single Station System and Method of Locating Lightning Strikes
NASA Technical Reports Server (NTRS)
Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)
2003-01-01
An embodiment of the present invention uses a single detection system to approximate a location of lightning strikes. This system is triggered by a broadband RF detector and measures a time until the arrival of a leading edge of the thunder acoustic pulse. This time difference is used to determine a slant range R from the detector to the closest approach of the lightning. The azimuth and elevation are determined by an array of acoustic sensors. The leading edge of the thunder waveform is cross-correlated between the various acoustic sensors in the array to determine the difference in time of arrival, AT. A set of AT S is used to determine the direction of arrival, AZ and EL. The three estimated variables (R, AZ, EL) are used to locate a probable point of the lightning strike.
Palliative sedation: from the family perspective.
Vayne-Bossert, Petra; Zulian, Gilbert B
2013-12-01
Palliative sedation (PS) is a treatment option in case of refractory symptoms at the end of life. The emotional impact on nurses and doctors has been widely studied. We explore the experience of family members during a PS procedure. An anonymous questionnaire was sent to the closest family members (n = 17) of patients who died while receiving palliative sedation. The response rate was 59% (10 of 17). Nine relatives were sufficiently informed about PS. In all, 70% evaluated the chosen moment for initiation of PS as adequate. All the relatives noticed a significant improvement in the refractory symptom with a mean reduction in the estimated suffering of 6.25 points on a visual analog scale. Palliative sedation should be performed in the best possible way for the patient and his family in order to efficiently reduce a refractory symptom.
Um, Sungyong; Lee, Sung Gi; Woo, Hee-Gweon; Cho, Sungdong; Sohn, Honglae
2013-01-01
Adsorption and desorption characteristics of gradient distributed Bragg reflector (DBR) porous silicon (PSi) were investigated under the exposure of organic vapors. Gradient DBR PSi whose average pore size decreased as the lateral distance from the Pt electrode increased was generated by using an asymmetric etching configuration. The reflection resonances were measured as a function of lateral distance from a point closest to the plate Pt electrode to a position on the silicon surface. Two types of gradient DBR PSi (H- and HO-terminated gradient DBR PSi) were used in this study. The detection of volatile organic compounds (VOCs) using the gradient DBR PSi had been achieved. When the vapor of VOCs condensed in the nanopores, the gradient DBR PSi modified with hydrophobic and hydrophilic functionality exhibited different pore adsorption and desorption characteristics.
NASA Technical Reports Server (NTRS)
1986-01-01
Uranus' outermost and largest moon, Oberon, is seen in this Voyager 2 image, obtained Jan. 22, 1986, from a distance of 2.77 million kilometers (1.72 million miles). The clear-filter image, shuttered by Voyager's narrow-angle camera, shows that Oberon displays several distinct highly reflective (high-albedo) patches with low-albedo centers. Some of the bright patches are suggestive of radial patterns that could represent impact craters excavated from an icy surface. On average, Oberon reflects about 20 percent of the incident sunlight. The moon is about 1,600 km (1,000 mi) in diameter; resolution of this image is 51 km (32 mi). It was taken two days before Voyager's closest approach to Oberon, at which point the spacecraft will be about 471,000 km (293,000 mi) away. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Deep space telecommunications and the solar cycle: A reappraisal
NASA Technical Reports Server (NTRS)
Berman, A. L.
1978-01-01
Observations of density enhancement in the near corona at solar cycle (sunspot) maximum have rather uncritically been interpreted to apply equally well to the extended corona, thus generating concern about the quality of outer planet navigational data at solar cycle maximum. Spacecraft have been deployed almost continuously during the recently completed solar cycle 20, providing two powerful new coronal investigatory data sources: (1) in-situ spacecraft plasma measurements at approximately 1 AU, and (2) plasma effects on monochromatic spacecraft signals at all signal closest approach points. A comprehensive review of these (solar cycle 20) data lead to the somewhat surprising conclusions that for the region of interest of navigational data, the highest levels of charged particle corruption of navigational data can be expected to occur at solar cycle minimum, rather than solar cycle maximum, as previously believed.
Electrostatic point charge fitting as an inverse problem: Revealing the underlying ill-conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Maxim V.; Talipov, Marat R.; Timerghazin, Qadir K., E-mail: qadir.timerghazin@marquette.edu
2015-10-07
Atom-centered point charge (PC) model of the molecular electrostatics—a major workhorse of the atomistic biomolecular simulations—is usually parameterized by least-squares (LS) fitting of the point charge values to a reference electrostatic potential, a procedure that suffers from numerical instabilities due to the ill-conditioned nature of the LS problem. To reveal the origins of this ill-conditioning, we start with a general treatment of the point charge fitting problem as an inverse problem and construct an analytical model with the point charges spherically arranged according to Lebedev quadrature which is naturally suited for the inverse electrostatic problem. This analytical model is contrastedmore » to the atom-centered point-charge model that can be viewed as an irregular quadrature poorly suited for the problem. This analysis shows that the numerical problems of the point charge fitting are due to the decay of the curvatures corresponding to the eigenvectors of LS sum Hessian matrix. In part, this ill-conditioning is intrinsic to the problem and is related to decreasing electrostatic contribution of the higher multipole moments, that are, in the case of Lebedev grid model, directly associated with the Hessian eigenvectors. For the atom-centered model, this association breaks down beyond the first few eigenvectors related to the high-curvature monopole and dipole terms; this leads to even wider spread-out of the Hessian curvature values. Using these insights, it is possible to alleviate the ill-conditioning of the LS point-charge fitting without introducing external restraints and/or constraints. Also, as the analytical Lebedev grid PC model proposed here can reproduce multipole moments up to a given rank, it may provide a promising alternative to including explicit multipole terms in a force field.« less
Improved Real-Time Scan Matching Using Corner Features
NASA Astrophysics Data System (ADS)
Mohamed, H. A.; Moussa, A. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, Abu B.
2016-06-01
The automation of unmanned vehicle operation has gained a lot of research attention, in the last few years, because of its numerous applications. The vehicle localization is more challenging in indoor environments where absolute positioning measurements (e.g. GPS) are typically unavailable. Laser range finders are among the most widely used sensors that help the unmanned vehicles to localize themselves in indoor environments. Typically, automatic real-time matching of the successive scans is performed either explicitly or implicitly by any localization approach that utilizes laser range finders. Many accustomed approaches such as Iterative Closest Point (ICP), Iterative Matching Range Point (IMRP), Iterative Dual Correspondence (IDC), and Polar Scan Matching (PSM) handles the scan matching problem in an iterative fashion which significantly affects the time consumption. Furthermore, the solution convergence is not guaranteed especially in cases of sharp maneuvers or fast movement. This paper proposes an automated real-time scan matching algorithm where the matching process is initialized using the detected corners. This initialization step aims to increase the convergence probability and to limit the number of iterations needed to reach convergence. The corner detection is preceded by line extraction from the laser scans. To evaluate the probability of line availability in indoor environments, various data sets, offered by different research groups, have been tested and the mean numbers of extracted lines per scan for these data sets are ranging from 4.10 to 8.86 lines of more than 7 points. The set of all intersections between extracted lines are detected as corners regardless of the physical intersection of these line segments in the scan. To account for the uncertainties of the detected corners, the covariance of the corners is estimated using the extracted lines variances. The detected corners are used to estimate the transformation parameters between the successive scan using least squares. These estimated transformation parameters are used to calculate an adjusted initialization for scan matching process. The presented method can be employed solely to match the successive scans and also can be used to aid other accustomed iterative methods to achieve more effective and faster converge. The performance and time consumption of the proposed approach is compared with ICP algorithm alone without initialization in different scenarios such as static period, fast straight movement, and sharp manoeuvers.
Devarapalli, Pratap; Kumavath, Ranjith N; Barh, Debmalya; Azevedo, Vasco
2014-01-01
Turritopsis nutricula (T. nutricula) is the one of the known reported organisms that can revert its life cycle to the polyp stage even after becoming sexually mature, defining itself as the only immortal organism in the animal kingdom. Therefore, the animal is having prime importance in basic biological, aging, and biomedical researches. However, till date, the genome of this organism has not been sequenced and even there is no molecular phylogenetic study to reveal its close relatives. Here, using phylogenetic analysis based on available 16s rRNA gene and protein sequences of Cytochrome oxidase subunit-I (COI or COX1) of T. nutricula, we have predicted the closest relatives of the organism. While we found Nemopsis bachei could be closest organism based on COX1 gene sequence; T. dohrnii may be designated as the closest taxon to T. nutricula based on rRNA. Moreover, we have figured out four species that showed similar root distance based on COX1 protein sequence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W; Sawant, A; Ruan, D
2016-06-15
Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity inmore » local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real-time and robust surface reconstruction method on point clouds acquired by photogrammetry systems. It serves an important enabling step for real-time motion tracking in radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less
Georeferencing UAS Derivatives Through Point Cloud Registration with Archived Lidar Datasets
NASA Astrophysics Data System (ADS)
Magtalas, M. S. L. Y.; Aves, J. C. L.; Blanco, A. C.
2016-10-01
Georeferencing gathered images is a common step before performing spatial analysis and other processes on acquired datasets using unmanned aerial systems (UAS). Methods of applying spatial information to aerial images or their derivatives is through onboard GPS (Global Positioning Systems) geotagging, or through tying of models through GCPs (Ground Control Points) acquired in the field. Currently, UAS (Unmanned Aerial System) derivatives are limited to meter-levels of accuracy when their generation is unaided with points of known position on the ground. The use of ground control points established using survey-grade GPS or GNSS receivers can greatly reduce model errors to centimeter levels. However, this comes with additional costs not only with instrument acquisition and survey operations, but also in actual time spent in the field. This study uses a workflow for cloud-based post-processing of UAS data in combination with already existing LiDAR data. The georeferencing of the UAV point cloud is executed using the Iterative Closest Point algorithm (ICP). It is applied through the open-source CloudCompare software (Girardeau-Montaut, 2006) on a `skeleton point cloud'. This skeleton point cloud consists of manually extracted features consistent on both LiDAR and UAV data. For this cloud, roads and buildings with minimal deviations given their differing dates of acquisition are considered consistent. Transformation parameters are computed for the skeleton cloud which could then be applied to the whole UAS dataset. In addition, a separate cloud consisting of non-vegetation features automatically derived using CANUPO classification algorithm (Brodu and Lague, 2012) was used to generate a separate set of parameters. Ground survey is done to validate the transformed cloud. An RMSE value of around 16 centimeters was found when comparing validation data to the models georeferenced using the CANUPO cloud and the manual skeleton cloud. Cloud-to-cloud distance computations of CANUPO and manual skeleton clouds were obtained with values for both equal to around 0.67 meters at 1.73 standard deviation.
Camera Trajectory fromWide Baseline Images
NASA Astrophysics Data System (ADS)
Havlena, M.; Torii, A.; Pajdla, T.
2008-09-01
Camera trajectory estimation, which is closely related to the structure from motion computation, is one of the fundamental tasks in computer vision. Reliable camera trajectory estimation plays an important role in 3D reconstruction, self localization, and object recognition. There are essential issues for a reliable camera trajectory estimation, for instance, choice of the camera and its geometric projection model, camera calibration, image feature detection and description, and robust 3D structure computation. Most of approaches rely on classical perspective cameras because of the simplicity of their projection models and ease of their calibration. However, classical perspective cameras offer only a limited field of view, and thus occlusions and sharp camera turns may cause that consecutive frames look completely different when the baseline becomes longer. This makes the image feature matching very difficult (or impossible) and the camera trajectory estimation fails under such conditions. These problems can be avoided if omnidirectional cameras, e.g. a fish-eye lens convertor, are used. The hardware which we are using in practice is a combination of Nikon FC-E9 mounted via a mechanical adaptor onto a Kyocera Finecam M410R digital camera. Nikon FC-E9 is a megapixel omnidirectional addon convertor with 180° view angle which provides images of photographic quality. Kyocera Finecam M410R delivers 2272×1704 images at 3 frames per second. The resulting combination yields a circular view of diameter 1600 pixels in the image. Since consecutive frames of the omnidirectional camera often share a common region in 3D space, the image feature matching is often feasible. On the other hand, the calibration of these cameras is non-trivial and is crucial for the accuracy of the resulting 3D reconstruction. We calibrate omnidirectional cameras off-line using the state-of-the-art technique and Mičušík's two-parameter model, that links the radius of the image point r to the angle θ of its corresponding rays w.r.t. the optical axis as θ = ar 1+br2 . After a successful calibration, we know the correspondence of the image points to the 3D optical rays in the coordinate system of the camera. The following steps aim at finding the transformation between the camera and the world coordinate systems, i.e. the pose of the camera in the 3D world, using 2D image matches. For computing 3D structure, we construct a set of tentative matches detecting different affine covariant feature regions including MSER, Harris Affine, and Hessian Affine in acquired images. These features are alternative to popular SIFT features and work comparably in our situation. Parameters of the detectors are chosen to limit the number of regions to 1-2 thousands per image. The detected regions are assigned local affine frames (LAF) and transformed into standard positions w.r.t. their LAFs. Discrete Cosine Descriptors are computed for each region in the standard position. Finally, mutual distances of all regions in one image and all regions in the other image are computed as the Euclidean distances of their descriptors and tentative matches are constructed by selecting the mutually closest pairs. Opposed to the methods using short baseline images, simpler image features which are not affine covariant cannot be used because the view point can change a lot between consecutive frames. Furthermore, feature matching has to be performed on the whole frame because no assumptions on the proximity of the consecutive projections can be made for wide baseline images. This is making the feature detection, description, and matching much more time-consuming than it is for short baseline images and limits the usage to low frame rate sequences when operating in real-time. Robust 3D structure can be computed by RANSAC which searches for the largest subset of the set of tentative matches which is, within a predefined threshold ", consistent with an epipolar geometry. We use ordered sampling as suggested in to draw 5-tuples from the list of tentative matches ordered ascendingly by the distance of their descriptors which may help to reduce the number of samples in RANSAC. From each 5-tuple, relative orientation is computed by solving the 5-point minimal relative orientation problem for calibrated cameras. Often, there are more models which are supported by a large number of matches. Thus the chance that the correct model, even if it has the largest support, will be found by running a single RANSAC is small. Work suggested to generate models by randomized sampling as in RANSAC but to use soft (kernel) voting for a parameter instead of looking for the maximal support. The best model is then selected as the one with the parameter closest to the maximum in the accumulator space. In our case, we vote in a two-dimensional accumulator for the estimated camera motion direction. However, unlike in, we do not cast votes directly by each sampled epipolar geometry but by the best epipolar geometries recovered by ordered sampling of RANSAC. With our technique, we could go up to the 98.5 % contamination of mismatches with comparable effort as simple RANSAC does for the contamination by 84 %. The relative camera orientation with the motion direction closest to the maximum in the voting space is finally selected. As already mentioned in the first paragraph, the use of camera trajectory estimates is quite wide. In we have introduced a technique for measuring the size of camera translation relatively to the observed scene which uses the dominant apical angle computed at the reconstructed scene points and is robust against mismatches. The experiments demonstrated that the measure can be used to improve the robustness of camera path computation and object recognition for methods which use a geometric, e.g. the ground plane, constraint such as does for the detection of pedestrians. Using the camera trajectories, perspective cutouts with stabilized horizon are constructed and an arbitrary object recognition routine designed to work with images acquired by perspective cameras can be used without any further modifications.
Development of the PEBLebl Traveling Salesman Problem Computerized Testbed
ERIC Educational Resources Information Center
Mueller, Shane T.; Perelman, Brandon S.; Tan, Yin Yin; Thanasuan, Kejkaew
2015-01-01
The traveling salesman problem (TSP) is a combinatorial optimization problem that requires finding the shortest path through a set of points ("cities") that returns to the starting point. Because humans provide heuristic near-optimal solutions to Euclidean versions of the problem, it has sometimes been used to investigate human visual…
Numerical methods for stiff systems of two-point boundary value problems
NASA Technical Reports Server (NTRS)
Flaherty, J. E.; Omalley, R. E., Jr.
1983-01-01
Numerical procedures are developed for constructing asymptotic solutions of certain nonlinear singularly perturbed vector two-point boundary value problems having boundary layers at one or both endpoints. The asymptotic approximations are generated numerically and can either be used as is or to furnish a general purpose two-point boundary value code with an initial approximation and the nonuniform computational mesh needed for such problems. The procedures are applied to a model problem that has multiple solutions and to problems describing the deformation of thin nonlinear elastic beam that is resting on an elastic foundation.
How Does Abundance Affect the Strength of UV Emission in Elliptical Galaxies?
NASA Technical Reports Server (NTRS)
Sonneborn, George (Technical Monitor); Brown, Thomas
2005-01-01
This program used the Far Ultraviolet Spectroscopic Explorer (FUSE) to observe elliptical galaxies with the intention of measuring the chemical abundances in their hot stellar populations. It was designed to complement an earlier FUSE program that observed elliptical galaxies with strong UV emission. The current program originally planned observations of two ellipticals with weak UV emission (M32 and M49). Once FUSE encountered pointing control problems in certain regions of the sky (particularly Virgo, which is very unfortunate for the study of ellipticals in general), M49 was replaced with the bulge of M31, which has a similar UV-to-optical flux ratio as the center of M49. As the closest elliptical galaxy and the one with the weakest UV-to-optical flux ratio, M32 was an obvious choice of target, but M49 was the ideal complementary target, because it has a very low reddening (unlike M32). With the inability of FUSE to point at Virgo, nearly all of the best elliptical galaxies (bright galaxies with low foreground extinction) were also lost, and this severely hampered three FUSE programs of the PI, all focused on the hot stellar populations of ellipticals. M31 was the best replacement for M49, but like M32, it suffers from significant foreground reddening. Strong Galactic ISM lines heavily contaminate the FUSE spectra of M31 and M32. These ISM lines are coincident with the photospheric lines from the stellar populations (whereas M49, with little foreground ISM and significant redshift, would not have suffered from this problem). We have reduced the faint (and thus difficult) data for M31 and M32, producing final co-added spectra representing all of the exposures, but we have not yet finished our analysis, due to the complication of the contaminating ISM. The silver lining here is the set of CHI lines at 1175 Angstroms, which are not significantly contaminated by the ISM. A comparison of the M31 spectrum with other galaxies observed by FEE showed a surprising result: the hot stars in M31 seem to have a similar carbon abundance to those stars in galaxies with much brighter UV emission. The fraction of these hot stars in a population should be a strong function of chemical abundances, so this finding warrants further exploration, and we are proceeding with our analysis. Because the UV emission in these galaxies comes from a population of extreme horizontal branch stars, the PI (Brown) presented this result at a June 2003 conference on such stars.
Gau, Susan Shur-Fen; Chiu, Yen-Nan; Soong, Wei-Tsuen; Lee, Ming-Been
2008-09-01
The literature has documented maternal distress and behavioral problems among children with Down syndrome (DS), however, little is known about paternal adjustment and behavioural problems among the siblings of children with DS. Here, we examined parental psychopathology, parenting style and emotional/behavioral problems among children with DS, their siblings, and controls in Taiwan. We recruited 45 families of children with DS (age, 2-4 years) and 50 families of normally developing children (age, 3-5 years). If there were more than two children in the case family, the sibling whose age was closest to the child with DS was recruited (age, 3-8 years). Both parents completed self-administered measures of their personality characteristics, psychopathology, family functioning, parenting styles, and child behavioral problems, using the Chinese versions of the Maudsley Personality Inventory, Brief Symptom Rating Scale, Family Adaptability and Cohesion Evaluation Scale, Parental Bonding Instrument, and Child Behavioral Checklist, respectively. Children with DS demonstrated significantly more severe symptoms than normal children of a wide range of behavioral problems such as attention problems, delinquency, social problems, somatic complaints, thought problems, and withdrawal compared with the other two groups, and obtained similar parental treatment, except for paternal overprotection. Their parents suffered from more psychopathology and their mothers were less often employed than their counterparts. The siblings of children with DS obtained less overprotection from their mothers than children with DS and less maternal care and control than normal children. There was no difference in emotional/behavioral problems between the siblings and normal controls. Our findings suggest that in addition to the physical, educational and psychological needs of children with DS, the psychological care of their mothers, fathers and siblings also needs to be evaluated. Moreover, parenting counseling should focus not only on children with DS, but their siblings as well.
Phylogenomics resolves the evolutionary chronicle of our squirting closest relatives.
Giribet, Gonzalo
2018-04-27
A recent paper in BMC Biology has resolved the family relationships of sea squirts, one of our closest invertebrate relatives, by using a large phylogenomic data set derived from available genomes and newly generated transcriptomes. The work confirms previous ideas that ascidians (the sea squirts) are not monophyletic, as they include some pelagic jelly-like relatives, and proposes a chronogram for a group that has been difficult to resolve due to their accelerated genome evolution.See research article: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0499-2.
NASA Astrophysics Data System (ADS)
Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.
2018-04-01
We present the GeneRalized ANd Differentiable Halo Occupation Distribution (GRAND-HOD) routine that generalizes the standard 5 parameter halo occupation distribution model (HOD) with various halo-scale physics and assembly bias. We describe the methodology of 4 different generalizations: satellite distribution generalization, velocity bias, closest approach distance generalization, and assembly bias. We showcase the signatures of these generalizations in the 2-point correlation function (2PCF) and the squeezed 3-point correlation function (squeezed 3PCF). We identify generalized HOD prescriptions that are nearly degenerate in the projected 2PCF and demonstrate that these degeneracies are broken in the redshift-space anisotropic 2PCF and the squeezed 3PCF. We also discuss the possibility of identifying degeneracies in the anisotropic 2PCF and further demonstrate the extra constraining power of the squeezed 3PCF on galaxy-halo connection models. We find that within our current HOD framework, the anisotropic 2PCF can predict the squeezed 3PCF better than its statistical error. This implies that a discordant squeezed 3PCF measurement could falsify the particular HOD model space. Alternatively, it is possible that further generalizations of the HOD model would open opportunities for the squeezed 3PCF to provide novel parameter measurements. The GRAND-HOD Python package is publicly available at https://github.com/SandyYuan/GRAND-HOD.
Quality assessment of MEG-to-MRI coregistrations
NASA Astrophysics Data System (ADS)
Sonntag, Hermann; Haueisen, Jens; Maess, Burkhard
2018-04-01
For high precision in source reconstruction of magnetoencephalography (MEG) or electroencephalography data, high accuracy of the coregistration of sources and sensors is mandatory. Usually, the source space is derived from magnetic resonance imaging (MRI). In most cases, however, no quality assessment is reported for sensor-to-MRI coregistrations. If any, typically root mean squares (RMS) of point residuals are provided. It has been shown, however, that RMS of residuals do not correlate with coregistration errors. We suggest using target registration error (TRE) as criterion for the quality of sensor-to-MRI coregistrations. TRE measures the effect of uncertainty in coregistrations at all points of interest. In total, 5544 data sets with sensor-to-head and 128 head-to-MRI coregistrations, from a single MEG laboratory, were analyzed. An adaptive Metropolis algorithm was used to estimate the optimal coregistration and to sample the coregistration parameters (rotation and translation). We found an average TRE between 1.3 and 2.3 mm at the head surface. Further, we observed a mean absolute difference in coregistration parameters between the Metropolis and iterative closest point algorithm of (1.9 +/- 15){\\hspace{0pt}}\\circ and (1.1 +/- 9) m. A paired sample t-test indicated a significant improvement in goal function minimization by using the Metropolis algorithm. The sampled parameters allowed computation of TRE on the entire grid of the MRI volume. Hence, we recommend the Metropolis algorithm for head-to-MRI coregistrations.
NASA Astrophysics Data System (ADS)
Scott, Russell L.; Biederman, Joel A.; Hamerlynck, Erik P.; Barron-Gafford, Greg A.
2015-12-01
Global-scale studies indicate that semiarid regions strongly regulate the terrestrial carbon sink. However, we lack understanding of how climatic shifts, such as decadal drought, impact carbon sequestration across the wide range of structural diversity in semiarid ecosystems. Therefore, we used eddy covariance measurements to quantify how net ecosystem production of carbon dioxide (NEP) differed with relative grass and woody plant abundance over the last decade of drought in four Southwest U.S. ecosystems. We identified a precipitation "pivot point" in the carbon balance for each ecosystem where annual NEP switched from negative to positive. Ecosystems with grass had pivot points closer to the drought period precipitation than the predrought average, making them more likely to be carbon sinks (and a grass-free shrubland, a carbon source) during the current drought. One reason for this is that the grassland located closest to the shrubland supported higher leaf area and photosynthesis at the same water availability. Higher leaf area was associated with a greater proportion of evapotranspiration being transpiration (T/ET), and therefore with higher ecosystem water use efficiency (gross ecosystem photosynthesis/ET). Our findings strongly show that water availability is a primary driver of both gross and net semiarid productivity and illustrate that structural differences may contribute to the speed at which ecosystem carbon cycling adjusts to climatic shifts.
The effect of unresolved contaminant stars on the cross-matching of photometric catalogues
NASA Astrophysics Data System (ADS)
Wilson, Tom J.; Naylor, Tim
2017-07-01
A fundamental process in astrophysics is the matching of two photometric catalogues. It is crucial that the correct objects be paired, and that their photometry does not suffer from any spurious additional flux. We compare the positions of sources in Wide-field Infrared Survey Explorer (WISE), INT Photometric H α Survey, Two Micron All Sky Survey and AAVSO Photometric All Sky Survey with Gaia Data Release 1 astrometric positions. We find that the separations are described by a combination of a Gaussian distribution, wider than naively assumed based on their quoted uncertainties, and a large wing, which some authors ascribe to proper motions. We show that this is caused by flux contamination from blended stars not treated separately. We provide linear fits between the quoted Gaussian uncertainty and the core fit to the separation distributions. We show that at least one in three of the stars in the faint half of a given catalogue will suffer from flux contamination above the 1 per cent level when the density of catalogue objects per point spread function area is above approximately 0.005. This has important implications for the creation of composite catalogues. It is important for any closest neighbour matches as there will be a given fraction of matches that are flux contaminated, while some matches will be missed due to significant astrometric perturbation by faint contaminants. In the case of probability-based matching, this contamination affects the probability density function of matches as a function of distance. This effect results in up to 50 per cent fewer counterparts being returned as matches, assuming Gaussian astrometric uncertainties for WISE-Gaia matching in crowded Galactic plane regions, compared with a closest neighbour match.
Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.
Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong
2014-05-01
We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.
New Horizons Pluto Flyby Guest Operations
NASA Astrophysics Data System (ADS)
Simon, M.; Turney, D.; Fisher, S.; Carr, S. S.
2015-12-01
On July 14, 2015, after 9.5 years of cruise, NASA's New Horizons spacecraft flew past the Pluto system to gather first images humankind had ever seen on Pluto and its five moons. While much has been discovered about the Pluto system since New Horizons launch in 2006, the system has never been imaged at high resolution and anticipation of the "First Light" of the Pluto system had been anticipated by planetary enthusiasts for decades. The Johns Hopkins Applied Physics Laboratory (APL), which built and operates New Horizons, was the focal point for gathering three distinct groups: science and engineering team members; media and public affairs representatives; and invited public, including VIP's. Guest operations activities were focused on providing information primarily to the invited public and VIP's. High level objectives for the Guest Operations team was set to entertain and inform the general public, offer media reaction shots, and to deconflict activities for the guests from media activities wherever possible. Over 2000 people arrived at APL in the days surrounding closest approach for guest, science or media operations tracks. Reaction and coverage of the Guest Operations events was universally positive and global in impact: iconic pictures of the auditorium waving flags during the moment of closest approach were published in media outlets on every continent. Media relations activities ensured coverage in all key media publications targeted for release, such as the New York Times, Science, Le Monde, and Nature. Social and traditional media coverage of the events spanned the globe. Guest operations activities are designed to ensure that a guest has a memorable experience and leaves with a lifelong memory of the mission and their partnership in the activity. Results, lessons learned, and other data from the New Horizons guest operations activity will be presented and analyzed.
Kolker, A.; Olson, M.L.; Krabbenhoft, D.P.; Tate, M.T.; Engle, M.A.
2010-01-01
Simultaneous real-time changes in mercury (Hg) speciation ?????" reactive gaseous Hg (RGM), elemental Hg (Hg??), and fine particulate Hg (Hg-PM2.5), were determined from June to November 2007, in ambient air at three locations in rural Central Wisconsin. Known Hg emission sources within the airshed of the monitoring sites include: 1) a 1114 megawatt (MW) coal-fired electric utility generating station; 2) a Hg-bed chlor-alkali plant; and 3) a smaller (465 MW) coal-burning electric utility. Monitoring sites, showing sporadic elevation of RGM, Hg?? and Hg-PM 2.5, were positioned at distances of 25, 50 and 100 km northward of the larger electric utility. A series of RGM events were recorded at each site. The largest, on 23 September, occurred under prevailing southerly winds, with a maximum RGM value (56.8 pg m-3) measured at the 100 km site, and corresponding elevated SO2 (10.41 ppbv; measured at 50 km site). The finding that RGM, Hg??, and Hg-PM2.5 are not always highest at the 25 km site, closest to the large generating station, contradicts the idea that RGM decreases with distance from a large point source. This may be explained if: 1) the 100 km site was influenced by emissions from the chlor-alkali facility or by RGM from regional urban sources; 2) the emission stack height of the larger power plant promoted plume transport at an elevation where the Hg is carried over the closest site; or 3) RGM was being generated in the plume through oxidation of Hg??. Operational changes at each emitter since 2007 should reduce their Hg output, potentially allowing quantification of the environmental benefit in future studies.
Evaluation of the closest speaking space in different dental and skeletal occlusions.
Sakar, Olcay; Bural, Canan; Sülün, Tonguç; Öztaş, Evren; Marşan, Gülnaz
2013-04-01
The closest speaking space (CSS) together with the vertical overlap of anterior teeth during the production of the /s/ sound have not been previously investigated with respect to differences in dental and skeletal orthodontic classifications. The purpose of this study was to investigate the CSS in dental and skeletal occlusions and to analyze the cause and effect relationship of the CSS and the amount of the vertical overlap of anterior teeth. Poly vinylsiloxane interocclusal registration material was placed bilaterally onto the occlusal surfaces of premolar and molar teeth of 155 native Turkish speaking adolescent and young adult dentate participants, who were then asked to pronounce the word seyis. The thinnest point between the maxillary and mandibular teeth was recorded in millimeters as the CSS. The occlusion of each participant was classified according to the Angle dental and Steiner skeletal classifications. The differences in CSS values within each classification were statistically analyzed with the Kruskal-Wallis test, and the correlation between the CSS and the vertical overlap was statistically analyzed with the Spearman Rho Correlation tests (P<.05). The differences in the CSS were only significant between Angle Class II division 2 and Class III groups (P=.034), while the differences in the CSS between skeletal classes were not significant. The correlation between the amount of CSS and the amount of vertical overlap was not significant. The results showed that regardless of dental and skeletal occlusions, average CSS values could be used to determine the occlusal vertical dimension of prosthetic restorations. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Isolation and Characterization of Acetate-Utilizing Anaerobes from a Freshwater Sediment.
Scholten, J.C.M.; Stams, A.J.M.
2000-12-01
Acetate-degrading anaerobic microorganisms in freshwater sediment were quantified by the most probable number technique. From the highest dilutions a methanogenic, a sulfate-reducing, and a nitrate-reducing microorganism were isolated with acetate as substrate. The methanogen (culture AMPB-Zg) was non-motile and rod-shaped with blunted ends (0.5-1 mm x 3-4 mm long). Doubling times with acetate at 30-35 degrees C were 5.6-8.1 days. The methanogen grew only on acetate. Analysis of the 16S rRNA sequence showed that AMPB-Zg is closely related to Methanosaeta concilii. The isolated sulfate-reducing bacterium (strain ASRB-Zg) was rod-shaped with pointed ends (0.5-0.7 mm x 1.5-3.5 mm long), weakly motile, spore forming, and gram positive. At the optimum growth temperature of 30 degrees C the doubling times with acetate were 3.9-5.3 days. The bacterium grew on a range of organic acids, such as acetate, butyrate, fumarate, and benzoate, but did not grow autotrophically with H2, CO2, and sulfate. The closest relative of strain ASRB-Zg is Desulfotomaculum acetoxidans. The nitrate-reducing bacterium (strain ANRB-Zg) was rod-shaped (0.5-0.7 mm x 0.7-1 mm long), weakly motile, and gram negative. Optimum growth with acetate occurred at 20-25 degrees C. The bacterium grew on a range of organic substrates, such as acetate, butyrate, lactate, and glucose, and did grow autotrophically with H2, CO2, and oxygen but not with nitrate. In the presence of acetate and nitrate, thiosulfate was oxidized to sulfate. Phylogenetically, the closest relative of strain ANRB-Zg is Variovorax paradoxus.
Approximate Bayesian estimation of extinction rate in the Finnish Daphnia magna metapopulation.
Robinson, John D; Hall, David W; Wares, John P
2013-05-01
Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well-studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat-specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750,000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150,000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography. © 2013 Blackwell Publishing Ltd.
Feature-based US to CT registration of the aortic root
NASA Astrophysics Data System (ADS)
Lang, Pencilla; Chen, Elvis C. S.; Guiraudon, Gerard M.; Jones, Doug L.; Bainbridge, Daniel; Chu, Michael W.; Drangova, Maria; Hata, Noby; Jain, Ameet; Peters, Terry M.
2011-03-01
A feature-based registration was developed to align biplane and tracked ultrasound images of the aortic root with a preoperative CT volume. In transcatheter aortic valve replacement, a prosthetic valve is inserted into the aortic annulus via a catheter. Poor anatomical visualization of the aortic root region can result in incorrect positioning, leading to significant morbidity and mortality. Registration of pre-operative CT to transesophageal ultrasound and fluoroscopy images is a major step towards providing augmented image guidance for this procedure. The proposed registration approach uses an iterative closest point algorithm to register a surface mesh generated from CT to 3D US points reconstructed from a single biplane US acquisition, or multiple tracked US images. The use of a single simultaneous acquisition biplane image eliminates reconstruction error introduced by cardiac gating and TEE probe tracking, creating potential for real-time intra-operative registration. A simple initialization procedure is used to minimize changes to operating room workflow. The algorithm is tested on images acquired from excised porcine hearts. Results demonstrate a clinically acceptable accuracy of 2.6mm and 5mm for tracked US to CT and biplane US to CT registration respectively.
3D dosimetry by optical-CT scanning
NASA Astrophysics Data System (ADS)
Oldham, Mark
2006-12-01
The need for an accurate, practical, low-cost 3D dosimetry system is becoming ever more critical as modern dose delivery techniques increase in complexity and sophistication. A recent report from the Radiological Physics Center (RPC) (1), revealed that 38% of institutions failed the head-and-neck IMRT phantom credentialing test at the first attempt. This was despite generous passing criteria (within 7% dose-difference or 4mm distance-to-agreement) evaluated at a half-dozen points and a single axial plane. The question that arises from this disturbing finding is - what percentage of institutions would have failed if a comprehensive 3D measurement had been feasible, rather than measurements restricted to the central film-plane and TLD points? This question can only be adequately answered by a comprehensive 3D-dosimetry system, which presents a compelling argument for its development as a clinically viable low cost dosimetry solution. Optical-CT dosimetry is perhaps the closest system to providing such a comprehensive solution. In this article, we review the origins and recent developments of optical-CT dosimetry systems. The principle focus is on first generation systems known to have highest accuracy but longer scan times.
Pattern analysis of community health center location in Surabaya using spatial Poisson point process
NASA Astrophysics Data System (ADS)
Kusumaningrum, Choriah Margareta; Iriawan, Nur; Winahju, Wiwiek Setya
2017-11-01
Community health center (puskesmas) is one of the closest health service facilities for the community, which provide healthcare for population on sub-district level as one of the government-mandated community health clinics located across Indonesia. The increasing number of this puskesmas does not directly comply the fulfillment of basic health services needed in such region. Ideally, a puskesmas has to cover up to maximum 30,000 people. The number of puskesmas in Surabaya indicates an unbalance spread in all of the area. This research aims to analyze the spread of puskesmas in Surabaya using spatial Poisson point process model in order to get the effective location of Surabaya's puskesmas which based on their location. The results of the analysis showed that the distribution pattern of puskesmas in Surabaya is non-homogeneous Poisson process and is approched by mixture Poisson model. Based on the estimated model obtained by using Bayesian mixture model couple with MCMC process, some characteristics of each puskesmas have no significant influence as factors to decide the addition of health center in such location. Some factors related to the areas of sub-districts have to be considered as covariate to make a decision adding the puskesmas in Surabaya.
Stereoplotting Hominid Brain Endocasts : Some Preliminary Results
NASA Astrophysics Data System (ADS)
Holloway, Ralph L.
1980-07-01
To objectively and quantitatively demonstrate regional differences in brain endocast morphology, traditional anthropometric caliper measurements must be replaced by a system providing not only localness, but homology and reasonable freedom from allometric distortion. Stereoplotting the radial distances from endocast surface (the closest point to the once underlying brain cortex) to a homologous center every ten degrees provides some 300+ data points for each dorsal endocast surface, thus giving the requisite localness. These measurements provide a large matrix of data suitable for a number of multivariate statistical techniques, and the translation of such data and analyses to readily visualized maps, which can then be compared in relation to both taxonomic and functional knowledge about the cerebral surface. This paper descri-bes some preliminary results from using such methods on a sample of 64 undistorted endocasts composed of both pongids and fossil hominids. While sample sizes within taxonomic groups need to be augmented, the preliminary and tentative pilot studies conducted so far suggest that the method has excellent potential, and that two major areas of the brain endocast surface show the greatest shape changes : 1) the posterior association areas (inferior parietal lobule); 2) the anterior prefrontal areas.
Chariot, Alaska Site Fact Sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessormore » agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.« less
NASA Astrophysics Data System (ADS)
Yongquan, Han
2016-10-01
The ideal gas state equation is not applicable to ordinary gas, it should be applied to the Electromagnetic ``gas'' that is applied to the radiation, the radiation should be the ultimate state of matter changes or initial state, the universe is filled with radiation. That is, the ideal gas equation of state is suitable for the Singular point and the universe. Maybe someone consider that, there is no vessel can accommodate radiation, it is because the Ordinary container is too small to accommodate, if the radius of your container is the distance that Light through an hour, would you still think it can't accommodates radiation? Modern scientific determinate that the radius of the universe now is about 1027 m, assuming that the universe is a sphere whose volume is approximately: V = 4.19 × 1081 cubic meters, the temperature radiation of the universe (cosmic microwave background radiation temperature of the universe, should be the closest the average temperature of the universe) T = 3.15k, radiation pressure P = 5 × 10-6 N / m 2, according to the law of ideal gas state equation, PV / T = constant = 6 × 1075, the value of this constant is the universe, The singular point should also equal to the constant Author: hanyongquan
The change law of the universe
NASA Astrophysics Data System (ADS)
Yongquan, Han
The ideal gas state equation is not applicable to ordinary gas, it should be applied to the Electromagnetic ''gas'' that is applied to the radiation, the radiation should be the ultimate state of matter changes or initial state, the universe is filled with radiation. That is, the ideal gas equation of state is suitable for the Singular point and the universe. Maybe someone consider that, there is no vessel can accommodate radiation, it is because the Ordinary container is too small to accommodate, if the radius of your container is the distance that Light through an hour, would you still think it can't accommodates radiation? Modern scientific determinate that the radius of the universe now is about 1027 m, assuming that the universe is a sphere whose volume is approximately: V = 4.19 × 1081 cubic meters, the temperature radiation of the universe (cosmic microwave background radiation temperature of the universe, should be the closest the average temperature of the universe) T = 3.15k, radiation pressure P = 5 Ã 10-6 N / m 2, according to the law of ideal gas state equation, PV / T = 6 à 1075, the value of this constant is the universe, The singular point should also equal to the constant
Comparison of the impedance cardiogram with continuous wave radar using body-contact antennas.
Buxi, Dilpreet; Dugar, Rahul; Redoute, Jean-Michel; Yuce, Mehmet Rasit
2017-07-01
This paper describes a continuous wave (CW) radar system with body-contact antennas and basic signal processing. The goal is to assess the signals' reproducibility across different subjects as well as a respiration cycle. Radar signals using body-contact antennas with a carrier frequency of 868 MHz are used to acquire the cardiac activity at the sternum. The radar I and Q channel signals are combined to form their magnitude. Signals are collected from six healthy males during paced breathing conditions. The electrocardiogram (ECG) and impedance cardiogram (ICG) signals are acquired simultaneously as reference. The chosen feature in the radar signal is the maximum of its second derivative, which is closest to the ICG B-point. The median and mean absolute errors in pre-ejection period (PEP) in milliseconds between the ICG's B-point and chosen feature in the radar signal range from -6-119.7 ms and 7.8-62.3 ms for all subjects. The results indicate that a reproducible radar signal is obtained from all six subjects. More work is needed on understanding the origin of the radar signals using ultrasound as a comparison.
ULTRA: Underwater Localization for Transit and Reconnaissance Autonomy
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L.
2013-01-01
This software addresses the issue of underwater localization of unmanned vehicles and the inherent drift in their onboard sensors. The software gives a 2 to 3 factor of improvement over the state-of-the-art underwater localization algorithms. The software determines the localization (position, heading) of an AUV (autonomous underwater vehicle) in environments where there is no GPS signal. It accomplishes this using only the commanded position, onboard gyros/accelerometers, and the bathymetry of the bottom provided by an onboard sonar system. The software does not rely on an onboard bathymetry dataset, but instead incrementally determines the position of the AUV while mapping the bottom. In order to enable long-distance underwater navigation by AUVs, a localization method called ULTRA uses registration of the bathymetry data products produced by the onboard forward-looking sonar system for hazard avoidance during a transit to derive the motion and pose of the AUV in order to correct the DR (dead reckoning) estimates. The registration algorithm uses iterative point matching (IPM) combined with surface interpolation of the Iterative Closest Point (ICP) algorithm. This method was used previously at JPL for onboard unmanned ground vehicle localization, and has been optimized for efficient computational and memory use.
Skirvin, D J; Stavrinides, M C; Skirvin, D J
2003-08-01
The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.
The point explosion with radiation transport
NASA Astrophysics Data System (ADS)
Lin, Zhiwei; Zhang, Lu; Kuang, Longyu; Jiang, Shaoen
2017-10-01
Some amount of energy is released instantaneously at the origin to generate simultaneously a spherical radiative heat wave and a spherical shock wave in the point explosion with radiation transport, which is a complicated problem due to the competition between these two waves. The point explosion problem possesses self-similar solutions when only hydrodynamic motion or only heat conduction is considered, which are Sedov solution and Barenblatt solution respectively. The point explosion problem wherein both physical mechanisms of hydrodynamic motion and heat conduction are included has been studied by P. Reinicke and A.I. Shestakov. In this talk we numerically investigate the point explosion problem wherein both physical mechanisms of hydrodynamic motion and radiation transport are taken into account. The radiation transport equation in one dimensional spherical geometry has to be solved for this problem since the ambient medium is optically thin with respect to the initially extremely high temperature at the origin. The numerical results reveal a high compression of medium and a bi-peak structure of density, which are further theoretically analyzed at the end.
STCA, TCAS, Airproxes and Collision Risk
NASA Astrophysics Data System (ADS)
Brooker, Peter
2005-09-01
The focus here is on the performance of and interaction between the Traffic Alert and Collision Avoidance System (TCAS) and the controller's short-term conflict alert (STCA) system. The data source used is UK Airprox Board Reports of close encounters between aircraft, and the focus is on commercial air transport aircraft using UK controlled airspace with a radar service. Do the systems work well together? Are controllers surprised when they find out that a pilot has received a TCAS resolution advisory? What do TCAS and STCA events say about collision risk? Generally, the systems seem to work together well. On most occasions, controllers are not surprised by TCAS advisories: either they have detected the problem themselves or STCA has alerted them to it. The statistically expected rate of future mid-air collisions is estimated by extrapolation of Airprox closest encounter distances.
Human performance on the traveling salesman problem.
MacGregor, J N; Ormerod, T
1996-05-01
Two experiments on performance on the traveling salesman problem (TSP) are reported. The TSP consists of finding the shortest path through a set of points, returning to the origin. It appears to be an intransigent mathematical problem, and heuristics have been developed to find approximate solutions. The first experiment used 10-point, the second, 20-point problems. The experiments tested the hypothesis that complexity of TSPs is a function of number of nonboundary points, not total number of points. Both experiments supported the hypothesis. The experiments provided information on the quality of subjects' solutions. Their solutions clustered close to the best known solutions, were an order of magnitude better than solutions produced by three well-known heuristics, and on average fell beyond the 99.9th percentile in the distribution of random solutions. The solution process appeared to be perceptually based.
Controllability of semi-infinite rod heating by a point source
NASA Astrophysics Data System (ADS)
Khurshudyan, A.
2018-04-01
The possibility of control over heating of a semi-infinite thin rod by a point source concentrated at an inner point of the rod, is studied. Quadratic and piecewise constant solutions of the problem are derived, and the possibilities of solving appropriate problems of optimal control are indicated. Determining of the parameters of the piecewise constant solution is reduced to a problem of nonlinear programming. Numerical examples are considered.
A system-approach to the elastohydrodynamic lubrication point-contact problem
NASA Technical Reports Server (NTRS)
Lim, Sang Gyu; Brewe, David E.
1991-01-01
The classical EHL (elastohydrodynamic lubrication) point contact problem is solved using a new system-approach, similar to that introduced by Houpert and Hamrock for the line-contact problem. Introducing a body-fitted coordinate system, the troublesome free-boundary is transformed to a fixed domain. The Newton-Raphson method can then be used to determine the pressure distribution and the cavitation boundary subject to the Reynolds boundary condition. This method provides an efficient and rigorous way of solving the EHL point contact problem with the aid of a supercomputer and a promising method to deal with the transient EHL point contact problem. A typical pressure distribution and film thickness profile are presented and the minimum film thicknesses are compared with the solution of Hamrock and Dowson. The details of the cavitation boundaries for various operating parameters are discussed.
The topology of the regularized integral surfaces of the 3-body problem
NASA Technical Reports Server (NTRS)
Easton, R.
1971-01-01
Momentum, angular momentum, and energy of integral surfaces in the planar three-body problem are considered. The end points of orbits which cross an isolating block are identified. It is shown that this identification has a unique extension to an identification which pairs the end points of orbits entering the block and which end in a binary collision with the end points of orbits leaving the block and which come from a binary collision. The problem of regularization is that of showing that the identification of the end points of crossing orbits has a continuous, unique extension. The regularized phase space for the three-body problem was obtained, as were regularized integral surfaces for the problem on which the three-body equations of motion induce flows. Finally the topology of these surfaces is described.
PET attenuation correction for flexible MRI surface coils in hybrid PET/MRI using a 3D depth camera
NASA Astrophysics Data System (ADS)
Frohwein, Lynn J.; Heß, Mirco; Schlicher, Dominik; Bolwin, Konstantin; Büther, Florian; Jiang, Xiaoyi; Schäfers, Klaus P.
2018-01-01
PET attenuation correction for flexible MRI radio frequency surface coils in hybrid PET/MRI is still a challenging task, as position and shape of these coils conform to large inter-patient variabilities. The purpose of this feasibility study is to develop a novel method for the incorporation of attenuation information about flexible surface coils in PET reconstruction using the Microsoft Kinect V2 depth camera. The depth information is used to determine a dense point cloud of the coil’s surface representing the shape of the coil. From a CT template—acquired once in advance—surface information of the coil is extracted likewise and converted into a point cloud. The two point clouds are then registered using a combination of an iterative-closest-point (ICP) method and a partially rigid registration step. Using the transformation derived through the point clouds, the CT template is warped and thereby adapted to the PET/MRI scan setup. The transformed CT template is converted into an attenuation map from Hounsfield units into linear attenuation coefficients. The resulting fitted attenuation map is then integrated into the MRI-based patient-specific DIXON-based attenuation map of the actual PET/MRI scan. A reconstruction of phantom PET data acquired with the coil present in the field-of-view (FoV), but without the corresponding coil attenuation map, shows large artifacts in regions close to the coil. The overall count loss is determined to be around 13% compared to a PET scan without the coil present in the FoV. A reconstruction using the new μ-map resulted in strongly reduced artifacts as well as increased overall PET intensities with a remaining relative difference of about 1% to a PET scan without the coil in the FoV.
Algorithms for Data Sharing, Coordination, and Communication in Dynamic Network Settings
2007-12-03
problems in dynamic networks, focusing on mobile networks with wireless communication. Problems studied include data management, time synchronization ...The discovery of a fundamental limitation in capabilities for time synchronization in large networks. (2) The identification and development of the...Problems studied include data management, time synchronization , communication problems (broadcast, geocast, and point-to-point routing), distributed
On the Critical Behaviour, Crossover Point and Complexity of the Exact Cover Problem
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Smelyanskiy, Vadim N.; Shumow, Daniel; Koga, Dennis (Technical Monitor)
2003-01-01
Research into quantum algorithms for NP-complete problems has rekindled interest in the detailed study a broad class of combinatorial problems. A recent paper applied the quantum adiabatic evolution algorithm to the Exact Cover problem for 3-sets (EC3), and provided an empirical evidence that the algorithm was polynomial. In this paper we provide a detailed study of the characteristics of the exact cover problem. We present the annealing approximation applied to EC3, which gives an over-estimate of the phase transition point. We also identify empirically the phase transition point. We also study the complexity of two classical algorithms on this problem: Davis-Putnam and Simulated Annealing. For these algorithms, EC3 is significantly easier than 3-SAT.
Theory of equilibria of elastic 2-braids with interstrand interaction
NASA Astrophysics Data System (ADS)
Starostin, E. L.; van der Heijden, G. H. M.
2014-03-01
Motivated by continuum models for DNA supercoiling we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. No assumption is made on the shape of the contact curve. The theory is developed in terms of a moving frame of directors attached to one of the strands. The other strand is tracked by including in this frame the normalised closest-approach chord connecting the two strands. The kinematic constant-distance constraint is formulated at strain level through the introduction of what we call braid strains. As a result the total potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Hard contact models are used to obtain the normal contact pressure between strands that has to be non-negative for a physically realisable solution without the need for external devices such as clamps or glue to keep the strands together. The theory is first illustrated by a number of problems that can be solved analytically and then applied to several new problems that have not hitherto been treated.
NASA Astrophysics Data System (ADS)
dos Santos, A. F.; Freitas, S. R.; de Mattos, J. G. Z.; de Campos Velho, H. F.; Gan, M. A.; da Luz, E. F. P.; Grell, G. A.
2013-09-01
In this paper we consider an optimization problem applying the metaheuristic Firefly algorithm (FY) to weight an ensemble of rainfall forecasts from daily precipitation simulations with the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS) over South America during January 2006. The method is addressed as a parameter estimation problem to weight the ensemble of precipitation forecasts carried out using different options of the convective parameterization scheme. Ensemble simulations were performed using different choices of closures, representing different formulations of dynamic control (the modulation of convection by the environment) in a deep convection scheme. The optimization problem is solved as an inverse problem of parameter estimation. The application and validation of the methodology is carried out using daily precipitation fields, defined over South America and obtained by merging remote sensing estimations with rain gauge observations. The quadratic difference between the model and observed data was used as the objective function to determine the best combination of the ensemble members to reproduce the observations. To reduce the model rainfall biases, the set of weights determined by the algorithm is used to weight members of an ensemble of model simulations in order to compute a new precipitation field that represents the observed precipitation as closely as possible. The validation of the methodology is carried out using classical statistical scores. The algorithm has produced the best combination of the weights, resulting in a new precipitation field closest to the observations.
Do Branch Lengths Help to Locate a Tree in a Phylogenetic Network?
Gambette, Philippe; van Iersel, Leo; Kelk, Steven; Pardi, Fabio; Scornavacca, Celine
2016-09-01
Phylogenetic networks are increasingly used in evolutionary biology to represent the history of species that have undergone reticulate events such as horizontal gene transfer, hybrid speciation and recombination. One of the most fundamental questions that arise in this context is whether the evolution of a gene with one copy in all species can be explained by a given network. In mathematical terms, this is often translated in the following way: is a given phylogenetic tree contained in a given phylogenetic network? Recently this tree containment problem has been widely investigated from a computational perspective, but most studies have only focused on the topology of the phylogenies, ignoring a piece of information that, in the case of phylogenetic trees, is routinely inferred by evolutionary analyses: branch lengths. These measure the amount of change (e.g., nucleotide substitutions) that has occurred along each branch of the phylogeny. Here, we study a number of versions of the tree containment problem that explicitly account for branch lengths. We show that, although length information has the potential to locate more precisely a tree within a network, the problem is computationally hard in its most general form. On a positive note, for a number of special cases of biological relevance, we provide algorithms that solve this problem efficiently. This includes the case of networks of limited complexity, for which it is possible to recover, among the trees contained by the network with the same topology as the input tree, the closest one in terms of branch lengths.
Pioneer 10 and 11 radio occultations by Jupiter. [atmospheric temperature structure
NASA Technical Reports Server (NTRS)
Kliore, A. J.; Woiceshyn, P. M.; Hubbard, W. B.
1977-01-01
Results on the temperature structure of the Jovian atmosphere are reviewed which were obtained by applying an integral inversion technique combined with a model for the planet's shape based on gravity data to Pioneer 10 and 11 radio-occultation data. The technique applied to obtain temperature profiles from the Pioneer data consisted of defining a center of refraction based on a computation of the radius of curvature in the plane of refraction and the normal direction to the equipotential surface at the closest approach point of a ray. Observations performed during the Pioneer 10 entry and exit and the Pioneer 11 exit are analyzed, sources of uncertainty are identified, and representative pressure-temperature profiles are presented which clearly show a temperature inversion between 10 and 100 mb. Effects of zonal winds on the reliability of radio-occultation temperature profiles are briefly discussed.
Male gametogenesis without centrioles.
Riparbelli, Maria Giovanna; Callaini, Giuliano
2011-01-15
The orientation of the mitotic spindle plays a central role in specifying stem cell-renewal by enabling interaction of the daughter cells with external cues: the daughter cell closest to the hub region is instructed to self-renew, whereas the distal one starts to differentiate. Here, we have analyzed male gametogenesis in DSas-4 Drosophila mutants and we have reported that spindle alignment and asymmetric divisions are properly executed in male germline stem cells that lack centrioles. Spermatogonial divisions also correctly proceed in the absence of centrioles, giving rise to cysts of 16 primary spermatocytes. By contrast, abnormal meiotic spindles assemble in primary spermatocytes. These results point to different requirements for centrioles during male gametogenesis of Drosophila. Spindle formation during germ cell mitosis may be successfully supported by an acentrosomal pathway that is inadequate to warrant the proper execution of meiosis. Copyright © 2010 Elsevier Inc. All rights reserved.
Whole blood transfusion closest to the point-of-injury during French remote military operations.
Daniel, Yann; Sailliol, Anne; Pouget, Thomas; Peyrefitte, Sébastien; Ausset, Sylvain; Martinaud, Christophe
2017-06-01
To improve the survival of combat casualties, interest in the earliest resort to whole blood (WB) transfusion on the battlefield has been emphasized. Providing volume, coagulation factors, plasma, and oxygenation capacity, WB appears actually as an ideal product severe trauma management. Whole blood can be collected in advance and stored for subsequent use, or can be drawn directly on the battlefield, once a soldier is wounded, from an uninjured companion and immediately transfused.Such concepts require a great control of risks at each step, especially regarding ABO mismatches, and transfusion-transmitted diseases. We present here the "warm and fresh" WB field transfusion program implemented among the French armed forces. We focus on the followed strategies to make it applicable on the battlefield, even during special operations and remote settings, and safe for recipients as well as for donors.
A high data rate universal lattice decoder on FPGA
NASA Astrophysics Data System (ADS)
Ma, Jing; Huang, Xinming; Kura, Swapna
2005-06-01
This paper presents the architecture design of a high data rate universal lattice decoder for MIMO channels on FPGA platform. A phost strategy based lattice decoding algorithm is modified in this paper to reduce the complexity of the closest lattice point search. The data dependency of the improved algorithm is examined and a parallel and pipeline architecture is developed with the iterative decoding function on FPGA and the division intensive channel matrix preprocessing on DSP. Simulation results demonstrate that the improved lattice decoding algorithm provides better bit error rate and less iteration number compared with the original algorithm. The system prototype of the decoder shows that it supports data rate up to 7Mbit/s on a Virtex2-1000 FPGA, which is about 8 times faster than the original algorithm on FPGA platform and two-orders of magnitude better than its implementation on a DSP platform.
Albert Einstein, Cosmos and Religion
NASA Astrophysics Data System (ADS)
Djokovic, V.; Grujic, P.
2007-06-01
We consider Einstein's attitude regarding religious as such, from both cosmological and epistemological points of view. An attempt to put it into a wider socio-historical perspective was made, with the emphasis on ethnic and religious background. It turns out that the great scientist was neither atheist nor believer in the orthodox sense and the closest labels one might stick to him in this respect would be pantheism/cosmism (ontological aspect) and agnosticism (epistemological aspect). His ideas on divine could be considered as a continuation of line traced by Philo of Alexandria, who himself followed Greek Stoics and (Neo-) Platonists and especially Baruch Spinoza. It turns out that Einstein's both scientific (rational aspects) and religious (intuitive aspects) thinking were deeply rooted in the Hellenic culture. His striving to unravel the secrets of the universe and the roots of cosmological order resembles much the ancient ideas of the role of knowledge in fathoming the divine as such, as ascribed to Gnostics.
NASA Technical Reports Server (NTRS)
Tolson, Robert H.; Lugo, Rafael A.; Baird, Darren T.; Cianciolo, Alicia D.; Bougher, Stephen W.; Zurek, Richard M.
2017-01-01
The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft is a NASA orbiter designed to explore the Mars upper atmosphere, typically from 140 to 160 km altitude. In addition to the nominal science mission, MAVEN has performed several Deep Dip campaigns in which the orbit's closest point of approach, also called periapsis, was lowered to an altitude range of 115 to 135 km. MAVEN accelerometer data were used during mission operations to estimate atmospheric parameters such as density, scale height, along-track gradients, and wave structures. Density and scale height estimates were compared against those obtained from the Mars Global Reference Atmospheric Model and used to aid the MAVEN navigation team in planning maneuvers to raise and lower periapsis during Deep Dip operations. This paper describes the processes used to reconstruct atmosphere parameters from accelerometers data and presents the results of their comparison to model and navigation-derived values.
NASA Technical Reports Server (NTRS)
Murray, C. W., Jr.
1977-01-01
The feasibility of recovering parameters from one-way range rate between two earth orbiting spacecraft during occultation of the tracking signal by the earth's lower atmosphere. The tracking data is inverted by an integral transformation (Abel transform) to obtain a vertical refractivity profile above the point of closest approach of the ray connecting the satellites. Pressure and temperature distributions can be obtained from values of dry refractivity using the hydrostatic equation and perfect gas law. Two methods are investigated for recovering pressure and temperature parameters. Results show that recovery is much more sensitive to satellite velocity errors than to satellite position errors. An error analysis is performed. An example is given demonstrating recovery of parameters from radio occultation data obtained during satellite-to-satellite tracking of Nimbus 6 by the ATS 6 satellite.
1990-02-14
Range : 1.7 million miles This colorized picture of Venus was taken about 6 days after Galileo's closest approach to the planet. It has been colorized to a bluish hue to emphasize subtle contrasts in the cloud markings and to indicate that it was taken through a violet filter. Features in the sulfuric acid clouds near the top of the planet's atmosphere are most prominent in violet and ultraviolet light. This image shows the east-to-west-trending cloud banding and the brighter polar hoods familiar from past studies of Venus. The features are embedded in winds that flow from east to west at about 230 mph. The smallest features visible are about 45 miles across. An intriguing filamentary dark pattern is seen immediately left of the bright region at the subsolar point (equatorial 'noon'). North is at the top and the evening terminator is to the left.
Liu, Xiaoming; Wei, Fuwen; Li, Ming; Jiang, Xuelong; Feng, Zuojian; Hu, Jinchu
2004-10-01
Phylogenetic relationships among 15 species of wood mice (genus Apodemus) were reconstructed to explore some long-standing taxonomic problems. The results provided support for the monophyly of the genus Apodemus, but could not reject the hypothesis of paraphyly for this genus. Our data divided the 15 species into four major groups: (1) the Sylvaemus group (A. sylvaticus, A. flavicollis, A. alpicola, and A. uralensis), (2) the Apodemus group (A. peninsulae, A. chevreri, A. agrarius, A. speciosus, A. draco, A. ilex, A. semotus, A. latronum, and A. mystacinus), (3) A. argenteus, and (4) A. gurkha. Our results also suggested that orestes should be a valid subspecies of A. draco rather than an independent species; in contrast, A. ilex from Yunnan may be regarded as a separate species rather than a synonym of orestes or draco. The species level status of A. latronum, tscherga as synonyms of A. uralensis, and A. chevrieri as a valid species and the closest sibling species of A. agrarius were further corroborated by our data. Applying a molecular clock with the divergences of Mus and Rattus set at 12 million years ago (Mya) as a calibration point, it was estimated that five old lineages (A. mystacinus and four major groups above) diverged in the late Miocene (7.82-12.74 Mya). Then the Apodemus group (excluding A. mystacinus) split into two subgroups: agrarius and draco, at about 7.17-9.95 Mya. Four species of the Sylvaemus group were estimated to diverge at about 2.92-5.21 Mya. The Hengduan Mountains Region was hypothesized to have played important roles in Apodemus evolutionary histories since the Pleistocene.
Qazi, Faisal; Fette, Don; Jafri, Syed S; I Padela, Aasim
2018-07-01
Famously posed by seventeenth-century French philosopher René Descartes, the mind-body problem remains unresolved in western philosophy and science, with both disciplines unable to move convincingly beyond the dualistic model. The persistence of dualism calls for a reframing of the problem through interdisciplinary modes of inquiry that include non-western points of view. One such perspective is Islamic theology of the soul, which, while approaching the problem from a distinct point of view, also adopts a position commensurate with (substance) dualism. Using this point of convergence as a conceptual starting point, we argue that bringing into dialogue contemporary neuroscientific, philosophy of mind, and Sunni Islamic theological discourses may provide a fruitful way of reframing the age-old mind-body problem. This paper provides an overview of how these three discourses have approached the issue of the mind-body (-soul) problem. Juxtaposing these three discourses, we hope, may ignite further scholarly dialogue and investigation.
NASA Astrophysics Data System (ADS)
Regis, Rommel G.
2014-02-01
This article develops two new algorithms for constrained expensive black-box optimization that use radial basis function surrogates for the objective and constraint functions. These algorithms are called COBRA and Extended ConstrLMSRBF and, unlike previous surrogate-based approaches, they can be used for high-dimensional problems where all initial points are infeasible. They both follow a two-phase approach where the first phase finds a feasible point while the second phase improves this feasible point. COBRA and Extended ConstrLMSRBF are compared with alternative methods on 20 test problems and on the MOPTA08 benchmark automotive problem (D.R. Jones, Presented at MOPTA 2008), which has 124 decision variables and 68 black-box inequality constraints. The alternatives include a sequential penalty derivative-free algorithm, a direct search method with kriging surrogates, and two multistart methods. Numerical results show that COBRA algorithms are competitive with Extended ConstrLMSRBF and they generally outperform the alternatives on the MOPTA08 problem and most of the test problems.
NASA Astrophysics Data System (ADS)
DeLong, S. B.; Avdievitch, N. N.
2014-12-01
As high-resolution topographic data become increasingly available, comparison of multitemporal and disparate datasets (e.g. airborne and terrestrial lidar) enable high-accuracy quantification of landscape change and detailed mapping of surface processes. However, if these data are not properly managed and aligned with maximum precision, results may be spurious. Often this is due to slight differences in coordinate systems that require complex geographic transformations and systematic error that is difficult to diagnose and correct. Here we present an analysis of four airborne and three terrestrial lidar datasets collected between 2003 and 2014 that we use to quantify change at an active earthflow in Mill Gulch, Sonoma County, California. We first identify and address systematic error internal to each dataset, such as registration offset between flight lines or scan positions. We then use a variant of an iterative closest point (ICP) algorithm to align point cloud data by maximizing use of stable portions of the landscape with minimal internal error. Using products derived from the aligned point clouds, we make our geomorphic analyses. These methods may be especially useful for change detection analyses in which accurate georeferencing is unavailable, as is often the case with some terrestrial lidar or "structure from motion" data. Our results show that the Mill Gulch earthflow has been active throughout the study period. We see continuous downslope flow, ongoing incorporation of new hillslope material into the flow, sediment loss from hillslopes, episodic fluvial erosion of the earthflow toe, and an indication of increased activity during periods of high precipitation.
NASA Astrophysics Data System (ADS)
Bakuła, K.; Ostrowski, W.; Szender, M.; Plutecki, W.; Salach, A.; Górski, K.
2016-06-01
This paper presents the possibilities for using an unmanned aerial system for evaluation of the condition of levees. The unmanned aerial system is equipped with two types of sensor. One is an ultra-light laser scanner, integrated with a GNSS receiver and an INS system; the other sensor is a digital camera that acquires data with stereoscopic coverage. Sensors have been mounted on the multirotor, unmanned platform the Hawk Moth, constructed by MSP company. LiDAR data and images of levees the length of several hundred metres were acquired during testing of the platform. Flights were performed in several variants. Control points measured with the use of the GNSS technique were considered as reference data. The obtained results are presented in this paper; the methodology of processing the acquired LiDAR data, which increase in accuracy when low accuracy of the navigation systems occurs as a result of systematic errors, is also discussed. The Iterative Closest Point (ICP) algorithm, as well as measurements of control points, were used to georeference the LiDAR data. Final accuracy in the order of centimetres was obtained for generation of the digital terrain model. The final products of the proposed UAV data processing are digital elevation models, an orthophotomap and colour point clouds. The authors conclude that such a platform offers wide possibilities for low-budget flights to deliver the data, which may compete with typical direct surveying measurements performed during monitoring of such objects. However, the biggest advantage is the density and continuity of data, which allows for detection of changes in objects being monitored.
NASA Astrophysics Data System (ADS)
Benincasa, Anne B.; Clements, Logan W.; Herrell, S. Duke; Chang, Sam S.; Cookson, Michael S.; Galloway, Robert L.
2006-03-01
Currently, the removal of kidney tumor masses uses only direct or laparoscopic visualizations, resulting in prolonged procedure and recovery times and reduced clear margin. Applying current image guided surgery (IGS) techniques, as those used in liver cases, to kidney resections (nephrectomies) presents a number of complications. Most notably is the limited field of view of the intraoperative kidney surface, which constrains the ability to obtain a surface delineation that is geometrically descriptive enough to drive a surface-based registration. Two different phantom orientations were used to model the laparoscopic and traditional partial nephrectomy views. For the laparoscopic view, fiducial point sets were compiled from a CT image volume using anatomical features such as the renal artery and vein. For the traditional view, markers attached to the phantom set-up were used for fiducials and targets. The fiducial points were used to perform a point-based registration, which then served as a guide for the surface-based registration. Laser range scanner (LRS) obtained surfaces were registered to each phantom surface using a rigid iterative closest point algorithm. Subsets of each phantom's LRS surface were used in a robustness test to determine the predictability of their registrations to transform the entire surface. Results from both orientations suggest that about half of the kidney's surface needs to be obtained intraoperatively for accurate registrations between the image surface and the LRS surface, suggesting the obtained kidney surfaces were geometrically descriptive enough to perform accurate registrations. This preliminary work paves the way for further development of kidney IGS systems.
Indoor A* Pathfinding Through an Octree Representation of a Point Cloud
NASA Astrophysics Data System (ADS)
Rodenberg, O. B. P. M.; Verbree, E.; Zlatanova, S.
2016-10-01
There is a growing demand of 3D indoor pathfinding applications. Researched in the field of robotics during the last decades of the 20th century, these methods focussed on 2D navigation. Nowadays we would like to have the ability to help people navigate inside buildings or send a drone inside a building when this is too dangerous for people. What these examples have in common is that an object with a certain geometry needs to find an optimal collision free path between a start and goal point. This paper presents a new workflow for pathfinding through an octree representation of a point cloud. We applied the following steps: 1) the point cloud is processed so it fits best in an octree; 2) during the octree generation the interior empty nodes are filtered and further processed; 3) for each interior empty node the distance to the closest occupied node directly under it is computed; 4) a network graph is computed for all empty nodes; 5) the A* pathfinding algorithm is conducted. This workflow takes into account the connectivity for each node to all possible neighbours (face, edge and vertex and all sizes). Besides, a collision avoidance system is pre-processed in two steps: first, the clearance of each empty node is computed, and then the maximal crossing value between two empty neighbouring nodes is computed. The clearance is used to select interior empty nodes of appropriate size and the maximal crossing value is used to filter the network graph. Finally, both these datasets are used in A* pathfinding.
Healy, R.W.; Russell, T.F.
1992-01-01
A finite-volume Eulerian-Lagrangian local adjoint method for solution of the advection-dispersion equation is developed and discussed. The method is mass conservative and can solve advection-dominated ground-water solute-transport problems accurately and efficiently. An integrated finite-difference approach is used in the method. A key component of the method is that the integral representing the mass-storage term is evaluated numerically at the current time level. Integration points, and the mass associated with these points, are then forward tracked up to the next time level. The number of integration points required to reach a specified level of accuracy is problem dependent and increases as the sharpness of the simulated solute front increases. Integration points are generally equally spaced within each grid cell. For problems involving variable coefficients it has been found to be advantageous to include additional integration points at strategic locations in each well. These locations are determined by backtracking. Forward tracking of boundary fluxes by the method alleviates problems that are encountered in the backtracking approaches of most characteristic methods. A test problem is used to illustrate that the new method offers substantial advantages over other numerical methods for a wide range of problems.
NASA Astrophysics Data System (ADS)
Xiao, Long; Liu, Xinggao; Ma, Liang; Zhang, Zeyin
2018-03-01
Dynamic optimisation problem with characteristic times, widely existing in many areas, is one of the frontiers and hotspots of dynamic optimisation researches. This paper considers a class of dynamic optimisation problems with constraints that depend on the interior points either fixed or variable, where a novel direct pseudospectral method using Legendre-Gauss (LG) collocation points for solving these problems is presented. The formula for the state at the terminal time of each subdomain is derived, which results in a linear combination of the state at the LG points in the subdomains so as to avoid the complex nonlinear integral. The sensitivities of the state at the collocation points with respect to the variable characteristic times are derived to improve the efficiency of the method. Three well-known characteristic time dynamic optimisation problems are solved and compared in detail among the reported literature methods. The research results show the effectiveness of the proposed method.
Minimizing the average distance to a closest leaf in a phylogenetic tree.
Matsen, Frederick A; Gallagher, Aaron; McCoy, Connor O
2013-11-01
When performing an analysis on a collection of molecular sequences, it can be convenient to reduce the number of sequences under consideration while maintaining some characteristic of a larger collection of sequences. For example, one may wish to select a subset of high-quality sequences that represent the diversity of a larger collection of sequences. One may also wish to specialize a large database of characterized "reference sequences" to a smaller subset that is as close as possible on average to a collection of "query sequences" of interest. Such a representative subset can be useful whenever one wishes to find a set of reference sequences that is appropriate to use for comparative analysis of environmentally derived sequences, such as for selecting "reference tree" sequences for phylogenetic placement of metagenomic reads. In this article, we formalize these problems in terms of the minimization of the Average Distance to the Closest Leaf (ADCL) and investigate algorithms to perform the relevant minimization. We show that the greedy algorithm is not effective, show that a variant of the Partitioning Around Medoids (PAM) heuristic gets stuck in local minima, and develop an exact dynamic programming approach. Using this exact program we note that the performance of PAM appears to be good for simulated trees, and is faster than the exact algorithm for small trees. On the other hand, the exact program gives solutions for all numbers of leaves less than or equal to the given desired number of leaves, whereas PAM only gives a solution for the prespecified number of leaves. Via application to real data, we show that the ADCL criterion chooses chimeric sequences less often than random subsets, whereas the maximization of phylogenetic diversity chooses them more often than random. These algorithms have been implemented in publicly available software.
Mixed boundary value problems in mechanics
NASA Technical Reports Server (NTRS)
Erdogan, F.
1975-01-01
Certain boundary value problems were studied over a domain D which may contain the point at infinity and may be multiply connected. Contours forming the boundary are assumed to consist of piecewise smooth arcs. Mixed boundary value problems are those with points of flux singularity on the boundary; these are points on the surface, either side of which at least one of the differential operator has different behavior. The physical system was considered to be described by two quantities, the potential and the flux type quantities. Some of the examples that were illustrated included problems in potential theory and elasticity.
Collision of large dust particles with Suisei spacecraft
NASA Astrophysics Data System (ADS)
Uesugi, K.
1986-12-01
The spacecraft Suisei encountered Halley's comet at 13:05:49 UT on March 8, 1986. The closest approach distance to the comet was 151,000 km and during the time of closest approach, Suisei was hit twice by dust particles which were believed to come from the comet nucleus. Although Suisei has no dust counter or detector, the mass of these particles can be estimated by the analysis of attitude change of the spin-stabilized spacecraft perturbed by the collisions. The result shows that the minimum weight of the first particle should be several milligram and second one was several ten micrograms.
de Waal, Frans B M
2012-05-18
The view of humans as violent war-prone apes is poorly supported by archaeological evidence and only partly supported by the behavior of our closest primate relatives, chimpanzees and bonobos. Whereas the first species is marked by xenophobia, the second is relatively peaceful and highly empathic in both behavior and brain organization. Animal empathy is best regarded as a multilayered phenomenon, built around motor mirroring and shared neural representations at basal levels, that develops into more advanced cognitive perspective-taking in large-brained species. As indicated by both observational and experimental studies on our closest relatives, empathy may be the main motivator of prosocial behavior.
ERIC Educational Resources Information Center
Oluk, Sami; Ozalp, Isilay
2007-01-01
In this study, with selecting the focusing point of the problem as the availability of cartoons, the teaching of global environmental problems according to the constructivist theory is investigated on the 7th graders in rural areas. This study is restricted with the global warming (G), ozone depletion (O) and the acid rain (A) problems. In the…
Vehicle Routing Problem Using Genetic Algorithm with Multi Compartment on Vegetable Distribution
NASA Astrophysics Data System (ADS)
Kurnia, Hari; Gustri Wahyuni, Elyza; Cergas Pembrani, Elang; Gardini, Syifa Tri; Kurnia Aditya, Silfa
2018-03-01
The problem that is often gained by the industries of managing and distributing vegetables is how to distribute vegetables so that the quality of the vegetables can be maintained properly. The problems encountered include optimal route selection and little travel time or so-called TSP (Traveling Salesman Problem). These problems can be modeled using the Vehicle Routing Problem (VRP) algorithm with rating ranking, a cross order based crossing, and also order based mutation mutations on selected chromosomes. This study uses limitations using only 20 market points, 2 point warehouse (multi compartment) and 5 vehicles. It is determined that for one distribution, one vehicle can only distribute to 4 market points only from 1 particular warehouse, and also one such vehicle can only accommodate 100 kg capacity.
Secrets Revealed from Pluto Twilight Zone
2016-06-02
NASA's New Horizons spacecraft took this stunning image of Pluto only a few minutes after closest approach on July 14, 2015. The image was obtained at a high phase angle -- that is, with the sun on the other side of Pluto, as viewed by New Horizons. Seen here, sunlight filters through and illuminates Pluto's complex atmospheric haze layers. The southern portions of the nitrogen ice plains informally named Sputnik Planum, as well as mountains of the informally named Norgay Montes, can also be seen across Pluto's crescent at the top of the image. Looking back at Pluto with images like this gives New Horizons scientists information about Pluto's hazes and surface properties that they can't get from images taken on approach. The image was obtained by New Horizons' Ralph/Multispectral Visual Imaging Camera (MVIC) approximately 13,400 miles (21,550 kilometers) from Pluto, about 19 minutes after New Horizons' closest approach. The image has a resolution of 1,400 feet (430 meters) per pixel. Pluto's diameter is 1,475 miles (2,374 kilometers). The inset at top right in the annotated version shows a detail of Pluto's crescent, including an intriguing bright wisp (near the center) measuring tens of miles across that may be a discreet, low-lying cloud in Pluto's atmosphere; if so, it would be the only one yet identified in New Horizons imagery. This cloud -- if that's what it is -- is visible for the same reason the haze layers are so bright: illumination from the sunlight grazing Pluto's surface at a low angle. Atmospheric models suggest that methane clouds can occasionally form in Pluto's atmosphere. The scene in this inset is 140 miles (230 kilometers) across. The inset at bottom right shows more detail on the night side of Pluto. This terrain can be seen because it is illuminated from behind by hazes that silhouette the of the annotated version limb. The topography here appears quite rugged, and broad valleys and sharp peaks with relief totaling 3 miles (5 kilometers) are apparent. This image, made from closer range, is much better than the lower-resolution images of this same terrain taken several days before closest approach. These silhouetted terrains therefore act as a useful "anchor point," giving New Horizons scientists a rare, detailed glimpse at the lay of the land in this mysterious part of Pluto seen at high resolution only in twilight. The scene in this inset is 460 miles (750 kilometers) wide. http://photojournal.jpl.nasa.gov/catalog/PIA20727
Rocks in a Box: A Three-Point Problem.
ERIC Educational Resources Information Center
Leyden, Michael B.
1981-01-01
Describes a simulation drilling core activity involving the use of a physical model from which students gather data and solve a three-point problem to determine the strike and dip of a buried stratum. Includes descriptions of model making, data plots, and additional problems involving strike and dip. (DS)
On the complexity of a combined homotopy interior method for convex programming
NASA Astrophysics Data System (ADS)
Yu, Bo; Xu, Qing; Feng, Guochen
2007-03-01
In [G.C. Feng, Z.H. Lin, B. Yu, Existence of an interior pathway to a Karush-Kuhn-Tucker point of a nonconvex programming problem, Nonlinear Anal. 32 (1998) 761-768; G.C. Feng, B. Yu, Combined homotopy interior point method for nonlinear programming problems, in: H. Fujita, M. Yamaguti (Eds.), Advances in Numerical Mathematics, Proceedings of the Second Japan-China Seminar on Numerical Mathematics, Lecture Notes in Numerical and Applied Analysis, vol. 14, Kinokuniya, Tokyo, 1995, pp. 9-16; Z.H. Lin, B. Yu, G.C. Feng, A combined homotopy interior point method for convex programming problem, Appl. Math. Comput. 84 (1997) 193-211.], a combined homotopy was constructed for solving non-convex programming and convex programming with weaker conditions, without assuming the logarithmic barrier function to be strictly convex and the solution set to be bounded. It was proven that a smooth interior path from an interior point of the feasible set to a K-K-T point of the problem exists. This shows that combined homotopy interior point methods can solve the problem that commonly used interior point methods cannot solveE However, so far, there is no result on its complexity, even for linear programming. The main difficulty is that the objective function is not monotonically decreasing on the combined homotopy path. In this paper, by taking a piecewise technique, under commonly used conditions, polynomiality of a combined homotopy interior point method is given for convex nonlinear programming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birge, J. R.; Qi, L.; Wei, Z.
In this paper we give a variant of the Topkis-Veinott method for solving inequality constrained optimization problems. This method uses a linearly constrained positive semidefinite quadratic problem to generate a feasible descent direction at each iteration. Under mild assumptions, the algorithm is shown to be globally convergent in the sense that every accumulation point of the sequence generated by the algorithm is a Fritz-John point of the problem. We introduce a Fritz-John (FJ) function, an FJ1 strong second-order sufficiency condition (FJ1-SSOSC), and an FJ2 strong second-order sufficiency condition (FJ2-SSOSC), and then show, without any constraint qualification (CQ), that (i) ifmore » an FJ point z satisfies the FJ1-SSOSC, then there exists a neighborhood N(z) of z such that, for any FJ point y element of N(z) {l_brace}z {r_brace} , f{sub 0}(y) {ne} f{sub 0}(z) , where f{sub 0} is the objective function of the problem; (ii) if an FJ point z satisfies the FJ2-SSOSC, then z is a strict local minimum of the problem. The result (i) implies that the entire iteration point sequence generated by the method converges to an FJ point. We also show that if the parameters are chosen large enough, a unit step length can be accepted by the proposed algorithm.« less
The Uncertain Nature of Cometary Motions
NASA Technical Reports Server (NTRS)
Yeomans, Donald K.
1997-01-01
The number of active short- and long-periodic comets crossing the Earth's orbit each year is less than 10 percent of the corresponding number of asteroids crossing the Earth's orbit. However, the higher relative velocities of comets with respect to the Earth and the uncertainties associated with accurately computing their future trajectories can cause considerable problems when assessing the risks of Earth-crossing objects. Unlike asteroids, the motions of active comets are often affected by so-called nongravitational (outgassing) forces that are imperfectly modeled. In addition, the astrometric optical observations that are used to refine a comet's orbit are often imprecise because a comet's center of mass can be hidden by atmospheric gas and dust. For long-period comets, there is the additional problem of having to base orbital solutions on relatively short observational data intervals. Long-term numerical integrations extending two centuries into the future have been carried out to investigate upcoming Earth-close approaches by known periodic comets. Error analyses and impact probabilities have been computed for those comets that will pass closest to the Earth. Although there are no known comets that will make dangerously close Earth approaches in the next two centuries, there are a few objects that warrant future monitoring.
A Step-by-Step Framework on Discrete Events Simulation in Emergency Department; A Systematic Review.
Dehghani, Mahsa; Moftian, Nazila; Rezaei-Hachesu, Peyman; Samad-Soltani, Taha
2017-04-01
To systematically review the current literature of simulation in healthcare including the structured steps in the emergency healthcare sector by proposing a framework for simulation in the emergency department. For the purpose of collecting the data, PubMed and ACM databases were used between the years 2003 and 2013. The inclusion criteria were to select English-written articles available in full text with the closest objectives from among a total of 54 articles retrieved from the databases. Subsequently, 11 articles were selected for further analysis. The studies focused on the reduction of waiting time and patient stay, optimization of resources allocation, creation of crisis and maximum demand scenarios, identification of overcrowding bottlenecks, investigation of the impact of other systems on the existing system, and improvement of the system operations and functions. Subsequently, 10 simulation steps were derived from the relevant studies after an expert's evaluation. The 10-steps approach proposed on the basis of the selected studies provides simulation and planning specialists with a structured method for both analyzing problems and choosing best-case scenarios. Moreover, following this framework systematically enables the development of design processes as well as software implementation of simulation problems.
An analysis of the least-squares problem for the DSN systematic pointing error model
NASA Technical Reports Server (NTRS)
Alvarez, L. S.
1991-01-01
A systematic pointing error model is used to calibrate antennas in the Deep Space Network. The least squares problem is described and analyzed along with the solution methods used to determine the model's parameters. Specifically studied are the rank degeneracy problems resulting from beam pointing error measurement sets that incorporate inadequate sky coverage. A least squares parameter subset selection method is described and its applicability to the systematic error modeling process is demonstrated on Voyager 2 measurement distribution.
Hernández-Serrano, Olga; Font-Mayolas, Sílvia; Gras, Maria Eugènia
2015-09-15
The prevalence of polydrug use continues to grow among Spanish college students. The European Observatory for Drugs and Addictions establishes three different types of polydrug use: Pattern A (consumers of alcohol and tobacco), Pattern B (consumers of cannabis plus alcohol and/or tobacco) and Pattern C (consumers of cannabis plus alcohol plus tobacco plus at least one other kind of illegal drug). The objectives are: 1) to study the frequency of substance consumption among a sample of young Spanish undergradudates studying health and sports science according to their sex; 2) to describe the patterns of polydrug use; 3) to study the relationship between the polydrug use of the participants and polydrug use within their closest environment (parents, sisters or brothers, best friend and partner). The sample was composed of 480 Spanish undergraduates (43.7% females) aged 18 to 36. The level of drug consumption of students and their closest reference persons was evaluated by means of a self-report measure. A total of 46% of the participants reported consumption of two or more substances; among them 29.4% corresponded to Pattern A, 50.7% to Pattern B and 16.7% to Pattern C, while 3.2% corresponded to other multiple consumption patterns (alcohol + cocaine; alcohol + cocaine + tobacco; alcohol + inhalants; amphetamines + hallucinogens + Spice). An important correlation was observed concerning polydrug use between participants and their closest reference persons: the more the reference person is a multiple consumer, the more the participant tends to consume. Polydrug use within the closest environment emerges as one of the key elements to be taken into account in further prevention programs.
Pilkington, Hugo; Blondel, Béatrice; Drewniak, Nicolas; Zeitlin, Jennifer
2014-12-01
The number of maternity units has declined in France, raising concerns about the possible impact of increasing travel distances on perinatal health outcomes. We investigated impact of distance to closest maternity unit on perinatal mortality. Data from the French National Vital Statistics Registry were used to construct foetal and neonatal mortality rates over 2001-08 by distance from mother's municipality of residence and the closest municipality with a maternity unit. Data from French neonatal mortality certificates were used to compute neonatal death rates after out-of-hospital birth. Relative risks by distance were estimated, adjusting for individual and municipal-level characteristics. Seven percent of births occurred to women residing at ≥30 km from a maternity unit and 1% at ≥45 km. Foetal and neonatal mortality rates were highest for women living at <5 km from a maternity unit. For foetal mortality, rates increased at ≥45 km compared with 5-45 km. In adjusted models, long distance to a maternity unit had no impact on overall mortality but women living closer to a maternity unit had a higher risk of neonatal mortality. Neonatal deaths associated with out-of-hospital birth were rare but more frequent at longer distances. At the municipal-level, higher percentages of unemployment and foreign-born residents were associated with increased mortality. Overall mortality was not associated with living far from a maternity unit. Mortality was elevated in municipalities with social risk factors and located closest to a maternity unit, reflecting the location of maternity units in deprived areas with risk factors for poor outcome. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association.
NASA Astrophysics Data System (ADS)
Rutzinger, Martin; Bremer, Magnus; Ragg, Hansjörg
2013-04-01
Recently, terrestrial laser scanning (TLS) and matching of images acquired by unmanned arial vehicles (UAV) are operationally used for 3D geodata acquisition in Geoscience applications. However, the two systems cover different application domains in terms of acquisition conditions and data properties i.e. accuracy and line of sight. In this study we investigate the major differences between the two platforms for terrain roughness estimation. Terrain roughness is an important input for various applications such as morphometry studies, geomorphologic mapping, and natural process modeling (e.g. rockfall, avalanche, and hydraulic modeling). Data has been collected simultaneously by TLS using an Optech ILRIS3D and a rotary UAV using an octocopter from twins.nrn for a 900 m² test site located in a riverbed in Tyrol, Austria (Judenbach, Mieming). The TLS point cloud has been acquired from three scan positions. These have been registered using iterative closest point algorithm and a target-based referencing approach. For registration geometric targets (spheres) with a diameter of 20 cm were used. These targets were measured with dGPS for absolute georeferencing. The TLS point cloud has an average point density of 19,000 pts/m², which represents a point spacing of about 5 mm. 15 images where acquired by UAV in a height of 20 m using a calibrated camera with focal length of 18.3 mm. A 3D point cloud containing RGB attributes was derived using APERO/MICMAC software, by a direct georeferencing approach based on the aircraft IMU data. The point cloud is finally co-registered with the TLS data to guarantee an optimal preparation in order to perform the analysis. The UAV point cloud has an average point density of 17,500 pts/m², which represents a point spacing of 7.5 mm. After registration and georeferencing the level of detail of roughness representation in both point clouds have been compared considering elevation differences, roughness and representation of different grain sizes. UAV closes the gap between aerial and terrestrial surveys in terms of resolution and acquisition flexibility. This is also true for the data accuracy. Considering these data collection and data quality properties of both systems they have their merit on its own in terms of scale, data quality, data collection speed and application.
Sukuroglu, Ebru Emine; Sukuroglu, Suleyman; Akar, Kubra; Totik, Yasar; Efeoglu, Ihsan; Arslan, Ersin
2017-08-01
NiTi alloys exhibit good properties, such as shape memory behavior, high corrosion resistant, having the closest elasticity modulus of a human bone and superior biocompatibility properties. However, the surface problems that arise during the use of this alloy limit the usage in the industry and health sector. In recent years, micro-arc oxidation method is used to improve the surface properties and increase the usage of these alloys. In this study, the TiO 2 coatings were deposited on the NiTi substrates. The surface topography, morphology, crystallographic structure, and thickness of the coatings were determined using scanning electron microscopy and X-ray diffraction. The corrosion properties were investigated using potentiostat test unit in two different media such as NaCl solution and simulated body fluid. The results show that the coated samples have higher corrosion resistance than uncoated samples in the two different media.
Guiding Ebola patients to suitable health facilities: an SMS-based approach
Trad, Mohamad-Ali; Jurdak, Raja; Rana, Rajib
2015-01-01
Access to appropriate health services is a fundamental problem in developing countries, where patients do not have access to information and to the nearest health service facility. We propose building a recommendation system based on simple SMS text messaging to help Ebola patients readily find the closest health service with available and appropriate resources. The system will map people’s reported symptoms to likely Ebola case definitions and suitable health service locations. In addition to providing a valuable individual service to people with curable diseases, the proposed system will also predict population-level disease spread risk for infectious diseases using crowd-sourced symptoms from the population. Health workers will be able to better plan and anticipate responses to the current Ebola outbreak in West Africa. Patients will have improved access to appropriate health care. This system could also be applied in other resource poor or rich settings. PMID:25789162
SASS wind ambiguity removal by direct minimization. [Seasat-A satellite scatterometer
NASA Technical Reports Server (NTRS)
Hoffman, R. N.
1982-01-01
An objective analysis procedure is presented which combines Seasat-A satellite scatterometer (SASS) data with other available data on wind speeds by minimizing an objective function of gridded wind speed values. The functions are defined as the loss functions for the SASS velocity data, the forecast, the SASS velocity magnitude data, and conventional wind speed data. Only aliases closest to the analysis were included, and a method for improving the first guess while using a minimization technique and slowly changing the parameters of the problem is introduced. The model is employed to predict the wind field for the North Atlantic on Sept. 10, 1978. Dealiased SASS data is compared with available ship readings, showing good agreement between the SASS dealiased winds and the winds measured at the surface. Expansion of the model to take in low-level cloud measurements, pressure data, and convergence and cloud level data correlations is discussed.
Bootstrapping Security Policies for Wearable Apps Using Attributed Structural Graphs.
González-Tablas, Ana I; Tapiador, Juan E
2016-05-11
We address the problem of bootstrapping security and privacy policies for newly-deployed apps in wireless body area networks (WBAN) composed of smartphones, sensors and other wearable devices. We introduce a framework to model such a WBAN as an undirected graph whose vertices correspond to devices, apps and app resources, while edges model structural relationships among them. This graph is then augmented with attributes capturing the features of each entity together with user-defined tags. We then adapt available graph-based similarity metrics to find the closest app to a new one to be deployed, with the aim of reusing, and possibly adapting, its security policy. We illustrate our approach through a detailed smartphone ecosystem case study. Our results suggest that the scheme can provide users with a reasonably good policy that is consistent with the user's security preferences implicitly captured by policies already in place.
A Review of the Bayesian Occupancy Filter
Saval-Calvo, Marcelo; Medina-Valdés, Luis; Castillo-Secilla, José María; Cuenca-Asensi, Sergio; Martínez-Álvarez, Antonio; Villagrá, Jorge
2017-01-01
Autonomous vehicle systems are currently the object of intense research within scientific and industrial communities; however, many problems remain to be solved. One of the most critical aspects addressed in both autonomous driving and robotics is environment perception, since it consists of the ability to understand the surroundings of the vehicle to estimate risks and make decisions on future movements. In recent years, the Bayesian Occupancy Filter (BOF) method has been developed to evaluate occupancy by tessellation of the environment. A review of the BOF and its variants is presented in this paper. Moreover, we propose a detailed taxonomy where the BOF is decomposed into five progressive layers, from the level closest to the sensor to the highest abstract level of risk assessment. In addition, we present a study of implemented use cases to provide a practical understanding on the main uses of the BOF and its taxonomy. PMID:28208638
Bootstrapping Security Policies for Wearable Apps Using Attributed Structural Graphs
González-Tablas, Ana I.; Tapiador, Juan E.
2016-01-01
We address the problem of bootstrapping security and privacy policies for newly-deployed apps in wireless body area networks (WBAN) composed of smartphones, sensors and other wearable devices. We introduce a framework to model such a WBAN as an undirected graph whose vertices correspond to devices, apps and app resources, while edges model structural relationships among them. This graph is then augmented with attributes capturing the features of each entity together with user-defined tags. We then adapt available graph-based similarity metrics to find the closest app to a new one to be deployed, with the aim of reusing, and possibly adapting, its security policy. We illustrate our approach through a detailed smartphone ecosystem case study. Our results suggest that the scheme can provide users with a reasonably good policy that is consistent with the user’s security preferences implicitly captured by policies already in place. PMID:27187385
Cygnus OB2: Star Formation Ugly Duckling Causes a Flap
NASA Astrophysics Data System (ADS)
Drake, Jeremy J.; Wright, Nicholas; Guarcello, Mario
2015-08-01
Cygnus OB2 is one of the largest known OB associations in our Galaxy, with a total stellar mass of 30,000 Msun and boasting an estimated 65 O-type stars and hundreds of OB stars. At a distance of only 1.4kpc, it is also the closest truly massive star forming region and provides a valuable testbed for star and planet formation theory. We have performed a deep stellar census using observations from X-ray to infrared, which has enabled studies of sub-structuring, mass segregation and dynamics, while infrared data reveal a story of protoplanetary disk attrition in an extremely harsh radiation environment. I will discuss how Cygnus OB2 challenges the idea that stars must form in dense, compact clusters, and demonstrates that stars as massive as 100 Msun can form in relatively low-density environments. Convincing evidence of disk photoevaporation poses a potential problem for planet formation and growth in starburst environments.
Modifying PASVART to solve singular nonlinear 2-point boundary problems
NASA Technical Reports Server (NTRS)
Fulton, James P.
1988-01-01
To study the buckling and post-buckling behavior of shells and various other structures, one must solve a nonlinear 2-point boundary problem. Since closed-form analytic solutions for such problems are virtually nonexistent, numerical approximations are inevitable. This makes the availability of accurate and reliable software indispensable. In a series of papers Lentini and Pereyra, expanding on the work of Keller, developed PASVART: an adaptive finite difference solver for nonlinear 2-point boundary problems. While the program does produce extremely accurate solutions with great efficiency, it is hindered by a major limitation. PASVART will only locate isolated solutions of the problem. In buckling problems, the solution set is not unique. It will contain singular or bifurcation points, where different branches of the solution set may intersect. Thus, PASVART is useless precisely when the problem becomes interesting. To resolve this deficiency we propose a modification of PASVART that will enable the user to perform a more complete bifurcation analysis. PASVART would be combined with the Thurston bifurcation solution: as adaptation of Newton's method that was motivated by the work of Koiter 3 are reinterpreted in terms of an iterative computational method by Thurston.
Points on the Path to Probability.
ERIC Educational Resources Information Center
Kiernan, James F.
2001-01-01
Presents the problem of points and the development of the binomial triangle, or Pascal's triangle. Examines various attempts to solve this problem to give students insight into the nature of mathematical discovery. (KHR)
NASA Astrophysics Data System (ADS)
Sotin, C.; Le Mouelic, S.; Le Corre, L.; Barnes, J.; Brown, R. H.; Jaumann, R.; Buratti, B.; Baines, K.; Clark, R.; Nicholson, P.; Soderblom, L.
2008-12-01
With a field of view of 0.5 mrad per pixel, the VIMS (Visual and Infrared Mapping Spectrometer) onboard the Cassini spacecraft can acquire images with a resolution of 500 m per pixel at closest approach during a typical Titan flyby. This resolution is comparable to the resolution of the radar instrument and allows comparisons between the radar images and optical images in the six infrared windows where the surface can be observed. Such opportunities were not set up for the nominal tour before Saturn insertion. The opportunity was offered during the TA flyby [Sotin et al., Nature, 2005] and the results lead the Cassini program to give VIMS the prime observations during closest approach at the T24 and T38 flybys. Two different implementations were experienced. During the T24 flyby (01/29/2007), we used a push-broom mode allowing VIMS to image a long path before pointing to a specific site at the limit between the light and dark terrains. This observation allowed us to see the dunes and to infer some information on their composition [Barnes et al., Icarus, 2008], to image channels and to infer information of erosion processes of the bright equatorial regions [Jaumann et al., Icarus, in press] and to observe the strong correlation between radar images and the VIMS images over a bright area interpreted as a flow feature [Lopes et al., Icarus, 2007]. During the T38 flyby over Ontario Lacus (12/05/2007), it was decided to point to the lake and get different images which provide us with a set of observations obtained with different emergence angles. This observation allowed us to infer the liquid nature of the lake and the composition of the lake [Brown et al., Nature, 2008]. In addition, this mode gives good information on the atmospheric component and will help us remove that component to get better spectra of Titan's surface. During the extended mission, two observations are forecasted at the beginning and at the end of the Cassini Equinox Mission. The first one will happen on November 19, 2008. The VIMS has been programmed to observe the Huygens landing site area at a resolution of 1 km/pixel. Before and after this observation, the push-broom mode will be used in order to cross-cut some of the radar paths. Because Titan's spin rate may be different from synchronous [Stiles et al., 2007; Lorenz et al., 2008], there is some uncertainty on the pointing. This study will report on the results of this flyby. This work has been carried out at the JPL, Caltech, under contract with NASA.
Froud, Robert; Abel, Gary
2014-01-01
Background Receiver Operator Characteristic (ROC) curves are being used to identify Minimally Important Change (MIC) thresholds on scales that measure a change in health status. In quasi-continuous patient reported outcome measures, such as those that measure changes in chronic diseases with variable clinical trajectories, sensitivity and specificity are often valued equally. Notwithstanding methodologists agreeing that these should be valued equally, different approaches have been taken to estimating MIC thresholds using ROC curves. Aims and objectives We aimed to compare the different approaches used with a new approach, exploring the extent to which the methods choose different thresholds, and considering the effect of differences on conclusions in responder analyses. Methods Using graphical methods, hypothetical data, and data from a large randomised controlled trial of manual therapy for low back pain, we compared two existing approaches with a new approach that is based on the addition of the sums of squares of 1-sensitivity and 1-specificity. Results There can be divergence in the thresholds chosen by different estimators. The cut-point selected by different estimators is dependent on the relationship between the cut-points in ROC space and the different contours described by the estimators. In particular, asymmetry and the number of possible cut-points affects threshold selection. Conclusion Choice of MIC estimator is important. Different methods for choosing cut-points can lead to materially different MIC thresholds and thus affect results of responder analyses and trial conclusions. An estimator based on the smallest sum of squares of 1-sensitivity and 1-specificity is preferable when sensitivity and specificity are valued equally. Unlike other methods currently in use, the cut-point chosen by the sum of squares method always and efficiently chooses the cut-point closest to the top-left corner of ROC space, regardless of the shape of the ROC curve. PMID:25474472
Tang, Liyang
2013-04-04
The main aim of China's Health Care System Reform was to help the decision maker find the optimal solution to China's institutional problem of health care provider selection. A pilot health care provider research system was recently organized in China's health care system, and it could efficiently collect the data for determining the optimal solution to China's institutional problem of health care provider selection from various experts, then the purpose of this study was to apply the optimal implementation methodology to help the decision maker effectively promote various experts' views into various optimal solutions to this problem under the support of this pilot system. After the general framework of China's institutional problem of health care provider selection was established, this study collaborated with the National Bureau of Statistics of China to commission a large-scale 2009 to 2010 national expert survey (n = 3,914) through the organization of a pilot health care provider research system for the first time in China, and the analytic network process (ANP) implementation methodology was adopted to analyze the dataset from this survey. The market-oriented health care provider approach was the optimal solution to China's institutional problem of health care provider selection from the doctors' point of view; the traditional government's regulation-oriented health care provider approach was the optimal solution to China's institutional problem of health care provider selection from the pharmacists' point of view, the hospital administrators' point of view, and the point of view of health officials in health administration departments; the public private partnership (PPP) approach was the optimal solution to China's institutional problem of health care provider selection from the nurses' point of view, the point of view of officials in medical insurance agencies, and the health care researchers' point of view. The data collected through a pilot health care provider research system in the 2009 to 2010 national expert survey could help the decision maker effectively promote various experts' views into various optimal solutions to China's institutional problem of health care provider selection.
A comparison of skyshine computational methods.
Hertel, Nolan E; Sweezy, Jeremy E; Shultis, J Kenneth; Warkentin, J Karl; Rose, Zachary J
2005-01-01
A variety of methods employing radiation transport and point-kernel codes have been used to model two skyshine problems. The first problem is a 1 MeV point source of photons on the surface of the earth inside a 2 m tall and 1 m radius silo having black walls. The skyshine radiation downfield from the point source was estimated with and without a 30-cm-thick concrete lid on the silo. The second benchmark problem is to estimate the skyshine radiation downfield from 12 cylindrical canisters emplaced in a low-level radioactive waste trench. The canisters are filled with ion-exchange resin with a representative radionuclide loading, largely 60Co, 134Cs and 137Cs. The solution methods include use of the MCNP code to solve the problem by directly employing variance reduction techniques, the single-scatter point kernel code GGG-GP, the QADMOD-GP point kernel code, the COHORT Monte Carlo code, the NAC International version of the SKYSHINE-III code, the KSU hybrid method and the associated KSU skyshine codes.
Analysis of optimality in natural and perturbed metabolic networks
Segrè, Daniel; Vitkup, Dennis; Church, George M.
2002-01-01
An important goal of whole-cell computational modeling is to integrate detailed biochemical information with biological intuition to produce testable predictions. Based on the premise that prokaryotes such as Escherichia coli have maximized their growth performance along evolution, flux balance analysis (FBA) predicts metabolic flux distributions at steady state by using linear programming. Corroborating earlier results, we show that recent intracellular flux data for wild-type E. coli JM101 display excellent agreement with FBA predictions. Although the assumption of optimality for a wild-type bacterium is justifiable, the same argument may not be valid for genetically engineered knockouts or other bacterial strains that were not exposed to long-term evolutionary pressure. We address this point by introducing the method of minimization of metabolic adjustment (MOMA), whereby we test the hypothesis that knockout metabolic fluxes undergo a minimal redistribution with respect to the flux configuration of the wild type. MOMA employs quadratic programming to identify a point in flux space, which is closest to the wild-type point, compatibly with the gene deletion constraint. Comparing MOMA and FBA predictions to experimental flux data for E. coli pyruvate kinase mutant PB25, we find that MOMA displays a significantly higher correlation than FBA. Our method is further supported by experimental data for E. coli knockout growth rates. It can therefore be used for predicting the behavior of perturbed metabolic networks, whose growth performance is in general suboptimal. MOMA and its possible future extensions may be useful in understanding the evolutionary optimization of metabolism. PMID:12415116
The Effect of Microgravity on the Growth of Lead Tin Telluride
NASA Technical Reports Server (NTRS)
Narayanan, R.
2000-01-01
The main objective of this research was to present a model for the prediction of the effect of the microgravity environment on the growth of Lead Tin Telluride. The attitude change and its relation to the experimental objectives: The main objective for the AADSF experiment on USMP 3 involving LTT growth was to estimate the effect of ampoule orientation on the axial and radial segregation of tin telluride. As the furnace was not situated on a gimbal there was no possibility to reorient the ampoule during the flight. Instead the only way to change the growth orientation was to change the attitude of the orbiter. This was accomplished by vernier rocket firings. In what follows it must be noted that the orbiter body coordinates are such that the positive z axis points outward from the 'belly', the positive 'x' axis points outwards from the nose and the positive 'y' axis points outwards from the starboard side. The furnace which was in the pay load had its axis aligned with the orbiter's 'z' axis with the hot end closest to the shuttle body. There were basically three orientations that were desired. These corresponded to the ampoule being seen as a heated from above (thermally stable-solutally unstable) configuration, the heated from below (where the instabilities were reversed from the first orientation) configuration and an 'in between' case where the ampoule axis was misaligned with respect to the orbiters 'g(sub z)' axis.
NASA Astrophysics Data System (ADS)
Cai, Jingya; Pang, Zhiguo; Fu, Jun'e.
2018-04-01
To quantitatively analyze the spatial features of a cosmic-ray sensor (CRS) (i.e., the measurement support volume of the CRS and the weight of the in situ point-scale soil water content (SWC) in terms of the regionally averaged SWC derived from the CRS) in measuring the SWC, cooperative observations based on CRS, oven drying and frequency domain reflectometry (FDR) methods are performed at the point and regional scales in a desert steppe area of the Inner Mongolia Autonomous Region. This region is flat with sparse vegetation cover consisting of only grass, thereby minimizing the effects of terrain and vegetation. Considering the two possibilities of the measurement support volume of the CRS, the results of four weighting methods are compared with the SWC monitored by FDR within an appropriate measurement support volume. The weighted average calculated using the neutron intensity-based weighting method (Ni weighting method) best fits the regionally averaged SWC measured by the CRS. Therefore, we conclude that the gyroscopic support volume and the weights determined by the Ni weighting method are the closest to the actual spatial features of the CRS when measuring the SWC. Based on these findings, a scale transformation model of the SWC from the point scale to the scale of the CRS measurement support volume is established. In addition, the spatial features simulated using the Ni weighting method are visualized by developing a software system.
A novel ultrasound-guided shoulder arthroscopic surgery
NASA Astrophysics Data System (ADS)
Tyryshkin, K.; Mousavi, P.; Beek, M.; Chen, T.; Pichora, D.; Abolmaesumi, P.
2006-03-01
This paper presents a novel ultrasound-guided computer system for arthroscopic surgery of the shoulder joint. Intraoperatively, the system tracks and displays the surgical instruments, such as arthroscope and arthroscopic burrs, relative to the anatomy of the patient. The purpose of this system is to improve the surgeon's perception of the three-dimensional space within the anatomy of the patient in which the instruments are manipulated and to provide guidance towards the targeted anatomy. Pre-operatively, computed tomography images of the patient are acquired to construct virtual threedimensional surface models of the shoulder bone structure. Intra-operatively, live ultrasound images of pre-selected regions of the shoulder are captured using an ultrasound probe whose three-dimensional position is tracked by an optical camera. These images are used to register the surface model to the anatomy of the patient in the operating room. An initial alignment is obtained by matching at least three points manually selected on the model to their corresponding points identified on the ultrasound images. The registration is then improved with an iterative closest point or a sequential least squares estimation technique. In the present study the registration results of these techniques are compared. After the registration, surgical instruments are displayed relative to the surface model of the patient on a graphical screen visible to the surgeon. Results of laboratory experiments on a shoulder phantom indicate acceptable registration results and sufficiently fast overall system performance to be applicable in the operating room.
Arecibo Observatory Radar Imagery of Phaethon Asteroid
2017-12-22
These radar images of near-Earth asteroid 3200 Phaethon were generated by astronomers at the National Science Foundation's Arecibo Observatory on Dec. 17, 2017. Observations of Phaethon were conducted at Arecibo from Dec.15 through 19, 2017. At time of closest approach on Dec. 16 at 3 p.m. PST (6 p.m. EST, 11 p.m. UTC) the asteroid was about 6.4 million miles (10.3 million kilometers) away, or about 27 times the distance from Earth to the moon. The encounter is the closest the object will come to Earth until 2093. An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22185
Using CRANID to test the population affinity of known crania.
Kallenberger, Lauren; Pilbrow, Varsha
2012-11-01
CRANID is a statistical program used to infer the source population of a cranium of unknown origin by comparing its cranial dimensions with a worldwide craniometric database. It has great potential for estimating ancestry in archaeological, forensic and repatriation cases. In this paper we test the validity of CRANID in classifying crania of known geographic origin. Twenty-three crania of known geographic origin but unknown sex were selected from the osteological collections of the University of Melbourne. Only 18 crania showed good statistical match with the CRANID database. Without considering accuracy of sex allocation, 11 crania were accurately classified into major geographic regions and nine were correctly classified to geographically closest available reference populations. Four of the five crania with poor statistical match were nonetheless correctly allocated to major geographical regions, although none was accurately assigned to geographically closest reference samples. We conclude that if sex allocations are overlooked, CRANID can accurately assign 39% of specimens to geographically closest matching reference samples and 48% to major geographic regions. Better source population representation may improve goodness of fit, but known sex-differentiated samples are needed to further test the utility of CRANID. © 2012 The Authors Journal of Anatomy © 2012 Anatomical Society.
Tetrahedrality and hydrogen bonds in water
NASA Astrophysics Data System (ADS)
Székely, Eszter; Varga, Imre K.; Baranyai, András
2016-06-01
We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.
Building a LiDAR point cloud simulator: Testing algorithms for high resolution topographic change
NASA Astrophysics Data System (ADS)
Carrea, Dario; Abellán, Antonio; Derron, Marc-Henri; Jaboyedoff, Michel
2014-05-01
Terrestrial laser technique (TLS) is becoming a common tool in Geosciences, with clear applications ranging from the generation of a high resolution 3D models to the monitoring of unstable slopes and the quantification of morphological changes. Nevertheless, like every measurement techniques, TLS still has some limitations that are not clearly understood and affect the accuracy of the dataset (point cloud). A challenge in LiDAR research is to understand the influence of instrumental parameters on measurement errors during LiDAR acquisition. Indeed, different critical parameters interact with the scans quality at different ranges: the existence of shadow areas, the spatial resolution (point density), and the diameter of the laser beam, the incidence angle and the single point accuracy. The objective of this study is to test the main limitations of different algorithms usually applied on point cloud data treatment, from alignment to monitoring. To this end, we built in MATLAB(c) environment a LiDAR point cloud simulator able to recreate the multiple sources of errors related to instrumental settings that we normally observe in real datasets. In a first step we characterized the error from single laser pulse by modelling the influence of range and incidence angle on single point data accuracy. In a second step, we simulated the scanning part of the system in order to analyze the shifting and angular error effects. Other parameters have been added to the point cloud simulator, such as point spacing, acquisition window, etc., in order to create point clouds of simple and/or complex geometries. We tested the influence of point density and vitiating point of view on the Iterative Closest Point (ICP) alignment and also in some deformation tracking algorithm with same point cloud geometry, in order to determine alignment and deformation detection threshold. We also generated a series of high resolution point clouds in order to model small changes on different environments (erosion, landslide monitoring, etc) and we then tested the use of filtering techniques using 3D moving windows along the space and time, which considerably reduces data scattering due to the benefits of data redundancy. In conclusion, the simulator allowed us to improve our different algorithms and to understand how instrumental error affects final results. And also, improve the methodology of scans acquisition to find the best compromise between point density, positioning and acquisition time with the best accuracy possible to characterize the topographic change.
Spacecraft Station-Keeping Trajectory and Mission Design Tools
NASA Technical Reports Server (NTRS)
Chung, Min-Kun J.
2009-01-01
Two tools were developed for designing station-keeping trajectories and estimating delta-v requirements for designing missions to a small body such as a comet or asteroid. This innovation uses NPOPT, a non-sparse, general-purpose sequential quadratic programming (SQP) optimizer and the Two-Level Differential Corrector (T-LDC) in LTool (Libration point mission design Tool) to design three kinds of station-keeping scripts: vertical hovering, horizontal hovering, and orbiting. The T-LDC is used to differentially correct several trajectory legs that join hovering points. In a vertical hovering, the maximum and minimum range points must be connected smoothly while maintaining the spacecrafts range from a small body, all within the law of gravity and the solar radiation pressure. The same is true for a horizontal hover. A PatchPoint is an LTool class that denotes a space-time event with some extra information for differential correction, including a set of constraints to be satisfied by T-LDC. Given a set of PatchPoints, each with its own constraint, the T-LDC differentially corrects the entire trajectory by connecting each trajectory leg joined by PatchPoints while satisfying all specified constraints at the same time. Vertical and horizontal hover both are needed to minimize delta-v spent for station keeping. A Python I/F to NPOPT has been written to be used from an LTool script. In vertical hovering, the spacecraft stays along the line joining the Sun and a small body. An instantaneous delta-v toward the anti- Sun direction is applied at the closest approach to the small body for station keeping. For example, the spacecraft hovers between the minimum range (2 km) point and the maximum range (2.5 km) point from the asteroid 1989ML. Horizontal hovering buys more time for a spacecraft to recover if, for any reason, a planned thrust fails, by returning almost to the initial position after some time later via a near elliptical orbit around the small body. The mapping or staging orbit may be similarly generated using T-LDC with a set of constraints. Some delta-v tables are generated for several different asteroid masses.
Locating CVBEM collocation points for steady state heat transfer problems
Hromadka, T.V.
1985-01-01
The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.
NASA Technical Reports Server (NTRS)
Fadel, G. M.
1991-01-01
The point exponential approximation method was introduced by Fadel et al. (Fadel, 1990), and tested on structural optimization problems with stress and displacement constraints. The reports in earlier papers were promising, and the method, which consists of correcting Taylor series approximations using previous design history, is tested in this paper on optimization problems with frequency constraints. The aim of the research is to verify the robustness and speed of convergence of the two point exponential approximation method when highly non-linear constraints are used.
Pearce, J; Mason, K; Hiscock, R; Day, P
2008-10-01
To investigate associations between neighbourhood accessibility to gambling outlets (non-casino gaming machine locations, sports betting venues and casinos) and individual gambling behaviour in New Zealand. A Geographical Information Systems (GIS) measure of neighbourhood access to gambling venues. Two-level logistic regression models were fitted to examine the effects of neighbourhood access on individual gambling behaviour after controlling for potential individual- and neighbourhood-level confounding factors. 38,350 neighbourhoods across New Zealand. 12,529 respondents of the 2002/03 New Zealand Health Survey. Compared with those living in the quartile of neighbourhoods with the furthest access to a gambling venue, residents living in the quartile of neighbourhoods with the closest access were more likely (adjusted for age, sex, socio-economic status at the individual-level and deprivation, urban/rural status at the neighbourhood-level) to be a gambler (OR 1.60, 95% CI 1.20 to 2.15) or problem gambler (OR 2.70, 95% CI 1.03 to 7.05). When examined independently, neighbourhood access to venues with non-casino gaming machines (gambling: OR 1.67, 95% CI 1.28 to 2.18; problem gambling: OR 2.71, 95% CI 1.45 to 5.07) and sports betting venues (gambling: OR 1.67, 95% CI 1.28 to 2.18; problem gambling: OR 2.71, 95% CI 1.45 to 5.07) were similarly related. Neighbourhood access to opportunities for gambling is related to gambling and problem gambling behaviour, and contributes substantially to neighbourhood inequalities in gambling over and above-individual level characteristics.
2014-01-01
Background School drop-out is a problem all over the world with adverse life-course consequences. The aim of this paper is to study how internalising and externalising problems in the 10th grade are associated with non-completion of upper secondary school, and to examine the mediating role of grade points in the 10th grade across general academic and vocational tracks in upper secondary school. We also study the impact of health behaviour. Methods Population-based health surveys were linked with Norwegian registries on education and sociodemographic factors (n = 10 931). Mental health was assessed by the self-report Strengths and Difficulties Questionnaire. Logistic regression was used to analyse the relations between mental health and health behaviour in 10th grade and non-completion of upper secondary school. The mediating effect of grade points was studied by causal mediation analysis. Results Adolescents not completing upper secondary school reported more externalising problems and girls more internalising problems in the 10th grade, after adjustments. Smoking and physical inactivity increased the odds of non-completion of upper secondary school. Causal mediation analyses showed that a reduction in externalising problems of 10 percentage points led to lower rates of non-completion of 4–5 percentage points, and about three-quarters of this total effect was mediated by grades. For internalising problems the total effect was significant only for girls (1 percentage point), and the mediated effect of grades was about 30%. The effect of mental health problems on school dropout was mainly the same in both vocational and general tracks. Conclusions Assuming a causal relationship from mental health problems to school performance, this study suggests that externalising problems impair educational attainment. A reduction of such problems may improve school performance, reduce school drop-out and reduce the adverse life-course consequences. PMID:24406098
On the existence of touch points for first-order state inequality constraints
NASA Technical Reports Server (NTRS)
Seywald, Hans; Cliff, Eugene M.
1993-01-01
The appearance of touch points in state constrained optimal control problems with general vector-valued control is studied. Under the assumption that the Hamiltonian is regular, touch points for first-order state inequalities are shown to exist only under very special conditions. In many cases of practical importance these conditions can be used to exclude touch points a priori without solving an optimal control problem. The results are demonstrated on a simple example.
Fan, Zhencheng; Weng, Yitong; Chen, Guowen; Liao, Hongen
2017-07-01
Three-dimensional (3D) visualization of preoperative and intraoperative medical information becomes more and more important in minimally invasive surgery. We develop a 3D interactive surgical visualization system using mobile spatial information acquisition and autostereoscopic display for surgeons to observe surgical target intuitively. The spatial information of regions of interest (ROIs) is captured by the mobile device and transferred to a server for further image processing. Triangular patches of intraoperative data with texture are calculated with a dimension-reduced triangulation algorithm and a projection-weighted mapping algorithm. A point cloud selection-based warm-start iterative closest point (ICP) algorithm is also developed for fusion of the reconstructed 3D intraoperative image and the preoperative image. The fusion images are rendered for 3D autostereoscopic display using integral videography (IV) technology. Moreover, 3D visualization of medical image corresponding to observer's viewing direction is updated automatically using mutual information registration method. Experimental results show that the spatial position error between the IV-based 3D autostereoscopic fusion image and the actual object was 0.38±0.92mm (n=5). The system can be utilized in telemedicine, operating education, surgical planning, navigation, etc. to acquire spatial information conveniently and display surgical information intuitively. Copyright © 2017 Elsevier Inc. All rights reserved.
[Measurement of scatter radiation on MDCT equipment using an OSL dosimeter].
Tomita, Hironobu; Morozumi, Kunihiko
2004-11-01
The recent introduction of multi-detector row computed tomography (MDCT) has made it possible to scan the entire abdomen within approximately 10 sec in procedures such as interventional radiology computed tomography (IVRCT), which are associated with operator exposure. Therefore, anxious patients and patients who are not able to remain still can be examined with an assistant. In the present study, radiation exposure to the assistant was estimated, and the distribution of scattered radiation near the gantry was measured using an optically stimulated luminescence (OSL) dosimeter. Simultaneous measurements were obtained using a direction storage (DIS) dosimeter for reference. The maximum value of 1.47 mSv per examination was obtained at the point closest to the gantry's center (50 cm from the center at a height of 150 cm above the floor) . In addition, scattered radiation decreased as the measurement point was moved further from the gantry's center, falling below the limit of detection (0.1 mSv or less) at 200 cm and at the sides of the gantry. OSL dosimeters are also employed as personal dosimeters, permitting reliable values to be obtained easily. They were found to be an effective tool for the measurement of scattered radiation, as in the present study, helping to provide better understanding of the distribution of scattered radiation within the CT room.
NASA Astrophysics Data System (ADS)
Banesh, D.; Oskin, M. E.; Mu, A.; Vu, C.; Westerteiger, R.; Krishnan, A.; Hamann, B.; Glennie, C. L.; Hinojosa, A.; Borsa, A. A.
2013-12-01
Differential LiDAR provides unprecedented images of the near-field ground deformation and fault slip due to earthquakes. Here we examine the performance of the Iterative Closest Point (ICP) technique for data registration between pre- and post-earthquake LiDAR point clouds of varying density. We use the 2010 El Mayor-Cucapah data set as our region of interest since this earthquake produced different types of surface ruptures, yielding a variety of deformation styles for analysis. We also test a more simplistic, Chi-Squared minimization approach and find that it produces good results when compared to ICP. We present different techniques for visualizing large vector fields, and show how each method highlights a unique feature in the data set. Dense vector fields are useful when analyzing smaller deformations in the surface. A sparse, averaged vector field analyzes the bigger, overall shifts without interference caused by small details. Flow-based visualizations like Line Integral Convolution (LIC) graphs, provide insight into particular artifacts of data collection, such as distortions due to uncorrected pitch and yaw of the aircraft during the survey. Animations of the vector field establish the direction of movement in the landscape, quickly highlighting areas of interest.
Sitnikov cyclic configuration of N+1-body problem
NASA Astrophysics Data System (ADS)
Shahbaz Ullah, M.; Hassan, M. R.
2014-12-01
This manuscript deals with the generalisation of all previous works on series solutions and linear stability of equilibrium points of the Sitnikov problem. Following Giacaglia (1967), in Sect. 2 we have derived the equation of motion of the infinitesimal mass moving along the z-axis about which the plane of motion is rotating with unit angular velocity. In Sects. 3, 4 and 5 the series solutions of the Sitnikov problem have been developed by the method of MacMillan, Lindstedt-Poincaré and iteration of Green's function respectively. In Sect. 6 the three series solutions have been compared graphically by putting N=2, 3, 4. In Sect. 7 the coordinates of equilibrium points have been calculated. In Sect. 8 the linear stability of equilibrium points has been examined by the method of Murray and Dermott (Solar System Dynamics, Cambridge University Press, Cambridge, 1999) and it was found that the equilibrium points are stable in Sitnikov problem.
Mapping Fearscapes of a Mammalian Herbivore using Terrestrial LiDAR and UAV Imagery
NASA Astrophysics Data System (ADS)
Olsoy, P.; Nobler, J. D.; Forbey, J.; Rachlow, J. L.; Burgess, M. A.; Glenn, N. F.; Shipley, L. A.
2013-12-01
Concealment allows prey animals to remain hidden from a predator and can influence both real and perceived risks of predation. The heterogeneous nature of vegetative structure can create a variable landscape of concealment - a 'fearscape' - that may influence habitat quality and use by prey. Traditional measurements of concealment rely on a limited number of distances, heights, and vantage points, resulting in small snapshots of concealment available to a prey animal. Our objective was to demonstrate the benefits of emerging remote sensing techniques to map fearscapes for pygmy rabbits (Brachylagus idahoensis) in sagebrush steppe habitat across a continuous range of scales. Specifically, we used vegetation height rasters derived from terrestrial laser scanning (TLS) to create viewsheds from multiple vantage points, representing predator visibility. The sum of all the viewsheds modeled horizontal concealment of prey at both the shrub and patch scales. We also used a small, unmanned aerial vehicle (UAV) to determine vertical concealment at a habitat scale. Terrestrial laser scanning provided similar estimates of horizontal concealment at the shrub scale when compared to photographic methods (R2 = 0.85). Both TLS and UAV provide the potential to quantify concealment of prey from multiple distances, heights, or vantage points, allowing the creation of a manipulable fearscape map that can be correlated with habitat use by prey animals. The predictive power of such a map also could identify shrubs or patches for fine scale nutritional and concealment analysis for future investigation and conservation efforts. Fearscape map at the mound-scale. Viewsheds were calculated from 100 equally spaced observer points located 4 m from the closest on-mound sagebrush of interest. Red areas offer low concealment, while green areas provide high concealment.
a Weighted Closed-Form Solution for Rgb-D Data Registration
NASA Astrophysics Data System (ADS)
Vestena, K. M.; Dos Santos, D. R.; Oilveira, E. M., Jr.; Pavan, N. L.; Khoshelham, K.
2016-06-01
Existing 3D indoor mapping of RGB-D data are prominently point-based and feature-based methods. In most cases iterative closest point (ICP) and its variants are generally used for pairwise registration process. Considering that the ICP algorithm requires an relatively accurate initial transformation and high overlap a weighted closed-form solution for RGB-D data registration is proposed. In this solution, we weighted and normalized the 3D points based on the theoretical random errors and the dual-number quaternions are used to represent the 3D rigid body motion. Basically, dual-number quaternions provide a closed-form solution by minimizing a cost function. The most important advantage of the closed-form solution is that it provides the optimal transformation in one-step, it does not need to calculate good initial estimates and expressively decreases the demand for computer resources in contrast to the iterative method. Basically, first our method exploits RGB information. We employed a scale invariant feature transformation (SIFT) for extracting, detecting, and matching features. It is able to detect and describe local features that are invariant to scaling and rotation. To detect and filter outliers, we used random sample consensus (RANSAC) algorithm, jointly with an statistical dispersion called interquartile range (IQR). After, a new RGB-D loop-closure solution is implemented based on the volumetric information between pair of point clouds and the dispersion of the random errors. The loop-closure consists to recognize when the sensor revisits some region. Finally, a globally consistent map is created to minimize the registration errors via a graph-based optimization. The effectiveness of the proposed method is demonstrated with a Kinect dataset. The experimental results show that the proposed method can properly map the indoor environment with an absolute accuracy around 1.5% of the travel of a trajectory.
ERIC Educational Resources Information Center
Shultz, Harris S.; Shiflett, Ray C.
2008-01-01
Students were asked to find all possible values for A so that the points (1, 2), (5, A), and (A, 7) lie on a straight line. This problem suggests a generalization: Given (x, y), find all values of A so that the points (x, y), (5, A), and (A, 7) lie on a straight line. We find that this question about linear equations must be resolved using the…
Flights between a neighborhoods of unstable libration points of Sun-Earth system
NASA Astrophysics Data System (ADS)
Surkova, Valerya; Shmyrov, Vasily
2018-05-01
In this paper we study the problem of constructing impulse flights between neighborhoods of unstable collinear libration points of the Sun-Earth system [1]. Such maneuvering in near-Earth space may prove to be in demand in modern space navigation. For example, such a maneuvering was done by the space vehicle GENESIS. Three test points are chosen for the implementation of the impulse control, in order to move to a neighborhood of the libration point L2. It is shown that the earlier on the exit from the vicinity of the libration point L1 impulse control was realized, the sooner the neighborhood L2 was achieved. Separated from this problem, the problem of optimal control in the neighborhood of L2 was considered and a form of stabilizing control is presented.
Verification of floating-point software
NASA Technical Reports Server (NTRS)
Hoover, Doug N.
1990-01-01
Floating point computation presents a number of problems for formal verification. Should one treat the actual details of floating point operations, or accept them as imprecisely defined, or should one ignore round-off error altogether and behave as if floating point operations are perfectly accurate. There is the further problem that a numerical algorithm usually only approximately computes some mathematical function, and we often do not know just how good the approximation is, even in the absence of round-off error. ORA has developed a theory of asymptotic correctness which allows one to verify floating point software with a minimum entanglement in these problems. This theory and its implementation in the Ariel C verification system are described. The theory is illustrated using a simple program which finds a zero of a given function by bisection. This paper is presented in viewgraph form.
Path optimization method for the sign problem
NASA Astrophysics Data System (ADS)
Ohnishi, Akira; Mori, Yuto; Kashiwa, Kouji
2018-03-01
We propose a path optimization method (POM) to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t)(f ɛ R) and by optimizing f(t) to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
Optimal Control Problems with Switching Points. Ph.D. Thesis, 1990 Final Report
NASA Technical Reports Server (NTRS)
Seywald, Hans
1991-01-01
The main idea of this report is to give an overview of the problems and difficulties that arise in solving optimal control problems with switching points. A brief discussion of existing optimality conditions is given and a numerical approach for solving the multipoint boundary value problems associated with the first-order necessary conditions of optimal control is presented. Two real-life aerospace optimization problems are treated explicitly. These are altitude maximization for a sounding rocket (Goddard Problem) in the presence of a dynamic pressure limit, and range maximization for a supersonic aircraft flying in the vertical, also in the presence of a dynamic pressure limit. In the second problem singular control appears along arcs with active dynamic pressure limit, which in the context of optimal control, represents a first-order state inequality constraint. An extension of the Generalized Legendre-Clebsch Condition to the case of singular control along state/control constrained arcs is presented and is applied to the aircraft range maximization problem stated above. A contribution to the field of Jacobi Necessary Conditions is made by giving a new proof for the non-optimality of conjugate paths in the Accessory Minimum Problem. Because of its simple and explicit character, the new proof may provide the basis for an extension of Jacobi's Necessary Condition to the case of the trajectories with interior point constraints. Finally, the result that touch points cannot occur for first-order state inequality constraints is extended to the case of vector valued control functions.
A noniterative greedy algorithm for multiframe point correspondence.
Shafique, Khurram; Shah, Mubarak
2005-01-01
This paper presents a framework for finding point correspondences in monocular image sequences over multiple frames. The general problem of multiframe point correspondence is NP-hard for three or more frames. A polynomial time algorithm for a restriction of this problem is presented and is used as the basis of the proposed greedy algorithm for the general problem. The greedy nature of the proposed algorithm allows it to be used in real-time systems for tracking and surveillance, etc. In addition, the proposed algorithm deals with the problems of occlusion, missed detections, and false positives by using a single noniterative greedy optimization scheme and, hence, reduces the complexity of the overall algorithm as compared to most existing approaches where multiple heuristics are used for the same purpose. While most greedy algorithms for point tracking do not allow for entry and exit of the points from the scene, this is not a limitation for the proposed algorithm. Experiments with real and synthetic data over a wide range of scenarios and system parameters are presented to validate the claims about the performance of the proposed algorithm.
Implementing direct, spatially isolated problems on transputer networks
NASA Technical Reports Server (NTRS)
Ellis, Graham K.
1988-01-01
Parametric studies were performed on transputer networks of up to 40 processors to determine how to implement and maximize the performance of the solution of problems where no processor-to-processor data transfer is required for the problem solution (spatially isolated). Two types of problems are investigated a computationally intensive problem where the solution required the transmission of 160 bytes of data through the parallel network, and a communication intensive example that required the transmission of 3 Mbytes of data through the network. This data consists of solutions being sent back to the host processor and not intermediate results for another processor to work on. Studies were performed on both integer and floating-point transputers. The latter features an on-chip floating-point math unit and offers approximately an order of magnitude performance increase over the integer transputer on real valued computations. The results indicate that a minimum amount of work is required on each node per communication to achieve high network speedups (efficiencies). The floating-point processor requires approximately an order of magnitude more work per communication than the integer processor because of the floating-point unit's increased computing capacity.
2013-01-01
Background The main aim of China’s Health Care System Reform was to help the decision maker find the optimal solution to China’s institutional problem of health care provider selection. A pilot health care provider research system was recently organized in China’s health care system, and it could efficiently collect the data for determining the optimal solution to China’s institutional problem of health care provider selection from various experts, then the purpose of this study was to apply the optimal implementation methodology to help the decision maker effectively promote various experts’ views into various optimal solutions to this problem under the support of this pilot system. Methods After the general framework of China’s institutional problem of health care provider selection was established, this study collaborated with the National Bureau of Statistics of China to commission a large-scale 2009 to 2010 national expert survey (n = 3,914) through the organization of a pilot health care provider research system for the first time in China, and the analytic network process (ANP) implementation methodology was adopted to analyze the dataset from this survey. Results The market-oriented health care provider approach was the optimal solution to China’s institutional problem of health care provider selection from the doctors’ point of view; the traditional government’s regulation-oriented health care provider approach was the optimal solution to China’s institutional problem of health care provider selection from the pharmacists’ point of view, the hospital administrators’ point of view, and the point of view of health officials in health administration departments; the public private partnership (PPP) approach was the optimal solution to China’s institutional problem of health care provider selection from the nurses’ point of view, the point of view of officials in medical insurance agencies, and the health care researchers’ point of view. Conclusions The data collected through a pilot health care provider research system in the 2009 to 2010 national expert survey could help the decision maker effectively promote various experts’ views into various optimal solutions to China’s institutional problem of health care provider selection. PMID:23557082
Shortest path problem on a grid network with unordered intermediate points
NASA Astrophysics Data System (ADS)
Saw, Veekeong; Rahman, Amirah; Eng Ong, Wen
2017-10-01
We consider a shortest path problem with single cost factor on a grid network with unordered intermediate points. A two stage heuristic algorithm is proposed to find a feasible solution path within a reasonable amount of time. To evaluate the performance of the proposed algorithm, computational experiments are performed on grid maps of varying size and number of intermediate points. Preliminary results for the problem are reported. Numerical comparisons against brute forcing show that the proposed algorithm consistently yields solutions that are within 10% of the optimal solution and uses significantly less computation time.
García, Luis I; Lechuga, Julia; Zea, María Cecilia
2012-01-01
Individuals who disclose their sexual orientation are more likely to also disclose their HIV status. Disclosure of HIV-serostatus is associated with better health outcomes. The goal of this study was to build and test comprehensive models of sexual orientation that included eight theory-informed predictors of disclosure to mothers, fathers, and closest friends in a sample of HIV-positive Latino gay and bisexual men. US acculturation, gender nonconformity to hegemonic masculinity in self-presentation, comfort with sexual orientation, gay community involvement, satisfaction with social support, sexual orientation and gender of the closest friend emerged as significant predictors of disclosure of sexual orientation.
Lechuga, Julia; Zea, María Cecilia
2012-01-01
Individuals who disclose their sexual orientation are more likely to also disclose their HIV status. Disclosure of HIV-serostatus is associated with better health outcomes. The goal of this study was to build and test comprehensive models of sexual orientation that included 8 theory-informed predictors of disclosure to mothers, fathers, and closest friends in a sample of HIV-positive Latino gay and bisexual men. US acculturation, gender non-conformity to hegemonic masculinity in self-presentation, comfort with sexual orientation, gay community involvement, satisfaction with social support, sexual orientation and gender of the closest friend emerged as significant predictors of disclosure of sexual orientation. PMID:22690708
Artificial equilibrium points for a generalized sail in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Aliasi, Generoso; Mengali, Giovanni; Quarta, Alessandro A.
2012-10-01
Different types of propulsion systems with continuous and purely radial thrust, whose modulus depends on the distance from a massive body, may be conveniently described within a single mathematical model by means of the concept of generalized sail. This paper discusses the existence and stability of artificial equilibrium points maintained by a generalized sail within an elliptic restricted three-body problem. Similar to the classical case in the absence of thrust, a generalized sail guarantees the existence of equilibrium points belonging only to the orbital plane of the two primaries. The geometrical loci of existing artificial equilibrium points are shown to coincide with those obtained for the circular three body problem when a non-uniformly rotating and pulsating coordinate system is chosen to describe the spacecraft motion. However, the generalized sail has to provide a periodically variable acceleration to maintain a given artificial equilibrium point. A linear stability analysis of the artificial equilibrium points is provided by means of the Floquet theory.
Mikš, Antonín; Novák, Pavel
2017-09-01
The paper is focused on the problem of determination of the point of incidence of a light ray for the case of reflection or refraction at the spherical optical surface, assuming that two fixed points in space that the sought light ray should go through are given. The requirement is that one of these points lies on the incident ray and the other point on the reflected/refracted ray. Although at first glance it seems to be a simple problem, it will be shown that it has no simple analytical solution. The basic idea of the solution is given, and it is shown that the problem leads to a nonlinear equation in one variable. The roots of the resulting nonlinear equation can be found by numerical methods of mathematical optimization. The proposed methods were implemented in MATLAB, and the proper function of these algorithms was verified on several examples.
Determination system for solar cell layout in traffic light network using dominating set
NASA Astrophysics Data System (ADS)
Eka Yulia Retnani, Windi; Fambudi, Brelyanes Z.; Slamin
2018-04-01
Graph Theory is one of the fields in Mathematics that solves discrete problems. In daily life, the applications of Graph Theory are used to solve various problems. One of the topics in the Graph Theory that is used to solve the problem is the dominating set. The concept of dominating set is used, for example, to locate some objects systematically. In this study, the dominating set are used to determine the dominating points for solar panels, where the vertex represents the traffic light point and the edge represents the connection between the points of the traffic light. To search the dominating points for solar panels using the greedy algorithm. This algorithm is used to determine the location of solar panel. This research produced applications that can determine the location of solar panels with optimal results, that is, the minimum dominating points.
An improved DPSM technique for modelling ultrasonic fields in cracked solids
NASA Astrophysics Data System (ADS)
Banerjee, Sourav; Kundu, Tribikram; Placko, Dominique
2007-04-01
In recent years Distributed Point Source Method (DPSM) is being used for modelling various ultrasonic, electrostatic and electromagnetic field modelling problems. In conventional DPSM several point sources are placed near the transducer face, interface and anomaly boundaries. The ultrasonic or the electromagnetic field at any point is computed by superimposing the contributions of different layers of point sources strategically placed. The conventional DPSM modelling technique is modified in this paper so that the contributions of the point sources in the shadow region can be removed from the calculations. For this purpose the conventional point sources that radiate in all directions are replaced by Controlled Space Radiation (CSR) sources. CSR sources can take care of the shadow region problem to some extent. Complete removal of the shadow region problem can be achieved by introducing artificial interfaces. Numerically synthesized fields obtained by the conventional DPSM technique that does not give any special consideration to the point sources in the shadow region and the proposed modified technique that nullifies the contributions of the point sources in the shadow region are compared. One application of this research can be found in the improved modelling of the real time ultrasonic non-destructive evaluation experiments.
Duncan, Dustin T; Kawachi, Ichiro; Subramanian, S V; Aldstadt, Jared; Melly, Steven J; Williams, David R
2014-02-01
Measurements of neighborhood exposures likely vary depending on the definition of "neighborhood" selected. This study examined the extent to which neighborhood definition influences findings regarding spatial accessibility to tobacco retailers among youth. We defined spatial accessibility to tobacco retailers (i.e., tobacco retail density, closest tobacco retailer, and average distance to the closest 5 tobacco retailers) on the basis of circular and network buffers of 400 m and 800 m, census block groups, and census tracts by using residential addresses from the 2008 Boston Youth Survey Geospatial Dataset (n = 1,292). Friedman tests (to compare overall differences in neighborhood definitions) were applied. There were differences in measurements of youths' access to tobacco retailers according to the selected neighborhood definitions, and these were marked for the 2 spatial proximity measures (both P < 0.01 for all differences). For example, the median average distance to the closest 5 tobacco retailers was 381.50 m when using specific home addresses, 414.00 m when using census block groups, and 482.50 m when using census tracts, illustrating how neighborhood definition influences the measurement of spatial accessibility to tobacco retailers. These analyses suggest that, whenever possible, egocentric neighborhood definitions should be used. The use of larger administrative neighborhood definitions can bias exposure estimates for proximity measures.
Attar-Schwartz, Shalhevet; Khoury-Kassabri, Mona
2016-01-01
A growing body of research has shown the positive contribution of grandparents to adolescents' well-being. However, studies often overlook the cultural context in which this relationship is embedded. The current study examined whether emotional closeness to the grandparent identified by the adolescents as their closest grandparent varied among Arab and Jewish adolescents and whether cultural affiliation serves as a moderator in the association between emotional closeness to grandparents and adolescent adjustment difficulties and prosocial behaviors. The study was based on a sample of 2,751 Jewish and Arab secondary school students (aged 12-18) from Israel who completed a structured questionnaire. Among the whole sample, greater emotional closeness to the closest grandparent was associated with reduced emotional symptoms, reduced hyperactivity, and increased prosocial behaviors. While there were lower levels of emotional closeness to the closest grandparents among Arab adolescents, emotional closeness to grandparents was found to be more strongly associated with reduced emotional symptoms and increased prosocial behavior among Arab adolescents than among Jewish adolescents. These findings emphasize the importance of considering culture when examining intergenerational relationships in the family and their contribution to grandchildren's well-being. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Thermus arciformis sp. nov., a thermophilic species from a geothermal area.
Zhang, Xin-Qi; Ying, Yi; Ye, Ying; Xu, Xue-Wei; Zhu, Xu-Fen; Wu, Min
2010-04-01
Two aerobic, Gram-negative, non-motile, non-sporulating, yellow-pigmented bacteria, strains TH92(T) and TH91, were isolated from a hot spring located in Laibin, Guangxi, in the south-eastern geothermal area of China. The isolates grew at 40-77 degrees C (optimally at 70 degrees C) and at pH 6.0-9.5 (optimally at pH 7.5-8.0). Phylogenetic analysis of 16S rRNA gene sequences and levels of DNA-DNA relatedness together indicated that the new isolates represented a novel species of the genus Thermus with closest affinity to Thermus aquaticus, Thermus igniterrae and Thermus thermophilus. Compared with their closest relatives, strains TH92( T) and TH91 were able to assimilate a wider range of carbohydrates, amino acids and organic acids as sole carbon sources for growth, such as lactose and melibiose. The new isolates had lower combined levels of C(16 : 0 ) and iso-C(16 : 0) compared with their closest relatives. On the basis of polyphasic taxonomic characterization, strains TH92(T) and TH91 are considered to represent a single novel species of the genus Thermus, for which the name Thermus arciformis sp. nov. is proposed. The type strain is TH92(T) (=CGMCC 1.6992(T) =JCM 15153(T)).
Disclosure of HIV-positive status to Latino gay men's social networks.
Zea, María Cecilia; Reisen, Carol A; Poppen, Paul J; Echeverry, John J; Bianchi, Fernanda T
2004-03-01
This study explored disclosure of serostatus in a sample of 155 HIV-positive Latino gay men from New York City and Washington, DC. We examined rates of disclosure to different members of the social network: mothers, fathers, close friends, and primary sexual partners. There were high rates of disclosure of HIV-positive serostatus to main partners and closest friends and lower rates to fathers and mothers. We examined the role of 3 contextual target-dependent factors (emotional closeness to target, anticipated reactions from target, and target's knowledge of sexual orientation), as well as acculturation and time since diagnosis. Three separate logistic regression models were performed to predict disclosure of HIV-positive status to 3 targets: mothers, fathers, and closest friends. We found that disclosure was not a generalized tendency, but rather different factors were influential depending on the target. Whether the target was aware of participant's sexual orientation was associated with disclosure in all 3 models. Greater emotional closeness also predicted disclosure to mother and father; greater U.S. acculturation was associated with disclosure to father and marginally to mother. A longer time since diagnosis was associated with disclosure to the closest friend. These findings highlight the importance of taking into account roles and relationships, and their effect on disclosure.
Astrometry of Single-Chord Occultations: Application to the 1993 Triton Event
NASA Technical Reports Server (NTRS)
Olkin, Catherine B.; Elliot, J. L.; Bus, Schelte J.; McDonald, Stephen W.; Dahn, Conrad C.
1996-01-01
This paper outlines a method for reducing astrometric data to derive the closest approach time and distance to the center of an occultation shadow for a single observer. The method applies to CCD frames, strip scans or photographic plates and uses a set of field stars of unknown positions to define a common coordinate system for all frames. The motion of the occulting body is used to establish the transformation between this common coordinate system and the celestial coordinate system of the body's ephemeris. This method is demonstrated by application to the Tr6O occultation by Triton on 1993 July 10 UT. Over an interval of four nights that included the occultation time, 80 frames of Triton and Tr6O were taken near the meridian with the U.S. Naval Observatory (USNO) 61-inch astrometric reflector. Application of the method presented here to these data yields a closest approach distance of 359 +/- 133 km (corresponding to 0.017 +/- 0.006 arcsec) for the occultation chord obtained with the Kuiper Airborne Observatory (KAO). Comparison of the astrometric closest approach time with the KAO light-curve midtime shows a difference of 2.2 +/- 4.1 s. Relative photometry of Triton and Tr6O, needed for photometric calibration of the occultation light curve, is also presented.
Attar-Schwartz, Shalhevet
2015-09-01
Warm and emotionally close relationships with parents and grandparents have been found in previous studies to be linked with better adolescent adjustment. The present study, informed by Family Systems Theory and Intergenerational Solidarity Theory, uses a moderated mediation model analyzing the contribution of the dynamics of these intergenerational relationships to adolescent adjustment. Specifically, it examines the mediating role of emotional closeness to the closest grandparent in the relationship between emotional closeness to a parent (the offspring of the closest grandparent) and adolescent adjustment difficulties. The model also examines the moderating role of emotional closeness to parents in the relationship between emotional closeness to grandparents and adjustment difficulties. The study was based on a sample of 1,405 Jewish Israeli secondary school students (ages 12-18) who completed a structured questionnaire. It was found that emotional closeness to the closest grandparent was more strongly associated with reduced adjustment difficulties among adolescents with higher levels of emotional closeness to their parents. In addition, adolescent adjustment and emotional closeness to parents was partially mediated by emotional closeness to grandparents. Examining the family conditions under which adolescents' relationships with grandparents is stronger and more beneficial for them can help elucidate variations in grandparent-grandchild ties and expand our understanding of the mechanisms that shape child outcomes. (c) 2015 APA, all rights reserved).
Moreira, Ana Paula B.; Duytschaever, Gwen; Chimetto Tonon, Luciane A.; Fróes, Adriana M.; de Oliveira, Louisi S.; Amado-Filho, Gilberto M.; Francini-Filho, Ronaldo B.; De Vos, Paul; Swings, Jean; Thompson, Cristiane C.
2014-01-01
Five novel strains of Photobacterium (A-394T, A-373, A-379, A-397 and A-398) were isolated from bleached coral Madracis decactis (scleractinian) in the remote St Peter & St Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil. Healthy M. decactis specimens were also surveyed, but no strains were related to them. The novel isolates formed a distinct lineage based on the 16S rRNA, recA, and rpoA gene sequences analysis. Their closest phylogenetic neighbours were Photobacterium rosenbergii, P. gaetbulicola, and P. lutimaris, sharing 96.6 to 95.8% 16S rRNA gene sequence similarity. The novel species can be differentiated from the closest neighbours by several phenotypic and chemotaxonomic markers. It grows at pH 11, produces tryptophane deaminase, presents the fatty acid C18:0, but lacks C16:0 iso. The whole cell protein profile, based in MALDI-TOF MS, distinguished the strains of the novel species among each other and from the closest neighbors. In addition, we are releasing the whole genome sequence of the type strain. The name Photobacterium sanctipauli sp. nov. is proposed for this taxon. The G + C content of the type strain A-394T (= LMG27910T = CAIM1892T) is 48.2 mol%. PMID:25024905
ERIC Educational Resources Information Center
Montor, Karel
The purpose of this study was to compare brain wave patterns produced by high and low grade point average students, while they were resting, solving problems, and subjected to stress situations. The study involved senior midshipmen at the United States Naval Academy. The high group was comprised of those whose cumulative grade point average was…
Sets that Contain Their Circle Centers
ERIC Educational Resources Information Center
Martin, Greg
2008-01-01
Say that a subset S of the plane is a "circle-center set" if S is not a subset of a line, and whenever we choose three non-collinear points from S, the center of the circle through those three points is also an element of S. A problem appearing on the Macalester College Problem of the Week website stated that a finite set of points in the plane,…
NASA Astrophysics Data System (ADS)
Nanev, Christo N.; Petrov, Kostadin P.
2017-12-01
The use of the classical nucleation-growth-separation principle (NGSP) was restricted hitherto to nucleation kinetics studies only. A novel application of the NGSP is proposed. To reduce crystal polydispersity internal seeding of equally-sized crystals is suggested, the advantage being avoidance of crystal grinding, sieving and any introduction of impurities. In the present study, size distributions of grown insulin crystals are interpreted retrospectively to select the proper nucleation stage parameters. The conclusion is that when steering a crystallization process aimed at reducing crystal polydispersity, the shortest possible nucleation stage duration has to be chosen because it renders the closest size distribution of the nucleated crystal seeds. Causes of inherent propensity to increasing crystal polydispersity during prolonged growth are also explored. Step sources of increased activity, present in some crystals while absent in others, are pointed as the major polydispersity cause. Insulin crystal morphology is also considered since it determines the dissolution rate of a crystalline medicine.
[Study on the characteristics of radiance calibration using nonuniformity extended source].
Wang, Jian-Wei; Huang, Min; Xiangli, Bin; Tu, Xiao-Long
2013-07-01
Integrating sphere and diffuser are always used as extended source, and they have different effects on radiance calibration of imaging spectrometer with parameter difference. In the present paper, a mathematical model based on the theory of radiative transfer and calibration principle is founded to calculate the irradiance and calibration coefficients on CCD, taking relatively poor uniformity lights-board calibration system for example. The effects of the nonuniformity on the calibration was analyzed, which makes up the correlation of calibration coefficient matrix under ideal and unideal situation. The results show that the nonuniformity makes the viewing angle and the position of the point of intersection of the optical axis and the diffuse reflection plate have relatively large effects on calibration, while the observing distance's effect is small; under different viewing angles, a deviation value can be found that makes the calibration results closest to the desired results. So, the calibration error can be reduced by choosing appropriate deviation value.
NASA Astrophysics Data System (ADS)
Shani-Kadmiel, Shahar; Assink, Jelle D.; Smets, Pieter S. M.; Evers, Läslo G.
2018-01-01
In this study we analyze infrasound signals from three earthquakes in central Italy. The Mw 6.0 Amatrice, Mw 5.9 Visso, and Mw 6.5 Norcia earthquakes generated significant epicentral ground motions that couple to the atmosphere and produce infrasonic waves. Epicentral seismic and infrasonic signals are detected at I26DE; however, a third type of signal, which arrives after the seismic wave train and before the epicentral infrasound signal, is also detected. This peculiar signal propagates across the array at acoustic wave speeds, but the celerity associated with it is 3 times the speed of sound. Atmosphere-independent backprojections and full 3-D ray tracing using atmospheric conditions of the European Centre for Medium-Range Weather Forecasts are used to demonstrate that this apparently fast-arriving infrasound signal originates from ground motions more than 400 km away from the epicenter. The location of the secondary infrasound patch coincides with the closest bounce point to I26DE as depicted by ray tracing backprojections.
THE VARIABLE NEAR-INFRARED COUNTERPART OF THE MICROQUASAR GRS 1758–258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luque-Escamilla, Pedro L.; Martí, Josep; Muñoz-Arjonilla, Álvaro J., E-mail: peter@ujaen.es, E-mail: jmarti@ujaen.es, E-mail: ajmunoz@ujaen.es
2014-12-10
We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest inmore » time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification.« less
Recurrent solar wind streams observed by interplanetary scintillation of 3C 48
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T.; Kakinuma, T.
1972-10-01
The interplanetary scintillation of 3C 48 was observed by two spaced receivers (69.3 MHz) during February and March 1971. The recurrent property of the observed velocity increase of the solar wind is clearly seen, and their recurrent period is 24 to 25 days. This value is shorter than the synodic period of 27 days, but this deviation may be explained by the displacement of the closest point to the Sun on the line of sight for 3C 48. A comparison with the data of the wind velocity obtained by apace probes shows that the observed enhancements are associated with twomore » high-velocity streams corotating around the Sun. The enhancements of the scintillation index precede by about two days the velocity enhancements, and it may be concluded that such enhancement of the scintillation index has resulted from the compressed region of the interplanetary plasma formed in front of the high-velocity corotating stream. (auth)« less
Derieppe, Marc; de Senneville, Baudouin Denis; Kuijf, Hugo; Moonen, Chrit; Bos, Clemens
2014-10-01
Previously, we demonstrated the feasibility to monitor ultrasound-mediated uptake of a cell-impermeable model drug in real time with fibered confocal fluorescence microscopy. Here, we present a complete post-processing methodology, which corrects for cell displacements, to improve the accuracy of pharmacokinetic parameter estimation. Nucleus detection was performed based on the radial symmetry transform algorithm. Cell tracking used an iterative closest point approach. Pharmacokinetic parameters were calculated by fitting a two-compartment model to the time-intensity curves of individual cells. Cells were tracked successfully, improving time-intensity curve accuracy and pharmacokinetic parameter estimation. With tracking, 93 % of the 370 nuclei showed a fluorescence signal variation that was well-described by a two-compartment model. In addition, parameter distributions were narrower, thus increasing precision. Dedicated image analysis was implemented and enabled studying ultrasound-mediated model drug uptake kinetics in hundreds of cells per experiment, using fiber-based confocal fluorescence microscopy.
Magliano, Ana C M; da Silva, Flávia Maia; Teixeira, Marta M G; Alfieri, Silvia C
2009-11-01
Acanthamoeba spp., known to cause keratitis and granulomatous encephalitis in humans, are frequently isolated from a variety of water sources. Here we report for the first time the characterization of an Acanthamoeba sp. (ACC01) isolated from tap water in Brazil. This organism is currently being maintained in an axenic growth medium. Phylogenetic analysis based on SSU rRNA gene sequences positioned the new isolate in genotype T4, closest to the keratitis-causing isolate, A. polyphaga ATCC 30461 ( approximately 99% similarity). Acanthamoeba ACC01 and A. polyphaga 30461 both grew at 37 degrees C and were osmotically resistant, multiplying in hyperosmolar medium. Both isolates secreted comparable amounts of proteolytic enzymes, including serine peptidases that were optimally active at a near neutral/alkaline pH and resolved identically in gelatin gels. Incubation of gels at pH 4.0 with 2mM DTT also indicated the secretion of similar cysteine peptidases. Altogether, the results point to the pathogenic potential of Acanthamoeba ACC01.
Heartbeat Stars Artist Concept
2016-10-21
This artist's concept depicts "heartbeat stars," which have been detected by NASA's Kepler Space Telescope and others. The illustration shows two heartbeat stars swerving close to one another in their closest approach along their highly elongated orbits around one another. The mutual gravitation of the two stars would cause the stars themselves to become slightly ellipsoidal in shape. A third, more distant star in the system is shown in the upper left. Astronomers speculate that such unseen companions may exist in some of these heartbeat star systems, and could be responsible for maintaining these oddly stretched-out orbits. The overlaid curve depicts the inferred cyclic change in velocities in one such system, called KIC 9965691, looking something like the graph of an electrocardiogram (hence the name "heartbeat stars"). The solid points represent measurements made by the HIRES instrument at the W.M. Keck Observatory, and the curve is the best fit model for the motions of this system. http://photojournal.jpl.nasa.gov/catalog/PIA21075
NASA Astrophysics Data System (ADS)
Staib, Michael; Bhopatkar, Vallary; Bittner, William; Hohlmann, Marcus; Locke, Judson; Twigger, Jessie; Gnanvo, Kondo
2012-03-01
Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and are operating a compact Muon Tomography Station (MTS) that tracks muons with eight 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a cubic-foot imaging volume. A point-of-closest-approach algorithm applied to reconstructed incident and exiting tracks is used to create a tomographic reconstruction of the material within the active volume. We discuss the performance of this MTS prototype including characterization and commissioning of the GEM detectors and the data acquisition systems. We also present experimental tomographic images of small high-Z objects including depleted uranium with and without shielding and discuss the performance of material discrimination using this method.
Polarization properties of bow shock sources close to the Galactic centre
NASA Astrophysics Data System (ADS)
Zajaček, M.; Karas, V.; Hosseini, E.; Eckart, A.; Shahzamanian, B.; Valencia-S., M.; Peissker, F.; Busch, G.; Britzen, S.; Zensus, J. A.
2017-12-01
Several bow shock sources were detected and resolved in the innermost parsec from the supermassive black hole in the Galactic centre. They show several distinct characteristics, including an excess towards mid-infrared wavelengths and a significant linear polarization as well as a characteristic prolonged bow-shock shape. These features give hints about the presence of a non-spherical dusty envelope generated by the bow shock. The Dusty S-cluster Object (also denoted as G2) shows similar characteristics and it is a candidate for the closest bow shock with a detected proper motion in the vicinity of Sgr A*, with the pericentre distance of only approx. 2000 Schwarzschild radii. However, in the continuum emission it is a point-like source and hence we use Monte Carlo radiative transfer modeling to reveal its possible three-dimensional structure. Alongside the spectral energy distribution, the detection of polarized continuum emission in the near-infrared Ks-band (2.2 micrometers) puts additional constraints on the geometry of the source.
Usefulness of the "CAGE" in Malaysia.
Indran, S K
1995-04-01
This study examines the usefulness of the "CAGE", (which is an acronym for "cut down", "annoyed", "guilty" and "eye-opener"), a 4-question screening test to identify excessive drinkers among Malaysian inpatients. The CAGE questionnaire after translation and back translation was administered to all inpatients in the General Hospital, Kuala Lumpur. The author interviewed 'blindly' all who score positive on the CAGE score and 10% of all negatives using the DSM III interview schedule for alcohol abuse dependence. The results show that the CAGE performs best at a cut-off point of 2 and above, with a sensitivity of 92%, specificity of 62%, positive predictive values of 38% and Kappa (K) of 0.37 with a DSM III R diagnosis for alcohol abuse/dependence. The poor agreement with a DSM III diagnosis indicates that the CAGE is not useful in the Malaysian population. Reasons suggested for this are: cultural factors in the Malaysian population resulting in the overrating of the question of 'guilt' by Muslims and translations into the local languages which are only the closest approximations.
Neal, Andrew; Kwantes, Peter J
2009-04-01
The aim of this article is to develop a formal model of conflict detection performance. Our model assumes that participants iteratively sample evidence regarding the state of the world and accumulate it over time. A decision is made when the evidence reaches a threshold that changes over time in response to the increasing urgency of the task. Two experiments were conducted to examine the effects of conflict geometry and timing on response proportions and response time. The model is able to predict the observed pattern of response times, including a nonmonotonic relationship between distance at point of closest approach and response time, as well as effects of angle of approach and relative velocity. The results demonstrate that evidence accumulation models provide a good account of performance on a conflict detection task. Evidence accumulation models are a form of dynamic signal detection theory, allowing for the analysis of response times as well as response proportions, and can be used for simulating human performance on dynamic decision tasks.
NASA Technical Reports Server (NTRS)
Lecuyer, M. R.; Hanus, G. J.
1976-01-01
An experimental study of gas film cooling was conducted on a 3X size model turbine vane. Injection in the leading edge region was from a single row of holes angled in a spanwise direction. Measurements of the local heat flux downstream from the row of coolant holes, both with and without film coolant flow, were used to determine the film cooling performance presented in terms of the Stanton number ratio. Results for a range of coolant blowing ratio, M = 0 to 2.0, indicate a reduction in heat flux of up to 15 to 30 percent at a point 10 to 11 hole diameters downstream from injection. An optimum coolant blowing ratio corresponds to a coolant-to-freestream velocity ratio in the range of 0.5. The shallow injection angle resulted in superior cooling performance for injection closest to stagnation, while the effect of injection angle was insignificant for injection further from stagnation.
NASA Technical Reports Server (NTRS)
Hick, P.; Jackson, B. V.; Schwenn, R.
1991-01-01
A method for displaying the electron Thomson scattering intensity in the inner heliosphere as observed by the zodiacal light photometers on board the Helios spacecraft in the form of synoptic maps is presented. The method is based on the assumption that the bulk of the scattering electrons along the line of sight is located near the point closest to the sun. Inner-heliospheric structures will generally be represented properly in these synoptic maps only if they are sufficiently long-lived (that is, a significant fraction of a solar rotation period). The examples of Helios synoptic maps discussed (from data in April 1976 and November 1978), indicate that it is possible to identify large-scale, long-lived density enhancements in the inner heliosphere. It is expected that the Helios synoptic maps will be particularly useful in the study of corotating structures (e.g., streamers), and the maps will be most reliable during periods when few transient featurs are present in the corona, i.e., during solar minimum.
The end of life, the ends of life: an anthropological view.
Varisco, Daniel Martin
2011-12-01
All known human societies have a worldview that deserves to be called religion; all religions must explain death. Anthropologists study the diversity of religious systems, present and past, in order to understand what is common to humanity. Rather than starting from the view of a particular revelation or set of doctrines, the anthropologist tries to step outside his or her own subjective worldview and identify patterns in the evolution of human thinking about the reality of physical death. Are humans the only animals that are conscious of death, or do we share sentiments observable in our closest living relatives, the chimpanzees? At what point in history did the concept of an afterlife, life in some spiritual sense after physical death, appear? Is the religious explanation of life and death a mere reflection of a communal social fact, as the sociologist Emil Durkheim suggested, or a shared psychological trait, as more recent scholars assert? Can and should the modern scientist make a definitive statement about the finality of death and human consciousness?
2015-07-03
This image of Pluto and its big moon Charon was taken by NASA's New Horizons spacecraft at 04:15 (UTC) on July 1, 2015, and shows the clearest view yet of the sides of Pluto and Charon that will be studied in great detail during New Horizons' closest approach to the dwarf planet on July 14, 2015. There will be just two more rotations of Pluto and Charon, and two more orbits about their mutual center of gravity, between the time of this image and closest approach (the rotation period of the system is 6.4 days). The image, which has been sharpened by the image processing technique known as deconvolution, shows details as small as about 160 kilometers (100 miles). The highest-resolution images of this side of Pluto, taken on July 14, will show details that are 1,000 times smaller. New Horizons is revealing Pluto to be a world that, at this point, looks like no other in the solar system. Its equatorial regions are occupied by a discontinuous band of very dark material, which is interrupted on this hemisphere by a very bright region which appears sharp-edged at the resolution of the image. The north polar region is blander, but shows a distinctive darker southern boundary where it meets the higher-contrast equatorial regions. The origin of these remarkable features is still unknown, though some of them might be related to seasonal movement of frost across Pluto's surface. Charon, in contrast, still shows few details other than the dark polar region. The image was taken by New Horizons' Long Range Reconnaissance Imager (LORRI ) at a distance from Pluto of 15.8 million kilometers (9.8 million miles) and has a central longitude of 177 degrees on Pluto and 357 degrees on Charon. The inset shows the orientation of Pluto- the solid lines mark the equator and the prime meridian, which is defined to be the longitude that always faces Charon. http://photojournal.jpl.nasa.gov/catalog/PIA19694
Gama, Renato; Aguirre-Gutiérrez, Jesús; Stech, Michael
2017-10-01
The delimitation of the invasive moss species Campylopus introflexus from its closest relative, Campylopus pilifer , has been long debated based on morphology. Previous molecular phylogenetic reconstructions based on the nuclear ribosomal internal transcribed spacers (ITS) 1 and 2 showed that C. pilifer is split into an Old World and a New World lineage, but remained partly inconclusive concerning the relationships between these two clades and C. introflexus . Analyses of an extended ITS dataset displayed statistically supported incongruence between ITS1 and ITS2. ITS1 separates the New World clade of C. pilifer from a clade comprising C. introflexus and the Old World C. pilifer . Ancestral state reconstruction showed that this topology is morphologically supported by differences in the height of the dorsal costal lamellae in leaf cross-section (despite some overlap). ITS2, in contrast, supports the current morphological species concept, i.e., separating C. introflexus from C. pilifer , which is morphologically supported by the orientation of the hyaline hair point at leaf apex as well as costal lamellae height. Re-analysis of published and newly generated plastid atpB-rbcL spacer sequences supported the three ITS lineages. Ecological niche modeling proved a useful approach and showed that all three molecular lineages occupy distinct environmental spaces that are similar, but undoubtedly not equivalent. In line with the ITS1 topology, the C. pilifer lineage from the New World occupies the most distinct environmental niche, whereas the niches of Old World C. pilifer and C. introflexus are very similar. Taking the inferences from ecological niche comparisons, phylogenetics, and morphology together, we conclude that all three molecular lineages represent different taxa that should be recognized as independent species, viz. C. introflexus , C. pilifer (Old World clade), and the reinstated C. lamellatus Mont. (New World clade).
The MESSENGER Earth Flyby: Results from the Mercury Dual Imaging System
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Murchie, S. L.; Hawkins, S. E.; Robinson, M. S.; Shelton, R. G.; Vaughan, R. M.; Solomon, S. C.
2005-12-01
The MESSENGER (MErcury Surface, Space ENvironment, Geochemistry, and Ranging) spacecraft was launched from Cape Canaveral Air Force Station, Fla., on 3 August 2004. It returned to Earth for a gravity assist on 2 August 2005, providing an exceptional opportunity for the Science Team to perform instrument calibrations and to test some of the data acquisition sequences that will be used to meet Mercury science goals. The Mercury Dual Imaging System (MDIS), one of seven science instruments on MESSENGER, consists of a wide-angle and a narrow-angle imager that together can map landforms, track variations in surface color, and carry out stereogrammetry. The two imagers are mounted on a pivot platform that enables the instrument to point in a different direction from the spacecraft boresight, allowing great flexibility and increased imaging coverage. During the week prior to the closest approach to Earth, MDIS acquired a number of images of the Moon for radiometric calibration and to test optical navigation sequences that will be used to target planetary flybys. Twenty-four hours before closest approach, images of the Earth were acquired with 11 filters of the wide-angle camera. After MDIS flew over the nightside of the Earth, additional color images centered on South America were obtained at sufficiently high resolution to discriminate small-scale features such as the Amazon River and Lake Titicaca. During its departure from Earth, MDIS acquired a sequence of images taken in three filters every 4 minutes over a period of 24 hours. These images have been assembled into a movie of a crescent Earth that begins as South America slides across the terminator into darkness and continues for one full Earth rotation. This movie and the other images have provided a successful test of the sequences that will be used during the MESSENGER Mercury flybys in 2008 and 2009 and have demonstrated the high quality of the MDIS wide-angle camera.
Fluxes to sediments underlying the Rainbow hydrothermal plume at 36°14‧N on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Cave, R. R.; German, C. R.; Thomson, J.; Nesbitt, R. W.
2002-06-01
A geochemical investigation has been conducted of a suite of four sediment cores collected from directly beneath the hydrothermal plume at distances of 2 to 25 km from the Rainbow hydrothermal field. As well as a large biogenic component (>80% CaCO3) these sediments record clear enrichments of the elements Fe, Cu, Mn, V, P, and As from hydrothermal plume fallout but only minor detrital background material. Systematic variations in the abundances of ;hydrothermal; elements are observed at increasing distance from the vent site, consistent with chemical evolution of the dispersing plume. Further, pronounced Ni and Cr enrichments at specific levels within each of the two cores collected from closest to the vent site are indicative of discrete episodes of additional input of ultrabasic material at these two near-field locations. Radiocarbon dating reveals mean Holocene accumulation rates for all four cores of 2.7 to 3.7 cm.kyr-1, with surface mixed layers 7 to 10+ cm thick, from which a history of deposition from the Rainbow hydrothermal plume can be deduced. Deposition from the plume supplies elements to the underlying sediments that are either directly hydrothermally sourced (e.g., Fe, Mn, Cu) or scavenged from seawater via the hydrothermal plume (e.g., V, P, As). Holocene fluxes into to the cores' surface mixed layers are presented which, typically, are an order of magnitude greater than ;background; authigenic fluxes from the open North Atlantic. One core, collected closest to the vent site, indicates that both the concentration and flux of hydrothermally derived material increased significantly at some point between 8 and 12 14C kyr ago; the preferred explanation is that this variation reflects the initiation/intensification of hydrothermal venting at the Rainbow hydrothermal field at this time-perhaps linked to some specific tectonic event in this fault-controlled hydrothermal setting.
NASA Astrophysics Data System (ADS)
Barnes, R.; Greenberg, R.
2005-08-01
Planetary systems display a wide range of appearances, with apparently arbitrary values of semi-major axis, eccentricity, etc. We reduce the complexity of orbital configurations to a single value, δ , which is a measure of how close, over secular timescales ( ˜10,000 orbits), two consecutive planets come to each other. We measure this distance relative to the sum of the radii of their Hill spheres, sometimes referred to as mutual Hill radii (MHR). We determine the closest approach distance by numerically integrating the entire system on coplanar orbits, using minimum masses. For non-resonant systems, close approach occurs during apsidal alignment, either parallel or anti-parallel. For resonant pairs the distance at conjunction determines the closest approach distance. Previous analytic work found that planets on circular orbits were assuredly unstable if they came within 3.5 MHR (i.e. Gladman 1993; Chambers, Wetherill & Boss 1996). We find that most known pairs of jovian planets (including those in our solar system) come within 3.5 -- 7 MHR of each other. We also find that several systems are unstable (their closest approach distance is less than 3.5 MHR). These systems, if they are real, probably exist in an observationally permitted location somewhat different from the current best fit. In these cases, the planets' closest approach distance will most likely also be slightly larger than 3.5 MHR. Most pairs beyond 7 MHR probably experienced post-formation migration (i.e. tidal circularization, inward scattering of small bodies) which moved them further apart. This result is even more remarkable since we have used the minimum masses; most likely the systems are inclined to the line of sight, making the Hill spheres larger, and shrinking δ . This dense packing may reflect a tendency for planets to form as close together as they can without being dynamically unstable. This result further implies there may be a large number of smaller, currently undetectable companions packed in orbits around stars with known planets.
Idris, A M; Mills-Lujan, K; Martin, K; Brown, J K
2008-02-01
The genome components of the Melon chlorotic leaf curl virus (MCLCuV) were cloned from symptomatic cantaloupe leaves collected in Guatemala during 2002. The MCLCuV DNA-A and DNA-B components shared their closest nucleotide identities among begomoviruses, at approximately 90 and 81%, respectively, with a papaya isolate of MCLCuV from Costa Rica. The closest relatives at the species level were other members of the Squash leaf curl virus (SLCV) clade, which is endemic in the southwestern United States and Mexico. Biolistic inoculation of cantaloupe seedlings with the MCLCuV DNA-A and -B components resulted in the development of characteristic disease symptoms, providing definitive evidence of causality. MCLCuV experimentally infected species within the Cucurbitaceae, Fabaceae, and Solanaceae. The potential for interspecific reassortment was examined for MCLCuV and its closest relatives, including the bean-restricted Bean calico mosaic virus (BCaMV), and three other cucurbit-infecting species, Cucurbit leaf crumple virus (CuLCrV), SLCV, and SMLCV. The cucurbit viruses have distinct but overlapping host ranges. All possible reassortants were established using heterologous combinations of the DNA-A or DNA-B components. Surprisingly, only certain reassortants arising from MCLCuV and BCaMV, or MCLCuV and CuLCrV, were viable in bean, even though it is a host of all of the "wild-type" (parent) viruses. The bean-restricted BCaMV was differentially assisted in systemically infecting the cucurbit test species by the components of the four cucurbit-adapted begomoviruses. In certain heterologous combinations, the BCaMV DNA-A or -B component was able to infect one or more cucurbit species. Generally, the reassortants were less virulent in the test hosts than the respective wild-type (parent) viruses, strongly implicating adaptive modulation of virulence. This is the first illustration of reassortment resulting in the host range expansion of a host-restricted begomovirus.
Quality-of-care indicators among remote-dwelling hemodialysis patients: a cohort study.
Thompson, Stephanie; Bello, Aminu; Wiebe, Natasha; Manns, Braden; Hemmelgarn, Brenda; Klarenbach, Scott; Pelletier, Rick; Tonelli, Marcello
2013-08-01
We hypothesized that the higher mortality for hemodialysis patients who live farther from the closest attending nephrologist compared with patients living closer might be due to lower quality of care. Population-based longitudinal study. All adult maintenance hemodialysis patients with measurements of quality-of-care indicators initiating hemodialysis therapy between January 2001 and June 2010 in Northern Alberta, Canada. Hemodialysis patients were classified into categories based on the distance by road from their residence to the closest nephrologist: ≤50 (referent), 50.1-150, 150.1-300, and >300 km. Quality-of-care indicators were based on published guidelines. Quality-of-care indicators at 90 days following initiation of hemodialysis therapy and, in a secondary analysis, at 1 year. Measurements were available for 1,784 patients. At baseline, the proportions of patients residing in each category were 69% for ≤50 km to closest nephrologist; 17%, 50.1-150 km; 7%, 150.1-300 km; and 7%, >300 km. Those who lived farther away from the closest nephrologist were less likely to have seen a nephrologist 90 days prior to the initiation of hemodialysis therapy (P for trend = 0.008) and were less likely to receive Kt/V of 1.2 (adjusted OR, 0.50; 95% CI, 0.30-0.84; P for trend = 0.01). Remote location also was associated with suboptimal levels of phosphate control (P for trend = 0.005). There were no differences in the prevalence of arteriovenous fistulas or grafts or hemoglobin levels across distance categories. Registry data with limited data for non-guideline-based quality indicators. Although several quality-of-care indicators were less common in remote-dwelling hemodialysis patients, these differences do not appear sufficient to explain the previously noted disparities in clinical outcomes by residence location. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Octopuses use a human-like strategy to control precise point-to-point arm movements.
Sumbre, Germán; Fiorito, Graziano; Flash, Tamar; Hochner, Binyamin
2006-04-18
One of the key problems in motor control is mastering or reducing the number of degrees of freedom (DOFs) through coordination. This problem is especially prominent with hyper-redundant limbs such as the extremely flexible arm of the octopus. Several strategies for simplifying these control problems have been suggested for human point-to-point arm movements. Despite the evolutionary gap and morphological differences, humans and octopuses evolved similar strategies when fetching food to the mouth. To achieve this precise point-to-point-task, octopus arms generate a quasi-articulated structure based on three dynamic joints. A rotational movement around these joints brings the object to the mouth . Here, we describe a peripheral neural mechanism-two waves of muscle activation propagate toward each other, and their collision point sets the medial-joint location. This is a remarkably simple mechanism for adjusting the length of the segments according to where the object is grasped. Furthermore, similar to certain human arm movements, kinematic invariants were observed at the joint level rather than at the end-effector level, suggesting intrinsic control coordination. The evolutionary convergence to similar geometrical and kinematic features suggests that a kinematically constrained articulated limb controlled at the level of joint space is the optimal solution for precise point-to-point movements.
NASA Astrophysics Data System (ADS)
Wu, Nan; Wang, Xuefeng; Zhou, Li-Yong
2018-06-01
Douskos & Markellos (2006, A&A, 446, 357) first reported the existence of the out-of-plane equilibrium points in restricted three-body problem with oblateness. This result deviates significantly from the intuitive physical point of view that there is no other force that can balance the combined gravitation in Z direction. In fact, the out-of-plane equilibrium in that model is illusory and we prove here that such equilibrium points arise from the improper application of the potential function.
NASA Astrophysics Data System (ADS)
Hinojosa-Corona, A.; Nissen, E.; Arrowsmith, R.; Krishnan, A. K.; Saripalli, S.; Oskin, M. E.; Arregui, S. M.; Limon, J. F.
2012-12-01
The Mw 7.2 El Mayor-Cucapah earthquake (EMCE) of 4 April 2010 generated a ~110 km long, NW-SE trending rupture, with normal and right-lateral slip in the order of 2-3m in the Sierra Cucapah, the northern half, where the surface rupture has the most outstanding expression. Vertical and horizontal surface displacements produced by the EMCE have been addressed separately by other authors with a variety of aerial and satellite remote sensing techniques. Slip variation along fault and post-seismic scarp erosion and diffusion have been estimated in other studies using terrestrial LiDAR (TLS) on segments of the rupture. To complement these other studies, we computed the 3D deformation field by comparing pre- to post-event point clouds from aerial LiDAR surveys. The pre-event LiDAR with lower point density (0.013-0.033 pts m-2) required filtering and post-processing before comparing with the denser (9-18 pts m-2) more accurate post event dataset. The 3-dimensional surface displacement field was determined using an adaptation of the Iterative Closest Point (ICP) algorithm, implemented in the open source Point Cloud Library (PCL). The LiDAR datasets are first split into a grid of windows, and for each one, ICP iteratively converges on the rigid body transformation (comprising a translation and a rotation) that best aligns the pre- to post-event points. Testing on synthetic datasets perturbed with displacements of known magnitude showed that windows with dimensions of 100-200m gave the best results for datasets with these densities. Here we present the deformation field with detailed displacements in segments of the surface rupture where its expression was recognized by ICP from the point cloud matching, mainly the scarcely vegetated Sierra Cucapah with the Borrego and Paso Superior fault segments the most outstanding, where we are able to compare our results with values measured in the field and results from TLS reported in other works. EMC simulated displacement field for a 2m right lateral normal (east block down) slip on the pre-event point cloud along the Borrego fault on Sierra Cucapah. Shaded DEM from post-event point cloud as backdrop.
A Step-by-Step Framework on Discrete Events Simulation in Emergency Department; A Systematic Review
Dehghani, Mahsa; Moftian, Nazila; Rezaei-Hachesu, Peyman; Samad-Soltani, Taha
2017-01-01
Objective: To systematically review the current literature of simulation in healthcare including the structured steps in the emergency healthcare sector by proposing a framework for simulation in the emergency department. Methods: For the purpose of collecting the data, PubMed and ACM databases were used between the years 2003 and 2013. The inclusion criteria were to select English-written articles available in full text with the closest objectives from among a total of 54 articles retrieved from the databases. Subsequently, 11 articles were selected for further analysis. Results: The studies focused on the reduction of waiting time and patient stay, optimization of resources allocation, creation of crisis and maximum demand scenarios, identification of overcrowding bottlenecks, investigation of the impact of other systems on the existing system, and improvement of the system operations and functions. Subsequently, 10 simulation steps were derived from the relevant studies after an expert’s evaluation. Conclusion: The 10-steps approach proposed on the basis of the selected studies provides simulation and planning specialists with a structured method for both analyzing problems and choosing best-case scenarios. Moreover, following this framework systematically enables the development of design processes as well as software implementation of simulation problems. PMID:28507994
Using a genetic algorithm to optimize a water-monitoring network for accuracy and cost effectiveness
NASA Astrophysics Data System (ADS)
Julich, R. J.
2004-05-01
The purpose of this project is to determine the optimal spatial distribution of water-monitoring wells to maximize important data collection and to minimize the cost of managing the network. We have employed a genetic algorithm (GA) towards this goal. The GA uses a simple fitness measure with two parts: the first part awards a maximal score to those combinations of hydraulic head observations whose net uncertainty is closest to the value representing all observations present, thereby maximizing accuracy; the second part applies a penalty function to minimize the number of observations, thereby minimizing the overall cost of the monitoring network. We used the linear statistical inference equation to calculate standard deviations on predictions from a numerical model generated for the 501-observation Death Valley Regional Flow System as the basis for our uncertainty calculations. We have organized the results to address the following three questions: 1) what is the optimal design strategy for a genetic algorithm to optimize this problem domain; 2) what is the consistency of solutions over several optimization runs; and 3) how do these results compare to what is known about the conceptual hydrogeology? Our results indicate the genetic algorithms are a more efficient and robust method for solving this class of optimization problems than have been traditional optimization approaches.
Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design
NASA Technical Reports Server (NTRS)
Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.
2001-01-01
The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.
Buehler, Charlotte P; Blevins, Meridith; Ossemane, Ezequiel B; González-Calvo, Lázaro; Ndatimana, Elisée; Vermund, Sten H; Sidat, Mohsin; Olupona, Omo; Moon, Troy D
2015-03-01
To conduct a cross-sectional mapping analysis of HIV knowledge in Zambézia Province, Mozambique, and to examine spatial patterns of HIV knowledge and associated household characteristics. A population-based cluster survey was administered in 2010; data were analysed from 201 enumeration areas in three geographically diverse districts: Alto Molócuè, Morrumbala and Namacurra. We assessed HIV knowledge scores (0-9 points) using previously validated assessment tools. Using geographic information systems (GIS), we mapped hot spots of high and low HIV knowledge. Our multivariable linear regression model estimated HIV knowledge associations with distance to nearest clinic offering antiretroviral therapy, respondent age, education, household size, number of children under five, numeracy, literacy and district of residence. We found little overall HIV knowledge in all three districts. People in Alto Molócuè knew comparatively most about HIV, with a median score of 3 (IQR 2-5) and 22 of 51 (43%) enumeration areas scoring ≥4 of 9 points. Namacurra district, closest to the capital city and expected to have the best HIV knowledge levels, had a median score of 1 (IQR 0-3) and only 3 of 57 (5%) enumeration areas scoring ≥4 points. More HIV knowledge was associated with more education, age, household size, numeracy and proximity to a health facility offering antiretroviral therapy. HIV knowledge is critical for its prevention and treatment. By pinpointing areas of poor HIV knowledge, programme planners can prioritize educational resources and outreach initiatives within the context of antiretroviral therapy expansion. © 2014 John Wiley & Sons Ltd.
Prado, FB; Rossi, AC; Freire, AR; Groppo, FC; De Moraes, M; Caria, PHF
2012-01-01
Objectives The purpose of this study was to cephalometrically evaluate the pharyngeal airway space and frontal and sphenoid sinus changes after maxillomandibular advancement counterclockwise rotation for class II anterior open bite malocclusion. Methods The study included 49 patients (98 lateral teleradiographs; 36 females and 13 males) who were analysed in the pre-operative (1 week before surgery) and post-operative (6 months after surgery) periods. In each lateral teleradiography, the dimensions of the inferior and superior pharyngeal airway space, TB-PhW1 [the point between the posterior aspect of the tongue to the dorsal pharyngeal wall (oropharynx) (TB) and the point on the dorsal pharyngeal wall closest to TB (PhW1)] and UP-PhW2 [and the point between the posterior aspect of the soft palate to the dorsal pharyngeal wall (nasopharynx) (UP) (PhW2)] measurements were evaluated, as well as the dimensions of the frontal and sphenoid sinuses. The differences between the two operative times were evaluated by Student's t-test. Results All measurements showed excellent reproducibility for the intraclass correlation coefficient (ICC > 0.9; p < 0.0001). There was an increase in the measurements TB-PhW1 and UP-PhW2 and a decrease in the dimensions of the frontal and sphenoid sinuses after orthognathic surgery. Conclusions The morphology of the superior and inferior pharyngeal airway space and frontal and sphenoid sinuses changes after 6 months of maxillomandibular advancement counterclockwise rotation for class II anterior open bite malocclusion. PMID:22116128
A Composite Source Model With Fractal Subevent Size Distribution
NASA Astrophysics Data System (ADS)
Burjanek, J.; Zahradnik, J.
A composite source model, incorporating different sized subevents, provides a pos- sible description of complex rupture processes during earthquakes. The number of subevents with characteristic dimension greater than R is proportional to R-2. The subevents do not overlap with each other, and the sum of their areas equals to the area of the target event (e.g. mainshock) . The subevents are distributed randomly over the fault. Each subevent is modeled as a finite source, using kinematic approach (radial rupture propagation, constant rupture velocity, boxcar slip-velocity function, with constant rise time on the subevent). The final slip at each subevent is related to its characteristic dimension, using constant stress-drop scaling. Variation of rise time with subevent size is a free parameter of modeling. The nucleation point of each subevent is taken as the point closest to mainshock hypocentre. The synthetic Green's functions are calculated by the discrete-wavenumber method in a 1D horizontally lay- ered crustal model in a relatively coarse grid of points covering the fault plane. The Green's functions needed for the kinematic model in a fine grid are obtained by cu- bic spline interpolation. As different frequencies may be efficiently calculated with different sampling, the interpolation simplifies and speeds-up the procedure signifi- cantly. The composite source model described above allows interpretation in terms of a kinematic model with non-uniform final slip and rupture velocity spatial distribu- tions. The 1994 Northridge earthquake (Mw = 6.7) is used as a validation event. The strong-ground motion modeling of the 1999 Athens earthquake (Mw = 5.9) is also performed.