Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... imbalances may cause significant dislocation to the closing price (``Extreme Order Imbalances Pilot'' or... imbalance that may result in a price dislocation at the close as a result of an order entered into Exchange... circumstances where there exists an extreme imbalance at the close such that a DMM is unable to close the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... certain rule requirements at the close when extreme order imbalances may cause significant dislocation to the closing price (``Extreme Order Imbalances Pilot'' or ``Pilot'') \\4\\ until December 1, 2010.\\5\\ \\4... an extreme order imbalance that may result in a price dislocation at the close as a result of an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-05
... suspend certain rule requirements at the close when extreme order imbalances may cause significant dislocation to the closing price (``Extreme Order Imbalances Pilot'' or ``Pilot'').\\5\\ The Pilot has recently... resolve an extreme order imbalance that may result in a price dislocation at the close as a result of an...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... the close when extreme order imbalances may cause significant dislocation to the closing price. The rule has operated on a pilot basis since April 2009 (``Extreme Order Imbalance Pilot'' or Pilot).\\5... Exchange may suspend NYSE Rules 52 (Hours of Operation) to resolve an extreme order imbalance that may...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-08
... requirements at the close when extreme order imbalances may cause significant dislocation to the closing price. The rule has operated on a pilot basis since April 2009 (``Extreme Order Imbalances Pilot'' or ``Pilot... suspend NYSE Amex Equities Rules 52 (Hours of Operation) to resolve an extreme order imbalance that may...
Closed reduction of a rare type III dislocation of the first metatarsophalangeal joint.
Tondera, E K; Baker, C C
1996-09-01
To discuss a rare Type III dislocation of the first metatarsophalangeal (MP) joint, without fracture, that used a closed reduction technique for correction. A 43-yr-old man suffered from an acute severe dislocation of his great toe as the result of acute forceful motion applied to the toe as his foot was depressed onto a brake pedal to avoid a motor vehicle accident. Physical examination and X-rays revealed the dislocation, muscle spasm, edema and severely restricted range of motion. The dislocation was corrected using a closed reduction technique, in this case a chiropractic manipulation. Fourteen months after reduction, the joint was intact, muscle strength was graded +5 normal, ranges of motion were within normal limits and no crepitation was noted. X-rays revealed normal intact joint congruency. The patient experienced full weight bearing, range of motion and function of the joint. Although a Type III dislocation of the great toe has only once been cited briefly in the literature, this classification carries a recommended surgical treatment protocol for correction. No literature describes a closed reduction of a Type III dislocation as described in this case report. It is apparent that a closed reduction technique using a chiropractic manipulation may be considered a valid alternative correction technique for Type III dislocations of the great toe.
Wimberley, David W; Vaccaro, Alexander R; Goyal, Nitin; Harrop, James S; Anderson, D Greg; Albert, Todd J; Hilibrand, Alan S
2005-08-01
A case report of acute quadriplegia resulting from closed traction reduction of traumatic bilateral cervical facet dislocation in a 54-year-old male with concomitant ossification of the posterior longitudinal ligament (OPLL). To report an unusual presentation of a spinal cord injury, examine the approach to reversal of the injury, and review the treatment and management controversies of acute cervical facet dislocations in specific patient subgroups. The treatment of acute cervical facet dislocations is an area of ongoing controversy, especially regarding the question of the necessity of advanced imaging studies before closed traction reduction of the dislocated cervical spine. The safety of an immediate closed, traction reduction of the cervical spine in awake, alert, cooperative, and appropriately select patients has been reported in several studies. To date, there have been no permanent neurologic deficits resulting from awake, closed reduction reported in the literature. A case of temporary, acute quadriplegia with complete neurologic recovery following successful closed traction reduction of a bilateral cervical facet dislocation in the setting of OPLL is presented. The clinical neurologic examination, radiographic, and advanced imaging studies before and after closed, traction reduction of a cervical facet dislocation are evaluated and discussed. A review of the literature regarding the treatment of acute cervical facet dislocations is presented. Radiographs showed approximately 50% subluxation of the fifth on the sixth cervical vertebrae, along with computerized tomography revealing extensive discontinuous OPLL. The cervical facet dislocation was successfully reduced with an awake, closed traction reduction, before magnetic resonance imaging (MRI) evaluation. The patient subsequently had acute quadriplegia develop, with the ensuing MRI study illustrating severe spinal stenosis at the C5, C6 level as a result of OPLL or a large extruded disc herniation. Following an immediate anterior decompression and a posterior stabilization procedure, the patient regained full motor and sensory function. This case report highlights the advantages and shows some safety concerns regarding immediate, closed traction reduction of cervical facet dislocation with real-time neural monitoring in an awake, alert, oriented, and appropriately select patient before MRI studies in the setting of preexisting central stenosis from OPLL.
Ahmad Khan, Hayat; Bashir Shah, Adil; Kamal, Younis
2016-11-01
Patellar dislocation is an emergency. Vertical patellar dislocation is rare, often seen in adolescents and mostly due to sports injuries or high-velocity trauma. Few cases have been reported in the literature. Closed or open reduction under general anesthesia is often needed. We report a case of vertical locked patellar dislocation in a 26-year-old male, which was reduced by a simple closed method under spinal anaesthesia. A literature review regarding the various methods of treatment is also discussed. A 26-year-old male experienced a trivial accident while descending stairs, sustaining patellar dislocation. The closed method of reduction was attempted, using a simple technique. Reduction was confirmed and postoperative rehabilitation was started. Follow-up was uneventful. Vertical patellar dislocations are encountered rarely in the emergency department. Adolescents are not the only victims, and high-velocity trauma is not the essential cause. Unnecessary manipulation should be avoided. The closed reduction method is simple, but the surgeon should be prepared for open reduction.
Subtalar dislocation without associated fractures: Case report and review of literature
Giannoulis, Dionisios; Papadopoulos, Dimitrios V; Lykissas, Marios G; Koulouvaris, Panagiotis; Gkiatas, Ioannis; Mavrodontidis, Alexandros
2015-01-01
Isolated subtalar dislocations are unusual injuries due to the inherent instability of the talus. Subtalar dislocations are frequently associated with fractures of the malleoli, the talus, the calcaneus or the fifth metatarsal. Four types of subtalar dislocation have been described according to the direction of the foot in relation to the talus: medial, lateral posterior and anterior. It has been shown that some of these dislocations may spontaneously reduce. A rare case of a 36-year-old male patient who sustained a closed medial subtalar dislocation without any associated fractures of the ankle is reported. The patient suffered a pure closed medial subtalar dislocation that is hardly reported in the literature. Six months after injury the patient did not report any pain, had a satisfactory range of motion, and no signs of residual instability or early posttraumatic osteoarthritis. The traumatic mechanism, the treatment options, and the importance of a stable and prompt closed reduction and early mobilization are discussed. PMID:25893182
Ipsilateral fracture dislocation of the shoulder and elbow: A case report and literature review
Behr, Ian; Blint, Andy; Trenhaile, Scott
2013-01-01
Ipsilateral dislocation of the shoulder and elbow is an uncommon injury. A literature review identified nine previously described cases. We are reporting a unique case of ipsilateral posterior shoulder dislocation and anterior elbow dislocation along with concomitant intra-articular fractures of both joints. This is the first report describing this combination of injuries. Successful treatment generally occurs with closed reduction of ipsilateral shoulder and elbow dislocations, usually reducing the elbow first. When combined with a fracture at one or both locations, closed reduction of the dislocations in conjunction with appropriate fracture management can result in a positive functional outcome. PMID:26403884
Dislocation dynamics in hexagonal close-packed crystals
Aubry, S.; Rhee, M.; Hommes, G.; ...
2016-04-14
Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulkmore » crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.« less
Ligamentous and capsular injuries to the metacarpophalangeal joints of the hand.
Shah, Smiresh Suresh; Techy, Fernando; Mejia, Alfonso; Gonzalez, Mark H
2012-01-01
The mechanism of dorsal dislocation of the metacarpophalangeal (MCP) joint is with forced hyperextension of the joint and the main structure injured is the volar plate. A simple dislocation can be reduced by closed means whereas a complex dislocation cannot. Care must be taken not to put traction across the joint, which may cause the volar plate to slip into the joint, converting a simple dislocation into a complex dislocation. Volar dislocations are rare and mainly treated nonoperatively. Sagittal band injuries can be treated with extension splinting or surgical management with direct repair or reconstruction. A locked MCP joint can usually be treated with closed manipulation. This article discusses these injuries and management options.
Misfit dislocation patterns of Mg-Nb interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Youxing; Shao, Shuai; Liu, Xiang-Yang
The role of heterogeneous interfaces in improving mechanical properties of polycrystalline aggregates and laminated composites has been well recognized with interface structure being of fundamental importance in designing composites containing multiple interfaces. In this paper, taking the Mg (hexagonal close-packed (hcp))/Nb (body-centered cubic (bcc)) interface as an example, we develop Mg-Nb interatomic potentials for predicting atomic configurations of Mg/Nb interfaces. We systematically characterize interface dislocations of Mg/Nb interfaces with Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) orientation relationships and propose a generalized procedure of characterizing interface structure by combining atomistic simulation and interface dislocation theory, which is applicable for not only hcp/bccmore » interfaces, but also other systems with complicated interface dislocation configurations.Here, in Mg/Nb, interface dislocation networks of two types of interfaces are significantly different although they originate from partial dislocations of similar character: the NW interface is composed of three sets of partial dislocations, while the KS interface is composed of four sets of interface dislocations - three sets of partial dislocations and one set of full dislocations that forms from the reaction of two close partial dislocations.« less
Kim, J H; Nam, D H
2015-10-01
Most surgeons agree that closed treatment provides the best results for condylar fractures in children. Nevertheless, treatment of the paediatric mandibular condyle fracture that is severely displaced or dislocated is controversial. The purpose of this study was to investigate the long-term clinical and radiological outcomes following the treatment of displaced or dislocated condylar fractures in children using threaded Kirschner wire and external rubber traction. This procedure can strengthen the advantage of closed reduction and make up for the shortcomings of open reduction. From March 1, 2005 to December 25, 2011, 11 children aged between 4 and 12 years with displaced or dislocated mandibular condyle fractures were treated using threaded Kirschner wire and external rubber traction under portable C-arm fluoroscopy. All patients had unilateral displaced or dislocated condylar fractures. The follow-up period ranged from 24 to 42 months (mean 29.3 months). Normal occlusion and pain-free function of the temporomandibular joint, without deviation or limitation of jaw opening, was achieved in all patients. This closed reduction technique in displaced or dislocated condylar fractures in children offers a reliable solution in preventing the unfavourable sequelae of closed treatment and the open technique, such as altered morphology, functional disturbances, and facial nerve damage. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Edge-on dislocation loop in anisotropic hcp zirconium thin foil
NASA Astrophysics Data System (ADS)
Wu, Wenwang; Xia, Re; Qian, Guian; Xu, Shucai; Zhang, Jinhuan
2015-10-01
Edge-on dislocation loops with 〈 a 〉 -type and 〈 c 〉 -type of Burgers vectors can be formed on prismatic or basel habit planes of hexagonal close-packed (hcp) zirconium alloys during in-situ ion irradiation and neutron irradiation experiments. In this work, an anisotropic image stress method was employed to analyze the free surface effects of dislocation loops within hcp Zr thin foils. Calculation results demonstrate that image stress has a remarkable effect on the distortion fields of dislocation loops within infinite medium, and the image energy becomes remarkable when dislocation loops are situated close to the free surfaces. Moreover, image forces of the 1 / 2 〈 0001 〉 (0001) dislocation loop within (0001) thin foil is much stronger than that of the 1 / 3 〈 11 2 bar 0 〉 (11 2 bar 0) dislocation loop within (11 2 bar 0) thin foil of identical geometrical configurations. Finally, image stress effect on the physical behaviors of loops during in-situ ion irradiation experiments is discussed.
ERIC Educational Resources Information Center
Smith, Suzanna D.; Price, Sharon J.
Thousands of workers have been dislocated from jobs in the textile and apparel industries as a result of recessions and structural changes in the economy. Because of the large concentrations of female workers in these industries, women have been particularly vulnerable to dislocation. This study examined job dislocation and factors that affect…
[Relevance of MRI After Closed Reduction of Traumatic Hip Dislocation in Children].
Strüwind, Christoph Mauritz; von Rüden, Christian; Thannheimer, Andreas; Bühren, Volker; Schneidmueller, Dorien
2018-05-14
Traumatic hip dislocation in children and adolescents is a rare entity that typically results from high-energy trauma. After closed joint reduction, further treatment depends on the specific pattern of the lesion as identified using cross sectional imaging. The aim of this retrospective analysis was to evaluate relevant side effects after traumatic hip dislocation in children and adolescents in order to examine the need for focused diagnostics. This retrospective analysis covered 8 adolescents under 18 years suffering isolated traumatic hip joint dislocation between 2001 and 2017. In all patients, closed joint reduction was performed immediately after admission to the emergency room. In order to evaluate the complete extent of the injury, 5 patients received an MRI and 3 patients a CT scan following closed joint reduction. Two female and 6 male patients with a median age of 11 (range 5 - 16) years were included. In 2 cases, a free joint body was detected in the posterior joint gap in the posttraumatic CT scan after closed joint reduction. Interposition of the labrum into the joint gap was detected intraoperatively in both cases. In one patient who received posttraumatic MRI, labral interposition into the joint gap was observed after closed reduction. These findings were confirmed intraoperatively. In 4 other patients, no posttraumatic labral lesion was detected in the MRI after closed reduction. The reported side effects included ruptured anterior inferior iliac spine and ruptured femoral head ligament. MRI is gaining increasing importance following traumatic hip dislocation in children and adolescents. A missing chondral or osteochondral fragment in the CT scan does not exclude a labral lesion or interposition. Therefore, MRI following closed reduction is mandatory in any case. Georg Thieme Verlag KG Stuttgart · New York.
GaN microrod sidewall epitaxial lateral overgrowth on a close-packed microrod template
NASA Astrophysics Data System (ADS)
Duan, Xiaoling; Zhang, Jincheng; Xiao, Ming; Zhang, Jinfeng; Hao, Yue
2018-05-01
We demonstrate a GaN growth method using microrod sidewall epitaxial lateral overgrowth (MSELO) on a close-packed microrod template by a nonlithographic technique. The density and distribution of threading dislocations were determined by the density and distribution of microrods and the nucleation model. MSELO exhibited two different nucleation models determined by the direction and degree of substrate misorientation and the sidewall curvature: one-sidewall and three-sidewall nucleation, predicting the dislocation density values. As a result, the threading dislocation density was markedly decreased from 2 × 109 to 5 × 107 cm‑2 with a small coalescence thickness of ∼2 µm for the close-packed 3000 nm microrod sample.
A Case of Posterior Sternoclavicular Dislocation in a Professional American Football Player
Yang, Justin S.; Bogunovic, Ljiljana; Brophy, Robert H.; Wright, Rick W.; Scott, Reggie; Matava, Matthew
2015-01-01
Sternoclavicular (SC) dislocation is a rare injury of the upper extremity. Treatment of posterior SC dislocation ranges from conservative (closed reduction) to operative (open reduction with or without surgical reconstruction of the SC joint). To date, we are unaware of any literature that exists pertaining to this injury or its treatment in elite athletes. The purpose of this case report is to describe a posterior SC joint dislocation in a professional American football player and to illustrate the issues associated with its diagnosis and treatment and the athlete’s return to sports. To our knowledge, this case is the first reported in a professional athlete. He was treated successfully with closed reduction and returned to play within 5 weeks of injury. PMID:26137177
Peak Oil, Food Systems, and Public Health
Parker, Cindy L.; Kirschenmann, Frederick L.; Tinch, Jennifer; Lawrence, Robert S.
2011-01-01
Peak oil is the phenomenon whereby global oil supplies will peak, then decline, with extraction growing increasingly costly. Today's globalized industrial food system depends on oil for fueling farm machinery, producing pesticides, and transporting goods. Biofuels production links oil prices to food prices. We examined food system vulnerability to rising oil prices and the public health consequences. In the short term, high food prices harm food security and equity. Over time, high prices will force the entire food system to adapt. Strong preparation and advance investment may mitigate the extent of dislocation and hunger. Certain social and policy changes could smooth adaptation; public health has an essential role in promoting a proactive, smart, and equitable transition that increases resilience and enables adequate food for all. PMID:21778492
Debye screening of dislocations.
Groma, I; Györgyi, G; Kocsis, B
2006-04-28
Debye-like screening by edge dislocations of some externally given stress is studied by means of a variational approach to coarse grained field theory. Explicitly given are the force field and the induced geometrically necessary dislocation (GND) distribution, in the special case of a single glide axis in 2D, for (i) a single edge dislocation and (ii) a dislocation wall. Numerical simulation demonstrates that the correlation in relaxed dislocation configurations is in good agreement with the induced GND in case (i). Furthermore, the result (ii) well predicts the experimentally observed decay length for the GND developing close to grain boundaries.
Binary dislocation junction formation and strength in hexagonal close-packed crystals
Wu, Chi -Chin; Aubry, Sylvie; Arsenlis, Athanasios; ...
2015-12-17
This work examines binary dislocation interactions, junction formation and junction strengths in hexagonal close-packed ( hcp ) crystals. Through a line-tension model and dislocation dynamics (DD) simulations, the interaction and dissociation of different sets of binary junctions are investigated involving one dislocation on the (011¯0) prismatic plane and a second dislocation on one of the following planes: (0001) basal, (11¯00) prismatic, (11¯01) primary pyramidal, or (2¯112) secondary pyramidal. Varying pairs of Burgers vectors are chosen from among the common types the basal type < a > 1/3 < 112¯0 >, prismatic type < c > <0001>, and pyramidal type
Simultaneous dislocation of the metacarpophalangeal and interphalangeal joints of the thumb.
Tabib, William; Sayegh, Samir
2002-01-01
Combined dislocation of the metacarpophalangeal and interphalangeal joints of the thumb is uncommon. We know of only four previously reported cases. We report a new case characterised by dorsal dislocation of both joints. Because of entrapment of the volar plate, open reduction at the interphalangeal joint was necessary. The metacarpophalangeal dislocation was treated by closed reduction. After three weeks of immobilisation, physiotherapy resulted in a satisfactory outcome. Even if the diagnosis of dislocation of the interphalangeal joint is obvious it would be easy to overlook a simultaneous dislocation of the metacarpophalangeal joint with serious consequences. Whole hand examination remains an essential rule.
[Dislocation of the ankle without simoustaneously fracture of the bones].
Qayyum, Faiza; Qayyum, Abbas Ali; Sahlstrüm, Sven Arne
2014-09-01
The ankle is a unique modified saddle joint that, together with the subtalar joint, provides range of motion in several physical planes while maintaining stability. The ankle complex functions as a pivoting structure positioned to bear the entire weight of the body which leaves it vulnerable to injuries. Pure dislocation without associated fracture is rare; however, cases of isolated ankle dislocation without fracture have been reported. We report a case of a closed ankle dislocation without an associated fracture in a 17-year-old boy.
Temporo-mandibular joint dislocation: an unusual complication of transoesophageal echocardiography.
Anantharam, Brijesh; Chahal, Navtej; Stephens, Nigel; Senior, Roxy
2010-03-01
Temporo-mandibular joint (TMJ) dislocation is an unusual complication of transoesophageal echocardiography (TEE). We report a rare case of bilateral TMJ dislocation in an 84-year-old man prior to DC cardioversion (DCCV) for atrial flutter. Shortly after TEE and DCCV, the patient complained of bilateral facial pain. An orthopantomogram revealed bilateral TMJ dislocation. A closed reduction was performed by maxillo-facial surgeons under intravenous anaesthesia. Although very uncommon, the physician should be aware of the complication and its management.
NASA Astrophysics Data System (ADS)
Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.
2017-06-01
This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.
Xu, Xiaofeng; Shi, Jun; Xu, Bing; Dai, Jiewen; Zhang, Shilei
2015-03-01
To evaluate the treatment methods of mandibular symphyseal fracture combined with dislocated intracapsular condylar fractures (MSF&DICF) and to compare the effect of different treatment methods of condylar fractures. Twenty-eight patients with MSF&DICF were included in this study. Twenty-two sites were treated by open reduction, and all the medial condylar fragments were fixed with titanium screws; whereas the other 22 sites underwent close treatment. The surgical effect between these 2 groups was compared based on clinical examination and radiographic examination results. Seventeen of 22 condyle fractures were repositioned in the surgery group, whereas 4 of 22 condyle fractures were repositioned in the close treatment group. Statistical difference was observed between these 2 groups (P < 0.01). Functional outcomes of the patients treated in the surgical treatment group also were better than those in the close treatment group. The dislocated intracapsular condyle fractures should be treated by surgical reduction with the maintenance of the attachment of lateral pterygoid muscle, which is beneficial to repositioning the dislocated condyle to its original physiological position, to closure of the mandibular lingual gap, to restore the mandibular width.
NASA Astrophysics Data System (ADS)
Drouet, Julie; Dupuy, Laurent; Onimus, Fabien; Mompiou, Frédéric; Perusin, Simon; Ambard, Antoine
2014-06-01
The mechanical behavior of Pressurized Water Reactor fuel cladding tubes made of zirconium alloys is strongly affected by neutron irradiation due to the high density of radiation induced dislocation loops. In order to investigate the interaction mechanisms between gliding dislocations and loops in zirconium, a new nodal dislocation dynamics code, adapted to Hexagonal Close Packed metals, has been used. Various configurations have been systematically computed considering different glide planes, basal or prismatic, and different characters, edge or screw, for gliding dislocations with -type Burgers vectors. Simulations show various interaction mechanisms such as (i) absorption of a loop on an edge dislocation leading to the formation of a double super-jog, (ii) creation of a helical turn, on a screw dislocation, that acts as a strong pinning point or (iii) sweeping of a loop by a gliding dislocation. It is shown that the clearing of loops is more favorable when the dislocation glides in the basal plane than in the prismatic plane explaining the easy dislocation channeling in the basal plane observed after neutron irradiation by transmission electron microscopy.
From Atomistic Model to the Peierls-Nabarro Model with {γ} -surface for Dislocations
NASA Astrophysics Data System (ADS)
Luo, Tao; Ming, Pingbing; Xiang, Yang
2018-05-01
The Peierls-Nabarro (PN) model for dislocations is a hybrid model that incorporates the atomistic information of the dislocation core structure into the continuum theory. In this paper, we study the convergence from a full atomistic model to the PN model with {γ} -surface for the dislocation in a bilayer system. We prove that the displacement field and the total energy of the dislocation solution of the PN model are asymptotically close to those of the full atomistic model. Our work can be considered as a generalization of the analysis of the convergence from atomistic model to Cauchy-Born rule for crystals without defects.
Soon, En Loong; Razak, Hamid Rahmatullah Bin Abd; Tan, Andrew Hwee Chye
2017-01-01
Introduction: Massive rotator cuff tears (RCTs) in the context of shoulder dislocations are relatively uncommon in the young adult (<40 years) and if reported are more commonly described in association with acute traumatic anterior glenohumeral dislocations. They have rarely been described with posterior dislocations, regardless of patient age. This is the 1st case reported in the context of posterior dislocations, where a triad of biceps tendon rupture, posterior dislocation, and RCTs was observed during surgery. It provides an important reminder to readers about certain injuries commonly overlooked during the assessment of an acute traumatic shoulder. Case Report: We report an atypical case of a massive RCT involving a 34-year-old Asian male who landed on his outstretched hand after falling off a bicycle. A tear involving the supraspinatus and subscapularis was visualized during surgery, along with long head of biceps (LHB) tendon rupture. This was after an initial failure to achieve closed reduction of the posteriorly dislocated left shoulder. Conclusion: It is easy to miss the posterior instability, the associated RCTs or the biceps tendon injuries. Biceps tendon rupture should be a consideration when one is unable to reduce a posteriorly dislocated shoulder. The interposed torn LHB tendon trapped within the glenohumeral joint was the likely physical block in the initial failure to achieve closed reduction. With timely diagnosis, prudent physical examination, early imaging and surgery, and excellent results can potentially be achieved to return a young patient to full functionality. PMID:28819610
Chronic Irreducible Anterior Dislocation of the Shoulder without Significant Functional Deficit.
Chung, Hoejeong; Yoon, Yeo-Seung; Shin, Ji-Soo; Shin, John Junghun; Kim, Doosup
2016-09-01
Shoulder dislocation is frequently encountered by orthopedists, and closed manipulation is often sufficient to treat the injury in an acute setting. Although most dislocations are diagnosed and managed promptly, there are rare cases that are missed or neglected, leading to a chronically dislocated state of the joint. They are usually irreducible and cause considerable pain and functional disability in most affected patients, prompting the need to find a surgical method to reverse the worsening conditions caused by the dislocated joint. However, there are cases of even greater rarity in which chronic shoulder dislocations are asymptomatic with minimal functional or structural degeneration in the joint. These patients are usually left untreated, and most show good tolerance to their condition without developing disabling symptoms or significant functional loss over time. We report on one such patient who had a chronic shoulder dislocation for more than 2 years without receiving treatment.
Chronic bilateral dislocation of temporomandibular joint.
Shakya, S; Ongole, R; Sumanth, K N; Denny, C E
2010-01-01
Dislocation of the condyle of the mandible is a common condition that may occur in an acute or chronic form. It is characterised by inability to close the mouth with or without pain. Dislocation has to be differentiated from subluxation which is a self reducible condition. Dislocation can occur in any direction with anterior dislocation being the commonest one. Various predisposing factors have been associated with dislocation like muscle fatigue and spasm, the defect in the bony surface like shallow articular eminence, and laxity of the capsular ligament. People with defect in collagen synthesis like Ehler Danlos syndrome, Marfan syndrome are said to be genetically predisposed to this condition. Various treatment modalities have been used ranging from conservative techniques to surgical methods. Acute dislocations can be reduced manually or with conservative approach and recurrent and chronic cases can be reduced by surgical intervention. Though the dislocation in our case was 4 months a simple manual reduction proved to be successful. We believe that manual reduction can be attempted as first line of treatment prior to surgical intervention.
Novel Cross-Slip Mechanism of Pyramidal Screw Dislocations in Magnesium.
Itakura, Mitsuhiro; Kaburaki, Hideo; Yamaguchi, Masatake; Tsuru, Tomohito
2016-06-03
Compared to cubic metals, whose primary slip mode includes twelve equivalent systems, the lower crystalline symmetry of hexagonal close-packed metals results in a reduced number of equivalent primary slips and anisotropy in plasticity, leading to brittleness at the ambient temperature. At higher temperatures, the ductility of hexagonal close-packed metals improves owing to the activation of secondary ⟨c+a⟩ pyramidal slip systems. Thus, understanding the fundamental properties of corresponding dislocations is essential for the improvement of ductility at the ambient temperature. Here, we present the results of large-scale ab initio calculations for ⟨c+a⟩ pyramidal screw dislocations in magnesium and show that their slip behavior is a stark counterexample to the conventional wisdom that a slip plane is determined by the stacking fault plane of dislocations. A stacking fault between dissociated partial dislocations can assume a nonplanar shape with a negligible energy cost and can migrate normal to its plane by a local shuffling of atoms. Partial dislocations dissociated on a {21[over ¯]1[over ¯]2} plane "slither" in the {011[over ¯]1} plane, dragging the stacking fault with them in response to an applied shear stress. This finding resolves the apparent discrepancy that both {21[over ¯]1[over ¯]2} and {011[over ¯]1} slip traces are observed in experiments while ab initio calculations indicate that dislocations preferably dissociate in the {21[over ¯]1[over ¯]2} planes.
The coupling technique: A two-wave acoustic method for the study of dislocation dynamics
NASA Astrophysics Data System (ADS)
Gremaud, G.; Bujard, M.; Benoit, W.
1987-03-01
Progress in the study of dislocation dynamics has been achieved using a two-wave acoustic method, which has been called the coupling technique. In this method, the attenuation α and the velocity v of ultrasonic waves are measured in a sample submitted simultaneously to a harmonic stress σ of low frequency. Closed curves Δα(σ) and Δv/v(σ) are drawn during each cycle of the applied stress. The shapes of these curves and their evolution are characteristic of each dislocation motion mechanism which is activated by the low-frequency applied stress. For this reason, the closed curves Δα(σ) and Δv/v(σ) can be considered as signatures of the interaction mechanism which controls the low-frequency dislocation motion. In this paper, the concept of signature is presented and explained with some experimental examples. It will also be shown that theoretical models can be developed which explain very well the experimental results.
Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates
NASA Astrophysics Data System (ADS)
Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.
2015-11-01
Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.
BBilateral Neglected Anterior Shoulder Dislocation with Greater Tuberosity Fractures
Upasani, Tejas; Bhatnagar, Abhinav; Mehta, Sonu
2016-01-01
Introduction: Shoulder dislocations are a very common entity in routine orthopaedic practice. Chronic unreduced anterior dislocations of the shoulder are not very common. Neurological and vascular complications may occur as a result of an acute anterior dislocation of the shoulder or after a while in chronic unreduced shoulder dislocation. Open reduction is indicated for most chronic shoulder dislocations. We report a case of neglected bilateral anterior shoulder dislocation with bilateral displaced greater tuberosity fracture. To the best of our knowledge, only a handful cases have been reported in literature with bilateral anterior shoulder dislocation with bilateral fractures. Delayed diagnosis/reporting is a scenario which makes the list even slimmer and management all the more challenging. Case Report: We report a case of a 35-year-old male who had bilateral anterior shoulder dislocation and bilateral greater tuberosity fracture post seizure and failed to report it for a period of 30 days. One side was managed conservatively with closed reduction and immobilization and the other side with open reduction. No neurovascular complications pre or post reduction of shoulder were seen. Conclusion: Shoulder dislocations should always be suspected post seizures and if found should be treated promptly. Treatment becomes difficult for any shoulder dislocation that goes untreated for considerable period of time PMID:27703939
The Peierls stress of the moving [Formula: see text] screw dislocation in Ta.
Liu, Ruiping; Wang, Shaofeng; Wu, Xiaozhi
2009-08-26
The Peierls stress of the moving [Formula: see text] screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving [Formula: see text] screw dislocation in Ta is proposed to be planar.
A Rare Case of Neglected Traumatic Anterior Dislocation of Hip in a Child.
Mootha, Aditya Krishna; Mogali, Kasi Viswanadam
2016-01-01
Post traumatic hip dislocations are very rare in children. Neglected anterior hip dislocations in children are not described in literature so far. Here, we present a case of 6 weeks old anterior hip dislocation successfully managed by open reduction. A 9-year-old male child presented with neglected anterior hip dislocation on left side. Open reduction carried out through direct anterior approach to hip. Congruent reduction is achieved. At final follow up of 1 year, the child had unrestricted activities of daily living and no radiological signs of osteonecrosis or any joint space reduction. There is paucity of literature over neglected post traumatic anterior hip dislocations in children. The treatment options vary from closed reduction after heavy traction to sub trochanteric osteotomy. However, we feel that open reduction through direct anterior approach is the preferred mode of management whenever considered possible.
Hassan, Youssef G.; Joukhadar, Nabih I.
2018-01-01
Medial epicondyle entrapment after an acute fracture dislocation of the elbow is a common finding in the pediatric population, but a rare finding in adults. We present a case of an adult patient diagnosed with a traumatic fracture dislocation of the elbow joint with intra-articular entrapment of the medial epicondyle. After initial evaluation, closed reduction was done. Stability testing after reduction showed an unstable joint; thus, open reduction and internal fixation was decided. PMID:29666736
Plastic deformation of a magnesium oxide 001-plane surface produced by cavitation
NASA Technical Reports Server (NTRS)
Hattori, S.; Miyoshi, K.; Buckley, D. H.; Okada, T.
1986-01-01
An investigation was conducted to examine plastic deformation of a cleaved single-crystal magnesium oxide 001-plane surface exposed to cavitation. Cavitation damage experiments were carried out in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (2 mm) to the surface of the cleaved specimen. The dislocation-etch-pit patterns induced by cavitation were examined and compared with that of microhardness indentations. The results revealed that dislocation-etch-pit patterns around hardness indentations contain both screw and edge dislocations, while the etch-pit patterns on the surface exposed to cavitation contain only screw dislocations. During cavitation, deformation occurred in a thin surface layer, accompanied by work-hardening of the ceramic. The row of screw dislocations underwent a stable growth, which was analyzed crystallographically.
Rare cause of knee pain after martial arts demonstration: a case report.
Armstrong, Marc B; Thurber, Jalil
2013-04-01
Patellar dislocations are a commonly treated injury in the Emergency Department (ED), with a majority of cases involving lateral subluxation of the patella outside of the joint space. Intra-condylar dislocations of the patella are rare. Of the two types of axis rotation, vertical and horizontal, the vertical occurs five times less frequently. These injuries most often undergo open reduction or, at best, closed reduction under general anesthesia. To remind Emergency Physicians to consider this injury in any patient with severe knee pain and limited mobility, even with a history that is lacking significant trauma. We present a case of intra-condylar patellar dislocation with vertical axis rotation. This injury is no longer primarily attributed to the young and, barring fracture, closed reduction in the ED should be considered. Copyright © 2013 Elsevier Inc. All rights reserved.
Dislocation pileup as a representation of strain accumulation on a strike-slip fault
Savage, J.C.
2006-01-01
The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.
Point-of-care ultrasound diagnosis and treatment of posterior shoulder dislocation.
Beck, Sierra; Chilstrom, Mikaela
2013-02-01
Acute traumatic posterior shoulder dislocations are rare. The diagnosis is often missed or delayed, as radiologic abnormalities can be subtle. We report a case of a 37-year-old man who presented to the emergency department with severe right shoulder pain and inability to move his arm after a motor vehicle collision. Based on examination, he was initially thought to have an anterior dislocation; however, point-of-care (POC) ultrasound clearly demonstrated a posterior shoulder dislocation. Real-time ultrasound-guided intra-articular local anesthetic injection facilitated closed reduction in the emergency department without procedural sedation, and POC ultrasound confirmed successful reduction at the bedside after the procedure. This case demonstrates that POC ultrasound can be a useful diagnostic tool in the rapid assessment and treatment for patients with suspected posterior shoulder dislocation. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Doukhan, N.; Doukhan, J. C.; Poirier, J. P.
1991-06-01
A crystal of clinopyroxene from the coarse-grained refractory inclusion Egg 6 of the Allende meteorite has been studied in detail by transmission electron microscopy. The pyroxene crystal contains euhedral, dislocation-free inclusions of pure spinel MgAl2O4, without any topotactic relation to the host. Extensive dislocation walls at equilibrium, characteristic of high-temperature anneal, are present in the crystal. Alteration products are occasionaly observed at the spinel-pyroxene interface close to regions where dislocation walls decorated with bubbles (or voids) are present. The bubbles, often in the shape of tubes along the dislocation lines, are thought to be due to the precipitation of a fluid migrating along the dislocations. The observations are compatible with crystallization of the refractory inclusions from the melt and with the existence of a later stage of metasomatism.
Bauer, Stefan; Dunne, Ben; Whitewood, Colin
2012-01-01
Bilateral simultaneous elbow dislocations are extremely rare and have only been described in 12 cases. In the paediatric population unilateral elbow dislocations are rare with 3–6% of all elbow injuries and there are only few studies describing this injury exclusively in children. There is only one case report of a paediatric patient who sustained a simultaneous bilateral elbow dislocation with medial epicondyle fractures. We present a second paediatric case of simultaneous bilateral elbow dislocation with associated displaced bilateral medial epicondyle fractures in a gymnast with joint hyperlaxity (3 of 5 Wynne-Davies criteria) treated with closed reduction and short-term immobilisation (3 weeks). The patient returned to full trampoline gymnastics between 4 and 5 months postinjury and made an uneventful recovery. PMID:23234820
NASA Astrophysics Data System (ADS)
Oriwol, Daniel; Trempa, Matthias; Sylla, Lamine; Leipner, Hartmut S.
2017-04-01
Dislocation clusters are the main crystal defects in multicrystalline silicon and are detrimental for solar cell efficiency. They were formed during the silicon ingot casting due to the relaxation of strain energy. The evolution of the dislocation clusters was studied by means of automated analysing tools of the standard wafer and cell production giving information about the cluster development as a function of the ingot height. Due to the observation of the whole wafer surface the point of view is of macroscopic nature. It was found that the dislocations tend to build clusters of high density which usually expand in diameter as a function of ingot height. According to their structure the dislocation clusters can be divided into light and dense clusters. The appearance of both types shows a clear dependence on the orientation of the grain growth direction. Additionally, a process of annihilation of dislocation clusters during the crystallization has been observed. To complement the macroscopic description, the dislocation clusters were also investigates by TEM. It is shown that the dislocations within the subgrain boundaries are closely arranged. Distances of 40-30 nm were found. These results lead to the conclusion that the dislocation density within the cluster structure is impossible to quantify by means of etch pit counting.
[A clinical study and analysis of congenital lenticular dislocation (35 cases)].
Guo, X; Mao, W; Chen, Y; Ma, Q; Zeng, L; Luo, T
1991-12-01
Thirty-five cases of congenital lenticular dislocation seen in our Center since 1985 have been studied and analyzed clinically. By the survey of pedigrees and examination of these patients, including ocular, systemic, skeletal X-ray, psychocardiogram, and urinary sodium-nitroprusside test, 21 cases were diagnosed as Marfan's syndrome, 6 cases as simple ectopia lentis, 3 cases as Weill-Marchesani's syndrome, 4 cases as aniridia and 1 case as homecys tinuria. We found that the most significant ocular manifestation of congenital lenticular dislocation was reduction in visual acuity. The severity of visual disturbance varied with the types of dislocation and the visual deficiency was closely related to the intermediate-grade (II) dislocation of the lens. Examination of ERG showed normal function in most of the patients. From this, we believe that the major cause of visual reduction in congenital lenticular dislocation is lenticular myopia and astigmatism. There fore, early diagnosis and effective correction of vision should be emphasized to prevent the occurrence of amblyopia.
Strengthening via deformation twinning in a nickel alloy
Shaw, Leon L.; Villegas, Juan; Huang, Jian-Yu; ...
2007-07-01
In this study, nanograins and nanotwins are produced in specimens using one processing technique to allow direct comparison in their nanohardnesses. It is shown that the hardness of nanotwins can be close to the lower end of the hardness of nanograins. The resistance of nanotwins to dislocation movement is explained based on elastic interactions between the incident 60° dislocation and the product dislocations. The latter includes one Shockley partial at the twin boundary and one 60° dislocation in the twinned region. The analysis indicates that a resolved shear stress of at least 1.24 GPa is required for a 60° dislocationmore » to pass across a twin boundary in the nickel alloy investigated. It is this high level of the required shear stress coupled with a limited number of dislocations that can be present between two adjacent twin boundaries that provides nanotwins with high resistance to dislocation movement. The model proposed is corroborated by the detailed analysis of high-resolution transmission electron microscopy.« less
Edge dislocations as sinks for sub-nanometric radiation induced defects in α-iron
NASA Astrophysics Data System (ADS)
Anento, N.; Malerba, L.; Serra, A.
2018-01-01
The role of edge dislocations as sinks for small radiation induced defects in bcc-Fe is investigated by means of atomistic computer simulation. In this work we investigate by Molecular Statics (T = 0K) the interaction between an immobile dislocation line and defect clusters of small sizes invisible experimentally. The study highlights in particular the anisotropy of the interaction and distinguishes between absorbed and trapped defects. When the considered defect intersects the dislocation glide plane and the distance from the dislocation line to the defect is on the range between 2 nm and 4 nm, either total or partial absorption of the cluster takes place leading to the formation of jogs. Residual defects produced during partial absorption pin the dislocation. By the calculation of stress-strain curves we have assessed the strength of those residues as obstacles for the motion of the dislocation, which is reflected on the unpinning stresses and the binding energies obtained. When the defect is outside this range, but on planes close to the dislocation glide plane, instead of absorption we have observed a capture process. Finally, with a view to introducing explicitly in kinetic Monte Carlo models a sink with the shape of a dislocation line, we have summarized our findings on a table presenting the most relevant parameters, which define the interaction of the dislocation with the defects considered.
Traumatic hip dislocation at a regional trauma centre in Nigeria.
Onyemaechi, N O C; Eyichukwu, G O
2011-01-01
Traumatic dislocation or fracture-dislocation of the hip is an orthopaedic emergency that is steadily increasing in incidence due to high-speed motor vehicular accidents. These injuries need to be recognized early and promptly treated to prevent morbidity and long-term complications. Some of the fundamental issues in the management of traumatic dislocations of the hip are the critical interval between injury and reduction, the type of reduction most suitable for various types of injury and the duration of immobilization that give the best results. This study was carried out at the National Orthopaedic Hospital Enugu, a regional trauma and orthopaedic centre in South-East Nigeria. The purpose of the study is to describe the pattern of presentation and to identify the factors that determine the long-term outcome in the treatment of traumatic dislocations and fracture-dislocations of the hip at Enugu, Nigeria. The case notes of all the patients that presented with traumatic dislocations and fracture-dislocations of the hip between January 2003 and December 2007 were reviewed. The information extracted and analyzed included the patients' demographics, etiology of injury, time interval before reduction, associated injuries, treatment offered, complications and follow-up. Thompson-Epstein classification was used to grade the posterior hip dislocations. The outcome of treatment was evaluated using the clinical and radiological criteria proposed by Epstein (1974). Three patients with incomplete data and two patients with central fracture dislocation were excluded from this study. Forty-eight patients with 50 hip dislocations were analyzed. The age range was 12 years to 67 years with a mean age of 34.8 years. Thirty-nine patients (81.3%) were males and 9 (18.7%) were females. Road-traffic accident was the leading cause of traumatic hip dislocation in this series, 44 cases (91.6%). Posterior dislocation occurred in 48 hips (96%) while anterior dislocation occurred in 2 hips (4%). Forty-seven hips (94%) were treated by primary closed reduction, two hips (4%) were treated with open reduction and one patient (2%) had Girdlestone excision arthroplasty. Thirty-six hips (73.5%) were reduced with 12 hours of the injury. Concomitant injuries were found in 37 patients (77%). The follow up period ranged from 10 months to 36 months with a mean follow up period of 15 months. Post-traumatic osteoarthritis occurred in 2 hips (4%) avascular necrosis of the femoral head was seen in 2 hips (4%). Five patients had sciatic nerve paresis while there was recurrence in one hip. No mortality was recorded. Traumatic dislocations and fracture-dislocations of the hip are severe injuries caused mostly by high-speed motor-vehicular accidents. Young adult males are most commonly affected, and there is a high rate of concomitant injuries. Excellent results can be achieved by early and stable closed reduction of these injuries with immobilization of the affected hips.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tianyi; Tan, Lizhen; Lu, Zizhe
Instrumented nanoindentation was used in this paper to investigate the hardness, elastic modulus, and creep behavior of an austenitic Fe-20Cr-25Ni model alloy at room temperature, with the indented grain orientation being the variant. The samples indented close to the {111} surfaces exhibited the highest hardness and modulus. However, nanoindentation creep tests showed the greatest tendency for creep in the {111} indented samples, compared with the samples indented close to the {001} and {101} surfaces. Scanning electron microscopy and cross-sectional transmission electron microscopy revealed slip bands and dislocations in all samples. The slip band patterns on the indented surfaces were influencedmore » by the grain orientations. Deformation twinning was observed only under the {001} indented surfaces. Finally, microstructural analysis and molecular dynamics modeling correlated the anisotropic nanoindentation-creep behavior with the different dislocation substructures formed during indentation, which resulted from the dislocation reactions of certain active slip systems that are determined by the indented grain orientations.« less
Study of the dislocation contribution to the internal friction background of gold
NASA Astrophysics Data System (ADS)
Baur, J.; Benoit, W.
1987-04-01
The dislocation contribution to the internal friction (IF) background is studied in annealed gold samples containing various dilute concentrations of platinum impurities. The measurements are performed in the kHz frequency range in order to determine the loss mechanism responsible for the high IF background observed at these low frequencies. To this end, the IF background was systematically measured as a function of frequency, vibration amplitude, temperature, and impurity concentration. The experimental results show that the high dislocation contribution observed in annealed samples is strain-amplitude independent for amplitudes in the range 10-7 to 2×10-6, but rapidly decreases for amplitudes smaller than 10-7. In particular, the dislocation contribution tends to zero when the strain amplitude tends to zero. Furthermore, this contribution is frequency independent. These observations demonstrate that the dislocation contribution cannot be explained by relaxations. In particular, this contribution cannot be attributed to a viscous damping of the dislocation motion. On the contrary, the experiments show that the IF background due to dislocations must be explained by hysteretic and athermal motions of dislocations interacting with point defects. However, these hysteretic motions are not due to breakaway of dislocations from pinning points distributed along their length. The experimental results can be explained by the presence of point defects close to the dislocations, but not on them. The mechanical energy loss is attributed to hysteretic motions of dislocations between potential minima created by point defects.
NASA Astrophysics Data System (ADS)
Ait-Oubba, A.; Coupeau, C.; Durinck, J.; Talea, M.; Grilhé, J.
2018-06-01
In the framework of the continuum elastic theory, the equilibrium positions of Shockley partial dislocations have been determined as a function of their distance from the free surface. It is found that the dissociation width decreases with the decreasing depth, except for a depth range very close to the free surface for which the dissociation width is enlarged. A similar behaviour is also predicted when Shockley dislocation pairs are regularly arranged, whatever the wavelength. These results derived from the elastic theory are compared to STM observations of the reconstructed (1 1 1) surface in gold, which is usually described by a Shockley dislocations network.
NASA Astrophysics Data System (ADS)
Li, Y.; Robertson, C.
2018-06-01
The influence of irradiation defect dispersions on plastic strain spreading is investigated by means of three-dimensional dislocation dynamics (DD) simulations, accounting for thermally activated slip and cross-slip mechanisms in Fe-2.5%Cr grains. The defect-induced evolutions of the effective screw dislocation mobility are evaluated by means of statistical comparisons, for various defect number density and defect size cases. Each comparison is systematically associated with a quantitative Defect-Induced Apparent Straining Temperature shift (or «ΔDIAT»), calculated without any adjustable parameters. In the investigated cases, the ΔDIAT level associated with a given defect dispersion closely replicates the measured ductile to brittle transition temperature shift (ΔDBTT) due to the same, actual defect dispersion. The results are further analyzed in terms of dislocation-based plasticity mechanisms and their possible relations with the dose-dependent changes of the ductile to brittle transition temperature.
Arjun, R H H; Kumar, Vishal; Saibaba, Balaji; John, Rakesh; Guled, Uday; Aggarwal, Sameer
2016-09-01
The incidence of traumatic hip dislocations in children is rising in this fast developing world along with increasing numbers of high-velocity road traffic accidents. Anterior dislocation of the hip has a lower incidence compared with posterior dislocation of the hip. We encountered a rare case of the obturator type of anteriorly dislocated hip associated with ipsilateral fracture of the shaft femur in an 11-year-old child. This is a highly unusual injury combination and the mechanism of injury is obscure. Only two similar cases have been reported in the English literature to date. Closed reduction of the hip using a hitherto undescribed technique and an intramedullary interlocking nail was performed in this case. At 6 months of follow-up, the fracture shaft femur has united and the child is bearing full weight on the limb.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... daily total return today, the previous trading day's closing market price for the component would be subtracted from today's closing market price for the component to determine a price difference (the ``Price Difference''). The Price Difference would be added to any declared dividend, if today were an ``ex-dividend...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tianlei; Gao, Yanfei; Bei, Hongbin
2011-01-01
Instrumented nanoindentation techniques have been widely used to characterize the small-scale mechanical behavior of materials. The elastic-plastic transition during nanoindentation is often indicated by a sudden displacement burst (pop-in) in the measured load-displacement curve. In defect-free single crystals, the pop-in is believed to be the result of homogeneous dislocation nucleation because the maximum shear stress corresponding to the pop-in load approaches the theoretical strength of the materials and because the statistical distribution of pop-in stresses is consistent with what is expected for a thermally activated process of homogeneous dislocation nucleation. This paper investigates whether this process is affected by crystallographymore » and stress components other than the resolved shear stress. A Stroh formalism coupled with the two-dimensional Fourier transformation is used to derive the analytical stress fields in elastically anisotropic solids under Hertzian contact, which allows the determination of an indentation Schmid factor, namely, the ratio of maximum resolved shear stress to the maximum contact pressure. Nanoindentation tests were conducted on B2-structured NiAl single crystals with different surface normal directions. This material was chosen because it deforms at room temperature by {110}<001> slip and thus avoids the complexity of partial dislocation nucleation. Good agreement is obtained between the experimental data and the theoretically predicted orientation dependence of pop-in loads based on the indentation Schmid factor. Pop-in load is lowest for indentation directions close to <111> and highest for those close to <001>. In nanoindentation, since the stress component normal to the slip plane is typically comparable in magnitude to the resolved shear stress, we find that the pressure sensitivity of homogeneous dislocation nucleation cannot be determined from pop-in tests. Our statistical measurements generally confirm the thermal activation model of homogeneous dislocation nucleation. That is, the extracted dependence of activation energy on resolved shear stress is almost the same for all the indentation directions considered in this study, except for those close to <001>. Because very high pop-in loads are measured for orientations close to <001>, which implies a large contact area at pop-in, there is a higher probability of activating pre-existing dislocations in these orientations, which may explain the discrepancy near <001>.« less
ERIC Educational Resources Information Center
Spaid, Robin L.; Parsons, Michael H.
In August 1983, when the second largest employer in Washington County, Maryland, closed its plant, the local unemployment rate was 13%. The following month, Hagerstown Junior College (HJC) received $50,000 in state funds to initiate a dislocated worker (DLW) program. The program included orientation by a counselor, diagnostic testing, and…
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC. Div. of Human Resources.
This is the final report in a series issued to assist Congress in assessing the problems of worker dislocation and employer practices related to advance notice and assistance provided to workers. A national survey of 2,600 business establishments was conducted to determine: (1) the extent of business closures and permanent layoffs between January…
NASA Technical Reports Server (NTRS)
Fieldler, F. S.; Ast, D.
1982-01-01
Experimental techniques for the preparation of electron beam induced current samples of Web-dentritic silicon are described. Both as grown and processed material were investigated. High density dislocation networks were found close to twin planes in the bulk of the material. The electrical activity of these networks is reduced in processed material.
von Rüden, C; Hackl, S; Woltmann, A; Friederichs, J; Bühren, V; Hierholzer, C
2015-06-01
The dislocated posterolateral fragment of the distal tibia is considered as a key fragment for the successful reduction of comminuted ankle fractures. The reduction of this fragment can either be achieved indirectly by joint reduction using the technique of closed anterior-posterior screw fixation, or directly using the open posterolateral approach followed by plate fixation. The aim of this study was to compare the outcome after stabilization of the dislocated posterolateral tibia fragment using either closed reduction and screw fixation, or open reduction and plate fixation via the posterolateral approach in complex ankle fractures. In a prospective study between 01/2010 and 12/2012, all mono-injured patients with closed ankle fractures and dislocated posterolateral tibia fragments were assessed 12 months after osteosynthesis. Parameters included: size of the posterolateral tibia fragment relative to the tibial joint surface (CT scan, in %) as an indicator of injury severity, unreduced area of tibial joint surface postoperatively, treatment outcome assessed by using the "Ankle Fracture Scoring System" (AFSS), as well as epidemiological data and duration of the initial hospital treatment. In 11 patients (10 female, 1 male; age 51.6 ± 2.6 years [mean ± SEM], size of tibia fragment 42.1 ± 2.5 %) the fragment fixation was performed using a posterolateral approach. Impaired postoperative wound healing occurred in 2 patients of this group. In the comparison group, 12 patients were treated using the technique of closed anterior-posterior screw fixation (10 female, 2 male; age 59.5 ± 6.7 years, size of tibia fragment 45.9 ± 1.5 %). One patient of this group suffered an incomplete lesion of the superficial peroneal nerve. Radiological evaluation of the joint surface using CT scan imaging demonstrated significantly less dislocation of the tibial joint surface following the open posterolateral approach (0.60 ± 0.20 mm) compared to the closed anterior-posterior screw fixation (1.03 ± 0.08 mm; p < 0.05). Assessment of the treatment outcome using the AFSS demonstrated a significantly higher score of 97.4 ± 6.4 in the group with a posterolateral approach compared to a score of 74.4 ± 12.1 (p < 0.05) in the group with an anterior-posterior screw fixation. In comparison to the anterior-posterior screw fixation, open reduction and fixation of the dislocated, posterolateral key fragment of the distal tibia using a posterolateral approach resulted in a more accurate fracture reduction and significantly better functional outcome 12 months after surgery. In addition, no increased rate of postoperative complications, or extended hospital stay was observed but there was less severe post-traumatic joint arthritis. The results of this study suggest that in complex ankle factures the open fixation of the dislocated posterolateral fragment is recommended as an alternative surgical procedure and may be beneficial for both clinical and radiological long-term outcomes. Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kweon, Kyoung E.; Aberg, Daniel; Lordi, Vincenzo
The atomic and electronic structures of 60° glide perfect and 30°/90° glide partial dislocations in CdTe are studied using combined semi-empirical and density functional theory calculations. The calculations predict that the dislocation cores tend to undergo significant reconstructions along the dislocation lines from the singly-periodic (SP) structures, yielding either doubly-periodic (DP) ordering by forming a dimer or quadruply-periodic (QP) ordering by alternating a dimer and a missing dimer. Charge modulation along the dislocation line, accompanied by the QP reconstruction for the Cd-/Te-core 60° perfect and 30° partials or the DP reconstruction for the Cd-core 90° partial, results in semiconducting character,more » as opposed to the metallic character of the SP dislocation cores. Dislocation-induced defect states for the 60° Cd-/Te-core are located relatively close to the band edges, whereas the defect states lie in the middle of the band gap for the 30° Cd-/Te-core partial dislocations. In addition to the intracore charge modulation within each QP core, the possibility of intercore charge transfer between two different dislocation cores when they are paired together in the same system is discussed. As a result, the analysis of the electronic structures reveals the potential role of the dislocations on charge transport in CdTe, particularly in terms of charge trapping and recombination.« less
[Classification and Treatment of Sacroiliac Joint Dislocation].
Tan, Zhen; Huang, Zhong; Li, Liang; Meng, Wei-Kun; Liu, Lei; Zhang, Hui; Wang, Guang-Lin; Huang, Fu-Guo
2017-09-01
To develop a renewed classification and treatment regimen for sacroiliac joint dislocation. According to the direction of dislocation of sacroiliac joint,combined iliac,sacral fractures,and fracture morphology,sacroiliac joint dislocation was classified into 4 types. Type Ⅰ (sacroiliac anterior dislocation): main fracture fragments of posterior iliac wing dislocated in front of sacroiliac joint. Type Ⅱ (sacroiliac posterior dislocation): main fracture fragments of posterior iliac wing dislocated in posterior of sacroiliac joint. Type Ⅲ (Crescent fracturedislocation of the sacroiliac joint): upward dislocation of posterior iliac wing with oblique fracture through posterior iliac wing. Type ⅢA: a large crescent fragment and dislocation comprises no more than onethird of sacroiliac joint,which is typically inferior. Type ⅢB: intermediatesize crescent fragment and dislocation comprises between one and twothirds of joint. Type ⅢC: a small crescent fragment where dislocation comprises most,but not the entire joint. Different treatment regimens were selected for different types of fractures. Treatment for type Ⅰ sacroiliac joint dislocation: anterior iliac fossa approach pry stripping reset; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅱ sacroiliac joint dislocation: posterior sacroiliac joint posterior approach; sacroiliac joint fixed with sacroiliac screw under computer guidance. Treatment for type ⅢA and ⅢB sacroiliac joint dislocation: posterior sacroiliac joint approach; sacroiliac joint fixed with reconstruction plate. Treatment for type ⅢC sacroiliac joint dislocation: sacroiliac joint closed reduction; sacroiliac joint fixed with sacroiliac screw through percutaneous. Treatment for type Ⅳ sacroiliac joint dislocation: posterior approach; sacroiliac joint fixed with spinal pelvic fixation. Results of 24 to 72 months patient follow-up (mean 34.5 months): 100% survival,100% wound healing,and 100% fracture healing. Two cases were identified as type Ⅰ sacroiliac joint dislocation,including one with coexistence of nerve injury. Patients recovered completely 12 months after surgery. Eight cases were identified as type Ⅱ sacroiliac joint dislocation; none had obvious nerve injury during treatments. Twelve cases were identified as type Ⅲ sacroiliac joint dislocation,including one with coexistence of nerve injury. Patients recovered completely 12 months after surgery. Three cases were identified as type Ⅳ sacroiliac joint dislocation with coexistence of nerve injury. Two patients fully recovered 12 months after surgery. One had partial recovery of neurological function. The classification and treatment regimen for sacroiliac joint dislocation have achieved better therapeutic effect,which is worth promoting.
Kweon, Kyoung E.; Aberg, Daniel; Lordi, Vincenzo
2016-05-16
The atomic and electronic structures of 60° glide perfect and 30°/90° glide partial dislocations in CdTe are studied using combined semi-empirical and density functional theory calculations. The calculations predict that the dislocation cores tend to undergo significant reconstructions along the dislocation lines from the singly-periodic (SP) structures, yielding either doubly-periodic (DP) ordering by forming a dimer or quadruply-periodic (QP) ordering by alternating a dimer and a missing dimer. Charge modulation along the dislocation line, accompanied by the QP reconstruction for the Cd-/Te-core 60° perfect and 30° partials or the DP reconstruction for the Cd-core 90° partial, results in semiconducting character,more » as opposed to the metallic character of the SP dislocation cores. Dislocation-induced defect states for the 60° Cd-/Te-core are located relatively close to the band edges, whereas the defect states lie in the middle of the band gap for the 30° Cd-/Te-core partial dislocations. In addition to the intracore charge modulation within each QP core, the possibility of intercore charge transfer between two different dislocation cores when they are paired together in the same system is discussed. As a result, the analysis of the electronic structures reveals the potential role of the dislocations on charge transport in CdTe, particularly in terms of charge trapping and recombination.« less
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-11-10
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.
Bhide, Pushkar P; Anantharaman, Chinnadurai; Mohan, Ganesan; Raju, Karuppanna
2016-01-01
Simultaneous dislocation of multiple metatarsophalangeal joints is a rare injury, because of the impediment presented by the anatomy of the lesser metatarsophalangeal joints. To the best of our knowledge, only 1 case of simultaneous dislocation of all 5 metatarsophalangeal joints has been previously reported in peer-reviewed studies. Owing to the same anatomic structures that obstruct relocation, closed reduction has been known to fail in a large proportion of cases. We report a case of simultaneous dorsal dislocation of all 5 metatarsophalangeal joints of the right foot after a motor vehicle accident. The highlight of our case was successful closed reduction after application of the reduction maneuver to all lesser metatarsophalangeal joints simultaneously in the second attempt with the patient under anesthesia. On confirming the stability of the reduction, the foot was immobilized in a short-leg, posterior slab cast for 3 weeks without placing Kirschner wires across the joints. At the 3-month follow-up evaluation, the patient had reacquired their preinjury level of activity with a good range of motion . At the 2-year follow-up evaluation, this range of motion was maintained with no radiologic evidence of arthrosis. We have inferred that the reduction was successful the second time because the maneuver freed the soft tissue structures from the contiguous impingement in the metatarsophalangeal joints by the exact reversal of the mode of injury using simultaneous application of the maneuver to all the lesser metatarsophalangeal joints. We encourage a trial of this modification of the closed reduction method in the emergency setting before proceeding to open reduction, because the results of closed reduction can be biologically rewarding without the risks associated with open surgical dissection. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Magnesium Vacancy Segregation and Fast Pipe Diffusion for the ½<110>{110} Edge Dislocation in MgO
NASA Astrophysics Data System (ADS)
Walker, A. M.; Zhang, F.; Wright, K.; Gale, J. D.
2009-12-01
The movement of point defects in minerals plays a key role in determining their rheological properties, both by permitting diffusional creep and by allowing recovery by dislocation climb. Point defect diffusion can also control the kinetics of phase transitions and grain growth, and can determine the rate of chemical equilibration between phases. Because of this, and the difficulties associated with experimental studies of diffusion, the simulation of point defect formation and migration has been a subject of considerable interest in computational mineral physics. So far, studies have concentrated on point defects moving through otherwise perfect crystals. In this work we examine the behavior of magnesium vacancies close to the core of an edge dislocation in MgO and find that the dislocation dramatically changes the behavior of the point defect. An atomic scale model of the ½<110>{110} edge dislocation in MgO was constructed by applying the anisotropic linear elastic displacement field to the crystal structure and subsequently minimizing the energy of the crystal close to the dislocation core using a parameterized potential model. This process yielded the structure of an isolated edge dislocation in an otherwise perfect crystal. The energy cost associated with introducing magnesium vacancies around the dislocation was then mapped and compared to the formation energy of an isolated magnesium vacancy in bulk MgO. We find that the formation energy of magnesium vacancies around the dislocation mirrors the elastic strain field. Above the dislocation line σxx and σyy are negative and the strain field is compressional. Atoms are squeezed together to make room for the extra half plane effectively increasing the pressure in this region. Below the dislocation line σxx and σyy are positive and the strain field is dilatational. Planes of atoms are pulled apart to avoid a discontinuity across the glide plane and the effective pressure is decreased. In the region with a compressional strain field the vacancies become less stable than those in perfect MgO. In contrast, the region with a dilatational strain field hosts vacancies which are stabilized compared to the perfect crystal. This is in agreement with the previously observed tendency for increasing pressure to decrease the stability of vacancies in MgO. The most stable position for a magnesium vacancy was found to be 1.7 eV more stable than the vacancy in the bulk crystal, suggesting that vacancies will strongly partition to dislocations in MgO. Finally, the energy profile traced out by a vacancy moving through the bulk crystal was compared with that experienced by a vacancy moving along the dislocation core. A low energy pathway for vacancy migration along the dislocation line was found with a migration energy of 1.6 eV compared with a migration energy in the perfect crystal of 1.9 eV. This shows that vacancies segregated to the dislocation line will be significantly more mobile than vacancies in the perfect crystal. Dislocations will act as pipes, allowing material to be rapidly transported through crystals of MgO.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reference price, you must pay the effective royalty rate on all monthly production. (a) Your current reference price is a weighted average of daily closing prices on the NYMEX for light sweet crude oil and... average of daily closing prices on the NYMEX for light sweet crude oil and natural gas during the...
A non-contact complete knee dislocation with popliteal artery disruption, a rare martial arts injury
Viswanath, Y; Rogers, I
1999-01-01
Complete knee dislocation is a rare injury and an associated incidence of popliteal artery damage ranges from 16-60% of cases. It occurs commonly in road traffic accidents and in high velocity trauma where significant contact remains as the usual mode of injury. We describe a rare case of non-contact knee dislocation with popliteal artery injury sustained while practising Aikido, a type of martial art. This patient successfully underwent closed reduction of the knee with an emergency vein bypass graft. Similar injury in association with Aikido has not been described in the English literature previously. Various martial art injuries are briefly discussed and safety recommendations made. Keywords: Aikido; knee dislocation; popliteal artery disruption; sports injury PMID:10616692
Isolated dorsal dislocation of the tarsal naviculum
Hamdi, Kaziz; Hazem, Ben Ghozlen; Yadh, Zitoun; Faouzi, Abid
2015-01-01
Isolated dislocation of the tarsal naviculum is an unusual injury, scarcely reported in the literature. The naviculum is surrounded by the rigid bony and ligamentous support hence fracture dislocation is more common than isolated dislocation. The mechanism and treatment options remain unclear. In this case report, we describe a 31 year old man who sustained an isolated dorsal dislocation of the left tarsal naviculum, without fracture, when he was involved in a motor vehicle collision. The reported mechanism of the dislocation is a hyper plantar flexion force applied to the midfoot, resulting in a transient disruption of the ligamentous support of the naviculum bone, with dorsal displacement of the bone. The patient was treated with open reduction and Krischner-wire fixation of the navicular after the failure of closed reduction. The wires were removed after 6 weeks postoperatively. Physiotherapy for stiffness and midfoot pain was recommended for 2 months. At 6 months postoperatively, limping, midfoot pain and weakness were reported, no X-ray abnormalities were found. The patient returned to his obvious activities with a normal range of motion. PMID:26806978
[New varieties of lateral metatarsophalangeal dislocations of the great toe].
Bousselmame, N; Rachid, K; Lazrak, K; Galuia, F; Taobane, H; Moulay, I
2001-04-01
We report seven cases of traumatic dislocation of the great toe, detailing the anatomy, the mechanism of injury and the radiographic diagnosis. We propose an additional classification based on three hereto unreported cases. Between october 1994 and october 1997, we treated seven patients with traumatic dislocation of the first metatarso-phalangeal joint of the great toe. There were six men and one woman, mean age 35 years (range 24 - 44 years). Dislocation was caused by motor vehicle accidents in four cases and by falls in three. Diagnosis was made on anteroposterior, lateral and medial oblique radiographs. According to Jahss' classification, there was one type I and three type IIB dislocations. There was also one open lateral dislocation and two dorsomedial dislocations. Only these dorsomedial dislocations required open reduction, done via a dorsal approach. Mean follow-up was 17.5 months (range 9 - 24 months) in six cases. One patient was lost to follow-up. The outcome was good in six cases and poor in one (dorsomedial dislocation). Dislocation of the first metatarso-phalangeal joint of the great toe is an uncommon injury. In 1980, Jahss reported two cases and reviewed three others described in the literature. He proposed three types of dislocation based on the feasibility of closed reduction (type I, II and IIB). In 1991, Copeland and Kanat reported a unique case in which there was an association of IIA and IIB lesions. They proposed an addition to the classification (type IIC). In 1994, Garcia Mata et al. reported another case which had not been described by Jahss and proposed another addition. All dislocations reported to date have been sagittal dislocations. Pathological alteration of the collateral ligaments has not been previously reported. In our experience, we have seen one case of open lateral dislocation due, at surgical exploration, to medial ligament rupture and two cases of dorsomedial dislocation due, at surgical exploration, to lateral ligament rupture. We propose another additional classification with pure lateral dislocation (type III) and dorso-lateral dislocation (type IL or IIL+), which are related to the formerly described variants.
The effect of grain orientation on nanoindentation behavior of model austenitic alloy Fe-20Cr-25Ni
Chen, Tianyi; Tan, Lizhen; Lu, Zizhe; ...
2017-07-26
Instrumented nanoindentation was used in this paper to investigate the hardness, elastic modulus, and creep behavior of an austenitic Fe-20Cr-25Ni model alloy at room temperature, with the indented grain orientation being the variant. The samples indented close to the {111} surfaces exhibited the highest hardness and modulus. However, nanoindentation creep tests showed the greatest tendency for creep in the {111} indented samples, compared with the samples indented close to the {001} and {101} surfaces. Scanning electron microscopy and cross-sectional transmission electron microscopy revealed slip bands and dislocations in all samples. The slip band patterns on the indented surfaces were influencedmore » by the grain orientations. Deformation twinning was observed only under the {001} indented surfaces. Finally, microstructural analysis and molecular dynamics modeling correlated the anisotropic nanoindentation-creep behavior with the different dislocation substructures formed during indentation, which resulted from the dislocation reactions of certain active slip systems that are determined by the indented grain orientations.« less
NASA Astrophysics Data System (ADS)
Malka-Markovitz, Alon; Mordehai, Dan
2018-02-01
Cross-slip is a dislocation mechanism by which screw dislocations can change their glide plane. This thermally activated mechanism is an important mechanism in plasticity and understanding the energy barrier for cross-slip is essential to construct reliable cross-slip rules in dislocation models. In this work, we employ a line tension model for cross-slip of screw dislocations in face-centred cubic (FCC) metals in order to calculate the energy barrier under Escaig stresses. The analysis shows that the activation energy is proportional to the stacking fault energy, the unstressed dissociation width and a typical length for cross-slip along the dislocation line. Linearisation of the interaction forces between the partial dislocations yields that this typical length is related to the dislocation length that bows towards constriction during cross-slip. We show that the application of Escaig stresses on both the primary and the cross-slip planes varies the typical length for cross-slip and we propose a stress-dependent closed form expression for the activation energy for cross-slip in a large range of stresses. This analysis results in a stress-dependent activation volume, corresponding to the typical volume surrounding the stressed dislocation at constriction. The expression proposed here is shown to be in agreement with previous models, and to capture qualitatively the essentials found in atomistic simulations. The activation energy function can be easily implemented in dislocation dynamics simulations, owing to its simplicity and universality.
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2014-08-04
Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) lightemitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these opencore threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templatesmore » are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.« less
Biomechanical analysis of cervical distraction.
Miller, L S; Cotler, H B; De Lucia, F A; Cotler, J M; Hume, E L
1987-11-01
A biomechanical analysis of cervical distraction is presented, and a model comparing closed reduction of cervical spine dislocations to spring mechanics is developed. Behavior of a spring may be described as F = k delta x where F = distraction force; delta x = elongation of the spring; and k = spring constant. The records and roentgenograms of 24 cervical spine dislocations were reviewed retrospectively. Evaluation of cervical distraction vs traction weight indicates that Ftraction = kneck delta x; where F = traction weight and x = distraction at the injured level. The constant, kneck, is different for bilateral and unilateral dislocations (P less than .001) and is a function of magnitude of injury and neck morphology. As determined in this study, traction weight needed for reduction of facet dislocations may be estimated using the formulae: Ftx = 107.1 lbs/cm (x) unilateral, and Ftx = 76.4 lbs/cm (x) bilateral.
Combined Volar Hamate Dislocation and Scapholunate Ligament Rupture: A Case Report.
Walmsley, David; Dhotar, Herman; Geddes, Christopher; Axelrod, Terry
2015-04-22
A twenty-two-year-old male patient presented to our trauma center after a motor-vehicle accident in which he sustained multiple injuries, including a volar dislocation of the hamate and ipsilateral scapholunate dissociation. Following closed reduction of the hamate dislocation, open reduction and stabilization of these carpal injuries was undertaken two days post-injury via a dorsal approach. Percutaneous Kirschner wires were used as well as two mini suture anchors to repair the scapholunate ligament. The patient was immobilized for six weeks and Kirschner wires were removed at twelve weeks postoperatively. To our knowledge, hamate dislocation with scapholunate dissociation and its surgical treatment have not previously been described. Successful surgical treatment for this injury pattern may be performed dorsally via direct reduction and repair of the scapholunate ligament with percutaneous pinning of the affected carpal bones.
Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng
2014-01-01
Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029
Xu, Yong; Li, Feng; Guan, Hanfeng; Xiong, Wei
2015-01-01
Abstract Posterior atlantoaxial dislocation without odontoid fracture is extremely rare and often results in fatal spinal cord injury. According to the reported literature, all cases presented mild or no neurologic deficit, with no definite relation to upper spinal cord injury. Little is reported about traumatic posterior atlantoaxial dislocation, with incomplete quadriplegia associated with a spinal cord injury. We present a case of posterior atlantoaxial dislocation without associated fracture, but with quadriplegia, and accompanying epidural hematoma and subarachnoid hemorrhage. The patient underwent gentle traction in the neutral position until repeated cranial computed tomography revealed no progression of the epidural hematoma. Thereafter, the atlantoaxial dislocation was reduced by using partial odontoidectomy via a video-assisted transcervical approach and maintained with posterior polyaxial screw-rod constructs and an autograft. Neurological status improved immediately after surgery, and the patient recovered completely after 1 year. Posterior fusion followed by closed reduction is the superior strategy for posterior atlantoaxial dislocation without odontoid fracture, according to literature. But for cases with severe neurological deficit, open reduction may be the safest choice to avoid the lethal complication of overdistraction of the spinal cord. Also, open reduction and posterior srew-rod fixation are safe and convenient strategies in dealing with traumatic posterior atlantoaxial dislocation patients with neurological deficit. PMID:26512572
NASA Astrophysics Data System (ADS)
Lemmens, D.; Wouters, M.; Tempere, J.; Foulon, S.
2008-07-01
We present a path integral method to derive closed-form solutions for option prices in a stochastic volatility model. The method is explained in detail for the pricing of a plain vanilla option. The flexibility of our approach is demonstrated by extending the realm of closed-form option price formulas to the case where both the volatility and interest rates are stochastic. This flexibility is promising for the treatment of exotic options. Our analytical formulas are tested with numerical Monte Carlo simulations.
Correlation of EBIC and SWBXT Imaged Defects and Epilayer Growth Pits in 6H-SiC Schottky Diodes
NASA Technical Reports Server (NTRS)
Schnable, C. M.; Tabib-Azar, M.; Neudeck, P. G.; Bailey, S. G.; Su, H. B.; Dudley, M.; Raffaelle, R. P.
2000-01-01
We show the first direct experimental correlation between the presence of closed core screw dislocations in 6H-SiC epilayers with recombination centers, as well as with some of the small growth pits on the epilayer surface in lightly-doped 6H-SiC Schottky diodes. At every Synchrotron White-Beam X-ray Topography (SWBXT)-identified closed core screw dislocation, an Electron Beam Induced Current (EBIC) image showed a dark spot indicating a recombination center, and Nomarski optical microscope and Atomic Force Microscope (AFM) images showed a corresponding small growth pit with a sharp apex on the surface of the epilayer.
Interface Mediated Nucleation and Growth of Dislocations in fcc-bcc nanocomposite
NASA Astrophysics Data System (ADS)
Zhang, Ruifeng; Wang, Jian; Beyerlein, Irene J.; Germann, Timothy C.
2011-03-01
Heterophase interfaces play a crucial role in determining material strength for nanostructured materials because they can block, store, nucleate, and remove dislocations, the essential defects that enable plastic deformation. Much recent theoretical and experimental effort has been conducted on nanostructured Cu-Nb multilayer composites that exhibited extraordinarily high strength, ductility, and resistance to radiation and mechanical loading. In decreasing layer thicknesses to the order of a few tens of nanometers or less, the deformation behavior of such composites is mainly controlled by the Cu/Nb interface. In this work, we focus on the cooperative mechanisms of dislocation nucleation and growth from Cu/Nb interfaces, and their interaction with interface. Two types of experimentally observed Cu/Nb incoherent interfaces are comparatively studied. We found that the preferred dislocation nucleation sites are closely related to atomic interface structure, which in turn, depend on the orientation relationship. The activation stress and energies for an isolated Shockley dislocation loop of different sizes from specific interface sites depend strongly on dislocation size, atomic interface pattern, and loading conditions. Such findings provide important insight into the mechanical response of a wide range of fcc/bcc metallic nanocomposites via atomic interface design.
The Strength of Binary Junctions in Hexagonal Close-Packed Crystals
2014-03-01
equilib- rium, on either slip plane, the dislocation on that plane intersects both triple points at the same angle with the junc- tion line, regardless...electronic properties of threading dislocations in wide band-gap gallium nitride (a wurtzite crystal structure consisting of two interpenetrating hcp...yield surface was composed of individual points , it pro- vided insight on the resistance of the lock to breaking as a result of the applied stresses. Via
NASA Technical Reports Server (NTRS)
Mathews, V. K.; Gross, T. S.
1987-01-01
The mechanical behavior of dendritic web Si ribbons close the melting point was studied experimentally. The goal of the study was to generate data for modeling the generation of stresses and dislocation structures during growth of dendritic web Si ribbons, thereby permitting modifications to the production process, i.e., the temperature profile, to lower production costs for the photovoltaic ribbons. A laser was used to cut specimens in the direction of growth of sample ribbons, which were then subjected to tensile tests at temperatures up to 1300 C in an Ar atmosphere. The tensile strengths of the samples increased when the temperature rose above 1200 C, a phenomena which was attributed to the diffusion of oxygen atoms to the quasi-dislocation sites. The migration to the potential dislocations sites effectively locked the dislocations.
Propagation of misfit dislocations from buffer/Si interface into Si
Liliental-Weber, Zuzanna [El Sobrante, CA; Maltez, Rogerio Luis [Porto Alegre, BR; Morkoc, Hadis [Richmond, VA; Xie, Jinqiao [Raleigh, VA
2011-08-30
Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.
Viswanath, Y K; Rogers, I M
1999-09-01
Complete knee dislocation is a rare injury and an associated incidence of popliteal artery damage ranges from 16-60% of cases. It occurs commonly in road traffic accidents and in high velocity trauma where significant contact remains as the usual mode of injury. We describe a rare case of non-contact knee dislocation with popliteal artery injury sustained while practising Aikido, a type of martial art. This patient successfully underwent closed reduction of the knee with an emergency vein bypass graft. Similar injury in association with Aikido has not been described in the English literature previously. Various martial art injuries are briefly discussed and safety recommendations made.
Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature
NASA Astrophysics Data System (ADS)
Gupta, Pradeep; Yedla, Natraj
2017-12-01
In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... continuously redeem Creation Units at net asset value (``NAV'') and the secondary market price of the Shares... between each Fund's market price and its NAV; and A close alignment between the market price of Shares and... aggregations of the Shares of the Funds and that a close alignment between the market price of Shares and each...
3-D sonography for diagnosis of disk dislocation of the temporomandibular joint compared with MRI.
Landes, Constantin A; Goral, Wojciech A; Sader, Robert; Mack, Martin G
2006-05-01
This study determines the value of three-dimensional (3-D) sonography for the assessment of disk dislocation of the temporomandibular joint (TMJ). Sixty-eight patients (i.e.,136 TMJ) with clinical dysfunction were examined by 272 sonographic 3-D scans. An 8- to 12.5-MHz transducer, angulated by step-motor, was used after picking a volume box on 2-D scan; magnetic resonance imaging followed immediately. Every TMJ was scrutinized in closed- and open-mouth position for normal or dislocated disk position. Fifty-three patients had complete data sets, i.e., 106 TMJ, 212 examinations. Sonographic examination took 5 min, with 74% specificity (62% closed-mouth; 85% open-mouth); sensitivity 53% (62/43%); accuracy 70% (62/77%); positive predictive value 49% (57/41%); and negative predictive value 77% (67/86%). This study encourages more research on the diagnostic capacity of 3-D TMJ sonography, with the advantage of multidimensional joint visualization. Although fair in specificity and negative predictive value, sensitivity and accuracy may ameliorate with future higher-sound frequency, real-time 3-D viewing and automated image analysis.
Gunenc, Uzeyir; Kocak, Nilufer; Ozturk, A Taylan; Arikan, Gul
2014-08-01
We describe a technique to manage late spontaneous intraocular lens (IOL) and capsular tension ring (CTR) dislocation within the intact capsular bag. The subluxated IOL and CTR complex can be positioned in a closed chamber and fixed to the pars plana at both 3 and 9 o'clock quadrants with the presented ab externo direct scleral suturation technique which provides an easy, safe and effective surgical option for such cases.
Modeling and forecasting foreign exchange daily closing prices with normal inverse Gaussian
NASA Astrophysics Data System (ADS)
Teneng, Dean
2013-09-01
We fit the normal inverse Gaussian(NIG) distribution to foreign exchange closing prices using the open software package R and select best models by Käärik and Umbleja (2011) proposed strategy. We observe that daily closing prices (12/04/2008 - 07/08/2012) of CHF/JPY, AUD/JPY, GBP/JPY, NZD/USD, QAR/CHF, QAR/EUR, SAR/CHF, SAR/EUR, TND/CHF and TND/EUR are excellent fits while EGP/EUR and EUR/GBP are good fits with a Kolmogorov-Smirnov test p-value of 0.062 and 0.08 respectively. It was impossible to estimate normal inverse Gaussian parameters (by maximum likelihood; computational problem) for JPY/CHF but CHF/JPY was an excellent fit. Thus, while the stochastic properties of an exchange rate can be completely modeled with a probability distribution in one direction, it may be impossible the other way around. We also demonstrate that foreign exchange closing prices can be forecasted with the normal inverse Gaussian (NIG) Lévy process, both in cases where the daily closing prices can and cannot be modeled by NIG distribution.
Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon
NASA Astrophysics Data System (ADS)
Trzynadlowski, Bart
The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source code for both models is included. A moment-based model for dislocation loop formation from {311} defects in ion-implanted silicon was also developed and validated against experimental data. Ab initio density functional theory calculations of stacking faults and edge dislocations were performed to extract energies and elastic properties. This allowed the effect of applied stress on the evolution of {311} defects and dislocation loops to be investigated.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony; Picard, Yoosuf N.; Twigg, Mark E.
2009-01-01
Previous studies of (0001) homoepitaxial growth carried out on arrays of small-area mesas etched into on-axis silicon-face 4H-SiC wafers have demonstrated that spiral growth emanating from at least one screw dislocation threading the mesa is necessary in order for a mesa to grow taller in the <0001> (c-axis vertical) direction while maintaining 4H stacking sequence [1]. However, even amongst mesas containing the screw dislocation step source necessary for vertical c-axis growth, we have observed striking differences in the height and faceting that evolve during prolonged homoepitaxial growths. This paper summarizes Atomic Force Microscopy (AFM), Electron Channeling Contrast Imaging (ECCI), Scanning Electron Microscopy (SEM), and optical microscopy observations of this phenomenon. These observations support our initially proposed model [2] that the observed large variation (for mesas where 3C-SiC nucleation has not occurred) is related to the lateral positioning of a screw dislocation step source within each etched mesa. When the screw dislocation step source is located close enough to the developing edge/sidewall facet of a mesa, the c-axis growth rate and facet angle are affected by the resulting interaction. In particular, the intersection (or near intersection) of the inward-sloping mesa sidewall facet with the screw dislocation appears to impede the rate at which the spiral provides new steps required for c-axis growth. Also, the inward slope of the sidewall facet during growth (relative to other sidewalls of the same mesa not near the screw dislocation) seems to be impeded by the screw dislocation. In contrast, mesas whose screw dislocations are centrally located grow vertically, but inward sloping sidewall facets shrink the area of the top (0001) growth surface almost to the point of vanishing.
Minimally Invasive Repair of Pectus Excavatum Without Bar Stabilizers Using Endo Close.
Pio, Luca; Carlucci, Marcello; Leonelli, Lorenzo; Erminio, Giovanni; Mattioli, Girolamo; Torre, Michele
2016-02-01
Since the introduction of the Nuss technique for pectus excavatum (PE) repair, stabilization of the bar has been a matter of debate and a crucial point for the outcome, as bar dislocation remains one of the most frequent complications. Several techniques have been described, most of them including the use of a metal stabilizer, which, however, can increase morbidity and be difficult to remove. Our study compares bar stabilization techniques in two groups of patients, respectively, with and without the metal stabilizer. A retrospective study on patients affected by PE and treated by the Nuss technique from January 2012 to June 2013 at our institution was performed in order to evaluate the efficacy of metal stabilizers. Group 1 included patients who did not have the metal stabilizer inserted; stabilization was achieved with multiple (at least four) bilateral pericostal Endo Close™ (Auto Suture, US Surgical; Tyco Healthcare Group, Norwalk, CT) sutures. Group 2 included patients who had a metal stabilizer placed because pericostal sutures could not be used bilaterally. We compared the two groups in terms of bar dislocation rate, surgical operative time, and other complications. Statistical analysis was performed with the Mann-Whitney U test and Fisher's exact test. Fifty-seven patients were included in the study: 37 in Group 1 and 20 in Group 2. Two patients from Group 2 had a bar dislocation. Statistical analysis showed no difference between the two groups in dislocation rate or other complications. In our experience, the placement of a metal stabilizer did not reduce the rate of bar dislocation. Bar stabilization by the pericostal Endo Close suture technique appears to have no increase in morbidity or migration compared with the metal lateral stabilizer technique.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
.... For example, to calculate the daily total return today, the previous day's closing market price for the component would be subtracted from today's closing market price for the component to determine a... dividend if today were an ``ex-dividend'' date to yield the Price Plus Dividend Difference for the...
NASA Astrophysics Data System (ADS)
Vattré, A.
2017-08-01
A parametric energy-based framework is developed to describe the elastic strain relaxation of interface dislocations. By means of the Stroh sextic formalism with a Fourier series technique, the proposed approach couples the classical anisotropic elasticity theory with surface/interface stress and elasticity properties in heterogeneous interface-dominated materials. For any semicoherent interface of interest, the strain energy landscape is computed using the persistent elastic fields produced by infinitely periodic hexagonal-shaped dislocation configurations with planar three-fold nodes. A finite element based procedure combined with the conjugate gradient and nudged elastic band methods is applied to determine the minimum-energy paths for which the pre-computed energy landscapes yield to elastically favorable dislocation reactions. Several applications on the Au/Cu heterosystems are given. The simple and limiting case of a single set of infinitely periodic dislocations is introduced to determine exact closed-form expressions for stresses. The second limiting case of the pure (010) Au/Cu heterophase interfaces containing two crossing sets of straight dislocations investigates the effects due to the non-classical boundary conditions on the stress distributions, including separate and appropriate constitutive relations at semicoherent interfaces and free surfaces. Using the quantized Frank-Bilby equation, it is shown that the elastic strain landscape exhibits intrinsic dislocation configurations for which the junction formation is energetically unfavorable. On the other hand, the mismatched (111) Au/Cu system gives rise to the existence of a minimum-energy path where the fully strain-relaxed equilibrium and non-regular intrinsic hexagonal-shaped dislocation rearrangement is accompanied by a significant removal of the short-range elastic energy.
Furuhashi, Hiroki; Togawa, Daisuke; Koyama, Hiroshi; Hoshino, Hironobu; Yasuda, Tatsuya; Matsuyama, Yukihiro
2017-05-01
Several reports have indicated that anterior dislocation of total hip arthroplasty (THA) can be caused by spinal degenerative changes with excessive pelvic retroversion. However, no reports have indicated that posterior dislocation can be caused by fixed pelvic anteversion after corrective spine surgery. We describe a rare case experiencing repeated posterior THA dislocation that occurred at 5 months after corrective spinal long fusion with pelvic fixation. A 64-year-old woman had undergone bilateral THA at 13 years before presenting to our institution. She had been diagnosed with kyphoscoliosis and underwent three subsequent spinal surgeries after the THA. We finally performed spinal corrective long fusion from T5 to ilium with pelvic fixation (with iliac screws). Five months later, she experienced severe hip pain when she tried to stand up from the toilet, and was unable to move, due to posterior THA dislocation. Therefore, we performed closed reduction under sedation, and her left hip was easily reduced. After the reduction, she started to walk with a hip abduction brace. However, she had experienced 5 subsequent dislocations. Based on our findings and previous reports, we have hypothesized that posterior dislocation could be occurred after spinal corrective long fusion with pelvic fixation due to three mechanisms: (1) a change in the THA cup alignment before and after spinal corrective long fusion surgery, (2) decreased and fixed pelvic posterior tilt in the sitting position, or (3) the trunk's forward tilting during standing-up motion after spinopelvic fixation. Spinal long fusion with pelvic fixation could be a risk factor for posterior THA dislocation.
Zhou, Song; Hao, Yong-qiang; Shi, Xiao-lin; Zhao, Huan-li; Gao, Kai-tuo; Sun, Jin-xu
2011-03-01
To investigate a drilling guide in the treatment of acromioclavicular joint dislocation with closed reduction and Kirschner fixation and explore the therapeutic effect. From June 2008 to December 2009, 36 patients with acromioclavicular joint dislocation (Tossy III) were treated with closed reduction and Kirschner fixation using a self-designed drilling guide as well as percutaneous repair of acromioclavicular joint. Among the patients, 24 patients were male and 12 patients were female,ranging in age from 20 to 61 years, averaged 38.6 years. The duration from injury to operation ranged from 3.5 to 72 h,with a mean of 15.2 h. No clavicle fracture was found in all cases. The operative time, intra-operative bleeding and therapeutic effects were observed. There were no complications including neurovascular problems. The mean operating time were 20 min,mean blood loss were about 10 ml. According to the observation of postoperative X-ray examination, all Kirschners in acromioclavicular joint were in place. All Kirschners were removed in 6 postoperative weeks. All the patients were followed up ranging from 2 to 26 months (averaged 14.3 months). According to the Karlsson standard,22 patients got an excellent result, 13 good and 1 poor. This method has following advantages: easy operation and fixation; minimum injuries to articular surface; and which would be widely used in clinical practice.
Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.
Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less
Measuring strain and rotation fields at the dislocation core in graphene
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carpio, A.; Gong, C.; Warner, J. H.
2015-10-01
Strain fields, dislocations, and defects may be used to control electronic properties of graphene. By using advanced imaging techniques with high-resolution transmission electron microscopes, we have measured the strain and rotation fields about dislocations in monolayer graphene with single-atom sensitivity. These fields differ qualitatively from those given by conventional linear elasticity. However, atom positions calculated from two-dimensional (2D) discrete elasticity and three-dimensional discrete periodized Föppl-von Kármán equations (dpFvKEs) yield fields close to experiments when determined by geometric phase analysis. 2D theories produce symmetric fields whereas those from experiments exhibit asymmetries. Numerical solutions of dpFvKEs provide strain and rotation fields of dislocation dipoles and pairs that also exhibit asymmetries and, compared with experiments, may yield information on out-of-plane displacements of atoms. While discrete theories need to be solved numerically, analytical formulas for strains and rotation about dislocations can be obtained from 2D Mindlin's hyperstress theory. These formulas are very useful for fitting experimental data and provide a template to ascertain the importance of nonlinear and nonplanar effects. Measuring the parameters of this theory, we find two characteristic lengths between three and four times the lattice spacings that control dilatation and rotation about a dislocation. At larger distances from the dislocation core, the elastic fields decay to those of conventional elasticity. Our results may be relevant for strain engineering in graphene and other 2D materials of current interest.
Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys
Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.; ...
2017-07-06
Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less
The effect of changes in lumber and furniture prices on wood furniture manufacturers' lumber usage
William G. Luppold
1983-01-01
Wood furniture manufacturers' demands for oak, maple, poplar, open-grain, and close-grain lumber are estimated using cross-sectional, time-series techniques. The analyses indicate that the demand for open-grain species is more price responsive than the demand for close-grain species. The calculated cross-price elasticities indicate that furniture producers do...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
.... Surveillance for opening price manipulation and other existing surveillance patterns are utilized to monitor... exchanges, covered securities were required to have a closing market price of at least $7.50 per share for... proposing the $3 per share closing market price requirement and the five-day ``look back'' period that is...
NASA Astrophysics Data System (ADS)
Bremnes, O.; Progin, O.; Gremaud, G.; Benoit, W.
1997-04-01
Ultrasonic experiments using a two-wave coupling technique were performed on 99.999% pure Al in order to study the interaction mechanisms occurring between dislocations and point defects. The coupling technique consists in measuring the attenuation of ultrasonic waves during low-frequency stress cycles (t). One obtains closed curves () called signatures whose shape and evolution are characteristic of the interaction mechanism controlling the low-frequency dislocation motion. The signatures observed were attributed to the interaction of the dislocations with extrinsic point defects. A new interpretation of the evolution of the signatures measured below 200 K with respect to temperature and stress frequency had to be established: they are linked to depinning of immobile point defects, whereas a thermally activated depinning mechanism does not fit the observations. The signatures measured between 200 and 370 K were interpreted as dragging and depinning of extrinsic point defects which are increasingly mobile with temperature.
Miyake, Takahito; Kanda, Akio; Morohashi, Itaru; Obayashi, Osamu; Mogami, Atsuhiko; Kaneko, Kazuo
2017-06-01
Bipolar hip arthroplasty is a good option for treating femoral neck fractures, although some contraindications have been indicated. We report a case of intraoperative dislocation of the trial bipolar cup into the pelvis during bipolar hip arthroplasty. A 74-year-old woman underwent bipolar hip arthroplasty for a femoral neck fracture (AO31-B2). She was placed in a lateral decubitus position, and a direct lateral approach was used. During intraoperative trial reduction, the trial bipolar cup became disengaged and dislocated into the anterior space of hip joint. Several attempts to retrieve it failed. The permanent femoral component was inserted, and the wound was closed. The patient was repositioned supine to allow an ilioinguinal approach, and the component was easily removed. She had an uneventful, good recovery. Several cases of intraoperative dislocation of the femoral trial head during total hip arthroplasty have been reported, this is the first report of dislocation of a bipolar trial cup. A previous report described difficulty retrieving a trial cup. We easily removed our trial cup using another approach. It is vital to plan systematically for this frustrating complication.
Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.
2015-02-24
We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less
Faroug, Radwane; Stirling, Paul; Ali, Farhan
2013-01-01
Paediatric calcaneal fractures are rare injuries usually managed conservatively or with open reduction and internal fixation (ORIF). Closed reduction was previously thought to be impossible, and very few cases are reported in the literature. We report a new technique for closed reduction using Ilizarov half-rings. We report successful closed reduction and screwless fixation of an extra-articular calcaneal fracture dislocation in a 7-year-old boy. Reduction was achieved using two Ilizarov half-ring frames arranged perpendicular to each other, enabling simultaneous application of longitudinal and rotational traction. Anatomical reduction was achieved with restored angles of Bohler and Gissane. Two K-wires were the definitive fixation. Bony union with good functional outcome and minimal pain was achieved at eight-weeks follow up. ORIF of calcaneal fractures provides good functional outcome but is associated with high rates of malunion and postoperative pain. Preservation of the unique soft tissue envelope surrounding the calcaneus reduces the risk of infection. Closed reduction prevents distortion of these tissues and may lead to faster healing and mobilisation. Closed reduction and screwless fixation of paediatric calcaneal fractures is an achievable management option. Our technique has preserved the soft tissue envelope surrounding the calcaneus, has avoided retained metalwork related complications, and has resulted in a good functional outcome. PMID:23819090
Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
1999-01-01
Commercial epilayers are known to contain a variety of crystallographic imperfections. including micropipes, closed core screw dislocations. low-angle boundaries, basal plane dislocations, heteropolytypic inclusions, and non-ideal surface features like step bunching and pits. This paper reviews the limited present understanding of the operational impact of various crystal defects on SiC electrical devices. Aside from micropipes and triangular inclusions whose densities have been shrinking towards manageably small values in recent years, many of these defects appear to have little adverse operational and/or yield impact on SiC-based sensors, high-frequency RF, and signal conditioning electronics. However high-power switching devices used in power management and distribution circuits have historically (in silicon experience) demanded the highest material quality for prolonged safe operation, and are thus more susceptible to operational reliability problems that arise from electrical property nonuniformities likely to occur at extended crystal defects. A particular emphasis is placed on the impact of closed-core screw dislocations on high-power switching devices, because these difficult to observe defects are present in densities of thousands per cm,in commercial SiC epilayers. and their reduction to acceptable levels seems the most problematic at the present time.
Peng, Yu-Shu; Jan, Lih-Tsyr
2009-10-01
Over the past decade, electronic markets based on the Internet, particularly online auctions, have become popular venues for conducting business. Previous studies often focused on the construction of the best bidding model, while few studies have tried to integrate multiple pricing strategies to predict the probability of closing an auction and the price premium. This study constructs a mediated model to examine the relationship among pricing strategies, the strength of bidding intentions, and online auction performance. The sample consists of 1,055 auctions of iPod MP3 players from eBay Web sites in Hong Kong, Singapore, Belgium, and France. Empirical results show that the pricing strategies directly influence both the probability of closing an auction and the level of price premium. The pricing strategies also indirectly influence the price premium through the mediating effect of the strength of bidding intentions.
Zhou, Yu; Zhou, Zhenyu; Liu, Lifeng; Cao, Xuecheng
2018-03-21
Skeletal and soft tissue damage are often associated with unilateral facet dislocations, which undoubtedly lead to instability of the spine and further increase difficulties in cervical reduction. This type of irreducible facet dislocation is usually accompanied with potential catastrophic consequences including neurological deficit and severe disability. Therefore, a consistent and evidence-based treatment plan is imperative. The literature regarding the management of traumatic unilateral locked cervical facet dislocations was reviewed. Two patient cases (a 30-year-old Asian man and a 25-year-old Asian woman) who suffered irreducible cervical facet dislocations were presented. These two patients received surgical treatments including posterior reduction by poking facet joints, adjacent spinous process fixation by wire rope banding, anterior plate fixation, and intervertebral fusion after the failure of skull traction and closed reduction. At the postoperative 24-month follow-up, intervertebral fusion was achieved and our patients' neurological status improved based on the American Spinal Injury Association scale, compared with their preoperative status. Unilateral facet joint dislocations of subaxial cervical spine are difficult to reduce when complicated with posterior facet fractures or ligamentous injury. Magnetic resonance imaging can be beneficial for identifying ventral and dorsal compressive lesions, as well as ligamentous or capsule rupture. The combination of posterior reduction and anterior fixation with fusion has advantages in terms of clinical safety, ease of operation, and less iatrogenic damage.
Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation
Ulvestad, A.; Welland, M. J.; Cha, W.; ...
2017-01-16
Crystallographic imperfections can significantly alter material properties and responses to external stimuli, including solute induced phase transformations and crystal growth and dissolution . Despite recent progress in imaging defects using both electron and x-ray techniques, in situ three-dimensional imaging studies of defect dynamics, necessary to understand and engineer nanoscale processes, remains challenging. Here, we report in situ three-dimensional imaging of defect dynamics during the hydriding phase transformation of individual palladium nanocrystals by Bragg Coherent Diffractive Imaging (BCDI) . During constant pressure experiments, we observed that the phase transformation begins after the nucleation of dislocations in large (300 nm) particles. Themore » 3D dislocation network shows that dislocations are close to the phase boundary. The 3D phase morphology resolved by BCDI suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than the core-shell model commonly assumed. We substantiate this conclusion using 3D phase field modeling and demonstrate how phase morphology affects the critical size for dislocation nucleation. We determine the size dependence of the transformation pressure for large (150-300 nm) palladium nanocrystals using variable pressure experiments. Our results reveal a pathway for solute induced structural phase transformations in nanocrystals and demonstrate BCDI as a novel method for understanding dislocation dynamics in phase transforming systems at the nanoscale.« less
Arliani, Gustavo Gonçalves; Utino, Artur Yudi; Nishimura, Eduardo Misao; Terra, Bernardo Barcellos; Belangero, Paulo Santoro; Astur, Diego Costa
2015-01-01
Objective To evaluate the approaches and procedures used by Brazilian orthopedic surgeons in treatment and rehabilitation of acromioclavicular dislocation of the shoulder. Methods A questionnaire comprising eight closed questions that addressed topics relating to treatment and rehabilitation of acromioclavicular dislocation was applied to Brazilian orthopedic surgeons over the three days of the 45th Brazilian Congress of Orthopedics and Traumatology, in 2013. Results A total of 122 surgeons completely filled out the questionnaire and formed part of the sample analyzed. Most of them came from the southeastern region of the country. In this sample, 67% of the participants would choose surgical treatment for patients with grade 3 acromioclavicular dislocation. Regarding the preferred technique for surgical treatment of acute acromioclavicular dislocation, a majority of the surgeons used subcoracoid ligature with acromioclavicular fixation and transfer of the coracoacromial ligament (25.4%). Regarding complications found after surgery had been performed, 43.4% and 32.8% of the participants, respectively, stated that residual deformity of the operated joint and pain were the complications most seen during the postoperative period. Conclusions Although there was no consensus regarding the treatment and rehabilitation of acromioclavicular dislocation, evolution had occurred in some of the topics analyzed in this questionnaire applied to Brazilian orthopedists. However, further controlled prospective studies are needed in order to evaluate the clinical and scientific benefit of these trends. PMID:26535196
Arliani, Gustavo Gonçalves; Utino, Artur Yudi; Nishimura, Eduardo Misao; Terra, Bernardo Barcellos; Belangero, Paulo Santoro; Astur, Diego Costa
2015-01-01
To evaluate the approaches and procedures used by Brazilian orthopedic surgeons in treatment and rehabilitation of acromioclavicular dislocation of the shoulder. A questionnaire comprising eight closed questions that addressed topics relating to treatment and rehabilitation of acromioclavicular dislocation was applied to Brazilian orthopedic surgeons over the three days of the 45th Brazilian Congress of Orthopedics and Traumatology, in 2013. A total of 122 surgeons completely filled out the questionnaire and formed part of the sample analyzed. Most of them came from the southeastern region of the country. In this sample, 67% of the participants would choose surgical treatment for patients with grade 3 acromioclavicular dislocation. Regarding the preferred technique for surgical treatment of acute acromioclavicular dislocation, a majority of the surgeons used subcoracoid ligature with acromioclavicular fixation and transfer of the coracoacromial ligament (25.4%). Regarding complications found after surgery had been performed, 43.4% and 32.8% of the participants, respectively, stated that residual deformity of the operated joint and pain were the complications most seen during the postoperative period. Although there was no consensus regarding the treatment and rehabilitation of acromioclavicular dislocation, evolution had occurred in some of the topics analyzed in this questionnaire applied to Brazilian orthopedists. However, further controlled prospective studies are needed in order to evaluate the clinical and scientific benefit of these trends.
Misunderstood markets: The case of California gasoline
NASA Astrophysics Data System (ADS)
Thompson, Jennifer Ruth
In 1996, the California Air Resources Board (CARB) implemented a new benchmark for cleaner burning gasoline that is unique to California. Since then, government officials have often expressed concern that the uniqueness of petroleum products in California segregates the industry, allowing for gasoline prices in the State that are too high and too volatile. The growing concern about the segmentation of the California markets lends itself to analysis of spatial pricing. Spatial price spreads of wholesale gasoline within the state exhibit some characteristics that seem, on the surface, inconsistent with spatial price theory. Particularly, some spatial price spreads of wholesale gasoline appear larger than accepted transportation rates and other spreads are negative, giving a price signal for transportation against the physical flow of product. Both characteristics suggest some limitation in the arbitrage process. Proprietary data, consisting of daily product prices for the years 2000 through 2002, disaggregated by company, product, grade, and location is used to examine more closely spatial price patterns. My discussion of institutional and physical infrastructure outlines two features of the industry that limit, but do not prohibit, arbitrage. First, a look into branding and wholesale contracting shows that contract terms, specifically branding agreements, reduces the price-responsiveness of would-be arbitrageurs. Second, review of maps and documents illustrating the layout of physical infrastructure, namely petroleum pipelines, confirms the existence of some connections among markets. My analysis of the day-of-the-week effects on wholesale prices demonstrates how the logistics of the use of transportation infrastructure affect market prices. Further examination of spatial price relationships shows that diesel prices follow closely the Augmented Law of One Price (ALOP), and that branding agreements cause gasoline prices to deviate substantially ALOP. Without branding, the gasoline prices follow as closely as diesel prices to ALOP. Finally, system-wide causality analysis finds linkages among markets. In summary, both physical and statistical linkages exist among the study markets. Arbitrage among these markets is limited by the logistics of transportation infrastructure and by branding agreements in wholesale contracting.
75 FR 39475 - International Mail: Proposed Changes in Prices and Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-09
... Israel's First-Class Mail International price groups. This proposed rule contains the revisions to... Restricted Delivery Israel To align operational efficiencies more closely with costs, we propose moving Israel from Price Group 8 to Price Group 5 for First- Class Mail International service only. The prices...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... (``LOC'') orders executed in the NYSE Closing Auction. For stocks with a per share stock price of $1.00... stocks with a per share stock price less than $1.00 per share, the fee will change from (A) the lesser of... LOC orders executed in the NYSE Closing Auction. For stocks with a per share stock price of $1.00 or...
RETURN TO DIVISION IA FOOTBALL FOLLOWING A 1ST METATARSOPHALANGEAL JOINT DORSAL DISLOCATION
Cook, Chad; Zarzour, Hap; Moorman, Claude T.
2010-01-01
Background. Although rare in occurrence, a dorsal dislocation of the 1st metatarsophalangeal (MTP) joint has been successfully treated using surgical and/or non-operative treatment. No descriptions of conservative intervention following a dorsal dislocation of the MTP joint in an athlete participating in a high contact sport are present in the literature. Objectives. The purpose of this case report is to describe the intervention and clinical reasoning during the rehabilitative process of a collegiate football player diagnosed with a 1st MTP joint dorsal dislocation. The plan of care and return to play criteria used for this athlete are presented. Case Description. The case involved a 19-year-old male Division IA football player, who suffered a traumatic dorsal dislocation of the 1st MTP joint during practice. The dislocation was initially treated on-site by closed reduction. Non-operative management included immobilization, therapeutic exercises, non-steroidal anti-inflammatories, manual treatment, modalities, prophylactic athletic taping, gait training, and a sport specific progression program for full return to Division IA football. Outcomes. Discharge from physical therapy occurred after six weeks of treatment. At discharge, no significant deviations existed during running, burst, and agility related drills. At a six-month follow-up, the patient reported full return to all football activities including contact drills without restrictions. Discussion. This case describes an effective six-week rehabilitation intervention for a collegiate football player who sustained a traumatic great toe dorsal dislocation. Further study is suggested to evaluate the intervention strategies and timeframe for return to contact sports. PMID:21589669
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... closing rotation procedures to determine the month-end closing price for each series of S&P 500 Index options based on the theoretical fair value of such series. The text of the proposed rule change is... month-end, the closing price of each series of S&P 500 Index (``SPX'') options are aligned with the...
Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition.
Richter, Gunther; Hillerich, Karla; Gianola, Daniel S; Mönig, Reiner; Kraft, Oliver; Volkert, Cynthia A
2009-08-01
The strength of metal crystals is reduced below the theoretical value by the presence of dislocations or by flaws that allow easy nucleation of dislocations. A straightforward method to minimize the number of defects and flaws and to presumably increase its strength is to increase the crystal quality or to reduce the crystal size. Here, we describe the successful fabrication of high aspect ratio nanowhiskers from a variety of face-centered cubic metals using a high temperature molecular beam epitaxy method. The presence of atomically smooth, faceted surfaces and absence of dislocations is confirmed using transmission electron microscopy investigations. Tensile tests performed in situ in a focused-ion beam scanning electron microscope on Cu nanowhiskers reveal strengths close to the theoretical upper limit and confirm that the properties of nanomaterials can be engineered by controlling defect and flaw densities.
NASA Astrophysics Data System (ADS)
Lazar, Markus; Pellegrini, Yves-Patrick
2016-11-01
This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulvestad, A.; Welland, M. J.; Cha, W.
Crystallographic imperfections can significantly alter material properties and responses to external stimuli, including solute induced phase transformations and crystal growth and dissolution . Despite recent progress in imaging defects using both electron and x-ray techniques, in situ three-dimensional imaging studies of defect dynamics, necessary to understand and engineer nanoscale processes, remains challenging. Here, we report in situ three-dimensional imaging of defect dynamics during the hydriding phase transformation of individual palladium nanocrystals by Bragg Coherent Diffractive Imaging (BCDI) . During constant pressure experiments, we observed that the phase transformation begins after the nucleation of dislocations in large (300 nm) particles. Themore » 3D dislocation network shows that dislocations are close to the phase boundary. The 3D phase morphology resolved by BCDI suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than the core-shell model commonly assumed. We substantiate this conclusion using 3D phase field modeling and demonstrate how phase morphology affects the critical size for dislocation nucleation. We determine the size dependence of the transformation pressure for large (150-300 nm) palladium nanocrystals using variable pressure experiments. Our results reveal a pathway for solute induced structural phase transformations in nanocrystals and demonstrate BCDI as a novel method for understanding dislocation dynamics in phase transforming systems at the nanoscale.« less
Energy vulnerability relationships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, B.R.; Boesen, J.L.
The US consumption of crude oil resources has been a steadily growing indicator of the vitality and strength of the US economy. At the same time import diversity has also been a rapidly developing dimension of the import picture. In the early 1970`s, embargoes of crude oil from Organization of Producing and Exporting Countries (OPEC) created economic and political havoc due to a significant lack of diversity and a unique set of economic, political and domestic regulatory circumstances. The continued rise of imports has again led to concerns over the security of our crude oil resource but threats to thismore » system must be considered in light of the diversity and current setting of imported oil. This report develops several important issues concerning vulnerability to the disruption of oil imports: (1) The Middle East is not the major supplier of oil to the United States, (2) The US is not vulnerable to having its entire import stream disrupted, (3) Even in stable countries, there exist vulnerabilities to disruption of the export stream of oil, (4) Vulnerability reduction requires a focus on international solutions, and (5) DOE program and policy development must reflect the requirements of the diverse supply. Does this increasing proportion of imported oil create a {open_quotes}dependence{close_quotes}? Does this increasing proportion of imported oil present a vulnerability to {open_quotes}price shocks{close_quotes} and the tremendous dislocations experienced during the 1970`s? Finally, what is the vulnerability of supply disruptions from the current sources of imported oil? If oil is considered to be a finite, rapidly depleting resource, then the answers to these questions must be {open_quotes}yes.{close_quotes} However, if the supply of oil is expanding, and not limited, then dependence is relative to regional supply sources.« less
Mayne, Ian P; Wasserstein, David; Modi, Chetan S; Henry, Patrick D G; Mahomed, Nizar; Veillette, Christian
2015-01-01
Simple elbow dislocations are often treated with closed reduction (CR); however, the rate of CR failure and factors that may predict failure have been largely underinvestigated. The objectives of this study were (1) to determine the incidence of elbow dislocations treated by CR in a universal health care system and (2) to identify patient characteristics associated with failed CR, defined as the subsequent need for open reduction. Patients ≥16 years old who underwent elbow CR by a physician between 1994 and 2010 were identified from administrative databases. Concurrent elbow fractures were excluded. The incidence density rate (IDR) of CR per 100,000 eligible person-years among the general population was calculated. Failed CR was defined as subsequent open reduction with or without ligament repair or reconstruction within 90 days. Patient and provider characteristics were modeled in a multivariate logistic regression for failure. The cohort consisted of 4878 patients (median age, 41 years) who underwent CR (IDR, 2.65 per 100,000 person-years), and 75 (1.5%) underwent subsequent open reduction with or without ligament repair or reconstruction (median time, 15 days). Young men (≤20 years) had the highest IDR (7.45 per 100,000 person-years), twice that of young women (P = .005). Patient characteristics associated with failed CR included older age (P = .001), admission to the hospital (P < .0001), >1 attempted CR (P = .001), and new orthopedic consultation in the 4 weeks after the CR (P = .02). Young men are at highest risk for CR for simple elbow dislocations; however, older patients are more likely to require open intervention, as are those with markers of a difficult reduction signifying potentially greater soft tissue damage. A comprehensive understanding of the epidemiology of simple elbow dislocation will aid management decisions. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Kaicheng; Tang, Huiqin; Tang, Ying; Xia, Hui
2014-12-01
We proposed a scheme that converts a sine-Gaussian beam with an edge dislocation into a dark hollow beam with a vortex. Based on the gyrator transform (GT) relation, the closed-form field distribution of generalized sine-Gaussian beams passing through a GT system is derived; the intensity distribution and the corresponding phase distribution associated with the transforming generalized sine-Gaussian beams are analyzed. According to the numerical method, the distributions are graphically demonstrated and found that, for appropriate beam parameters and the GT angle, dark hollow vortex beams with topological charge 1 can be achieved using sine-Gaussian beams carrying an edge dislocation. Moreover, the orbital angular momentum content of a GT sine-Gaussian beam is analyzed. It is proved that the GT retains the odd- or even-order spiral harmonics structures of generalized sine-Gaussian beams in the transform process. In particular, it is wholly possible to convert an edge dislocation embedded in sine-Gaussian beams into a vortex with GT. The study also reveals that to obtain a dark hollow beam making use of GT of cos-Gaussian beams is impossible.
Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys
NASA Astrophysics Data System (ADS)
Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P. E.
2017-10-01
The temperature-dependent dwell sensitivity of Ti-6242 and Ti-6246 alloys has been assessed over a temperature range from - 50∘ C to 390 °C using discrete dislocation plasticity which incorporates both thermal activation of dislocation escape from obstacles and slip transfer across grain boundaries. The worst-case load shedding in Ti-6242 alloy is found to be at or close to 120 °C under dwell fatigue loading, which diminishes and vanishes at temperatures lower than - 50∘ C or higher than 230 °C. Load shedding behaviour is predicted to occur in alloy Ti-6246 also but over a range of higher temperatures which are outside those relevant to in-service conditions. The key controlling dislocation mechanism with respect to load shedding in titanium alloys, and its temperature sensitivity, is shown to be the time constant associated with the thermal activation of dislocation escape from obstacles, with respect to the stress dwell time. The mechanistic basis of load shedding and dwell sensitivity in dwell fatigue loading is presented and discussed in the context of experimental observations.
Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals
Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; ...
2015-10-19
When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. We demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. Furthermore, this “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising frommore » increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. Our results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen.« less
Cyclic deformation leads to defect healing and strengthening of small-volume metal crystals
Wang, Zhang-Jie; Li, Qing-Jie; Cui, Yi-Nan; Liu, Zhan-Li; Ma, Evan; Li, Ju; Sun, Jun; Zhuang, Zhuo; Dao, Ming; Shan, Zhi-Wei; Suresh, Subra
2015-01-01
When microscopic and macroscopic specimens of metals are subjected to cyclic loading, the creation, interaction, and accumulation of defects lead to damage, cracking, and failure. Here we demonstrate that when aluminum single crystals of submicrometer dimensions are subjected to low-amplitude cyclic deformation at room temperature, the density of preexisting dislocation lines and loops can be dramatically reduced with virtually no change of the overall sample geometry and essentially no permanent plastic strain. This “cyclic healing” of the metal crystal leads to significant strengthening through dramatic reductions in dislocation density, in distinct contrast to conventional cyclic strain hardening mechanisms arising from increases in dislocation density and interactions among defects in microcrystalline and macrocrystalline metals and alloys. Our real-time, in situ transmission electron microscopy observations of tensile tests reveal that pinned dislocation lines undergo shakedown during cyclic straining, with the extent of dislocation unpinning dependent on the amplitude, sequence, and number of strain cycles. Those unpinned mobile dislocations moving close enough to the free surface of the thin specimens as a result of such repeated straining are then further attracted to the surface by image forces that facilitate their egress from the crystal. These results point to a versatile pathway for controlled mechanical annealing and defect engineering in submicrometer-sized metal crystals, thereby obviating the need for thermal annealing or significant plastic deformation that could cause change in shape and/or dimensions of the specimen. PMID:26483463
NASA Astrophysics Data System (ADS)
Yang, X. B.; Han, X. X.; Zhou, T. B.; Liu, E. L.
2017-04-01
Through the comparative analysis of the results of the triaxial compression experiments of sandstone and the numerical simulation results of particle flow code PFC2D under the same conditions, the typical simulation curve and the corresponding simulation process were selected to analyze the evolution characteristics of the surface deformation field, the evolution characteristics of the velocity field and displacement field of the deformation localization bands of sandstone under triaxial compression. Research results show that the changes of the velocities and displacements of deformation localization bands corresponds to the change of stress during compression; In the same deformation localization band, the dislocation velocities are always in the same direction, but in the direction vertical to the localization band, the localization band sometimes squeezes and sometimes stretches; At different positions of the same deformation localization band, the dislocation velocities and extrusion velocities are both different at the same time; In the post-peak stage of loading, along the same deformation localization band, the dislocation displacements close to both loaded ends are generally greater than the ones near to the middle position of the specimen, the stretching displacements close to both loaded ends are generally smaller than the ones near to the middle position of the specimen.
Wu, Wei; An, Ke; Liaw, Peter K.
2014-12-23
In the current study, the deformation mechanisms of a rolled magnesium alloy were investigated under cyclic loading using real-time in situ neutron diffraction under a continuous-loading condition. The relationship between the macroscopic cyclic deformation behavior and the microscopic response at the grain level was established. The neutron diffraction results indicate that more and more grains are involved in the twinning and detwinning deformation process with the increase of fatigue cycles. The residual twins appear in the early fatigue life, which is responsible for the cyclic hardening behavior. The asymmetric shape of the hysteresis loop is attributed to the early exhaustionmore » of the detwinning process during compression, which leads to the activation of dislocation slips and rapid strain-hardening. The critical resolved shear stress for the activation of tensile twinning closely depends on the residual strain developed during cyclic loading. In the cycle before the sample fractured, the dislocation slips became active in tension, although the sample was not fully twinned. The increased dislocation density leads to the rise of the stress concentration at weak spots, which is believed to be the main reason for the fatigue failure. Furthermore, the deformation history greatly influences the deformation mechanisms of hexagonal-close-packed-structured magnesium alloy during cyclic loading.« less
Ross, Adrianne; Catanzariti, Alan R; Mendicino, Robert W
2011-01-01
Management of a dislocated ankle fracture can be challenging because of instability of the ankle mortise, a compromised soft tissue envelope, and the potential neurovascular compromise. Every effort should be made to quickly and efficiently relocate the disrupted ankle joint. Within the emergency department setting, narcotics and benzodiazepines can be used to sedate the patient before attempting closed reduction. The combination of narcotics and benzodiazepines provides relief of pain and muscle guarding; however, it conveys a risk of seizure as well as respiratory arrest. An alternative to conscious sedation is the hematoma block, or an intra-articular local anesthetic injection in the ankle joint and the associated fracture hematoma. The hematoma block offers a comparable amount of analgesia to conscious sedation without the additional cardiovascular risk, hospital cost, and procedure time. Copyright © 2011 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Müller, M; Freude, T; Stöckle, U; Kraus, T M
2017-02-01
Closed reduction and intramedullary nailing is common in diaphyseal clavicle fractures. The aim of this report is to demonstrate a surgical method with minimally invasive percutaneous reduction in cases where closed reduction fails. The procedure is associated with good cosmetic results. Percutaneous reduction using two reduction forceps enables intramedullary nailing without an open procedure. Open, multifragmented or non-dislocated fractures, oblique fractures due to postoperative dislocation or shortening risk, fracture having potential to become compound fractures, neurovascular complications, pseudoarthroses. The patient is in beach-chair position. After an incision, the nail is entered from medial, two reduction forceps are mounted percutaneously at the lateral and medial fragment. After reduction the nail is pushed forward into the lateral fragment. Thereby, the fracture hematoma is not disturbed for the most part. Early functional rehabilitation with maximal abduction and anteversion of 90° for 6 weeks. Anatomic reduction can be achieved with mild cosmetic impairment.
Lopez Barrilao, Jennifer; Kuhn, Bernd; Wessel, Egbert
2018-05-01
In the present study a stainless, high strength, ferritic (non-martensitic) steel was analysed regarding microstructure and particle evolution. The preceding hot-rolling process of the steel results in the formation of sub-grain structures, which disappear over time at high temperature. Besides that the formation of particle-free zones was observed. The pronounced formation of these zones preferentially appears close to high angle grain boundaries and is considered to be responsible for long-term material failure under creep conditions. The reasons for this are lacking particle hardening and thus a concentration and accumulation of deformation in the particle free areas close to the grain boundaries. Accordingly in-depth investigations were performed by electron microscopy to analyse dislocation behaviour and its possible effect on the mechanical response of these weak areas. Copyright © 2018 Elsevier Ltd. All rights reserved.
Piedra, Mark P; Hunt, Matthew A; Nemecek, Andrew N
2009-10-01
Early fixation of type II odontoid fractures has been shown to provide high rates of long-term stabilization and osteosynthesis. In this report, the authors present the case of a patient with a locked type II odontoid fracture treated by anterior screw fixation facilitated by closed transoral and posterior cervical manual reduction. While transoral intraoperative reduction of a partially displaced odontoid fracture has previously been described, the authors present the first case utilizing this technique in the treatment of a completely dislocated type II odontoid fracture.
Zheng, Wendong; Zeng, Pingping
2016-01-01
ABSTRACT Most of the empirical studies on stochastic volatility dynamics favour the 3/2 specification over the square-root (CIR) process in the Heston model. In the context of option pricing, the 3/2 stochastic volatility model (SVM) is reported to be able to capture the volatility skew evolution better than the Heston model. In this article, we make a thorough investigation on the analytic tractability of the 3/2 SVM by proposing a closed-form formula for the partial transform of the triple joint transition density which stand for the log asset price, the quadratic variation (continuous realized variance) and the instantaneous variance, respectively. Two distinct formulations are provided for deriving the main result. The closed-form partial transform enables us to deduce a variety of marginal partial transforms and characteristic functions and plays a crucial role in pricing discretely sampled variance derivatives and exotic options that depend on both the asset price and quadratic variation. Various applications and numerical examples on pricing moment swaps and timer options with discrete monitoring feature are given to demonstrate the versatility of the partial transform under the 3/2 model. PMID:28706460
Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy
NASA Astrophysics Data System (ADS)
Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.
2012-04-01
Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.
New twinning route in face-centered cubic nanocrystalline metals.
Wang, Lihua; Guan, Pengfei; Teng, Jiao; Liu, Pan; Chen, Dengke; Xie, Weiyu; Kong, Deli; Zhang, Shengbai; Zhu, Ting; Zhang, Ze; Ma, Evan; Chen, Mingwei; Han, Xiaodong
2017-12-15
Twin nucleation in a face-centered cubic crystal is believed to be accomplished through the formation of twinning partial dislocations on consecutive atomic planes. Twinning should thus be highly unfavorable in face-centered cubic metals with high twin-fault energy barriers, such as Al, Ni, and Pt, but instead is often observed. Here, we report an in situ atomic-scale observation of twin nucleation in nanocrystalline Pt. Unlike the classical twinning route, deformation twinning initiated through the formation of two stacking faults separated by a single atomic layer, and proceeded with the emission of a partial dislocation in between these two stacking faults. Through this route, a three-layer twin was nucleated without a mandatory layer-by-layer twinning process. This route is facilitated by grain boundaries, abundant in nanocrystalline metals, that promote the nucleation of separated but closely spaced partial dislocations, thus enabling an effective bypassing of the high twin-fault energy barrier.
Illusory spirals and loops in crystal growth
Shtukenberg, Alexander G.; Zhu, Zina; Bhandari, Misha; Song, Pengcheng; Kahr, Bart; Ward, Michael D.
2013-01-01
The theory of dislocation-controlled crystal growth identifies a continuous spiral step with an emergent lattice displacement on a crystal surface; a mechanistic corollary is that closely spaced, oppositely winding spirals merge to form concentric loops. In situ atomic force microscopy of step propagation on pathological l-cystine crystals did indeed show spirals and islands with step heights of one lattice displacement. We show by analysis of the rates of growth of smaller steps only one molecule high that the major morphological spirals and loops are actually consequences of the bunching of the smaller steps. The morphology of the bunched steps actually inverts the predictions of the theory: Spirals arise from pairs of dislocations, loops from single dislocations. Only through numerical simulation of the growth is it revealed how normal growth of anisotropic layers of molecules within the highly symmetrical crystals can conspire to create features in apparent violation of the classic theory. PMID:24101507
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowhurst, James A; Campbell, Douglas; Whitby, Mark
A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. Thismore » case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities.« less
Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation
NASA Astrophysics Data System (ADS)
Ulvestad, A.; Welland, M. J.; Cha, W.; Liu, Y.; Kim, J. W.; Harder, R.; Maxey, E.; Clark, J. N.; Highland, M. J.; You, H.; Zapol, P.; Hruszkewycz, S. O.; Stephenson, G. B.
2017-05-01
Crystallographic imperfections significantly alter material properties and their response to external stimuli, including solute-induced phase transformations. Despite recent progress in imaging defects using electron and X-ray techniques, in situ three-dimensional imaging of defect dynamics remains challenging. Here, we use Bragg coherent diffractive imaging to image defects during the hydriding phase transformation of palladium nanocrystals. During constant-pressure experiments we observe that the phase transformation begins after dislocation nucleation close to the phase boundary in particles larger than 300 nm. The three-dimensional phase morphology suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than to the core-shell model commonly assumed. We substantiate this using three-dimensional phase field modelling, demonstrating how phase morphology affects the critical size for dislocation nucleation. Our results reveal how particle size and phase morphology affects transformations in the PdH system.
High-power AlGaInN lasers for Blu-ray disc system
NASA Astrophysics Data System (ADS)
Takeya, Motonubu; Ikeda, Shinroh; Sasaki, Tomomi; Fujimoto, Tsuyoshi; Ohfuji, Yoshio; Mizuno, Takashi; Oikawa, Kenji; Yabuki, Yoshifumi; Uchida, Shiro; Ikeda, Masao
2003-07-01
This paper describes an improved laser structure for AlGaInN based blue-violet lasers (BV-LDs). The design realizes a small beam divergence angle perpendicular to the junction plane and high characteristic temperature wihtout significant increase in threshold current density (Jth) by optimizing the position of the Mg-doped layer and introducing an undoped AlGaN layer between the active layer and the Mg-doped electron-blocking layer. The mean time to failure (MTTF) of devices based on this design was found to be closely related to the dislocation density of ELO-GaN basal layer. Under 50 mW CW operation at 70°C, a MTTF of over 5000 h was realized whenthe dark spot density (indicative of dislocation density) is less than ~5×106 cm-2. Power consumption under 50mW CW operation at 70°C was approximately 0.33 W, independent of the dislocation density.
Pricing foreign equity option with stochastic volatility
NASA Astrophysics Data System (ADS)
Sun, Qi; Xu, Weidong
2015-11-01
In this paper we propose a general foreign equity option pricing framework that unifies the vast foreign equity option pricing literature and incorporates the stochastic volatility into foreign equity option pricing. Under our framework, the time-changed Lévy processes are used to model the underlying assets price of foreign equity option and the closed form pricing formula is obtained through the use of characteristic function methodology. Numerical tests indicate that stochastic volatility has a dramatic effect on the foreign equity option prices.
Fairness and dynamic pricing: comments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, William W.
2010-07-15
In ''The Ethics of Dynamic Pricing,'' Ahmad Faruqui lays out a case for improved efficiency in using dynamic prices for retail electricity tariffs and addresses various issues about the distributional effects of alternative pricing mechanisms. The principal contrast is between flat or nearly constant energy prices and time-varying prices that reflect more closely the marginal costs of energy and capacity. The related issues of fairness criteria, contracts, risk allocation, cost allocation, means testing, real-time pricing, and ethical policies of electricity market design also must be considered. (author)
Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media
NASA Astrophysics Data System (ADS)
Chen, C.; Aubry, S.; Oppelstrup, T.; Arsenlis, A.; Darve, E.
2018-06-01
In dislocation dynamics (DD) simulations, the most computationally intensive step is the evaluation of the elastic interaction forces among dislocation ensembles. Because the pair-wise interaction between dislocations is long-range, this force calculation step can be significantly accelerated by the fast multipole method (FMM). We implemented and compared four different methods in isotropic and anisotropic elastic media: one based on the Taylor series expansion (Taylor FMM), one based on the spherical harmonics expansion (Spherical FMM), one kernel-independent method based on the Chebyshev interpolation (Chebyshev FMM), and a new kernel-independent method that we call the Lagrange FMM. The Taylor FMM is an existing method, used in ParaDiS, one of the most popular DD simulation softwares. The Spherical FMM employs a more compact multipole representation than the Taylor FMM does and is thus more efficient. However, both the Taylor FMM and the Spherical FMM are difficult to derive in anisotropic elastic media because the interaction force is complex and has no closed analytical formula. The Chebyshev FMM requires only being able to evaluate the interaction between dislocations and thus can be applied easily in anisotropic elastic media. But it has a relatively large memory footprint, which limits its usage. The Lagrange FMM was designed to be a memory-efficient black-box method. Various numerical experiments are presented to demonstrate the convergence and the scalability of the four methods.
Intra-articular injuries of the elbow: pitfalls of diagnosis and treatment.
Fowles, J. V.; Rizkallah, R.
1976-01-01
Poor results in treating fractures and dislocations about the elbow may be avoided if the surgeon is aware of the possible injuries, examines good radiographs of both elbows, and treats the injury promptly and appropriately. A displaced fracture of the lateral or medial condyle of the humerus should be suspected if there is a flake fracture of the adjoining metaphysis; open reduction and internal fixation give better results than closed reduction. A shear fracture of the capitulum humeri can only be seen on a lateral radiograph; excision of the fragment, followed by mobilization, is sufficient for a good functional result. Dislocation of the elbow in a child may avulse the medial epicondyle, which sometimes lodges in the joint; it is essential to recognize this and remove the fragment without delay to avoid early degenerative arthritis. An apparently isolated fracture of the ulna should alert the surgeon to the possibility of a dislocation of the radial head; the dislocation and the fracture must be reduced and stabilized to conserve elbow function. Images FIG. 1 FIG. 2 FIG. 3 FIG. 4 FIG. 5 FIG. 6 FIG. 7 FIG. 8 PMID:943224
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-04
... Stock Market LLC Regarding Simplification of the Exchange's $1 Strike Price Program September 28, 2011... price was permitted that was greater than $5 from the underlying stock's closing price on the previous... streamlining amendments: When the price of the underlying stock is equal to or less than $20, permit $1 strike...
How have hospitals faced the pricing issues of the 1990's?
Kleimenhagen, A; Naidu, G M; Pillari, G D
1994-01-01
National health care expenditures are rising rapidly, bringing on a health care financing crisis. For this reason, it is useful to see how hospitals are facing the price issues of the 1990's. This study examines the price strategies hospitals follow and analyzes their observations on price sensitivity and payer mix. The results clearly show that hospitals have not given much attention to the pricing variable. The study suggests that marketing and finance will have to work closely together in developing future pricing strategies.
ERIC Educational Resources Information Center
Madden, Gregory J.; Dake, Jamie M.; Mauel, Ellie C.; Rowe, Ryan R.
2005-01-01
The behavioral economic concept of unit price predicts that consumption and response output (labor supply) are determined by the unit price at which a good is available regardless of the value of the cost and benefit components of the unit price ratio. Experiment 1 assessed 4 pigeons' consumption and response output at a range of unit prices. In…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... sale price for that security on the most recent day on which the security traded. \\4\\ Trigger Price is... closing transaction on the Exchange was the consolidated last sale price available as of the end of... purposes of determining whether a Short Sale Price Test has been triggered pursuant to Rule 440B(c) on...
Stress and temperature dependence of screw dislocation mobility in {alpha}-Fe by molecular dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, M. R.; Queyreau, S.; Marian, J.
2011-11-01
The low-temperature plastic yield of {alpha}-Fe single crystals is known to display a strong temperature dependence and to be controlled by the thermally activated motion of screw dislocations. In this paper, we present molecular dynamics simulations of (1/2)<111>{l_brace}112{r_brace} screw dislocation motion as a function of temperature and stress in order to extract mobility relations that describe the general dynamic behavior of screw dislocations in pure {alpha}-Fe. We find two dynamic regimes in the stress-velocity space governed by different mechanisms of motion. Consistent with experimental evidence, at low stresses and temperatures, the dislocations move by thermally activated nucleation and propagation ofmore » kink pairs. Then, at a critical stress, a temperature-dependent transition to a viscous linear regime is observed. Critical output from the simulations, such as threshold stresses and the stress dependence of the kink activation energy, are compared to experimental data and other atomistic works with generally very good agreement. Contrary to some experimental interpretations, we find that glide on {l_brace}112{r_brace} planes is only apparent, as slip always occurs by elementary kink-pair nucleation/propagation events on {l_brace}110{r_brace} planes. Additionally, a dislocation core transformation from compact to dissociated has been identified above room temperature, although its impact on the general mobility is seen to be limited. This and other observations expose the limitations of inferring or presuming dynamic behavior on the basis of only static calculations. We discuss the relevance and applicability of our results and provide a closed-form functional mobility law suitable for mesoscale computational techniques.« less
Gutkowska, Olga; Martynkiewicz, Jacek; Gosk, Jerzy
2017-01-01
Anterior glenohumeral dislocation affects about 2% of the general population during the lifetime. The incidence of traumatic glenohumeral dislocation ranges from 8.2 to 26.69 per 100 000 population per year. The most common complication is recurrent dislocation occurring in 17–96% of the patients. The majority of patients are treated conservatively by closed reduction and immobilization in internal rotation for 2–3 weeks. However, no clear conservative treatment protocol exists. Immobilization in external rotation can be considered an alternative. A range of external rotation braces are commercially available. The purpose of this work was to review the current literature on conservative management of glenohumeral dislocation and to compare the results of immobilization in internal and external rotation. A comprehensive literature search and review was performed using the keywords “glenohumeral dislocation”, “shoulder dislocation”, “immobilization”, “external rotation”, and “recurrent dislocation” in PubMed, MEDLINE, Cochrane Library, Scopus, and Google Scholar databases from their inceptions to May 2016. Three cadaveric studies, 6 imaging studies, 10 clinical studies, and 4 meta-analyses were identified. The total number of 734 patients were included in the clinical studies. Literature analysis revealed better coaptation of the labrum on the glenoid rim in external rotation in cadaveric and imaging studies. However, this tendency was not confirmed by lower redislocation rates or better quality of life in clinical studies. On the basis of the available literature, we cannot confirm the superiority of immobilization in external rotation after glenohumeral dislocation when compared to internal rotation. A yet-to-be-determined group of patients with specific labroligamentous injury pattern may benefit from immobilization in external rotation. Further studies are needed to identify these patients. PMID:28710344
Defect reduction in Si-doped Al{sub 0.45}Ga{sub 0.55}N films by SiN{sub x} interlayer method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Chen, Shengchang; Kong, Man
2014-01-28
The dislocation density in AlGaN epitaxial layers with Al content as high as 45% grown on sapphire substrates has been effectively reduced by introducing an in-situ deposited SiN{sub x} nanomask layer in this study. By closely monitoring the evolution of numerous material properties, such as surface morphology, dislocation density, photoluminescence, strain states, and electron mobility of the Si-Al{sub 0.45}Ga{sub 0.55}N layers as the functions of SiN{sub x} interlayer growth time, the surface coverage fraction of SiN{sub x} is found to be a crucial factor determining the strain states and dislocation density. The dependence of the strain states and the dislocationmore » density on the surface coverage fraction of SiN{sub x} nanomask supports the very different growth models of Al-rich AlGaN on SiN{sub x} interlayer due to the reduced nucleation selectivity compared with the GaN counterpart. Compared with GaN, which can only nucleate at open pores of SiN{sub x} nanomask, Al-rich AlGaN can simultaneously nucleate at both open pores and SiN{sub x} covered areas. Dislocations will annihilate at the openings due to the 3D growth initiated on the opening area, while 2D growth mode is preserved on SiN{sub x} and the threading dislocations are also preserved. During the following growth process, lateral overgrowth will proceed from the Al{sub 0.45}Ga{sub 0.55}N islands on the openings towards the regions covered by SiN{sub x}, relaxing the compressive strain and bending the dislocations at the same time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, Danilo J.; Poyer, David A.
Vector error correction (VEC) was used to test the importance of a theoretical causal chain from transportation fuel cost to vehicle sales to macroeconomic activity. Real transportation fuel cost was broken into two cost components: real gasoline price (rpgas) and real personal consumption of gasoline and other goods (gas). Real personal consumption expenditure on vehicles (RMVE) represented vehicle sales. Real gross domestic product (rGDP) was used as the measure of macroeconomic activity. The VEC estimates used quarterly data from the third quarter of 1952 to the first quarter of 2014. Controlling for the financial causes of the recent Great Recession,more » real homeowners’ equity (equity) and real credit market instruments liability (real consumer debt, rcmdebt) were included. Results supported the primary hypothesis of the research, but also introduced evidence that another financial path through equity is important, and that use of the existing fleet of vehicles (not just sales of vehicles) is an important transport-related contributor to macroeconomic activity. Consumer debt reduction is estimated to be a powerful short-run force reducing vehicle sales. Findings are interpreted in the context of the recent Greene, Lee, and Hopson (2012) (hereafter GLH) estimation of the magnitude of three distinct macroeconomic damage effects that result from dependence on imported oil, the price of which is manipulated by the Organization of Petroleum Exporting Countries (OPEC). The three negative macroeconomic impacts are due to (1) dislocation (positive oil price shock), (2) high oil price levels, and (3) a high value of the quantity of oil imports times an oil price delta (cartel price less competitive price). The third of these is the wealth effect. The VEC model addresses the first two, but the software output from the model (impulse response plots) does not isolate them. Nearly all prior statistical tests in the literature have used vector autoregression (VAR) and autoregressive distributed lag models that considered effects of oil price changes, but did not account for effects of oil price levels. Gasoline prices were rarely examined. The tests conducted in this report evaluate gasoline instead of oil.« less
NASA Astrophysics Data System (ADS)
Kustov, S.; Gremaud, G.; Benoit, W.; Golyandin, S.; Sapozhnikov, K.; Nishino, Y.; Asano, S.
1999-02-01
Experimental investigations of the internal friction and the Young's modulus defect in single crystals of Cu-(1.3-7.6) at. % Ni have been performed for 7-300 K over a wide range of oscillatory strain amplitudes. Extensive data have been obtained at a frequency of vibrations around 100 kHz and compared with the results obtained for the same crystals at a frequency of ˜1 kHz. The strain amplitude dependence of the anelastic strain amplitude and the average friction stress acting on a dislocation due to solute atoms are also analyzed. Several stages in the strain amplitude dependence of the internal friction and the Young's modulus defect are revealed for all of the alloy compositions, at different temperatures and in different frequency ranges. For the 100 kHz frequency, low temperatures and low strain amplitudes (˜10-7-10-5), the amplitude-dependent internal friction and the Young's modulus defect are essentially temperature independent, and are ascribed to a purely hysteretic internal friction component. At higher strain amplitudes, a transition stage and a steep strain amplitude dependence of the internal friction and the Young's modulus defect are observed, followed by saturation at the highest strain amplitudes employed. These stages are temperature and frequency dependent and are assumed to be due to thermally activated motion of dislocations. We suggest that the observed regularities in the entire strain amplitude, temperature and frequency ranges correspond to a motion of dislocations in a two-component system of obstacles: weak but long-range ones, due to the elastic interaction of dislocations with solute atoms distributed in the bulk of the crystal; and strong short-range ones, due to the interaction of dislocations with solute atoms distributed close to dislocation glide planes. Based on these assumptions, a qualitative explanation is given for the variety of experimental observations.
Isenberg, J; Prokop, A; Schellhammer, F; Helling, H J
2002-12-01
Palmar lunate dislocation as the end stage of a perilunate dislocation is a very uncommon injury. Having treated 19,534 hospitalized patients between 1 January 1986 and 1 October 2001 the diagnosis was recorded in four male trauma patients (33, 36, 37 and 62 years old). Among the operatively treated carpal dislocations and carpal fracture dislocations those of the lunate were seen in five per cent. The dislocation was caused in by an acute hyperextension injury resulting of falls from heights in three cases, and of a motorcycle accident in a further case. In two of these cases a complete palmar lunate dislocation was analysed that were produced by fall from seven meters heights of a young craftsman and by accident of a motorcyclist. First using a longitudinal palmar approach in both cases a revision of the hemorrhagic carpal canal was performed urgently, the largely denuded lunate was reduced and the repair of identified ligamentous structures was performed by means of sutures respectively suture anchors. Reduction was stabilized with Kirschner wires. Afterwards performed computed tomography identified the result of reduction and associated defects (subluxation distal radioulnar joint). In one patient a soft tissue infection prevented the dorsal ligamentous repair. In spite of a consequent after-treatment and a good functional result a scapho-lunate dissociation was proved. An avascular defect of the lunate could be excluded by magnetic resonance imaging. In case of a secondary performed dorsal repair a persisting carpal stabilization with a satisfactory functional result could achieved. At second hand an advanced carpal collapse was proved. If reduction cannot be achieved by closed manipulation or a loss of reduction is shown, open reduction is indicated first by a palmar approach. An additional dorsal ligamentous repair seems to be necessary. Transfixation by Kirschner wires and suture anchors stabilize the restored anatomic relationships. Wrist immobilization in a cast for at least eight weeks is recommended. Although ligamentous insufficiency, osteoarthrosis and avascular necrosis are often proved, functional results are satisfactory.
Mesoscale modeling of strain induced solid state amorphization in crystalline materials
NASA Astrophysics Data System (ADS)
Lei, Lei
Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with experimental observation. Finally, we incorporate the effect of stress free surfaces to model the behavior of dislocations close to these surfaces and in the presence of voids.
Evolution of stress and microstructure in silicon-doped aluminum gallium nitride thin films
NASA Astrophysics Data System (ADS)
Manning, Ian C.
The present work examines the effects of the Si incorporation on the stress evolution of AlxGa1-xN thin films deposited using metalorganic chemical vapor deposition. Specifically, tensile stress generation was evaluated using an in situ wafer curvature measurement technique, and correlated with the inclination of edge-type threading dislocations observed with transmission electron microscopy (TEM). This microstructural process had been theorized to relax compressive strain with increasing film thickness by expanding the missing planes of atoms associated with the dislocations. Prior work regarded dislocation bending as being the result of an effective climb mechanism. In a preliminary investigation, the accuracy of the model derived to quantify the strain induced by dislocation inclination was tested. The relevant parameters were measured to calculate a theoretical stress gradient, which was compared with the gradient as extract from experimental stress data. The predicted value was found to overestimate the measured value. It was also confirmed during the preliminary investigation that Si incorporation alone was sufficient to initiate dislocation bending. The overestimation of the stress gradient yielded by the prediction of the model was then addressed by exploring the effects of dislocation annihilation and fusion reactions occurring during film growth. Si-doped Al0.42Ga 0.58N layers exhibiting inclined threading dislocations were grown to different thicknesses. The dislocation density at the surface of each sample was then measured using plan-view TEM, and was found to be inversely proportional to the thickness. As the original model assumed a constant dislocation density, applying the correction for its reduction yielded a better prediction of the stress evolution. In an attempt to extend the predictive capabilities of the model beyond the single composition examined above, and to better understand the interaction of Si with the host AlxGa1-xN lattice, several sets of AlxGa1-xN films were grown, each with a unique composition. The Si doping level was varied within each set. It was determined that the dominant influence on tensile strain generation is in fact the initial dislocation density, which increased with increasing Al content as observed with plan-view TEM. This was expounded in a series of modeling examples. In addition, threading dislocation inclination was studied in nominally undoped and Si-doped Al xGa1-xN grown under conditions of tensile stress to isolate the influence of Si from that of compressive stress, which had also been found to induce dislocation bending. The effects due to Si and compressive stress were found not to combine as expected, based on a stochastic model of dislocation jog formation that had been developed in prior work to describe the inclination mechanism. Having confirmed the strong, direct relationship between the initial dislocation density and the degree of tensile stress generated in the Al xGa1-xN epilayers during growth, an effort was made to demonstrate the advantage that might be gained by using AlN substrates rather than SiC. In principle, AlN provides a growth surface that inhibits defect formation due to its close similarity to AlxGa1-xN lattice structure and chemistry, particularly at high Al mole fractions. Threading dislocation densities were reduced by an order of magnitude in comparison with samples grown on SiC, with a corresponding reduction in the stress gradient arising from dislocation inclination. (Abstract shortened by UMI.)
Extreme Response in Tension and Compression of Tantalum
NASA Astrophysics Data System (ADS)
Remington, Tane Perry
This research on a model bcc metal, tantalum, has three components: the study of tensile failure; defects generated under a nanoindenter; and dislocation velocities in an extreme regime generated by pulsed lasers. The processes of dynamic failure by spalling were established in nano, poly, and mono crystalline tantalum in recovery experiments following laser compression and release. The process of spall was characterized by different techniques: optical microscopy, scanning electron microscopy, microcomputerized tomography and electron backscatter diffraction. Additionally, the pull back signal was measured by VISAR and the pressure decay was compared with HYADES simulations. There are clear differences in the microscopic fracture mechanisms, dictated by the grain sizes. In the nano and poly crystals, spalling occurred by ductile fracture favoring grain boundaries. In the monocrystals, grain boundaries are absent, and the process was of ductile failure by void initiation, growth and coalescence. The spall strength of single crystalline tantalum was higher than the poly and nano crystals. It was experimentally confirmed that spall strength in tantalum increases with strain rate. In order to generate dislocations close to the surface, single crystalline tantalum with orientations (100), (110) and (111) was nanoindented with a Berkovich tip. Atomic force microscopy showed pile-ups of dislocations around the perimeter of the nanoindentations. Sections of nanoindentations were focused ion beam cut into transmission electron microscope foils. The mechanisms of deformation under a nanoindentation in tantalum were identified and quantified. Molecular dynamics simulations were conducted and the simulated plastic deformation proceeds by the formation of nanotwins, which rapidly evolve into shear dislocation loops. Dislocation densities under the indenter were estimated experimentally (~1.2 x 1015 m-2), by MD (~7 x1015 m-2) and through an analytical calculation (2.6--19 x10 15 m-2). Considering the assumptions and simplifications, this agreement is considered satisfactory. These indented crystals were subjected to shock compression and the results are being analyzed with the objective of establishing the velocities of dislocations. A novel technique to establish dislocation velocities is being tested. It consists of subjecting tantalum containing a matrix of nanoindentations to shock compression for post shock characterization enabling the determination of mean dislocation displacements.
Steel, H H; Piston, R W; Clancy, M; Betz, R R
1993-02-01
An orthopaedic syndrome that apparently had not been reported previously was identified in twenty-three children. Characteristics shared by all twenty-three children included Hispanic descent, residence in Puerto Rico, bilateral dislocation of the hip, dislocated radial heads, short stature, and other osseous anomalies. Twelve dislocated hips in six patients were not treated. All of these hips were functioning satisfactorily at the time of the review, but only four of the children had reached skeletal maturity. Sixteen hips in eight patients remained reduced after closed reduction. Of these eight patients, the four who were skeletally immature at the time of the review had a satisfactory result, and the four who were skeletally mature had an unsatisfactory result because of discomfort or fibrous ankylosis. Eighteen hips in nine patients were treated with a reduction augmented by some form of operation. All of these hips redislocated. Of the forty-six elbows in the twenty-three children, thirty-three were dislocated, as seen clinically and radiographically; eight were normal, both clinically and radiographically; and there was dysplasia at the radiocapitellar articulation of the remaining five. Twenty of the twenty-three children were found to have carpal coalitions. Fourteen children had scoliosis, and five of them were managed with spinal arthrodesis and correction. Three patients had an anomaly of the cervical spine, with one deformity causing symptoms and signs that were treated with decompression. Eight patients had talipes cavus bilaterally, which was not treated.
Dan, Michael; Phillips, Alfred; Simonian, Marcus; Flannagan, Scott
2015-06-01
We provide a review of literature on reduction techniques for posterior hip dislocations and present our experience with a novel technique for the reduction of acute posterior hip dislocations in the ED, 'the rocket launcher' technique. We present our results with six patients with prosthetic posterior hip dislocation treated in our rural ED. We recorded patient demographics. The technique involves placing the patient's knee over the shoulder, and holding the lower leg like a 'Rocket Launcher' allow the physician's shoulder to work as a fulcrum, in an ergonomically friendly manner for the reducer. We used Fisher's t-test for cohort analysis between reduction techniques. Of our patients, the mean age was 74 years (range 66 to 85 years). We had a 83% success rate. The one patient who the 'rocket launcher' failed in, was a hemi-arthroplasty patient who also failed all other closed techniques and needed open reduction. When compared with Allis (62% success rate), Whistler (60% success rate) and Captain Morgan (92% success rate) techniques, there was no statistically significant difference in the successfulness of the reduction techniques. There were no neurovascular or periprosthetic complications. We have described a reduction technique for posterior hip dislocations. Placing the patient's knee over the shoulder, and holding the lower leg like a 'Rocket Launcher' allow the physician's shoulder to work as a fulcrum, thus mechanically and ergonomically superior to standard techniques. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.
Kitta, Yuki; Niki, Yasuo; Udagawa, Kazuhiko; Enomoto, Hiroyuki; Toyama, Yoshiaki; Suda, Yasunori
2014-03-01
We present a case of an 8-year-old boy diagnosed with melorheostosis who was suffering from severe genu valgum, permanent dislocation of the patella, knee flexion contracture and leg length shortening. Soft tissue contracture of the limb and subsequent joint deformities were reported to represent clinical manifestations of pediatric melorheostosis. As the epiphyseal plate had not closed, patellar reduction was achieved by soft tissue surgical stabilization, including lateral retinacular release, medial retinaculum plication, and transfer of the lateral half of the patellar tendon. At 4 years postoperatively, as a result of improved limb alignment and knee flexion contracture, the leg length shortening has improved, and the patient does not limp and participates in sports activities. Surgical intervention should be performed as early as possible, because genu valgum and external rotation of the tibia may deteriorate with age, rendering the patellar dislocation irreversible in patients with melorheostosis before epiphyseal closure. Copyright © 2012 Elsevier B.V. All rights reserved.
Strain relaxation induced surface morphology of heterogeneous GaInNAs layers grown on GaAs substrate
NASA Astrophysics Data System (ADS)
Gelczuk, Ł.; Jóźwiak, G.; Moczała, M.; Dłużewski, P.; Dąbrowska-Szata, M.; Gotszalk, T. P.
2017-07-01
The partially-relaxed heterogeneous GaInNAs layers grown on GaAs substrate by atmospheric pressure vapor phase epitaxy (AP-MOVPE) were investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The planar-view TEM image shows a regular 2D network of misfit dislocations oriented in two orthogonal 〈1 1 0〉 crystallographic directions at the (0 0 1) layer interface. Moreover, the cross-sectional view TEM image reveals InAs-rich and V-shaped precipitates in the near surface region of the GaInNAs epitaxial layer. The resultant undulating surface morphology, known as a cross-hatch pattern, is formed as observed by AFM. The numerical analysis of the AFM image of the GaInNAs layer surface with the well-defined cross-hatch morphology enabled us to determine a lower bound of actual density of misfit dislocations. However, a close correspondence between the asymmetric distribution of interfacial misfit dislocations and undulating surface morphology is observed.
Interfacial diffusion aided deformation during nanoindentation
Samanta, Amit; E., Weinan
2015-07-06
Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less
Plasticity mechanisms in HfN at elevated and room temperature.
Vinson, Katherine; Yu, Xiao-Xiang; De Leon, Nicholas; Weinberger, Christopher R; Thompson, Gregory B
2016-10-06
HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 T m ) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.
Manipulation of domain-wall solitons in bi- and trilayer graphene
NASA Astrophysics Data System (ADS)
Jiang, Lili; Wang, Sheng; Shi, Zhiwen; Jin, Chenhao; Utama, M. Iqbal Bakti; Zhao, Sihan; Shen, Yuen-Ron; Gao, Hong-Jun; Zhang, Guangyu; Wang, Feng
2018-01-01
Topological dislocations and stacking faults greatly affect the performance of functional crystalline materials1-3. Layer-stacking domain walls (DWs) in graphene alter its electronic properties and give rise to fascinating new physics such as quantum valley Hall edge states4-10. Extensive efforts have been dedicated to the engineering of dislocations to obtain materials with advanced properties. However, the manipulation of individual dislocations to precisely control the local structure and local properties of bulk material remains an outstanding challenge. Here we report the manipulation of individual layer-stacking DWs in bi- and trilayer graphene by means of a local mechanical force exerted by an atomic force microscope tip. We demonstrate experimentally the capability to move, erase and split individual DWs as well as annihilate or create closed-loop DWs. We further show that the DW motion is highly anisotropic, offering a simple approach to create solitons with designed atomic structures. Most artificially created DW structures are found to be stable at room temperature.
Hardening mechanisms in olivine single crystal deformed at 1090 °C: an electron tomography study
NASA Astrophysics Data System (ADS)
Mussi, Alexandre; Cordier, Patrick; Demouchy, Sylvie; Hue, Benoit
2017-11-01
The dislocation microstructures in a single crystal of olivine deformed experimentally in uniaxial compression at 1090 °C and under a confining pressure of 300 MPa, have been investigated by transmission electron tomography in order to better understand deformation mechanisms at the microscale relevant for lithospheric mantle deformations. Investigation by electron tomography reveals microstructures, which are more complex than previously described, composed of ? and ? dislocations commonly exhibiting 3D configurations. Numerous mechanisms such as climb, cross-slip, double cross-slip as well as interactions like junction formations and collinear annihilations are the source of this complexity. The diversity observed advocates for microscale deformation of olivine significantly less simple than classic dislocation creep reported in metals or ice close to melting temperature. Deciphering mechanism of hardening in olivine at temperatures where ionic diffusion is slow and is then expected to play very little role is crucial to better understand and thus model deformation at larger scale and at temperatures (900-1100 °C) highly relevant for the lithospheric mantle.
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.
2012-01-01
A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.
Analysis of ? twinning via automated atomistic post-processing methods
NASA Astrophysics Data System (ADS)
Barrett, Christopher D.
2017-05-01
? twinning is the most prominent and most studied twin mode in hexagonal close-packed materials. Many works have been devoted to describing its nucleation, growth and interactions with other defects. Despite this, gaps and disagreements remain in the literature regarding some fundamental aspects of the twinning process. A rigorous understanding of the twinning process is imperative because without it higher scale models of plasticity cannot accurately capture deformation in important materials such as Mg, Ti, Zr and Zn. Motivated by this necessity, we have studied ? twinning using molecular dynamics, focusing on automated processing techniques which can extract mechanistic information generalisable to continuum scale deformation. This demonstrates for the first time the automatic identification of twinning dislocation lines and Burgers vectors, and the elasto-plastic decomposition of the deformation gradient inside and around a twin embryo. These results confirm predictions of most authors regarding the dislocation-based twin growth process, while contradicting others who have argued that ? twin growth stems from a shuffling process with no dislocation line.
Differential Pricing in Undergraduate Education: Effects on Degree Production by Field
ERIC Educational Resources Information Center
Stange, Kevin
2015-01-01
In the face of declining state support, many universities have introduced differential pricing by undergraduate program as an alternative to across-the-board tuition increases. This practice aligns price more closely with instructional costs and students' ability to pay postgraduation. Exploiting the staggered adoption of these policies…
A study on pricing decision of supply chain based on fairness concern
NASA Astrophysics Data System (ADS)
Yang, Hongxiong; Sun, Xiongle
2017-03-01
The fairness concern is introduced into a closed-loop supply chain, which includes a manufacturer and a retailer. This paper study the effect of fairness concern on wholesale price, retail price, recycling prices, manufacturer profits and retails profits under two situation: only the manufacturer is fairness concern and only the retailer is fairness concern. Studies show that: Retailer's fairness concern will reduce the price of the wholesale price, while the retail price and the recycling price unchanged, which led to the retailer to get more supply chain profits. Manufacturers' fairness concerns will raise the wholesale price, thereby increasing the manufacturer's supply chain profit, and the retailer's profit is compromised.
NASA Astrophysics Data System (ADS)
Farrell, Stuart Bennett
Mercury Cadmium Telluride (HgCdTe) is a material of great importance for infrared focal plane array applications. In order to produce large format detector arrays this material needs to be grown on a large area substrate, with silicon being the most mature substrate, it is the optimal choice for large format arrays. To help mitigate the effect of the lattice mismatch between the two materials, cadmium telluride (CdTe) is used as a buffer layer. The CdTe itself has nearly the same lattice mismatch (19.3%) to silicon, but due to the technological advantages it offers and compatibility with HgCdTe, it is the best buffer layer choice. The lattice mismatch between HgCdTe/CdTe and the silicon substrate leads to the formation of dislocations at densities in the mid 106 to low 107 cm-2 range in the epilayers. Such a high dislocation density greatly effects detector device performance quantities such as operability and sensitivity. Hence, the dislocation density should be brought down by at least an order of magnitude by adopting novel in situ and ex situ material processing techniques. In this work, in situ and ex situ thermal cycle annealing (TCA) methods have been used to decrease dislocation density in CdTe and HgCdTe. During the molecular beam epitaxial (MBE) growth of the CdTe buffer layer, the growth was interrupted and the layer was subjected to an annealing cycle within the growth chamber under tellurium overpressure. During the annealing cycle the temperature is raised to beyond the growth temperature (290 → 550 °C) and then allowed to cool before resuming growth again. This process was repeated several times during the growth. After growth, a portion of the material was subjected to a dislocation decoration etch in order to count the etch pit density (EPD) which has a direct correspondence with the dislocation density in the crystal. The crystalline quality was also characterized by x-ray diffraction rocking curves and photoluminescence. The in situ TCA resulted in almost a two order of magnitude reduction in the dislocation density, and factor of two reduction in the full width at half maximum of the x-ray rocking curves. Photoluminescence also suggested a decrease in the number of dislocations present in the material. This decrease is attributed to the movement of the dislocations during the annealing cycles and their subsequent interaction and annihilation. To decrease the dislocation density in HgCdTe layers grown on CdTe/Si composite substrates, ex situ TCA has been performed in a sealed quartz ampoule under a mercury overpressure in a conventional clam-shell furnace. The reduction in the dislocation density has been studied as a function of growth/annealing parameters such as the initial (as grown) dislocation density, buffer layer quality, Hg overpressure, annealing temperature, annealing duration, and the number of annealing cycles. It was found that the primary parameters that affect dislocation density reduction are the annealing temperature and the number of annealing cycles. Some secondary affects were observed by varying the duration spent at the maximum annealing temperature. Parameters such as the initial dislocation density and buffer layer quality did not play a significant role in dislocation reduction. Though no correlation between Hg overpressure and dislocation density was found, it did play a vital role in maintaining the quality of the surface. By using the ex situ TCA, a dislocation density of 1 x 106 cm-2 could be reliably and consistently achieved in HgCdTe layers that had a starting density ranging from 0.5 -- 3 x 107 cm-2. Examination of the annealing parameters revealed an exponential decay in the dislocation density as a function of increasing number of annealing cycles. In addition, a similar exponential decay was observed between the dislocation density and the annealing temperature. The decrease in the dislocation density is once again attributed to moving dislocations that interact and annihilate. This behavior was modeled using a second order reaction equation. It was found that the results of the model closely agreed with the experimental values for a wide range of annealing temperatures and number of annealing cycles.
ERIC Educational Resources Information Center
Bureau of Mines (Dept. of Interior), Washington, DC.
Prepared by the Department of the Interior, this teaching guide is for the instructors' use in teaching a first aid course. Six fundamental areas include: (1) Artificial Respiration, (2) Control of Bleeding, (3) Physical Shock, (4) Open Wounds, Closed Wounds, and Burns, (5) Fractures and Dislocations, and (6) Transportation. A complete…
Time-dependent stress concentration and microcrack nucleation in TiAl
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, M.H.
1995-07-01
Localized stress evolution associated with the interaction of slip or twinning with an interface is treated by means of a superposition of the {open_quotes}internal loading{close_quotes} of a crystalline subsystem by dynamic dislocation pile-up and the stress relaxation by climb of interfacial dislocations. The peak value of a stress concentration factor depends on both the angular function that includes the effect of mode mixity and the ratio of characteristic times for stress relaxation and internal loading. The available experimental data on orientation and strain-rate dependences of interfacial fracture mode in polysynthetically twinned TiAl crystals are discussed in view of the theoreticalmore » concepts presented in this paper.« less
Skab, Ihor; Vasylkiv, Yurij; Zapeka, Bohdan; Savaryn, Viktoriya; Vlokh, Rostyslav
2011-07-01
We present an analysis of the effect of torsion stresses on the spatial distribution of optical birefringence in crystals of different point symmetry groups. The symmetry requirements needed so that the optical beam carries dislocations of the phase front are evaluated for the case when the crystals are twisted and the beam closely corresponds to a plane wave. It is shown that the torsion stresses can produce screw-edge, pure screw, or pure edge dislocations of the phase front in the crystals belonging to cubic and trigonal systems. The conditions for appearance of canonical and noncanonical vortices in the conditions of crystal torsion are analyzed. © 2011 Optical Society of America
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
... a fully automated, price/time priority execution system built on the core functionality of the... orders in price/time priority without regard to the status of the entities that are entering orders. The BX Options market closely resembles NOM, including, most prominently, by offering true price/time...
30 CFR 203.74 - When will MMS reconsider its determination?
Code of Federal Regulations, 2011 CFR
2011-07-01
... Sulfur General Royalty Relief for Pre-Act Deep Water Leases and for Development and Expansion Projects... as calculated under this paragraph. (1) Your current reference price is a weighted-average of daily... calendar months; (2) Your base reference price is a weighted average of daily closing prices on the NYMEX...
The Beginnings of Resilience: A View Across Cultures
ERIC Educational Resources Information Center
Ungar, Michael
2007-01-01
A close read of studies of children's development says that remarkably large numbers of children mature successfully despite exposure to poverty, war, violence, family dislocation, cultural genocide, sexual abuse, physical injury, mental illness, loss of a parent, loneliness, hunger, neglect and the numerous other crimes one commits against…
75 FR 78946 - Revitalizing Base Closure Communities and Addressing Impacts of Realignment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
... feasibility analysis describing the economic viability of the project, including an estimate of net proceeds.... SUMMARY: Economic Development Conveyances were created in amendments to the Base Closure and Realignment law in 1993, creating a new tool for communities experiencing economic dislocation from the closing of...
H7N9 not only endanger human health but also hit stock marketing.
Jiang, Yan; Zhang, Yi; Ma, Chunna; Wang, Quanyi; Xu, Chao; Donovan, Connor; Ali, Gholam; Xu, Tan; Sun, Wenjie
2017-01-01
This study aims to discuss the correlation between daily reported H7N9 cases and stock price indices in China. Information on daily reported H7N9 cases and stock market sectors indices between February 19, 2013 and March 31, 2014 were collected. A distributed lag non-linear model was used to describe the variation trend for the stock indices. The daily reported number of H7N9 cases was associated with the closing price of the Avian Influenza Sector Index (P < 0.05) and the opening price of the Shanghai Composite Index (P = 0.029). The Avian Influenza Sector Index decreased with increasing of daily reported case number when daily reported cases ≤ 4. Case number was associated with the opening/closing price of the Chinese Traditional Medicine Sector Index, the Biological Product Sector Index, and the Biomedicine Sector Index (P < 0.05). New or reemerging infectious diseases epidemic cause economic loss which is reflected in movements in stock prices.
Mechanism and energetics of
NASA Astrophysics Data System (ADS)
Wu, Zhaoxuan; Curtin, W. A.
2016-10-01
Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-19
... may be sold short (``Short Sale Price Test''). Among other things, Rule 201 requires trading centers... funds, exchange traded funds, and various indices, among other things. Accordingly, on November 12, 2012... security. Among other things, Rule 440B(b) defines the ``Trigger Price'' as the security's closing price on...
Multidimensional stock network analysis: An Escoufier's RV coefficient approach
NASA Astrophysics Data System (ADS)
Lee, Gan Siew; Djauhari, Maman A.
2013-09-01
The current practice of stocks network analysis is based on the assumption that the time series of closed stock price could represent the behaviour of the each stock. This assumption leads to consider minimal spanning tree (MST) and sub-dominant ultrametric (SDU) as an indispensible tool to filter the economic information contained in the network. Recently, there is an attempt where researchers represent stock not only as a univariate time series of closed price but as a bivariate time series of closed price and volume. In this case, they developed the so-called multidimensional MST to filter the important economic information. However, in this paper, we show that their approach is only applicable for that bivariate time series only. This leads us to introduce a new methodology to construct MST where each stock is represented by a multivariate time series. An example of Malaysian stock exchange will be presented and discussed to illustrate the advantages of the method.
A systematic comparison of the closed shoulder reduction techniques.
Alkaduhimi, H; van der Linde, J A; Willigenburg, N W; van Deurzen, D F P; van den Bekerom, M P J
2017-05-01
To identify the optimal technique for closed reduction for shoulder instability, based on success rates, reduction time, complication risks, and pain level. A PubMed and EMBASE query was performed, screening all relevant literature of closed reduction techniques mentioning the success rate written in English, Dutch, German, and Arabic. Studies with a fracture dislocation or lacking information on success rates for closed reduction techniques were excluded. We used the modified Coleman Methodology Score (CMS) to assess the quality of included studies and excluded studies with a poor methodological quality (CMS < 50). Finally, a meta-analysis was performed on the data from all studies combined. 2099 studies were screened for their title and abstract, of which 217 studies were screened full-text and finally 13 studies were included. These studies included 9 randomized controlled trials, 2 retrospective comparative studies, and 2 prospective non-randomized comparative studies. A combined analysis revealed that the scapular manipulation is the most successful (97%), fastest (1.75 min), and least painful reduction technique (VAS 1,47); the "Fast, Reliable, and Safe" (FARES) method also scores high in terms of successful reduction (92%), reduction time (2.24 min), and intra-reduction pain (VAS 1.59); the traction-countertraction technique is highly successful (95%), but slower (6.05 min) and more painful (VAS 4.75). For closed reduction of anterior shoulder dislocations, the combined data from the selected studies indicate that scapular manipulation is the most successful and fastest technique, with the shortest mean hospital stay and least pain during reduction. The FARES method seems the best alternative.
Multifactor valuation models of energy futures and options on futures
NASA Astrophysics Data System (ADS)
Bertus, Mark J.
The intent of this dissertation is to investigate continuous time pricing models for commodity derivative contracts that consider mean reversion. The motivation for pricing commodity futures and option on futures contracts leads to improved practical risk management techniques in markets where uncertainty is increasing. In the dissertation closed-form solutions to mean reverting one-factor, two-factor, three-factor Brownian motions are developed for futures contracts. These solutions are obtained through risk neutral pricing methods that yield tractable expressions for futures prices, which are linear in the state variables, hence making them attractive for estimation. These functions, however, are expressed in terms of latent variables (i.e. spot prices, convenience yield) which complicate the estimation of the futures pricing equation. To address this complication a discussion on Dynamic factor analysis is given. This procedure documents latent variables using a Kalman filter and illustrations show how this technique may be used for the analysis. In addition, to the futures contracts closed form solutions for two option models are obtained. Solutions to the one- and two-factor models are tailored solutions of the Black-Scholes pricing model. Furthermore, since these contracts are written on the futures contracts, they too are influenced by the same underlying parameters of the state variables used to price the futures contracts. To conclude, the analysis finishes with an investigation of commodity futures options that incorporate random discrete jumps.
The complexity of non-Schmid behavior in the CuZnAl shape memory alloy
NASA Astrophysics Data System (ADS)
Alkan, S.; Ojha, A.; Sehitoglu, H.
2018-05-01
The paper addresses one of the most important yet overlooked phenomenon in shape memory research- the plastic slip response. We show that the slip response is highly crystal orientation dependent and we demonstrate the precise reasons behind such complex response. The fractional dislocations on <111> {112} or <111> {011} systems can be activated depending on the sample orientation and solutions are derived for the variations in disregistries and dislocation core spreadings. This leads to the calculation of critical resolved shear stress in close agreement with experimental trends. The results show considerable dependence of the flow behavior on the non-Schmid stress components and the proposed yield criterion captures the role of stress tensor components.
Secondary infection of haematoma following closed acromioclavicular joint dislocation
Dupley, Leanne; Berg, Andrew James; Mohil, Randeep
2016-01-01
An unusual case of a patient presenting with a large infected haematoma following a traumatic grade II acromioclavicular joint dislocation is reported. Diagnosis of this rare complication, of an otherwise common self-limiting injury, was delayed until 19 days postinjury despite several presentations during this time with worsening swelling and pain. The patient was found to have significant tissue destruction by the time washout was performed and required multiple procedures to treat the infection. This case highlights the need for a high index of suspicion for complications, even following common self-limiting injuries, when patients represent with symptoms that do not fit the usual natural history of the condition, particularly if they have risk factors for bleeding and infection. PMID:26786526
NASA Astrophysics Data System (ADS)
Kuhlmann-Wilsdorf, D.
1999-09-01
The facts regarding “regular” deformation bands (DBs) outlined in Part I of this series of articles are related to the low-energy dislocation structure (LEDS) theory of dislocation-based plasticity. They prompt an expansion of the theory by including the stresses due to strain gradients on account of changing selections of slip systems to the previously known dislocation driving forces. This last and until now neglected driving force is much smaller than the components considered hitherto, principally due to the applied stress and to mutual stress-screening among neighbor dislocations. As a result, it permits a near-proof of the LEDS hypothesis, to wit that among all structures which, in principle, are accessible to the dislocations, that one is realized which has the lowest free energy. Specifically, the temperature rises that would result from annihilating the largest DBs amount to only several millidegrees Centigrade, meaning that they, and by implication the entire dislocation structures, are close to thermodynamical equilibrium. This is in stark contrast to the assumption of the presently widespread self-organizing dislocation structures (SODS) modeling that plastic deformation occurs far from equilibrium and is subject to Prigogine’s thermodynamics of energy-flow-through systems. It also holds out promise for future rapid advances in the construction of constitutive equations, since the LEDS hypothesis is the principal basis of the LEDS theory of plastic deformation and follows directly from the second law of thermodynamics in conjunction with Newton’s third law. By contrast, all other known models of metal plasticity are in conflict with the LEDS hypothesis. In regard to texture modeling, the present analysis shows that Taylor’s criterion of minimum plastic work is incorrect and should be replaced by the criterion of minimum free energy in the stressed state. Last, the LEDS hypothesis is but a special case of the more general low-energy structure (LES) hypothesis, applying to plastic deformation independent of the deformation mechanism. It is thus seen that plastic deformation is one of nature’s means to generate order, as a byproduct of the entropy generation when mechanical work is largely converted into heat.
Laid Off. The Texas Response to Plant Closings and Layoffs.
ERIC Educational Resources Information Center
Texas Association of Private Industry Councils, Austin.
For the benefit of Texas Association of Private Industry Council (TAPIC) volunteers who oversee dislocated worker projects, a report examined the initial efforts of putting together a cost-effective and responsive system that can reemploy people. In addition to a review of the state's role in the management and administration of the Economic…
Shih, Ya-Chen Tina; Xu, Ying; Liu, Lei; Smieliauskas, Fabrice
2017-08-01
Purpose The high cost of oncology drugs threatens the affordability of cancer care. Previous research identified drivers of price growth of targeted oral anticancer medications (TOAMs) in private insurance plans and projected the impact of closing the coverage gap in Medicare Part D in 2020. This study examined trends in TOAM prices and patient out-of-pocket (OOP) payments in Medicare Part D and estimated the actual effects on patient OOP payments of partial filling of the coverage gap by 2012. Methods Using SEER linked to Medicare Part D, 2007 to 2012, we identified patients who take TOAMs via National Drug Codes in Part D claims. We calculated total drug costs (prices) and OOP payments per patient per month and compared their rates of inflation with general health care prices. Results The study cohort included 42,111 patients who received TOAMs between 2007 and 2012. Although the general prescription drug consumer price index grew at 3% per year over 2007 to 2012, mean TOAM prices increased by nearly 12% per year, reaching $7,719 per patient per month in 2012. Prices increased over time for newly and previously launched TOAMs. Mean patient OOP payments dropped by 4% per year over the study period, with a 40% drop among patients with a high financial burden in 2011, when the coverage gap began to close. Conclusion Rising TOAM prices threaten the financial relief patients have begun to experience under closure of the coverage gap in Medicare Part D. Policymakers should explore methods of harnessing the surge of novel TOAMs to increase price competition for Medicare beneficiaries.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-06-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and 'relaxed' after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal.
Dupraz, Maxime; Beutier, Guillaume; Rodney, David; Mordehai, Dan; Verdier, Marc
2015-01-01
Crystal defects induce strong distortions in diffraction patterns. A single defect alone can yield strong and fine features that are observed in high-resolution diffraction experiments such as coherent X-ray diffraction. The case of face-centred cubic nanocrystals is studied numerically and the signatures of typical defects close to Bragg positions are identified. Crystals of a few tens of nanometres are modelled with realistic atomic potentials and ‘relaxed’ after introduction of well defined defects such as pure screw or edge dislocations, or Frank or prismatic loops. Diffraction patterns calculated in the kinematic approximation reveal various signatures of the defects depending on the Miller indices. They are strongly modified by the dissociation of the dislocations. Selection rules on the Miller indices are provided, to observe the maximum effect of given crystal defects in the initial and relaxed configurations. The effect of several physical and geometrical parameters such as stacking fault energy, crystal shape and defect position are discussed. The method is illustrated on a complex structure resulting from the simulated nanoindentation of a gold nanocrystal. PMID:26089755
Acute iatrogenic dislocation following hip impingement arthroscopic surgery.
Matsuda, Dean K
2009-04-01
This is the first case report of an iatrogenic anterior hip dislocation after arthroscopic surgery for femoroacetabular impingement with over 1 year of follow-up. This case report describes the clinical course of a patient with symptomatic cam-pincer femoroacetabular impingement. She underwent arthroscopic rim trimming, labral debridement after a failed attempt at labral refixation from suture cut-through, and femoral head-neck resection osteoplasty. The procedure involved supranormal hip distraction for extraction of an iatrogenic loose body (detached metallic radiofrequency probe tip). The patient had an anterior hip dislocation in the recovery room. Immediate closed reduction under general anesthesia and bracing were performed but failed despite the ability to obtain a concentric but grossly unstable reduction. After 3 failed attempts, a mini-open capsulorrhaphy was performed that successfully restored stability. Her postoperative management and outcome are presented. All of the major static stabilizers of the hip (osseous, labral, and capsuloligamentous) were surgically altered, and a multifactorial causation is proposed. Lessons learned are discussed in hopes of minimizing the occurrence of this rare but dramatic complication.
NASA Astrophysics Data System (ADS)
Jacques, Alain
2016-12-01
The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.
Analytic crack solutions for tilt fields around hydraulic fractures
NASA Astrophysics Data System (ADS)
Warpinski, Norman R.
2000-10-01
The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992], and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure two-dimensional (2-D), penny-shaped, and 3-D-elliptic cracks and a 2-D-variable-pressure crack. Equations are developed for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width, and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions but also that it is difficult to separate the competing effects of the various parameters.
Analytic crack solutions for tilt fields around hydraulic fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-elliptic cracks and a 2D-variable-pressure crack. Equations are developedmore » for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions, but also that it is difficult to separate the competing effects of the various parameters.« less
Detecting a currency’s dominance using multivariate time series analysis
NASA Astrophysics Data System (ADS)
Syahidah Yusoff, Nur; Sharif, Shamshuritawati
2017-09-01
A currency exchange rate is the price of one country’s currency in terms of another country’s currency. There are four different prices; opening, closing, highest, and lowest can be achieved from daily trading activities. In the past, a lot of studies have been carried out by using closing price only. However, those four prices are interrelated to each other. Thus, the multivariate time series can provide more information than univariate time series. Therefore, the enthusiasm of this paper is to compare the results of two different approaches, which are mean vector and Escoufier’s RV coefficient in constructing similarity matrices of 20 world currencies. Consequently, both matrices are used to substitute the correlation matrix required by network topology. With the help of degree centrality measure, we can detect the currency’s dominance for both networks. The pros and cons for both approaches will be presented at the end of this paper.
75 FR 6417 - U.S. One, Inc. and U.S. One Trust; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... anticipate that shares of the Funds (``Shares'') will be sold at a price of between $25 and $200 per Share in... Makers''). The price of Shares trading on the Listing Market will be based on a current bid/offer market... and keep the market price of shares close to their NAV. Applicants expect that secondary market...
College Textbooks Enhanced Offerings Appear to Drive Recent Price Increases. GAO-05-806
ERIC Educational Resources Information Center
US Government Accountability Office, 2005
2005-01-01
In the last two decades, college textbook prices have increased at twice the rate of inflation but have followed close behind tuition increases. Increasing at an average of 6 percent per year, textbook prices nearly tripled from December 1986 to December 2004, while tuition and fees increased by 240 percent and overall inflation was 72…
A Kramers-Moyal approach to the analysis of third-order noise with applications in option valuation.
Popescu, Dan M; Lipan, Ovidiu
2015-01-01
We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula's theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option's and its underlier's price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a "delta-hedged" portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise.
A Kramers-Moyal Approach to the Analysis of Third-Order Noise with Applications in Option Valuation
Popescu, Dan M.; Lipan, Ovidiu
2015-01-01
We propose the use of the Kramers-Moyal expansion in the analysis of third-order noise. In particular, we show how the approach can be applied in the theoretical study of option valuation. Despite Pawula’s theorem, which states that a truncated model may exhibit poor statistical properties, we show that for a third-order Kramers-Moyal truncation model of an option’s and its underlier’s price, important properties emerge: (i) the option price can be written in a closed analytical form that involves the Airy function, (ii) the price is a positive function for positive skewness in the distribution, (iii) for negative skewness, the price becomes negative only for price values that are close to zero. Moreover, using third-order noise in option valuation reveals additional properties: (iv) the inconsistencies between two popular option pricing approaches (using a “delta-hedged” portfolio and using an option replicating portfolio) that are otherwise equivalent up to the second moment, (v) the ability to develop a measure R of how accurately an option can be replicated by a mixture of the underlying stocks and cash, (vi) further limitations of second-order models revealed by introducing third-order noise. PMID:25625856
Kim, Min; Lee, Dong H; Koh, Hyoung J; Lee, Sung C; Kim, Sung S
2015-07-01
To report short-term surgical outcomes of single-stage simultaneous rescue and sutureless intrascleral fixation of dislocated intraocular lens (IOLs). Sixteen eyes of 16 patients who underwent simultaneous rescue and intrascleral fixation of dislocated 3-piece IOLs were retrospectively evaluated. Partial thickness limbal-based scleral flaps (2.0 × 2.0 mm) were created, and a 22-gauge round needle was used to create a sclerotomy at 1.5 mm from the limbus under the previously created scleral flap, and a 23-gauge trans pars plana vitrectomy was performed. Bimanual maneuvers using two 23-gauge end-grasping forceps under chandelier illumination and a wide-angle viewing system enabled 1 step rescue of IOLs from the posterior vitreous cavity with 1 hand and simultaneous haptic externalization through sclerotomy with the other hand. An externalized haptic was placed into the 3-mm intrascleral tunnel created using a bent 26-gauge needle. Fibrin glue was used to fixate haptics and close the scleral flaps. Intraocular lenses were successfully rescued and sclera-fixated through intrascleral tunnels in all 16 eyes (mean age, 56.56 ± 19.89 years). The mean preoperative logarithm of the minimum angle of resolution best-corrected visual acuity was 0.92 ± 0.68, and this significantly improved at 6 months to 0.289 ± 0.36 (P = 0.003). During the follow-up period (10.1 ± 3.21 months), no significant change of endothelial cell count or central foveal thickness was noted postoperatively (P = 0.203 and P = 0.979, respectively). There were no significant postoperative complications such as IOL dislocation, IOL decentration, retinal detachment, endophthalmitis, or postoperative hypotony. Simultaneous rescue and sutureless intrascleral haptic fixation of dislocated 3-piece IOLs using bimanual maneuvers is an effective, safe, and minimally invasive surgical method to rescue and fixate the dislocated IOL without further explant.
Morrow, Benjamin M.; Cerreta, E. K.; McCabe, R. J.; ...
2015-05-14
In-situ straining was used to study deformation behavior of hexagonal close-packed (hcp) metals.Twinning and dislocation motion, both essential to plasticity in hcp materials, were observed.Typically, these processes are characterized post-mortem by examining remnant microstructural features after straining has occurred. By imposing deformation during imaging, direct observation of active deformation mechanisms is possible. This work focuses on straining of structural metals in a transmission electron microscope (TEM), and a recently developed technique that utilizes familiar procedures and equipment to increase ease of experiments. In-situ straining in a TEM presents several advantages over conventional post-mortem characterization, most notably time-resolution of deformation andmore » streamlined identification of active deformation mechanisms. Drawbacks to the technique and applicability to other studies are also addressed. In-situ straining is used to study twin boundary motion in hcp magnesium. A {101¯2} twin was observed during tensile and compressive loading. Twin-dislocation interactions are directly observed. Notably, dislocations are observed to remain mobile, even after multiple interactions with twin boundaries, a result which suggests that Basinki’s dislocation transformation mechanism by twinning is not present in hcp metals. The coupling of in-situ straining with traditional post-mortem characterization yields more detailed information about material behavior during deformation than either technique alone.« less
A statistical analysis of product prices in online markets
NASA Astrophysics Data System (ADS)
Mizuno, T.; Watanabe, T.
2010-08-01
We empirically investigate fluctuations in product prices in online markets by using a tick-by-tick price data collected from a Japanese price comparison site, and find some similarities and differences between product and asset prices. The average price of a product across e-retailers behaves almost like a random walk, although the probability of price increase/decrease is higher conditional on the multiple events of price increase/decrease. This is quite similar to the property reported by previous studies about asset prices. However, we fail to find a long memory property in the volatility of product price changes. Also, we find that the price change distribution for product prices is close to an exponential distribution, rather than a power law distribution. These two findings are in a sharp contrast with the previous results regarding asset prices. We propose an interpretation that these differences may stem from the absence of speculative activities in product markets; namely, e-retailers seldom repeat buy and sell of a product, unlike traders in asset markets.
path integral approach to closed form pricing formulas in the Heston framework.
NASA Astrophysics Data System (ADS)
Lemmens, Damiaan; Wouters, Michiel; Tempere, Jacques; Foulon, Sven
2008-03-01
We present a path integral approach for finding closed form formulas for option prices in the framework of the Heston model. The first model for determining option prices was the Black-Scholes model, which assumed that the logreturn followed a Wiener process with a given drift and constant volatility. To provide a realistic description of the market, the Black-Scholes results must be extended to include stochastic volatility. This is achieved by the Heston model, which assumes that the volatility follows a mean reverting square root process. Current applications of the Heston model are hampered by the unavailability of fast numerical methods, due to a lack of closed-form formulae. Therefore the search for closed form solutions is an essential step before the qualitatively better stochastic volatility models will be used in practice. To attain this goal we outline a simplified path integral approach yielding straightforward results for vanilla Heston options with correlation. Extensions to barrier options and other path-dependent option are discussed, and the new derivation is compared to existing results obtained from alternative path-integral approaches (Dragulescu, Kleinert).
Stock price forecasting based on time series analysis
NASA Astrophysics Data System (ADS)
Chi, Wan Le
2018-05-01
Using the historical stock price data to set up a sequence model to explain the intrinsic relationship of data, the future stock price can forecasted. The used models are auto-regressive model, moving-average model and autoregressive-movingaverage model. The original data sequence of unit root test was used to judge whether the original data sequence was stationary. The non-stationary original sequence as a first order difference needed further processing. Then the stability of the sequence difference was re-inspected. If it is still non-stationary, the second order differential processing of the sequence is carried out. Autocorrelation diagram and partial correlation diagram were used to evaluate the parameters of the identified ARMA model, including coefficients of the model and model order. Finally, the model was used to forecast the fitting of the shanghai composite index daily closing price with precision. Results showed that the non-stationary original data series was stationary after the second order difference. The forecast value of shanghai composite index daily closing price was closer to actual value, indicating that the ARMA model in the paper was a certain accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Guozheng, E-mail: guozhengkang@home.swjtu.edu.cn; Dong, Yawei; Liu, Yujie
The uniaxial ratchetting of Ti–6Al–4V alloy with two phases (i.e., primary hexagonal close packed (HCP) α and secondary body-centered cubic (BCC) β phases) was investigated by macroscopic and microscopic experiments at room temperature. Firstly, the effects of cyclic softening/hardening feature, applied mean stress and stress amplitude on the uniaxial ratchetting of the alloy were discussed. The macroscopic investigation of Ti–6Al–4V alloy presents obvious strain-amplitude-dependent cyclic softening, as well as a three-staged evolution curve with regard to the ratchetting strain rate. The ratchetting depends greatly on the applied mean stress and stress amplitude while the ratchetting strain increases with the increasingmore » applied mean stress and stress amplitude. Then, the evolution of dislocation patterns and deformation twinning during the uniaxial ratchetting of two-phase Ti–6Al–4V alloy were observed using transmission electron microscopy (TEM). The microscopic observation shows that deformation twinning occurs in the primary α phase and its amount increases gradually during the uniaxial ratchetting. Simultaneously, the planar dislocation evolves from discrete lines to some dislocation nets and parallel lines with the increasing number of cycles. The deformation twinning in the primary α phase is one of main contributions to the uniaxial ratchetting of Ti–6Al–4V alloy, and should be considered in the construction of corresponding constitutive model. - Highlights: • A three-staged ratchetting occurs in the stress-controlled cyclic tests of Ti–6Al–4V alloy. • Dislocation patterns change from discrete lines to nets and parallel lines. • Deformation twinning occurs during the uniaxial ratchetting. • Both dislocation slipping and twinning are the causes of ratchetting.« less
Mechanism and energetics of 〈c + a〉 dislocation cross-slip in hcp metals.
Wu, Zhaoxuan; Curtin, W A
2016-10-04
Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated [Formula: see text] dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of [Formula: see text] dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal [Formula: see text] dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension-compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals.
Mechanism and energetics of 〈c + a〉 dislocation cross-slip in hcp metals
Wu, Zhaoxuan; Curtin, W. A.
2016-01-01
Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated 〈c+a〉 dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of 〈c+a〉 dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal 〈c+a〉 dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension–compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals. PMID:27647908
Common fractures and dislocations of the hand.
Jones, Neil F; Jupiter, Jesse B; Lalonde, Donald H
2012-11-01
After reading this article, the participant should be able to: 1. Describe the concept of early protected movement with Kirschner-wired finger fractures to the hand therapist. 2. Choose the most appropriate method of fracture fixation to achieve the goal of a full range of motion. 3. Describe the methods of treatment available for the most common fractures and dislocations of the hand. The main goal of treatment of hand and finger fractures and dislocations is to attain a full range of wrist and nonscissoring finger motion after the treatment is accomplished. This CME article consists of literature review, illustrations, movies, and an online CME examination to bring the participant recent available information on the topic. The authors reviewed literature regarding the most current treatment strategies for common hand and finger fractures and dislocations. Films were created to illustrate operative and rehabilitation methods used to treat these problems. A series of multiple-choice questions, answers, discussions, and references were written and are provided online so that the participant can receive the full benefit of this review. Many treatment options are available, from buddy and Coban taping to closed reduction with immobilization; percutaneous pins or screws; and open reduction with pins, screws, or plates. Knowledge of all available options is important because all can be used to achieve the goal of treatment in the shortest time possible. The commonly used methods of treatment are reviewed and illustrated. Management of common hand and finger fractures and dislocations includes the need to focus on achieving a full range of motion after treatment. A balance of fracture reduction with minimal dissection and early protected movement will achieve the goal.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
... Official Closing Price To Calculate the Market Order Trading Collar If There Is No Consolidated Last Sale... collar if there is no consolidated last sale price that trading day. The text of the proposed rule change...'') if there is no consolidated last sale price on that trading day. Pursuant to Rule 7.31(a)(1), during...
Reference pricing for drugs: is it compatible with U.S. health care?
Kanavos, Panos; Reinhardt, Uwe
2003-01-01
To control spending on prescription drugs, health insurance systems abroad have experimented in recent years with a novel form of patient cost sharing called "reference pricing." Under this approach, the insurer covers only the prices of low-cost, benchmark drugs in therapeutic clusters that are deemed to be close substitutes for one another in treating specific illnesses. Patients who desire a higher-price substitute in a cluster must then pay the full difference between the retail price of that drug and the reference price covered by the insurer. This paper explores the difficult trade-offs that policymakers must make in designing such a system, drawing where relevant from experience abroad.
Interaction of waves under diffraction on coupling of two Bragg grating with close characteristics
NASA Astrophysics Data System (ADS)
Bodyanchuk, I.; Galushko, Yu.; Galushko, Ye.; Glebov, L.; Mokhun, I.; Mokhun, O.; Turubarova-Leunova, N.; Smirnov, V.; Viktorovskaya, Yu.
2018-01-01
The possibility of formation of the beam with edge dislocation, which is similar to the TE01(10) beam is considered. It is shown that such mode may be obtained due to the diffraction of plane wave on the complex Bragg hologram, constructed as composition of two grating recorded on the same place of registration media. These partial holograms are implemented as the gratings with constant period and close characteristics. The conditions of such operation are formulated. The experimental results are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-08-01
The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? Thismore » study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.« less
NASA Astrophysics Data System (ADS)
Winarti, Yuyun Guna; Noviyanti, Lienda; Setyanto, Gatot R.
2017-03-01
The stock investment is a high risk investment. Therefore, there are derivative securities to reduce these risks. One of them is Asian option. The most fundamental of option is option pricing. Many factors that determine the option price are underlying asset price, strike price, maturity date, volatility, risk free interest rate and dividends. Various option pricing usually assume that risk free interest rate is constant. While in reality, this factor is stochastic process. The arithmetic Asian option is free from distribution, then, its pricing is done using the modified Black-Scholes model. In this research, the modification use the Curran approximation. This research focuses on the arithmetic Asian option pricing without dividends. The data used is the stock daily closing data of Telkom from January 1 2016 to June 30 2016. Finnaly, those option price can be used as an option trading strategy.
The nature of temper brittleness of high-chromium ferrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.
The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separationmore » into layers of high-chromium ferrite and decomposition of the interstitial solid solution.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
... price of such security future as shown by any regularly published reporting or quotation service, and... regularly published reporting or quotation service. If there is no recent closing sale price, the security... to financial relations between a security futures intermediary and a customer with respect to...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-05
... market price of the Shares should not vary substantially from the NAV of such Shares; Shares of the Fund... the Fund and that a close alignment between the market price of Shares and the Fund's NAV is expected... alignment between the market price of Shares and the Fund's NAV is expected, the Commission finds that it is...
Management of dislocated intraocular lenses with iris suture.
Faria, Mun Y; Ferreira, Nuno P; Canastro, Mario
2017-01-19
Subluxated or malpositioned intraocular lenses (IOLs) and inadequate capsular support is a challenge for every ophthalmic surgeon. Iris suture of an IOL seems to be an easy technique for the management of dislocated 3-piece IOL, allowing the IOL to be placed behind the iris, far from the trabecular meshwork and corneal endothelium. The purpose of this study is to assess the results of pars plana vitrectomy (PPV) and iris suture of dislocated 3-piece acrylic IOLs. In this retrospective, nonrandomized, interventional case consecutive study, of a total of 103 dislocated IOLs, 36 eyes were considered for analysis. All 36 eyes had subluxated or totally luxated 3-piece IOL and underwent iris suture at the Ophthalmology Department of Santa Maria Hospital-North Lisbon Hospital Center, Portugal, from January 2011 until November 2015. All patients underwent 3-port 23-G PPV. The optic zone of the dislocated IOL was placed anterior to the iris with the haptics behind, in the posterior chamber. Haptics were sutured to iris followed by placement of the optics behind iris plane. Postoperative measures included best-corrected visual acuity (BCVA), IOL position, intraocular pressure, pigment dispersion, clinical signs of endothelial cell loss, and development of macular edema. A total of 36 eyes of 36 patients were included. All underwent successful iris fixation of dislocated 3-piece IOL. Mean overall follow-up was 15.9 months (range 3-58 months). At presentation, 16 eyes (44.4%) had a luxated IOL and 20 eyes (55.6%) a subluxated IOL. As underlying cause, 17 eyes (47.2%) had a history of complicated cataract surgery, 5 eyes (13.9%) had a traumatic dislocation of the IOL, and 6 eyes (16.7%) had a previous vitreoretinal surgery. A total of 8 eyes (22.2%) had late spontaneous IOL dislocation after uneventful cataract surgery. The mean preoperative BCVA was 1.09 ± 0.70 logarithm of the minimal angle of resolution (logMAR) units and mean postoperative BCVA was 0.48 ± 0.58 of logMAR units. The mean visual acuity improvement was 4.08 ± 5.33 lines on the logMAR scale. In this study, every IOL was stable at the last follow-up. As late complications, macular edema occurred in 1 patient and retinal detachment occurred in 2 patients. There were no cases of endophthalmitis. Iris suture fixation of subluxated IOL is a good treatment option for eyes with dislocated IOLs, leading to long-term stability of the IOL. The advantage of this procedure is using the same IOL in a closed eye surgery. No astigmatic difference is expected as no large corneal incision is needed.
Miranda, Fernando E; Dennis, James W; Veldenz, Henry C; Dovgan, Peter S; Frykberg, Eric R
2002-02-01
Knee dislocation, which poses a significant risk for injury of the popliteal artery, prompts many surgeons to evaluate these patients with arteriography routinely. Our hypothesis was that physical examination alone (without arteriography) accurately confirms or excludes surgically significant vascular injuries associated with knee dislocation. All patients diagnosed with a knee dislocation by an attending orthopedic surgeon between January 1990 and January 2000 were prospectively managed by protocol at our Level I trauma center according to their physical examination. Those with hard signs (active hemorrhage, expanding hematoma, absent pulse, distal ischemia, bruit/thrill) underwent arteriography followed immediately by surgical repair if indicated. Patients with no hard signs (negative physical examination) were admitted for 23 hours, underwent serial physical examination, and then followed as outpatients. There were 35 knee dislocations in 35 patients during this 10-year period. The average age was 31 years; 18 dislocations were on the right knee and 17 were on the left. Two patients died from closed head injuries and multisystem trauma. Eight patients were found to have hard signs (positive physical examination) either at presentation (six patients) or during their hospitalization after reduction of their dislocation (two patients). All eight patients demonstrated a loss of pulses only. Six of these patients showed occlusion of the popliteal artery on arteriography and underwent surgical repair without complication (five vein grafts, one primary repair), one demonstrated spasm of the popliteal artery, and one showed a normal artery that required no treatment. None of the 27 patients with negative physical examination during their hospitalization ever developed limb ischemia, needed an operation for vascular injury, or experienced limb loss. Sixteen patients were available for follow-up (46%). Twelve patients with negative physical examination (44%) were contacted (mean, 13 months; range, 2-35 months), and four of the eight patients with positive physical examination (50%) and surgical repair were contacted (mean, 19 months; range, 6-49 months). None of the patients in either group developed any vascular-related symptoms or suffered from a vascular repair complication over the follow-up interval. This limited series suggests that the presence or absence of an injury of the popliteal artery after knee dislocation can be safely and reliably predicted, with a 94.3% positive predictive value and 100% negative predictive value. Arteriography appears to be unnecessary when physical examination is negative but may avert negative vascular exploration when physical examination is positive. This approach substantially reduces cost and resource use without adverse impact on the patient.
Real-time pricing strategy of micro-grid energy centre considering price-based demand response
NASA Astrophysics Data System (ADS)
Xu, Zhiheng; Zhang, Yongjun; Wang, Gan
2017-07-01
With the development of energy conversion technology such as power to gas (P2G), fuel cell and so on, the coupling between energy sources becomes more and more closely. Centralized dispatch among electricity, natural gas and heat will become a trend. With the goal of maximizing the system revenue, this paper establishes the model of micro-grid energy centre based on energy hub. According to the proposed model, the real-time pricing strategy taking into account price-based demand response of load is developed. And the influence of real-time pricing strategy on the peak load shifting is discussed. In addition, the impact of wind power predicted inaccuracy on real-time pricing strategy is analysed.
Zanobini, Marco; Ricciardi, Gabriella; Mammana, Francesco Liborio; Kassem, Samer; Poggio, Paolo; Di Minno, Alessandro; Cavallotti, L; Saccocci, Matteo
2017-09-01
Leaflet resection represents the reference standard for surgical treatment of mitral valve (MV) regurgitation. New approaches recently proposed place emphasis on respecting, rather than resecting, the leaflet tissue to avoid the drawbacks of the 'resection' approach. The lateral dislocation of mid portion of mitral posterior leaflet (P2) technique for MV repair is a nonresectional technique in which the prolapsed P2 segment is sutured to normal P1 segment. Our study evaluates the effectiveness of this technique. We performed the procedure on seven patients. Once ring annular sutures were placed, the prolapsed P2 segment was dislocated toward the normal P1 segment with a rotation of 90° and without any resection. If present, residual clefts between P2 and P3 segments were closed. Once the absence of residual mitral regurgitation is confirmed by saline pressure test, ring annuloplasty was completed. The valve was evaluated using transesophageal echocardiography in the operating room and by transthoracic echocardiography before discharge. At the last follow-up visit, transthoracic echocardiography revealed no mitral regurgitation and normal TRANSVALVULAR gradients. The lateral dislocation of P2 is an easily fine-tuned technique for isolated P2 prolapse, with the advantage of short aortic cross-clamp and cardiopulmonary bypass times. We think it might be very favorable in older and frail patients. Long-term follow-up is necessary to assess the durability of this technique.
Racimo, Allison R; Talathi, Nakul S; Zelenski, Nicole A; Wells, Lawrence; Shah, Apurva S
2018-05-02
Price transparency allows patients to make value-based health care decisions and is particularly important for individuals who are uninsured or enrolled in high-deductible health care plans. The availability of consumer prices for children undergoing orthopaedic surgery has not been previously investigated. We aimed to determine the availability of price estimates from hospitals in the United States for an archetypal pediatric orthopaedic surgical procedure (closed reduction and percutaneous pinning of a distal radius fracture) and identify variations in price estimates across hospitals. This prospective investigation utilized a scripted telephone call to obtain price estimates from 50 "top-ranked hospitals" for pediatric orthopaedics and 1 "non-top-ranked hospital" from each state and the District of Columbia. Price estimates were requested using a standardized script, in which an investigator posed as the mother of a child with a displaced distal radius fracture that needed closed reduction and pinning. Price estimates (complete or partial) were recorded for each hospital. The number of calls and the duration of time required to obtain the pricing information was also recorded. Variation was assessed, and hospitals were compared on the basis of ranking, teaching status, and region. Less than half (44%) of the 101 hospitals provided a complete price estimate. The mean price estimate for top-ranked hospitals ($17,813; range, $2742 to $49,063) was 50% higher than the price estimate for non-top-ranked hospitals ($11,866; range, $3623 to $22,967) (P=0.020). Differences in price estimates were attributable to differences in hospital fees (P=0.003), not surgeon fees. Top-ranked hospitals required more calls than non-top-ranked hospitals (4.4±2.9 vs. 2.8±2.3 calls, P=0.003). A longer duration of time was required to obtain price estimates from top-ranked hospitals than from non-top-ranked hospitals (8.2±9.4 vs. 4.1±5.1 d, P=0.024). Price estimates for pediatric orthopaedic procedures are difficult to obtain. Top-ranked hospitals are more expensive and less likely to provide price information than non-top-ranked hospitals, with price differences primarily caused by variation in hospital fees, not surgeon fees. Level II-economic and decision analyses.
Characterization of HgCdTe and Related Materials For Third Generation Infrared Detectors
NASA Astrophysics Data System (ADS)
Vaghayenegar, Majid
Hg1-xCdxTe (MCT) has historically been the primary material used for infrared detectors. Recently, alternative substrates for MCT growth such as Si, as well as alternative infrared materials such as Hg1-xCdxSe, have been explored. This dissertation involves characterization of Hg-based infrared materials for third generation infrared detectors using a wide range of transmission electron microscopy (TEM) techniques. A microstructural study on HgCdTe/CdTe heterostructures grown by MBE on Si (211) substrates showed a thin ZnTe layer grown between CdTe and Si to mediate the large lattice mismatch of 19.5%. Observations showed large dislocation densities at the CdTe/ZnTe/Si (211) interfaces, which dropped off rapidly away from the interface. Growth of a thin HgTe buffer layer between HgCdTe and CdTe layers seemed to improve the HgCdTe layer quality by blocking some defects. A second study investigated the correlation of etch pits and dislocations in as-grown and thermal-cycle-annealed (TCA) HgCdTe (211) films. For as-grown samples, pits with triangular and fish-eye shapes were associated with Frank partial and perfect dislocations, respectively. Skew pits were determined to have a more complex nature. TCA reduced the etch-pit density by 72%. Although TCA processing eliminated the fish-eye pits, dislocations reappeared in shorter segments in the TCA samples. Large pits were observed in both as-grown and TCA samples, but the nature of any defects associated with these pits in the as-grown samples is unclear. Microstructural studies of HgCdSe revealed large dislocation density at ZnTe/Si(211) interfaces, which dropped off markedly with ZnTe thickness. Atomic-resolution STEM images showed that the large lattice mismatch at the ZnTe/Si interface was accommodated through {111}-type stacking faults. A detailed analysis showed that the stacking faults were inclined at angles of 19.5 and 90 degrees at both ZnTe/Si and HgCdSe/ZnTe interfaces. These stacking faults were associated with Shockley and Frank partial dislocations, respectively. Initial attempts to delineate individual dislocations by chemical etching revealed that while the etchants successfully attacked defective areas, many defects in close proximity to the pits were unaffected.
NASA Astrophysics Data System (ADS)
Sangwal, K.; Torrent-Burgués, J.; Sanz, F.; Servat, J.
1997-03-01
The results of an atomic force microscopy study of the nature of cleavage steps, observation of slip traces and formation of hollow cores at the centres of dislocations on the {100} faces of L-arginine phosphate monohydrate (LAP) single crystals grown from aqueous solutions are described and discussed. It was observed that: (1) most of the cleavage steps and all the slip traces are of elementary height, a = 1.085 nm; (2) the origin of a cleavage step may or may not have a hollow core; and (3) close to its origin, the curvature of a cleavage step may be positive or negative or may change from positive to negative. The results suggest that slip traces observed on the cleaved surfaces of LAP are formed during the cleavage process while the rounding and the rearrangement of elementary cleavage steps take place immediately after the occurrence of cleavage. Analysis of the results also shows that the dislocations responsible for the origin of hollow cores always represent a stress field state corresponding to a trapped solution of different local interface supersaturations.
Softening due to disordered grain boundaries in nanocrystalline Co.
Yuasa, Motohiro; Hakamada, Masataka; Nakano, Hiromi; Mabuchi, Mamoru; Chino, Yasumasa
2013-08-28
Nanocrystalline Co consisting of fcc and hcp phases was processed by electrodeposition, and its mechanical properties were investigated by hardness tests. In addition, high-resolution transmission electron microscopy observations and molecular dynamics (MD) simulations were performed to investigate the grain boundary structure and dislocation nucleation from the grain boundaries. A large amount of disorders existed at the grain boundaries and stacking faults were formed from the grain boundaries in the as-deposited Co specimen. The as-deposited specimen showed a lower hardness than did the annealed specimen, although the grain size of the former was smaller than that of the latter. The activation volume of the as-deposited specimen (=1.5b(3)) was lower than that of the annealed specimen (=50b(3)), thus indicating that nucleation of dislocations from grain boundaries is more active in the as-deposited specimen than in the annealed specimens. The MD simulations showed that dislocation nucleation was closely related to a change in the defect structures at the boundary. Therefore, it is suggested that a significant amount of defects enhance changes in the defect structures at the boundary, resulting in softening of the as-deposited specimen.
Softening due to disordered grain boundaries in nanocrystalline Co
NASA Astrophysics Data System (ADS)
Yuasa, Motohiro; Hakamada, Masataka; Nakano, Hiromi; Mabuchi, Mamoru; Chino, Yasumasa
2013-08-01
Nanocrystalline Co consisting of fcc and hcp phases was processed by electrodeposition, and its mechanical properties were investigated by hardness tests. In addition, high-resolution transmission electron microscopy observations and molecular dynamics (MD) simulations were performed to investigate the grain boundary structure and dislocation nucleation from the grain boundaries. A large amount of disorders existed at the grain boundaries and stacking faults were formed from the grain boundaries in the as-deposited Co specimen. The as-deposited specimen showed a lower hardness than did the annealed specimen, although the grain size of the former was smaller than that of the latter. The activation volume of the as-deposited specimen (=1.5b3) was lower than that of the annealed specimen (=50b3), thus indicating that nucleation of dislocations from grain boundaries is more active in the as-deposited specimen than in the annealed specimens. The MD simulations showed that dislocation nucleation was closely related to a change in the defect structures at the boundary. Therefore, it is suggested that a significant amount of defects enhance changes in the defect structures at the boundary, resulting in softening of the as-deposited specimen.
Jaber, Abobaker M; Ismail, Mohd Tahir; Altaher, Alsaidi M
2014-01-01
This paper mainly forecasts the daily closing price of stock markets. We propose a two-stage technique that combines the empirical mode decomposition (EMD) with nonparametric methods of local linear quantile (LLQ). We use the proposed technique, EMD-LLQ, to forecast two stock index time series. Detailed experiments are implemented for the proposed method, in which EMD-LPQ, EMD, and Holt-Winter methods are compared. The proposed EMD-LPQ model is determined to be superior to the EMD and Holt-Winter methods in predicting the stock closing prices.
Financial effects of pharmaceutical price regulation on R&D spending by EU versus US firms.
Golec, Joseph; Vernon, John A
2010-01-01
EU countries closely regulate pharmaceutical prices, whereas the US does not. This paper shows how price constraints affect the profitability, stock returns and R&D spending of EU and US firms. Compared with EU firms, US firms are more profitable, earn higher stock returns and spend more on R&D. We tested the relationship between price regulation and R&D spending, and estimated the costs of tight EU price regulation. Although results show that EU consumers enjoyed much lower pharmaceutical price inflation, we estimated that price controls cost EU firms 46 fewer new medicines and 1680 fewer research jobs during our 19-year sample period. Had the US used controls similar to those used in the EU, we estimate it would have led to 117 fewer new medicines and 4368 fewer research jobs in the US.
von Laer, L; Günter, S M; Knopf, S; Weinberg, Annelie M
2002-03-01
The following are the results and conclusions of a retrospective research study done on 886 patients with supracondylar fractures of the humerus. The study evaluates how effective the treatment procedures of the fractures are. The patients' fractures were categorized into four groups. It made it easier to differentiate between dislocated and undislocated fractures (see part I Weinberg A et al.). The following parameters were established to evaluate the treatment procedures and to create relevancy to the final outcome depending on the degree of difficulty of the fractures: Length of hospitalization, amount of repositioning procedures (including if an open or closed procedure was needed), amount of post repositioning procedures and the recommended change of therapy, method of retention and fixation, necessary metal removal, amount of check ups needed. The amount of x-ray exams could not be established due to insufficient documentation. The study showed a rather random pattern regarding length of hospitalization and the amount of check ups especially among type I and II patients. Open versus closed repositioning procedures did not seem to be advantageous. The implanted wires did not prevent infections. It just increased the treatment procedure by another hospitalization and anesthesia to remove the implanted wires. Physical therapy was not necessary and was only prescribed in cases of prolonged immobilization. The results of this study generated consequences regarding treatment procedures and developed a more efficient treatment protocol: Type I and II (dislocated and undislocated fractures in one plane) will be treated conservatively on an out-patient basis. Type I in a cast. Type II in a blount or plaster cast with flexed angle between 100 degrees and 130 degrees. Type III an IV (dislocated and undislocated fractures in two or three planes) will be treated if possible with a closed repositioning procedure. Otherwise a close repositioning procedure will be necessary and followed with some kind of KD-osteosynthese to capture the fracture. The patient will be hospitalized for a short period. The blount procedure will not be sufficient for this type of fracture. Therapy and procedure will be translated put in a perspective research study.
NASA Astrophysics Data System (ADS)
Stunitz, Holger; Thust, Anja; Behrens, Harald; Heilbronner, Renee; Kilian, Ruediger
2016-04-01
Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FÍs decrepitate. Cracks heal and small neonate FÍs form, increasing the number of FÍs drastically. During subsequent deformation, the size of FÍs is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FÍs. The deformation processes in these crystals represent a recycling of H2O between FÍs, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FÍs during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.
Water weakening in experimentally deformed milky quartz single crystals
NASA Astrophysics Data System (ADS)
Stunitz, H.; Thust, A.; Kilian, R.; Heilbronner, R.; Behrens, H.; Tarantola, A.; Fitz Gerald, J. D.
2015-12-01
Natural single crystals of quartz have been experimentally deformed in two orientations: (1) normal to one prism-plane, (2) In O+ orientation at temperatures of 900 and 1000°C, pressures of 1.0 and 1.5 GPa, and strain rates of ~1 x 10-6s-1. The starting material is milky quartz, consisting of dry quartz (H2O contents of <150 H/106Si) with fluid inclusions (FI). During pressurization many FI´s decrepitate. Cracks heal and small neonate FI´s form, increasing the number of FI´s drastically. During subsequent deformation, the size of FI´s is further reduced (down to ~10 nm). Sample deformation occurs by dominant dislocation glide on selected slip systems, accompanied by some dynamic recovery. Strongly deformed regions show FTIR spectra with a pointed broad absorption band in the ~3400 cm-1 region as a superposition of molecular H2O bands and three discrete absorption bands (at 3367, 3400, and 3434 cm-1). In addition, there is a discrete absorption band at 3585 cm-1, which only occurs in deformed regions. The 3585 cm-1 band is reduced or even disappears after annealing. This band is polarized and represents structurally bound H, its H-content is estimated to be 1-3% of the total H2O-content and appears to be associated with dislocations. The H2O weakening effect in our FI-bearing natural quartz crystals is assigned to the processes of dislocation generation and multiplication at small FI´s. The deformation processes in these crystals represent a recycling of H2O between FI´s, dislocation generation at very small fluid inclusions, incorporation of structurally bound H into dislocation cores, and release of H2O from dislocations back into FI´s during recovery. Cracking and crack healing play an important role in the recycling process and imply a close interrelationship between brittle and crystal plastic deformation. The H2O weakening by this process is of a disequilibrium nature and thus depends on the amount of H2O available.
An Analysis of Strengthening Mechanisms and Rate-Dependence in a High Strength Aluminum Alloy
NASA Astrophysics Data System (ADS)
Cao, B.; Shaeffer, M.; Cadel, D.; Ramesh, K. T.; Prasad, S.
2017-11-01
We examine the strengthening mechanisms within a high-strength aluminum alloy with the objective of providing guidelines for increased strength. First, we measure the mechanical behavior of the age-hardenable Al-Cu-Mg-Ag alloy known as Al 2139 in the T8 condition, and observe strengths of 500 MPa at quasistatic strain rates and average strengths of up to 600 MPa at high strain rates. Next, we explore the reasons for the high strength of this alloy by considering the contributions of various strengthening mechanisms to the total strength of the material. Finally, we develop an analytical approach to estimating the strengthening developed through the mechanism of dislocation cutting of closely spaced plate-like semi-coherent precipitates. Our results suggest that dislocation cutting of the Ω phase is the primary strengthening mechanism in this alloy.
Pricing and competition in the private dental market in Finland.
Widström, E; Väisänen, A; Mikkola, H
2011-06-01
To investigate how the prices were set in private dental care, which factors determined prices and whether the recent National Dental Care Reform had increased competition in the dental care market in Finland. A questionnaire to all full time private dentists (n = 1,121) in the ten largest cities. Characteristics of the practice, prices charged, price setting, perceived competition and expectations for the practices were requested. The response rate was 59.6%. Correlation analysis (Pearson's) was used to study relationships between the prices of different treatment items. Linear regression analysis was used to study determinants of the price of a one surface filling. Most dentists' fee schedules were based on the price of a one surface filling and updated annually. Changes in practice costs calculated by the dentists' professional association and information on average prices charged on dental treatments in the country influenced pricing. High price levels were associated with specialisation, working in a group practice, working close to many other practices or in a town with a dental school. Less than half of the respondents had faced competition in dental services and price competition was insignificant. Price setting followed traditional patterns and private markets in dental services were not found to be very competitive.
7 CFR 1170.8 - Price reporting specifications.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Specifications for Dry Whey Prices: (1) Variety: Edible nonhygroscopic. (2) Age: No more than 180 days. (3) Grade..., or tanker. (5) Exclude: Sales of Grade A dry whey, intra-company sales, resales of purchased dry whey... transaction was completed), dry whey produced under faith-based close supervision and marketed at a higher...
Code of Federal Regulations, 2011 CFR
2011-01-01
...) The Force Account Proposals (FAPs) are subject to review and approval by RUS. (e) The FAP is approved by RUS on the basis of estimated labor and material costs. The FAP is closed based on the borrower's... by the completed assembly units priced at the unit prices in the approved FAP. (Approved by the...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) The Force Account Proposals (FAPs) are subject to review and approval by RUS. (e) The FAP is approved by RUS on the basis of estimated labor and material costs. The FAP is closed based on the borrower's... by the completed assembly units priced at the unit prices in the approved FAP. (Approved by the...
Code of Federal Regulations, 2010 CFR
2010-01-01
...) The Force Account Proposals (FAPs) are subject to review and approval by RUS. (e) The FAP is approved by RUS on the basis of estimated labor and material costs. The FAP is closed based on the borrower's... by the completed assembly units priced at the unit prices in the approved FAP. (Approved by the...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) The Force Account Proposals (FAPs) are subject to review and approval by RUS. (e) The FAP is approved by RUS on the basis of estimated labor and material costs. The FAP is closed based on the borrower's... by the completed assembly units priced at the unit prices in the approved FAP. (Approved by the...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) The Force Account Proposals (FAPs) are subject to review and approval by RUS. (e) The FAP is approved by RUS on the basis of estimated labor and material costs. The FAP is closed based on the borrower's... by the completed assembly units priced at the unit prices in the approved FAP. (Approved by the...
European option pricing under the Student's t noise with jumps
NASA Astrophysics Data System (ADS)
Wang, Xiao-Tian; Li, Zhe; Zhuang, Le
2017-03-01
In this paper we present a new approach to price European options under the Student's t noise with jumps. Through the conditional delta hedging strategy and the minimal mean-square-error hedging, a closed-form solution of the European option value is obtained under the incomplete information case. In particular, we propose a Value-at-Risk-type procedure to estimate the volatility parameter σ such that the pricing error is in accord with the risk preferences of investors. In addition, the numerical results of us show that options are not priced in some cases in an incomplete information market.
2016-03-01
regression models that yield hedonic price indexes is closely related to standard techniques for developing cost estimating relationships ( CERs ...October 2014). iii analysis) and derives a price index from the coefficients on variables reflecting the year of purchase. In CER development, the...index. The relevant cost metric in both cases is unit recurring flyaway (URF) costs. For the current project, we develop a “Baseline” CER model, taking
Stochastic volatility models and Kelvin waves
NASA Astrophysics Data System (ADS)
Lipton, Alex; Sepp, Artur
2008-08-01
We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.
Mayer, Stephanie W; Abdo, João Caetano Munhoz; Hill, Mary K; Kestel, Lauryn A; Pan, Zhaoxing; Novais, Eduardo N
2016-09-01
Femoroacetabular impingement (FAI) deformity has been associated with posterior hip instability in adult athletes. To determine if FAI deformity is associated with posterior hip instability in adolescents, the femoral head-neck junction or acetabular structure in a cohort of adolescent patients who sustained a low-energy, sports-related posterior hip dislocation was compared with that in a group of healthy age- and sex-matched controls with no history of hip injury or pain. Cross-sectional study; Level of evidence, 3. We identified 12 male patients (mean age, 13.9 years; range, 12-16 years) who sustained a sports-related posterior hip dislocation and underwent a computed tomography (CT) scan after closed reduction. For each patient, 3 age- and sex-matched healthy controls were identified. Femoral head-neck type was assessed by measurement of the alpha angle on the radially oriented CT images at the 12-, 1-, 2-, and 3-o'clock positions. Age, body mass index (BMI), alpha angle at each position, acetabular version, Tönnis angle, and lateral center-edge angle (LCEA) on the involved hip in the dislocation group were compared with those of the matched controls using a mixed-effects model. A logistic regression analysis using a generalized estimating equation was used to compare the percentage of subjects with cam-type FAI deformity (alpha angle >55°) in each group. The dislocation and control groups were similar in age distribution and BMI (P > .05). The mean alpha angles were statistically significantly higher in the dislocation group compared with the control group at the superior (46.3° ± 1.1° vs 42.7° ± 0.6°; P = .0213), superior-anterior (55.5° ± 1.9° vs 46.0° ± 1.3°; P = .0005), and anterior-superior (54.9° ± 1.5° vs 48.9° ± 1.0°; P = .0045) regions. Cam deformity was present in a larger proportion of patients in the dislocation group than in the control group (P < .0035). An alpha angle greater than 55° was present in 16.7% of the dislocation group and 0% of the control group at the 12-o'clock position (P = .1213), 41.7% versus 0% at the 1-o'clock position (P = .0034), 58% versus 6% at the 2-o'clock position (P = .0004), and 25% versus 2.8% at the 3-o'clock position (P = .0929). Acetabular anteversion was lower in the dislocation group (9.6° ± 1.4°) compared with the control group (15.1° ± 0.8°) (P = .0068). Mean acetabular LCEA was within a normal range in both groups. A significantly higher mean alpha angle from the superior to the anterior-superior regions of the femoral head-neck junction and lower acetabular version were found in adolescents who sustained low-energy, sports-related posterior hip dislocations. © 2016 The Author(s).
Molecular dynamics studies of InGaN growth on nonpolar (11 2 \\xAF0 ) GaN surfaces
NASA Astrophysics Data System (ADS)
Chu, K.; Gruber, J.; Zhou, X. W.; Jones, R. E.; Lee, S. R.; Tucker, G. J.
2018-01-01
We have performed direct molecular dynamics (MD) simulations of heteroepitaxial vapor deposition of I nxG a1 -xN films on nonpolar (11 2 ¯0 ) wurtzite-GaN surfaces to investigate strain relaxation by misfit-dislocation formation. The simulated growth is conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN substrate. We apply time-and-position-dependent boundary constraints to affect the appropriate environments for the vapor phase, the near-surface solid phase, and the bulklike regions of the growing layer. The simulations employ a newly optimized Stillinger-Weber In-Ga-N system interatomic potential wherein multiple binary and ternary structures are included in the underlying density-functional theory and experimental training sets to improve the treatment of the In-Ga-N related interactions. To examine the effect of growth conditions, we study a matrix of 63 different MD-growth simulations spanning seven I nxG a1 -xN -alloy compositions ranging from x =0.0 to x =0.8 and nine growth temperatures above half the simulated melt temperature. We found a composition dependent temperature range where all kinetically trapped defects were eliminated, leaving only quasiequilibrium misfit and threading dislocations present in the simulated films. Based on the MD results obtained in this temperature range, we observe the formation of interfacial misfit and threading dislocation arrays with morphologies strikingly close to those seen in experiments. In addition, we compare the MD-observed thickness-dependent onset of misfit-dislocation formation to continuum-elasticity-theory models of the critical thickness and find reasonably good agreement. Finally, we use the three-dimensional atomistic details uniquely available in the MD-growth histories to directly observe the nucleation of dislocations at surface pits in the evolving free surface.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
... also hopes to encourage greater use of its Closing Cross through this pricing incentive. NASDAQ further notes that the New York Stock Exchange (``NYSE'') currently offers general pricing incentives to members... changes to relocate the placement of the definitions of ``MPID'' and ``Consolidated Volume'' in Rule 7018...
NASA Astrophysics Data System (ADS)
Putri, Anissa Rianda; Jauhari, Wakhid Ahmad; Rosyidi, Cucuk Nur
2017-11-01
This paper studies a closed-loop supply chain inventory model, where the primary market demand is fulfilled by newly produced products and remanufactured products. We intend to integrate a manufacturer and a collector as a supply chain system. Used items are collected and will be inspected and sorted by the collector, and the return rate of used items is depended upon price and quality factor. Used items that aren't pass this process, will be considered as waste and undergone waste disposal process. Recoverable used items will be sent to the manufacturer for recovery process. This paper applies two types of the recovery process for used products, i.e. remanufacture and refurbish. The refurbished items are sold to a secondary market with lower price than primary market price. Further, the amount of recoverable items depend upon the acceptance level of the returned items. This proposed model gives an optimal solution by maximizing the joint total profit. Moreover, a numerical example is presented to describe the application of the model.
NASA Astrophysics Data System (ADS)
Yamashita, F.; Mizoguchi, K.; Fukuyama, E.; Omura, K.
2008-12-01
To infer the activity and physical state of intraplate faults in Japan, we re-examined the crustal stress with the hydraulic fracturing test by measuring the tensile strength of rocks. The tensile strength was measured by fracturing hollow cylindrical rock samples (inner and outer radius are 25.0-25.2 mm and 55.1-101.5 mm, respectively, length is 137.0-140.1 mm) which were obtained close to the in situ stress measurement locations by pressurizing the inner hole of the sample. Confining pressure is not applied to the samples in this test. To check the reliability and accuracy of this test, we conducted similar experiments with the standard rock sample (Inada granite) whose physical property is well known. Then, we measured the tensile strength of all available core samples including the Atera fault (at Ueno, Fukuoka, and Hatajiri), the Atotsugawa fault, and the Nojima fault (at Hirabayashi, Iwaya and Kabutoyama), in central Japan, which had been obtained by the National Research Institute for Earth Science and Disaster Prevention (NIED) by the stress measurement with the hydraulic fracturing method. The measured tensile strength data reveals that the in situ re- opening pressure, which is one of the parameters needed for the determination of the maximum in situ horizontal stress, was obviously biased. We re-estimated the re-opening pressure using the measured tensile strength and the in situ breakdown pressure, and re-calculated the in situ stress around the Atera fault. Although the past dislocation of the Atera fault has been considered to be left lateral from the geographical features around the fault, the re-estimated stress suggests that the present dislocation of the Atera fault is right lateral. And the shear stress decreases from the fault. The right lateral dislocation is also supported by the present-day horizontal crustal deformation observed by the triangular and GPS surveys by Geographical Survey Institute in Japan. Therefore, the dislocation direction of the Atera fault seems to change from left lateral to right lateral some time ago. The amount of accumulated right lateral dislocation estimated from the stress data with the dislocation model by Okada (1992) is 2.2-2.6 m. Because the current slip rate from the GPS survey is 2.1-2.3 mm/yr, the accumulation period of the dislocation becomes 960-1240 years if the slip rate is stable. This estimation suggests that during the last 1586 Tensho earthquake the Atera fault dislocated right laterally.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
... price. Other closing cross orders, however, can be entered in response to the order imbalance indicator disseminated prior to the closing cross. The order imbalance indicator provides market participants with... additional orders to eliminate the imbalance, thereby ensuring the execution of more Limit-on-Close and...
An empirical analysis of the multimarket contact theory in pharmaceutical markets.
Coronado, Javier; Jiménez-Martín, Sergi; Marín, Pedro L
2014-07-01
Multimarket contact theory predicts that firms will optimally reduce prices in markets where collusive prices are sustainable and allocate the slack of the corresponding incentive compatibility to increase prices in markets where collusion is not sustainable. Binding price caps in collusive markets will have different effects over the multimarket contact mechanism depending on the severity of the cap. Setting a price cap close to the unregulated case will increase the size of the redistribution of market power whereas stronger regulation will even reduce prices in unregulated markets. Therefore, price regulations aiming at capping prices in a specific market will also affect markets that are not subject to specific mandatory price regulations. We find evidence of the theory predictions using information for nine OECD countries for pharmaceutical markets. Unregulated US markets are shown to respond to the redistribution effect; Canadian markets, known to be subject to soft price regulations, with respect to the former, are shown to be consistent with a stronger redistribution effect. EU markets and Japan are either consistent with the effect of a medium regulation or strong regulation. In this last case multimarket contact cannot explain prices, and these are expected to be lower compared to the unregulated benchmark.
Puig-Junoy, Jaume
2010-01-01
To describe alternative policies aimed at encouraging price competition in generic drug markets in countries with strict price regulation, and to present some case studies drawn from the European experience. Systematic literature review of articles and technical reports published after 1999. The shortcomings in consumer price competition observed in some European generic markets, including Spain, may be reduced through three types of public reimbursement or financing reforms: policies aimed at improving the design of current maximum reimbursement level policies; policies aimed at monitoring competitive prices in order to reimburse real acquisition cost to pharmacies; and, more radical and market-oriented policies such as competitive tendering of public drug purchases. The experience of recent reforms adopted in Germany, Belgium, Holland, Norway, and Sweden offers a useful guide for highly price-regulated European countries, such as Spain, currently characterized by limited consumer price competition and the high discounts offered to pharmacy purchases. Direct price regulation and/or the generic reference pricing systems used to reduce generic drug prices in many European countries can be successfully reformed by adopting measures more closely aimed at encouraging consumer price competition in generic drug markets. Copyright 2009 SESPAS. Published by Elsevier Espana. All rights reserved.
Pendular behavior of public transport networks
NASA Astrophysics Data System (ADS)
Izawa, Mirian M.; Oliveira, Fernando A.; Cajueiro, Daniel O.; Mello, Bernardo A.
2017-07-01
In this paper, we propose a methodology that bears close resemblance to the Fourier analysis of the first harmonic to study networks subjected to pendular behavior. In this context, pendular behavior is characterized by the phenomenon of people's dislocation from their homes to work in the morning and people's dislocation in the opposite direction in the afternoon. Pendular behavior is a relevant phenomenon that takes place in public transport networks because it may reduce the overall efficiency of the system as a result of the asymmetric utilization of the system in different directions. We apply this methodology to the bus transport system of Brasília, which is a city that has commercial and residential activities in distinct boroughs. We show that this methodology can be used to characterize the pendular behavior of this system, identifying the most critical nodes and times of the day when this system is in more severe demanded.
Late septic hip dislocation with multifocal osteomyelitis and malaria: a case report.
Sreenivas, T; Menon, Jagdish; Nataraj, A R
2012-12-01
A 9-year-old boy presented with high-grade fever associated with pain and swelling in right hip and left leg of 1-week duration. Pus was found on diagnostic aspiration of the right hip joint. Emergency arthrotomy was performed through anterior approach with drill holes in proximal femur and culture showed MRSA. Intravenous antibiotics were given for 4 weeks. Patient symptomatically improved in immediate postoperative period and in bed hip mobilization was started. On eighth postoperative day, child developed high-grade intermittent fever with chills and rigors and diagnosed as plasmodium falciparum malaria. Fever subsided with antimalarial treatment. On twenty-first day, patient complained pain in right hip and X-ray showed posterior hip dislocation with osteomyelitis of proximal femur. Closed reduction and hip spica application was done under general anesthesia. At follow-up, the clinical result was fair with resolution of infection and stiff hip.
Transmission electron microscopy investigation of interfaces in a two-phase TiAl alloy
NASA Astrophysics Data System (ADS)
Mahon, G. J.; Howe, J. M.
1990-06-01
The atomic structures of the γ/α2 and γ/γT interfaces in a TiAl alloy were investigated using conventional and high-resolution transmission electron microscopy (TEM) in order to understand the growth mechanisms and deformation behavior of the two-phase alloy. The results show that the α2 plates grow from the γ phase by the migration of a/6<112> partial dislocation ledges across the faces and that the γ/α2 interface usually contains closely spaced arrays of interfacial dislocations. Deformation twins cut through both γ twin boundaries and α2 plates during deformation, although slip of twinning c slocations through α2 appears to be a difficult process. Both the γ/α2 and γ/γT interfaces can be imaged and modeled at the atomic level, although slight crystal and/or beam tilt can complicate image interpretation.
Fracture of single crystals of the nickel-base superalloy PWA 1480E in helium at 22 C
NASA Technical Reports Server (NTRS)
Chen, P. S.; Wilcox, R. C.
1991-01-01
The fracture behavior and deformation of He-charged (at 22 C) single crystals of PWA 1480E Ni-base superalloy were investigated using SEM and TEM techniques to observe the behavior of tensile fractures in notched single crystals with seven different crystal growth orientations: 100-line, 110-line, 111-line, 013-line, 112-line, 123-line, and 223-line. To identify the cleavage plane orientation, a stereoscopic technique, combined with the use of planar gamma-prime morphologies, was applied. It was found that gamma-prime particles were orderly and closely aligned with edges along the 100-line, 010-line, and 001-line-oriented directions of the gamma matrix. Different crystal growth orientations were found not to affect the morphology of gamma-prime particles. The accumulation of dislocations around gamma/gamma-prime interfaces formed strong barriers to subsequent dislocation movement and was the primary strengthening mechanism at room temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, C.; James, T. L.; Margolis, R.
The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% declinemore » from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.« less
How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Reboredo, Juan C.; Rivera-Castro, Miguel A.; Miranda, José G. V.; García-Rubio, Raquel
2013-04-01
In this paper we analyse price fluctuations with the aim of measuring how long the market takes to adjust prices to weak-form efficiency, i.e., how long it takes for prices to adjust to a fractional Brownian motion with a Hurst exponent of 0.5. The Hurst exponent is estimated for different time horizons using detrended fluctuation analysis-a method suitable for non-stationary series with trends-in order to identify at which time scale the Hurst exponent is consistent with the efficient market hypothesis. Using high-frequency share price, exchange rate and stock data, we show how price dynamics exhibited important deviations from efficiency for time periods of up to 15 min; thereafter, price dynamics was consistent with a geometric Brownian motion. The intraday behaviour of the series also indicated that price dynamics at trade opening and close was hardly consistent with efficiency, which would enable investors to exploit price deviations from fundamental values. This result is consistent with intraday volume, volatility and transaction time duration patterns.
Flexible Residential Smart Grid Simulation Framework
NASA Astrophysics Data System (ADS)
Xiang, Wang
Different scheduling and coordination algorithms controlling household appliances' operations can potentially lead to energy consumption reduction and/or load balancing in conjunction with different electricity pricing methods used in smart grid programs. In order to easily implement different algorithms and evaluate their efficiency against other ideas, a flexible simulation framework is desirable in both research and business fields. However, such a platform is currently lacking or underdeveloped. In this thesis, we provide a simulation framework to focus on demand side residential energy consumption coordination in response to different pricing methods. This simulation framework, equipped with an appliance consumption library using realistic values, aims to closely represent the average usage of different types of appliances. The simulation results of traditional usage yield close matching values compared to surveyed real life consumption records. Several sample coordination algorithms, pricing schemes, and communication scenarios are also implemented to illustrate the use of the simulation framework.
NASA Astrophysics Data System (ADS)
Christy, A. Y.; Fauzi, B. N.; Kurdi, N. A.; Jauhari, W. A.; Saputro, D. R. S.
2017-06-01
The demand of a product is linearly dependent on the retail price and quality of the product. We address a closed-loop supply chain where the manufacturer manufactures products according to the demand and sells them through a retailer in the market. A third party collects the used products from costumers and sends to the manufacturer to increase the quality. If the products can retrieve the original quality, thus the process is called remanufacturing. Not every products can retrieve the original quality, thus manufacturer refurbish this products with lower price. We construct four different scenarios - centralized and decentralized led by manufacturer, retailer, and third party. From the comparison of the result obtained in the numerical example, we conclude that the joint profit obtained under centralized, manufacturer-led, and retailer-led policies is higher than third party-led policy.
NASA Astrophysics Data System (ADS)
Kyutt, R. T.
2017-04-01
The shape of X-ray diffraction epitaxial layers with high dislocation densities has been studied experimentally. Measurements with an X-ray diffractometer were performed in double- and triple-crystal setups with both Cu K α and Mo K α radiation. Epitaxial layers (GaN, AlN, AlGaN, ZnO, etc.) with different degrees of structural perfection grown by various methods on sapphire, silicon, and silicon carbide substrates have been examined. The layer thickness varied in the range of 0.5-30 μm. It has been found that the center part of peaks is well approximated by the Voigt function with different Lorentz fractions, while the wing intensity drops faster and may be represented by a power function (with the index that varies from one structure to another). A well-marked dependence on the ordering of dislocations was observed. The drop in intensity in the majority of structures with a regular system and regular threading dislocations was close to the theoretically predicted law Δθ-3; the intensity in films with a chaotic distribution decreased much faster. The dependence of the peak shape on the order of reflection, the diffraction geometry, and the epitaxial layer thickness was also examined.
Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas
2016-03-04
The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.
Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas
2016-01-01
The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications. PMID:26940260
17 CFR 270.23c-1 - Repurchase of securities by closed-end companies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... issuer. (5) Payment of the purchase price is accompanied or preceded by a written confirmation of the purchase. (6) The purchase is made at a price not above the market value, if any, or the asset value of..., within the preceding six months, informed stockholders of its intention to purchase stock of such class...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-27
... Component of the Alpha Pair. To calculate the daily total return today of a Target Component or a Benchmark... Benchmark Component, respectively, would be subtracted from today's closing market price for the Target...''). The Price Difference would be added to any declared dividend, if today were an ``ex-dividend'' date...
5 CFR 591.212 - How does OPM select survey items?
Code of Federal Regulations, 2010 CFR
2010-01-01
... large weight) within the PEG; (2) Relatively easy to find in both COLA and DC areas; (3) Relatively... COLA area must be identical to the items that OPM surveys in the DC area or be of closely similar... compares prices for such items between the COLA area and the DC area, OPM compares prices of like products. ...
5 CFR 591.212 - How does OPM select survey items?
Code of Federal Regulations, 2013 CFR
2013-01-01
... large weight) within the PEG; (2) Relatively easy to find in both COLA and DC areas; (3) Relatively... COLA area must be identical to the items that OPM surveys in the DC area or be of closely similar... compares prices for such items between the COLA area and the DC area, OPM compares prices of like products. ...
5 CFR 591.212 - How does OPM select survey items?
Code of Federal Regulations, 2014 CFR
2014-01-01
... large weight) within the PEG; (2) Relatively easy to find in both COLA and DC areas; (3) Relatively... COLA area must be identical to the items that OPM surveys in the DC area or be of closely similar... compares prices for such items between the COLA area and the DC area, OPM compares prices of like products. ...
5 CFR 591.212 - How does OPM select survey items?
Code of Federal Regulations, 2012 CFR
2012-01-01
... large weight) within the PEG; (2) Relatively easy to find in both COLA and DC areas; (3) Relatively... COLA area must be identical to the items that OPM surveys in the DC area or be of closely similar... compares prices for such items between the COLA area and the DC area, OPM compares prices of like products. ...
5 CFR 591.212 - How does OPM select survey items?
Code of Federal Regulations, 2011 CFR
2011-01-01
... large weight) within the PEG; (2) Relatively easy to find in both COLA and DC areas; (3) Relatively... COLA area must be identical to the items that OPM surveys in the DC area or be of closely similar... compares prices for such items between the COLA area and the DC area, OPM compares prices of like products. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-15
... the applicable quantitative and liquidity measures contained in the Rule 5300, 5400 and 5500 Series... July 25, 2011, the Commission extended the time period in which to either approve the proposed rule... length of time before applying to list; (iv) applying the price requirement using closing prices, both...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-17
... switch port in the test environment. The test environment is designed to closely mirror the live equity... Change To Establish Fees Under the PHLX Pricing Schedule for Use of the Carteret Testing Facility Test... establish fees under the Pricing Schedule for use of the Testing Facility (``NTF'') test environment located...
The Questionable Economic Case for Value-Based Drug Pricing in Market Health Systems.
Pauly, Mark V
2017-02-01
This article investigates the economic theory and interpretation of the concept of "value-based pricing" for new breakthrough drugs with no close substitutes in a context (such as the United States) in which a drug firm with market power sells its product to various buyers. The interpretation is different from that in a country that evaluates medicines for a single public health insurance plan or a set of heavily regulated plans. It is shown that there will not ordinarily be a single value-based price but rather a schedule of prices with different volumes of buyers at each price. Hence, it is incorrect to term a particular price the value-based price, or to argue that the profit-maximizing monopoly price is too high relative to some hypothesized value-based price. When effectiveness of treatment or value of health is heterogeneous, the profit-maximizing price can be higher than that associated with assumed values of quality-adjusted life-years. If the firm sets a price higher than the value-based price for a set of potential buyers, the optimal strategy of the buyers is to decline to purchase that drug. The profit-maximizing price will come closer to a unique value-based price if demand is less heterogeneous. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Correlated continuous time random walk and option pricing
NASA Astrophysics Data System (ADS)
Lv, Longjin; Xiao, Jianbin; Fan, Liangzhong; Ren, Fuyao
2016-04-01
In this paper, we study a correlated continuous time random walk (CCTRW) with averaged waiting time, whose probability density function (PDF) is proved to follow stretched Gaussian distribution. Then, we apply this process into option pricing problem. Supposing the price of the underlying is driven by this CCTRW, we find this model captures the subdiffusive characteristic of financial markets. By using the mean self-financing hedging strategy, we obtain the closed-form pricing formulas for a European option with and without transaction costs, respectively. At last, comparing the obtained model with the classical Black-Scholes model, we find the price obtained in this paper is higher than that obtained from the Black-Scholes model. A empirical analysis is also introduced to confirm the obtained results can fit the real data well.
Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J
2016-01-01
The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.
A continuum theory of edge dislocations
NASA Astrophysics Data System (ADS)
Berdichevsky, V. L.
2017-09-01
Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.
Sucato, Daniel J; De La Rocha, Adriana; Lau, Karlee; Ramo, Brandon A
2017-03-01
Preoperative Bryant's overhead traction before closed reduction (CR) in developmental dysplasia of the hip (DDH) remains controversial and its success in increasing CR rates and reducing avascular necrosis (AVN) rates has not been specifically reported in a large cohort. IRB-approved retrospective study of patients (below 3 y)who were treated with attempted CR for idiopathic DDH from 1980 to 2009. Successful CR was defined as a hip that remained reduced and did not require repeat CR or open reduction. Patients were grouped by age, hip instability [Ortolani positive (reducible) vs. fixed dislocation], and Tonnis classification and rates of successful CR were compared between groups with P<0.05. A total of 342 hips were included with a mean age of 0.9 years (0.2 to 2.8 y) and a mean follow-up of 10.4 years (2.0 to 27.7 y). There were 269 hips with fixed dislocations and 73 Ortolani-positive hips. Traction was used in 276 hips. There was no difference in traction utilization in the 3 age groups (below 1, below 1.5, and below 2 y) for either Ortolani-positive hips (P=0.947) or fixed dislocations (P=0.943). There was no difference in achieving a successful CR comparing traction (60.9%) and no-traction groups (60.6%) (P=1.00). For Ortolani-positive hips, traction did not improve the incidence of a successful CR for any age group: below 1 year: P=0.19; below 1.5 years: P=0.23; and below 2 years: P=0.25. Similarly, fixed dislocation patients had no benefit from traction: below 1 year: P=0.76; below 1.5 years: P=0.82; and below 2 years: P=0.85. Tonnis classification did predict success of CR but had no influence on traction success. There was no difference in the rate of AVN between the traction (18%) and no-traction (8%) groups for all patients (P=0.15). In this retrospective series, preoperative Bryant's traction does not improve the rate of a successful CR for patients with DDH and has no protective effect on the development of AVN of the femoral head. These results suggest that Bryant's overhead traction may not be warranted for patients below 3 years of age with DDH. Level III.
Camathias, Carlo; Studer, Katrin; Kiapour, Ata; Rutz, Erich; Vavken, Patrick
2016-11-01
The essential static patellar stabilizer is a normal-shaped trochlear groove. A dysplastic groove destabilizes the patella. Trochleoplasty approaches this underlying condition and reshapes the trochlea. However, studies have reported on trochleoplasty for revision cases or as accompanied by other interventions. The effect of trochleoplasty alone remains unexplained. To introduce trochleoplasty as a stand-alone treatment for recurrent patellar dislocation and to compare its pre- to postoperative functional and clinical variables. Case series; Level of evidence, 4. A trochleoplasty was performed in 50 knees (27 right) in 44 patients (30 females; mean ± SD age, 15.6 ± 2.0 years). The indication for surgery was recurrent patellar dislocation not responding to nonoperative treatment (>6 months), with types B through D dysplasia and closed or closing physes in adolescents aged 10 to 20 years. Assessment included J-sign and apprehension test, Kujala and Lysholm scores, patients' subjective assessment and activity level according to the International Knee Documentation Committee questionnaire, and patients' overall satisfaction. The Caton-Deschamps ratio and the lateral condyle index were measured. Pre- versus postoperative values were compared with a paired Wilcoxon signed-rank test. The minimum follow-up was 24 months (33 ± 10.6 months). The Kujala score improved from 71 preoperatively to 92 postoperatively (P < .001) and the Lysholm score from 71 to 95 (P < .001). Patients' subjective assessment improved at the final follow-up as compared with that preoperatively (P < .001). Most patients enhanced their activity (P < .001), and their overall satisfaction increased postoperatively (P < .001). Preoperatively, there was a positive J-sign in 45 knees and a positive apprehension test in 41 knees. Both markers disappeared postoperatively in 39 and 33 knees, respectively, leaving 6 knees with a positive J-sign and 8 knees with a positive apprehension test (P < .001). One patella redislocated postoperatively after 38 months. Four patients required a single arthroscopic debridement. In this study, trochleoplasty as a solitary treatment for recurrent patellofemoral dislocations in patients with trochlear dysplasia resulted in good clinical outcomes if severe torsional and axial malalignment was excluded. Kujala and Lysholm scores increased postoperatively, as well as subjective International Knee Documentation Committee assessment of outcomes, activity level, and overall satisfaction. © 2016 The Author(s).
Dislocation evolution in 316 L stainless steel during multiaxial ratchetting deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Yawei; Kang Guozheng, E-mail: guozhengkang@yahoo.com.cn; Liu Yujie
2012-03-15
Dislocation patterns and their evolutions in 316 L stainless steel during the multiaxial ratchetting deformation were observed by transmission electron microscopy (TEM). The microscopic observations indicate that the dislocation evolution presented during the multiaxial ratchetting with four kinds of multiaxial loading paths is similar to that in the uniaxial case [G. Z. Kang et al., Mater Sci Eng A 527 (2010) 5952]. That is, dislocation networks and dislocation tangles are formed quickly by the multiple-slip and cross-slip of dislocation activated by applied multiaxial stress; and then polarized patterns such as dislocation walls and elongated incipient dislocation cells are formed atmore » the last stage of multiaxial ratchetting. The dislocation patterns evolve more quickly from the modes at low dislocation density to the ones at high density during the multiaxial ratchetting than that in the uniaxial case, and some traces of multiple-slip are observed in the multiaxial ones. The dislocation evolution during the multiaxial ratchetting deformation is summarized by comparing the observed dislocation patterns with those presented in the multiaxial strain-controlled and symmetrical stress-controlled cyclic tests. The multiaxial ratchetting of 316 L stainless steel can be microscopically and qualitatively explained by the observed evolution of dislocation patterns. - Highlights: Black-Right-Pointing-Pointer Dislocation patterns change from lines and nets to tangles, walls and cells. Black-Right-Pointing-Pointer Dislocation patterns evolve quicker in the multiaxial case. Black-Right-Pointing-Pointer Aligned dislocation arrays and some traces of multiple slips are observed. Black-Right-Pointing-Pointer Heterogeneous dislocation patterns result in the multiaxial ratchetting.« less
Worker Dislocation. Case Studies of Causes and Cures.
ERIC Educational Resources Information Center
Cook, Robert F., Ed.
Case studies were made of the following dislocated worker programs: Cummins Engine Company Dislocated Worker Project; GM-UAW Metropolitan Pontiac Retraining and Employment Program; Minnesota Iron Range Dislocated Worker Project; Missouri Dislocated Worker Program Job Search Assistance, Inc.; Hillsborough, North Carolina, Dislocated Worker Project;…
NASA Astrophysics Data System (ADS)
Li, Chen; Zhang, Yu-Yang; Pennycook, Timothy J.; Wu, Yelong; Lupini, Andrew R.; Paudel, Naba; Pantelides, Sokrates T.; Yan, Yanfa; Pennycook, Stephen J.
2016-10-01
The dynamics of partial dislocations in CdTe have been observed at the atomic scale using aberration-corrected scanning transmission electron microscopy (STEM), allowing the mobility of different dislocations to be directly compared: Cd-core Shockley partial dislocations are more mobile than Te-core partials, and dislocation cores with unpaired columns have higher mobility than those without unpaired columns. The dynamic imaging also provides insight into the process by which the dislocations glide. Dislocations with dangling bonds on unpaired columns are found to be more mobile because the dangling bonds mediate the bond exchanges required for the dislocations to move. Furthermore, a screw dislocation has been resolved to dissociate into a Shockley partial-dislocation pair along two different directions, revealing a way for the screw dislocation to glide in the material. The results show that dynamic STEM imaging has the potential to uncover the details of dislocation motion not easily accessible by other means.
Wealth and price distribution by diffusive approximation in a repeated prediction market
NASA Astrophysics Data System (ADS)
Bottazzi, Giulio; Giachini, Daniele
2017-04-01
The approximate agents' wealth and price invariant densities of a repeated prediction market model is derived using the Fokker-Planck equation of the associated continuous-time jump process. We show that the approximation obtained from the evolution of log-wealth difference can be reliably exploited to compute all the quantities of interest in all the acceptable parameter space. When the risk aversion of the trader is high enough, we are able to derive an explicit closed-form solution for the price distribution which is asymptotically correct.
Habitual dislocation of patella: A review
Batra, Sumit; Arora, Sumit
2014-01-01
Habitual dislocation of patella is a condition where the patella dislocates whenever the knee is flexed and spontaneously relocates with extension of the knee. It is also termed as obligatory dislocation as the patella dislocates completely with each flexion and extension cycle of the knee and the patient has no control over the patella dislocating as he or she moves the knee1. It usually presents after the child starts to walk, and is often well tolerated in children, if it is not painful. However it may present in childhood with dysfunction and instability. Very little literature is available on habitual dislocation of patella as most of the studies have combined cases of recurrent dislocation with habitual dislocation. Many different surgical techniques have been described in the literature for the treatment of habitual dislocation of patella. No single procedure is fully effective in the surgical treatment of habitual dislocation of patella and a combination of procedures is recommended. PMID:25983506
Boosting Learning Algorithm for Stock Price Forecasting
NASA Astrophysics Data System (ADS)
Wang, Chengzhang; Bai, Xiaoming
2018-03-01
To tackle complexity and uncertainty of stock market behavior, more studies have introduced machine learning algorithms to forecast stock price. ANN (artificial neural network) is one of the most successful and promising applications. We propose a boosting-ANN model in this paper to predict the stock close price. On the basis of boosting theory, multiple weak predicting machines, i.e. ANNs, are assembled to build a stronger predictor, i.e. boosting-ANN model. New error criteria of the weak studying machine and rules of weights updating are adopted in this study. We select technical factors from financial markets as forecasting input variables. Final results demonstrate the boosting-ANN model works better than other ones for stock price forecasting.
NASA Astrophysics Data System (ADS)
Zhang, Wei-Guo; Li, Zhe; Liu, Yong-Jun
2018-01-01
In this paper, we study the pricing problem of the continuously monitored fixed and floating strike geometric Asian power options in a mixed fractional Brownian motion environment. First, we derive both closed-form solutions and mixed fractional partial differential equations for fixed and floating strike geometric Asian power options based on delta-hedging strategy and partial differential equation method. Second, we present the lower and upper bounds of the prices of fixed and floating strike geometric Asian power options under the assumption that both risk-free interest rate and volatility are interval numbers. Finally, numerical studies are performed to illustrate the performance of our proposed pricing model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu; Groh, S.
2014-08-14
In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examinemore » the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in resistance to dislocation motion as the dislocation moves though the hydrogen-solute atmospheres. With this systematic, atomistic study of the edge dislocation with various point defects, we show significant increase in obstacle strengths in addition to an increase in the local dislocation velocity during interaction with solute atmospheres. The results have implications for constitutive development and modeling of the hydrogen effect on dislocation mobility and deformation in metals.« less
Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation
NASA Astrophysics Data System (ADS)
Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.
2017-11-01
Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.
Moiz, Munim; Smith, Nick; Smith, Toby O.; Chawla, Amit; Thompson, Peter; Metcalfe, Andrew
2018-01-01
Background: The first-line treatment for patellar dislocations is often nonoperative and consists of physical therapy and immobilization techniques, with various adjuncts employed. However, the outcomes of nonoperative therapy are poorly described, and there is a lack of quality evidence to define the optimal intervention. Purpose: To perform a comprehensive review of the literature and assess the quality of studies presenting patient outcomes from nonoperative interventions for patellar dislocations. Study Design: Systematic review; Level of evidence, 4. Methods: The MEDLINE, AMED, Embase, CINAHL, Cochrane Library, PEDro, and SPORTDiscus electronic databases were searched through July 2017 by 3 independent reviewers. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed. Study quality was assessed using the CONSORT (Consolidated Standards for Reporting Trials) criteria for randomized controlled trials and the Newcastle-Ottawa Scale for cohort studies and case series. Results: A total of 25 studies met our inclusion criteria, including 12 randomized controlled trials, 7 cohort studies, and 6 case series, consisting of 1066 patients. Studies were grouped according to 4 broad categories of nonoperative interventions based on immobilization, weightbearing status, quadriceps exercise type, and alternative therapies. The most commonly used outcome measure was the Kujala score, and the pooled redislocation rate was 31%. Conclusion: This systematic review found that patient-reported outcomes consistently improved after all methods of treatment but did not return to normal. Redislocation rates were high and close to the redislocation rates reported in natural history studies. There is a lack of quality evidence to advocate the use of any particular nonoperative technique for the treatment of patellar dislocations. PMID:29942814
Termentzidis, Konstantinos; Isaiev, Mykola; Salnikova, Anastasiia; Belabbas, Imad; Lacroix, David; Kioseoglou, Joseph
2018-02-14
We report the thermal transport properties of wurtzite GaN in the presence of dislocations using molecular dynamics simulations. A variety of isolated dislocations in a nanowire configuration are analyzed and found to considerably reduce the thermal conductivity while impacting its temperature dependence in a different manner. Isolated screw dislocations reduce the thermal conductivity by a factor of two, while the influence of edge dislocations is less pronounced. The relative reduction of thermal conductivity is correlated with the strain energy of each of the five studied types of dislocations and the nature of the bonds around the dislocation core. The temperature dependence of the thermal conductivity follows a physical law described by a T -1 variation in combination with an exponent factor that depends on the material's nature, type and the structural characteristics of the dislocation core. Furthermore, the impact of the dislocation density on the thermal conductivity of bulk GaN is examined. The variation and absolute values of the total thermal conductivity as a function of the dislocation density are similar for defected systems with both screw and edge dislocations. Nevertheless, we reveal that the thermal conductivity tensors along the parallel and perpendicular directions to the dislocation lines are different. The discrepancy of the anisotropy of the thermal conductivity grows with increasing density of dislocations and it is more pronounced for the systems with edge dislocations. Besides the fundamental insights of the presented results, these could also be used for the identification of the type of dislocations when one experimentally obtains the evolution of thermal conductivity with temperature since each type of dislocation has a different signature, or one could extract the density of dislocations with a simple measurement of thermal anisotropy.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-14
... Defined,'' 6.11, ``Openings (and sometimes Closings),'' Rule 6.13, ``Complex Order Execution,'' Rule 6.15... outside of specified price bands, as defined in Section I(N) of the Plan. These requirements would be coupled with trading pauses, as defined in Section I(Y) of the Plan, to accommodate more fundamental price...
26 CFR 20.2031-2 - Valuation of stocks and bonds.
Code of Federal Regulations, 2010 CFR
2010-04-01
... day before the valuation date. Assume further, that there were sales on Thursday, March 29, 1973, and that the closing selling price on that day was $23. The price of $24.50 is taken as representing the... liquidation rights created after October 8, 1990. [T.D. 6296, 23 FR 4529, June 24, 1958; 25 FR 14021, Dec. 31...
NASA Astrophysics Data System (ADS)
Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander
2017-05-01
A three-dimensional (3D) discrete dislocation dynamics (DDD) creep model is developed to investigate creep behavior under uniaxial tensile stress along the crystallographic [001] direction in Ni-base single crystal superalloys, which takes explicitly account of dislocation glide, climb and vacancy diffusion, but neglects phase transformation like rafting of γ‧ precipitates. The vacancy diffusion model takes internal stresses by dislocations and mismatch strains into account and it is coupled to the dislocation dynamics model in a numerically efficient way. This model is helpful for understanding the fundamental creep mechanisms in superalloys and clarifying the effects of dislocation glide and climb on creep deformation. In cases where the precipitate cutting rarely occurs, e.g. due to the high anti-phase boundary energy and the lack of superdislocations, the dislocation glide in the γ matrix and the dislocation climb along the γ/γ‧ interface dominate plastic deformation. The simulation results show that a high temperature or a high stress both promote dislocation motion and multiplication, so as to cause a large creep strain. Dislocation climb accelerated by high temperature only produces a small plastic strain, but relaxes the hardening caused by the filling γ channels and lets dislocations further glide and multiply. The strongest variation of vacancy concentration occurs in the horizontal channels, where more mixed dislocations exit and tend to climb. The increasing internal stresses due to the increasing dislocation density are easily overcome by dislocations under a high external stress that leads to a long-term dislocation glide accompanied by multiplication.
Interfacial dislocations in (111) oriented (Ba 0.7Sr 0.3)TiO 3 films on SrTiO 3 single crystal
Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...
2015-10-08
In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO 3 films grown on (111)-oriented SrTiO 3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography,more » we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba 0.7Sr 0.3)TiO 3 films.« less
Dislocation mechanisms in stressed crystals with surface effects
NASA Astrophysics Data System (ADS)
Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team
2014-03-01
Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.
Recombination properties of dislocations in GaN
NASA Astrophysics Data System (ADS)
Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.
2018-04-01
The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trishkina, L., E-mail: trishkina.53@mail.ru; Zboykova, N.; Koneva, N., E-mail: koneva@tsuab.ru
The aim of the investigation was the determination of the statistic description of dislocation distribution in each dislocation substructures component forming after different deformation degrees in the Cu-Al alloys. The dislocation structures were investigated by the transmission diffraction electron microscopy method. In the work the statistic description of distance distribution between the dislocations, dislocation barriers and dislocation tangles in the deformed Cu-Al alloys with different concentration of Al and test temperature at the grain size of 100 µm was carried out. It was established that the above parameters influence the dislocation distribution in different types of the dislocation substructures (DSS): dislocationmore » chaos, dislocation networks without disorientation, nondisoriented and disoriented cells, in the walls and inside the cells. The distributions of the distances between dislocations in the investigated alloys for each DSS type formed at certain deformation degrees and various test temperatures were plotted.« less
Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal
NASA Astrophysics Data System (ADS)
Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun
2013-05-01
Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.
Why Are Product Prices in Online Markets Not Converging?
Mizuno, Takayuki; Watanabe, Tsutomu
2013-01-01
Why are product prices in online markets dispersed in spite of very small search costs? To address this question, we construct a unique dataset from a Japanese price comparison site, which records price quotes offered by e-retailers as well as customers’ clicks on products, which occur when they proceed to purchase the product. The novelty of our approach is that we seek to extract useful information on the source of price dispersion from the shape of price distributions rather than focusing merely on the standard deviation or the coefficient of variation of prices, as previous studies have done. We find that the distribution of prices retailers quote for a particular product at a particular point in time (divided by the lowest price) follows an exponential distribution, showing the presence of substantial price dispersion. For example, 20 percent of all retailers quote prices that are more than 50 percent higher than the lowest price. Next, comparing the probability that customers click on a retailer with a particular rank and the probability that retailers post prices at a particular rank, we show that both decline exponentially with price rank and that the exponents associated with the probabilities are quite close. This suggests that the reason why some retailers set prices at a level substantially higher than the lowest price is that they know that some customers will choose them even at that high price. Based on these findings, we hypothesize that price dispersion in online markets stems from heterogeneity in customers’ preferences over retailers; that is, customers choose a set of candidate retailers based on their preferences, which are heterogeneous across customers, and then pick a particular retailer among the candidates based on the price ranking. PMID:24015219
Why are product prices in online markets not converging?
Mizuno, Takayuki; Watanabe, Tsutomu
2013-01-01
Why are product prices in online markets dispersed in spite of very small search costs? To address this question, we construct a unique dataset from a Japanese price comparison site, which records price quotes offered by e-retailers as well as customers' clicks on products, which occur when they proceed to purchase the product. The novelty of our approach is that we seek to extract useful information on the source of price dispersion from the shape of price distributions rather than focusing merely on the standard deviation or the coefficient of variation of prices, as previous studies have done. We find that the distribution of prices retailers quote for a particular product at a particular point in time (divided by the lowest price) follows an exponential distribution, showing the presence of substantial price dispersion. For example, 20 percent of all retailers quote prices that are more than 50 percent higher than the lowest price. Next, comparing the probability that customers click on a retailer with a particular rank and the probability that retailers post prices at a particular rank, we show that both decline exponentially with price rank and that the exponents associated with the probabilities are quite close. This suggests that the reason why some retailers set prices at a level substantially higher than the lowest price is that they know that some customers will choose them even at that high price. Based on these findings, we hypothesize that price dispersion in online markets stems from heterogeneity in customers' preferences over retailers; that is, customers choose a set of candidate retailers based on their preferences, which are heterogeneous across customers, and then pick a particular retailer among the candidates based on the price ranking.
Modal analysis of dislocation vibration and reaction attempt frequency
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...
2017-02-04
Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction rate for a transition processes by quantifying the activation free energy and attempt frequency for the unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle, in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of a finite pinned dislocation segment is compared tomore » line tension estimates before moving to the more complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA loop. Lastly, it is found to be dislocation length independent for three cases of dislocation-self interstitial atom (SIA) loop interactions.« less
Dynamics of threading dislocations in porous heteroepitaxial GaN films
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Rzhavtsev, E. A.
2017-12-01
Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.
Closed bone graft epiphysiodesis for avascular necrosis of the capital femoral epiphysis.
Thompson, George H; Lea, Ethan S; Chin, Kenneth; Liu, Raymond W; Son-Hing, Jochen P; Gilmore, Allison
2013-07-01
Avascular necrosis (AVN) of the capital femoral epiphysis (CFE) after an unstable slipped capital femoral epiphysis (SCFE), femoral neck fracture or traumatic hip dislocation can result in severe morbidity. Treatment options for immature patients with AVN are limited, including a closed bone graft epiphysiodesis (CBGE). However, it is unclear whether this procedure prevents AVN progression. We investigated whether early MRI screening and CBGE prevented the development of advanced AVN changes in the CFE and the rates of complications with this approach. We prospectively followed all 13 patients (seven boys, six girls) with unstable SCFEs (six patients), femoral neck fractures (five patients), and traumatic hip dislocations (two patients) and evidence of early AVN treated between 1984 and 2012. Mean age at initial injury was 12 years (range, 10-16 years). Nine of the 13 patients had followup of at least 2 years or until conversion to THA (mean, 4.5 years; range, 0.8-8.5 years), including two with unstable SCFEs, the five with femoral neck fractures, and the two with traumatic hip dislocations. All patients had technetium scans and/or MRI within 1 to 2 months of their initial injury (before CBGE) and all had evidence of early (Ficat 0) AVN. Patients were followed clinically and radiographically for AVN progression. Six of the nine hips did not develop typical clinical or radiographic evidence of AVN. These six patients have been followed 6.3 years (range, 4.3-9.1 years) from initial injury and 5.9 years (range, 3.8-8.5 years) from CBGE. The remaining three patients were diagnosed with AVN at periods ranging from 3 to 6 months after CBGE. Early recognition and treatment of AVN with a CBGE may alter the natural history of this complication. Level IV, therapeutic study. See Instructions for Authors for a complete description of levels of evidence.
NASA Astrophysics Data System (ADS)
Barchuk, M.; Holý, V.; Rafaja, D.
2018-04-01
X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.
Interaction of 〈1 0 0〉 dislocation loops with dislocations studied by dislocation dynamics in α-iron
NASA Astrophysics Data System (ADS)
Shi, X. J.; Dupuy, L.; Devincre, B.; Terentyev, D.; Vincent, L.
2015-05-01
Interstitial dislocation loops with Burgers vector of 〈1 0 0〉 type are formed in α-iron under neutron or heavy ion irradiation. As the density and size of these loops increase with radiation dose and temperature, these defects are thought to play a key role in hardening and subsequent embrittlement of iron-based steels. The aim of the present work is to study the pinning strength of the loops on mobile dislocations. Prior to run massive Dislocation Dynamics (DD) simulations involving experimentally representative array of radiation defects and dislocations, the DD code and its parameterization are validated by comparing the individual loop-dislocation reactions with those obtained from direct atomistic Molecular Dynamics (MD) simulations. Several loop-dislocation reaction mechanisms are successfully reproduced as well as the values of the unpinning stress to detach mobile dislocations from the defects.
Strength of Dislocation Junctions in FCC-monocrystals with a [\\overline{1}11] Deformation Axis
NASA Astrophysics Data System (ADS)
Kurinnaya, R. I.; Zgolich, M. V.; Starenchenko, V. A.
2017-07-01
The paper examines all dislocation reactions implemented in FCC-monocrystals with axis deformation oriented in the [\\overline{1}11] direction. It identifies the fracture stresses of dislocation junctions depending on intersection geometry of the reacting dislocation loop segments. Estimates are produced for the full spectrum of reacting forest dislocations. The paper presents the statistical data of the research performed and identifies the share of long strong dislocation junctions capable of limiting the zone of dislocation shift.
Tailoring Superconductivity with Quantum Dislocations.
Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang
2017-08-09
Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.
On damping of screw dislocation bending vibrations in dissipative crystal: limiting cases
NASA Astrophysics Data System (ADS)
Dezhin, V. V.
2018-03-01
The expression for the generalized susceptibility of the dislocation obtained earlier was used. The electronic drag mechanism of dislocations is considered. The study of small dislocation oscillations was limited. The contribution of the attenuation of low-frequency bending screw dislocation vibrations to the overall coefficient of dynamic dislocation drag in the long-wave and short-wave limits is calculated. The damping of short-wave bending screw dislocation vibrations caused by an external action of an arbitrary frequency has been investigated. The contribution of long-wave bending screw dislocation vibrations damping in the total drag coefficient at an arbitrary frequency is found.
Automated identification and indexing of dislocations in crystal interfaces
Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios
2012-10-31
Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal andmore » also identifies dislocation junctions.« less
The incentive effects of the Medicare indirect medical education policy.
Nicholson, S; Song, D
2001-11-01
Medicare provided teaching hospitals with US$ 5.9 billion in supplemental graduate medical education (GME) payments in 1998. These payments distort input and output prices and provide teaching hospitals with incentives to hire residents, close beds, and admit more Medicare patients. The structure of the GME payment policy creates substantial variation in input and output prices between teaching hospitals. We examine the extent to which hospitals responded to these financial incentives using a panel data set of 3,900 hospitals, including over 900 teaching hospitals. We find that teaching hospitals did hire residents and close beds in response to the Medicare policy, but did not increase Medicare admissions or alter their use of registered nurses (RNs).
Oscillatory Reduction in Option Pricing Formula Using Shifted Poisson and Linear Approximation
NASA Astrophysics Data System (ADS)
Nur Rachmawati, Ro'fah; Irene; Budiharto, Widodo
2014-03-01
Option is one of derivative instruments that can help investors improve their expected return and minimize the risks. However, the Black-Scholes formula is generally used in determining the price of the option does not involve skewness factor and it is difficult to apply in computing process because it produces oscillation for the skewness values close to zero. In this paper, we construct option pricing formula that involve skewness by modified Black-Scholes formula using Shifted Poisson model and transformed it into the form of a Linear Approximation in the complete market to reduce the oscillation. The results are Linear Approximation formula can predict the price of an option with very accurate and successfully reduce the oscillations in the calculation processes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-11
... calculate an estimated intraday NAV. Such traders understand what the intrinsic per-share price is, hedge... granting the Existing Relief rests on the premise that the prices of ETP shares closely track their per... number of shares of the ETP that are outstanding. The Annual Fee ranges from $5,000 to $55,000. \\6\\ The...
Probing the character of ultra-fast dislocations
Rudd, R. E.; Ruestes, C. J.; Bringa, E. M.; ...
2015-11-23
Plasticity is often controlled by dislocation motion, which was first measured for low pressure, low strain rate conditions decades ago. However, many applications require knowledge of dislocation motion at high stress conditions where the data are sparse, and come from indirect measurements dominated by the effect of dislocation density rather than velocity. Here we make predictions based on atomistic simulations that form the basis for a new approach to measure dislocation velocities directly at extreme conditions using three steps: create prismatic dislocation loops in a near-surface region using nanoindentation, drive the dislocations with a shockwave, and use electron microscopy tomore » determine how far the dislocations moved and thus their velocity at extreme stress and strain rate conditions. We report on atomistic simulations of tantalum that make detailed predictions of dislocation flow, and find that the approach is feasible and can uncover an exciting range of phenomena, such as transonic dislocations and a novel form of loop stretching. Furthermore, the simulated configuration enables a new class of experiments to probe average dislocation velocity at very high applied shear stress.« less
Three-dimensional formulation of dislocation climb
NASA Astrophysics Data System (ADS)
Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.
2015-10-01
We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.
Ultrasonic influence on evolution of disordered dislocation structures
NASA Astrophysics Data System (ADS)
Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.
2017-12-01
Evolution of disordered dislocation structures under ultrasonic influence is studied in a model two-dimensional grain within the discrete-dislocation approach. Non-equilibrium grain boundary state is mimicked by a mesodefect located at the corners of the grain, stress field of which is described by that of a wedge junction disclination quadrupole. Significant rearrangement related to gliding of lattice dislocations towards the grain boundaries is found, which results in a noticeable reduction of internal stress fields and cancel of disclination quadrupole. The process of dislocation structure evolution passes through two stages: rapid and slow. The main dislocation rearrangement occurs during the first stage. Reduction of internal stress fields is associated with the number of dislocations entered into the grain boundaries. The change of misorientation angle due to lattice dislocations absorbed by the grain boundaries is evaluated. Amplitude of ultrasonic treatment significantly influences the relaxation of dislocation structure. Preliminary elastic relaxation of dislocation structure does not affect substantially the results of the following ultrasonic treatment. Substantial grain size dependence of relaxation of disordered dislocation systems is found. Simulation results are consistent with experimental data.
Huskamp, Haiden A; Epstein, Arnold M; Blumenthal, David
2003-01-01
Several recent bills in Congress to add a Medicare prescription drug benefit would allow the use of formularies to control costs. However, there is little empirical evidence of the impact of formularies among elderly and disabled populations. We assess the effect of a closed formulary implemented by the Veterans Health Administration (VHA) in 1997 on drug prices, market share, and drug spending. We find that the VHA National Formulary was effective at shifting prescribing behavior toward the selected drugs, achieving sizable price reductions from manufacturers, and greatly decreasing drug spending.
Applications of δ-function perturbation to the pricing of derivative securities
NASA Astrophysics Data System (ADS)
Decamps, Marc; De Schepper, Ann; Goovaerts, Marc
2004-11-01
In the recent econophysics literature, the use of functional integrals is widespread for the calculation of option prices. In this paper, we extend this approach in several directions by means of δ-function perturbations. First, we show that results about infinitely repulsive δ-function are applicable to the pricing of barrier options. We also introduce functional integrals over skew paths that give rise to a new European option formula when combined with δ-function potential. We propose accurate closed-form approximations based on the theory of comonotonic risks in case the functional integrals are not analytically computable.
NASA Astrophysics Data System (ADS)
Chenna Krishna, S.; Karthick, N. K.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.
2018-05-01
In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700-1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700-800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900-1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.
[Anterior dislocation of the popliteus tendon].
Martinez Molina, Oscar
2009-01-01
Review the most relevant aspects of the posterolateral corner anatomy of the knee, based on the analysis of papers that throughout the years have made important contributions to the knowledge of these structures. Last et al rejected the idea that the popliteal tendon is an isolated structure, suggesting rather that its variants are closely linked to other anatomical structures. The studies by Tria et al contributed the features of the tendon as it attaches to the lateral condyle, just to mention a couple of examples. This is the case of a 48 year-old female patient with a knee injury caused by an external rotation mechanism. Clinical features included pain, a protruding sensation in the lateral aspect of the knee, and voluntary pseudoblocking resulting from external rotation maneuvers. Knee arthroscopy was performed and dislocation of the popliteal tendon anterior to the lateral condyle was diagnosed, besides a longitudinal tear. The tendon was repositioned, radiofrequency was applied to both the tendon and the popliteal hiatus, and the former was kept in place with a plaster cast worn for 6 weeks. Even though the isolated tear or avulsion of the tendon has already been reported, the dislocation or instability of the popliteal tendon as it relates to the lateral femoral condyle has apparently not been approached yet. As we did in this case, other authors have also confirmed the diagnosis arthroscopically, Naver in 1985, Rose in 1988, and Burstein in 1990.
NASA Astrophysics Data System (ADS)
Chenna Krishna, S.; Karthick, N. K.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.
2018-04-01
In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700-1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700-800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900-1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.
The role of storage dynamics in annual wheat prices
NASA Astrophysics Data System (ADS)
Schewe, Jacob; Otto, Christian; Frieler, Katja
2017-05-01
Identifying the drivers of global crop price fluctuations is essential for estimating the risks of unexpected weather-induced production shortfalls and for designing optimal response measures. Here we show that with a consistent representation of storage dynamics, a simple supply-demand model can explain most of the observed variations in wheat prices over the last 40 yr solely based on time series of annual production and long term demand trends. Even the most recent price peaks in 2007/08 and 2010/11 can be explained by additionally accounting for documented changes in countries’ trade policies and storage strategies, without the need for external drivers such as oil prices or speculation across different commodity or stock markets. This underlines the critical sensitivity of global prices to fluctuations in production. The consistent inclusion of storage into a dynamic supply-demand model closes an important gap when it comes to exploring potential responses to future crop yield variability under climate and land-use change.
Demand for prescription drugs under non-linear pricing in Medicare Part D.
Jung, Kyoungrae; Feldman, Roger; McBean, A Marshall
2014-03-01
We estimate the price elasticity of prescription drug use in Medicare Part D, which features a non-linear price schedule due to a coverage gap. We analyze patterns of drug utilization prior to the coverage gap, where the "effective price" is higher than the actual copayment for drugs because consumers anticipate that more spending will make them more likely to reach the gap. We find that enrollees' total pre-gap drug spending is sensitive to their effective prices: the estimated price elasticity of drug spending ranges between [Formula: see text]0.14 and [Formula: see text]0.36. This finding suggests that filling in the coverage gap, as mandated by the health care reform legislation passed in 2010, will influence drug utilization prior to the gap. A simulation analysis indicates that closing the gap could increase Part D spending by a larger amount than projected, with additional pre-gap costs among those who do not hit the gap.
Pressure Solution Creep and Textural Softening in Greenschist Facies Phyllonites
NASA Astrophysics Data System (ADS)
Wintsch, R. P.; Attenoukon, M.; Kunk, M. J.; McAleer, R. J.; Wathen, B.; Yi, D.
2016-12-01
We have found evidence for dissolution-precipitation creep (DPC) in phyllites and phyllonites naturally deformed at greenschist facies conditions. Since the experiments of Kronenberg et al. (1990) and Mares and Kronenberg (1993) micas are known to be among the weakest of rock-forming minerals. They deform by dislocation glide in their basal plane and when these micas are aligned and contiguous in an orientation favorable for glide they tend to localize strain into shear zones. Therefore, these closed-system experiments suggest that dislocation glide should be the dominant deformation mechanism in mica-rich shear zones from near surface through greenschist facies conditions. In contrast, in naturally deformed rocks we have found strong textural and chemical evidence that micas deform by dissolution-precipitation creep in phyllites at upper and lower greenschist facies conditions. In the Littleton Formation (N.H.) we find retrograde muscovite (pg5)-rich folia (Sn) truncating amphibolite facies Na-rich muscovite and biotite grains that define earlier foliations. Na-rich muscovite grains are also selectively replaced along crenulation axes and boudin necks where plastic and elastic strain are highest. In biotite grade regional metamorphic rocks in the Tananao schist of Taiwan muscovite-rich folia (Sn) truncate crenulated muscovite-biotite schists at high angles. In still lower (chlorite) grade phyllonitic fault zones marking terrane boundaries in southern New England (East Derby shear zone) and in Taiwan (Daugan shear zone) crenulated older fabrics are cut by new undeformed muscovite grains in chlorite-free planar folia. Further evidence for recrystallization rather than dislocation glide comes from the 40Ar/39Ar ages of muscovite in the new Sn folia younger than the age of the truncated folia. The younger ages in each case demonstrate that recrystallization was activated at lower shear stresses than dislocation glide, and that the recrystallization occurred at lower greenschist facies conditions below the closure temperature for diffusion of argon in muscovite. The increase in muscovite/chlorite ratios and change in microchemistry of Sn muscovite, the truncating microstructures, and isotopic results are all incompatible with deformation by dislocation creep.
Hydrogen diffusion in the elastic fields of dislocations in iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivak, A. B., E-mail: Sivak-AB@nrcki.ru; Sivak, P. A.; Romanov, V. A.
2016-12-15
The effect of dislocation stress fields on the sink efficiency thereof is studied for hydrogen interstitial atoms at temperatures of 293 and 600 K and at a dislocation density of 3 × 10{sup 14} m{sup –2} in bcc iron crystal. Rectilinear full screw and edge dislocations in basic slip systems 〈111〉(110), 〈111〉(112), 〈100〉(100), and 〈100〉(110) are considered. Diffusion of defects is simulated by means of the object kinetic Monte Carlo method. The energy of interaction between defects and dislocations is calculated using the anisotropic theory of elasticity. The elastic fields of dislocations result in a less than 25% change ofmore » the sink efficiency as compared to the noninteracting linear sink efficiency at a room temperature. The elastic fields of edge dislocations increase the dislocation sink efficiency, whereas the elastic fields of screw dislocations either decrease this parameter (in the case of dislocations with the Burgers vector being 1/2〈111〉) or do not affect it (in the case of dislocations with the Burgers vector being 〈100〉). At temperatures above 600 K, the dislocations affect the behavior of hydrogen in bcc iron mainly owing to a high binding energy between the hydrogen atom and dislocation cores.« less
Initial dislocation structure and dynamic dislocation multiplication in Mo single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiung, L M; Lassila, D H
Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied in order to investigate dislocation multiplication mechanisms in the early stages of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase after compressing for a total strain ofmore » 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. Both the jog height and length of link segment (between jogs) can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This dynamic dislocation multiplication source is subsequently verified by direct simulations of dislocation dynamics under stress to be crucial in the early stages of plastic deformation in Mo single crystals.« less
Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, S., E-mail: takeuchi@ee.es.osaka-u.ac.jp; Asazu, H.; Nakamura, Y.
2015-12-28
We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration ofmore » the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.« less
Dislocation density evolution in the process of high-temperature treatment and creep of EK-181 steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vershinina, Tatyana, E-mail: vershinina@bsu.edu.ru
2017-03-15
X-ray diffraction has been used to study the dislocation structure in ferrite-martensite high-chromium steel EK-181 in the states after heat treatment and high-temperature creep. The influence of heat treatment and stress on evolution of lath martensite structure was investigated by and electron back-scattered diffraction. The effect of nitrogen content on the total dislocation density, fraction of edge and screw dislocation segments are analyzed. - Highlights: •Fraction of edge dislocation in quenched state depends on nitrogen concentration. •Nitrogen affects the character of dislocation structure evolution during annealing. •Edge dislocations fraction influences on dislocation density after aging and creep.
Deregulation 1993: Be careful what you wish for, you might get it
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scotto, D.
This article tries to assess the response at the electric industry to deregulation. The industry most probably will consolidate to reduce operating costs and expand access to other transmission grids. In addition, the cheapest power likely will be [open quotes]dedicated[close quotes] to retail customers (namely, those under a franchise obligation), and [open quotes]residual[close quotes] generating capacity will be placed in the wholesale market. Surplus capacity (the most expensive capacity) could be dedicated to the wholesale sector, allowing market forces to decide the future price of incremental generation. The outcome will be influenced heavily by corporate restructuring initiatives, regulatory willingness ormore » opposition, legal victories by large-scale users, and transmission access policies at the state and federal levels. Changes is definitely underway, but [open quotes]what[close quotes] the industry will look like is unclear. The financial consequences of this change are more easily identified. Evidently, internal pricing pressures and the breakdown of regulatory pricing structures (a trend that has been underway for nearly a decade) have combined to produce a more risky industry. To compensate investors, capital markets could demand increases returns and different corporate structures. Many of the financial benefits currently enjoyed by utilities, such as lower earnings/coverage tests and greater debt leverage than other [open quotes]industrial[close quotes] corporations, may have to change. Stepping out from under the protection of the regulatory umbrella will carry certain costs.« less
Supersonic Dislocation Bursts in Silicon
Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...
2016-06-06
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less
Supersonic Dislocation Bursts in Silicon
Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.
2016-01-01
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm−2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. PMID:27264746
Supersonic Dislocation Bursts in Silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, E. N.; Zhao, S.; Bringa, E. M.
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less
Atomistic calculations of dislocation core energy in aluminium
Zhou, X. W.; Sills, R. B.; Ward, D. K.; ...
2017-02-16
A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less
Atomistic calculations of dislocation core energy in aluminium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X. W.; Sills, R. B.; Ward, D. K.
A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less
NASA Astrophysics Data System (ADS)
Xie, Wen-Jie; Li, Ming-Xia; Xu, Hai-Chuan; Chen, Wei; Zhou, Wei-Xing; Stanley, H. Eugene
2016-10-01
Traders in a stock market exchange stock shares and form a stock trading network. Trades at different positions of the stock trading network may contain different information. We construct stock trading networks based on the limit order book data and classify traders into k classes using the k-shell decomposition method. We investigate the influences of trading behaviors on the price impact by comparing a closed national market (A-shares) with an international market (B-shares), individuals and institutions, partially filled and filled trades, buyer-initiated and seller-initiated trades, and trades at different positions of a trading network. Institutional traders professionally use some trading strategies to reduce the price impact and individuals at the same positions in the trading network have a higher price impact than institutions. We also find that trades in the core have higher price impacts than those in the peripheral shell.
Bao, Wei; Yue, Jun; Rao, Yulei
2017-01-01
The application of deep learning approaches to finance has received a great deal of attention from both investors and researchers. This study presents a novel deep learning framework where wavelet transforms (WT), stacked autoencoders (SAEs) and long-short term memory (LSTM) are combined for stock price forecasting. The SAEs for hierarchically extracted deep features is introduced into stock price forecasting for the first time. The deep learning framework comprises three stages. First, the stock price time series is decomposed by WT to eliminate noise. Second, SAEs is applied to generate deep high-level features for predicting the stock price. Third, high-level denoising features are fed into LSTM to forecast the next day's closing price. Six market indices and their corresponding index futures are chosen to examine the performance of the proposed model. Results show that the proposed model outperforms other similar models in both predictive accuracy and profitability performance.
Zhu, Xiaodong; Wang, Jing; Tang, Juan
2017-12-15
Environmentally friendly handling and efficient recycling of waste electrical on Waste Electrical and Electronic Equipment (WEEE) have grown to be a global social problem. As holders of WEEE, consumers have a significant effect on the recycling process. A consideration of and attention to the influence of consumer behavior in the recycling process can help achieve more effective recycling of WEEE. In this paper, we built a dual-channel closed-loop supply chain model composed of manufacturers, retailers, and network recycling platforms. Based on the influence of customer bargaining behavior, we studied several different scenarios of centralized decision-making, decentralized decision-making, and contract coordination, using the Stackelberg game theory. The results show that retailers and network recycling platforms will reduce the direct recovery prices to maintain their own profit when considering the impact of consumer bargaining behavior, while remanufacturers will improve the transfer payment price for surrendering part of the profit under revenue and the expense sharing contract. Using this contract, we can achieve supply chain coordination and eliminate the effect of consumer bargaining behavior on supply chain performance. It can be viewed from the parameter sensitivity analysis that when we select the appropriate sharing coefficient, the closed-loop supply chain can achieve the same system performance under a centralized decision.
Zhu, Xiaodong; Wang, Jing; Tang, Juan
2017-01-01
Environmentally friendly handling and efficient recycling of waste electrical on Waste Electrical and Electronic Equipment (WEEE) have grown to be a global social problem. As holders of WEEE, consumers have a significant effect on the recycling process. A consideration of and attention to the influence of consumer behavior in the recycling process can help achieve more effective recycling of WEEE. In this paper, we built a dual-channel closed-loop supply chain model composed of manufacturers, retailers, and network recycling platforms. Based on the influence of customer bargaining behavior, we studied several different scenarios of centralized decision-making, decentralized decision-making, and contract coordination, using the Stackelberg game theory. The results show that retailers and network recycling platforms will reduce the direct recovery prices to maintain their own profit when considering the impact of consumer bargaining behavior, while remanufacturers will improve the transfer payment price for surrendering part of the profit under revenue and the expense sharing contract. Using this contract, we can achieve supply chain coordination and eliminate the effect of consumer bargaining behavior on supply chain performance. It can be viewed from the parameter sensitivity analysis that when we select the appropriate sharing coefficient, the closed-loop supply chain can achieve the same system performance under a centralized decision. PMID:29244778
Management of traumatic patellar dislocation in a regional hospital in Hong Kong.
Lee, H L; Yau, W P
2017-04-01
The role of surgery for acute patellar dislocation without osteochondral fracture is controversial. The aim of this study was to report the short-term results of management of patellar dislocation in our institute. Patients who were seen in our institution with patella dislocation from January 2011 to April 2014 were managed according to a standardised management algorithm. Pretreatment and 1-year post-treatment International Knee Documentation Committee score, Tegner activity level scale score, and presence of apprehension sign were analysed. A total of 41 patients were studied of whom 20 were first-time dislocators and 21 were recurrent dislocators. Among the first-time dislocators, there was a significant difference between patients who received conservative treatment versus surgical management. The conservative treatment group had a 33% recurrent dislocation rate, whereas there were no recurrent dislocations in the surgery group. There was no difference in Tegner activity level scale score or apprehension sign before and 1 year after treatment, however. Among the recurrent dislocators, there was a significant difference between those who received conservative treatment and those who underwent surgery. The recurrent dislocation rate was 71% in the conservative treatment group versus 0% in the surgery group. There was also significant improvement in International Knee Documentation Committee score from 67.7 to 80.0 (P=0.02), and of apprehension sign from 62% to 0% (P<0.01). A management algorithm for patellar dislocation is described. Surgery is preferable to conservative treatment in patients who have recurrent patellar dislocation, and may also be preferable for those who have an acute dislocation.
... or a blow, sometimes from playing a contact sport. You can dislocate your ankles, knees, shoulders, hips, ... to dislocate it again. Wearing protective gear during sports may help prevent dislocations.
Hip arthroscopy using the lateral approach.
Glick, J M
1988-01-01
The benefits of hip arthroscopy are apparent. It produces little postoperative morbidity and can be performed on an outpatient basis. The prompt recovery from the operation is also beneficial, particularly for elderly patients. Distraction of the hip by traction on a fracture table is necessary. Suggested indications for this procedure include synovectomy and synovial biopsy; removal of loose bodies; removal of debris after a closed reduction of a fracture-dislocation; evaluation and treatment of osteochondritis dissecans; evaluation for arthroplasty; and unresolved hip pain. Whether the lateral approach is useful in the following situations is yet to be explored: (1) Evaluation of pediatric conditions such as Legg-Perthes disease and congenital dislocated hip; (2) treatment of localized infection; (3) removal of entrapped methylmethacrylate in total hip replacement; and (4) reducing and fixating an acetabular fracture (M. Brennan, oral communication, April 6, 1987). Arthroscopy of the hip joint by the lateral approach is a valuable addition to the evaluation and treatment of hip disorders.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.
1987-01-01
An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in the SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Hattori, Shuji; Okada, Tsunenori; Buckley, Donald H.
1989-01-01
An investigation was conducted to examine the deformation and fracture behavior of single-crystal and sintered polycrystalline SiC surfaces exposed to cavitation. Cavitation erosion experiments were conducted in distilled water at 25 C by using a magnetostrictive oscillator in close proximity (1 mm) to the surface of SiC. The horn frequency was 20 kHz, and the double amplitude of the vibrating disk was 50 microns. The results of the investigation indicate that the SiC (0001) surface could be deformed in a plastic manner during cavitation. Dislocation etch pits were formed when the surface was chemically etched. The number of defects, including dislocations in SiC (0001) surface, increased with increasing exposure time to cavitation. The presence of intrinsic defects such as voids in the surficial layers of the sintered polycrystalline SiC determined the zones at which fractured grains and fracture pits (pores) were generated. Single-crystal SiC had superior erosion resistance to that of sintered polycrystalline SiC.
Microscale cavitation as a mechanism for nucleating earthquakes at the base of the seismogenic zone.
Verberne, Berend A; Chen, Jianye; Niemeijer, André R; de Bresser, Johannes H P; Pennock, Gillian M; Drury, Martyn R; Spiers, Christopher J
2017-11-21
Major earthquakes frequently nucleate near the base of the seismogenic zone, close to the brittle-ductile transition. Fault zone rupture at greater depths is inhibited by ductile flow of rock. However, the microphysical mechanisms responsible for the transition from ductile flow to seismogenic brittle/frictional behaviour at shallower depths remain unclear. Here we show that the flow-to-friction transition in experimentally simulated calcite faults is characterized by a transition from dislocation and diffusion creep to dilatant deformation, involving incompletely accommodated grain boundary sliding. With increasing shear rate or decreasing temperature, dislocation and diffusion creep become too slow to accommodate the imposed shear strain rate, leading to intergranular cavitation, weakening, strain localization, and a switch from stable flow to runaway fault rupture. The observed shear instability, triggered by the onset of microscale cavitation, provides a key mechanism for bringing about the brittle-ductile transition and for nucleating earthquakes at the base of the seismogenic zone.
Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility
NASA Astrophysics Data System (ADS)
Verma, Monika; Hertel, Thomas; Diffenbaugh, Noah
2014-05-01
Agriculture is closely affected by climate. Over the past decade, biofuels have emerged as another important factor shaping the agricultural sector. We ask whether the presence of the US ethanol sector can play a role in moderating increases in US corn price variability, projected to occur in response to near-term global warming. Our findings suggest that the answer to this question depends heavily on the underlying forces shaping the ethanol industry. If mandate-driven, there is little doubt that the presence of the corn-ethanol sector will exacerbate price volatility. However, if market-driven, then the emergence of the corn-ethanol sector can be a double-edged sword for corn price volatility, possibly cushioning the impact of increased climate driven supply volatility, but also inheriting volatility from the newly integrated energy markets via crude oil price fluctuations. We find that empirically the former effect dominates, reducing price volatility by 27%. In contrast, mandates on ethanol production increase future price volatility by 54% in under future climate after 2020. We also consider the potential for liberalized international corn trade to cushion corn price volatility in the US. Our results suggest that allowing corn to move freely internationally serves to reduce the impact of near-term climate change on US corn price volatility by 8%.
Glide dislocation nucleation from dislocation nodes at semi-coherent {111} Cu–Ni interfaces
Shao, Shuai; Wang, Jian; Beyerlein, Irene J.; ...
2015-07-23
Using atomistic simulations and dislocation theory on a model system of semi-coherent {1 1 1} interfaces, we show that misfit dislocation nodes adopt multiple atomic arrangements corresponding to the creation and redistribution of excess volume at the nodes. We identified four distinctive node structures: volume-smeared nodes with (i) spiral or (ii) straight dislocation patterns, and volume-condensed nodes with (iii) triangular or (iv) hexagonal dislocation patterns. Volume-smeared nodes contain interfacial dislocations lying in the Cu–Ni interface but volume-condensed nodes contain two sets of interfacial dislocations in the two adjacent interfaces and jogs across the atomic layer between the two adjacent interfaces.more » Finally, under biaxial tension/compression applied parallel to the interface, we show that the nucleation of lattice dislocations is preferred at the nodes and is correlated with the reduction of excess volume at the nodes.« less
NASA Astrophysics Data System (ADS)
Hunter, A. T.; Kimura, H.; Olsen, H. M.; Winston, H. V.
1986-07-01
Czochralski GaAs grown with In incorporated into the melt has large regions with fewer than 100 cm-2 dislocations. We have examined the effect of these dislocations on substrate and device properties. Infrared transmission images reveal dark filaments of high EL2 concentration a few tens of microns in diameter surrounding dislocations, Cathodo and photoluminescence images show orders of magnitude contrast in band-edge luminescence intensity near dislocations. Single dislocations appear to be surrounded by bright rings ˜200 μm in diameter in luminescence images, with dark spots 50 to 75 μm across centered on the dislocation. More complex luminescence structures with larger dark regions (˜150 μ across) and central bright spots are centered on small dislocation clusters. Differences in lifetime of photogenerated electrons or holes are the most likely cause of the luminescence contrast. Anneals typical of our post-implant processing substantially lower the luminescence contrast, suggesting the defect lowering the lifetime is removed by annealing. This may partially explain why we do not observe any effect of dislocation proximity on the properties of devices made in the material, in spite of the enormous luminescence contrast observed near dislocations.
NASA Astrophysics Data System (ADS)
Hu, Xiangsheng; Wang, Shaofeng
2018-02-01
The extended structure of ? screw dislocation in Ta has been studied theoretically using the improved Peierls-Nabarro model combined with the first principles calculation. An instructive way to derive the fundamental equation for dislocations with the nonplanar structure is presented. The full ?-surface of ? plane in tantalum is evaluated from the first principles. In order to compare the energy of the screw dislocation with different structures, the structure parameter is introduced to describe the core configuration. Each kind of screw dislocation is described by an overall-shape component and a core component. Far from the dislocation centre, the asymptotic behaviour of dislocation is uniquely controlled by the overall-shape component. Near the dislocation centre, the structure detail is described by the core component. The dislocation energy is explicitly plotted as a function of the core parameter for the nonplanar dislocation as well as for the planar dislocation. It is found that in the physical regime of the core parameter, the sixfold nonplanar structure always has the lowest energy. Our result clearly confirms that the sixfold nonplanar structure is the most stable. Furthermore, the pressure effect on the dislocation structure is explored up to 100 GPa. The stability of the sixfold nonplanar structure is not changed by the applied pressure. The equilibrium structure and the related stress field are calculated, and a possible mechanism of the dislocation movement is discussed briefly based on the structure deformation caused by the external stress.
Estimation of dislocations density and distribution of dislocations during ECAP-Conform process
NASA Astrophysics Data System (ADS)
Derakhshan, Jaber Fakhimi; Parsa, Mohammad Habibi; Ayati, Vahid; Jafarian, Hamidreza
2018-01-01
Dislocation density of coarse grain aluminum AA1100 alloy (140 µm) that was severely deformed by Equal Channel Angular Pressing-Conform (ECAP-Conform) are studied at various stages of the process by electron backscattering diffraction (EBSD) method. The geometrically necessary dislocations (GNDs) density and statistically stored dislocations (SSDs) densities were estimate. Then the total dislocations densities are calculated and the dislocation distributions are presented as the contour maps. Estimated average dislocations density for annealed of about 2×1012 m-2 increases to 4×1013 m-2 at the middle of the groove (135° from the entrance), and they reach to 6.4×1013 m-2 at the end of groove just before ECAP region. Calculated average dislocations density for one pass severely deformed Al sample reached to 6.2×1014 m-2. At micrometer scale the behavior of metals especially mechanical properties largely depend on the dislocation density and dislocation distribution. So, yield stresses at different conditions were estimated based on the calculated dislocation densities. Then estimated yield stresses were compared with experimental results and good agreements were found. Although grain size of material did not clearly change, yield stress shown intensive increase due to the development of cell structure. A considerable increase in dislocations density in this process is a good justification for forming subgrains and cell structures during process which it can be reason of increasing in yield stress.
Complex network analysis of conventional and Islamic stock market in Indonesia
NASA Astrophysics Data System (ADS)
Rahmadhani, Andri; Purqon, Acep; Kim, Sehyun; Kim, Soo Yong
2015-09-01
The rising popularity of Islamic financial products in Indonesia has become a new interesting topic to be analyzed recently. We introduce a complex network analysis to compare conventional and Islamic stock market in Indonesia. Additionally, Random Matrix Theory (RMT) has been added as a part of reference to expand the analysis of the result. Both of them are based on the cross correlation matrix of logarithmic price returns. Closing price data, which is taken from June 2011 to July 2012, is used to construct logarithmic price returns. We also introduce the threshold value using winner-take-all approach to obtain scale-free property of the network. This means that the nodes of the network that has a cross correlation coefficient below the threshold value should not be connected with an edge. As a result, we obtain 0.5 as the threshold value for all of the stock market. From the RMT analysis, we found that there is only market wide effect on both stock market and no clustering effect has been found yet. From the network analysis, both of stock market networks are dominated by the mining sector. The length of time series of closing price data must be expanded to get more valuable results, even different behaviors of the system.
NASA Astrophysics Data System (ADS)
Gu, Yejun; El-Awady, Jaafar A.
2018-03-01
We present a new framework to quantify the effect of hydrogen on dislocations using large scale three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. In this model, the first order elastic interaction energy associated with the hydrogen-induced volume change is accounted for. The three-dimensional stress tensor induced by hydrogen concentration, which is in equilibrium with respect to the dislocation stress field, is derived using the Eshelby inclusion model, while the hydrogen bulk diffusion is treated as a continuum process. This newly developed framework is utilized to quantify the effect of different hydrogen concentrations on the dynamics of a glide dislocation in the absence of an applied stress field as well as on the spacing between dislocations in an array of parallel edge dislocations. A shielding effect is observed for materials having a large hydrogen diffusion coefficient, with the shield effect leading to the homogenization of the shrinkage process leading to the glide loop maintaining its circular shape, as well as resulting in a decrease in dislocation separation distances in the array of parallel edge dislocations. On the other hand, for materials having a small hydrogen diffusion coefficient, the high hydrogen concentrations around the edge characters of the dislocations act to pin them. Higher stresses are required to be able to unpin the dislocations from the hydrogen clouds surrounding them. Finally, this new framework can open the door for further large scale studies on the effect of hydrogen on the different aspects of dislocation-mediated plasticity in metals. With minor modifications of the current formulations, the framework can also be extended to account for general inclusion-induced stress field in discrete dislocation dynamics simulations.
NASA Astrophysics Data System (ADS)
Berkov, D. V.; Gorn, N. L.
2018-06-01
In this paper we present a simple and effective numerical method which allows a fast Fourier transformation-based evaluation of stress generated by dislocations with arbitrary directions and Burgers vectors if the (site-dependent) dislocation density is known. Our method allows the evaluation of the dislocation stress using a rectangular grid with shape-anisotropic discretization cells without employing higher multipole moments of the dislocation interaction coefficients. Using the proposed method, we first simulate the stress created by relatively simple non-homogeneous distributions of vertical edge and so-called ‘mixed’ dislocations in a disk-shaped sample, which is necessary to understand the dislocation behavior in more complicated systems. The main part of our research is devoted to the stress distribution in polycrystalline layers with the dislocation density rapidly varying with the distance to the layer bottom. Considering GaN as a typical example of such systems, we investigate dislocation-induced stress for edge and mixed dislocations, having random orientations of Burgers vectors among crystal grains. We show that the rapid decay of the dislocation density leads to many highly non-trivial features of the stress distributions in such layers and study in detail the dependence of these features on the average grain size. Finally we develop an analytical approach which allows us to predict the evolution of the stress variance with the grain size and compare analytical predictions with numerical results.
Code of Federal Regulations, 2012 CFR
2012-04-01
... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...
Code of Federal Regulations, 2014 CFR
2014-04-01
... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...
Code of Federal Regulations, 2013 CFR
2013-04-01
... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated...
NASA Astrophysics Data System (ADS)
Liao, Yiliang; Ye, Chang; Gao, Huang; Kim, Bong-Joong; Suslov, Sergey; Stach, Eric A.; Cheng, Gary J.
2011-07-01
Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the interaction of dislocations and precipitates during the shock wave propagation. The evolution of dislocation structures during the shock wave propagation is studied. The dislocation structures after WLSP are characterized via transmission electron microscopy and are compared with the results of the MDDD simulation. The results show that nano-precipitates facilitate the generation of highly dense and uniformly distributed dislocation structures. The dislocation pinning effect is strongly affected by the density, size, and space distribution of nano-precipitates.
Eliminating waste in US health care.
Berwick, Donald M; Hackbarth, Andrew D
2012-04-11
The need is urgent to bring US health care costs into a sustainable range for both public and private payers. Commonly, programs to contain costs use cuts, such as reductions in payment levels, benefit structures, and eligibility. A less harmful strategy would reduce waste, not value-added care. The opportunity is immense. In just 6 categories of waste--overtreatment, failures of care coordination, failures in execution of care processes, administrative complexity, pricing failures, and fraud and abuse--the sum of the lowest available estimates exceeds 20% of total health care expenditures. The actual total may be far greater. The savings potentially achievable from systematic, comprehensive, and cooperative pursuit of even a fractional reduction in waste are far higher than from more direct and blunter cuts in care and coverage. The potential economic dislocations, however, are severe and require mitigation through careful transition strategies.
Estimating Drug Costs: How do Manufacturer Net Prices Compare with Other Common US Price References?
Mattingly, T Joseph; Levy, Joseph F; Slejko, Julia F; Onwudiwe, Nneka C; Perfetto, Eleanor M
2018-05-12
Drug costs are frequently estimated in economic analyses using wholesale acquisition cost (WAC), but what is the best approach to develop these estimates? Pharmaceutical manufacturers recently released transparency reports disclosing net price increases after accounting for rebates and other discounts. Our objective was to determine whether manufacturer net prices (MNPs) could approximate the discounted prices observed by the U.S. Department of Veterans Affairs (VA). We compared the annual, average price discounts voluntarily reported by three pharmaceutical manufacturers with the VA price for specific products from each company. The top 10 drugs by total sales reported from company tax filings for 2016 were included. The discount observed by the VA was determined from each drug's list price, reported as WAC, in 2016. Descriptive statistics were calculated for the VA discount observed and a weighted price index was calculated using the lowest price to the VA (Weighted VA Index), which was compared with the manufacturer index. The discounted price as a percentage of the WAC ranged from 9 to 74%. All three indexes estimated by the average discount to the VA were at or below the manufacturer indexes (42 vs. 50% for Eli Lilly, 56 vs. 65% for Johnson & Johnson, and 59 vs. 59% for Merck). Manufacturer-reported average net prices may provide a close approximation of the average discounted price granted to the VA, suggesting they may be a useful proxy for the true pharmacy benefits manager (PBM) or payer cost. However, individual discounts for products have wide variation, making a standard discount adjustment across multiple products less acceptable.
NASA Astrophysics Data System (ADS)
Ausloos, M.
2000-09-01
Recent observations have indicated that the traditional equilibrium market hypothesis (EMH; also known as Efficient Market Hypothesis) is unrealistic. It is shown here that it is the analog of a Boltzmann equation in physics, thus having some bad properties of mean-field approximations like a Gaussian distribution of price fluctuations. A kinetic theory for prices can be simply derived, considering in a first approach that market actors have all identical relaxation times, and solved within a Chapman-Enskog like formalism. In closing the set of equations, (i) an equation of state with a pressure and (ii) the equilibrium (isothermal) equation for the price (taken as the order parameter) of a stock as a function of the volume of money available are obtained.
NASA Astrophysics Data System (ADS)
Jo, Sang Kyun; Kim, Min Jae; Lim, Kyuseong; Kim, Soo Yong
2018-02-01
We investigated the effect of foreign exchange rate in a correlation analysis of the Korean stock market using both random matrix theory and minimum spanning tree. We collected data sets which were divided into two types of stock price, the original stock price in Korean Won and the price converted into US dollars at contemporary foreign exchange rates. Comparing the random matrix theory based on the two different prices, a few particular sectors exhibited substantial differences while other sectors changed little. The particular sectors were closely related to economic circumstances and the influence of foreign financial markets during that period. The method introduced in this paper offers a way to pinpoint the effect of exchange rate on an emerging stock market.
“Conjugate Channeling” Effect in Dislocation Core Diffusion: Carbon Transport in Dislocated BCC Iron
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction , but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. is a function of the Burgers vector b, but not , thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility. PMID:23593255
Ishii, Akio; Li, Ju; Ogata, Shigenobu
2013-01-01
Dislocation pipe diffusion seems to be a well-established phenomenon. Here we demonstrate an unexpected effect, that the migration of interstitials such as carbon in iron may be accelerated not in the dislocation line direction ξ, but in a conjugate diffusion direction. This accelerated random walk arises from a simple crystallographic channeling effect. c is a function of the Burgers vector b, but not ξ, thus a dislocation loop possesses the same everywhere. Using molecular dynamics and accelerated dynamics simulations, we further show that such dislocation-core-coupled carbon diffusion in iron has temperature-dependent activation enthalpy like a fragile glass. The 71° mixed dislocation is the only case in which we see straightforward pipe diffusion that does not depend on dislocation mobility.
Ondry, Justin C; Hauwiller, Matthew R; Alivisatos, A Paul
2018-04-24
Using in situ high-resolution TEM, we study the structure and dynamics of well-defined edge dislocations in imperfectly attached PbTe nanocrystals. We identify that attachment of PbTe nanocrystals on both {100} and {110} facets gives rise to b = a/2⟨110⟩ edge dislocations. Based on the Burgers vector of individual dislocations, we can identify the glide plane of the dislocations. We observe that defects in particles attached on {100} facets have glide planes that quickly intersect the surface, and HRTEM movies show that the defects follow the glide plane to the surface. For {110} attached particles, the glide plane is collinear with the attachment direction, which does not provide an easy path for the dislocation to reach the surface. Indeed, HRTEM movies of dislocations for {110} attached particles show that defect removal is much slower. Further, we observe conversion from pure edge dislocations in imperfectly attached particles to dislocations with mixed edge and screw character, which has important implications for crystal growth. Finally, we observe that dislocations initially closer to the surface have a higher speed of removal, consistent with the strong dislocation free surface attractive force. Our results provide important design rules for defect-free attachment of preformed nanocrystals into epitaxial assemblies.
Tingart, M; Bäthis, H; Bouillon, B; Tiling, T
2001-06-01
There are no generally accepted concepts for the treatment of traumatic anterior shoulder dislocation. The objective of this study was to ascertain the current treatment for traumatic shoulder dislocations in German hospitals and to compare this with the data reported in the literature. A total of 210 orthopedic surgery departments were asked for their treatment strategy in an anonymous country-wide survey; 103 questionnaires (49%) were returned for evaluation. Additional imaging (ultrasound, CT, MRI) beyond the routine X-rays is performed in 82% of clinics for primary shoulder dislocation (94% in recurrent dislocation). A young, athletic patient (< 30 years old) would be operated on for a primary traumatic shoulder dislocation in 73% of hospitals (98% in recurrent dislocation). In contrast, a patient of the same age, with a moderate level of sporting activity would be treated conservatively in 67% of cases (14% in recurrent dislocation). Similarly, for an active, middle-aged patient with a demanding job, 74% of responses favored conservative treatment after a primary dislocation and 6% after a recurrent dislocation. Older patients (> 65 years old) are usually treated conservatively after a primary or recurrent shoulder dislocation (99%, 69%). For a primary shoulder dislocation the most popular surgical reconstruction is a Bankart repair (75%). For recurrent shoulder dislocation several different operative techniques are seen (Bankart 29%, T-shift 26%, Putti-Platt 8%, Eden-Lange-Hybbinette 22%, Weber osteotomy 13%). Based on our literature review, we found: (1) The clinical examination of both shoulders is important to diagnose hyperlaxity; (2) Routine CT or MRI is not necessary for primary traumatic shoulder dislocations; (3) A young, athletic patient should undergo surgical reconstruction after a primary shoulder dislocation; (4) The operation of choice for primary and recurrent dislocation is the Bankart repair; (5) There is no sufficient evidence that an arthroscopic Bankart repair is as good as an open procedure; (6) There are limited indications for other operative techniques, as they are associated with a higher recurrence and arthrosis rate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... services for dislocated workers in the adult and dislocated worker programs? 663.115 Section 663.115 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services...
Using O*NET in Dislocated Worker Retraining: The Toledo Dislocated Worker Consortium Project.
ERIC Educational Resources Information Center
Sommers, Dixie; Austin, James
A project used the Occupational Information Network (O*NET) to assist eligible dislocated workers in determining whether training offered by the Toledo Dislocated Worker Consortium fit their needs. More specifically, O*NET was used to help the dislocated workers understand whether they had knowledge and skills that were transferable into the…
A micro S-shaped optical fiber temperature sensor based on dislocation fiber splice
NASA Astrophysics Data System (ADS)
Yan, Haitao; Li, Pengfei; Zhang, Haojie; Shen, Xiaoyue; Wang, Yongzhen
2017-12-01
We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.
NASA Astrophysics Data System (ADS)
Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.
2017-10-01
The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.
NASA Astrophysics Data System (ADS)
Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.
2017-10-01
A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shearer, Melinda J.; Samad, Leith; Zhang, Yi
The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less
Shearer, Melinda J.; Samad, Leith; Zhang, Yi; ...
2017-02-08
The interesting and tunable properties of layered metal dichalcogenides heavily depend on their phase and layer stacking. Here, we show and explain how the layer stacking and physical properties of WSe 2 are influenced by screw dislocations. A one-to-one correlation of atomic force microscopy and high- and low-frequency Raman spectroscopy of many dislocated WSe 2 nanoplates reveals variations in the number and shapes of dislocation spirals and different layer stackings that are determined by the number, rotation, and location of the dislocations. Plates with triangular dislocation spirals form noncentrosymmetric stacking that gives rise to strong second-harmonic generation and enhanced photoluminescence,more » plates with hexagonal dislocation spirals form the bulk 2H layer stacking commonly observed, and plates containing mixed dislocation shapes have intermediate noncentrosymmetric stackings with mixed properties. Multiple dislocation cores and other complexities can lead to more complex stackings and properties. Finally, these previously unobserved properties and layer stackings in WSe 2 will be interesting for spintronics and valleytronics.« less
Motion of 1/3⟨111⟩ dislocations on Σ3 {112} twin boundaries in nanotwinned copper
NASA Astrophysics Data System (ADS)
Lu, N.; Du, K.; Lu, L.; Ye, H. Q.
2014-01-01
The atomic structure of Σ3 {112} ITBs in nanotwinned Cu is investigated by using aberration-corrected high resolution transmission electron microscopy (HRTEM) and in situ HRTEM observations. The Σ3 {112} ITBs are consisted of periodically repeated three partial dislocations. The in situ HRTEM results show that 1/3[111] partial dislocation moves on the Σ3 {112} incoherent twin boundary (ITB), which was accompanied by a migration of the ITB. A dislocation reaction mechanism is proposed for the motion of 1/3[111] Frank partial dislocation, in which the 1/3[111] partial dislocation exchanges its position with twin boundary dislocations in sequence. In this way, the 1/3[111] dislocation can move on the incoherent twin boundary in metals with low stacking fault energy. Meanwhile, the ITB will migrate in its normal direction accordingly. These results provide insight into the reaction mechanism of 1/3[111] dislocations and ITBs and the associated migration of ITBs.
Complete dislocation of the ulnar nerve at the elbow: a protective effect against neuropathy?
Leis, A Arturo; Smith, Benn E; Kosiorek, Heidi E; Omejec, Gregor; Podnar, Simon
2017-08-01
Recurrent complete ulnar nerve dislocation has been perceived as a risk factor for development of ulnar neuropathy at the elbow (UNE). However, the role of dislocation in the pathogenesis of UNE remains uncertain. We studied 133 patients with complete ulnar nerve dislocation to determine whether this condition is a risk factor for UNE. In all, the nerve was palpated as it rolled over the medial epicondyle during elbow flexion. Of 56 elbows with unilateral dislocation, UNE localized contralaterally in 17 elbows (30.4%) and ipsilaterally in 10 elbows (17.9%). Of 154 elbows with bilateral dislocation, 26 had UNE (16.9%). Complete dislocation decreased the odds of having UNE by 44% (odds ratio = 0.475; P = 0.028), and was associated with less severe UNE (P = 0.045). UNE occurs less frequently and is less severe on the side of complete dislocation. Complete dislocation may have a protective effect on the ulnar nerve. Muscle Nerve 56: 242-246, 2017. © 2016 Wiley Periodicals, Inc.
Unravelling the physics of size-dependent dislocation-mediated plasticity
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar A.
2015-01-01
Size-affected dislocation-mediated plasticity is important in a wide range of materials and technologies. Here we develop a generalized size-dependent dislocation-based model that predicts strength as a function of crystal/grain size and the dislocation density. Three-dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a well-defined relationship between strength and dislocation microstructure at all length scales for both single crystals and polycrystalline materials. The results predict a transition from dislocation-source strengthening to forest-dominated strengthening at a size-dependent critical dislocation density. It is also shown that the Hall-Petch relationship can be physically interpreted by coupling with an appropriate kinetic equation of the evolution of the dislocation density in polycrystals. The model is shown to be in remarkable agreement with experiments. This work presents a micro-mechanistic framework to predict and interpret strength size-scale effects, and provides an avenue towards performing multiscale simulations without ad hoc assumptions.
Characteristics of dislocation structure in creep deformed lamellar tial alloy within primary regime
NASA Astrophysics Data System (ADS)
Cho, H. S.; Nam, Soo W.
1999-06-01
In this investigation, dislocations of a lamellar TiAl alloy are analyzed after creeping in the primary range at 800°C/200MPa in order to interpret their mobility It was found that the dislocation density in γ-laths decreased as the creep deformation proceeds within primary creep regime Schmid factor analysis suggests that the creep deformation in the early stage of the primary creep regime is controlled by the gliding of some of the initial dislocations which have a high enough Schmid factor As the creep deformation progressed, those dislocations with high Schmid factors slip preferentially to be annihilated at the α-γ interface For further continuous deformation, dislocation generation is required, and for this, α-phase is transformed to γ-phase in order to generate new dislocations A slow dislocation generation process by phase transformation of α-phase compared with the absorbing rate to sinks is responsible for the decreasing dislocation density as the creep strain increases
Strain field mapping of dislocations in a Ge/Si heterostructure.
Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen
2013-01-01
Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.
High and varying prices for privately insured patients underscore hospital market power.
White, Chapin; Bond, Amelia M; Reschovsky, James D
2013-09-01
Across 13 selected U.S. metropolitan areas, hospital prices for privately insured patients are much higher than Medicare payment rates and vary widely across and within markets, according to a study by the Center for Studying Health System Change (HSC) based on claims data for about 590,000 active and retired nonelderly autoworkers and their dependents. Across the 13 communities, average hospital prices for privately insured patients are about one-and-a-half times Medicare rates for inpatient care and two times what Medicare pays for outpatient care. Within individual communities, prices vary widely, with the highest-priced hospital typically paid 60 percent more for inpatient services than the lowest-priced hospital. The price gap within markets is even greater for hospital outpatient care, with the highest-priced hospital typically paid nearly double the lowest-priced hospital. In contrast to the wide variation in hospital prices for privately insured patients across and within markets, prices for primary care physician services generally are close to Medicare rates and vary little within markets. Prices for specialist physician services, however, are higher relative to Medicare and vary more across and within markets. Of the 13 markets, five are in Michigan, which has an unusually concentrated private insurance market, with one insurer commanding a 70-percent market share. Despite the presence of a dominant insurer, almost all Michigan hospitals command prices that are higher than Medicare, and some hospitals command prices that are twice what Medicare pays. In the eight markets outside of Michigan, private insurers generally pay even higher hospital prices, with even wider gaps between high- and low-priced hospitals. The variation in hospital and specialist physician prices within communities underscores that some hospitals and physicians have significant market power to command high prices, even in markets with a dominant insurer.
Effect of solute atoms on dislocation motion in Mg: An electronic structure perspective
Tsuru, T.; Chrzan, D. C.
2015-01-01
Solution strengthening is a well-known approach to tailoring the mechanical properties of structural alloys. Ultimately, the properties of the dislocation/solute interaction are rooted in the electronic structure of the alloy. Accordingly, we compute the electronic structure associated with, and the energy barriers to dislocation cross-slip. The energy barriers so obtained can be used in the development of multiscale models for dislocation mediated plasticity. The computed electronic structure can be used to identify substitutional solutes likely to interact strongly with the dislocation. Using the example of a-type screw dislocations in Mg, we compute accurately the Peierls barrier to prismatic plane slip and argue that Y, Ca, Ti, and Zr should interact strongly with the studied dislocation, and thereby decrease the dislocation slip anisotropy in the alloy. PMID:25740411
Deformation twinning in a creep-deformed nanolaminate structure
NASA Astrophysics Data System (ADS)
Hsiung, Luke L.
2010-10-01
The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti3Al-(α2) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.
Dislocation loop models for the high temperature creep of Al-5.5 at.% Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, S.U.; Blum, W.
1995-04-15
The Al-5.5 at.% Mg alloy is a typical class I type solution hardened material. The dislocation loop models proposed by Orlova and Cadek and by Mills et al., respectively are widely applied models in describing the high temperature creep behavior of the Al-5.5 at.% Mg alloy. These models, however, are in conflict in explaining dislocation loop theory. Orlova and Cadek suggest that in class I solution hardened alloys screw dislocations are relatively easier to migrate because they are subject to a smaller resistance in motion than edge dislocations. Consequently, the migration rate of screw dislocations is higher than that ofmore » edge dislocations. However, since dislocation loops are composed of both screw and edge components, the overall migration rate of screw dislocations are reduced by that of the edge component. Mills et al. on the contrary, used a different dislocation loop model. As the loop grows while it moves, it takes on the shape of an ellipsoid due to the unbalance in growth rate, the score segment moving much easier than the edge. Therefore, as shown in the results of the stress reduction tests, rapid elastic ({Delta} {var_epsilon}{sub el}) and anelastic contraction ({Delta} {var_epsilon}{sub an}) occur simultaneously directly after stress reduction. During the movement of the dislocation loop, the screw component hence becomes severely curved, while the edge component retains a straight line. This has been proved through dislocation structure observations by TEM.« less
Instability of total hip replacement: A clinical study and determination of its risk factors.
Ezquerra-Herrando, L; Seral-García, B; Quilez, M P; Pérez, M A; Albareda-Albareda, J
2015-01-01
To determine the risk factors associated with prosthetic dislocation and simulate a finite element model to determine the safe range of movement of various inclination and anteversion cup positions. Retrospective Case Control study with 46 dislocated patients from 1994 to 2011. 83 randomly selected patients. Dislocation risk factors described in the literature were collected. A prosthetic model was simulated using finite elements with 28, 32, 36 mm heads, and a 52 mm cup. Acetabular position was 25°, 40°, and 60° tilt and with 0°, 15° and 25° anteversion. In extension of 0° and flexion of 90°, internal and external rotation was applied to analyze the range of movement, maximum resisting moment, and stress distribution in the acetabulum to impingement and dislocation. There was greater dislocation in older patients (p=0.002). Higher dislocation in fractures than in osteoarthritis (p=0.001). Less anteversion in dislocated patients (p=0.043). Longer femoral neck in dislocated patients (p=0.002). Finite element model: lower dislocation when there is more anteversion, tilt and bigger femoral heads. Advanced age and fractures are the major risk factors for dislocation. "Safe zone" of movement for dislocation avoidance is 40°-60° tilt and 15°-25° anteversion. Both the defect and excess of soft tissue tension predispose to dislocation. Bigger femoral heads are more stable. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
Dislocation Multiplication in the Early Stage of Deformation in Mo Single Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsiung, L.; Lassila, D.H.
Initial dislocation structure in annealed high-purity Mo single crystals and deformation substructure in a crystal subjected to 1% compression have been examined and studied using transmission electron microscopy (TEM) techniques in order to investigate dislocation multiplication mechanisms in the early stage of plastic deformation. The initial dislocation density is in a range of 10{sup 6} {approx} 10{sup 7} cm{sup -2}, and the dislocation structure is found to contain many grown-in superjogs along dislocation lines. The dislocation density increases to a range of 10{sup 8} {approx} 10{sup 9} cm{sup -2}, and the average jog height is also found to increase aftermore » compressing for a total strain of 1%. It is proposed that the preexisting jogged screw dislocations can act as (multiple) dislocation multiplication sources when deformed under quasi-static conditions. The jog height can increase by stress-induced jog coalescence, which takes place via the lateral migration (drift) of superjogs driven by unbalanced line-tension partials acting on link segments of unequal lengths. The coalescence of superjogs results in an increase of both link length and jog height. Applied shear stress begins to push each link segment to precede dislocation multiplication when link length and jog height are greater than critical lengths. This ''dynamic'' dislocation multiplication source is suggested to be crucial for the dislocation multiplication in the early stage of plastic deformation in Mo.« less
Unzipping and movement of Lomer-type edge dislocations in Ge/GeSi/Si(0 0 1) heterostructures
NASA Astrophysics Data System (ADS)
Bolkhovityanov, Yu. B.; Deryabin, A. S.; Gutakovskii, A. K.; Sokolov, L. V.
2018-02-01
Edge dislocations in face-centered crystals are formed from two mixed dislocations gliding along intersecting {1 -1 1} planes, forming the so-called Lomer locks. This process, which is called zipping, is energetically beneficial. It is experimentally demonstrated in this paper that a reverse process may occur in Ge/GeSi strained buffer/Si(0 0 1) heterostructures under certain conditions, namely, decoupling of two 60° dislocations that formed the Lomer-type dislocation, i.e., unzipping. It is assumed that the driving force responsible for separation of Lomer dislocations into two 60° dislocations is the strain remaining in the GeSi buffer layer.
NASA Astrophysics Data System (ADS)
O'Reilly, Andrew J.; Quitoriano, Nathaniel J.
2018-02-01
Si0.973Ge0.027 epilayers were grown on a Si (0 0 1) substrate by a lateral liquid-phase epitaxy (LLPE) technique. The lateral growth mechanism favoured the glide of misfit dislocations and inhibited the nucleation of new dislocations by maintaining the thickness less than the critical thicknesses for dislocation nucleation and greater than the critical thickness for glide. This promoted the formation of an array of long misfit dislocations parallel to the [1 1 0] growth direction and reduced the threading dislocation density to 103 cm-2, two orders of magnitude lower than the seed area with an isotropic misfit dislocation network.
Temporomandibular joint dislocation
Sharma, Naresh Kumar; Singh, Akhilesh Kumar; Pandey, Arun; Verma, Vishal; Singh, Shreya
2015-01-01
Temporomandibular joint (TMJ) dislocation is an uncommon but debilitating condition of the facial skeleton. The condition may be acute or chronic. Acute TMJ dislocation is common in clinical practice and can be managed easily with manual reduction. Chronic recurrent TMJ dislocation is a challenging situation to manage. In this article, we discuss the comprehensive review of the different treatment modalities in managing TMJ dislocation. PMID:26668447
Hints for an extension of the early exercise premium formula for American options
NASA Astrophysics Data System (ADS)
Bermin, Hans-Peter; Kohatsu-Higa, Arturo; Perelló, Josep
2005-09-01
There exists a non-closed formula for the American put option price and non-trivial computations are required to solve it. Strong efforts have been made to propose efficient numerical techniques but few have strong mathematical reasoning to ascertain why they work well. We present an extension of the American put price aiming to catch weaknesses of the numerical methods based on their non-fulfillment of the smooth pasting condition.
Considerations for Solar Energy Technologies to Make Progress Towards Grid Price Parity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodhouse, Michael; Fu, Ran; Chung, Donald
2015-11-07
In this seminar the component costs for solar photovoltaics module and system prices will be highlighted. As a basis for comparison to other renewable and traditional energy options, the metric of focus will be total lifecycle cost-of-energy (LCOE). Several innovations to traditional photovoltaics technologies (including crystalline silicon, CdTe, and CIGS) and developing technologies (including organics and perovskites) that may close the gaps in LCOE will be discussed.
The Effect of Zoning Laws on Housing Prices and BAH Rates
2014-12-01
sources, gathering and maintaining the data needed , and completing and reviewing the collection of information. Send comments regarding this burden...Glaeser and Gyourko’s (2002) calculations for the implicit price of land from the hedonic method and the extensive value of land including zoning taxes...without the need to be particularly close to the industrial centers where people worked or near to the rail car tracks. The truck had a much more
Guo, Yanbing; Yao, Chengwu; Feng, Kai; Li, Zhuguo; Chu, Paul K.; Wu, Yixiong
2017-01-01
The growth and propagation behavior of austenite-to-bainite isothermal transformation in laser-cladded, Si-rich, and Fe-based coatings is investigated. The crystallographic features, orientation relationship at different isothermal temperatures, and the morphology of the nanostructured bainite are determined. The Nishiyama-Wassermann type orientation relationship is observed at a high temperature and at a low temperature, and mixed Nishiyama-Wassermann and Kurdjumov-Sach mechanisms are seen. The growth direction is investigated by the partial dislocation theory and an extrapolated model based on the repeated formation of lenticular-shaped subunits and pile-up along the close-packed directions of the close-packed planes. The variants of the bainite growth directions would be more selective at the high transformation temperature. PMID:28773161
Grain size effects on dislocation and twinning mediated plasticity in magnesium
Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...
2015-09-20
Grain size effects on the competition between dislocation slip and {101¯2} -twinning in magnesium are investigated using discrete dislocation dynamics simulations. These simulations account for dislocation–twin boundary interactions and twin boundary migration through the glide of twinning dislocations. It is shown that twinning deformation exhibits a strong grain size effect; while dislocation mediated slip in untwinned polycrystals displays a weak one. In conclusion, this leads to a critical grain size at 2.7 μm, above which twinning dominates, and below which dislocation slip dominates.
Reddy, A V Gurava; Eachempati, Krishna Kiran; Mugalur, Aakash; Suchinder, A; Rao, V B N Prasad; Kamurukuru, Nalanda
2017-01-01
Introduction: Periprosthetic fractures and dislocation in the early post-operative period can be disastrous both for the surgeon and the patient. However, undisplaced periprosthetic fractures presenting with dislocation is uncommon. We describe successful management of two cases (one bilateral dislocation and one unilateral dislocation) of undisplaced iatrogenic fractures in total hip arthroplasty (THA) presenting as early dislocation. Case Report: Case 1 was a 45-year-old female with osteoarthritis of hip secondary to developmental dysplasia of the hip with bilateral early nontraumatic dislocation with bilateral identical periprosthetic fracture. It was managed by revision to long stem and encirclage wiring. Case 2 presented with early dislocation in the 2nd week post THA. We found an intertrochanteric fracture intra-operatively with unstable implant. Acetabular component and femoral component revision were done with reconstruction of the greater trochanter. Discussion: These fractures could be occult iatrogenic fractures characteristic of taper wedge stems which presented as early nontraumatic dislocation in the post-operative period. The prosthesis subsidence, loss of muscle tension and change of version might be the factors leading to dislocation. Conclusion: Unrecognized incomplete intraoperative fracture can occur with tapered wedge uncemented stems which can present as a dislocation in the immediate post-operative period. This will require early revision of the femoral component. PMID:29051875
NASA Astrophysics Data System (ADS)
Su, Xujun; Zhang, Jicai; Huang, Jun; Zhang, Jinping; Wang, Jianfeng; Xu, Ke
2017-06-01
Defect structures were investigated by transmission electron microscopy for AlN/sapphire (0 0 0 1) epilayers grown by high temperature hydride vapor phase epitaxy using a growth mode modification process. The defect structures, including threading dislocations, inversion domains, and voids, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. AlN film growth was initiated at 1450 °C with high V/III ratio for 8 min. This was followed by low V/III ratio growth for 12 min. The near-interfacial region shows a high density of threading dislocations and inversion domains. Most of these dislocations have Burgers vector b = 1/3〈1 1 2 0〉 and were reduced with the formation of dislocation loops. In the middle range 400 nm < h < 2 μm, dislocations gradually aggregated and reduced to ∼109 cm-2. The inversion domains have a shuttle-like shape with staggered boundaries that deviate by ∼ ±5° from the c axis. Above 2 μm thickness, the film consists of isolated threading dislocations with a total density of 8 × 108 cm-2. Most of threading dislocations are either pure edge or mixed dislocations. The threading dislocation reduction in these films is associated with dislocation loops formation and dislocation aggregation-interaction during island growth with high V/III ratio.
Evolution of the substructure of a novel 12% Cr steel under creep conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Surya Deo, E-mail: surya.yadav@tugraz.at; Kalácska, Szilvia, E-mail: kalacska@metal.elte.hu; Dománková, Mária, E-mail: maria.domankova@stuba.sk
2016-05-15
In this work we study the microstruture evolution of a newly developed 12% Cr martensitic/ferritic steel in as-received condition and after creep at 650 °C under 130 MPa and 80 MPa. The microstructure is described as consisting of mobile dislocations, dipole dislocations, boundary dislocations, precipitates, lath boundaries, block boundaries, packet boundaries and prior austenitic grain boundaries. The material is characterized employing light optical microscopy (LOM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). TEM is used to characterize the dislocations (mobile + dipole) inside the subgrains and XRD measurements are used tomore » the characterize mobile dislocations. Based on the subgrain boundary misorientations obtained from EBSD measurements, the boundary dislocation density is estimated. The total dislocation density is estimated for the as-received and crept conditions adding the mobile, boundary and dipole dislocation densities. Additionally, the subgrain size is estimated from the EBSD measurements. In this publication we propose the use of three characterization techniques TEM, XRD and EBSD as necessary to characterize all type of dislocations and quantify the total dislocation densty in martensitic/ferritic steels. - Highlights: • Creep properties of a novel 12% Cr steel alloyed with Ta • Experimental characterization of different types of dislocations: mobile, dipole and boundary • Characterization and interpretation of the substructure evolution using unique combination of TEM, XRD and EBSD.« less
Theory of interacting dislocations on cylinders.
Amir, Ariel; Paulose, Jayson; Nelson, David R
2013-04-01
We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.
NASA Astrophysics Data System (ADS)
Barabash, R. I.; Ice, G. E.; Tamura, N.; Valek, B. C.; Bravman, J. C.; Spolenak, R.; Patel, J. R.
2003-05-01
Electromigration during accelerated testing can induce plastic deformation in apparently undamaged Al interconnect lines as recently revealed by white beam scanning x-ray microdiffraction. In the present article, we provide a first quantitative analysis of the dislocation structure generated in individual micron-sized Al grains during an in situ electromigration experiment. Laue reflections from individual interconnect grains show pronounced streaking during the early stages of electromigration. We demonstrate that the evolution of the dislocation structure during electromigration is highly inhomogeneous and results in the formation of unpaired randomly distributed dislocations as well as geometrically necessary dislocation boundaries. Approximately half of all unpaired dislocations are grouped within the walls. The misorientation created by each boundary and density of unpaired individual dislocations is determined. The origin of the observed plastic deformation is considered in view of the constraints for dislocation arrangements under the applied electric field during electromigration.
The endogenous dynamics of financial markets: Interaction and information dissemination
NASA Astrophysics Data System (ADS)
Yang, ChunXia; Hu, Sen; Xia, BingYing
2012-06-01
We investigate the process that different interactions between investors will prompt information to propagate along a differentiated path and construct a financial market model. As information spreads, increasingly investors are attracted to participate in trading, then the “herding effect” is magnified gradually, which will induce the topology of market network to change and the price to fluctuate. Especially, under different initial conditions or parameters, the peak and fat-tail property is produced and the obtained statistic values coincide with empirical results: the power-law exponents between the peak value of return probability distribution and the time scales range from 0.579 to 0.747, and the exponents between the accumulation distribution and the return on the tail are close to 3. Besides, the extent of volatility clustering in our produced price series is close to that of S&P 500 and locates between NASDAQ and HSI. All the results obtained here indicate that the continuous variation of the “herding effect” resulting from information propagation among interacting investors may be the origin of stylized facts of price fluctuations.
Prada, Sergio I; Soto, Victoria E; Andia, Tatiana S; Vaca, Claudia P; Morales, Álvaro A; Márquez, Sergio R; Gaviria, Alejandro
2018-01-01
High pharmaceutical expenditure is one of the main concerns for policymakers worldwide. In Colombia, a middle-income country, outpatient prescription represents over 10% of total health expenditure in the mandatory benefits package (POS), and close to 90% in the complementary government fund (No POS). In order to control expenditure, since 2011, the Ministry of Health introduced price caps on inpatient drugs reimbursements by active ingredient. By 2013, more than 400 different products, covering 80% of public pharmaceutical expenditure were controlled. This paper investigates the effects of the Colombian policy efforts to control expenditure by controlling prices. Using SISMED data, the official database for prices and quantities sold in the domestic market, we estimate a Laspeyres price index for 90 relevant markets in the period 2011-2015, and, then, we estimate real pharmaceutical expenditure. Results show that, after direct price controls were enacted, price inflation decreased almost - 43%, but real pharmaceutical expenditure almost doubled due mainly to an increase in units sold. Such disproportionate increase in units sold maybe attributable to better access to drugs due to lower prices, and/or to an increase in marketing efforts by the pharmaceutical industry to maintain profits. We conclude that pricing interventions should be implemented along with a strong market monitoring to prevent market distortions such as inappropriate and unnecessary drug use.
Chaumont, Claire; Bautista-Arredondo, Sergio; Calva, Juan José; Bahena-González, Roberto Isaac; Sánchez-Juárez, Gerda Hitz; González de Araujo-Muriel, Arturo; Magis-Rodríguez, Carlos; Hernández-Ávila, Mauricio
2015-01-01
This study examines the antiretroviral (ARV) market characteristics for drugs procured and prescribed to Mexico's Social Protection System in Health beneficiaries between 2008 and 2013, and compares them with international data. Procurement information from the National Center for the Prevention and the Control of HIV/AIDS was analyzed to estimate volumes and prices of key ARV. Annual costs were compared with data from the World Health Organization's Global Price Reporting Mechanism for similar countries. Finally, regimens reported in the ARV Drug Management, Logistics and Surveillance System database were reviewed to identify prescription trends and model ARV expenditures until 2018. Results show that the first-line ARV market is concentrated among a small number of patented treatments, in which prescription is clinically adequate, but which prices are higher than those paid by similar countries. The current set of legal and structural options available to policy makers to bring prices down is extremely limited. Different negotiation policies were not successful to decrease ARV high prices in the public health market. The closed list approach had a good impact on prescription quality but was ineffective in reducing prices. The Coordinating Commission for Negotiating the Price of Medicines and other Health Supplies also failed to obtain adequate prices. To maximize purchase efficiency, policy makers should focus on finding long-term legal and political safeguards to counter the high prices imposed by pharmaceutical companies.
Wang, George T.; Li, Qiming
2013-04-23
A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.
Effects of dislocations on polycrystal anelasticity
NASA Astrophysics Data System (ADS)
Sasaki, Y.; Takei, Y.; McCarthy, C.; Suzuki, A.
2017-12-01
Effects of dislocations on the seismic velocity and attenuation have been poorly understood, because only a few experimental studies have been performed [Guéguen et al., 1989; Farla et al., 2012]. By using organic borneol as a rock analogue, we measured dislocation-induced anelasticity accurately over a broad frequency range. We first measured the flow law of borneol aggregates by uniaxial compression tests under a confining pressure of 0.8 MPa. A transition from diffusion creep (n = 1) to dislocation creep (n = 5) was captured at about σ = 1 MPa (40°C-50°C). After deforming in the dislocation creep regime, sample microstructure showed irregular grain shape consistent with grain boundary migration. Next, we conducted three creep tests at σ = 0.27 MPa (diffusion creep regime), σ = 1.3 MPa and σ = 1.9 MPa (dislocation creep regime) on the same sample in increasing order, and measured Young's modulus E and attenuation Q-1 after each creep test by forced oscillation tests. The results show that as σ increased, E decreased and Q-1 increased. These changes induced by dislocations, however, almost fully recovered during the forced oscillation tests performed for about two weeks under a small stress (σ = 0.27 MPa) due to the dislocation recovery (annihilation). In order to constrain the time scale of the dislocation-induced anelastic relaxation, we further measured Young's modulus E at ultrasonic frequency before and after the dislocation creep and found that E at 106 Hz is not influenced by dislocations. Because E at 100 Hz is reduced by dislocations by 10%, the dislocation-induced anelastic relaxation occurs mostly between 102-106 Hz which is at a higher frequency than grain-boundary-induced anelasticity. To avoid dislocation recovery during the anelasticity measurement, we are now trying to perform an in-situ measurement of anelasticity while simultaneously deforming under a high stress associated with dislocation creep. The combination of persistent creep stress with small amplitude perturbations is similar to a seismic wave traveling through a region of active tectonic deformation.
Strategies for price reduction of HIV medicines under a monopoly situation in Brazil
Chaves, Gabriela Costa; Hasenclever, Lia; Osorio-de-Castro, Claudia Garcia Serpa; Oliveira, Maria Auxiliadora
2016-01-01
ABSTRACT OBJECTIVE To analyze Government strategies for reducing prices of antiretroviral medicines for HIV in Brazil. METHODS Analysis of Ministry of Health purchases of antiretroviral medicines, from 2005 to 2013. Expenditures and costs of the treatment per year were analyzed and compared to international prices of atazanavir. Price reductions were estimated based on the terms of a voluntary license of patent rights and technology transfer in the Partnership for Productive Development Agreement for atazanavir. RESULTS Atazanavir, a patented medicine, represented a significant share of the expenditures on antiretrovirals purchased from the private sector. Prices in Brazil were higher than international references, and no evidence was found of a relationship between purchase volume and price paid by the Ministry of Health. Concerning the latest strategy to reduce prices, involving local production of the 200 mg capsule, the price reduction was greater than the estimated reduction. As for the 300 mg capsule, the amounts paid in the first two years after the Partnership for Productive Development Agreement were close to the estimated values. Prices in nominal values for both dosage forms remained virtually constant between 2011 (the signature of the Partnership for Productive Development Agreement), 2012 and 2013 (after the establishment of the Partnership). CONCLUSIONS Price reduction of medicines is complex in limited-competition environments. The use of a Partnership for Productive Development Agreement as a strategy to increase the capacity of local production and to reduce prices raises issues regarding its effectiveness in reducing prices and to overcome patent barriers. Investments in research and development that can stimulate technological accumulation should be considered by the Government to strengthen its bargaining power to negotiate medicines prices under a monopoly situation. PMID:26759969
Atomistic simulations of dislocation pileup: Grain boundaries interaction
Wang, Jian
2015-05-27
Here, using molecular dynamics (MD) simulations, we studied the dislocation pileup–grain boundary (GB) interactions. Two Σ11 asymmetrical tilt grain boundaries in Al are studied to explore the influence of orientation relationship and interface structure on dislocation activities at grain boundaries. To mimic the reality of a dislocation pileup in a coarse-grained polycrystalline, we optimized the dislocation population in MD simulations and developed a predict-correct method to create a dislocation pileup in MD simulations. MD simulations explored several kinetic processes of dislocations–GB reactions: grain boundary sliding, grain boundary migration, slip transmission, dislocation reflection, reconstruction of grain boundary, and the correlation ofmore » these kinetic processes with the available slip systems across the GB and atomic structures of the GB.« less
Split and sealing of dislocated pipes at the front of a growing crystal
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Sheinerman, A. G.
2004-07-01
A model is suggested for the split of dislocated pipes at the front a growing crystal. Within the model, the pipe split occurs through the generation of a dislocation semi-loop at the pipe and crystal surfaces and its subsequent expansion into the crystal interior. The strain energy of such a dislocation semi-loop as well as the stress field of a dislocated pipe perpendicular to a flat crystal surface are calculated. The parameter regions are determined at which the expansion of the dislocation semi-loop is energetically favorable and, thus, the pipe split becomes irreversible. A mechanism is proposed for the formation of a stable semi-loop resulting in the split and possible subsequent overgrowth of the dislocated pipe.
Dislocation-Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals
NASA Astrophysics Data System (ADS)
Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng
2015-03-01
This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.
Dislocation-twin boundary interactions induced nanocrystalline via SPD processing in bulk metals.
Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng
2015-03-11
This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.
NASA Astrophysics Data System (ADS)
Russell, J. J.; Zou, J.; Moon, A. R.; Cockayne, D. J. H.
2000-08-01
Threading dislocation glide relieves strain in strained-layer heterostructures by increasing the total length of interface misfit dislocations. The blocking theory proposed by Freund [J. Appl. Phys. 68, 2073 (1990)] predicts the thickness above which gliding threading dislocations are able to overcome the resistance force produced by existing orthogonal misfit dislocations. A set of wedge-shaped samples of InxGa1-xAs/GaAs (x=0.04) strained-layer heterostructures was grown using molecular-beam epitaxy in order to test the theory of dislocation blocking over a range of thicknesses within one sample. Scanning cathodoluminescence microscopy techniques were used to image the misfit dislocations. The cathodoluminescence results confirm the model proposed by Freund.
Aspects of Hess' Acquisition of American Oil & Gas
2010-01-01
On July 27, 2010, Hess Corporation announced that it had agreed to acquire American Oil & Gas, Inc. in a stock-only transaction worth as much as $488 million (based on Hess' closing price of $53.30/share, anticipated number of newly issued shares, and $30 million credit facility extended to American Oil & Gas prior to closing).
Bilateral spontaneous crystalline lens dislocation to the anterior chamber: a case report.
Jovanović, Milos
2013-01-01
There are various reasons for the lens dislocation. Spontaneous dislocation of a clear lens is extremely rare, especially its dislocation to the anterior chamber. The author presents a case of spontaneous clear lens dislocation to the anterior chamber in both eyes in a patient without the history of any trauma. Dislocation occurred spontaneously, first in the left eye, along with a sudden decrease of vision. The ophthalmologist found a clear lens in the anterior chamber, without any sign of an elevated intraocular pressure, as should have been expected. The dislocated lens was removed surgically (intracapsular extraction) with the preventive basal iridectomy. Two years later, the same happened in the right eye: clear lens moved spontaneously to the anterior chamber, with a decrease of vision, but again without any rise of intraocular pressure and/or any pain. Intracapsular extraction of the lens with basal iridectomy was done again. The presented case demonstrates that spontaneous dislocation of the transparent lens to the eye anterior chamber can occur in both eyes at different time intervals. We suggest the removal of dislocated lens in the anterior chamber by the intracapsular extraction.
Fast Fourier transform discrete dislocation dynamics
NASA Astrophysics Data System (ADS)
Graham, J. T.; Rollett, A. D.; LeSar, R.
2016-12-01
Discrete dislocation dynamics simulations have been generally limited to modeling systems described by isotropic elasticity. Effects of anisotropy on dislocation interactions, which can be quite large, have generally been ignored because of the computational expense involved when including anisotropic elasticity. We present a different formalism of dislocation dynamics in which the dislocations are represented by the deformation tensor, which is a direct measure of the slip in the lattice caused by the dislocations and can be considered as an eigenstrain. The stresses arising from the dislocations are calculated with a fast Fourier transform (FFT) method, from which the forces are determined and the equations of motion are solved. Use of the FFTs means that the stress field is only available at the grid points, which requires some adjustments/regularizations to be made to the representation of the dislocations and the calculation of the force on individual segments, as is discussed hereinafter. A notable advantage of this approach is that there is no computational penalty for including anisotropic elasticity. We review the method and apply it in a simple dislocation dynamics calculation.
NASA Astrophysics Data System (ADS)
Wang, Lin; Blaha, Stephan; Kawazoe, Takaaki; Miyajima, Nobuyoshi; Katsura, Tomoo
2017-03-01
Dislocation recovery experiments were performed on predeformed olivine single crystals at pressures of 2, 7 and 12 GPa and a constant temperature of 1650 K to determine the pressure dependence of the annihilation rate constants for [100](010) edge dislocation (a dislocation) and [001](010) screw dislocation (c dislocation). The constants of both types of dislocations are comparable within 0.3 orders of magnitude. The activation volumes of a and c dislocations are small and identical within error: 2.7 ± 0.2 and 2.5 ± 0.9 cm3/mol, respectively. These values are slightly larger and smaller than those of Si lattice and grain-boundary diffusions in olivine, respectively. The small and identical activation volumes for the a and c dislocations suggest that the pressure-induced fabric transition is unlikely in the asthenosphere. The decrease in seismic anisotropy with depth down in the asthenosphere may be caused by the fabric transition from A type or B type to AG type with decreasing stress with depth.
NASA Astrophysics Data System (ADS)
Vattré, A.; Pan, E.
2018-07-01
Lattice dislocation interactions with semicoherent interfaces are investigated by means of anisotropic field solutions in metallic homo- and hetero-structures. The present framework is based on the mathematically elegant and computationally powerful Stroh formalism, combining further with the Fourier integral and series transforms, which cover different shapes and dimensions of various extrinsic and intrinsic dislocations. Two-dimensional equi-spaced arrays of straight lattice dislocations and finite arrangements of piled-up dislocations as well as any polygonal and elliptical dislocation loops in three dimensions are considered using a superposition scheme. Self, image and Peach-Koehler forces are derived to compute the equilibrium dislocation positions in pile-ups, including the internal structures and energetics of the interfacial dislocation networks. For illustration, the effects due to the elastic and misfit mismatches are discussed in the pure misfit Au/Cu and heterophase Cu/Nb systems, while discrepancies resulting from the approximation of isotropic elasticity are clearly exhibited. These numerical examples not only feature and enhance the existing works in anisotropic bimaterials, but also promote a novel opportunity of analyzing the equilibrium shapes of planar glide dislocation loops at nanoscale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, A.; Gupta, Y. M.
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Self-assembled InN quantum dots on side facets of GaN nanowires
NASA Astrophysics Data System (ADS)
Bi, Zhaoxia; Ek, Martin; Stankevic, Tomas; Colvin, Jovana; Hjort, Martin; Lindgren, David; Lenrick, Filip; Johansson, Jonas; Wallenberg, L. Reine; Timm, Rainer; Feidenhans'l, Robert; Mikkelsen, Anders; Borgström, Magnus T.; Gustafsson, Anders; Ohlsson, B. Jonas; Monemar, Bo; Samuelson, Lars
2018-04-01
Self-assembled, atomic diffusion controlled growth of InN quantum dots was realized on the side facets of dislocation-free and c-oriented GaN nanowires having a hexagonal cross-section. The nanowires were synthesized by selective area metal organic vapor phase epitaxy. A 3 Å thick InN wetting layer was observed after growth, on top of which the InN quantum dots formed, indicating self-assembly in the Stranski-Krastanow growth mode. We found that the InN quantum dots can be tuned to nucleate either preferentially at the edges between GaN nanowire side facets, or directly on the side facets by tuning the adatom migration by controlling the precursor supersaturation and growth temperature. Structural characterization by transmission electron microscopy and reciprocal space mapping show that the InN quantum dots are close to be fully relaxed (residual strain below 1%) and that the c-planes of the InN quantum dots are tilted with respect to the GaN core. The strain relaxes mainly by the formation of misfit dislocations, observed with a periodicity of 3.2 nm at the InN and GaN hetero-interface. The misfit dislocations introduce I1 type stacking faults (…ABABCBC…) in the InN quantum dots. Photoluminescence investigations of the InN quantum dots show that the emissions shift to higher energy with reduced quantum dot size, which we attribute to increased quantum confinement.
Patellofemoral Arthritis After Lateral Patellar Dislocation: A Matched Population-Based Analysis.
Sanders, Thomas L; Pareek, Ayoosh; Johnson, Nicholas R; Stuart, Michael J; Dahm, Diane L; Krych, Aaron J
2017-04-01
The rate of patellofemoral arthritis after lateral patellar dislocation is unknown. Purpose/Hypothesis: The purpose of this study was to compare the risk of patellofemoral arthritis and knee arthroplasty between patients who experienced a lateral patellar dislocation and matched individuals without a patellar dislocation. Additionally, factors predictive of arthritis after patellar dislocation were examined. The hypothesis was that the rate of arthritis is likely higher among patients who experience a patellar dislocation compared with those who do not. Cohort study; Level of evidence, 3. In this study, 609 patients who had a first-time lateral patellar dislocation between 1990 and 2010 were compared with an age- and sex-matched cohort of patients who did not have a patellar dislocation. Medical records were reviewed to collect information related to the initial injury, recurrent dislocation, treatment, and progression to clinically significant patellofemoral arthritis (defined as symptoms with degenerative changes on patellar sunrise radiographs). Factors associated with arthritis (age, sex, recurrence, osteochondral injury, trochlear dysplasia) were examined. At a mean follow-up of 12.3 ± 6.5 years from initial dislocation, 58 patients (9.5%) in the dislocation cohort were diagnosed with patellofemoral arthritis, corresponding to a cumulative incidence of arthritis of 1.2% at 5 years, 2.7% at 10 years, 8.1% at 15 years, 14.8% at 20 years, and 48.9% at 25 years. In the control cohort, 8 patients (1.3%) were diagnosed with arthritis, corresponding to a cumulative incidence of arthritis of 0% at 5 years, 0% at 10 years, 1.3% at 15 years, 2.9% at 20 years, and 8.3% at 25 years. Therefore, patients who experienced a lateral patellar dislocation had a significantly higher risk of developing arthritis (hazard ratio [HR], 7.8; 95% CI, 3.9-17.6; P < .001) than individuals without a patellar dislocation. However, the risk of knee arthroplasty was similar between groups (HR, 2.8; 95% CI, 0.6-19.7; P = .2). Recurrent patellar dislocations (HR, 4.5; 95% CI, 1.6-12.6), osteochondral injury (HR, 11.3; 95% CI, 5.0-26.6), and trochlear dysplasia (HR, 3.6; 95% CI, 1.3-10.0) were associated with arthritis after patellar dislocation. Patellar dislocation is a significant risk factor for patellofemoral arthritis, as nearly half of patients have symptoms and radiographic changes consistent with arthritis at 25 years after lateral patellar dislocation. Osteochondral injury, recurrent patellar instability, and trochlear dysplasia are associated with the development of arthritis.
The quotient of normal random variables and application to asset price fat tails
NASA Astrophysics Data System (ADS)
Caginalp, Carey; Caginalp, Gunduz
2018-06-01
The quotient of random variables with normal distributions is examined and proven to have power law decay, with density f(x) ≃f0x-2, with the coefficient depending on the means and variances of the numerator and denominator and their correlation. We also obtain the conditional probability densities for each of the four quadrants given by the signs of the numerator and denominator for arbitrary correlation ρ ∈ [ - 1 , 1) . For ρ = - 1 we obtain a particularly simple closed form solution for all x ∈ R. The results are applied to a basic issue in economics and finance, namely the density of relative price changes. Classical finance stipulates a normal distribution of relative price changes, though empirical studies suggest a power law at the tail end. By considering the supply and demand in a basic price change model, we prove that the relative price change has density that decays with an x-2 power law. Various parameter limits are established.
Bao, Wei; Rao, Yulei
2017-01-01
The application of deep learning approaches to finance has received a great deal of attention from both investors and researchers. This study presents a novel deep learning framework where wavelet transforms (WT), stacked autoencoders (SAEs) and long-short term memory (LSTM) are combined for stock price forecasting. The SAEs for hierarchically extracted deep features is introduced into stock price forecasting for the first time. The deep learning framework comprises three stages. First, the stock price time series is decomposed by WT to eliminate noise. Second, SAEs is applied to generate deep high-level features for predicting the stock price. Third, high-level denoising features are fed into LSTM to forecast the next day’s closing price. Six market indices and their corresponding index futures are chosen to examine the performance of the proposed model. Results show that the proposed model outperforms other similar models in both predictive accuracy and profitability performance. PMID:28708865
Pençe, Halime Hanim; Pençe, Sadrettin; Kurtul, Naciye; Yilmaz, Necat; Kocoglu, Hasan; Bakan, Ebubekir
2003-01-01
In this study, adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid in the muscles of masseter, triceps, and quadriceps obtained from right and left sides of Spraque-Dawley rats following death were investigated. The samples were taken immediately and 120 minutes after death occurred. The rats were killed either by cervical dislocation or drowning. ATP concentrations in the muscles of masseter, triceps, and quadriceps were lower in samples obtained 120 minutes after death than in those obtained immediately after death. ADP, AMP, and lactic acid concentrations in these muscles were higher in samples obtained 120 minutes after death than those obtained immediately after death. A positive linear correlation was determined between ATP and ADP concentrations in quadriceps muscles of the rats killed with cervical dislocation and in triceps muscles of the rats killed with drowning. When rats killed with cervical dislocation and with drowning were compared, ADP, AMP, and lactic acid concentrations were lower in the former than in the latter for both times (immediately and 120 minutes after death occurred). In the case of drowning, ATP is consumed faster because of hard exercise or severe physical activity, resulting in a faster rigor mortis. Higher lactic acid levels were determined in muscles of the rats killed with drowning than the other group. In the control and electric shock rats, ATP decreased in different levels in the three different muscle types mentioned above in control group, being much decline in masseter and then in quadriceps. This may be caused by lower mass and less glycogen storage of masseter. No different ATP levels were measured in drowning group with respect to the muscle type possibly because of the severe activity of triceps and quadriceps and because of smaller mass of masseter. One can conclude that the occurrence of rigor mortis is closely related to the mode of death.
The Impact of Specialty on Cases Performed During Hand Surgery Fellowship Training.
Silvestre, Jason; Upton, Joseph; Chang, Benjamin; Steinberg, David R
2018-03-07
Hand surgery fellowship programs in the United States are predominately sponsored by departments or divisions of orthopaedic surgery or plastic surgery. This study compares the operative experiences of hand surgery fellows graduating from orthopaedic or plastic surgery hand surgery fellowships. Operative case logs of 3 cohorts of hand surgery fellows graduating during the academic years of 2012-2013, 2013-2014, and 2014-2015 were analyzed. The median case volumes were compared by specialty via Mann-Whitney U tests. An arbitrary 1,000% change between the 90th and 10th percentiles of fellows was used as a threshold to highlight case categories with substantial variability. In this study, 413 orthopaedic hand surgery fellows (87%) and 62 plastic surgery hand surgery fellows (13%) were included. Plastic surgery fellows reported more cases in the following categories: wound closure with graft; wound reconstruction with flap; vascular repair, reconstruction, replantation, or microvascular; closed treatment of fracture or dislocation; nerve injury; and congenital (p < 0.05). Orthopaedic surgery fellows reported more cases in the following categories: wound irrigation and debridement fasciotomy or wound preparation; hand reconstruction or releases; wrist reconstruction, releases, or arthrodesis; forearm, elbow, or shoulder reconstruction or releases; hand fractures, dislocation, or ligament injury; wrist fractures or dislocations; forearm and proximal fractures or dislocations; miscellaneous insertion or removal of devices; shoulder arthroscopy, elbow arthroscopy, and wrist arthroscopy; decompression of tendon sheath, synovectomy, or ganglions; nerve decompression; Dupuytren; and tumor or osteomyelitis (p < 0.05). Plastic surgery fellows reported substantial variability for 12 case categories (range, 1,024% to 2,880%). Orthopaedic surgery fellows reported substantial variability for 9 case categories (range, 1,110% to 9,700%). Orthopaedic and plastic hand surgery fellowships afford disparate operative experiences. Understanding these differences may help to align prospective trainees with future career goals and to guide discussions to better standardize hand surgery training.
The effect of crack blunting on the competition between dislocation nucleation and cleavage
NASA Astrophysics Data System (ADS)
Fischer, Lisa L.; Beltz, Glenn E.
2001-03-01
To better understand the ductile versus brittle fracture behavior of crystalline materials, attention should be directed towards physically realistic crack geometries. Currently, continuum models of ductile versus brittle behavior are typically based on the analysis of a pre-existing sharp crack in order to use analytical solutions for the stress fields around the crack tip. This paper examines the effects of crack blunting on the competition between dislocation nucleation and atomic decohesion using continuum methods. We accomplish this by assuming that the crack geometry is elliptical, which has the primary advantage that the stress fields are available in closed form. These stress field solutions are then used to calculate the thresholds for dislocation nucleation and atomic decohesion. A Peierls-type framework is used to obtain the thresholds for dislocation nucleation, in which the region of the slip plane ahead of the crack develops a distribution of slip discontinuity prior to nucleation. This slip distribution increases as the applied load is increased until an instability is reached and the governing integral equation can no longer be solved. These calculations are carried out for various crack tip geometries to ascertain the effects of crack tip blunting. The thresholds for atomic decohesion are calculated using a cohesive zone model, in which the region of the crack front develops a distribution of opening displacement prior to atomic decohesion. Again, loading of the elliptical crack tip eventually results in an instability, which marks the onset of crack advance. These calculations are carried out for various crack tip geometries. The results of these separate calculations are presented as the critical energy release rates versus the crack tip radius of curvature for a given crack length. The two threshold curves are compared simultaneously to determine which failure mode is energetically more likely at various crack tip curvatures. From these comparisons, four possible types of material fracture behavior are identified: intrinsically brittle, quasi-brittle, intrinsically ductile, and quasi-ductile. Finally, real material examples are discussed.
[Outcomes and complications of Tightrope button plate for repairing acromioclavicular dislocation].
Zuo, Yong-Xiang; Ma, Zi-Ping
2017-10-25
To study the clinical outcome and complications of Tightrope button plate for repairing acromioclavicular dislocation of Rockwood type III to V. From May 2014 to December 2016, 17 patients with acromioclavicular dislocation of type III-V were treated with Tightrope button plate including 10 males and 7 females with an average age 39.8 years old ranging from 20 to 68 years old. Four patients were treated with arthroscopy and 17 patients were treated with mini-invasive by X-ray assisted. Shoulder function, X-ray and complications after operation were assessed. All patients were followed up for 5 to 23 months with a mean of 10.8 months. All patients got satisfying reduction immediately postoperatively. Among them, 1 case of clavicle end wound foreign body reaction, rupture, effusion, healing after the second suture; 1 case of foreign body granuloma formation at the end of clavicle were resected and removed at 4 months after operation; 3 cases loss reduction(less than 50% of acromioclavicular joint). No coracoid fracture and suture breakage observed. The shoulder mobility was restored in 15 cases at 4 to 6 weeks postoperatively, and the shoulder adhesion in 2 cases was delayed to 5 to 7 months after operation. The Constant scores were improved from 46.9±6.0 preoperatively to 92.7±4.0 at the final follow-up. X-ray evaluation of postoperative coracoclavicular tunnel location, patients' coracoclavicular tunnel with mini-invasive fluoroscopy all closed to the ideal position (across the clavicle vertically through the coracoid base center), while different degree of tunnel position deviation were observed in arthroscopic patients. Tightrope button plate for the treatment of acromioclavicular joint dislocation had advantages of minimally invasive, effective, good clinical results, the majority of common complications does not affect efficacy. Small incision X-ray method can provide more satisfactory and reliable tunnel location.
[In situ suture repair procedure of knee dislocation with multiple-ligament injury at acute stage].
Ye, Jingbing; Luo, Dahui; Fu, Weili; He, Xin; Li, Jian
2009-09-01
To investigate the method and the short term clinical effectiveness of in situ suture repair procedure of knee dislocation with multiple-ligament injury at acute stage. From February 2006 to November 2007, 9 patients suffering from single knee closed dislocation with multiple-ligament injury underwent open in situ suture repair procedure with non-absorbable thread and managements of other combined injuries simultaneously. Nine patients included 6 males and 3 females, aged 34-52 years old. The injured knees were left side in 4 cases and right side in 5 cases. Injuries were caused by traffic accident in 8 cases and heavy-weight crushing in 1 case. EMRI and arthroscopic examination showed that all patients suffered from the avulsion injuries of anterior cruciate ligament and posterior cruciate ligament. The time from injury to operation was 4 to 7 days with an average of 5.1 days. No bacterial arthritis occurred after operation. Subcutaneous ligated fat occurred and cured after symptomatic treatment in 2 cases, other incisions healed by first intension. All patients were followed up 12 months. At 12 months postoperatively, 2 patients' flexion range of the suffering knees lost 10 degrees when to compared with normal knees, and the range of motion was from 0 to 125 degrees. The Lysholm knee scores were 83-92 (average 86.3), the results were excellent in 3 cases and good in 6 cases. The posterior drawer test and anterior drawer test were one-degree positive in 3 cases respectively; the Lachman tests were one-degree positive in 5 cases, lateral stress tests were negative in all cases. In situ suture repair procedure of knee dislocation with multiple-ligament injury at acute stage has the advantages such as reliable fixation, simultaneous management of other combined injuries and satisfactory short term effect.
1989-04-08
now good experimental data on the effects of impurities, including locking by non-electrical xii Preface impurities, and the effect of electrically... locks which result from the interaction of the gliding dislocations. As a matter of fact, these dislocation configurations look similar to those...loop on the go° partial. Structure of grain boundaries and dislocations 3 2.2. Lomer-Cottrell lock : a/2>. Two 60’ dislocations can react and give
Te homogeneous precipitation in Ge dislocation loop vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrin Toinin, J.; Portavoce, A., E-mail: alain.portavoce@im2np.fr; Texier, M.
2016-06-06
High resolution microscopies were used to study the interactions of Te atoms with Ge dislocation loops, after a standard n-type doping process in Ge. Te atoms neither segregate nor precipitate on dislocation loops, but form Te-Ge clusters at the same depth as dislocation loops, in contradiction with usual dopant behavior and thermodynamic expectations. Atomistic kinetic Monte Carlo simulations show that Te atoms are repulsed from dislocation loops due to elastic interactions, promoting homogeneous Te-Ge nucleation between dislocation loops. This phenomenon is enhanced by coulombic interactions between activated Te{sup 2+} or Te{sup 1+} ions.
Kirby, S.H.; Wegner, M.W.
1978-01-01
Cleaved and mechanically polished surfaces of olivine from peridotite xenoliths from San Carlos, Arizona, were chemically etched using the techniques of Wegner and Christie (1974). Dislocation etch pits are produced on all surface orientations and they tend to be preferentially aligned along the traces of subgrain boundaries, which are approximately parallel to (100), (010), and (001). Shallow channels were also produced on (010) surfaces and represent dislocations near the surface that are etched out along their lengths. The dislocation etch channel loops are often concentric, and emanate from (100) subgrain boundaries, which suggests that dislocation sources are in the boundaries. Data on subgrain misorientation and dislocation line orientation and arguments based on subgrain boundary energy minimization are used to characterize the dislocation structures of the subgrain boundaries. (010) subgrain boundaries are of the twist type, composed of networks of [100] and [001] screw dislocations. Both (100) and (001) subgrain boundaries are tilt walls composed of arrays of edge dislocation with Burgers vectors b=[100] and [001], respectively. The inferred slip systems are {001} ???100???, {100} ???001???, and {010} ???100??? in order of diminishing importance. Exploratory transmission electron microscopy is in accord with these identifications. The flow stresses associated with the development of the subgrain structure are estimated from the densities of free dislocations and from the subgrain dimensions. Inferred stresses range from 35 to 75 bars using the free dislocation densities and 20 to 100 bars using the subgrain sizes. ?? 1978 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Park, Yongkook
This thesis examines the electrical properties of grain boundaries (GBs) and dislocations in crystalline silicon. The influence of impurity incorporation and hydrogenation on the electrical properties of grain boundaries , as well as the electrical activity of impurity decorated dislocations and the retention of impurities at dislocations at high temperatures have been investigated. The electrical properties of Si GB were examined by C-V, J-V , and capacitance transient methods using aluminum/Si(100)/Si(001) junctions. First, the density of states and the carrier capture cross-sections of the clean GB were evaluated by C-V/J-V analyses. The density of GB states was determined as 4.0x1012 cm-2eV -1. It was found that the states close to the valance band edge have relatively smaller hole capture cross sections than those at higher energy position, and electron capture cross sections are at least two or three orders larger than the corresponding hole capture cross sections. Secondly, the influence of iron contamination and hydrogenation following iron contamination on the electrical properties of (110)/(001) Si GB was characterized by a capacitance transient technique. Compared with the clean sample, iron contamination increased both the density of states by at least three times and the zero-bias barrier height by 70 meV, while reducing by two orders of magnitude the electron/hole capture cross-section ratio. Hydrogenation following iron contamination led to the reduction of the density of Fe-decorated GB states, which was increased to over 2x1013 cm-2eV-1 after iron contamination, to ˜1x1013 cm-2 eV-1 after hydrogenation treatment. The increased zero-bias GB energy barrier due to iron contamination was reversed as well by hydrogen treatment. The density of GB states before and after hydrogenation was evaluated by J-V, C-V and capacitance transient methods using gold/direct-silicon-bonded (DSB) (110) thin silicon top layer/(100) silicon substrate junctions. The GB potential energy barrier in thermal equilibrium was reduced by 70 meV. Whereas the clean sample had a density of GB states of ˜6x1012 cm-2eV-1 in the range of Ev+0.54˜0.64 eV, hydrogenation reduced the density of GB states to ˜9x1011 cm-2eV -1 in the range of Ev+0.56˜0.61 eV, which is about a seven-fold reduction from that of the clean sample. Segregation and thermal dissociation kinetics of hydrogen at a large-angle general GB in crystalline silicon have been investigated using deuterium as a readily identifiable isotope which duplicates hydrogen chemistry. Segregation or trapping of deuterium (hydrogen) introduced was found to take place at (110)/(001) Si GB. The segregation coefficient (k) of deuterium (hydrogen) at GB was determined as k≈24+/-3 at 100°C. Thermal dissociation of deuterium (hydrogen) from GB obeyed first-order kinetics with an activation energy of ˜1.62 eV. The electrical activities of dislocations in a SiGe/Si heterostructure were examined by deep level transient spectroscopy (DLTS) after iron contamination and phosphorous diffusion gettering. DLTS of iron contaminated samples revealed a peak at 210 K, which was assigned to individual iron atoms or very small (<2 nm) precipitates decorated along dislocations. Arrhenius plot of the 210 K peak yielded a hole capture cross section of 2.4x10-14 cm2 and an energy level of 0.42 eV above the valance band. DLTS of the iron contaminated sample revealed that 6x10 14 cm-3 of boron can more effectively trap interstitial iron at room temperature than the strain field/defect sites at 107 ˜108 cm-2 dislocations. Phosphorous diffusion experiments revealed that the gettering efficiency of iron impurities depends on the dislocation density. For regions of high dislocation density, phosphorous diffusion cannot remove all iron impurities decorated at dislocations, suggesting a strong binding of iron impurities at dislocation core defects.
Multidimensional k-nearest neighbor model based on EEMD for financial time series forecasting
NASA Astrophysics Data System (ADS)
Zhang, Ningning; Lin, Aijing; Shang, Pengjian
2017-07-01
In this paper, we propose a new two-stage methodology that combines the ensemble empirical mode decomposition (EEMD) with multidimensional k-nearest neighbor model (MKNN) in order to forecast the closing price and high price of the stocks simultaneously. The modified algorithm of k-nearest neighbors (KNN) has an increasingly wide application in the prediction of all fields. Empirical mode decomposition (EMD) decomposes a nonlinear and non-stationary signal into a series of intrinsic mode functions (IMFs), however, it cannot reveal characteristic information of the signal with much accuracy as a result of mode mixing. So ensemble empirical mode decomposition (EEMD), an improved method of EMD, is presented to resolve the weaknesses of EMD by adding white noise to the original data. With EEMD, the components with true physical meaning can be extracted from the time series. Utilizing the advantage of EEMD and MKNN, the new proposed ensemble empirical mode decomposition combined with multidimensional k-nearest neighbor model (EEMD-MKNN) has high predictive precision for short-term forecasting. Moreover, we extend this methodology to the case of two-dimensions to forecast the closing price and high price of the four stocks (NAS, S&P500, DJI and STI stock indices) at the same time. The results indicate that the proposed EEMD-MKNN model has a higher forecast precision than EMD-KNN, KNN method and ARIMA.
An explicit closed-form analytical solution for European options under the CGMY model
NASA Astrophysics Data System (ADS)
Chen, Wenting; Du, Meiyu; Xu, Xiang
2017-01-01
In this paper, we consider the analytical pricing of European path-independent options under the CGMY model, which is a particular type of pure jump Le´vy process, and agrees well with many observed properties of the real market data by allowing the diffusions and jumps to have both finite and infinite activity and variation. It is shown that, under this model, the option price is governed by a fractional partial differential equation (FPDE) with both the left-side and right-side spatial-fractional derivatives. In comparison to derivatives of integer order, fractional derivatives at a point not only involve properties of the function at that particular point, but also the information of the function in a certain subset of the entire domain of definition. This ;globalness; of the fractional derivatives has added an additional degree of difficulty when either analytical methods or numerical solutions are attempted. Albeit difficult, we still have managed to derive an explicit closed-form analytical solution for European options under the CGMY model. Based on our solution, the asymptotic behaviors of the option price and the put-call parity under the CGMY model are further discussed. Practically, a reliable numerical evaluation technique for the current formula is proposed. With the numerical results, some analyses of impacts of four key parameters of the CGMY model on European option prices are also provided.
Prediction of dislocation generation during Bridgman growth of GaAs crystals
NASA Technical Reports Server (NTRS)
Tsai, C. T.; Yao, M. W.; Chait, Arnon
1992-01-01
Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.
Prediction of dislocation generation during Bridgman growth of GaAs crystals
NASA Astrophysics Data System (ADS)
Tsai, C. T.; Yao, M. W.; Chait, Arnon
1992-11-01
Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.
Movement of basal plane dislocations in GaN during electron beam irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakimov, E. B.; National University of Science and Technology MISiS, Leninskiy pr. 4, Moscow 119049; Vergeles, P. S.
The movement of basal plane segments of dislocations in low-dislocation-density GaN films grown by epitaxial lateral overgrowth as a result of irradiation with the probing beam of a scanning electron microscope was detected by means of electron beam induced current. Only a small fraction of the basal plane dislocations was susceptible to such changes and the movement was limited to relatively short distances. The effect is explained by the radiation enhanced dislocation glide for dislocations pinned by two different types of pinning sites: a low-activation-energy site and a high-activation-energy site. Only dislocation segments pinned by the former sites can bemore » moved by irradiation and only until they meet the latter pinning sites.« less
Gromov, Kirill; Troelsen, Anders; Otte, Kristian Stahl; Ørsnes, Thue; Ladelund, Steen; Husted, Henrik
2015-01-01
Patient education and mobilization restrictions are often used in an attempt to reduce the risk of dislocation following primary THA. To date, there have been no studies investigating the safety of removal of mobilization restrictions following THA performed using a posterolateral approach. In this retrospective non-inferiority study, we investigated the rate of early dislocation following primary THA in an unselected patient cohort before and after removal of postoperative mobilization restrictions. From the Danish National Health Registry, we identified patients with early dislocation in 2 consecutive and unselected cohorts of patients who received primary THA at our institution from 2004 through 2008 (n = 946) and from 2010 through 2014 (n = 1,329). Patients in the first cohort were mobilized with functional restrictions following primary THA whereas patients in the second cohort were allowed unrestricted mobilization. Risk of early dislocation (within 90 days) was compared in the 2 groups and odds ratio (OR)-adjusted for possible confounders-was calculated. Reasons for early dislocation in the 2 groups were identified. When we adjusted for potential confounders, we found no increased risk of early dislocation within 90 days in patients who were mobilized without restrictions. Risk of dislocation within 90 days was lower (3.4% vs 2.8%), risk of dislocation within 30 days was lower (2.1% vs 2.0%), and risk of multiple dislocations (1.8% vs 1.1%) was lower in patients who were mobilized without restrictions, but not statistically significantly so. Increasing age was an independent risk factor for dislocation. Removal of mobilization restrictions from the mobilization protocol following primary THA performed with a posterolateral approach did not lead to an increased risk of dislocation within 90 days.
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; ...
2018-02-05
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
Computational issues in the simulation of two-dimensional discrete dislocation mechanics
NASA Astrophysics Data System (ADS)
Segurado, J.; LLorca, J.; Romero, I.
2007-06-01
The effect of the integration time step and the introduction of a cut-off velocity for the dislocation motion was analysed in discrete dislocation dynamics (DD) simulations of a single crystal microbeam. Two loading modes, bending and uniaxial tension, were examined. It was found that a longer integration time step led to a progressive increment of the oscillations in the numerical solution, which would eventually diverge. This problem could be corrected in the simulations carried out in bending by introducing a cut-off velocity for the dislocation motion. This strategy (long integration times and a cut-off velocity for the dislocation motion) did not recover, however, the solution computed with very short time steps in uniaxial tension: the dislocation density was overestimated and the dislocation patterns modified. The different response to the same numerical algorithm was explained in terms of the nature of the dislocations generated in each case: geometrically necessary in bending and statistically stored in tension. The evolution of the dislocation density in the former was controlled by the plastic curvature of the beam and was independent of the details of the simulations. On the contrary, the steady-state dislocation density in tension was determined by the balance between nucleation of dislocations and those which are annihilated or which exit the beam. Changes in the DD imposed by the cut-off velocity altered this equilibrium and the solution. These results point to the need for detailed analyses of the accuracy and stability of the dislocation dynamic simulations to ensure that the results obtained are not fundamentally affected by the numerical strategies used to solve this complex problem.
Non-Traumatic Anterior Dislocation of a Total Knee Replacement Associated with Neurovascular Injury
Aderinto, Joseph; Gross, Allan E; Rittenhouse, Bryan
2009-01-01
Prosthetic total knee replacements rarely dislocate. When dislocation does occur, it is usually in a posterior direction in association with a posterior stabilised, cruciate-sacrificing prosthesis. Neurovascular injury is unusual. In this report, we describe a case of anterior dislocation of a cruciate-retaining total knee replacement in a 67-year-old woman. The dislocation occurred in the absence of overt trauma and resulted in severe neurovascular injury. PMID:19686618
Lee, Ho Min; Kim, Jong Pil; Chung, Phil Hyun; Kang, Suk; Kim, Young Sung; Go, Bo Seong
2018-05-24
Knee dislocation following total knee replacement arthroplasty is a rare but serious complication. The incidence of dislocation following primary total knee arthroplasty with posterior stabilized implants ranges from 0.15 to 0.5%, and posterior dislocation after revision total knee arthroplasty is even rarer. Here, we report the case of a 76-year-old male who presented with posterior dislocation after posterior stabilized revision total knee arthroplasty.
ℓ(p)-Norm multikernel learning approach for stock market price forecasting.
Shao, Xigao; Wu, Kun; Liao, Bifeng
2012-01-01
Linear multiple kernel learning model has been used for predicting financial time series. However, ℓ(1)-norm multiple support vector regression is rarely observed to outperform trivial baselines in practical applications. To allow for robust kernel mixtures that generalize well, we adopt ℓ(p)-norm multiple kernel support vector regression (1 ≤ p < ∞) as a stock price prediction model. The optimization problem is decomposed into smaller subproblems, and the interleaved optimization strategy is employed to solve the regression model. The model is evaluated on forecasting the daily stock closing prices of Shanghai Stock Index in China. Experimental results show that our proposed model performs better than ℓ(1)-norm multiple support vector regression model.
Pyramidal dislocation induced strain relaxation in hexagonal structured InGaN/AlGaN/GaN multilayer
NASA Astrophysics Data System (ADS)
Yan, P. F.; Du, K.; Sui, M. L.
2012-10-01
Due to the special dislocation slip systems in hexagonal lattice, dislocation dominated deformations in hexagonal structured multilayers are significantly different from that in cubic structured systems. In this work, we have studied the strain relaxation mechanism in hexagonal structured InGaN/AlGaN/GaN multilayers with transmission electron microscopy. Due to lattice mismatch, the strain relaxation was found initiated with the formation of pyramidal dislocations. Such dislocations locally lie at only one preferential slip direction in the hexagonal lattice. This preferential slip causes a shear stress along the basal planes and consequently leads to dissociation of pyramidal dislocations and operation of the basal plane slip system. The compressive InGaN layers and "weak" AlGaN/InGaN interfaces stimulate the dissociation of pyramidal dislocations at the interfaces. These results enhance the understanding of interactions between dislocations and layer interfaces and shed new lights on deformation mechanism in hexagonal-lattice multilayers.
Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys
Zhao, Shijun; Osetsky, Yuri N.; Zhang, Yanwen; ...
2017-01-19
Single-phase concentrated solid solution alloys (CSAs), including high entropy alloys, exhibit excellent mechanical properties compared to conventional dilute alloys. However, the origin of this observation is not clear yet because the dislocation properties in CSAs are poorly understood. In this work, the mobility of a <110>{111} edge dislocation in pure Ni and equiatomic solid solution Ni 0.5Fe 0.5 (NiFe) is studied using molecular dynamics simulations with different empirical potentials. The threshold stress to initiate dislocation movement in NiFe is found to be much higher compared to pure Ni. The drag coefficient of the dislocation motion calculated from the linear regimemore » of dislocation velocities versus applied stress suggests that the movement of dislocations in NiFe is strongly damped compared to that in Ni. The present results indicate that the mobility of edge dislocations in fcc CSAs are controlled by the fluctuations in local stacking fault energy caused by the local variation of alloy composition.« less
NASA Astrophysics Data System (ADS)
Xia, Shengxu; El-Azab, Anter
2015-07-01
We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.
Pipe and grain boundary diffusion of He in UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galvin, C. O.T.; Cooper, M. W. D.; Fossati, P. C. M.
Molecular dynamics simulations have been conducted to study the effects of dislocations and grain boundaries on He diffusion inmore » $$\\text{U}{{\\text{O}}_{2}}$$ . Calculations were carried out for the {100}, {110} and {111} $$\\langle 1\\,1\\,0\\rangle $$ edge dislocations, the screw $$\\langle 1\\,1\\,0\\rangle $$ dislocation and Σ5, Σ13, Σ19 and Σ25 tilt grain boundaries. He diffusivity as a function of distance from the dislocation core and grain boundaries was investigated for the temperature range 2300–3000 K. An enhancement in diffusivity was predicted within 20 Å of the dislocations or grain boundaries. Further investigation showed that He diffusion in the edge dislocations follows anisotropic behaviour along the dislocation core, suggesting that pipe diffusion occurs. Here, an Arrhenius plot of He diffusivity against the inverse of temperature was also presented and the activation energy calculated for each structure, as a function of distance from the dislocation or grain boundary.« less
Ultrasonic Study of Dislocation Dynamics in Lithium -
NASA Astrophysics Data System (ADS)
Han, Myeong-Deok
1987-09-01
Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.
Period-doubling reconstructions of semiconductor partial dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Ji -Sang; Huang, Bing; Wei, Su -Huai
2015-09-18
Atomic-scale understanding and control of dislocation cores is of great technological importance, because they act as recombination centers for charge carriers in optoelectronic devices. Using hybrid density-functional calculations, we present period-doubling reconstructions of a 90 degrees partial dislocation in GaAs, for which the periodicity of like-atom dimers along the dislocation line varies from one to two, to four dimers. The electronic properties of a dislocation change drastically with each period doubling. The dimers in the single-period dislocation are able to interact, to form a dispersive one-dimensional band with deep-gap states. However, the inter-dimer interaction for the double-period dislocation becomes significantlymore » reduced; hence, it is free of mid-gap states. The Ga core undergoes a further period-doubling transition to a quadruple-period reconstruction induced by the formation of small hole polarons. In conclusion, the competition between these dislocation phases suggests a new passivation strategy via population manipulation of the detrimental single-period phase.« less
Pipe and grain boundary diffusion of He in UO 2
Galvin, C. O.T.; Cooper, M. W. D.; Fossati, P. C. M.; ...
2016-10-12
Molecular dynamics simulations have been conducted to study the effects of dislocations and grain boundaries on He diffusion inmore » $$\\text{U}{{\\text{O}}_{2}}$$ . Calculations were carried out for the {100}, {110} and {111} $$\\langle 1\\,1\\,0\\rangle $$ edge dislocations, the screw $$\\langle 1\\,1\\,0\\rangle $$ dislocation and Σ5, Σ13, Σ19 and Σ25 tilt grain boundaries. He diffusivity as a function of distance from the dislocation core and grain boundaries was investigated for the temperature range 2300–3000 K. An enhancement in diffusivity was predicted within 20 Å of the dislocations or grain boundaries. Further investigation showed that He diffusion in the edge dislocations follows anisotropic behaviour along the dislocation core, suggesting that pipe diffusion occurs. Here, an Arrhenius plot of He diffusivity against the inverse of temperature was also presented and the activation energy calculated for each structure, as a function of distance from the dislocation or grain boundary.« less
Uncovering the inertia of dislocation motion and negative mechanical response in crystals.
Tang, Yizhe
2018-01-09
Dislocations are linear defects in crystals and their motion controls crystals' mechanical behavior. The dissipative nature of dislocation propagation is generally accepted although the specific mechanisms are still not fully understood. The inertia, which is undoubtedly the nature of motion for particles with mass, seems much less convincing for configuration propagation. We utilize atomistic simulations in conditions that minimize dissipative effects to enable uncovering of the hidden nature of dislocation motion, in three typical model metals Mg, Cu and Ta. We find that, with less/no dissipation, dislocation motion is under-damped and explicitly inertial at both low and high velocities. The inertia of dislocation motion is intrinsic, and more fundamental than the dissipative nature. The inertia originates from the kinetic energy imparted from strain energy and stored in the moving core. Peculiar negative mechanical response associated with the inertia is also discovered. These findings shed light on the fundamental nature of dislocation motion, reveal the underlying physics, and provide a new physical explanation for phenomena relevant to high-velocity dislocations.
Electron energy can oscillate near a crystal dislocation
Li, Mingda; Cui, Wenping; Dresselhaus, Mildred S.; ...
2017-01-25
Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum field theory of a dislocation has remained undiscovered for decades. Here in this article we present an exactly-solvable one-dimensional quantum field theory of a dislocation, for both edge and screw dislocations in an isotropic medium, by introducing a new quasiparticle which we have called the ‘dislon’. The electron-dislocation relaxation time can then be studied directly from the electron self-energy calculation, which is reducible to classical results. In addition, we predict that the electron energy will experience anmore » oscillation pattern near a dislocation. Compared with the electron density’s Friedel oscillation, such an oscillation is intrinsically different since it exists even with only single electron is present. With our approach, the effect of dislocations on materials’ non-mechanical properties can be studied at a full quantum field theoretical level.« less
Sharma, Divashree; Khasgiwala, Ankit; Maheshwari, Bharat; Singh, Charanpreet; Shakya, Neelam
2017-02-01
Temporomandibular joint dislocation refers to the dislodgement of mandibular condyle from the glenoid fossa. Anterior and anteromedial dislocations of the mandibular condyle are frequently reported in the literature, but superolateral dislocation is a rare presentation. This report outlines a case of superolateral dislocation of an intact mandibular condyle that occurred in conjunction with an ipsilateral mandibular parasymphysis fracture. A review of the clinical features of superolateral dislocation of the mandibular condyle and the possible techniques of its reduction ranging from the most conservative means to extensive surgical interventions is presented. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bilateral posterior fracture-dislocation of the shoulder: Report of two cases
Claro, Rui; Sousa, Ricardo; Massada, Marta; Ramos, Joaquim; Lourenço, José M.
2009-01-01
Bilateral posterior fracture-dislocation of the shoulder is a very rare injury. Almost 50% of bilateral posterior dislocations are due to a convulsive seizure, rising to 90% if the dislocations are associated with fractures. Electric shock accounts for less than 5% of bilateral posterior dislocations of the shoulder. A systematization of the clinical and radiological approach, followed by an early diagnosis and proper surgical treatment is essential. Authors report 2 cases of bilateral posterior fracture-dislocation of the shoulder, one caused by a convulsive seizure and the other by an electric shock. A review of literature and a treatment protocol are also presented. PMID:20661400
NASA Astrophysics Data System (ADS)
Zhu, X. A.; Tsai, C. T.
2000-09-01
Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.
Dislocation mechanism based model for stage II fatigue crack propagation rate
NASA Technical Reports Server (NTRS)
Mazumdar, P. K.
1986-01-01
Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.
NASA Astrophysics Data System (ADS)
Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Gong, Wu; Aizawa, Kazuya; Tichy, Geza; Shi, Zengmin; Ungár, Tamas
2017-09-01
A lath martensite steel containing 0.22 mass pct carbon was analyzed in situ during tensile deformation by high-resolution time-of-flight neutron diffraction to clarify the large work-hardening behavior at the beginning of plastic deformation. The diffraction peaks in plastically deformed states exhibit asymmetries as the reflection of redistributions of the stress and dislocation densities/arrangements in two lath packets: soft packet, where the dislocation glides are favorable, and hard packet, where they are unfavorable. The dislocation density was as high as 1015 m-2 in the as-heat-treated state. During tensile straining, the load and dislocation density became different between the two lath packets. The dislocation character and arrangement varied in the hard packet but hardly changed in the soft packet. In the hard packet, dislocations that were mainly screw-type in the as-heat-treated state became primarily edge-type and rearranged towards a dipole character related to constructing cell walls. The hard packet played an important role in the work hardening in martensite, which could be understood by considering the increase in dislocation density along with the change in dislocation arrangement.
Mechanical annealing under low-amplitude cyclic loading in micropillars
NASA Astrophysics Data System (ADS)
Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo
2016-04-01
Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.
NASA Astrophysics Data System (ADS)
O'Reilly, Andrew J.; Quitoriano, Nathaniel
2018-01-01
Uniaxially strained Si1-xGex channels have been proposed as a solution for high mobility channels in next-generation MOSFETS to ensure continued device improvement as the benefits from further miniaturisation are diminishing. Previously proposed techniques to deposit uniaxially strained Si1-xGex epilayers on Si (0 0 1) substrates require multiple deposition steps and only yielded thin strips of uniaxially strained films. A lateral liquid-phase epitaxy (LLPE) technique was developed to deposit a blanket epilayer of asymmetrically strained Si97.4Ge2.6 on Si in a single step, where the epilayer was fully strained in the growth direction and 31% strain-relaxed in the orthogonal direction. The LLPE technique promoted the glide of misfit dislocations, which nucleated in a region with an orthogonal misfit dislocation network, into a region where the dislocation nucleation was inhibited. This created an array of parallel misfit dislocations which were the source of the asymmetric strain. By observing the thicknesses at which the dislocation network transitions from orthogonal to parallel and at which point dislocation glide is exhausted, the separate critical thicknesses for dislocation nucleation and dislocation glide can be determined.
Recombination-related properties of a-screw dislocations in GaN: A combined CL, EBIC, TEM study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, O. S., E-mail: o.s.medvedev@spbu.ru; Mikhailovskii, V. Yu.; IRC for Nanotechnology, Research Park, St.-Petersburg State University
2016-06-17
Cathodoluminescence (CL), electron beam current (EBIC) and transmission electron microscopy (TEM) techniques have been applied to investigate recombination properties and structure of freshly introduced dislocations in low-ohmic GaN crystals. It was confirmed that the only a-screw dislocations exhibited an intense characteristic dislocation-related luminescence (DRL) which persisted up to room temperature and was red-shifted by about 0.3 eV with respect to the band gap energy not only in HVPE but also in MOCVD grown samples. EBIC contrast of the dislocations was found to be temperature independent indicating that the dislocation-related recombination level is situated below 200 meV with respect of conductionmore » band minimum. With the increasing of the magnification of the dislocation TEM cross-sectional images they were found to disappear, probably, due to the recombination enhanced dislocation glide (REDG) under electron beam exposure which was immediately observed in CL investigations on a large scale. The stacking fault ribbon in the core of dissociated a-screw dislocation which form a quantum well for electrons was proposed to play an important role both in DRL spectrum formation and in REDG.« less
Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-02-01
We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.
NASA Astrophysics Data System (ADS)
Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.
2018-01-01
Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.
Ebraheim, Nabil A; Liu, Jiayong; Ramineni, Satheesh K; Liu, Xiaochen; Xie, Joe; Hartman, Ryan G; Goel, Vijay K
2009-11-01
Many investigators have conducted studies to determine the biomechanics, causes, complications and treatment of unilateral facet joint dislocation in the cervical spine. However, there is no quantitative data available on morphological changes in the intervertebral foramen of the cervical spine following unilateral facet joint dislocation. These data are important to understand the cause of neurological compromise following unilateral facet joint dislocation. Eight embalmed human cadaver cervical spine specimens ranging from level C1-T1 were used. The nerve roots of these specimens at C5-C6 level were marked by wrapping a 0.12mm diameter wire around them. Unilateral facet dislocation at C5-C6 level was simulated by serially sectioning the corresponding ligamentous structures. A CT scan of the specimens was obtained before and after the dislocation was simulated. A sagittal plane through the centre of the pedicle and facet joint was constructed and used for measurement. The height and area of the intervertebral foramen, the facet joint space, nerve root diameter and area, and vertebral alignment both before and after dislocation were evaluated. The intervertebral foramen area changed from 50.72+/-0.88mm(2) to 67.82+/-4.77mm(2) on the non-dislocated side and from 41.39+/-1.11mm(2) to 113.77+/-5.65mm(2) on the dislocated side. The foraminal heights changed from 9.02+/-0.30mm to 10.52+/-0.50mm on the non-dislocated side and 10.43+/-0.50mm to 17.04+/-0.96mm on the dislocated side. The facet space area in the sagittal plane changed from 6.80+/-0.80mm(2) to 40.02+/-1.40mm(2) on the non-dislocated side. The C-5 anterior displacement showed a great change from 0mm to 5.40+/-0.24mm on the non-dislocated side and from 0mm to 3.42+/-0.20mm on the dislocated side. Neither of the nerve roots on either side showed a significant change in size. The lack of change in nerve root area indicates that the associated nerve injury with unilateral facet joint dislocation is probably due to distraction rather than due to direct nerve root compression.
FAST TRACK COMMUNICATION High rate straining of tantalum and copper
NASA Astrophysics Data System (ADS)
Armstrong, R. W.; Zerilli, F. J.
2010-12-01
High strain rate measurements reported recently for several tantalum and copper crystal/polycrystal materials are shown to follow dislocation mechanics-based constitutive relations, first at lower strain rates, for dislocation velocity control of the imposed plastic deformations and, then at higher rates, transitioning to nano-scale dislocation generation control by twinning or slip. For copper, there is the possibility of added-on slip dislocation displacements to be accounted for from the newly generated dislocations.
The core structure and recombination energy of a copper screw dislocation: a Peierls study
NASA Astrophysics Data System (ADS)
Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.
2017-09-01
The recombination process of dislocations is central to cross-slip, and transmission through ?3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. We apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed ?-surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress, the two partial dislocations coalesce to a separation of ??. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (?) and the intrinsic stacking fault energy (?-?). We report recombination energies of ?W = 0.168 eV/Å and ?W = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. We develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.
Size dependence of yield strength simulated by a dislocation-density function dynamics approach
NASA Astrophysics Data System (ADS)
Leung, P. S. S.; Leung, H. S.; Cheng, B.; Ngan, A. H. W.
2015-04-01
The size dependence of the strength of nano- and micron-sized crystals is studied using a new simulation approach in which the dynamics of the density functions of dislocations are modeled. Since any quantity of dislocations can be represented by a density, this approach can handle large systems containing large quantities of dislocations, which may handicap discrete dislocation dynamics schemes due to the excessive computation time involved. For this reason, pillar sizes spanning a large range, from the sub-micron to micron regimes, can be simulated. The simulation results reveal the power-law relationship between strength and specimen size up to a certain size, beyond which the strength varies much more slowly with size. For specimens smaller than ∼4000b, their strength is found to be controlled by the dislocation depletion condition, in which the total dislocation density remains almost constant throughout the loading process. In specimens larger than ∼4000b, the initial dislocation distribution is of critical importance since the presence of dislocation entanglements is found to obstruct deformation in the neighboring regions within a distance of ∼2000b. This length scale suggests that the effects of dense dislocation clusters are greater in intermediate-sized specimens (e.g. 4000b and 8000b) than in larger specimens (e.g. 16 000b), according to the weakest-link concept.
Singular orientations and faceted motion of dislocations in body-centered cubic crystals.
Kang, Keonwook; Bulatov, Vasily V; Cai, Wei
2012-09-18
Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress-stress spikes-surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes-special, vicinal, and general-with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures.
Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; ...
2016-02-01
Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guangming; Zhou, Zhangjian; Mo, Kun
An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at highmore » temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.« less
Acetabular cup position and risk of dislocation in primary total hip arthroplasty.
Seagrave, Kurt G; Troelsen, Anders; Malchau, Henrik; Husted, Henrik; Gromov, Kirill
2017-02-01
Background and purpose - Hip dislocation is one of the most common complications following total hip arthroplasty (THA). Several factors that affect dislocation have been identified, including acetabular cup positioning. Optimal values for cup inclination and anteversion are debatable. We performed a systematic review to describe the different methods for measuring cup placement, target zones for cup positioning, and the association between cup positioning and dislocation following primary THA. Methods - A systematic search of literature in the PubMed database was performed (January and February 2016) to identify articles that compared acetabular cup positioning and the risk of dislocation. Surgical approach and methods for measurement of cup angles were also considered. Results - 28 articles were determined to be relevant to our research question. Some articles demonstrated that cup positioning influenced postoperative dislocation whereas others did not. The majority of articles could not identify a statistically significant difference between dislocating and non-dislocating THA with regard to mean angles of cup anteversion and inclination. Most of the articles that assessed cup placement within the Lewinnek safe zone did not show a statistically significant reduction in dislocation rate. Alternative target ranges have been proposed by several authors. Interpretation - The Lewinnek safe zone could not be justified. It is difficult to draw broad conclusions regarding a definitive target zone for cup positioning in THA, due to variability between studies and the likely multifactorial nature of THA dislocation. Future studies comparing cup positioning and dislocation rate should investigate surgical approach separately. Standardized tools for measurement of cup positioning should be implemented to allow comparison between studies.
Acetabular cup position and risk of dislocation in primary total hip arthroplasty
Seagrave, Kurt G; Troelsen, Anders; Malchau, Henrik; Husted, Henrik; Gromov, Kirill
2017-01-01
Background and purpose — Hip dislocation is one of the most common complications following total hip arthroplasty (THA). Several factors that affect dislocation have been identified, including acetabular cup positioning. Optimal values for cup inclination and anteversion are debatable. We performed a systematic review to describe the different methods for measuring cup placement, target zones for cup positioning, and the association between cup positioning and dislocation following primary THA. Methods — A systematic search of literature in the PubMed database was performed (January and February 2016) to identify articles that compared acetabular cup positioning and the risk of dislocation. Surgical approach and methods for measurement of cup angles were also considered. Results— 28 articles were determined to be relevant to our research question. Some articles demonstrated that cup positioning influenced postoperative dislocation whereas others did not. The majority of articles could not identify a statistically significant difference between dislocating and non-dislocating THA with regard to mean angles of cup anteversion and inclination. Most of the articles that assessed cup placement within the Lewinnek safe zone did not show a statistically significant reduction in dislocation rate. Alternative target ranges have been proposed by several authors. Interpretation— The Lewinnek safe zone could not be justified. It is difficult to draw broad conclusions regarding a definitive target zone for cup positioning in THA, due to variability between studies and the likely multifactorial nature of THA dislocation. Future studies comparing cup positioning and dislocation rate should investigate surgical approach separately. Standardized tools for measurement of cup positioning should be implemented to allow comparison between studies. PMID:27879150
Sariali, Elhadi; Klouche, Shahnez; Mamoudy, Patrick
2012-07-01
The components position is a major factor under the surgeon's control in determining the risk of dislocation post total hip arthroplasty. The aim of this study was to investigate the proper three-dimensional components position including the centre of rotation in the case of anterior dislocation. Among 1764 consecutive patients who underwent total hip arthroplasty using a direct anterior approach, 27 experienced anterior dislocation. The three-dimensional hip anatomy was investigated in 12 patients who were paired with 12 patients from the same initial cohort who did not experience dislocation and also with 36 control patients with osteoarthritis. A pelvic Cartesian referential was defined to perform the acetabular analysis. The coordinates were expressed as percentages of the pelvic width, height and depth. The anteversion angles were measured. The hip centre of rotation was significantly shifted medially and posteriorly in the dislocation group when compared to the non-dislocation group and also to the control group. There was no significant difference in component angular position between the dislocation-group and the non-dislocation group. However, the stem anteversion in the dislocation group was increased in comparison to the mean natural femoral anteversion of the control group. A medial and posterior displacement of the hip rotation centre was found to correlate to anterior dislocation post total hip arthoplasty. These results suggest the importance of an accurate restoration of the centre of rotation, whilst avoiding an excessive acetabular reaming which may induce a medial and a posterior displacement. III comparative non randomised. Copyright © 2011 Elsevier Ltd. All rights reserved.
The role of economic evaluation in the pricing and reimbursement of medicines.
Drummond, M; Jönsson, B; Rutten, F
1997-06-01
In most countries, governments or health insurers have taken initiatives to influence the price and utilization of medicines. One stated objective of these schemes is to encourage efficiency, or cost-effectiveness. In principle, economic evaluation should to be relevant to decisions about the pricing and reimbursement of health technologies, since it offers a way of estimating the additional value to society of a new intervention (e.g. medicine) relative to current therapy. However, the application of economic evaluation in drug pricing and reimbursement schemes is variable. Therefore, this paper reviews the actual and potential role of economic evaluation in different drug pricing and reimbursement schemes, such as 'free pricing' systems (United Kingdom, United States), two-stage administered systems (France), reference pricing systems (Germany, Netherlands, Sweden) and economic evaluation systems (Australia, Canada). It is concluded that, other than in the case of Australia and Canada, the potential role of economic evaluation could be greatly developed, especially in the case of new medicines, for which there is no close substitute. Comments are also given on the practical problems of using this approach. However, it is noted that economic evaluation alone cannot set a price for a medicine, since a decision has to be made about the proportion of added value going to society and the proportion going to the pharmaceutical company as a reward for innovation.
Medicine price awareness in chronic patients in Belgium.
Fraeyman, Jessica; Symons, Linda; De Loof, Hans; De Meyer, Guido R Y; Remmen, Roy; Beutels, Philippe; Van Hal, Guido
2015-02-01
Under increasing pressure to contain health expenditures governments across Europe have implemented policies to increase responsible medicine use, e.g. by increasing co-insurance paid for by patients. In times of austerity, how do chronic disease patients perceive the medicine price they have to pay? We used a mixed methods research design. First, we distributed a close-ended questionnaire among 983 chronic disease patients in 30 Flemish pharmacies. Second, we performed semi-structured interviews with 15 of these patients. We surveyed for knowledge on the prescription medicine they bought, as well as for their needs for information and their therapeutic compliance. Although patients express a lack (and a need) of information on prices during the consultation with the general practitioner (GP), (s)he hardly addresses medicine prices. Patients often only know the medicine price when they are at the pharmacy and patients need to decide to buy the medicine or not. This often results in patients taking the medicine when considered affordable within their social and financial context. It seems essential that patients are better informed about medicine prices as well as the constraints on physicians to prescribe cost-effectively. Therefore, medicine prices should be discussed more often during physician consults. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Statistical analysis of strait time index and a simple model for trend and trend reversal
NASA Astrophysics Data System (ADS)
Chen, Kan; Jayaprakash, C.
2003-06-01
We analyze the daily closing prices of the Strait Time Index (STI) as well as the individual stocks traded in Singapore's stock market from 1988 to 2001. We find that the Hurst exponent is approximately 0.6 for both the STI and individual stocks, while the normal correlation functions show the random walk exponent of 0.5. We also investigate the conditional average of the price change in an interval of length T given the price change in the previous interval. We find strong correlations for price changes larger than a threshold value proportional to T; this indicates that there is no uniform crossover to Gaussian behavior. A simple model based on short-time trend and trend reversal is constructed. We show that the model exhibits statistical properties and market swings similar to those of the real market.
Biomedical innovation in the era of health care spending constraints.
Robinson, James C
2015-02-01
Insurers, hospitals, physicians, and consumers are increasingly weighing price against performance in their decisions to purchase and use new drugs, devices, and other medical technologies. This approach will tend to affect biomedical innovation adversely by reducing the revenues available for research and development. However, a more constrained funding environment may also have positive impacts. The passing era of largely cost-unconscious demand fostered the development of incremental innovations priced at premium levels. The new constrained-funding era will require medical technology firms to design their products with the features most valued by payers and patients, price them at levels justified by clinical performance, and manage distribution through organizations rather than to individual physicians. The emerging era has the potential to increase the social value of innovation by focusing industry on design, pricing, and distribution principles that are more closely aligned with the preferences-and pocketbooks-of its customers. Project HOPE—The People-to-People Health Foundation, Inc.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Bi, Zhengzheng; Shen, Dehua
2017-02-01
This paper investigates the impact of investor structure on the price-volume relationship by simulating a continuous double auction market. Connected with the underlying mechanisms of the price-volume relationship, i.e., the Mixture of Distribution Hypothesis (MDH) and the Sequential Information Arrival Hypothesis (SIAH), the simulation results show that: (1) there exists a strong lead-lag relationship between the return volatility and trading volume when the number of informed investors is close to the number of uninformed investors in the market; (2) as more and more informed investors entering the market, the lead-lag relationship becomes weaker and weaker, while the contemporaneous relationship between the return volatility and trading volume becomes more prominent; (3) when the informed investors are in absolute majority, the market can achieve the new equilibrium immediately. Therefore, we can conclude that the investor structure is a key factor in affecting the price-volume relationship.
Atomic-scale mechanisms of helium bubble hardening in iron
Osetskiy, Yury N.; Stoller, Roger E.
2015-06-03
Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material s properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effectmore » of He bubble size and He concentration inside bubbles. Thus, we found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.« less
Designing superhard metals: The case of low borides
NASA Astrophysics Data System (ADS)
Liang, Yongcheng; Qin, Ping; Jiang, Haitao; Zhang, Lizhen; Zhang, Jing; Tang, Chun
2018-04-01
The search for new superhard materials has usually focused on strong covalent solids. It is, however, a huge challenge to design superhard metals because of the low resistance of metallic bonds against the formation and movement of dislocations. Here, we report a microscopic mechanism of enhancing hardness by identifying highly stable thermodynamic phases and strengthening weak slip planes. Using the well-known transition-metal borides as prototypes, we demonstrate that several low borides possess unexpectedly high hardness whereas high borides exhibit an anomalous hardness reduction. Such an unusual phenomenon originates from the peculiar bonding mechanisms in these compounds. Furthermore, the low borides have close compositions, similar structures, and degenerate formation energies. This enables facile synthesis of a multiphase material that includes a large number of interfaces among different borides, and these interfaces form nanoscale interlocks that strongly suppress the glide dislocations within the metal bilayers, thereby drastically enhancing extrinsic hardness and achieving true superhard metals. Therefore, this study not only elucidates the unique mechanism responsible for the anomalous hardening in this class of borides but also offers a valid alchemy to design novel superhard metals with multiple functionalities.
Deformation behavior of HCP titanium alloy: Experiment and Crystal plasticity modeling
Wronski, M.; Arul Kumar, Mariyappan; Capolungo, Laurent; ...
2018-03-02
The deformation behavior of commercially pure titanium is studied using experiments and a crystal plasticity model. Compression tests along the rolling, transverse, and normal-directions, and tensile tests along the rolling and transverse directions are performed at room temperature to study the activation of slip and twinning in the hexagonal closed packed titanium. A detailed EBSD based statistical analysis of the microstructure is performed to develop statistics of both {10-12} tensile and {11-22} compression twins. A simple Monte Carlo (MC) twin variant selection criterion is proposed within the framework of the visco-plastic self-consistent (VPSC) model with a dislocation density (DD) basedmore » law used to describe dislocation hardening. In the model, plasticity is accommodated by prismatic, basal and pyramidal slip modes, and {10-12} tensile and {11-22} compression twinning modes. Thus, the VPSC-MC model successfully captures the experimentally observed activation of low Schmid factor twin variants for both tensile and compression twins modes. The model also predicts macroscopic stress-strain response, texture evolution and twin volume fraction that are in agreement with experimental observations.« less
Deformation behavior of HCP titanium alloy: Experiment and Crystal plasticity modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M.; Arul Kumar, Mariyappan; Capolungo, Laurent
The deformation behavior of commercially pure titanium is studied using experiments and a crystal plasticity model. Compression tests along the rolling, transverse, and normal-directions, and tensile tests along the rolling and transverse directions are performed at room temperature to study the activation of slip and twinning in the hexagonal closed packed titanium. A detailed EBSD based statistical analysis of the microstructure is performed to develop statistics of both {10-12} tensile and {11-22} compression twins. A simple Monte Carlo (MC) twin variant selection criterion is proposed within the framework of the visco-plastic self-consistent (VPSC) model with a dislocation density (DD) basedmore » law used to describe dislocation hardening. In the model, plasticity is accommodated by prismatic, basal and pyramidal slip modes, and {10-12} tensile and {11-22} compression twinning modes. Thus, the VPSC-MC model successfully captures the experimentally observed activation of low Schmid factor twin variants for both tensile and compression twins modes. The model also predicts macroscopic stress-strain response, texture evolution and twin volume fraction that are in agreement with experimental observations.« less
NASA Astrophysics Data System (ADS)
Gallagher, H. G.; Sherwood, J. N.; Vrcelj, R. M.
2017-10-01
An examination has been made of the defect structure of crystals of the energetic material β-cyclotetramethylene-tetranitramine (HMX) using both Laboratory (Lang method) and Synchrotron (Bragg Reflection and Laue method) techniques. The results of the three methods are compared with particular attention to the influence of potential radiation damage caused to the samples by the latter, more energetic, technique. The comparison shows that both techniques can be confidently used to evaluate the defect structures yielding closely similar results. The results show that, even under the relatively casual preparative methods used (slow evaporation of unstirred solutions at constant temperature), HMX crystals of high perfection can be produced. The crystals show well defined bulk defect structures characteristic of organic materials in general: growth dislocations, twins, growth sector boundaries, growth banding and solvent inclusions. The distribution of the defects in specific samples is correlated with the morphological variation of the grown crystals. The results show promise for the further evaluation and characterisation of the structure and properties of dislocations and other defects and their involvement in mechanical and energetic processes in this material.
Efficient option valuation of single and double barrier options
NASA Astrophysics Data System (ADS)
Kabaivanov, Stanimir; Milev, Mariyan; Koleva-Petkova, Dessislava; Vladev, Veselin
2017-12-01
In this paper we present an implementation of pricing algorithm for single and double barrier options using Mellin transformation with Maximum Entropy Inversion and its suitability for real-world applications. A detailed analysis of the applied algorithm is accompanied by implementation in C++ that is then compared to existing solutions in terms of efficiency and computational power. We then compare the applied method with existing closed-form solutions and well known methods of pricing barrier options that are based on finite differences.
A Real Options Approach to Valuing the Risk Transfer in a Multi-Year Procurement Contract
2009-10-01
asset follows a Brownian motion process where the returns have a lognormal distribution. H. BLACK-SCHOLES MODEL The value of the put option p on...risk in a firm-fixed-price contract. The government also provides interest-free financing that can greatly reduce the amount of capital a contractor...structured finance and credit default swap applications. 8 E. OPTIONS THEORY We will use closed form BS-type option pricing methods to estimate the
2016-03-31
system mounted on an armored vehicle . It detects and marks landmines and other buried explosive hazards, and serves an important role in keeping...countries. Figure 1. HMDS Shown on a Husky Vehicle Source: Project Manager Close Combat Systems FOR OFFICIAL USE ONLY FOR OFFICIAL USE ONLY Introduction...Reasonable Prices From Meggitt Aircraft Braking Systems for Sole-Source Commercial Spare Parts,” May 8, 2015 Report No. DODIG-2015-103, “Summary of
NASA Astrophysics Data System (ADS)
Tanikawa, Tomoyuki; Ohnishi, Kazuki; Kanoh, Masaya; Mukai, Takashi; Matsuoka, Takashi
2018-03-01
The three-dimensional imaging of threading dislocations in GaN films was demonstrated using two-photon excitation photoluminescence. The threading dislocations were shown as dark lines. The spatial resolutions near the surface were about 0.32 and 3.2 µm for the in-plane and depth directions, respectively. The threading dislocations with a density less than 108 cm-2 were resolved, although the aberration induced by the refractive index mismatch was observed. The decrease in threading dislocation density was clearly observed by increasing the GaN film thickness. This can be considered a novel method for characterizing threading dislocations in GaN films without any destructive preparations.
Multiphysical simulation analysis of the dislocation structure in germanium single crystals
NASA Astrophysics Data System (ADS)
Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.
2016-09-01
To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.
Failure mechanisms and closed reduction of a constrained tripolar acetabular liner.
Robertson, William J; Mattern, Christopher J; Hur, John; Su, Edwin P; Pellicci, Paul M
2009-02-01
Unlike traditional bipolar constrained liners, the Osteonics Omnifit constrained acetabular insert is a tripolar device, consisting of an inner bipolar bearing articulating within an outer, true liner. Every reported failure of the Omnifit tripolar implant has been by failure at the shell-bone interface (Type I failure), failure at the shell-liner interface (Type II failure), or failure of the locking mechanism resulting in dislocation of the bipolar-liner interface (Type III failure). In this report we present two cases of failure of the Omnifit tripolar at the bipolar-femoral head interface. To our knowledge, these are the first reported cases of failure at the bipolar-femoral head interface (Type IV failure). In addition, we described the first successful closed reduction of a Type IV failure.
Dusetzina, Stacie B; Keating, Nancy L
2016-02-01
Orally administered anticancer medications are among the fastest growing components of cancer care. These medications are expensive, and cost-sharing requirements for patients can be a barrier to their use. For Medicare beneficiaries, the Affordable Care Act will close the Part D coverage gap (doughnut hole), which will reduce cost sharing from 100% in 2010 to 25% in 2020 for drug spending above $2,960 until the beneficiary reaches $4,700 in out-of-pocket spending. How much these changes will reduce out-of-pocket costs is unclear. We used the Medicare July 2014 Prescription Drug Plan Formulary, Pharmacy Network, and Pricing Information Files from the Centers for Medicare & Medicaid Services for 1,114 stand-alone and 2,230 Medicare Advantage prescription drug formularies, which represent all formularies in 2014. We identified orally administered anticancer medications and summarized drug costs, cost-sharing designs used by available plans, and the estimated out-of-pocket costs for beneficiaries without low-income subsidies who take a single drug before and after the doughnut hole closes. Little variation existed in formulary design across plans and products. The average price per month for included products was $10,060 (range, $5,123 to $16,093). In 2010, median beneficiary annual out-of-pocket costs for a typical treatment duration ranged from $6,456 (interquartile range, $6,433 to $6,482) for dabrafenib to $12,160 (interquartile range, $12,102 to $12,262) for sunitinib. With the assumption that prices remain stable, after the doughnut hole closes, beneficiaries will spend approximately $2,550 less. Out-of-pocket costs for Medicare beneficiaries taking orally administered anticancer medications are high and will remain so after the doughnut hole closes. Efforts are needed to improve affordability of high-cost cancer drugs for beneficiaries who need them. © 2015 by American Society of Clinical Oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingda; Cui, Wenping; Dresselhaus, Mildred S.
Crystal dislocations govern the plastic mechanical properties of materials but also affect the electrical and optical properties. However, a fundamental and quantitative quantum field theory of a dislocation has remained undiscovered for decades. Here in this article we present an exactly-solvable one-dimensional quantum field theory of a dislocation, for both edge and screw dislocations in an isotropic medium, by introducing a new quasiparticle which we have called the ‘dislon’. The electron-dislocation relaxation time can then be studied directly from the electron self-energy calculation, which is reducible to classical results. In addition, we predict that the electron energy will experience anmore » oscillation pattern near a dislocation. Compared with the electron density’s Friedel oscillation, such an oscillation is intrinsically different since it exists even with only single electron is present. With our approach, the effect of dislocations on materials’ non-mechanical properties can be studied at a full quantum field theoretical level.« less
NASA Astrophysics Data System (ADS)
Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.
2014-02-01
A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.
First-time anterior shoulder dislocations: should they be arthroscopically stabilised?
Sedeek, Sedeek Mohamed; Bin Abd Razak, Hamid Rahmatullah; Ee, Gerard WW; Tan, Andrew HC
2014-01-01
The glenohumeral joint is inherently unstable because the large humeral head articulates with the small shadow glenoid fossa. Traumatic anterior dislocation of the shoulder is a relatively common athletic injury, and the high frequency of recurrent instability in young athletes after shoulder dislocation is discouraging to both the patient and the treating physician. Management of primary traumatic shoulder dislocation remains controversial. Traditionally, treatment involves initial immobilisation for 4–6 weeks, followed by functional rehabilitation. However, in view of the high recurrence rates associated with this traditional approach, there has been an escalating interest in determining whether immediate surgical intervention can lower the rate of recurrent shoulder dislocation, improving the patient’s quality of life. This review article aims to provide an overview of the nature and pathogenesis of first-time primary anterior shoulder dislocations, the widely accepted management modalities, and the efficacy of primary surgical intervention in first-time primary anterior shoulder dislocations. PMID:25631890
Dislocation Ledge Sources: Dispelling the Myth of Frank-Read Source Importance
NASA Astrophysics Data System (ADS)
Murr, L. E.
2016-12-01
In the early 1960s, J.C.M. Li questioned the formation of dislocation pileups at grain boundaries, especially in high-stacking-fault free-energy fcc metals and alloys, and proposed grain boundary ledge sources for dislocations in contrast to Frank -Read sources. This article reviews these proposals and the evolution of compelling evidence for grain boundary or related interfacial ledge sources of dislocations in metals and alloys, including unambiguous observations using transmission electron microscopy. Such observations have allowed grain boundary ledge source emission profiles of dislocations to be quantified in 304 stainless steel (with a stacking-fault free energy of 23 mJ/m2) and nickel (with a stacking-fault free energy of 128 mJ/m2) as a function of engineering strain. The evidence supports the conclusion that FR dislocation sources are virtually absent in metal and alloy deformation with ledges at interfaces dominating as dislocation sources.
Thomson, George; O'Dea, Des; Wilson, Nick; Edwards, Richard
2010-01-23
Tobacco affordability, prices and tobacco tax rates have considerable effects on smoking uptake, consumption, and quitting. We examined the trends in New Zealand per capita tobacco consumption and real cigarette prices from 1975-2008. Since 1984, there has been a close inverse relationship between real price and per capita tobacco consumption. Thus price increases drive consumption falls. However, in the periods of 1992-1997 and 2002-2008, both price and consumption were largely stable. The stability since 2002 means other tobacco control interventions have been undercut by increased tobacco affordability (due to increased average real incomes). Furthermore, the lack of tobacco tax increases (to be used to fund better tobacco control) is against majority surveyed New Zealand public opinion, and may be contrary to even smokers' views. The great majority of smokers, who want to quit, could be assisted by more extensive programmes funded by the extra revenue from tobacco tax increases. These could include more prime-time mass media campaigns and greater Quitline capacity. Tobacco tax increases are a highly evidence-based policy that could help reduce harm to the health of New Zealanders and reduce health inequalities.
20 CFR 663.105 - When must adults and dislocated workers be registered?
Code of Federal Regulations, 2012 CFR
2012-04-01
... 20 Employees' Benefits 4 2012-04-01 2012-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must...
20 CFR 663.105 - When must adults and dislocated workers be registered?
Code of Federal Regulations, 2014 CFR
2014-04-01
... 20 Employees' Benefits 4 2014-04-01 2014-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must...
20 CFR 663.105 - When must adults and dislocated workers be registered?
Code of Federal Regulations, 2013 CFR
2013-04-01
... 20 Employees' Benefits 4 2013-04-01 2013-04-01 false When must adults and dislocated workers be... LABOR (CONTINUED) ADULT AND DISLOCATED WORKER ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Delivery of Adult and Dislocated Worker Services Through the One-Stop Delivery System § 663.105 When must...
NASA Astrophysics Data System (ADS)
Gornostyrev, Yu. N.
2005-03-01
The plastic deformation in bcc metals is realized by the motion of screw dislocations with a complex star-like non-planar core. In this case, the direct investigation of the solute effect by first principles electronic structure calculations is a challenging problem for which we follow a combined approach that includes atomistic dislocation modelling with ab-initio parametrization of interatomic interactions. The screw dislocation core structure in Mo alloys is described within the model of atomic row displacements along a dislocation line with the interatomic row potential estimated from total energy full-potential linear muffin-tin orbital (FLMTO) calculations with the generalized gradient approximation (GGA) for the exchange-correlation potential. We demonstrate (1) that the solute effect on the dislocation structure is different for ``hard'' and ``easy'' cores and (2) that the softener addition in a ``hard'' core gives rise to a structural transformation into a configuration with a lower energy through an intermediate state. The softener solute is shown to disturb locally the three-fold symmetry of the dislocation core and the dislocation structure tends to the split planar core.
Hollow-core screw dislocations in 6H-SiC single crystals: A test of Frank`s theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, W.; Dudley, M.; Glass, R.
1997-03-01
Hollow-core screw dislocations, also known as `micropipes`, along the [0001] axis in 6H-SiC single crystals, have been studied by synchrotron white beam x-ray topography (SWBXT), scanning electron microscopy (SEM), and Nomarski optical microscopy (NOM). Using SWBXT, the magnitude of the burgers vector of screw dislocations has been determined by measuring the following four parameters: (1) the diameter of dislocation images in back-reflection topographs; (2) the width of bimodal dislocation images in transmission topographs; (3) the magnitude of the tilt of lattice planes on both sides of dislocation core in projection topographs; and (4) the magnitude of the tilt of latticemore » planes in section topographs. The four methods show good agreement. The burgers vector magnitude of screw dislocations, b, and the diameter of associated micropipes, D, were fitted to Frank`s prediction for hollow-core screw dislocations: D = {mu}b{sup 2}/4{pi}{sup 2}{gamma}, where {mu} is shear modulus, and {gamma} is specific surface energy. 15 refs., 17 figs.« less
Alcohol in Greenland 1951-2010: consumption, mortality, prices.
Aage, Hans
2012-01-01
Fluctuations in alcohol consumption in Greenland have been extreme since alcohol became available to the Greenland Inuit in the 1950s, increasing from low levels in the 1950s to very high levels in the 1980s - about twice as high as alcohol consumption in Denmark. Since then, consumption has declined, and current consumption is slightly below alcohol consumption in Denmark, while alcohol prices are far above Danish prices. Description of historical trends and possible causal connections of alcohol prices, alcohol consumption and alcohol-related mortality in Greenland 1951-2010 as a background for the evaluation of the impact of various types of policy. Time series for Greenland 1951-2010 for alcohol prices, consumption and mortality are compiled, and variation and correlations are discussed in relation to various policies aimed at limiting alcohol consumption. Corresponding time series for Denmark 1906-2010 are presented for comparison. The trends in alcohol prices and consumption followed each other rather closely until the 1990s in Greenland and the 1980s in Denmark. At this time, consumption stabilised while prices decreased further, but the effect of prices upon consumption is strong, also in recent years. A trend in Greenlandic mortality similar to consumption is discernible, but not significant. Among alcohol-related deaths cirrhosis of the liver is less prevalent whilst accidents are more prevalent than in Denmark. The effect of alcohol excise taxes and rationing upon consumption is evident. The stabilisation and subsequent decline in consumption since the mid-1990s, while alcohol prices decreased persistently, does not preclude continued effects of prices. On the contrary, price effects have been neutralised by other stronger causes. Whether these are government anti-alcohol campaigns or a cultural change is not clear.
Alcohol in Greenland 1951–2010: consumption, mortality, prices
Aage, Hans
2012-01-01
Background Fluctuations in alcohol consumption in Greenland have been extreme since alcohol became available to the Greenland Inuit in the 1950s, increasing from low levels in the 1950s to very high levels in the 1980s – about twice as high as alcohol consumption in Denmark. Since then, consumption has declined, and current consumption is slightly below alcohol consumption in Denmark, while alcohol prices are far above Danish prices. Objective Description of historical trends and possible causal connections of alcohol prices, alcohol consumption and alcohol-related mortality in Greenland 1951–2010 as a background for the evaluation of the impact of various types of policy. Design Time series for Greenland 1951–2010 for alcohol prices, consumption and mortality are compiled, and variation and correlations are discussed in relation to various policies aimed at limiting alcohol consumption. Corresponding time series for Denmark 1906–2010 are presented for comparison. Results The trends in alcohol prices and consumption followed each other rather closely until the 1990s in Greenland and the 1980s in Denmark. At this time, consumption stabilised while prices decreased further, but the effect of prices upon consumption is strong, also in recent years. A trend in Greenlandic mortality similar to consumption is discernible, but not significant. Among alcohol-related deaths cirrhosis of the liver is less prevalent whilst accidents are more prevalent than in Denmark. Conclusions The effect of alcohol excise taxes and rationing upon consumption is evident. The stabilisation and subsequent decline in consumption since the mid-1990s, while alcohol prices decreased persistently, does not preclude continued effects of prices. On the contrary, price effects have been neutralised by other stronger causes. Whether these are government anti-alcohol campaigns or a cultural change is not clear. PMID:23256091
Statistics of dislocation pinning at localized obstacles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, A.; Bhattacharya, M., E-mail: mishreyee@vecc.gov.in; Barat, P.
2014-10-14
Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning ofmore » dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.« less
Surface stress mediated image force and torque on an edge dislocation
NASA Astrophysics Data System (ADS)
Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh
2018-07-01
The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.
A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
2017-08-02
We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp; Zhang, Xu
2015-07-07
Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources andmore » pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.« less
Thermal activation of dislocations in large scale obstacle bypass
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; Martinez, Enrique
2017-08-01
Dislocation dynamics simulations have been used extensively to predict hardening caused by dislocation-obstacle interactions, including irradiation defect hardening in the athermal case. Incorporating the role of thermal energy on these interactions is possible with a framework provided by harmonic transition state theory (HTST) enabling direct access to thermally activated reaction rates using the Arrhenius equation, including rates of dislocation-obstacle bypass processes. Moving beyond unit dislocation-defect reactions to a representative environment containing a large number of defects requires coarse-graining the activation energy barriers of a population of obstacles into an effective energy barrier that accurately represents the large scale collective process. The work presented here investigates the relationship between unit dislocation-defect bypass processes and the distribution of activation energy barriers calculated for ensemble bypass processes. A significant difference between these cases is observed, which is attributed to the inherent cooperative nature of dislocation bypass processes. In addition to the dislocation-defect interaction, the morphology of the dislocation segments pinned to the defects play an important role on the activation energies for bypass. A phenomenological model for activation energy stress dependence is shown to describe well the effect of a distribution of activation energies, and a probabilistic activation energy model incorporating the stress distribution in a material is presented.
Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal
NASA Technical Reports Server (NTRS)
Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric
2016-01-01
Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.
NASA Astrophysics Data System (ADS)
Xu, Wen-Sheng; Zhang, Wen-Zheng
2018-01-01
A new orientation relationship (OR) is found between Widmanstätten cementite precipitates and the austenite matrix in a 1.3C-14Mn steel. The associated habit plane (HP) and the dislocations in the HP have been investigated with transmission electron microscopy. The HP is parallel to ? in cementite, and it is parallel to ? in austenite. Three groups of interfacial dislocations are observed in the HP, with limited quantitative experimental data. The line directions, the spacing and the Burgers vectors of two sets of dislocations have been calculated based on a misfit analysis, which combines the CSL/DSC/O-lattice theories, row matching and good matching site (GMS) mappings. The calculated results are in reasonable agreement with the experimental results. The dislocations 'Coarse 1' and 'Fine 1' are in the same direction as the matching rows, i.e. ?. 'Coarse 1' dislocations are secondary dislocations with a Burgers vector of ?, and 'Fine 1' dislocations are pseudo-primary dislocations with a plausible Burgers vector of ?. The reason why the fraction of the new OR is much less than that of the dominant Pitsch OR has been discussed in terms of the degree of matching in the HPs.
Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...
2015-08-05
Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less
NASA Astrophysics Data System (ADS)
Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.
2017-01-01
We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.
The core structure and recombination energy of a copper screw dislocation: a Peierls study
Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.
2017-05-19
The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less
The core structure and recombination energy of a copper screw dislocation: a Peierls study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.
The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less