Science.gov

Sample records for clostridium acetobutylicum genome

  1. Annotation of the Clostridium Acetobutylicum Genome

    SciTech Connect

    Daly, M. J.

    2004-06-09

    The genome sequence of the solvent producing bacterium Clostridium acetobutylicum ATCC824, has been determined by the shotgun approach. The genome consists of a 3.94 Mb chromosome and a 192 kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases, closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria.

  2. Genome analysis of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19.

    PubMed

    Cho, Changhee; Choe, Donghui; Jang, Yu-Sin; Kim, Kyung-Jin; Kim, Won Jun; Cho, Byung-Kwan; Papoutsakis, E Terry; Bennett, George N; Seung, Do Young; Lee, Sang Yup

    2017-02-01

    Previously the development of a hyper acetone-butanol-ethanol (ABE) producing Clostridium acetobutylicum BKM19 strain capable of producing 30.5% more total solvent by random mutagenesis of its parental strain PJC4BK, which is a buk mutant C. acetobutylicum ATCC 824 strain is reported. Here, BKM19 and PJC4BK strains are re-sequenced by a high-throughput sequencing technique to understand the mutations responsible for enhanced solvent production. In comparison with the C. acetobutylicum PJC4BK, 13 single nucleotide variants (SNVs), one deletion and one back mutation SNV are identified in the C. acetobutylicum BKM19 genome. Except for one SNV found in the megaplasmid, all mutations are found in the chromosome of BKM19. Among them, a mutation in the thlA gene encoding thiolase is further studied with respect to enzyme activity and butanol production. The mutant thiolase (thlA(V5A) ) is showed a 32% higher activity than that of the wild-type thiolase (thlA(WT) ). In batch fermentation, butanol production is increased by 26% and 23% when the thlA(V5A) gene is overexpressed in the wild-type C. acetobutylicum ATCC 824 and in its derivative, the thlA-knockdown TKW-A strain, respectively. Based on structural analysis, the mutation in thiolase does not have a direct effect on the regulatory determinant region (RDR). However, the mutation at the 5(th) residue seems to influence the stability of the RDR, and thus, increases the enzymatic activity and enhances solvent production in the BKM19 strain.

  3. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    DOE PAGES

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; ...

    2014-10-14

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation.

  4. Genome shuffling of Clostridium acetobutylicum CICC 8012 for improved production of acetone-butanol-ethanol (ABE).

    PubMed

    Gao, Xiaofeng; Zhao, Hai; Zhang, Guohua; He, Kaize; Jin, Yanling

    2012-08-01

    Genome shuffling was applied to increase ABE production of the strict anaerobe C. acetobutylicum CICC 8012. By using physical and chemical mutagenesis, strains with superior streptomycin sulfate, 2-deoxy-D-glucose and butanol tolerance levels were isolated. These strains were used for genome shuffling. The best performing strain F2-GA was screened after two rounds of genome shuffling. With 55 g glucose/l as carbon source, F2-GA produced 22.21 g ABE/l in 72 h and ABE yield reached 0.42 g/g which was about 34.53 % improvement compared to the wild type. Fermentation parameters and gene expression of several key enzymes in ABE metabolic pathways were varied significantly between F2-GA and the wild type. These results demonstrated the potential use of genome shuffling to microbial breeding which were difficult to deal with traditional methods.

  5. Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum.

    PubMed

    Zhang, Lei; Leyn, Semen A; Gu, Yang; Jiang, Weihong; Rodionov, Dmitry A; Yang, Chen

    2012-03-01

    The transcription factor AraR controls utilization of L-arabinose in Bacillus subtilis. In this study, we combined a comparative genomic reconstruction of AraR regulons in nine Clostridium species with detailed experimental characterization of AraR-mediated regulation in Clostridium acetobutylicum. Based on the reconstructed AraR regulons, a novel ribulokinase, AraK, present in all analyzed Clostridium species was identified, which was a nonorthologous replacement of previously characterized ribulokinases. The predicted function of the araK gene was confirmed by inactivation of the araK gene in C. acetobutylicum and biochemical assays using purified recombinant AraK. In addition to the genes involved in arabinose utilization and arabinoside degradation, extension of the AraR regulon to the pentose phosphate pathway genes in several Clostridium species was revealed. The predicted AraR-binding sites in the C. acetobutylicum genome and the negative effect of L-arabinose on DNA-regulator complex formation were verified by in vitro binding assays. The predicted AraR-controlled genes in C. acetobutylicum were experimentally validated by testing gene expression patterns in both wild-type and araR-inactivated mutant strains during growth in the absence or presence of L-arabinose.

  6. Cellulolytic Activity of Clostridium acetobutylicum.

    PubMed

    Lee, S F; Forsberg, C W; Gibbins, L N

    1985-08-01

    Clostridium acetobutylicum NRRL B527 and ATCC 824 exhibited extracellular and cell-bound endoglucanase and cellobiase activities during growth in a chemically defined medium with cellobiose as the sole source of carbohydrate. For both strains, the endoglucanase was found to be mainly extracellular (70 to 90%) during growth in continuous or batch cultures with the pH maintained at 5.2, whereas the cellobiase was mainly cell associated (60 to 90%). During continuous cultivation of strain B527 with cellobiose as the limiting nutrient, maximum production of the endoglucanase and cellobiase occurred at pH values of 5.2 and 4.8, respectively. In the carbon-limited continuous cultures, strain 824 produced similar levels of endoglucanase, cellobiosidase, and cellobiase activities regardless of the carbon source used. However, in ammonium- or phosphate-limited cultures, with an excess of glucose, only 1/10 of the endoglucanase was produced, and neither cellobiosidase nor cellobiase activities were detectable. A crude extracellular enzyme preparation from strain B527 hydrolyzed carboxymethylcellulose and phosphoric acid-swollen cellulose readily and microcrystalline cellulose (A vicel) to a lesser extent. Glucose accounted for more than 90% of the reducing sugar produced by the hydrolysis of acid-swollen cellulose and Avicel. Strain B527 did not grow in medium with acid-swollen cellulose as the sole source of carbohydrate, although it grew readily on the products obtained by hydrolyzing the cellulose in vitro with a preparation of extracellular cellulase derived from the same organism.

  7. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    SciTech Connect

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; Papoutsakis, Eleftherios T.; Maranas, Costas D.

    2014-10-14

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation.

  8. Effects of butanol on Clostridium acetobutylicum.

    PubMed Central

    Bowles, L K; Ellefson, W L

    1985-01-01

    The internal pH of Clostridium acetobutylicum was determined at various stages during the growth of the organism. Even in the presence of significant quantities of acetic, butyric, and lactic acids, an internal pH of 6.2 was maintained. Experiments using N,N'-dicyclohexylcarbodiimide indicated that a functioning H+-ATPase is necessary for internal pH control. Butanol, one of the end products of the fermentation, had numerous harmful effects on C. acetobutylicum. At a concentration high enough to inhibit growth, butanol destroyed the ability of the cell to maintain internal pH, lowered the intracellular level of ATP, and inhibited glucose uptake. Experiments done at two different external pH values suggested that the butanol-mediated decrease in ATP concentration was independent of the drop in internal pH. Glucose uptake was not affected by arsenate, suggesting that uptake was not ATP dependent. The effects of butanol on C. acetobutylicum are complex, inhibiting several interrelated membrane processes. PMID:2868690

  9. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    SciTech Connect

    Bao, Guanhui; Dong, Hongjun; Zhu, Yan; Mao, Shaoming; Zhang, Tianrui; Zhang, Yanping; Chen, Zugen; Li, Yin

    2014-08-08

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.

  10. Metabolite Analysis of Clostridium acetobutylicum: Fermentation in a Microbial Fuel Cell

    DTIC Science & Technology

    2010-01-01

    Metabolite analysis of Clostridium acetobutylicum : Fermentation in a microbial fuel cell Amethist S. Finch, Timothy D. Mackie, Christian J. Sund...Fermentation products Clostridium acetobutylicum Current generation a b s t r a c t Microbial fuel cells (MFCs) were used to monitor metabolism...changes in Clostridium acetobutylicum fer- mentations. When MFCs were inoculated with C. acetobutylicum , they generated a unique voltage output pattern

  11. Purification and Characterization of an Autolysin from Clostridium acetobutylicum

    PubMed Central

    Webster, Jocelyn R.; Reid, Sharon J.; Jones, David T.; Woods, David R.

    1981-01-01

    A proteinaceous substance with antibiotic-like activity, resembling that of a bacteriocin, was isolated from an industrial-scale acetone-butanol fermentation of Clostridium acetobutylicum. The substance, purified by acetone precipitation, diethylaminoethyl cellulose chromatography, and polyacrylamide gel electrophoresis, was characterized as a glycoprotein with a molecular weight of 28,000. The glycoprotein was partially inactivated by certain protease enzymes. It had no effect on deoxyribonucleic acid, ribonucleic acid, or protein synthesis, and it did not result in the loss of intracellular adenosine triphosphate. The glycoprotein lysed sodium dodecyl sulfate-treated cells and cell wall preparations, and therefore it is referred to as an autolysin. The autolysin gene appeared to be chromosomal since plasmid deoxyribonucleic acid was not detected in the C. acetobutylicum strain. PMID:16345710

  12. Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum

    PubMed Central

    Kim, Sangwoo; Jang, Yu-Sin; Ha, Sung-Chul; Ahn, Jae-Woo; Kim, Eun-Jung; Hong Lim, Jae; Cho, Changhee; Shin Ryu, Yong; Kuk Lee, Sung; Lee, Sang Yup; Kim, Kyung-Jin

    2015-01-01

    Thiolase is the first enzyme catalysing the condensation of two acetyl-coenzyme A (CoA) molecules to form acetoacetyl-CoA in a dedicated pathway towards the biosynthesis of n-butanol, an important solvent and biofuel. Here we elucidate the crystal structure of Clostridium acetobutylicum thiolase (CaTHL) in its reduced/oxidized states. CaTHL, unlike those from other aerobic bacteria such as Escherichia coli and Zoogloea ramegera, is regulated by the redox-switch modulation through reversible disulfide bond formation between two catalytic cysteine residues, Cys88 and Cys378. When CaTHL is overexpressed in wild-type C. acetobutylicum, butanol production is reduced due to the disturbance of acidogenic to solventogenic shift. The CaTHLV77Q/N153Y/A286K mutant, which is not able to form disulfide bonds, exhibits higher activity than wild-type CaTHL, and enhances butanol production upon overexpression. On the basis of these results, we suggest that CaTHL functions as a key enzyme in the regulation of the main metabolism of C. acetobutylicum through a redox-switch regulatory mechanism. PMID:26391388

  13. Metronidazole activation and isolation of Clostridium acetobutylicum electron transport genes.

    PubMed Central

    Santangelo, J D; Jones, D T; Woods, D R

    1991-01-01

    An Escherichia coli F19 recA, nitrate reductase-deficient mutant was constructed by transposon mutagenesis and shown to be resistant to metronidazole. This mutant was a most suitable host for the isolation of Clostridium acetobutylicum genes on recombinant plasmids, which activated metronidazole and rendered the E. coli F19 strain sensitive to metronidazole. Twenty-five E. coli F19 clones containing different recombinant plasmids were isolated and classified into five groups on the basis of their sensitivity to metronidazole. The clones were tested for nitrate reductase, pyruvate-ferredoxin oxidoreductase, and hydrogenase activities. DNA hybridization and restriction endonuclease mapping revealed that four of the C. acetobutylicum insert DNA fragments on recombinant plasmids were linked in an 11.1-kb chromosomal fragment. DNA sequencing and amino acid homology studies indicated that this DNA fragment contained a flavodoxin gene which encoded a protein of 160 amino acids that activated metronidazole and made the E. coli F19 mutant very sensitive to metronidazole. The flavodoxin and hydrogenase genes which are involved in electron transfer systems were linked on the 11.1-kb DNA fragment from C. acetobutylicum. Images PMID:1991710

  14. Cellulose fermentation by a coculture of a mesophilic cellulolytic Clostridium and Clostridium acetobutylicum

    SciTech Connect

    Fond, O.; Petitdemange, E.; Petitdemange, H.; Engasser, J.M.

    1983-01-01

    A coculture of a mesophilic cellulolytic Clostridium with Clostridium acetobutylicum can yield a direct conversion of cellulose into chemicals. In 13 days 30 g/l Solka Floc is degraded and fermented into 14 g/l butyric acid, 4 g/l acetic acid, 3 g/l ethanol, and 1 g/l butanol. A four times higher rate of cellulose hydrolysis than in pure culture of the cellulolytic Clostridium is thus obtained. Fed-batch fermentations of C. acetobutylicum at different glucose feeding rate show that solvents are only produced at a sufficient high rate of glucose supply to the medium. Acids are thus the main products of the coculture because of the limited rate of cellulolysis by the mesophilic strain. 7 references, 5 figures.

  15. Pervaporative butanol fermentation by Clostridium acetobutylicum B18

    SciTech Connect

    Geng, Q.; Park, C.H. . Dept. of Agricultural Engineering)

    1994-04-15

    Extractive acetone-butanol-ethanol (ABE) fermentation was carried out successfully using pervaporation and a low-acid-producing Clostridium acetobutylicum B18. A pervaporation module with 0.17 m[sup 2] of surface area was made of silicone membrane of 240 [mu]m thickness. Pervaporation experiments using make-up solutions showed that butanol and acetone fluxes increased linearly with their concentrations in the aqueous phase. Fickian diffusion coefficients were constants for fixed air flow rates, and increased at higher sweep air flow rates. During batch and fed-batch fermentation, pervaporation at an air flow rate of 8 L/min removed butanol and acetone efficiently. Butanol concentration was maintained below 4.5 g/L even though Clostridium acetobutylicum B18 produced butanol steadily. Pervaporation could not remove organic acids efficiently, but organic acids did not accumulate because strain B18 produced little organic acid and recycled added organic acids efficiently. With pervaporation, glucose consumption rate increased compared to without pervaporation, and up to 160 g/L of glucose was consumed during 80 h. Cell growth was not inhibited by possible salt accumulation or oxygen diffusion through the silicone tubing. The culture volume was maintained relatively constant during fed-batch operation because of an offsetting effect of water and product removal by pervaporation and addition of nutrient supplements.

  16. Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores

    PubMed Central

    Liu, Zhen; Qiao, Kai; Tian, Lei; Zhang, Quan; Liu, Zi-Yong; Li, Fu-Li

    2015-01-01

    Autolysis is a widespread phenomenon in bacteria. In batch fermentation of Clostridium acetobutylicum ATCC 824, there is a spontaneous large-scale autolysis phenomenon with significant decrease of cell density immediately after exponential phase. To unravel the role of autolysis, an autolysin-coding gene, CA_C0554, was disrupted by using ClosTron system to obtain the mutant C. acetobutylicum lyc::int(72). The lower final cell density and faster cell density decrease rate of C. acetobutylicum ATCC 824 than those of C. acetobutylicum lyc::int(72) indicates that CA_C0554 was an important but not the sole autolysin-coding gene responding for the large-scale autolysis. Similar glucose utilization and solvents production but obvious lower cell density of C. acetobutylicum ATCC 824 comparing to C. acetobutylicum lyc::int(72) suggests that lysed C. acetobutylicum ATCC 824 cells were metabolic inactive. On the contrary, the spore density of C. acetobutylicum ATCC 824 is 26.1% higher than that of C. acetobutylicum lyc::int(72) in the final culture broth of batch fermentation. We speculated that spontaneous autolysis of metabolic-inactive cells provided nutrients for the sporulating cells. The present study suggests that one important biological role of spontaneous large-scale autolysis in C. acetobutylicum ATCC 824 batch fermentation is contributing to generation of more spores during sporulation. PMID:26441884

  17. Systems Biology of Clostridium Acetobutylicum: Sugar Metabolism and TNT Reduction

    NASA Astrophysics Data System (ADS)

    Hurley, Margaret; Sund, Christian; Servinsky, Matthew

    2010-03-01

    Rapid advancements in biotechnology are expected to impact multiple areas of interest to the Army, including decontamination, degradation of toxic chemicals and biofuels. This project is a joint experimental/computational effort to map out the metabolic pathways in Clostridium acetobutylicum, and use this information to develop a systems biology model of this system. This organism has been chosen specifically due to the fact that it has potential application to both biofuel production and nitroaromatic degradation. It is hoped that a systems biology model may provide key information to enhance both of these processes. Details will be presented of a first-generation model of central carbon metabolism in C. Acet., developed upon gene expression data accumulated from bacteria grown on different carbohydrate sources. Additional work will discuss the effect of TNT exposure and potential relevant enhancements of the model.

  18. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase

    SciTech Connect

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B; Hettich, Robert {Bob} L; Verberkmoes, Nathan C; Lefsrud, Mark G

    2012-01-01

    Economically viable production of solvents through acetone butanol ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of five proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.

  19. Metabolic flexibility of a butyrate pathway mutant of Clostridium acetobutylicum.

    PubMed

    Yoo, Minyeong; Croux, Christian; Meynial-Salles, Isabelle; Soucaille, Philippe

    2017-01-31

    Clostridium acetobutylicum possesses two homologous buk genes, buk (or buk1) and buk2, which encode butyrate kinases involved in the last step of butyrate formation. To investigate the contribution of buk in detail, an in-frame deletion mutant was constructed. However, in all the Δbuk mutants obtained, partial deletions of the upstream ptb gene were observed, and low phosphotransbutyrylase and butyrate kinase activities were measured. This demonstrates that i) buk (CA_C3075) is the key butyrate kinase-encoding gene and that buk2 (CA_C1660) that is poorly transcribed only plays a minor role; and ii) strongly suggests that a Δbuk mutant is not viable if the ptb gene is not also inactivated, probably due to the accumulation of butyryl-phosphate, which might be toxic for the cell. One of the ΔbukΔptb mutants was subjected to quantitative transcriptomic (mRNA molecules/cell) and fluxomic analyses in acidogenic, solventogenic and alcohologenic chemostat cultures. In addition to the low butyrate production, drastic changes in metabolic fluxes were also observed for the mutant: i) under acidogenic conditions, the primary metabolite was butanol and a new metabolite, 2-hydroxy-valerate, was produced ii) under solventogenesis, 58% increased butanol production was obtained compared to the control strain under the same conditions, and a very high yield of butanol formation (0.3gg(-1)) was reached; and iii) under alcohologenesis, the major product was lactate. Furthermore, at the transcriptional level, adhE2, which encodes an aldehyde/alcohol dehydrogenase and is known to be a gene specifically expressed in alcohologenesis, was surprisingly highly expressed in all metabolic states in the mutant. The results presented here not only support the key roles of buk and ptb in butyrate formation but also highlight the metabolic flexibility of C. acetobutylicum in response to genetic alteration of its primary metabolism.

  20. Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum.

    PubMed

    Amador-Noguez, Daniel; Feng, Xiao-Jiang; Fan, Jing; Roquet, Nathaniel; Rabitz, Herschel; Rabinowitz, Joshua D

    2010-09-01

    Obligatory anaerobic bacteria are major contributors to the overall metabolism of soil and the human gut. The metabolic pathways of these bacteria remain, however, poorly understood. Using isotope tracers, mass spectrometry, and quantitative flux modeling, here we directly map the metabolic pathways of Clostridium acetobutylicum, a soil bacterium whose major fermentation products include the biofuels butanol and hydrogen. While genome annotation suggests the absence of most tricarboxylic acid (TCA) cycle enzymes, our results demonstrate that this bacterium has a complete, albeit bifurcated, TCA cycle; oxaloacetate flows to succinate both through citrate/alpha-ketoglutarate and via malate/fumarate. Our investigations also yielded insights into the pathways utilized for glucose catabolism and amino acid biosynthesis and revealed that the organism's one-carbon metabolism is distinct from that of model microbes, involving reversible pyruvate decarboxylation and the use of pyruvate as the one-carbon donor for biosynthetic reactions. This study represents the first in vivo characterization of the TCA cycle and central metabolism of C. acetobutylicum. Our results establish a role for the full TCA cycle in an obligatory anaerobic organism and demonstrate the importance of complementing genome annotation with isotope tracer studies for determining the metabolic pathways of diverse microbes.

  1. Microbiological production of acetone-butanol by Clostridium acetobutylicum.

    PubMed

    Abou-Zeid, A A; Fouad, M; Yassein, M

    1978-01-01

    Trials succeeded in raising the efficiencies of the fermentation medium, used in the fermentative production of acetone-butanol by Clostridium acetobutylicum. Egyptian black strap molasses (50.0% sugars) was suitable as carbon source in the fermentation medium, and (NH4)2SO4 was utilized with great success as inorganic nitrogen source. 140.0 g/l black strap molasses (about 7.0% sugars) and 3.0 g/l (NH4)2SO4 were the optimum concentrations for obtaining good yields of acetone and butanol. Molasses and (NH4)2SO4 were preferred because they are cheaper than the other carbon and organic nitrogen sources, used in the fermentative production of acetone-butanol. The percentage increase of the total solvents produced in the fermentation (production medium) was increased by 64.0. The slop (by-product of the acetone-butanol fermentation after distillation) was re-used in the fermentation medium as organic nitrogen source and supported the microorganisms for a good production of acetone and butanol, while when stillage was used in the production medium, the total solvents output was less than that produced in the medium containing slop.

  2. Genetic and biochemical analysis of solvent formation in Clostridium acetobutylicum

    SciTech Connect

    Bennett, G.N.; Rudolph, F.B.

    1998-05-01

    The anaerobic organism Clostridium acetobutylicum has been used for commercial production of important organic solvents due to its ability to convert a wide variety of crude substrates to acids and alcohols. Current knowledge concerning the molecular genetics, cell regulation and metabolic engineering of this organism is still rather limited. The objectives are to improve the knowledge of the molecular genetics and enzymology of Clostridia in order to make genetic alterations which will more effectively channel cell metabolism toward production of desired products. Two factors that limit butanol production in continuous cultures are: (1) The degeneration of the culture, with an increase in the proportion of cells which are incapable of solvent production. Currently isolated degenerate strains are being evaluated to analyze the molecular mechanism of degeneration to determine if it is due to a genetic loss of solvent related genes, loss of a regulatory element, or an increase in general mutagenesis. Recent studies show two general types of degenerates, one which seems to have lost essential solvent pathway genes and another which has not completely lost all solvent production capability and retains the DNA bearing solvent pathway genes. (2) The production of hydrogen which uses up reducing equivalents in the cell. If the reducing power were more fully directed to the reduction reactions involved in butanol production, the process would be more efficient. The authors have studied oxidation reduction systems related to this process. These studies focus on ferredoxin and rubredoxin and their oxidoreductases.

  3. Sequences affecting the regulation of solvent production in Clostridium acetobutylicum.

    PubMed

    Scotcher, Miles C; Huang, Ke-xue; Harrison, Mary L; Rudolph, Frederick B; Bennett, George N

    2003-07-01

    The high solvent phenotype of Clostridium acetobutylicum mutants B and H was complemented by the introduction of a plasmid that contains either an intact or partially-deleted copy of solR, restoring acetone and butanol production to wild-type levels. This demonstrates that the solR open reading frame on pSOLThi is not required to restore solvent levels. The promoter region upstream of alcohol dehydrogense E (adhE) was examined in efforts to identify sites that play major roles in the control of expression. A series of adhE promoter fragments was constructed and the expression of each in acid- and solvent-phases of growth was analyzed using a chloramphenicol acetyl-transferase reporter system. Our results show that a region beyond the 0A box is needed for full induction of the promoter. Additionally, we show that the presence of sequences around a possible processing site designated S2 may have a negative role in the regulation of adhE expression.

  4. Control of butanol formation in Clostridium acetobutylicum by transcriptional activation.

    PubMed

    Thormann, Kai; Feustel, Lothar; Lorenz, Karin; Nakotte, Stephan; Dürre, Peter

    2002-04-01

    The sol operon of Clostridium acetobutylicum is the essential transcription unit for formation of the solvents butanol and acetone. The recent proposal that transcriptional regulation of this operon is controlled by the repressor Orf5/SolR (R. V. Nair, E. M. Green, D. E. Watson, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 181:319-330, 1999) was found to be incorrect. Instead, regulation depends on activation, most probably by the multivalent transcription factor Spo0A. The operon is transcribed from a single promoter. A second signal identified in primer extension studies results from mRNA processing and can be observed only in the natural host, not in a heterologous host. The first structural gene in the operon (adhE, encoding a bifunctional butyraldehyde/butanol dehydrogenase) is translated into two different proteins, the mature AdhE enzyme and the separate butanol dehydrogenase domain. The promoter of the sol operon is preceded by three imperfect repeats and a putative Spo0A-binding motif, which partially overlaps with repeat 3 (R3). Reporter gene analysis performed with the lacZ gene of Thermoanaerobacterium thermosulfurigenes and targeted mutations of the regulatory region revealed that the putative Spo0A-binding motif, R3, and R1 are essential for control. The data obtained also indicate that an additional activator protein is involved.

  5. A Quantitative System-Scale Characterization of the Metabolism of Clostridium acetobutylicum

    PubMed Central

    Yoo, Minyeong; Bestel-Corre, Gwenaelle; Croux, Christian; Riviere, Antoine; Meynial-Salles, Isabelle

    2015-01-01

    ABSTRACT Engineering industrial microorganisms for ambitious applications, for example, the production of second-generation biofuels such as butanol, is impeded by a lack of knowledge of primary metabolism and its regulation. A quantitative system-scale analysis was applied to the biofuel-producing bacterium Clostridium acetobutylicum, a microorganism used for the industrial production of solvent. An improved genome-scale model, iCac967, was first developed based on thorough biochemical characterizations of 15 key metabolic enzymes and on extensive literature analysis to acquire accurate fluxomic data. In parallel, quantitative transcriptomic and proteomic analyses were performed to assess the number of mRNA molecules per cell for all genes under acidogenic, solventogenic, and alcohologenic steady-state conditions as well as the number of cytosolic protein molecules per cell for approximately 700 genes under at least one of the three steady-state conditions. A complete fluxomic, transcriptomic, and proteomic analysis applied to different metabolic states allowed us to better understand the regulation of primary metabolism. Moreover, this analysis enabled the functional characterization of numerous enzymes involved in primary metabolism, including (i) the enzymes involved in the two different butanol pathways and their cofactor specificities, (ii) the primary hydrogenase and its redox partner, (iii) the major butyryl coenzyme A (butyryl-CoA) dehydrogenase, and (iv) the major glyceraldehyde-3-phosphate dehydrogenase. This study provides important information for further metabolic engineering of C. acetobutylicum to develop a commercial process for the production of n-butanol. PMID:26604256

  6. Orf5/SolR: a transcriptional repressor of the sol operon of Clostridium acetobutylicum?

    PubMed

    Thormann, K; Dürre, P

    2001-11-01

    The gene of Orf5 (SolR) of Clostridium acetobutylicum DSM 792 was subcloned and overexpressed in Escherichia coli. The protein was purified with Ni-NTA agarose and used for DNA binding assays. No DNA binding of Orf5 to regions upstream of the sol operon from C. acetobutylicum was observed. Overexpression of Orf5 in C. acetobutylicum led to a change in the organism's pattern of glycosylated exoproteins. The Orf5 protein was localized in the cell membrane fraction and to a small extent in the supernatant medium. Based on these results Orf5 (SolR) appears not to act as a transcriptional repressor in C. acetobutylicum, but instead may be an enzyme involved in glycosylation or deglycosylation.

  7. Direct selection of Clostridium acetobutylicum fermentation mutants by a proton suicide method

    SciTech Connect

    Cueto, P.H.; Mendez, B.S. )

    1990-02-01

    Clostridium acetobutylicum ATCC 10132 mutants altered in acetic acid synthesis or in the shift to solventogenesis were directly selected by a proton suicide method after mutagenic treatment, by using bromide and bromate as selective agents. The mutants were characterized according to their solvent and acid production. On the selection plates they differed in colony phenotype from the parent strain.

  8. Discovery of External Modulators of the Fe-Fe Hydrogenase Enzyme in Clostridium acetobutylicum

    DTIC Science & Technology

    2015-02-01

    ARL-TR-7189 ● FEB 2015 US Army Research Laboratory Discovery of External Modulators of the Fe-Fe Hydrogenase...ARL-TR-7189 ● FEB 2015 US Army Research Laboratory Discovery of External Modulators of the Fe-Fe Hydrogenase Enzyme in Clostridium...October 2014 4. TITLE AND SUBTITLE Discovery of External Modulators of the Fe-Fe Hydrogenase Enzyme in Clostridium acetobutylicum 5a. CONTRACT

  9. Effect of iron limitation and fur gene inactivation on the transcriptional profile of the strict anaerobe Clostridium acetobutylicum.

    PubMed

    Vasileva, Delyana; Janssen, Holger; Hönicke, Daniel; Ehrenreich, Armin; Bahl, Hubert

    2012-07-01

    Iron is a nutrient of critical importance for the strict anaerobe Clostridium acetobutylicum, as it is involved in numerous basic cellular functions and metabolic pathways. A gene encoding a putative ferric uptake regulator (Fur) has been identified in the genome of C. acetobutylicum. In this work, we inactivated the fur gene by using insertional mutagenesis. The resultant mutant showed a slow-growing phenotype and enhanced sensitivity to oxidative stress, but essentially no dramatic change in its fermentation pattern. A unique feature of its physiology was the overflowing production of riboflavin. To gain further insights into the role of the Fur protein and the mechanisms for establishment of iron balance in C. acetobutylicum, we characterized and compared the gene-expression profile of the fur mutant and the iron-limitation stimulon of the parental strain. Not surprisingly, a repertoire of iron-transport systems was upregulated in both microarray datasets, suggesting that they are regulated by Fur according to the availability of iron. In addition, iron limitation and inactivation of fur affected the expression of several genes involved in energy metabolism. Among them, two genes, encoding a lactate dehydrogenase and a flavodoxin, were highly induced. In order to support the function of the latter, the ribDBAH operon responsible for riboflavin biosynthesis was also upregulated significantly. Furthermore, the iron-starvation response of C. acetobutylicum involved transcriptional modifications that were not detected in the fur mutant, suggesting that there exist additional mechanisms for adaptation to low-iron environments. Collectively, these results demonstrate that the strict anaerobe C. acetobutylicum senses and responds to availability of iron on multiple levels using a sophisticated system, and that Fur plays an important role in this process.

  10. Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824

    PubMed Central

    2013-01-01

    Background Consolidated bioprocessing (CBP) is reliant on the simultaneous enzyme production, saccharification of biomass, and fermentation of released sugars into valuable products such as butanol. Clostridial species that produce butanol are, however, unable to grow on crystalline cellulose. In contrast, those saccharolytic species that produce predominantly ethanol, such as Clostridium thermocellum and Clostridium cellulolyticum, degrade crystalline cellulose with high efficiency due to their possession of a multienzyme complex termed the cellulosome. This has led to studies directed at endowing butanol-producing species with the genetic potential to produce a cellulosome, albeit by localising the necessary transgenes to unstable autonomous plasmids. Here we have explored the potential of our previously described Allele-Coupled Exchange (ACE) technology for creating strains of the butanol producing species Clostridium acetobutylicum in which the genes encoding the various cellulosome components are stably integrated into the genome. Results We used BioBrick2 (BB2) standardised parts to assemble a range of synthetic genes encoding C. thermocellum cellulosomal scaffoldin proteins (CipA variants) and glycoside hydrolases (GHs, Cel8A, Cel9B, Cel48S and Cel9K) as well as synthetic cellulosomal operons that direct the synthesis of Cel8A, Cel9B and a truncated form of CipA. All synthetic genes and operons were integrated into the C. acetobutylicum genome using the recently developed ACE technology. Heterologous protein expression levels and mini-cellulosome self-assembly were assayed by western blot and native PAGE analysis. Conclusions We demonstrate the successful expression, secretion and self-assembly of cellulosomal subunits by the recombinant C. acetobutylicum strains, providing a platform for the construction of novel cellulosomes. PMID:23962085

  11. Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species

    SciTech Connect

    Forsberg, C.W.

    1987-04-01

    Glycerol was fermented with the production of 1,3-propanediol as the major fermentation product by four strains of Clostridium acetobutylicum, six of C. butylicum, two of C. beijerinckii, one of C. kainantoi, and three of C. butylicum. 1,3-Propanediol was identified by its retention times in gas chromatography and high-pressure liquid chromatography and by its mass spectrum. During growth of C. butylicum B593 in a chemostat culture at pH 6.5, 61% of the glycerol fermented was converted to 1,3-propanediol. When the pH was decreased to 4.9, growth and 1,3-propanediol production were substantially reduced.

  12. Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824

    SciTech Connect

    Annous, B.A.; Blaschek, H.P. )

    1990-08-01

    Amylolytic activity was primarily cell associated when Clostridium acetobutylicum was grown on glucose or maltose and primarily extracellular when grown on dextrin or starch. Total amylolytic activity decreased with increasing glucose concentration. When this microorganism was grown in P2 medium containing starch, the intracellular amylolytic activity was 90% membrane bound and 10% cytoplasmic in nature. The addition of 1% glucose to 2% starch-based P2 medium at different stages of growth indicated that this carbohydrate repressed the synthesis of C. acetobutylicum amylolytic enzymes at the level of transcription.

  13. Cap0037, a Novel Global Regulator of Clostridium acetobutylicum Metabolism

    PubMed Central

    Nguyen, Ngoc-Phuong-Thao; Linder, Sonja; Flitsch, Stefanie K.; Schiel-Bengelsdorf, Bettina; Dürre, Peter

    2016-01-01

    ABSTRACT An operon comprising two genes, CA_P0037 and CA_P0036, that encode proteins of unknown function that were previously shown to be highly expressed in acidogenic cells and repressed in solventogenic and alcohologenic cells is located on the pSOL1 megaplasmid of Clostridium acetobutylicum upstream of adhE2. A CA_P0037::int (189/190s) mutant in which an intron was inserted at position 189/190 in the sense strand of CA_P0037 was successfully generated by the Targetron technique. The resultant mutant showed significantly different metabolic flux patterns in acidogenic (producing mainly lactate, butyrate, and butanol) and alcohologenic (producing mainly butyrate, acetate, and lactate) chemostat cultures but not in solventogenic or batch cultures. Transcriptomic investigation of the CA_P0037::int (189/190s) mutant showed that inactivation of CA_P0037 significantly affected the expression of more than 258 genes under acidogenic conditions. Surprisingly, genes belonging to the Fur regulon, involved in iron transport (CA_C1029-CA_C1032), or coding for the main flavodoxin (CA_C0587) were the most significantly expressed genes under all conditions, whereas fur (coding for the ferric uptake regulator) gene expression remained unchanged. Furthermore, most of the genes of the Rex regulon, such as the adhE2 and ldhA genes, and of the PerR regulon, such as rbr3A-rbr3B and dfx, were overexpressed in the mutant. In addition, the whole CA_P0037-CA_P0036 operon was highly expressed under all conditions in the CA_P0037::int (189/190s) mutant, suggesting a self-regulated expression mechanism. Cap0037 was shown to bind to the CA_P0037-CA_P0036 operon, sol operon, and adc promoters, and the binding sites were determined by DNA footprinting. Finally, a putative Cap0037 regulon was generated using a bioinformatic approach. PMID:27703070

  14. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum.

    PubMed

    Xue, Chuang; Zhao, Jingbo; Chen, Lijie; Yang, Shang-Tian; Bai, Fengwu

    Butanol as an advanced biofuel has gained great attention due to its environmental benefits and superior properties compared to ethanol. However, the cost of biobutanol production via conventional acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is not economically competitive, which has hampered its industrial application. The strain performance and downstream process greatly impact the economics of biobutanol production. Although various engineered strains with carefully orchestrated metabolic and sporulation-specific pathways have been developed, none of them is ideal for industrial biobutanol production. For further strain improvement, it is necessary to develop advanced genome editing tools and a deep understanding of cellular functioning of genes in metabolic and regulatory pathways. Processes with integrated product recovery can increase fermentation productivity by continuously removing inhibitory products while generating butanol (ABE) in a concentrated solution. In this review, we provide an overview of recent advances in C. acetobutylicum strain engineering and process development focusing on in situ product recovery. With deep understanding of systematic cellular bioinformatics, the exploration of state-of-the-art genome editing tools such as CRISPR-Cas for targeted gene knock-out and knock-in would play a vital role in Clostridium cell engineering for biobutanol production. Developing advanced hybrid separation processes for in situ butanol recovery, which will be discussed with a detailed comparison of advantages and disadvantages of various recovery techniques, is also imperative to the economical development of biobutanol.

  15. 13C metabolic flux analysis in Clostridium acetobutylicum during growth on L-arabinose

    NASA Astrophysics Data System (ADS)

    Hurley, Margaret; Sund, Christian; Liu, Sanchao; Germane, Katherine; Servinsky, Matthew; Gerlach, Elliot

    2015-03-01

    Clostridium acetobutylicum's metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism are continuing to emerge. To elucidate the role of xylulose-5-P/fructose-6-P phosphoketolase (XFP), and the recently discovered Pentose Phosphate Pathway (PKP) in C. acetobutylicum, experimental and computational metabolic isotope analysis was performed under growth on glucose, xylose, and arabinose. Results indicate that PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. This was confirmed by mutation of the gene encoding XFP, which almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate:butyrate ratios. We discuss these experimental and computational results here, and the implications for our understanding of sugar metabolism in C. acetobutylicum.

  16. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum.

    PubMed

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Chan, Kun-Chi; Chung, Man-Chien; Wu, Shu-Hsien; Liu, Cheng-Pin; Tien, Shih-Yuan; Chen, Shan-Yuan; Chang, Jo-Shu; Lee, Wen-Jhy

    2015-05-01

    This study conducted batch experiments to evaluate the potential of butanol production from microalgae biodiesel residues by Clostridium acetobutylicum. The results indicated that with 90 g/L of glucose as the sole substrate the highest butanol yield of 0.2 g/g-glucose was found, but the addition of butyrate significantly enhanced the butanol yield. The highest butanol yield of 0.4 g/g-glucose was found with 60 g/L of glucose and 18 g/L of butyrate. Using microalgae biodiesel residues as substrate, C. acetobutylicum produced 3.86 g/L of butanol and achieved butanol yield of 0.13 g/g-carbohydrate via ABE fermentation, but the results indicated that approximately one third of carbohydrate was not utilized by C. acetobutylicum. Biological butanol production from microalgae biodiesel residues can be possible, but further research on fermentation strategies are required to improve production yield.

  17. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    PubMed Central

    2011-01-01

    Background Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report. PMID:22008648

  18. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    SciTech Connect

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B; Hettich, Robert {Bob} L; Verberkmoes, Nathan C; Lefsrud, Mark G

    2011-01-01

    Background: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetonebutanol- ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.

  19. Fermentation of residual glycerol by Clostridium acetobutylicum ATCC 824 in pure and mixed cultures.

    PubMed

    Dams, Rosemeri I; Guilherme, Alexandre A; Vale, Maria S; Nunes, Vanja F; Leitão, Renato C; Santaella, Sandra T

    2016-12-01

    The aim of this research was to estimate the production of hydrogen, organic acids and alcohols by the strain of Clostridium acetobutylicum ATCC 824 using residual glycerol as a carbon source. The experiments were carried out in pure and mixed cultures in batch experiments. Three different sources of inocula for mixed culture were used. Ruminal liquid from goats and sludge collected from two upflow anaerobic sludge blanket reactors treating municipal wastewater and brewery effluent were tested for hydrogen, organic acids and alcohols production with or without C. acetobutylicum ATCC 824. The main detected end-products from the glycerol fermentation were hydrogen, organic acids (acetic, propionic, butyric and caproic) and alcohol (ethanol and 1,3-propanediol - 1,3PD). High hydrogen (0.44 mol H2/mol glycerol consumed) and 1,3PD (0.32 mol 1,3PD/mol glycerol consumed) yields were obtained when the strain C. acetobutylicum ATCC 824 was bioaugmented into the sludge from municipal wastewater using 5 g/L of glycerol. Significant concentrations of n-caproic acid were detected in the ruminal liquid when amended with C. acetobutylicum ATCC 824. The results suggest that glycerol can be used for the generation of H2, 1,3PD and n-caproic acid using C. acetobutylicum ATCC 824 as agent in pure or mixed cultures.

  20. Phosphoketolase flux in Clostridium acetobutylicum during growth on L-arabinose.

    PubMed

    Sund, Christian J; Liu, Sanchao; Germane, Katherine L; Servinsky, Matthew D; Gerlach, Elliot S; Hurley, Margaret M

    2015-02-01

    Clostridium acetobutylicum's metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism continue to emerge. The flux through the recently discovered pentose phosphoketolase pathway (PKP) in C. acetobutylicum has been determined for growth on xylose but transcriptional analysis indicated the pathway may have a greater contribution to arabinose metabolism. To elucidate the role of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (XFP), and the PKP in C. acetobutylicum, experimental and computational metabolic isotope analyses were performed under growth conditions of glucose or varying concentrations of xylose and arabinose. A positional bias in labelling between carbons 2 and 4 of butyrate was found and posited to be due to an enzyme isotope effect of the thiolase enzyme. A correction for the positional bias was applied, which resulted in reduction of residual error. Comparisons between model solutions with low residual error indicated flux through each of the two XFP reactions was variable, while the combined flux of the reactions remained relatively constant. PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. Mutation of the gene encoding XFP almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate/butyrate ratios. Greater flux through the PKP during growth on arabinose when compared with xylose indicated the pathway's primary role in C. acetobutylicum is arabinose metabolism.

  1. Effects of nutritional enrichment on the production of acetone-butanol-ethanol (ABE) by Clostridium acetobutylicum.

    PubMed

    Choi, Sung Jun; Lee, Joungmin; Jang, Yu-Sin; Park, Jin Hwan; Lee, Sang Yup; Kim, In Ho

    2012-12-01

    Clostridium acetobutylicum is an industrially important organism that produces acetone-butanol-ethanol (ABE). The main objective of this study was to characterize the effects of increased cell density on the production of ABE during the phase transition from acidogenesis to solventogenesis in C. acetobutylicum. The increased ABE productivity of C. acetobutylicum was obtained by increasing the cell density using a newly designed medium (designated C. a cetobutylicum medium 1; CAM1). The maximum OD(600) value of C. acetobutylicum ATCC 824 strain obtained with CAM1 was 19.7, which is 1.8 times higher than that obtained with clostridial growth medium (CGM). The overall ABE productivity obtained in the CAM1-fermetation of the ATCC 824 strain was 0.83 g/L/h, which is 1.5 times higher than that (0.55 g/L/h) obtained with CGM. However, the increased productivity obtained with CAM1 did not result in an increase in the final ABE titer, because phase transition occurred at a high titer of acids.

  2. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    SciTech Connect

    Marsh, T.L.; Zhang, X.; Knapp, R.M.; McInerney, M.J.; Sharma, P.K.; Jackson, B.E.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gas produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.

  3. Metabolic Engineering of Clostridium acetobutylicum ATCC 824 for Isopropanol-Butanol-Ethanol Fermentation

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Choi, Sung Jun; Im, Jung Ae; Song, Hyohak; Cho, Jung Hee; Seung, Do Young; Papoutsakis, E. Terry; Bennett, George N.

    2012-01-01

    Clostridium acetobutylicum naturally produces acetone as well as butanol and ethanol. Since acetone cannot be used as a biofuel, its production needs to be minimized or suppressed by cell or bioreactor engineering. Thus, there have been attempts to disrupt or inactivate the acetone formation pathway. Here we present another approach, namely, converting acetone to isopropanol by metabolic engineering. Since isopropanol can be used as a fuel additive, the mixture of isopropanol, butanol, and ethanol (IBE) produced by engineered C. acetobutylicum can be directly used as a biofuel. IBE production is achieved by the expression of a primary/secondary alcohol dehydrogenase gene from Clostridium beijerinckii NRRL B-593 (i.e., adhB-593) in C. acetobutylicum ATCC 824. To increase the total alcohol titer, a synthetic acetone operon (act operon; adc-ctfA-ctfB) was constructed and expressed to increase the flux toward isopropanol formation. When this engineering strategy was applied to the PJC4BK strain lacking in the buk gene (encoding butyrate kinase), a significantly higher titer and yield of IBE could be achieved. The resulting PJC4BK(pIPA3-Cm2) strain produced 20.4 g/liter of total alcohol. Fermentation could be prolonged by in situ removal of solvents by gas stripping, and 35.6 g/liter of the IBE mixture could be produced in 45 h. PMID:22210214

  4. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway.

    PubMed

    Cooksley, Clare M; Zhang, Ying; Wang, Hengzheng; Redl, Stephanie; Winzer, Klaus; Minton, Nigel P

    2012-11-01

    The production of the chemical solvents acetone and butanol by the bacterium Clostridium acetobutylicum was one of the first large-scale industrial processes to be developed, and in the first part of the last century ranked second in importance only to ethanol production. After a steep decline in its industrial use, there has been a recent resurgence of interest in the acetone-butanol-ethanol (ABE) fermentation process, with a particular emphasis on butanol production. In order to generate strains suitable for efficient use on an industrial scale, metabolic engineering is required to alter the AB ratio in favour of butanol, and eradicate the production of unwanted products of fermentation. Using ClosTron technology, a large-scale targeted mutagenesis in C. acetobutylicum ATCC 824 was carried out, generating a set of 10 mutants, defective in alcohol/aldehyde dehydrogenases 1 and 2 (adhE1, adhE2), butanol dehydrogenases A and B (bdhA, bdhB), phosphotransbutyrylase (ptb), acetate kinase (ack), acetoacetate decarboxylase (adc), CoA transferase (ctfA/ctfB), and a previously uncharacterised putative alcohol dehydrogenase (CAP0059). However, inactivation of the main hydrogenase (hydA) and thiolase (thl) could not be achieved. Constructing such a series of mutants is paramount for the acquisition of information on the mechanism of solvent production in this organism, and the subsequent development of industrial solvent producing strains. Unexpectedly, bdhA and bdhB mutants did not affect solvent production, whereas inactivation of the previously uncharacterised gene CAP0059 resulted in increased acetone, butanol, and ethanol formation. Other mutants showed predicted phenotypes, including a lack of acetone formation (adc, ctfA, and ctfB mutants), an inability to take up acids (ctfA and ctfB mutants), and a much reduced acetate formation (ack mutant). The adhE1 mutant in particular produced very little solvents, demonstrating that this gene was indeed the main contributor to

  5. Efficient gene knockdown in Clostridium acetobutylicum by synthetic small regulatory RNAs.

    PubMed

    Cho, Changhee; Lee, Sang Yup

    2017-02-01

    Clostridium is considered a promising microbial host for the production of valuable industrial chemicals. However, Clostridium is notorious for the difficulty of genetic manipulations, and consequently metabolic engineering. Thus, much effort has been exerted to develop novel tools for genetic and metabolic engineering of Clostridium strains. Here, we report the development of a synthetic small regulatory RNA (sRNA)-based system for controlled gene expression in Clostridium acetobutylicum, consisting of a target recognition site, MicC sRNA scaffold, and an RNA chaperone Hfq. To examine the functional operation of sRNA system in C. acetobutylicum, expression control was first examined with the Evoglow fluorescent protein as a model protein. Initially, a C. acetobutylicum protein annotated as Hfq was combined with the synthetic sRNA based on the Escherichia coli MicC scaffold to knockdown Evoglow expression. However, C. acetobutylicum Hfq did not bind to E. coli MicC, while MicC scaffold-based synthetic sRNA itself was able to knockdown the expression of Evoglow. When E. coli hfq gene was introduced, the knockdown efficiency assessed by measuring fluorescence intensity, could be much enhanced. Then, this E. coli MicC scaffold-Hfq system was used to knock down adhE1 gene expression in C. acetobutylicum. Knocking down the adhE1 gene expression using the synthetic sRNA led to a 40% decrease in butanol production (2.5 g/L), compared to that (4.5 g/L) produced by the wild-type strain harboring an empty vector. The sRNA system was further extended to knock down the pta gene expression in the buk mutant C. acetobutylicum strain PJC4BK for enhanced butanol production. The PJC4BK (pPta-Hfq(Eco) ) strain, which has the pta gene expression knocked down, was able to produce 16.9 g/L of butanol, which is higher than that (14.9 g/L) produced by the PJC4BK strain, mainly due to reduced acetic acid production. Fed-batch culture of PJC4BK (pPta-Hfq(Eco) ) strain coupled with

  6. Biobutanol production by a new local isolate of Clostridium acetobutylicum YM1

    NASA Astrophysics Data System (ADS)

    Al-Shorgani, Najeeb Kaid; Tibin, El Mubarak; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul

    2014-09-01

    Increasing demand of energy and awareness about environmental pollution has led to increase interest in alternative, clean and renewable energy sources. Biobutanol is considered as the candidate liquid biofuel to replace gasoline. In this study, the capability of a newly isolated strain of local Clostridium acetobutylicum YM1 was tested to produce biobutanol in batch fermentation. Various culture conditions including glucose concentration, initial pH, incubation temperature and inoculum size were investigated for their effects on production of biobutanol using strain YM1. The results showed that the optimal biobutanol production was obtained at glucose concentration 50 g/L, initial pH 6.2, temperature 30°C and inoculum size 10%. These results show that C. acetobutylicum YM1 as a mesophilic bacterium is a potential candidate for biobutanol production.

  7. Stable Escherichia coli-Clostridium acetobutylicum shuttle vector for secretion of murine tumor necrosis factor alpha.

    PubMed

    Theys, J; Nuyts, S; Landuyt, W; Van Mellaert, L; Dillen, C; Böhringer, M; Dürre, P; Lambin, P; Anné, J

    1999-10-01

    Recombinant plasmids were constructed to secrete mouse tumor necrosis factor alpha (mTNF-alpha) from Clostridium acetobutylicum. The shuttle plasmids contained the clostridial endo-beta1, 4-glucanase (eglA) promoter and signal sequence that was fused in frame to the mTNF-alpha cDNA. The construction was first tested in Escherichia coli and then introduced in C. acetobutylicum DSM792 by electroporation. Controls confirmed the presence and stability of the recombinant plasmids in this organism. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and an in vitro cytotoxic assay were used to monitor expression and secretion of mTNF-alpha during growth. Significant levels of biologically active mTNF-alpha were measured in both lysates and supernatants. The present report deals with investigations on the elaboration of a gene transfer system for cancer treatment using anaerobic bacteria.

  8. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for (13)C metabolic flux analysis.

    PubMed

    Au, Jennifer; Choi, Jungik; Jones, Shawn W; Venkataramanan, Keerthi P; Antoniewicz, Maciek R

    2014-11-01

    In this work, we provide new insights into the metabolism of Clostridium acetobutylicum ATCC 824 obtained using a systematic approach for quantifying fluxes based on parallel labeling experiments and (13)C-metabolic flux analysis ((13)C-MFA). Here, cells were grown in parallel cultures with [1-(13)C]glucose and [U-(13)C]glucose as tracers and (13)C-MFA was used to quantify intracellular metabolic fluxes. Several metabolic network models were compared: an initial model based on current knowledge, and extended network models that included additional reactions that improved the fits of experimental data. While the initial network model did not produce a statistically acceptable fit of (13)C-labeling data, an extended network model with five additional reactions was able to fit all data with 292 redundant measurements. The model was subsequently trimmed to produce a minimal network model of C. acetobutylicum for (13)C-MFA, which could still reproduce all of the experimental data. The flux results provided valuable new insights into the metabolism of C. acetobutylicum. First, we found that TCA cycle was effectively incomplete, as there was no measurable flux between α-ketoglutarate and succinyl-CoA, succinate and fumarate, and malate and oxaloacetate. Second, an active pathway was identified from pyruvate to fumarate via aspartate. Third, we found that isoleucine was produced exclusively through the citramalate synthase pathway in C. acetobutylicum and that CAC3174 was likely responsible for citramalate synthase activity. These model predictions were confirmed in several follow-up tracer experiments. The validated metabolic network model established in this study can be used in future investigations for unbiased (13)C-flux measurements in C. acetobutylicum.

  9. Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum

    PubMed Central

    Steiner, Elisabeth; Dago, Angel E.; Young, Danielle I.; Heap, John T.; Minton, Nigel P.; Hoch, James A.

    2011-01-01

    The phosphorylated Spo0A transcription factor controls the initiation of endospore formation in Clostridium acetobutylicum, but genes encoding key phosphorelay components, Spo0F and Spo0B, are missing in the genome. We hypothesized that the five orphan histidine kinases of C. acetobutylicum interact directly with Spo0A to control its phosphorylation state. Sequential targeted gene disruption and gene expression profiling provided evidence for two pathways for Spo0A activation, one dependent on a histidine kinase encoded by cac0323, the other on both histidine kinases encoded by cac0903 and cac3319. Purified Cac0903 and Cac3319 kinases autophosphorylated and transferred phosphoryl groups to Spo0A in vitro, confirming their role in Spo0A activation in vivo. A cac0437 mutant hyper-sporulated, suggesting that Cac0437 is a modulator that prevents sporulation and maintains cellular Spo0A~P homeostasis during growth. Accordingly, Cac0437 has apparently lost the ability to autophosphorylate in vitro; instead it catalyses the ATP-dependent dephosphorylation of Spo0A~P releasing inorganic phosphate. Direct phosphorylation of Spo0A by histidine kinases and dephosphorylation by kinase-like proteins may be a common feature of the clostridia that may represent the ancestral state before the great oxygen event some 2.4 billion years ago, after which additional phosphorelay proteins were recruited in the evolutionary lineage that led to the bacilli. PMID:21401736

  10. Transformation of heat-treated Clostridium acetobutylicum protoplasts with pUB110 plasmid DNA

    SciTech Connect

    Lin, Y.L.; Blaschek, H.P.

    1984-10-01

    Heat treatment of Clostridium acetobutylicum SA-1 protoplasts at 55/sup 0/C for 15 min before transformation resulted in expression in this microorganism of the kanamycin resistance determinant associated with plasmid pUB110. No heat treatment, or heat treatment at 65 or 44/sup 0/C for various time intervals, resulted in no kanamycin resistance transformants being recovered on selective kanamycin-containing regeneration medium. DNase plate assay indicated that treatment at 55/sup 0/C for 15 min completely inactivated the DNase activity associated with SA-1 protoplasts. Treatment of protoplasts at 65 or 55/sup 0/C for various periods under simulated transformation conditions had an inhibitory effect, although prolonged treatment at 55 or 44/sup 0/C appeared to stimulate DNase activity. Inactivation of protoplast-associated DNase activity by heat treatment at 55/sup 0/C for 15 min correlated with successful expression of kanamycin resistance and suggests that an extremely active, heat-sensitive, protoplast-associated DNase may be a factor in the polyethylene glycol-induced transformation of C. acetobutylicum SA-1 protoplasts. Plasmid pUB110 DNA was isolated from C. acetobutylicum SA-1 kanamycin-resistant (Km/sup r/) transformant cultures by a modification of the procedure used for C. perfringens plasmids. Detection of pUB110 DNA was possible only when diethyl pyrocarbonate was incorporated into isolation protocols to inactivate DNase activity. Restriction studies further verified the presence of pUB110 DNA in C. acetobutylicum SA-1 Km/sup r/ transformants. 36 references, 4 figures, 1 table.

  11. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824.

    PubMed Central

    Nair, R V; Bennett, G N; Papoutsakis, E T

    1994-01-01

    A gene (aad) coding for an aldehyde/alcohol dehydrogenase (AAD) was identified immediately upstream of the previously cloned ctfA (J. W. Cary, D. J. Petersen, E. T. Papoutsakis, and G. N. Bennett, Appl. Environ. Microbiol. 56:1576-1583, 1990) of Clostridium acetobutylicum ATCC 824 and sequenced. The 2,619-bp aad codes for a 96,517-Da protein. Primer extension analysis identified two transcriptional start sites 83 and 243 bp upstream of the aad start codon. The N-terminal section of AAD shows homology to aldehyde dehydrogenases of bacterial, fungal, mammalian, and plant origin, while the C-terminal section shows homology to alcohol dehydrogenases of bacterial (which includes three clostridial alcohol dehydrogenases) and yeast origin. AAD exhibits considerable amino acid homology (56% identity) over its entire sequence to the trifunctional protein encoded by adhE from Escherichia coli. Expression of aad from a plasmid in C. acetobutylicum showed that AAD, which appears as a approximately 96-kDa band in denaturing protein gels, provides elevated activities of NADH-dependent butanol dehydrogenase, NAD-dependent acetaldehyde dehydrogenase and butyraldehyde dehydrogenase, and a small increase in NADH-dependent ethanol dehydrogenase. A 957-bp open reading frame that could potentially encode a 36,704-Da protein was identified upstream of aad. Images PMID:8300540

  12. Novel substrate specificity of glutathione synthesis enzymes from Streptococcus agalactiae and Clostridium acetobutylicum

    SciTech Connect

    Kino, Kuniki . E-mail: kkino@waseda.jp; Kuratsu, Shoko; Noguchi, Atsushi; Kokubo, Masahiro; Nakazawa, Yuji; Arai, Toshinobu; Yagasaki, Makoto; Kirimura, Kohtaro

    2007-01-12

    Glutathione (GSH) is synthesized by {gamma}-glutamylcysteine synthetase ({gamma}-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed {gamma}-GCS-GS catalyzing both {gamma}-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the {gamma}-GCS activity, S. agalactiae {gamma}-GCS-GS had different substrate specificities from those of Escherichia coli {gamma}-GCS. Furthermore, S. agalactiae {gamma}-GCS-GS synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-X{sub aa}-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding {gamma}-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae {gamma}-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed {gamma}-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of {gamma}-glutamyltripeptide, {gamma}-Glu-Cys-X{sub aa}. Whereas the substrate specificities of {gamma}-GCS domain protein and GS domain protein of S. agalactiae {gamma}-GCS-GS were the same as those of S. agalactiae {gamma}-GCS-GS.

  13. Cell growth behaviors of Clostridium acetobutylicum in a pervaporation membrane bioreactor for butanol fermentation.

    PubMed

    Yao, Peina; Xiao, Zeyi; Chen, Chunyan; Li, Weijia; Deng, Qing

    2016-01-01

    Acetone-butanol-ethanol fermentation using Clostridium acetobutylicum was studied in the continuous and closed-circulating fermentation (CCCF) system. The experiment lasting for 192 H was carried out by integrating fermentation with in situ pervaporation. In the entire process, the cell growth profile took place in the following two phases: the logarithmic phase during early 28 H and the linear phase from 130 to 150 H. This was a unique characteristic compared with the curve of traditional fermentation, and the fitting equations of two growth phases were obtained by Origin software according to the kinetic model of cell growth. Besides, the kinetic parameters that include the butanol yield, maximum specific growth rate, average specific formation rate, and volumetric productivity of butanol were measured as 0.19 g g(-1) , 0.345 H(-1) , 0.134 H(-1) and 0.23 g L(-1)  H(-1) , respectively. The C. acetobutylicum in the CCCF system showed good adaptability and fermentation performance, and the prolonged fermentation period and high production were also the main advantages of CCCF technology.

  14. Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824.

    PubMed

    Servinsky, M D; Germane, K L; Liu, S; Kiel, J T; Clark, A M; Shankar, J; Sund, C J

    2012-12-01

    In this report, a novel zymogram assay and coupled phosphoketolase assay were employed to demonstrate that Clostridium acetobutylicum gene CAC1343 encodes a bi-functional xylulose-5-P/fructose-6-P phosphoketolase (XFP). The specific activity of purified recombinant XFP was 6.9 U/mg on xylulose-5-P and 21 U/mg on fructose-6-P, while the specific activity of XFP in concentrated C. acetobutylicum whole-cell extract was 0.094 and 0.52 U/mg, respectively. Analysis of crude cell extracts indicated that XFP activity was present in cells grown on arabinose but not glucose and quantitative PCR was used to show that CAC1343 mRNA expression was induced 185-fold during growth on arabinose when compared to growth on glucose. HPLC analysis of metabolites revealed that during growth on xylose and glucose more butyrate than acetate was formed with final acetate:butyrate ratios of 0.72 and 0.83, respectively. Growth on arabinose caused a metabolic shift to more oxidized products with a final acetate:butyrate ratio of 1.95. The shift towards more oxidized products is consistent with the presence of an XFP, suggesting that arabinose is metabolized via a phosphoketolase pathway while xylose is probably metabolized via the pentose phosphate pathway.

  15. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-07

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

  16. Clostridium acetobutylicum Mutants That Produce Butyraldehyde and Altered Quantities of Solvents.

    PubMed

    Rogers, P; Palosaari, N

    1987-12-01

    Spontaneous mutants of Clostridium acetobutylicum NRRL B643 that were resistant to allyl alcohol (AA) were selected and characterized. These mutants contained 10- to 100-fold reduced activities of butanol and ethanol alcohol dehydrogenase. The AA mutants formed two groups and produced no ethanol. Type 1 AA mutants produced significant amounts of a new solvent, butyraldehyde, and contained normal levels of the coenzyme A-dependent butyraldehyde dehydrogenase (BAD). Type 2 AA mutants produced no significant butyraldehyde and lower levels of all solvents, and they contained 45- to 100-fold lower activity levels of BAD. Following ethyl methanesulfonate mutagenesis, low-acid-producing (Acid) mutants were selected and characterized as superinduced solvent producers, yielding more than 99% of theoretical glucose carbon as solvents and only small amounts of acetate and butyrate. Following ethyl methanesulfonate mutagenesis, 13 sporulation-negative (Spo) mutants were characterized; and 3 were found to produce only butyrate and acetate, a minor amount of acetone, and no alcohols. These Spo mutants contained reduced butanol dehydrogenase activity and no BAD enzyme activity. The data support the view that the type 2 AA, the Acid, and the Spo mutants somehow alter normal regulated expression of the solvent pathway in C. acetobutylicum.

  17. Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study.

    PubMed

    Khedkar, Manisha A; Nimbalkar, Pranhita R; Gaikwad, Shashank G; Chavan, Prakash V; Bankar, Sandip B

    2017-02-01

    Present investigation explores the use of pineapple peel, a food industry waste, for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum B 527. Proximate analysis of pineapple peel shows that it contains 35% cellulose, 19% hemicellulose, and 16% lignin on dry basis. Drying experiments on pineapple peel waste were carried out in the temperature range of 60-120°C and experimental drying data was modeled using moisture diffusion control model to study its effect on ABE production. The production of ABE was further accomplished via acid hydrolysis, detoxification, and fermentation process. Maximum total sugar release obtained by using acid hydrolysis was 97g/L with 95-97% and 10-50% removal of phenolics and acetic acid, respectively during detoxification process. The maximum ABE titer obtained was 5.23g/L with 55.6% substrate consumption when samples dried at 120°C were used as a substrate (after detoxification).

  18. The mechanism of switching from an acidogenic to butanol-acetone fermentation by Clostridium acetobutylicum

    SciTech Connect

    Rogers, P.

    1992-01-01

    The overall objective of this project is to elucidate the detailed mechanism by which solvent-forming bacteria such as Clostridium acetobutylicum regulate the well-known shift in fermentation pathway between alcohol-acetone and organic acid production. It is desired to eventually isolate and describe: (1) the regulatory genes and protein elements that determine induction of synthesis of the solvent-pathway enzymes; and (2) how this regulation system interacts with the sporulatin induction and development program and with related pathways such as granulse and exopolysaccharide formation in clostridia. A working model forhow clostridial control systems work can be derived from recent research on stress systems in E. coli and sporulation in Bacillus subtilis.

  19. Reduction of 2,4,6-trinitrotoluene by Clostridium acetobutylicum through hydroxylamino-nitrotoluene intermediates

    SciTech Connect

    Hughes, J.B.; Wang, C.Y.; Bhadra, R.; Richardson, A.; Bennett, G.N.; Rudolph, F.B.

    1998-03-01

    Studies were conducted to isolate and identify intermediates of 2,4,6-trinitrotoluene (TNT) transformation by Clostridium acetobutylicum and to quantify their concentrations in active whole cell cultures. Only two intermediates of TNT reduction were detected in cell cultures and were identified as 4-hydroxylamino-2,6-dinitrotoluene and 2,4-dihydroxylamino-6-nitrotoluene. Structures were confirmed with {sup 1}H-NMR, {sup 13}C-NMR, and desorption chemical ionization mass spectroscopy. When cells were suspended in a non-growth saline medium, both hydroxylamine forms accumulated. In media capable of supporting cell growth, the 2,4-dihydroxylamino-6-nitrotoluene accumulated with concentrations of 4-hydroxylamino-2,6-dinitrotoluene remaining near detection limits. Studies using purified 2,4-dihydroxylamino-6-nitrotoluene confirmed that its biotransformation rate in active cultures greatly exceeded abiotic decomposition in aqueous medium.

  20. Continuous lactose fermentation by Clostridium acetobutylicum--assessment of acidogenesis kinetics.

    PubMed

    Napoli, Fabio; Olivieri, Giuseppe; Russo, Maria Elena; Marzocchella, Antonio; Salatino, Piero

    2011-01-01

    An assessment of the growth kinetics of acidogenic cells of Clostridium acetobutylicum DSM 792 is reported in the paper. Tests were carried out in a continuous stirred tank reactor under controlled conditions adopting a complex medium supplemented with lactose as carbon source to mimic cheese whey. The effects of acids (acetic and butyric), solvents (acetone, ethanol and butanol) and pH on the growth rate of acidogenic cells were assessed. The conversion process was characterized under steady-state conditions in terms of concentration of lactose, cells, acids, total organic carbon and pH. The growth kinetics was expressed by means of a multiple product inhibition and interacting model including a novel formulation to account for the role of pH. The model has the potential to predict microorganism growth rate under a broad interval of operating conditions, even those typical of solvents production.

  1. Nutritional Factors Affecting the Ratio of Solvents Produced by Clostridium acetobutylicum

    PubMed Central

    Bahl, H.; Gottwald, M.; Kuhn, A.; Rale, V.; Andersch, W.; Gottschalk, G.

    1986-01-01

    Fermentation of whey by Clostridium acetobutylicum yielded butanol and acetone in a ratio of approximately 100:1. This ratio amounted to only 2:1 in synthetic media with glucose, lactose, or glucose plus galactose as substrates. Removal of citrate from whey and addition of minerals resulted in an increase in the amount of acetone produced. Experiments carried out in a chemostat with a low-phosphate synthetic medium revealed that the butanol/acetone ratio could be increased from 2:1 to 3.8:1 by cofermentation of l-lactate and from 2:1 to 8:1 by iron limitation. The performance of the fermentation in a low-iron glucose medium above pH 5.1 yielded l-lactate as the main product. PMID:16347104

  2. Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum

    SciTech Connect

    Bahl, H.; Gottwald, M.; Kuhn, A.; Rale, V.; Andersch, W.; Gottschalk, G.

    1986-07-01

    Fermentation of whey by Clostridium acetobutylicum yielded butanol and acetone in a ratio of approximately 100:1. This ratio amounted to only 2:1 in synthetic media with glucose, lactose, or glucose plus galactose as substrates. Removal of citrate from whey and addition of minerals resulted in an increase in the amount of acetone produced. Experiments carried out in a chemostat with a low-phosphate synthetic medium revealed that the butanol/acetone ratio could be increased from 2:1 to 3.8:1 by cofermentation of L-lactate and from 2:1 to 8:1 by iron limitation. The performance of the fermentation in a low-iron glucose medium above pH 5.1 yielded L-lactate as the main product. 42 references.

  3. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production.

  4. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture.

    PubMed

    Jang, Yu-Sin; Malaviya, Alok; Lee, Joungmin; Im, Jung Ae; Lee, Sang Yup; Lee, Julia; Eom, Moon-Ho; Cho, Jung-Hee; Seung, Do Young

    2013-01-01

    Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone-butanol-ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol-butanol-ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab-scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot-scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab-scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production.

  5. Genomics of Clostridium tetani.

    PubMed

    Brüggemann, Holger; Brzuszkiewicz, Elzbieta; Chapeton-Montes, Diana; Plourde, Lucile; Speck, Denis; Popoff, Michel R

    2015-05-01

    Genomic information about Clostridium tetani, the causative agent of the tetanus disease, is scarce. The genome of strain E88, a strain used in vaccine production, was sequenced about 10 years ago. One additional genome (strain 12124569) has recently been released. Here we report three new genomes of C. tetani and describe major differences among all five C. tetani genomes. They all harbor tetanus-toxin-encoding plasmids that contain highly conserved genes for TeNT (tetanus toxin), TetR (transcriptional regulator of TeNT) and ColT (collagenase), but substantially differ in other plasmid regions. The chromosomes share a large core genome that contains about 85% of all genes of a given chromosome. The non-core chromosome comprises mainly prophage-like genomic regions and genes encoding environmental interaction and defense functions (e.g. surface proteins, restriction-modification systems, toxin-antitoxin systems, CRISPR/Cas systems) and other fitness functions (e.g. transport systems, metabolic activities). This new genome information will help to assess the level of genome plasticity of the species C. tetani and provide the basis for detailed comparative studies.

  6. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum.

    PubMed

    Jang, Yu-Sin; Lee, Jin Young; Lee, Joungmin; Park, Jin Hwan; Im, Jung Ae; Eom, Moon-Ho; Lee, Julia; Lee, Sang-Hyun; Song, Hyohak; Cho, Jung-Hee; Seung, Do Young; Lee, Sang Yup

    2012-10-23

    Butanol is an important industrial solvent and advanced biofuel that can be produced by biphasic fermentation by Clostridium acetobutylicum. It has been known that acetate and butyrate first formed during the acidogenic phase are reassimilated to form acetone-butanol-ethanol (cold channel). Butanol can also be formed directly from acetyl-coenzyme A (CoA) through butyryl-CoA (hot channel). However, little is known about the relative contributions of the two butanol-forming pathways. Here we report that the direct butanol-forming pathway is a better channel to optimize for butanol production through metabolic flux and mass balance analyses. Butanol production through the hot channel was maximized by simultaneous disruption of the pta and buk genes, encoding phosphotransacetylase and butyrate kinase, while the adhE1(D485G) gene, encoding a mutated aldehyde/alcohol dehydrogenase, was overexpressed. The ratio of butanol produced through the hot channel to that produced through the cold channel increased from 2.0 in the wild type to 18.8 in the engineered BEKW(pPthlAAD(**)) strain. By reinforcing the direct butanol-forming flux in C. acetobutylicum, 18.9 g/liter of butanol was produced, with a yield of 0.71 mol butanol/mol glucose by batch fermentation, levels which are 160% and 245% higher than those obtained with the wild type. By fed-batch culture of this engineered strain with in situ recovery, 585.3 g of butanol was produced from 1,861.9 g of glucose, with the yield of 0.76 mol butanol/mol glucose and productivity of 1.32 g/liter/h. Studies of two butanol-forming routes and their effects on butanol production in C. acetobutylicum described here will serve as a basis for further metabolic engineering of clostridia aimed toward developing a superior butanol producer. IMPORTANCE Renewable biofuel is one of the answers to solving the energy crisis and climate change problems. Butanol produced naturally by clostridia has superior liquid fuel characteristics and thus has

  7. Structural Variation in Bacterial Glyoxalase I Enzymes: Investigation of the Metalloenzyme Glyoxalase I from Clostridium acetobutylicum

    SciTech Connect

    Suttisansanee U.; Swaminathan S.; Lau, K.; Lagishetty, S.; Rao, K. N.; Sauder, J. M.; Burley, S. K.; Honek, J. F.

    2011-11-04

    The glyoxalase system catalyzes the conversion of toxic, metabolically produced {alpha}-ketoaldehydes, such as methylglyoxal, into their corresponding nontoxic 2-hydroxycarboxylic acids, leading to detoxification of these cellular metabolites. Previous studies on the first enzyme in the glyoxalase system, glyoxalase I (GlxI), from yeast, protozoa, animals, humans, plants, and Gram-negative bacteria, have suggested two metal activation classes, Zn{sup 2+} and non-Zn{sup 2+} activation. Here, we report a biochemical and structural investigation of the GlxI from Clostridium acetobutylicum, which is the first GlxI enzyme from Gram-positive bacteria that has been fully characterized as to its three-dimensional structure and its detailed metal specificity. It is a Ni{sup 2+}/Co{sup 2+}-activated enzyme, in which the active site geometry forms an octahedral coordination with one metal atom, two water molecules, and four metal-binding ligands, although its inactive Zn{sup 2+}-bound form possesses a trigonal bipyramidal geometry with only one water molecule liganded to the metal center. This enzyme also possesses a unique dimeric molecular structure. Unlike other small homodimeric GlxI where two active sites are located at the dimeric interface, the C. acetobutylicum dimeric GlxI enzyme also forms two active sites but each within single subunits. Interestingly, even though this enzyme possesses a different dimeric structure from previously studied GlxI, its metal activation characteristics are consistent with properties of other GlxI. These findings indicate that metal activation profiles in this class of enzyme hold true across diverse quaternary structure arrangements.

  8. Acetone-butanol-ethanol production with high productivity using Clostridium acetobutylicum BKM19.

    PubMed

    Jang, Yu-Sin; Malaviya, Alok; Lee, Sang Yup

    2013-06-01

    Conventional acetone-butanol-ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L(-1) of ABE (17.6 g L(-1) butanol, 10.5 g L(-1) ethanol, and 4.4 g L(-1) acetone) from 85.2 g L(-1) glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell-recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L(-1)  h(-1) , respectively, could be achieved at the dilution rate of 0.85 h(-1) . Further cell recycling experiments were carried out with controlled cell-bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h(-1) with the bleeding rate of 0.04 h(-1) . Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L(-1)  h(-1) , and the yields of 0.17 and 0.34 g g(-1) , respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known-processes.

  9. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  10. Purification and characterization of the extracellular. alpha. -amylase from Clostridium acetobutylicum ATCC 824

    SciTech Connect

    Paquet, V.; Croux, C.; Goma, G.; Soucaille, P. )

    1991-01-01

    The extracellular {alpha}-amylase (1,4-{alpha}-D-glucanglucanohydrolase; EC 3.2.1.1) from Clostridium acetobutylicum ATCC 824 was purified to homogeneity by anion-exchange chromatography (Mono Q) and gel filtration (Superose 12). The enzyme had an isoelectric point of 4.7 and a molecular weight of 84,000, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was a monomeric protein, the 19-amino-acid N terminus of which displayed 42% homology with the Bacillus subtilis saccharifying {alpha}-amylase. The amino acid composition of the enzyme showed a high number of acidic and hydrophobic residues and only one cysteine residue per mole. The activity of the {alpha}-amylase was not stimulated by calcium ions (or other metal ions) or inhibited by EDTA, although the enzyme contained seven calcium atoms per molecule. {alpha}-Amylase activity on soluble starch was optimal at pH 5.6 and 45{degree}C. The {alpha}-amylase was stable at an acidic pH but very sensitive to thermal inactivation. It hydrolyzed soluble starch, with a K{sub m} of 3.6 g {center dot} liter{sup {minus}1} and a K{sub cat} of 122 mol of reducing sugars {center dot} s{sup {minus}1} {center dot} mol{sup {minus}1}. The {alpha}-amylase showed greater activity with high-molecular-weight substrates than with low-molecular-weight maltooligosaccharides, hydrolyzed glycogen and pullulan slowly, but did not hydrolyze dextran or cyclodextrins. The major end products of maltohexaose degradation were glucose, maltose, and maltotriose; maltotetraose and maltopentaose were formed as intermediate products. Twenty seven percent of the glucoamylase activity generally detected in the culture supernatant of C. acetobutylicum can be attributed to the {alpha}-amylase.

  11. Enhanced Butanol Production Obtained by Reinforcing the Direct Butanol-Forming Route in Clostridium acetobutylicum

    PubMed Central

    Jang, Yu-Sin; Lee, Jin Young; Lee, Joungmin; Park, Jin Hwan; Im, Jung Ae; Eom, Moon-Ho; Lee, Julia; Lee, Sang-Hyun; Song, Hyohak; Cho, Jung-Hee; Seung, Do Young; Lee, Sang Yup

    2012-01-01

    ABSTRACT Butanol is an important industrial solvent and advanced biofuel that can be produced by biphasic fermentation by Clostridium acetobutylicum. It has been known that acetate and butyrate first formed during the acidogenic phase are reassimilated to form acetone-butanol-ethanol (cold channel). Butanol can also be formed directly from acetyl-coenzyme A (CoA) through butyryl-CoA (hot channel). However, little is known about the relative contributions of the two butanol-forming pathways. Here we report that the direct butanol-forming pathway is a better channel to optimize for butanol production through metabolic flux and mass balance analyses. Butanol production through the hot channel was maximized by simultaneous disruption of the pta and buk genes, encoding phosphotransacetylase and butyrate kinase, while the adhE1D485G gene, encoding a mutated aldehyde/alcohol dehydrogenase, was overexpressed. The ratio of butanol produced through the hot channel to that produced through the cold channel increased from 2.0 in the wild type to 18.8 in the engineered BEKW(pPthlAAD**) strain. By reinforcing the direct butanol-forming flux in C. acetobutylicum, 18.9 g/liter of butanol was produced, with a yield of 0.71 mol butanol/mol glucose by batch fermentation, levels which are 160% and 245% higher than those obtained with the wild type. By fed-batch culture of this engineered strain with in situ recovery, 585.3 g of butanol was produced from 1,861.9 g of glucose, with the yield of 0.76 mol butanol/mol glucose and productivity of 1.32 g/liter/h. Studies of two butanol-forming routes and their effects on butanol production in C. acetobutylicum described here will serve as a basis for further metabolic engineering of clostridia aimed toward developing a superior butanol producer. PMID:23093384

  12. Solvents Production from a Mixture of Glucose and Xylose by Mixed Fermentation of Clostridium acetobutylicum and Saccharomyces cerevisiae.

    PubMed

    Qi, Gao-Xiang; Xiong, Lian; Huang, Chao; Chen, Xue-Fang; Lin, Xiao-Qing; Chen, Xin-De

    2015-10-01

    To overcome the xylose utilization defect in ethanol fermentation by wide-type Saccharomyces cerevisiae and alleviate the carbon catabolite repression (CCR) in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, a novel mixed fermentation of S. cerevisiae and C. acetobutylicum was developed. When S. cerevisiae was inoculated 24 h earlier than C. acetobutylicum CH02, a higher solvents yield was achieved with 0.41 g/g, compared to 0.38 g/g in ABE fermentation, and when S. cerevisiae and C. acetobutylicum CH02 were inoculated simultaneously, a higher productivity was achieved with 0.32 g/L/h, compared to 0.15 g/L/h in ABE fermentation. The total solvents yield was improved by the high ethanol yield from glucose. The CCR in mixed fermentation was alleviated when glucose was utilized quickly by S. cerevisiae, and therefore, the productivity was improved. This study suggests that mixed fermentation is an effective solvents production method from a mixture of glucose and xylose.

  13. Development of real-time PCR primer and probe sets for detecting degenerated and non-degenerated forms of the butanol-producing bacterium Clostridium acetobutylicum ATCC 824.

    PubMed

    Lee, Sun-Mi; Cho, Min Ok; Um, Youngsoon; Sang, Byoung-In

    2010-05-01

    Degeneration is one of the limiting factors in butanol fermentation, and it must be monitored and prevented for stable butanol production. In Clostridium acetobutylicum ATCC 824, the most well-known butanol-producing microorganism, degeneration is caused by the loss of the pSOL1 plasmid that carries essential genes involved in solvent production. In this study, we designed two specific primer and probe sets for real-time qPCR (RT-qPCR) detection of C. acetobutylicum ATCC 824 (the C. aceto set) and pSOL1-possessing C. acetobutylicum ATCC 824 (the DGS set). Specific primer and probe sets were designed on the basis of the 16S rDNA sequence and pSOL1 sequence. The number of degenerated C. acetobutylicum could be quantified by subtracting the number of C. acetobutylicum ATCC 824 containing pSOL1 from the total number of C. acetobutylicum ATCC 824. The primer and probe sets permitted the specific detection and quantification of degenerated C. acetobutylicum and total butanol-producing C. acetobutylicum by RT-qPCR.

  14. Carbon 13-Metabolic Flux Analysis derived constraint-based metabolic modelling of Clostridium acetobutylicum in stressed chemostat conditions.

    PubMed

    Wallenius, Janne; Maaheimo, Hannu; Eerikäinen, Tero

    2016-11-01

    The metabolism of butanol producing bacteria Clostridium acetobutylicum was studied in chemostat with glucose limited conditions, butanol stimulus, and as a reference cultivation. COnstraint-Based Reconstruction and Analysis (COBRA) was applied using additional constraints from (13)C Metabolic Flux Analysis ((13)C-MFA) and experimental measurement results. A model consisting of 451 metabolites and 604 reactions was utilized in flux balance analysis (FBA). The stringency of the flux spaces considering different optimization objectives, i.e. growth rate maximization, ATP maintenance, and NADH/NADPH formation, for flux variance analysis (FVA) was studied in the different modelled conditions. Also a previously uncharacterized exopolysaccharide (EPS) produced by C. acetobutylicum was characterized on monosaccharide level. The major monosaccharide components of the EPS were 40n-% rhamnose, 34n-% glucose, 13n-% mannose, 10n-% galactose, and 2n-% arabinose. The EPS was studied to have butanol adsorbing property, 70(butanol)mg(EPS)g(-1) at 37°C.

  15. Butanol production from hexoses and pentoses by fermentation of Clostridium acetobutylicum.

    PubMed

    Raganati, Francesca; Olivieri, Giuseppe; Götz, Peter; Marzocchella, Antonio; Salatino, Piero

    2015-08-01

    The present paper reports the characterization of ABE (acetone-butanol-ethanol) production by Clostridium acetobutylicum DSM 792 for sugars representative of hydrolysed lignocellulosic biomass (glucose, mannose, arabinose, xylose). The attention was focused on: the selection of an optimal medium for the simultaneous conversion of the investigated sugars; the assessment of interference-synergistic effects during the fermentation of mixtures of the investigated sugars. The synthetic medium was optimised in terms of nutritional factors: the KH2PO4-K2HPO4 concentration was increased up to 5 g/L; the MgSO4 concentration was increased up to 2 g/L; the MnSO4 concentration was increased up to 0.1 g/L; the FeSO4 concentration ranged between 0.002 and 0.01 g/L); the CaCO3 concentration was increased up to 10 g/L. The optimal concentration of the investigated factors was assessed and it varied from one sugar to another. The batch fermentations of a mixture of the four sugars highlighted their synergistic effects. Once set the initial concentration of the sugars (60 g/L), the butanol and solvent concentration increased up to 14.6 and 20.6 g/L, respectively, when the four sugars were present.

  16. Enhanced butanol fermentation using metabolically engineered Clostridium acetobutylicum with ex situ recovery of butanol.

    PubMed

    Lee, Sang-Hyun; Kim, Sooah; Kim, Jung Yeon; Cheong, Nam Yong; Kim, Kyoung Heon

    2016-10-01

    In this study, metabolic target reactions for strain engineering were searched via intracellular coenzyme A (CoA) metabolite analysis. The metabolic reactions catalyzed by thiolase (AtoB) and aldehyde-alcohol dehydrogenase (AdhE1) were considered potential rate-limiting steps. In addition, CoA transferase (CtfAB) was highlighted as being important for the assimilation of organic acids, in order to achieve high butanol production. Based on this quantitative analysis, the BEKW_E1AB-atoB strain was constructed by overexpressing the thl (atoB), adhE1, and ctfAB genes in Clostridium acetobutylicum strain BEKW, which has the phosphotransacetylase (pta) and butyrate kinase (buk) genes knocked out. After 100h of continuous fermentation coupled with adsorptive ex situ butanol recovery, the concentrations found after considering desorption, yield, and productivity for the BEKW_E1AB-atoB strain were 55.7g/L, 0.38g/g, and 2.64g/L/h, respectively. The level of butanol production achieved (2.64g/L/h) represents the highest reported value obtained after adsorptive, long-term fermentation.

  17. Immobilization of Clostridium acetobutylicum onto natural textiles and its fermentation properties.

    PubMed

    Zhuang, Wei; Liu, Xiaojing; Yang, Jing; Wu, Jinglan; Zhou, Jingwei; Chen, Yong; Liu, Dong; Ying, Hanjie

    2017-03-01

    Immobilized fermentation has several advantages over traditional suspended fermentation, including simple and continuous operation, improved fermentation performance and reduced cost. Carrier is the most adjustable element among three elements of immobilized fermentation, including carrier, bacteria and environment. In this study, we characterized carrier roughness and surface properties of four types of natural fibres, including linen, cotton, bamboo fibre and silk, to assess their effects on cell immobilization, fermentation performance and stability. Linen with higher specific surface area and roughness could adsorb more bacteria during immobilized fermentation, thereby improving fermentation performance; thus, linen was selected as a suitable carrier and was applied for acetone-butanol-ethanol (ABE) fermentation. To further improve fermentation performance, we also found that microbes of Clostridium acetobutylicum were negatively charged surfaces during fermentation. Therefore, we then modified linen with polyetherimide (PEI) and steric acid (SA) to increase surface positive charge and improve surface property. During ABE fermentation, the adhesion between modified linen and bacteria was increased, adsorption was increased about twofold compared with that of unmodified linen, and butanol productivity was increased 8.16% and 6.80% with PEI- and SA-modified linen as carriers respectively.

  18. Expression and nucleotide sequence of the Clostridium acetobutylicum beta-galactosidase gene cloned in Escherichia coli.

    PubMed Central

    Hancock, K R; Rockman, E; Young, C A; Pearce, L; Maddox, I S; Scott, D B

    1991-01-01

    A gene library for Clostridium acetobutylicum NCIB 2951 was constructed in the broad-host-range cosmid pLAFR1, and cosmids containing the beta-galactosidase gene were isolated by direct selection for enzyme activity on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactoside) plates after conjugal transfer of the library to a lac deletion derivative of Escherichia coli. Analysis of various pSUP202 subclones of the lac cosmids on X-Gal plates localized the beta-galactosidase gene to a 5.1-kb EcoRI fragment. Expression of the Clostridium beta-galactosidase gene in E. coli was not subject to glucose repression. By using transposon Tn5 mutagenesis, two gene loci, cbgA (locus I) and cbgR (locus II), were identified as necessary for beta-galactosidase expression in E. coli. DNA sequence analysis of the entire 5.1-kb fragment identified open reading frames of 2,691 and 303 bp, corresponding to locus I and locus II, respectively, and in addition a third truncated open reading frame of 825 bp. The predicted gene product of locus I, CbgA (molecular size, 105 kDa), showed extensive amino acid sequence homology with E. coli LacZ, E. coli EbgA, and Klebsiella pneumoniae LacZ and was in agreement with the size of a polypeptide synthesized in maxicells containing the cloned 5.1-kb fragment. The predicted gene product of locus II, CbgR (molecular size, 11 kDa) shares no significant homology with any other sequence in the current DNA and protein sequence data bases, but Tn5 insertions in this gene prevent the synthesis of CbgA. Complementation experiments indicate that the gene product of cbgR is required in cis with cbgA for expression of beta-galactosidase in E. coli. Images PMID:1850729

  19. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    SciTech Connect

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  20. Predictive modeling in Clostridium acetobutylicum fermentations employing Raman spectroscopy and multivariate data analysis for real-time culture monitoring

    NASA Astrophysics Data System (ADS)

    Zu, Theresah N. K.; Liu, Sanchao; Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Mackie, David M.; Sund, Christian J.

    2016-05-01

    The coupling of optical fibers with Raman instrumentation has proven to be effective for real-time monitoring of chemical reactions and fermentations when combined with multivariate statistical data analysis. Raman spectroscopy is relatively fast, with little interference from the water peak present in fermentation media. Medical research has explored this technique for analysis of mammalian cultures for potential diagnosis of some cancers. Other organisms studied via this route include Escherichia coli, Saccharomyces cerevisiae, and some Bacillus sp., though very little work has been performed on Clostridium acetobutylicum cultures. C. acetobutylicum is a gram-positive anaerobic bacterium, which is highly sought after due to its ability to use a broad spectrum of substrates and produce useful byproducts through the well-known Acetone-Butanol-Ethanol (ABE) fermentation. In this work, real-time Raman data was acquired from C. acetobutylicum cultures grown on glucose. Samples were collected concurrently for comparative off-line product analysis. Partial-least squares (PLS) models were built both for agitated cultures and for static cultures from both datasets. Media components and metabolites monitored include glucose, butyric acid, acetic acid, and butanol. Models were cross-validated with independent datasets. Experiments with agitation were more favorable for modeling with goodness of fit (QY) values of 0.99 and goodness of prediction (Q2Y) values of 0.98. Static experiments did not model as well as agitated experiments. Raman results showed the static experiments were chaotic, especially during and shortly after manual sampling.

  1. Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane.

    PubMed

    Izák, Pavel; Schwarz, Katrin; Ruth, Wolfgang; Bahl, Hubert; Kragl, Udo

    2008-03-01

    Pervaporation proved to be one of the best methods to remove solvents out of a solvent producing Clostridium acetobutylicum culture. By using an ionic liquid (IL)-polydimethylsiloxane (PDMS) ultrafiltration membrane (pore size 60 nm), we could guarantee high stability and selectivity during all measurements carried out at 37 degrees C. Overall solvent productivity of fermentation connected with continuous product removal by pervaporation was 2.34 g l(-1) h(-1). The supported ionic liquid membrane (SILM) was impregnated with 15 wt% of a novel ionic liquid (tetrapropylammonium tetracyano-borate) and 85 wt% of polydimethylsiloxane. Pervaporation, accomplished with the optimized SILM, led to stable and efficient removal of the solvents butan-1-ol and acetone out of a C. acetobutylicum culture. By pervaporation through SILM, we removed more butan-1-ol than C. acetobutylicum was able to produce. Therefore, we added an extra dose of butan-1-ol to run fermentation on limiting values where the bacteria would still be able to survive its lethal concentration (15.82 g/l). After pervaporation was switched off, the bacteria died from high concentration of butan-1-ol, which they produced.

  2. Regulation of nitrogen metabolism, starch utilisation and the beta-hbd-adh1 gene cluster in Clostridium acetobutylicum.

    PubMed

    Woods, D R; Reid, S J

    1995-10-01

    The successful genetic manipulation of Clostridium acetobutylicum for the increased production of solvents will depend on an understanding of gene structure and regulation in the bacterium. The glutamine synthetase (glnA) gene is regulated by antisense RNA, transcribed from a downstream promoter, in the opposite direction to the glnA gene. An open reading frame (ORF) was detected downstream of the glnA gene, which has sequence homology to response regulators with anti-termination activity and may be involved in sensing nitrogen conditions. The expression of the linked beta-hbd, adh1 and fixB genes was investigated throughout the bacterial growth cycle by RNA hybridisation techniques. The adh1 gene was independently expressed as a 2.4-kb transcript which peaked at 12 h, immediately prior to the solventogenic phase. The beta-hbd and fixB genes were transcribed throughout the acidogenic and solventogenic phases. A regulator gene, regA, which complements a Bacillus subtilis ccpA mutant, has been identified and sequenced from C. acetobutylicum P262. The regA gene repressed the degradation of starch by an uncharacterised C. acetobutylicum gene, and may therefore play a role in the utilisation of carbohydrate substrates in this organism.

  3. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    PubMed

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air.

  4. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.

    PubMed

    Bruder, Mark R; Pyne, Michael E; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-10-15

    The discovery and exploitation of the prokaryotic adaptive immunity system based on clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins have revolutionized genetic engineering. CRISPR-Cas tools have enabled extensive genome editing as well as efficient modulation of the transcriptional program in a multitude of organisms. Progress in the development of genetic engineering tools for the genus Clostridium has lagged behind that of many other prokaryotes, presenting the CRISPR-Cas technology an opportunity to resolve a long-existing issue. Here, we applied the Streptococcus pyogenes type II CRISPR-Cas9 (SpCRISPR-Cas9) system for genome editing in Clostridium acetobutylicum DSM792. We further explored the utility of the SpCRISPR-Cas9 machinery for gene-specific transcriptional repression. For proof-of-concept demonstration, a plasmid-encoded fluorescent protein gene was used for transcriptional repression in C. acetobutylicum Subsequently, we targeted the carbon catabolite repression (CCR) system of C. acetobutylicum through transcriptional repression of the hprK gene encoding HPr kinase/phosphorylase, leading to the coutilization of glucose and xylose, which are two abundant carbon sources from lignocellulosic feedstocks. Similar approaches based on SpCRISPR-Cas9 for genome editing and transcriptional repression were also demonstrated in Clostridium pasteurianum ATCC 6013. As such, this work lays a foundation for the derivation of clostridial strains for industrial purposes.

  5. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    PubMed Central

    Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Sund, Christian J.; Hurley, Margaret M.

    2015-01-01

    Clostridium acetobutylicum ATCC 824 gene CA_C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes the unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA_C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry 1nc5) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA_C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate specificity from that of YteR. PMID:26249707

  6. Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption

    PubMed Central

    2014-01-01

    Background Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol. Results KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g · L-1 · h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture. Conclusions Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency. PMID:24401161

  7. Effect of zinc supplementation on acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Wu, You-Duo; Xue, Chuang; Chen, Li-Jie; Bai, Feng-Wu

    2013-05-10

    In this article, effect of zinc supplementation on acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum was studied. It was found that when 0.001 g/L ZnSO4·7H2O was supplemented into the medium, solventogenesis was initiated earlier, with 21.0 g/L ABE (12.6 g/L butanol, 6.7 g/L acetone and 1.7 g/L ethanol) produced with a fermentation time of 40 h, compared to 19.4 g/L ABE (11.7 g/L butanol, 6.4 g/L acetone and 1.3g/L ethanol) produced with a fermentation time of 64 h in the control without zinc supplementation, and correspondingly ABE and butanol productivities were increased to 0.53 and 0.32 g/L/h from 0.30 and 0.18 g/L/h, increases of 76.7% and 77.8%, respectively, but their yields were not compromised. The reason for this phenomenon was attributed to rapid acids re-assimilation for more efficient ABE production, which was in accordance with relatively high pH and ORP levels maintained during the fermentation process. The maximum cell density increased by 23.8%, indicating that zinc supplementation stimulated cell growth, and consequently facilitated glucose utilization. However, more zinc supplementation exhibited an inhibitory effect, indicating that zinc supplementation at very low levels such as 0.001 g/L ZnSO4·7H2O will be an economically competitive strategy for improving butanol production.

  8. Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol:acetone ratios.

    PubMed

    Hönicke, Daniel; Janssen, Holger; Grimmler, Christina; Ehrenreich, Armin; Lütke-Eversloh, Tina

    2012-05-15

    Artificial electron carriers have been widely used to shift the solvent ratio toward butanol in acetone-butanol-ethanol (ABE) fermentation of solventogenic clostridia according to decreased hydrogen production. In this study, first insights on the molecular level were gained to explore the effect of methyl viologen addition to cultures of Clostridium acetobutylicum. Employing batch fermentation in mineral salts medium, the butanol:acetone ratio was successively increased from 2.3 to 12.4 on a 100-ml scale in serum bottles and from 1.4 to 16.5 on a 1300-ml scale in bioreactors, respectively. The latter cultures were used for DNA microarray analyses to provide new information on the transcriptional changes referring to methyl viologen exposure and thus, exhibit gene expression patterns according to the manipulation of the cellular redox balance. Methyl viologen-exposed cultures revealed lower expression levels of the sol operon (CAP0162-0164) and the adjacent adc gene (CAP0165) responsible for solvent formation as well as iron and sulfate transporters and the CAC0105-encoded ferredoxin. On the contrary, genes for riboflavin biosynthesis, for the butyrate/butanol metabolic pathway and genes coding for sugar transport systems were induced. Interestingly, the adhE2-encoded bifunctional NADH-dependent aldhehyde/alcohol-dehydrogenase (CAP0035) was upregulated up to more than 100-fold expression levels as compared to the control culture without methyl viologen addition. The data presented here indicate a transcriptional regulation for decreased acetone biosynthesis and the redox-dependent substitution of adhE1 (CAP0162) by adhE2.

  9. The influence of the pentose's pathway of the Clostridium Acetobutylicum on the production of butanol: Insights from mathematical modeling

    NASA Astrophysics Data System (ADS)

    Soares, Rafael Ferreira; da Silva, Fabrício Alves Barbosa; Guimarães, Ana Carolina Ramos; Caffarena, Ernesto Raul

    2016-12-01

    This work is a pilot study for further analysis of the organism Trypanosoma cruzi (T. cruzi) and the influences of the Pentose's Pathway on the parasite Clostridium acetobutylicum, already cataloged in the database of OptFlux program. We used the approach parcimonius Flux Balance Analysis (pFBA) to simulate the wild type organism and the mutant with an inhibition of the R_01056 reaction in pentose's pathway. Results showed a reduction of approximately 1/3 of the biomass and 2/3 of the butanol production. This reduction shows the direct influence of the Pentose's Pathway on the primary production of metabolites and the biomass generation from the Clostridium metabolites. This information prompted us to build in the future an SBML parameter file to represent the flow of T.cruzi pathways, which will be essential for the development of new drugs against.

  10. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology.

  11. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition

    PubMed Central

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology. PMID:26489085

  12. Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels.

    PubMed

    Sreekumar, Sanil; Baer, Zachary C; Pazhamalai, Anbarasan; Gunbas, Gorkem; Grippo, Adam; Blanch, Harvey W; Clark, Douglas S; Toste, F Dean

    2015-03-01

    Clostridium acetobutylicum is a bacterial species that ferments sugar to a mixture of organic solvents (acetone, butanol and ethanol). This protocol delineates a methodology to combine solventogenic clostridial fermentation and chemical catalysis via extractive fermentation for the production of biofuel blendstocks. Extractive fermentation of C. acetobutylicum is operated in fed-batch mode with a concentrated feed solution (500 grams per liter glucose and 50 grams per liter yeast extract) for 60 h, producing in excess of 40 g of solvents (acetone, butanol and ethanol) between the completely immiscible extractant and aqueous phases of the bioreactor. After distillation of the extractant phase, the acetone, butanol and ethanol mixture is upgraded to long-chain ketones over a palladium-hydrotalcite (Pd-HT) catalyst. This reaction is generally carried out in batch with a high-pressure Q-tube for 20 h at 250 °C. Following this protocol enables the production of ∼0.5 g of high-value biofuel precursors from a 1.7-g portion of fermentation solvents.

  13. Chemostat cultivation and transcriptional analyses of Clostridium acetobutylicum mutants with defects in the acid and acetone biosynthetic pathways.

    PubMed

    Hönicke, Daniel; Lütke-Eversloh, Tina; Liu, Ziyong; Lehmann, Dörte; Liebl, Wolfgang; Ehrenreich, Armin

    2014-12-01

    Clostridium acetobutylicum is a model organism for the biotechnologically important acetone-butanol-ethanol (ABE) fermentation. With the objective to rationally develop strains with improved butanol production, detailed insights into the physiological and genetic mechanisms of solvent production are required. Therefore, pH-controlled phosphate-limited chemostat cultivation and DNA microarray technology were employed for an in-depth analysis of knockout mutants with defects in the central fermentative metabolism. The set of studied mutants included strains with inactivated phosphotransacetylase (pta), phosphotransbutyrylase (ptb), and acetoacetate decarboxylase (adc) encoding genes, as well as an adc/pta double knockout mutant. A comprehensive physiological characterization of the mutants was performed by continuous cultivation, allowing for a well-defined separation of acidogenic and solventogenic growth, combined with the advantage of the high reproducibility of steady-state conditions. The ptb-negative strain C. acetobutylicum ptb::int(87) exhibited the most striking metabolite profile: Sizable amounts of butanol (29 ± 1.3 mM) were already produced during acidogenic growth. The product patterns of the mutants as well as accompanying transcriptomic data are presented and discussed.

  14. Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways.

    PubMed

    Lehmann, Dörte; Hönicke, Daniel; Ehrenreich, Armin; Schmidt, Michael; Weuster-Botz, Dirk; Bahl, Hubert; Lütke-Eversloh, Tina

    2012-05-01

    Clostridial acetone-butanol-ethanol (ABE) fermentation is a natural source for microbial n-butanol production and regained much interest in academia and industry in the past years. Due to the difficult genetic accessibility of Clostridium acetobutylicum and other solventogenic clostridia, successful metabolic engineering approaches are still rare. In this study, a set of five knock-out mutants with defects in the central fermentative metabolism were generated using the ClosTron technology, including the construction of targeted double knock-out mutants of C. acetobtuylicum ATCC 824. While disruption of the acetate biosynthetic pathway had no significant impact on the metabolite distribution, mutants with defects in the acetone pathway, including both acetoacetate decarboxylase (Adc)-negative and acetoacetyl-CoA:acyl-CoA transferase (CtfAB)-negative mutants, exhibited high amounts of acetate in the fermentation broth. Distinct butyrate increase and decrease patterns during the course of fermentations provided experimental evidence that butyrate, but not acetate, is re-assimilated via an Adc/CtfAB-independent pathway in C. acetobutylicum. Interestingly, combining the adc and ctfA mutations with a knock-out of the phosphotransacetylase (Pta)-encoding gene, acetate production was drastically reduced, resulting in an increased flux towards butyrate. Except for the Pta-negative single mutant, all mutants exhibited a significantly reduced solvent production.

  15. Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum

    PubMed Central

    Wu, You-Duo; Xue, Chuang; Chen, Li-Jie; Wan, Hui-Hui; Bai, Feng-Wu

    2015-01-01

    The micronutrient zinc plays vital roles in ABE fermentation by Clostridium acetobutylicum. In order to elucidate the zinc-associated response for enhanced glucose utilization and earlier solventogenesis, transcriptional analysis was performed on cells grown in glucose medium at the exponential growth phase of 16 h without/with supplementary zinc. Correspondingly, the gene glcG (CAC0570) encoding a glucose-specific PTS was significantly upregulated accompanied with the other two genes CAC1353 and CAC1354 for glucose transport in the presence of zinc. Additionally, genes involved in the metabolisms of six other carbohydrates (maltose, cellobiose, fructose, mannose, xylose and arabinose) were differentially expressed, indicating that the regulatory effect of micronutrient zinc is carbohydrate-specific with respects to the improved/inhibited carbohydrate utilization. More importantly, multiple genes responsible for glycolysis (glcK and pykA), acidogenesis (thlA, crt, etfA, etfB and bcd) and solventogenesis (ctfB and bdhA) of C. acetobutylicum prominently responded to the supplementary zinc at differential expression levels. Comparative analysis of intracellular metabolites revealed that the branch node intermediates such as acetyl-CoA, acetoacetyl-CoA, butyl-CoA, and reducing power NADH remained relatively lower whereas more ATP was generated due to enhanced glycolysis pathway and earlier initiation of solventogenesis, suggesting that the micronutrient zinc-associated response for the selected intracellular metabolisms is significantly pleiotropic. PMID:26586044

  16. Anaerobic biotransformation of 2,4-dinitrotoluene and 2,6-dinitrotoluene by Clostridium acetobutylicum: A pathway through dihydroxylamino intermediates

    SciTech Connect

    Hughes, J.B.; Wang, C.Y.; Zhang, C.

    1999-04-01

    Experiments were conducted to isolate and identify the intermediates and products of 2,4-dinitrotoluene and 2,6-dinitrotoluene metabolism by Clostridium acetobutylicum. Transformation of both dinitrotoluenes initially resulted in the formation of hydroxylaminonitrotoluenes. Subsequent transformation favored the formation of dihydroxylaminotoluenes, with a limited reduction to aminonitrotoluene isomers. In cell cultures, metabolism beyond the level of dihydroxylaminotoluene was not observed. In cell extracts, where activity could be maintained for periods in excess of those in cell cultures, further transformation yielded aminohydroxylaminotoluenes and eventually diaminotoluenes. These findings further demonstrate the potential for hydroxylamines to be significant intermediates of nitroaromatic transformation under anaerobic fermentative conditions. Interestingly, the rearrangement of dihydroxylaminotoluenes was not observed, as was the case in previous studies of 2,4-dihydroxylamino-6-nitrotoluene metabolism. Dihydroxylaminotoluenes were found to be quite unstable, decomposing rapidly upon exposure to oxygen, complicating the assessment of their fate in remediation processes.

  17. Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene.

    PubMed

    Harris, L M; Blank, L; Desai, R P; Welker, N E; Papoutsakis, E T

    2001-11-01

    The effect of solR inactivation on the metabolism of Clostridium acetobutylicum was examined using fermentation characterization and metabolic flux analysis. The solR-inactivated strain (SolRH) of this study had a higher rate of glucose utilization and produced higher solvent concentrations (by 25%, 14%, and 81%, respectively, for butanol, acetone, and ethanol) compared to the wild type. Strain SolRH(pTAAD), carrying a plasmid-encoded copy of the bifunctional alcohol/aldehyde dehydrogenase gene (aad) used in butanol production, produced even higher concentrations of solvents (by 21%, 45%, and 62%, respectively, for butanol, acetone, and ethanol) than strain SolRH. Clarithromycin used for strain SolRH maintenance during SolRH(pTAAD) fermentations did not alter product formation; however, tetracycline used for pTAAD maintenance resulted in 90% lower solvent production.

  18. Assessment of morphological changes of Clostridium acetobutylicum by flow cytometry during acetone/butanol/ethanol extractive fermentation.

    PubMed

    González-Peñas, Helena; Lu-Chau, Thelmo Alejandro; Moreira, Maria Teresa; Lema, Juan Manuel

    2015-03-01

    Acetone/butanol/ethanol (ABE) fermentation by Clostridium acetobutylicum was investigated in extractive fed-batch experiments. In conventional fermentations, metabolic activity ceases when a critical threshold products concentration is reached (~21.6 g solvents l(-1)). Solvents production was increased up to 36.6 and 37.2 g l(-1), respectively, using 2-butyl-1-octanol (aqueous to organic ratio: 1:0.25 v/v) and pomace olive oil (1:1 v/v) as extraction solvents. The morphological changes of different cell types were monitored and quantified using flow cytometry. Butanol production in extractive fermentations with pomace olive oil was achieved mainly by vegetative cells, whereas the percentage of sporulating cells was lower than 10%.

  19. Effect of pH and lactose concentration on solvent production from whey permeate using Clostridium acetobutylicum

    SciTech Connect

    Ennis, B.M.; Maddox, I.S.

    1987-02-20

    A study was performed to optimize the production of solvents from whey permeate in batch fermentation using Clostridium acetobutylicum P262. Fermentations performed at relatively low pH values resulted in high solvent yields and productivities, but lactose utilization was incomplete. At higher pH values, lactose-utilization was improved but acid production dominated over solvent production. When operating at the higher pH values, an increase in the initial lactose concentration of the whey permeate resulted in lower rates of lactose utilization, and this was accompanied by increased solvent production and decreased acid production. Analysis of data from several experiments revealed a strong inverse relationship between solvent yield and lactose utilization rate. Thus, conditions which minimize the lactose utilization rate such as low culture pH values or high initial lactose concentrations, favor solventogenesis at the expense of acid production. 12 references.

  20. Effect of cocultures on the production of butanol by Clostridium sp. [C. butyricum, C. pasteurianum, C. butylicum, and C. acetobutylicum

    SciTech Connect

    Bergstrom, S.L.; Foutch, G.L.

    1983-01-01

    One of the problems with the production of butanol by fermentation is that a mixture of other solvents, primarily acetone and ethanol, are also produced. The ratio of butanol to acetone to ethanol is approximately 6:3:1. If the metabolism of the Clostridium can be shifted away from acetone and ethanol, then a higher percentage of the sugar carbon can be converted to butanol. This study examines the effects that cocultures of Clostridium have on the yield of butanol from glucose. C. butyricum and C. pasteurianum produced high concentrations of butyric acid from these sugars. C. butylicum and C. acetobutylicum are capable of utilizing this butyric acid for energy, resulting in butanol production. By using combinations of these strains in coculture a higher initial conversion to butyric acid would be expected followed by a higher overall yield of butanol. This coculture would not be expected to have an increased tolerance for butanol in the fermentation broth. 6 references, 1 figure, 3 tables.

  1. Transcriptional Analysis of spo0A Overexpression in Clostridium acetobutylicum and Its Effect on the Cell's Response to Butanol Stress

    PubMed Central

    Alsaker, Keith V.; Spitzer, Thomas R.; Papoutsakis, Eleftherios T.

    2004-01-01

    Spo0A is the regulator of stationary-phase events and is required for transcription of solvent formation genes in Clostridium acetobutylicum. In order to elucidate the role of spo0A in differentiation, we performed transcriptional analysis of 824(pMSPOA) (a spo0A-overexpressing C. acetobutylicum strain with enhanced sporulation) against a plasmid control strain. DNA microarray data were contrasted to data from a spo0A knockout strain (SKO1) that neither sporulates nor produces solvents. Transcripts of fatty acid metabolism genes, motility and chemotaxis genes, heat shock protein genes, and genes encoding the Fts family of cell division proteins were differentially expressed in the two strains, suggesting that these genes play roles in sporulation and the solvent stress response. 824(pMSPOA) alone showed significant downregulation of many glycolytic genes in stationary phase, which is consistent with metabolic flux analysis data. Surprisingly, spo0A overexpression resulted in only nominal transcriptional changes of regulatory genes (abrB and sigF) whose expression was significantly altered in SKO1. Overexpression of spo0A imparted increased tolerance and prolonged metabolism in response to butanol stress. While most of the differentially expressed genes appear to be part of a general stress response (similar to patterns in two plasmid control strains and a groESL-overexpressing strain), several genes were expressed at higher levels at early time points after butanol challenge only in 824(pMSPOA). Most of these genes were related to butyryl coenzyme A and butyrate formation and/or assimilation, but they also included the cell division gene ftsX, the gyrase subunit-encoding genes gyrB and gyrA, DNA synthesis and repair genes, and fatty acid synthesis genes, all of which might play a role in the immediate butanol stress response, and thus in enhanced butanol tolerance. PMID:15028679

  2. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum

    PubMed Central

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-01-01

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production. PMID:27321949

  3. Control of Carbon and Electron Flow in Clostridium acetobutylicum Fermentations: Utilization of Carbon Monoxide to Inhibit Hydrogen Production and to Enhance Butanol Yields

    PubMed Central

    Kim, Byung Hong; Bellows, Para; Datta, Rathin; Zeikus, J. G.

    1984-01-01

    Extracts prepared from non-solvent-producing cells of Clostridium acetobutylicum contained methyl viologen-linked hydrogenase activity (20 U/mg of protein at 37°C) but did not display carbon monoxide dehydrogenase activity. CO addition readily inhibited the hydrogenase activity of cell extracts or of viable metabolizing cells. Increasing the partial pressure of CO (2 to 10%) in unshaken anaerobic culture tube headspaces significantly inhibited (90% inhibition at 10% CO) both growth and hydrogen production by C. acetobutylicum. Growth was not sensitive to low partial pressures of CO (i.e., up to 15%) in pH-controlled fermentors (pH 4.5) that were continuously gassed and mixed. CO addition dramatically altered the glucose fermentation balance of C. acetobutylicum by diverting carbon and electrons away from H2, CO2, acetate, and butyrate production and towards production of ethanol and butanol. The butanol concentration was increased from 65 to 106 mM and the butanol productivity (i.e., the ratio of butanol produced/total acids and solvents produced) was increased by 31% when glucose fermentations maintained at pH 4.5 were continuously gassed with 85% N2-15% CO versus N2 alone. The results are discussed in terms of metabolic regulation of C. acetobutylicum saccharide fermentations to achieve maximal butanol or solvent yield. PMID:16346643

  4. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Han, Mee-Jung; Kim, Jin Young

    2016-01-01

    ABSTRACT Clostridium tyrobutyricum is a Gram-positive anaerobic bacterium that efficiently produces butyric acid and is considered a promising host for anaerobic production of bulk chemicals. Due to limited knowledge on the genetic and metabolic characteristics of this strain, however, little progress has been made in metabolic engineering of this strain. Here we report the complete genome sequence of C. tyrobutyricum KCTC 5387 (ATCC 25755), which consists of a 3.07-Mbp chromosome and a 63-kbp plasmid. The results of genomic analyses suggested that C. tyrobutyricum produces butyrate from butyryl-coenzyme A (butyryl-CoA) through acetate reassimilation by CoA transferase, differently from Clostridium acetobutylicum, which uses the phosphotransbutyrylase-butyrate kinase pathway; this was validated by reverse transcription-PCR (RT-PCR) of related genes, protein expression levels, in vitro CoA transferase assay, and fed-batch fermentation. In addition, the changes in protein expression levels during the course of batch fermentations on glucose were examined by shotgun proteomics. Unlike C. acetobutylicum, the expression levels of proteins involved in glycolytic and fermentative pathways in C. tyrobutyricum did not decrease even at the stationary phase. Proteins related to energy conservation mechanisms, including Rnf complex, NfnAB, and pyruvate-phosphate dikinase that are absent in C. acetobutylicum, were identified. Such features explain why this organism can produce butyric acid to a much higher titer and better tolerate toxic metabolites. This study presenting the complete genome sequence, global protein expression profiles, and genome-based metabolic characteristics during the batch fermentation of C. tyrobutyricum will be valuable in designing strategies for metabolic engineering of this strain. PMID:27302759

  5. Efficient acetone-butanol-ethanol production (ABE) by Clostridium acetobutylicum XY16 immobilized on chemically modified sugarcane bagasse.

    PubMed

    Kong, Xiangping; He, Aiyong; Zhao, Jie; Wu, Hao; Jiang, Min

    2015-07-01

    Sugarcane bagasse was chemically modified by polyethylenimine (PEI) and glutaraldehyde (GA) and then used as a support to immobilize Clostridium acetobutylicum XY16 in the process of butanol production. Compared with batch fermentation using unmodified sugarcane bagasse, 22.3 g/L total solvents were produced by cells immobilized on 4 g/L PEI treated sugarcane bagasse with high solvent productivity of 0.62 g/(L h) and glucose consumption rate of 1.67 g/(L h). Improvement of 14, 43, and 37 % in total solvent titer, solvent productivity and glucose consumption rate was observed, respectively. Enhanced solvent production of 25.14 g/L was obtained when using a high concentration of glucose of 80 g/L. Continuous fermentation was studied using PEI/GA modified sugarcane bagasse as immobilization support with a range of dilution which rates from 0.2 to 2.5 to find an optimal condition. The maximum solvent productivity of 11.32 g/(L h) was obtained at a high dilution rate of 2.0 h(-1).

  6. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation.

    PubMed

    Dolejš, Igor; Krasňan, Vladimír; Stloukal, Radek; Rosenberg, Michal; Rebroš, Martin

    2014-10-01

    Clostridium acetobutylicum immobilised in polyvinylalcohol, lens-shaped hydrogel capsules (LentiKats(®)) was studied for production of butanol and other products of acetone-butanol-ethanol fermentation. After optimising the immobilisation protocol for anaerobic bacteria, continuous, repeated batch, and fed-batch fermentations in repeated batch mode were performed. Using glucose as a substrate, butanol productivity of 0.41 g/L/h and solvent productivity of 0.63 g/L/h were observed at a dilution rate of 0.05 h(-1) during continuous fermentation with a concentrated substrate (60 g/L). Through the process of repeated batch fermentation, the duration of fermentation was reduced from 27.8h (free-cell fermentation) to 3.3h (immobilised cells) with a solvent productivity of 0.77 g/L/h (butanol 0.57 g/L/h). The highest butanol and solvent productivities of 1.21 and 1.91 g/L/h were observed during fed-batch fermentation operated in repeated batch mode with yields of butanol (0.15 g/g) and solvents (0.24 g/g), respectively, produced per gram of glucose.

  7. A Standard Operating Procedure (SOP) for the preparation of intra- and extracellular proteins of Clostridium acetobutylicum for proteome analysis.

    PubMed

    Schwarz, Katrin; Fiedler, Tomas; Fischer, Ralf-Jörg; Bahl, Hubert

    2007-02-01

    We report on the development of a Standard Operating Procedure (SOP) for extraction and handling of intra- and extracellular protein fractions of Clostridium acetobutylicum ATCC 824 for reproducible high quality two-dimensional gel electrophoresis (2-DE) analyses. Standardized cells from a phosphate-limited chemostat were used to evaluate different protein preparation methods. For the preparation of the secretome, a dialysis/ultrafiltration procedure resulted in higher protein yields and proved to be more reliable compared to different precipitation methods using TCA, DOC-TCA, acetone, and PEG 6000. Sonication was found to be the most efficient method among different tested techniques of cell disruption for the analysis of the intracellular proteome. Furthermore, the effect of protease inhibitors and sample storage conditions were tested for both intra- and extracellular protein samples. Significant changes in the protein pattern were observed depending on the addition of protease inhibitors. 2-DE gels with a pH gradient from 4 to 7 prepared according to the developed SOP contained at least 736 intracellular and 324 extracellular protein spots.

  8. Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes.

    PubMed

    Van Hecke, Wouter; Vandezande, Pieter; Claes, Stan; Vangeel, Silvia; Beckers, Herman; Diels, Ludo; De Wever, Heleen

    2012-05-01

    A continuous cultivation of Clostridium acetobutylicum ATCC 824 is described using a two-stage design to mimic the two phases of batch culture growth of the organism. A hydrophobic pervaporation unit was coupled to the second fermentor containing the highest solvent titers. This in situ product recovery technology efficiently decreased butanol toxicity in the fermentor while the permeate was enriched to 57-195 g L(-1) total solvents depending on the solvent concentrations in the fermentor. By the alleviation of product inhibition, the glucose concentration could be increased from 60 to 126 g L(-1) while the productivity increased concomitantly from 0.13 to 0.30 g L(-1)h(-1). The continuous fermentation was conducted for 1172 h during which the pervaporation was coupled to the second fermentor for 475 h with an average flux of 367 g m(-2)h(-1). The energy consumption was calculated for a 2 wt.% n-butanol fermentation broth and compared with the conventional process.

  9. Continuous two stage acetone-butanol-ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B 5313.

    PubMed

    Bankar, Sandip B; Survase, Shrikant A; Singhal, Rekha S; Granström, Tom

    2012-02-01

    The objective of this study was to optimize continuous acetone-butanol-ethanol (ABE) fermentation using a two stage chemostat system integrated with liquid-liquid extraction of solvents produced in the first stage. This minimized end product inhibition by butanol and subsequently enhanced glucose utilization and solvent production in continuous cultures of Clostridium acetobutylicum B 5313. During continuous two-stage ABE fermentation, sugarcane bagasse was used as the cell holding material for the both stages and liquid-liquid extraction was performed using an oleyl alcohol and decanol mixture. An overall solvent production of 25.32g/L (acetone 5.93g/L, butanol 16.90g/L and ethanol 2.48g/L) was observed as compared to 15.98g/L in the single stage chemostat with highest solvent productivity and solvent yield of 2.5g/Lh and of 0.35g/g, respectively. Maximum glucose utilization (83.21%) at a dilution rate of 0.051/h was observed as compared to 54.38% in the single stage chemostat.

  10. Enhanced butanol production by Clostridium acetobutylicum NCIMB 13357 grown on date fruit as carbon source in P2 medium.

    PubMed

    Khamaiseh, Emran I; Abdul Hamid, Aidil; Abdeshahian, Peyman; Wan Yusoff, Wan Mohtar; Kalil, Mohd Sahaid

    2014-01-01

    The production of biobutanol was studied by the cultivation of Clostridium acetobutylicum NCIMB 13557 in P2 medium including date fruit as the sole substrate. The effect of P2 medium and the effect of different concentrations of date fruit ranging from 10 to 100 g/L on biobutanol production were investigated. Anaerobic batch culture was carried out at 35 °C incubation temperature and pH 7.0 ± 0.2 for 72 h. Experimental results showed that the lowest yield of biobutanol and acetone-butanol-ethanol (ABE) was 0.32 and 0.35 gram per gram of carbohydrate consumed (g/g), respectively, when an initial date fruit concentration of 10 g/L was utilized. At this fruit date concentration a biobutanol production value of 1.56 g/L was obtained. On the other hand, the maximum yield of biobutanol (0.48 g/g) and ABE (0.63 g/g) was produced at 50 g/L date fruit concentration with a biobutanol production value as high as 11 g/L. However, when a higher initial date fruit concentration was used, biobutanol and ABE production decreased to reach the yield of 0.22 g/g and 0.35 g/g, respectively, where 100 g/L date fruit was used. Similar results also revealed that 10.03 g/L biobutanol was produced using 100 g/L date fruit.

  11. Crystal structure of Clostridium acetobutylicum Aspartate kinase (CaAK): An important allosteric enzyme for amino acids production.

    PubMed

    Manjasetty, Babu A; Chance, Mark R; Burley, Stephen K; Panjikar, Santosh; Almo, Steven C

    2014-09-01

    Aspartate kinase (AK) is an enzyme which is tightly regulated through feedback control and responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate. This intermediate step is at an important branch point where one path leads to the synthesis of lysine and the other to threonine, methionine and isoleucine. Concerted feedback inhibition of AK is mediated by threonine and lysine and varies between the species. The crystal structure of biotechnologically important Clostridium acetobutylicum aspartate kinase (CaAK; E.C. 2.7.2.4; Mw=48,030Da; 437aa; SwissProt: Q97MC0) has been determined to 3Å resolution. CaAK acquires a protein fold similar to the other known structures of AKs despite the low sequence identity (<30%). It is composed of two domains: an N-terminal catalytic domain (kinase) domain and a C-terminal regulatory domain further comprised of two small domains belonging to the ACT domain family. Pairwise comparison of 12 molecules in the asymmetric unit helped to identify the bending regions which are in the vicinity of ATP binding site involved in domain movements between the catalytic and regulatory domains. All 12 CaAK molecules adopt fully open T-state conformation leading to the formation of three tetramers unique among other similar AK structures. On the basis of comparative structural analysis, we discuss tetramer formation based on the large conformational changes in the catalytic domain associated with the lysine binding at the regulatory domains. The structure described herein is homologous to a target in wide-spread pathogenic (toxin producing) bacteria such as Clostridium tetani (64% sequence identity) suggesting the potential of the structure solved here to be applied for modeling drug interactions. CaAK structure may serve as a guide to better understand and engineer lysine biosynthesis for the biotechnology industry.

  12. Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710.

    PubMed

    Morsy, Fatthy Mohamed

    2017-04-01

    This study investigated synergistic dark and photo-fermentation using continuous fermentation system (CFS). The system relies on connecting several fermenters from bottom of one to top culture level of the next in a manner that allows for delaying movement of the substrate and thus for its full consumption. While H2 was collected, CFS allowed for moving liquid byproducts toward the outlet and hence continuous productivity. CFS could be efficiently used for: (1) Continuous dark and photo-fermentation H2 production by Clostridium acetobutylicum and Rhodobacter capsulatus producing 5.65moleH2mole(-1) hexose; (2) Continuous dark-fermentation synergistic H2, acetone, butanol and ethanol (ABE) production by C. acetobutylicum which produced per mole hexose, 2.43mol H2 along with 73.08g ABE (3) Continuous H2 and methane production by C. acetobutylicum and bacterial sludge producing, per mole hexose, 1.64mol pure H2 and 2.56mol CH4 mixed with 0.37mol H2·The hydraulic retention time (HRT) for whole system was short where organic acids produced in dark-fermentation in first fermenter were synergistically utilized for H2 production by R. capsulatus in subsequent fermenters. CFS is suitable for fast-digestible sugars but not lignocelluloses or other hard-digestible organics, requiring prolonged HRT, unless such polymeric organics were hydrolyzed prior to fermentation.

  13. Feasibility of installing and maintaining anaerobiosis using Escherichia coli HD701 as a facultative anaerobe for hydrogen production by Clostridium acetobutylicum ATCC 824 from various carbohydrates.

    PubMed

    Hassan, Sedky H A; Morsy, Fatthy Mohamed

    2015-12-01

    Using Escherichia coli for installing and maintaining anaerobiosis for hydrogen production by Clostridium acetobutylicum ATCC 824 is a cost-effective approach for industrial hydrogen production, as it does not require reducing agents or sparging with inert gases. This study was devoted for investigating the feasibility for installing and maintaining anaerobiosis of hydrogen production by C. acetobutylicum ATCC 824 when using E. coli HD701 utilizable versus non utilizable sugars as a-carbon source. Using E. coli HD701 for installing anaerobiosis showed a comparable hydrogen production yield and efficiency to the use of reducing agents and nitrogen sparging in case of hydrogen production from the E. coli HD701 non utilizable sugars. In contrast, using E. coli HD701 for installing anaerobiosis showed a lower hydrogen production yield and efficiency than the use of reducing agents and nitrogen sparging in case of using glucose as a substrate. This is possibly because E. coli HD701 when using glucose compensate for the substrate, and produce hydrogen with lower efficiency than C. acetobutylicum ATCC 824. These results indicated that the use of E. coli HD701 for installing anaerobiosis would not be economically feasible when using E. coli HD701 utilizable sugars as a carbon source. In contrast, the use of this approach for installing anaerobiosis for hydrogen production from sucrose and starch would have a high potency for industrial applications.

  14. The mechanism of switching from an acidogenic to butanol-acetone fermentation by Clostridium acetobutylicum. Technical progress report, July 1990--June 1993

    SciTech Connect

    Rogers, P.

    1994-11-01

    The overall objective of this project was to elucidate the detailed mechanism by which solvent-forming bacteria such as Clostridium acetobutylicum regulate the well-known shift in fermentation pathway between alcohol-acetone and organic acid production. We eventually want to isolate and describe: (1) the regulatory genes and protein elements that determine induction of synthesis of the solvent-pathway enzymes; and (2) how this regulation system interacts with the sporulation induction and development program and with related pathways such as granulose and exopolysaccharide formation in clostridia. A working model for how clostridial control systems work can be derived from recent research on stress systems in E. coli and sporulation in Bacillus subtilis. This research was centered upon the technique of employing transposable elements that create gene fusions and mutations due to insertion in the chromosome of gram positive bacteria. Our approach was based on recent demonstration in our laboratory and by others of transconjugation of Tn916 into C. acetobutylicum and its insertion into the chromosome. A panel of strains with Tn916 inserts that are also solvent-negative and/or asporogenic were used to identify specific regulatory genes. A second approach was based upon electroporative transformation of plasmid PTV1 DNA carrying transposon Tn917 into C. acetobutylicum. Insertion of Tn917 lac to report activity of genes and functions in vegetative and stationary or slow-growing cells will be investigated.

  15. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously.

  16. Structural Characterization of Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase in Its Apo Form and in Complex with 8-Oxodeoxyguanosine

    SciTech Connect

    Faucher, Frédérick; Robey-Bond, Susan M.; Wallace, Susan S.; Doublié, Sylvie

    2009-06-30

    DNA is subject to a multitude of oxidative damages generated by oxidizing agents from metabolism and exogenous sources and by ionizing radiation. Guanine is particularly vulnerable to oxidation, and the most common oxidative product 8-oxoguanine (8-oxoG) is the most prevalent lesion observed in DNA molecules. 8-OxoG can form a normal Watson-Crick pair with cytosine (8-oxoG:C), but it can also form a stable Hoogsteen pair with adenine (8-oxoG:A), leading to a G:C {yields} T:A transversion after replication. Fortunately, 8-oxoG is recognized and excised by either of two DNA glycosylases of the base excision repair pathway: formamidopyrimidine-DNA glycosylase and 8-oxoguanine DNA glycosylase (Ogg). While Clostridium acetobutylicum Ogg (CacOgg) DNA glycosylase can specifically recognize and remove 8-oxoG, it displays little preference for the base opposite the lesion, which is unusual for a member of the Ogg1 family. This work describes the crystal structures of CacOgg in its apo form and in complex with 8-oxo-2'-deoxyguanosine. A structural comparison between the apo form and the liganded form of the enzyme reveals a structural reorganization of the C-terminal domain upon binding of 8-oxoG, similar to that reported for human OGG1. A structural comparison of CacOgg with human OGG1, in complex with 8-oxoG containing DNA, provides a structural rationale for the lack of opposite base specificity displayed by CacOgg.

  17. Clostridium acetobutylicum 8-Oxoguanine DNA Glycosylase (Ogg) Differs from Eukaryotic Oggs with Respect to Opposite Base Discrimination†

    PubMed Central

    Robey-Bond, Susan M.; Barrantes-Reynolds, Ramiro; Bond, Jeffrey P.; Wallace, Susan S.; Bandaru, Viswanath

    2008-01-01

    During repair of damaged DNA, the oxidized base 8-oxoguanine (8-oxoG) is removed by 8-oxoguanine—DNA glycosylase (Ogg) in eukaryotes and most archaea, whereas in most bacteria it is removed by formamidopyrimidine—DNA glycosylase (Fpg). We report the first characterization of a bacterial Ogg, Clostridium acetobutylicum Ogg (CacOgg). Like human OGG1 and Escherichia coli Fpg (EcoFpg), CacOgg excised 8-oxoguanine. However, unlike hOGG1 and EcoFpg, CacOgg showed little preference for the base opposite the damage during base excision and removed 8-oxoguanine from single-stranded DNA. Thus, our results showed unambiguous qualitative functional differences in vitro between CacOgg and both hOGG1 and EcoFpg. CacOgg differs in sequence from the eukaryotic enzymes at two sequence positions, M132 and F179, which align with amino acids (R154 and Y203) in human OGG1 (hOGG1) found to be involved in opposite base interaction. To address the sequence basis for functional differences with respect to opposite base interactions, we prepared three CacOgg variants, M132R, F179Y, and M132R/F179Y. All three variants showed a substantial increase in specificity for 8-oxoG·C relative to 8-oxoG·A. While we were unable to definitively associate these qualitative functional differences with differences in selective pressure between eukaryotes, Clostridia, and other bacteria, our results are consistent with the idea that evolution of Ogg function is based on kinetic control of repair. PMID:18578506

  18. Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation

    PubMed Central

    2012-01-01

    Background Previously we have developed a butanol tolerant mutant of Clostridium acetobutylicum Rh8, from the wild type strain DSM 1731. Strain Rh8 can tolerate up to 19 g/L butanol, with solvent titer improved accordingly, thus exhibiting industrial application potential. To test if strain Rh8 can be used for production of high level mixed alcohols, a single secondary alcohol dehydrogenase from Clostridium beijerinckii NRRL B593 was overexpressed in strain Rh8 under the control of thl promoter. Results The heterogenous gene sADH was functionally expressed in C. acetobutylicum Rh8. This simple, one-step engineering approach switched the traditional ABE (acetone-butanol-ethanol) fermentation to IBE (isopropanol-butanol-ethanol) fermentation. The total alcohol titer reached 23.88 g/l (7.6 g/l isopropanol, 15 g/l butanol, and 1.28 g/l ethanol) with a yield to glucose of 31.42%. The acid (butyrate and acetate) assimilation rate in isopropanol producing strain Rh8(psADH) was increased. Conclusions The improved butanol tolerance and the enhanced solvent biosynthesis machinery in strain Rh8 is beneficial for production of high concentration of mixed alcohols. Strain Rh8 can thus be considered as a good host for further engineering of solvent/alcohol production. PMID:22742819

  19. The genome sequence of Clostridium tetani, the causative agent of tetanus disease

    PubMed Central

    Brüggemann, Holger; Bäumer, Sebastian; Fricke, Wolfgang Florian; Wiezer, Arnim; Liesegang, Heiko; Decker, Iwona; Herzberg, Christina; Martínez-Arias, Rosa; Merkl, Rainer; Henne, Anke; Gottschalk, Gerhard

    2003-01-01

    Tetanus disease is one of the most dramatic and globally prevalent diseases of humans and vertebrate animals, and has been reported for over 24 centuries. The manifestation of the disease, spastic paralysis, is caused by the second most poisonous substance known, the tetanus toxin, with a human lethal dose of ≈1 ng/kg. Fortunately, this disease is successfully controlled through immunization with tetanus toxoid; nevertheless, according to the World Health Organization, an estimated 400,000 cases still occur each year, mainly of neonatal tetanus. The causative agent of tetanus disease is Clostridium tetani, an anaerobic spore-forming bacterium, whose natural habitat is soil, dust, and intestinal tracts of various animals. Here we report the complete genome sequence of toxigenic C. tetani E88, a variant of strain Massachusetts. The genome consists of a 2,799,250-bp chromosome encoding 2,372 ORFs. The tetanus toxin and a collagenase are encoded on a 74,082-bp plasmid, containing 61 ORFs. Additional virulence-related factors could be identified, such as an array of surface-layer and adhesion proteins (35 ORFs), some of them unique to C. tetani. Comparative genomics with the genomes of Clostridium perfringens, the causative agent of gas gangrene, and Clostridium acetobutylicum, a nonpathogenic solvent producer, revealed a remarkable capacity of C. tetani: The organism can rely on an extensive sodium ion bioenergetics. Additional candidate genes involved in the establishment and maintenance of a pathogenic lifestyle of C. tetani are presented. PMID:12552129

  20. The genome sequence of Clostridium tetani, the causative agent of tetanus disease.

    PubMed

    Bruggemann, Holger; Baumer, Sebastian; Fricke, Wolfgang Florian; Wiezer, Arnim; Liesegang, Heiko; Decker, Iwona; Herzberg, Christina; Martinez-Arias, Rosa; Merkl, Rainer; Henne, Anke; Gottschalk, Gerhard

    2003-02-04

    Tetanus disease is one of the most dramatic and globally prevalent diseases of humans and vertebrate animals, and has been reported for over 24 centuries. The manifestation of the disease, spastic paralysis, is caused by the second most poisonous substance known, the tetanus toxin, with a human lethal dose of approximately 1 ng/kg. Fortunately, this disease is successfully controlled through immunization with tetanus toxoid; nevertheless, according to the World Health Organization, an estimated 400,000 cases still occur each year, mainly of neonatal tetanus. The causative agent of tetanus disease is Clostridium tetani, an anaerobic spore-forming bacterium, whose natural habitat is soil, dust, and intestinal tracts of various animals. Here we report the complete genome sequence of toxigenic C. tetani E88, a variant of strain Massachusetts. The genome consists of a 2,799,250-bp chromosome encoding 2,372 ORFs. The tetanus toxin and a collagenase are encoded on a 74,082-bp plasmid, containing 61 ORFs. Additional virulence-related factors could be identified, such as an array of surface-layer and adhesion proteins (35 ORFs), some of them unique to C. tetani. Comparative genomics with the genomes of Clostridium perfringens, the causative agent of gas gangrene, and Clostridium acetobutylicum, a nonpathogenic solvent producer, revealed a remarkable capacity of C. tetani: The organism can rely on an extensive sodium ion bioenergetics. Additional candidate genes involved in the establishment and maintenance of a pathogenic lifestyle of C. tetani are presented.

  1. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  2. Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824.

    PubMed

    Harris, Latonia M; Welker, Neil E; Papoutsakis, Eleftherios T

    2002-07-01

    The Clostridium acetobutylicum ATCC 824 spo0A gene was cloned, and two recombinant strains were generated, an spo0A inactivation strain (SKO1) and an spo0A overexpression strain [824(pMPSOA)]. SKO1 was developed by targeted gene inactivation with a replicative plasmid capable of double-crossover chromosomal integration--a technique never used before with solventogenic clostridia. SKO1 was severely deficient in solvent formation: it produced only 2 mM acetone and 13 mM butanol, compared to the 92 mM acetone and 172 mM butanol produced by the parental strain. After 72 h of growth on solid media, SKO1 formed long filaments of rod-shaped cells that failed to septate. SKO1 cells never achieved the swollen clostridial form typical of the parental strain and did not form endospores. No spo0A transcripts were detected in SKO1, while transcription of two solvent formation operons (aad-ctfA-ctfB and adc; both containing 0A boxes in their promoter regions) was limited. Strain 824(pMSPOA) produced higher butanol concentrations than the control strain [824(pIMP1)] and dramatically elevated spo0A transcript levels and displayed a bimodal pattern of spo0A transcription similar to that of B. subtilis. Microscopic studies indicated that sporulation was both enhanced and accelerated due to spo0A overexpression compared to that of both the 824(pIMP1) and parental strains. Consistent with that, expression of the key solvent formation genes (aad-ctfA-ctfB and adc) and three sporulation-specific genes (spoIIGA, sigE, and sigG) was observed earlier in strain 824(pMSPOA) than in the plasmid control. These data support the hypothesis that Spo0A is a transcriptional regulator that positively controls sporulation and solvent production. Its effect on solvent formation is a balancing act in regulating sporulation versus solvent gene expression: its overexpression apparently tips the balance in favor of accelerated and enhanced sporulation at the expense of overall solvent production.

  3. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    SciTech Connect

    Cary, J.W.; Petersen, D.J.; Bennett, G.N. ); Papoutsakis, E.T. )

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defect in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.

  4. Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor.

    PubMed

    Nair, R V; Green, E M; Watson, D E; Bennett, G N; Papoutsakis, E T

    1999-01-01

    A gene (orf1, now designated solR) previously identified upstream of the aldehyde/alcohol dehydrogenase gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 176:871-885, 1994) was found to encode a repressor of the sol locus (aad, ctfA, ctfB and adc) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824. Primer extension analysis identified a transcriptional start site 35 bp upstream of the solR start codon. Amino acid comparisons of SolR identified a potential helix-turn-helix DNA-binding motif in the C-terminal half towards the center of the protein, suggesting a regulatory role. Overexpression of SolR in strain ATCC 824(pCO1) resulted in a solvent-negative phenotype owing to its deleterious effect on the transcription of the sol locus genes. Inactivation of solR in C. acetobutylicum via homologous recombination yielded mutants B and H (ATCC 824 solR::pO1X) which exhibited deregulated solvent production characterized by increased flux towards butanol and acetone formation, earlier induction of aad, lower overall acid production, markedly improved yields of solvents on glucose, a prolonged solvent production phase, and increased biomass accumulation compared to those of the wild-type strain.

  5. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone-butanol-ethanol fermentation of Clostridium acetobutylicum in continuous culture.

    PubMed

    Millat, Thomas; Janssen, Holger; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf

    2013-09-01

    In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone-butanol-ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum.

  6. High-efficient n-butanol production by co-culturing Clostridium acetobutylicum and Saccharomyces cerevisiae integrated with butyrate fermentative supernatant addition.

    PubMed

    Luo, Hongzhen; Zeng, Qingwei; Han, Shuo; Wang, Zhaoyu; Dong, Qing; Bi, Yanhong; Zhao, Yuping

    2017-04-01

    Butanol is not only an important chemical intermediate and solvent in pharmaceutical and cosmetics industries, but also considered as an advanced biofuel. Although species of the natural host Clostridium have been engineered, butanol titers in the anaerobe seem to be limited by its intolerance to butanol less than 13 g/L. Here we aimed to develop a technology for enhancing butanol production by a co-culture system with butyrate fermentative supernatant addition. First, when adding 4.0 g/L butyrate into the acetone-butanol-ethanol (ABE) fermentation broth with single-shot at 24 h, the "acid crash" phenomenon occurred and the ABE fermentation performance deteriorated. Subsequently, we found that adding certain amino acids could effectively enhance butyrate re-assimilation, butanol tolerance and titer (from 11.1 to 14.8 g/L). Additionally, in order to decrease the raw material cost, butyrate fermentative supernatant produced by Clostridium tyrobutyricum was applied to butanol production in the Clostridium acetobutylicum/Saccharomyces cerevisiae co-culture system, instead of adding synthetic butyrate. Final butanol and total ABE concentrations reached higher levels of 16.3 and 24.8 g/L with increments of 46.8 and 37.8%, respectively. These results show that the proposed fermentation strategy has great potential for efficiently butanol production with an economic approach.

  7. The mechanism of switching from an acidogenic to butanol-acetone fermentation by Clostridium acetobutylicum. Technical progress report, July 1990--December 1992

    SciTech Connect

    Rogers, P.

    1992-12-31

    The overall objective of this project is to elucidate the detailed mechanism by which solvent-forming bacteria such as Clostridium acetobutylicum regulate the well-known shift in fermentation pathway between alcohol-acetone and organic acid production. It is desired to eventually isolate and describe: (1) the regulatory genes and protein elements that determine induction of synthesis of the solvent-pathway enzymes; and (2) how this regulation system interacts with the sporulatin induction and development program and with related pathways such as granulse and exopolysaccharide formation in clostridia. A working model forhow clostridial control systems work can be derived from recent research on stress systems in E. coli and sporulation in Bacillus subtilis.

  8. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose.

    PubMed

    Xiao, Han; Gu, Yang; Ning, Yuanyuan; Yang, Yunliu; Mitchell, Wilfrid J; Jiang, Weihong; Yang, Sheng

    2011-11-01

    Efficient cofermentation of D-glucose, D-xylose, and L-arabinose, three major sugars present in lignocellulose, is a fundamental requirement for cost-effective utilization of lignocellulosic biomass. The Gram-positive anaerobic bacterium Clostridium acetobutylicum, known for its excellent capability of producing ABE (acetone, butanol, and ethanol) solvent, is limited in using lignocellulose because of inefficient pentose consumption when fermenting sugar mixtures. To overcome this substrate utilization defect, a predicted glcG gene, encoding enzyme II of the D-glucose phosphoenolpyruvate-dependent phosphotransferase system (PTS), was first disrupted in the ABE-producing model strain Clostridium acetobutylicum ATCC 824, resulting in greatly improved D-xylose and L-arabinose consumption in the presence of D-glucose. Interestingly, despite the loss of GlcG, the resulting mutant strain 824glcG fermented D-glucose as efficiently as did the parent strain. This could be attributed to residual glucose PTS activity, although an increased activity of glucose kinase suggested that non-PTS glucose uptake might also be elevated as a result of glcG disruption. Furthermore, the inherent rate-limiting steps of the D-xylose metabolic pathway were observed prior to the pentose phosphate pathway (PPP) in strain ATCC 824 and then overcome by co-overexpression of the D-xylose proton-symporter (cac1345), D-xylose isomerase (cac2610), and xylulokinase (cac2612). As a result, an engineered strain (824glcG-TBA), obtained by integrating glcG disruption and genetic overexpression of the xylose pathway, was able to efficiently coferment mixtures of D-glucose, D-xylose, and L-arabinose, reaching a 24% higher ABE solvent titer (16.06 g/liter) and a 5% higher yield (0.28 g/g) compared to those of the wild-type strain. This strain will be a promising platform host toward commercial exploitation of lignocellulose to produce solvents and biofuels.

  9. Molecular Characterization and Transcriptional Analysis of adhE2, the Gene Encoding the NADH-Dependent Aldehyde/Alcohol Dehydrogenase Responsible for Butanol Production in Alcohologenic Cultures of Clostridium acetobutylicum ATCC 824

    PubMed Central

    Fontaine, Lisa; Meynial-Salles, Isabelle; Girbal, Laurence; Yang, Xinghong; Croux, Christian; Soucaille, Philippe

    2002-01-01

    The adhE2 gene of Clostridium acetobutylicum ATCC 824, coding for an aldehyde/alcohol dehydrogenase (AADH), was characterized from molecular and biochemical points of view. The 2,577-bp adhE2 codes for a 94.4-kDa protein. adhE2 is expressed, as a monocistronic operon, in alcohologenic cultures and not in solventogenic cultures. Primer extension analysis identified two transcriptional start sites 160 and 215 bp upstream of the adhE2 start codon. The expression of adhE2 from a plasmid in the DG1 mutant of C. acetobutylicum, a mutant cured of the pSOL1 megaplasmid, restored butanol production and provided elevated activities of NADH-dependent butyraldehyde and butanol dehydrogenases. The recombinant AdhE2 protein expressed in E. coli as a Strep-tag fusion protein and purified to homogeneity also demonstrated NADH-dependent butyraldehyde and butanol dehydrogenase activities. This is the second AADH identified in C. acetobutylicum ATCC 824, and to our knowledge this is the first example of a bacterium with two AADHs. It is noteworthy that the two corresponding genes, adhE and adhE2, are carried by the pSOL1 megaplasmid of C. acetobutylicum ATCC 824. PMID:11790753

  10. Fermentative hydrogen production in an up-flow anaerobic biofilm reactor inoculated with a co-culture of Clostridium acetobutylicum and Desulfovibrio vulgaris.

    PubMed

    Barca, Cristian; Ranava, David; Bauzan, Marielle; Ferrasse, Jean-Henry; Giudici-Orticoni, Marie-Thérèse; Soric, Audrey

    2016-12-01

    Dark fermentation systems often show low H2 yields and unstable H2 production, as the result of the variability of microbial dynamics and metabolic pathways. Recent batch investigations have demonstrated that an artificial consortium of two anaerobic bacteria, Clostridium acetobutylicum and Desulfovibrio vulgaris Hildenborough, may redirect metabolic fluxes and improve H2 yields. This study aimed at evaluating the scale-up from batch to continuous H2 production in an up-flow anaerobic packed-bed reactor (APBR) continuously fed with a glucose-medium. The effects of various parameters, including void hydraulic retention time (HRTv), pH, and alkalinity, on H2 production performances and metabolic pathways were investigated. The results demonstrated that a stable H2 production was reached after 3-4days of operation. H2 production rates increased significantly with decreasing HRTv from 4 to 2h. Instead, H2 yields remained almost stable despite the change in HRTv, indicating that the decrease in HRTv did not affect the global metabolism.

  11. Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane.

    PubMed

    Wu, Hao; Chen, Xiao-Peng; Liu, Gong-Ping; Jiang, Min; Guo, Ting; Jin, Wan-Qin; Wei, Ping; Zhu, Da-Wei

    2012-09-01

    PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.

  12. Direct fermentation of gelatinized cassava starch to acetone, butanol, and ethanol using Clostridium acetobutylicum mutant obtained by atmospheric and room temperature plasma.

    PubMed

    Li, Han-guang; Luo, Wei; Wang, Qiang; Yu, Xiao-bin

    2014-04-01

    The mutant strain designated as ART18, obtained from the wild-type strain Clostridium acetobutylicum PW12 treated by atmospheric and room temperature plasma, showed higher solvent tolerance and butanol production than that of the wild-type strain. The production of butanol was 11.3 ± 0.5 g/L, 31 % higher than that of the wild-type strain when it was used for acetone, butanol, and ethanol fermentation in P2 medium. Furthermore, the effects of cassava flour concentration, pH regulators, and vitamins on the ABE production were also investigated. The highest butanol production of 15.8 ± 0.8 g/L and butanol yield (0.31 g/g) were achieved after the above factors were optimized. When acetone, butanol, and ethanol fermentation by ART18 was carried out in a 15-L bioreactor, the butanol production, the productivity of butanol, and the total solvent were 16.3 ± 0.9, 0.19, and 0.28 g/L(/)h, respectively. These results indicate that ART18 is a promising industrial producer in ABE fermentation.

  13. Complete Genome Sequence of Clostridium clariflavum DSM 19732

    SciTech Connect

    Goodwin, Lynne A.; Davenport, Karen W.; Teshima, Hazuki; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Land, Miriam L; Hauser, Loren John; Jeffries, Cynthia; Han, James; Pitluck, Sam; Nolan, Matt; Chen, Amy; Huntemann, Marcel; Mavromatis, K; Mikhailova, Natalia; Liolios, Konstantinos; Woyke, Tanja; Lynd, Lee R

    2012-01-01

    Clostridium clariflavum is a Cluster III Clostridium within the family Clostridiaceae isolated from thermophilic anaerobic sludge (Shiratori et al, 2009). This species is of interest because of its similarity to the model cellulolytic organism Clostridium thermocellum and for the ability of environmental isolates to break down cellulose and hemicellulose. Here we describe features of the 4,897,678 bp long genome and its annotation, consisting of 4,131 proteincoding and 98 RNA genes, for the type strain DSM 19732.

  14. σK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation.

    PubMed

    Al-Hinai, Mohab A; Jones, Shawn W; Papoutsakis, Eleftherios T

    2014-01-01

    Sporulation in the model endospore-forming organism Bacillus subtilis proceeds via the sequential and stage-specific activation of the sporulation-specific sigma factors, σ(H) (early), σ(F), σ(E), σ(G), and σ(K) (late). Here we show that the Clostridium acetobutylicum σ(K) acts both early, prior to Spo0A expression, and late, past σ(G) activation, thus departing from the B. subtilis model. The C. acetobutylicum sigK deletion (ΔsigK) mutant was unable to sporulate, and solventogenesis, the characteristic stationary-phase phenomenon for this organism, was severely diminished. Transmission electron microscopy demonstrated that the ΔsigK mutant does not develop an asymmetric septum and produces no granulose. Complementation of sigK restored sporulation and solventogenesis to wild-type levels. Spo0A and σ(G) proteins were not detectable by Western analysis, while σ(F) protein levels were significantly reduced in the ΔsigK mutant. spo0A, sigF, sigE, sigG, spoIIE, and adhE1 transcript levels were all downregulated in the ΔsigK mutant, while those of the sigH transcript were unaffected during the exponential and transitional phases of culture. These data show that σ(K) is necessary for sporulation prior to spo0A expression. Plasmid-based expression of spo0A in the ΔsigK mutant from a nonnative promoter restored solventogenesis and the production of Spo0A, σ(F), σ(E), and σ(G), but not sporulation, which was blocked past the σ(G) stage of development, thus demonstrating that σ(K) is also necessary in late sporulation. sigK is expressed very early at low levels in exponential phase but is strongly upregulated during the middle to late stationary phase. This is the first sporulation-specific sigma factor shown to have two developmentally separated roles.

  15. Genome of a chronic osteitis-causing Clostridium tetani.

    PubMed

    Fournier, P-E; Levy, P-Y; Million, M; Croce, O; Blanc-Tailleur, C; Brouqui, P; Raoult, D

    2014-01-01

    We sequenced the genome of a Clostridium tetani strain that caused chronic tibial osteitis without any clinical sign of tetanus in a 26-year-old man previously vaccinated against this disease. The genome contained a plasmid that harboured the tetX-tetR tetanospasmin operon, and was highly similar to that of a tetanus-causing strain.

  16. Lytic Clostridium perfringens Bacteriophage 39-O Genomic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening for bacteriophages lytic for Clostridium perfringens was completed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Following limit dilution cloning and three rounds of plaque purification lytic phage preparations ...

  17. Biology and genomic analysis of Clostridium botulinum.

    PubMed

    Peck, Michael W

    2009-01-01

    The ability to form botulinum neurotoxin is restricted to six phylogenetically and physiologically distinct bacteria (Clostridium botulinum Groups I-IV and some strains of C. baratii and C. butyricum). The botulinum neurotoxin is the most potent toxin known, with as little as 30-100 ng potentially fatal, and is responsible for botulism, a severe neuroparalytic disease that affects humans, animals, and birds. In order to minimize the hazards presented by the botulinum neurotoxin-forming clostridia, it is necessary to extend understanding of the biology of these bacteria. Analyses of recently available genome sequences in conjunction with studies of bacterial physiology are beginning to reveal new and exciting information on the biology of these dangerous bacteria. At the whole organism level, substantial differences between the six botulinum neurotoxin-forming clostridia have been reported. For example, the genomes of proteolytic C. botulinum (C. botulinum Group I) and non-proteolytic C. botulinum (C. botulinum Group II) are highly diverged and show neither synteny nor homology. It has also emerged that the botulinum neurotoxin-forming clostridia are not overtly pathogenic (unlike C. difficile), but saprophytic bacteria that use the neurotoxin to kill a host and create a source of nutrients. One important feature that has contributed to the success of botulinum neurotoxin-forming clostridia is their ability to form highly resistant endospores. The spores, however, also present an opportunity to control these bacteria if escape from lag phase (and hence growth) can be prevented. This is dependent on extending understanding of the biology of these processes. Differences in the genetics and physiology of spore germination in proteolytic C. botulinum and non-proteolytic C. botulinum have been identified. The biological variability in lag phase and its stages has been described for individual spores, and it has been shown that various adverse treatments extend different

  18. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    PubMed Central

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  19. Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani.

    PubMed

    Brüggemann, Holger; Gottschalk, Gerhard

    2004-04-01

    The decryption of prokaryotic genome sequences progresses rapidly and provides the scientific community with an enormous amount of information. Clostridial genome sequencing projects have been finished only recently, starting with the genome of the solvent-producing Clostridium acetobutylicum in 2001. A lot of attention has been devoted to the genomes of pathogenic clostridia. In 2002, the genome sequence of C. perfringens, the causative agent of gas gangrene, has been released. Currently in the finishing stage and prior to publication are the genomes of the foodborne botulism-causing C. botulinum and of C. difficile, the causative agent of a wide spectrum of clinical manifestations such as antibiotic-associated diarrhea. Our team sequenced the genome of neuropathogenic C. tetani, a Gram-positive spore-forming bacterium predominantly found in the soil. In deep wound infections it occasionally causes spastic paralysis in humans and vertebrate animals, known as tetanus disease, by the secretion of potent neurotoxin, designated tetanus toxin. The toxin blocks the release of neurotransmitters from presynaptic membranes of interneurons of the spinal cord and the brainstem, thus preventing muscle relaxation. Fortunately, this disease is successfully controlled through immunization with tetanus toxoid, a formaldehyde-treated tetanus toxin, but nevertheless, an estimated 400,000 cases still occur each year, mainly of neonatal tetanus. The World Health Organization has stated that neonatal tetanus is the second leading cause of death from vaccine preventable diseases among children worldwide. This minireview focuses on an analysis of the genome sequence of C. tetani E88, a vaccine production strain, which is a toxigenic non-sporulating variant of strain Massachusetts. The genome consists of a 2,799,250 bp chromosome encoding 2618 open reading frames. The tetanus toxin is encoded on a 74,082 kb plasmid, containing 61 genes. Additional virulence-related factors as well as an

  20. ClosTron-mediated engineering of Clostridium.

    PubMed

    Kuehne, Sarah A; Heap, John T; Cooksley, Clare M; Cartman, Stephen T; Minton, Nigel P

    2011-01-01

    The genus Clostridium is a diverse assemblage of Gram positive, anaerobic, endospore-forming bacteria. Whilst certain species have achieved notoriety as important animal and human pathogens (e.g. Clostridium difficile, Clostridium botulinum, Clostridium tetani, and Clostridium perfringens), the vast majority of the genus are entirely benign, and are able to undertake all manner of useful biotransformations. Prominent amongst them are those species able to produce the biofuels, butanol and ethanol from biomass-derived residues, such as Clostridium acetobutylicum, Clostridium beijerinkii, Clostridium thermocellum, and Clostridium phytofermentans. The prominence of the genus in disease and biotechnology has led to the need for more effective means of genetic modification. The historical absence of methods based on conventional strategies for "knock-in" and "knock-out" in Clostridium has led to the adoption of recombination-independent procedures, typified by ClosTron technology. The ClosTron uses a retargeted group II intron and a retro-transposition-activated marker to selectively insert DNA into defined sites within the genome, to bring about gene inactivation and/or cargo DNA delivery. The procedure is extremely efficient, rapid, and requires minimal effort by the operator.

  1. Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1.

    PubMed

    Nasser Al-Shorgani, Najeeb Kaid; Kalil, Mohd Sahaid; Wan Yusoff, Wan Mohtar; Shukor, Hafiza; Hamid, Aidil Abdul

    2015-12-01

    Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio.

  2. Genomics of Clostridium botulinum group III strains.

    PubMed

    Sakaguchi, Yoshihiko; Suzuki, Tomonori; Yamamoto, Yumiko; Nishikawa, Atsushi; Oguma, Keiji

    2015-05-01

    In Clostridium botulinum, the characteristics of type C and D strains are quite different from other types, and they are classified as group III. They produce C2 binary toxin and C3 exoenzyme in addition to type C and D neurotoxins. Two different phages and many plasmids are identified in the organisms. The genes of neurotoxin and C3 exoenzyme are converted from toxigenic strains to non-toxigenic strains by the specific bacteriophages (phages), whereas, the C2 toxin gene is carried by large or small plasmids. Classification of type C and D strains has been in confusion because 1) antigenicity of type C and D neurotoxins is complex, 2) the cells produce two types of toxins, neurotoxin and C2 toxin, and 3) some non-toxigenic strains can be converted to produce C or D neurotoxin by the infection with phages. Until now, entire nucleotide sequences of cell chromosomes, phages, and plasmids have been determined. Since both genetic and protein-chemical analyses have been clarifying the above confusions, these data are reviewed historically.

  3. Genome Sequence of Clostridium tunisiense TJ, Isolated from Drain Sediment from a Pesticide Factory

    PubMed Central

    Sun, Lili; Wang, Yu; Yu, Chunyan; Zhao, Yongqin

    2012-01-01

    Clostridium tunisiense is a Gram-positive, obligate anaerobe that was first isolated in an anaerobic evironment under eutrophication. Here we report the first genome sequence of the Clostridium tunisiense TJ isolated from drain sediment of a pesticide factory in Tianjin, China. The genome is of great importance for both basic and application research. PMID:23209212

  4. Genome sequence of Clostridium tunisiense TJ, isolated from drain sediment from a pesticide factory.

    PubMed

    Sun, Lili; Wang, Yu; Yu, Chunyan; Zhao, Yongqin; Gan, Yinbo

    2012-12-01

    Clostridium tunisiense is a Gram-positive, obligate anaerobe that was first isolated in an anaerobic environment under eutrophication. Here we report the first genome sequence of the Clostridium tunisiense TJ isolated from drain sediment of a pesticide factory in Tianjin, China. The genome is of great importance for both basic and application research.

  5. Genomic characterization of Italian Clostridium botulinum group I strains.

    PubMed

    Giordani, Francesco; Fillo, Silvia; Anselmo, Anna; Palozzi, Anna Maria; Fortunato, Antonella; Gentile, Bernardina; Azarnia Tehran, Domenico; Ciammaruconi, Andrea; Spagnolo, Ferdinando; Pittiglio, Valentina; Anniballi, Fabrizio; Auricchio, Bruna; De Medici, Dario; Lista, Florigio

    2015-12-01

    Clostridium botulinum is a gram-positive bacterium capable of producing the botulinum neurotoxin, a powerful poison that causes botulism, a severe neuroparalytic disease. Its genome has been sequenced entirely and its gene content has been analyzed. To date, 19 full genomes and 64 draft genomes are available. The geographical origin of these genomes is predominantly from the US. In the present study, 10 Italian genomes of C. botulinum group I were analyzed and compared with previously sequenced group I genomes, in order to genetically characterize the Italian population of C. botulinum group I and to investigate the phylogenetic relationships among different lineages. Using the suites of software ClonalFrame and ClonalOrigin to perform genomic analysis, we demonstrated that Italian C. botulinum group I population is phylogenetically heterogeneous encompassing different and distant lineages including overseas strains, too. Moreover, a high recombination rate was demonstrated in the evolution of C. botulinum group I species. Finally, genome sequencing of the strain 357 led us to identify a novel botulinum neurotoxin subtype, F8.

  6. Engineering Clostridium Strain to Accept Unmethylated DNA

    PubMed Central

    Dong, Hongjun; Zhang, Yanping; Dai, Zongjie; Li, Yin

    2010-01-01

    It is difficult to genetically manipulate the medically and biotechnologically important genus Clostridium due to the existence of the restriction and modification (RM) systems. We identified and engineered the RM system of a model clostridial species, C. acetobutylicum, with the aim to allow the host to accept the unmethylated DNA efficiently. A gene CAC1502 putatively encoding the type II restriction endonuclease Cac824I was identified from the genome of C. acetobutylicum DSM1731, and disrupted using the ClosTron system based on group II intron insertion. The resulting strain SMB009 lost the type II restriction endonuclease activity, and can be transformed with unmethylated DNA as efficiently as with methylated DNA. The strategy reported here makes it easy to genetically modify the clostridial species using unmethylated DNA, which will help to advance the understanding of the clostridial physiology from the molecular level. PMID:20161730

  7. Genome Sequence of Clostridium paraputrificum 373-A1 Isolated in Chile from a Patient Infected with Clostridium difficile

    PubMed Central

    Guerrero-Araya, Enzo; Plaza-Garrido, Angela; Díaz-Yañez, Fernando; Pizaro-Guajardo, Marjorie; Valenzuela, Sandro L.; Meneses, Claudio; Gil, Fernando

    2016-01-01

    Clostridium paraputrificum is a gut microbiota member reported in several cases of bacteremia and coinfections. So far, only one genome sequence of a C. paraputrificum (AGR2156) isolate is available. Here, we present the draft genome of C. paraputrificum strain 373-A1, isolated from stools from a patient with C. difficile infection. PMID:27811092

  8. Genome Sequence of Clostridium paraputrificum 373-A1 Isolated in Chile from a Patient Infected with Clostridium difficile.

    PubMed

    Guerrero-Araya, Enzo; Plaza-Garrido, Angela; Díaz-Yañez, Fernando; Pizaro-Guajardo, Marjorie; Valenzuela, Sandro L; Meneses, Claudio; Gil, Fernando; Castro-Nallar, Eduardo; Paredes-Sabja, Daniel

    2016-11-03

    Clostridium paraputrificum is a gut microbiota member reported in several cases of bacteremia and coinfections. So far, only one genome sequence of a C. paraputrificum (AGR2156) isolate is available. Here, we present the draft genome of C. paraputrificum strain 373-A1, isolated from stools from a patient with C. difficile infection.

  9. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable rates of evolution within a core genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context. We sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricu...

  10. Butanol production employing fed-batch fermentation by Clostridium acetobutylicum GX01 using alkali-pretreated sugarcane bagasse hydrolysed by enzymes from Thermoascus aurantiacus QS 7-2-4.

    PubMed

    Pang, Zong-Wen; Lu, Wei; Zhang, Hui; Liang, Zheng-Wu; Liang, Jing-Juan; Du, Liang-Wei; Duan, Cheng-Jie; Feng, Jia-Xun

    2016-07-01

    Sugarcane bagasse (SB) is a potential feedstock for butanol production. However, biological production of butanol from SB is less economically viable. In this study, evaluation of eight pretreatments on SB showed that alkali pretreatment efficiently removed lignin from SB while retaining the intact native structure of the released microfibrils. In total, 99% of cellulose and 100% of hemicellulose in alkali-pretreated SB were hydrolysed by enzymes from Thermoascus aurantiacus. The hydrolysate was used to produce butanol in a fed-batch fermentation by Clostridium acetobutylicum. At 60h, 14.17 and 21.11gL(-1) of butanol and acetone-butanol-ethanol (ABE) were produced from 68.89gL(-1) of total sugars, respectively, yielding 0.22 and 0.33gg(-1) of sugars. The maximum yield of butanol and ABE reached 15.4g and 22.9g per 100g raw SB, respectively. This established process may have potential application for butanol production from SB.

  11. The complete genome sequence of Clostridium indolis DSM 755T

    PubMed Central

    Leschine, Susan; Huntemann, Marcel; Han, James; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Schaumberg, Andrew; Pati, Amrita; Stamatis, Dimitrios; Reddy, Tatiparthi; Lobos, Elizabeth; Goodwin, Lynne; Nordberg, Henrik P.; Cantor, Michael N.; Hua, Susan X.; Woyke, Tanja; Blanchard, Jeffrey L.

    2014-01-01

    Clostridium indolis DSM 755T is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755T reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC, are also detected. Our genome analysis suggests hypotheses to be tested in future culture based work to better understand the physiology of this poorly described species. PMID:25197485

  12. The complete genome sequence of Clostridium indolis DSM 755(T.).

    PubMed

    Biddle, Amy S; Leschine, Susan; Huntemann, Marcel; Han, James; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Schaumberg, Andrew; Pati, Amrita; Stamatis, Dimitrios; Reddy, Tatiparthi; Lobos, Elizabeth; Goodwin, Lynne; Nordberg, Henrik P; Cantor, Michael N; Hua, Susan X; Woyke, Tanja; Blanchard, Jeffrey L

    2014-06-15

    Clostridium indolis DSM 755(T) is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755(T) reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC, are also detected. Our genome analysis suggests hypotheses to be tested in future culture based work to better understand the physiology of this poorly described species.

  13. Application of Long Sequence Reads To Improve Genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7.

    PubMed

    Utturkar, Sagar M; Bayer, Edward A; Borovok, Ilya; Lamed, Raphael; Hurt, Richard A; Land, Miriam L; Klingeman, Dawn M; Elias, Dwayne; Zhou, Jizhong; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T B K; Ngan, Chew Yee; Daum, Chris; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja; Brown, Steven D

    2016-09-29

    We and others have shown the utility of long sequence reads to improve genome assembly quality. In this study, we generated PacBio DNA sequence data to improve the assemblies of draft genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7.

  14. Application of long sequence reads to improve genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7

    DOE PAGES

    Utturkar, Sagar M.; Bayer, Edward A.; Borovok, Ilya; ...

    2016-09-29

    Here, we and others have shown the utility of long sequence reads to improve genome assembly quality. In this study, we generated PacBio DNA sequence data to improve the assemblies of draft genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7.

  15. Application of Long Sequence Reads To Improve Genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7

    PubMed Central

    Utturkar, Sagar M.; Bayer, Edward A.; Borovok, Ilya; Lamed, Raphael; Hurt, Richard A.; Land, Miriam L.; Klingeman, Dawn M.; Zhou, Jizhong; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Daum, Chris; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja

    2016-01-01

    We and others have shown the utility of long sequence reads to improve genome assembly quality. In this study, we generated PacBio DNA sequence data to improve the assemblies of draft genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7. PMID:27688341

  16. Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a.

    PubMed

    Rooney, Elise A; Rowe, Kenneth T; Guseva, Anna; Huntemann, Marcel; Han, James K; Chen, Amy; Kyrpides, Nikos C; Mavromatis, Konstantinos; Markowitz, Victor M; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Liolios, Konstantinos; Nordberg, Henrik P; Cantor, Michael N; Hua, Susan X; Shapiro, Nicole; Woyke, Tanja; Lynd, Lee R; Izquierdo, Javier A

    2015-07-23

    Clostridium clariflavum strain 4-2a, a novel strain isolated from a thermophilic biocompost pile, has demonstrated an extensive capability to utilize both cellulose and hemicellulose under thermophilic anaerobic conditions. Here, we report the draft genome of this strain.

  17. Draft Genome Sequence of Clostridium mangenotii TR, Isolated from the Fecal Material of a Timber Rattlesnake

    PubMed Central

    Cochran, Philip A.; Dowd, Scot E.; Andersen, Kylie; Anderson, Nichole; Brennan, Rachel; Brook, Nicole; Callaway, Tracie; Diamante, Kimberly; Duberstine, Annie; Fitch, Karla; Freiheit, Heidi; Godlewski, Chantel; Gorman, Kelly; Haubrich, Mark; Hernandez, Mercedes; Hirtreiter, Amber; Ivanoski, Beth; Jaminet, Xochitl; Kirkpatrick, Travis; Kratowicz, Jennifer; Latus, Casey; Leable, Tiegen; Lingafelt, Nicole; Lowe, DeAnna; Lowrance, Holly; Malsack, Latiffa; Mazurkiewicz, Julie; Merlos, Persida; Messley, Jamie; Montemurro, Dawn; Nakitare, Samora; Nelson, Christine; Nye, Amber; Pazera, Valerie; Pierangeli, Gina; Rellora, Ashley; Reyes, Angelica; Roberts, Jennifer; Robins, Shadara; Robinson, Jeshannah; Schultz, Alissa; Seifert, Sara; Sigler, Elona; Spangler, Julie; Swift, Ebony; TenCate, Rebecca; Thurber, Jessica; Vallee, Kristin; Wamboldt, Jennifer; Whitten, Shannon; Woods, De’andrea; Wright, Amanda; Yankunas, Darin

    2014-01-01

    Here, we report the draft genome sequence of Clostridium mangenotii strain TR, which was isolated from the fecal material of a timber rattlesnake. This bacterium is nonpathogenic but contains 68 genes involved in virulence, disease, and defense. PMID:24407632

  18. Draft Genome Sequence of Clostridium mangenotii TR, Isolated from the Fecal Material of a Timber Rattlesnake.

    PubMed

    McLaughlin, Richard W; Cochran, Philip A; Dowd, Scot E; Andersen, Kylie; Anderson, Nichole; Brennan, Rachel; Brook, Nicole; Callaway, Tracie; Diamante, Kimberly; Duberstine, Annie; Fitch, Karla; Freiheit, Heidi; Godlewski, Chantel; Gorman, Kelly; Haubrich, Mark; Hernandez, Mercedes; Hirtreiter, Amber; Ivanoski, Beth; Jaminet, Xochitl; Kirkpatrick, Travis; Kratowicz, Jennifer; Latus, Casey; Leable, Tiegen; Lingafelt, Nicole; Lowe, Deanna; Lowrance, Holly; Malsack, Latiffa; Mazurkiewicz, Julie; Merlos, Persida; Messley, Jamie; Montemurro, Dawn; Nakitare, Samora; Nelson, Christine; Nye, Amber; Pazera, Valerie; Pierangeli, Gina; Rellora, Ashley; Reyes, Angelica; Roberts, Jennifer; Robins, Shadara; Robinson, Jeshannah; Schultz, Alissa; Seifert, Sara; Sigler, Elona; Spangler, Julie; Swift, Ebony; Tencate, Rebecca; Thurber, Jessica; Vallee, Kristin; Wamboldt, Jennifer; Whitten, Shannon; Woods, De'andrea; Wright, Amanda; Yankunas, Darin

    2014-01-09

    Here, we report the draft genome sequence of Clostridium mangenotii strain TR, which was isolated from the fecal material of a timber rattlesnake. This bacterium is nonpathogenic but contains 68 genes involved in virulence, disease, and defense.

  19. Diversity and Evolution in the Genome of Clostridium difficile

    PubMed Central

    Knight, Daniel R.; Elliott, Briony; Chang, Barbara J.; Perkins, Timothy T.

    2015-01-01

    SUMMARY Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen. PMID:26085550

  20. Clostridium botulinum in the post-genomic era.

    PubMed

    Peck, Michael W; Stringer, Sandra C; Carter, Andrew T

    2011-04-01

    Foodborne botulism is a severe neuroparalytic disease caused by consumption of botulinum neurotoxin formed by strains of proteolytic Clostridium botulinum and non-proteolytic C. botulinum during their growth in food. The botulinum neurotoxin is the most potent substance known, with as little as 30-100 ng potentially fatal, and consumption of just a few milligrams of neurotoxin-containing food is likely to be sufficient to cause illness and potentially death. In order to minimise the foodborne botulism hazard, it is necessary to extend understanding of the biology of these bacteria. This process has been recently advanced by genome sequencing and subsequent analysis. In addition to neurotoxin formation, endospore formation is also critical to the success of proteolytic C. botulinum and non-proteolytic C. botulinum as foodborne pathogens. The endospores are highly resistant, and enable survival of adverse treatments such as heating. To better control the botulinum neurotoxin-forming clostridia, it is important to understand spore resistance mechanisms, and the physiological processes involved in germination and lag phase during recovery from this dormant state.

  1. Draft Genome Sequence of the Virulent Clostridium chauvoei Reference Strain JF4335

    PubMed Central

    Calderon-Copete, Sandra P.; Frey, Joachim

    2013-01-01

    Clostridium chauvoei is the etiological agent of blackleg, a disease of cattle and sheep with high mortality rates, causing severe economic losses in livestock production. Here, we report the draft genome sequence of the virulent C. chauvoei strain JF4335 (2.8 Mbp and 28% G+C content) and the annotation of the genome. PMID:23950118

  2. Draft Genome Sequence of the Virulent Clostridium chauvoei Reference Strain JF4335.

    PubMed

    Falquet, Laurent; Calderon-Copete, Sandra P; Frey, Joachim

    2013-08-15

    Clostridium chauvoei is the etiological agent of blackleg, a disease of cattle and sheep with high mortality rates, causing severe economic losses in livestock production. Here, we report the draft genome sequence of the virulent C. chauvoei strain JF4335 (2.8 Mbp and 28% G+C content) and the annotation of the genome.

  3. Draft Genome Sequences of Clostridium Strains Native to Colombia with the Potential To Produce Solvents

    PubMed Central

    Rosas-Morales, Juan Pablo; Perez-Mancilla, Ximena; López-Kleine, Liliana

    2015-01-01

    Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies. PMID:25999575

  4. Draft Genome Sequence of Clostridium ultunense Strain Esp, a Syntrophic Acetate-Oxidizing Bacterium.

    PubMed

    Manzoor, Shahid; Müller, Bettina; Niazi, Adnan; Bongcam-Rudloff, Erik; Schnürer, Anna

    2013-03-28

    Clostridium ultunense strain Esp belongs to the functional group of syntrophic acetate-oxidizing bacteria (SAOB), which have been identified as key organisms for efficient biogas production from protein-rich materials. Genome analysis and comparative genomics might aid us to define physiological features that are essential for maintaining this particular syntrophic lifestyle.

  5. Draft genome sequences of clostridium strains native to Colombia with the potential to produce solvents.

    PubMed

    Rosas-Morales, Juan Pablo; Perez-Mancilla, Ximena; López-Kleine, Liliana; Montoya Castaño, Dolly; Riaño-Pachón, Diego Mauricio

    2015-05-21

    Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies.

  6. Complete genome sequence of Clostridium sp. strain BNL1100, a cellulolytic mesophile isolated from corn stover.

    PubMed

    Li, Luen-Luen; Taghavi, Safiyh; Izquierdo, Javier A; van der Lelie, Daniel

    2012-12-01

    We present the full genome sequence of Clostridium sp. strain BNL1100, a Gram-positive, endospore-forming, lignocellulolytic bacterium isolated from a corn stover enrichment culture. The 4,613,747-bp genome of strain BNL1100 contains 4,025 putative protein-coding genes, of which 103 are glycoside hydrolases, the highest detected number in cluster III clostridia.

  7. Exploring the Genome of a Butyric Acid Producer, Clostridium butyricum INCQS635

    PubMed Central

    Leite, Fernanda Gomes; Tschoeke, Diogo Antonio; Miranda, Milene; Pereira, Nei; Valle, Rogério; Thompson, Cristiane C.

    2014-01-01

    The draft genome sequence of Clostridium butyricum INCQS635 was obtained by means of ion sequencing. The genome provides further insight into the genetic repertoire involved with metabolic pathways related to the fermentation of different compounds and organic solvents synthesis (i.e., butyric acid) with biofuel applications. PMID:25414496

  8. Genome Resequencing of the Virulent and Multidrug-Resistant Reference Strain Clostridium difficile 630

    PubMed Central

    Bunk, Boyke; Thürmer, Andrea; Spröer, Cathrin; Brzuszkiewicz, Elzbieta; Abt, Birte; Gronow, Sabine; Liesegang, Heiko; Daniel, Rolf; Overmann, Jörg

    2015-01-01

    We resequenced the complete genome of the virulent and multidrug-resistant pathogen Clostridium difficile strain 630. A combination of single-molecule real-time and Illumina sequencing technology revealed the presence of an additional rRNA gene cluster, additional tRNAs, and the absence of a transposon in comparison to the published and reannotated genome sequence. PMID:25858846

  9. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.

    PubMed

    Pyne, Michael E; Bruder, Mark R; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-05-09

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium.

  10. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium

    PubMed Central

    Pyne, Michael E.; Bruder, Mark R.; Moo-Young, Murray; Chung, Duane A.; Chou, C. Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  11. Manual curation and reannotation of the genomes of Clostridium difficile 630Δerm and Clostridium difficile 630.

    PubMed

    Dannheim, Henning; Riedel, Thomas; Neumann-Schaal, Meina; Bunk, Boyke; Schober, Isabel; Spröer, Cathrin; Chibani, Cynthia Maria; Gronow, Sabine; Liesegang, Heiko; Overmann, Jörg; Schomburg, Dietmar

    2017-01-09

    We resequenced the genome of Clostridium difficile 630Δerm (DSM 28645), a model strain commonly used for the generation of insertion mutants. The genome sequence was obtained by a combination of single-molecule real-time (SMRT) and Illumina sequencing technology. Detailed manual curation and comparison to the previously published genomic sequence revealed sequence differences including inverted regions and the presence of plasmid pCD630. Manual curation of our previously deposited genome sequence of the parental strain 630 (DSM 27543) led to an improved genome sequence. In addition, the sequence of the transposon Tn5397 was completely identified. We manually revised the current manual annotation of the initial sequence of strain 630 and modified either gene names, gene product names or assigned EC numbers of 57 % of genes. The number of hypothetical and conserved hypothetical proteins was reduced by 152. This annotation was used as a template to annotate the most recent genome sequences of the strains 630Δerm and 630. Based on the genomic analysis, several new metabolic features of C. difficile are proposed and could be supported by literature and subsequent experiments.

  12. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II.

    PubMed

    Carter, Andrew T; Peck, Michael W

    2015-05-01

    Recent developments in whole genome sequencing have made a substantial contribution to understanding the genomes, neurotoxins and biology of Clostridium botulinum Group I (proteolytic C. botulinum) and C. botulinum Group II (non-proteolytic C. botulinum). Two different approaches are used to study genomics in these bacteria; comparative whole genome microarrays and direct comparison of complete genome DNA sequences. The properties of the different types of neurotoxin formed, and different neurotoxin gene clusters found in C. botulinum Groups I and II are explored. Specific examples of botulinum neurotoxin genes are chosen for an in-depth discussion of neurotoxin gene evolution. The most recent cases of foodborne botulism are summarised.

  13. Cloning, expression, and purification of glutamine synthetase from Clostridum acetobutylicum

    SciTech Connect

    Usdin, K.P.; Zappe, H.; Jones, D.T.; Woods, D.R.

    1986-09-01

    A glutamine synthetase (GS) gene, glnA, from the gram-positive obligate anaerobe Clostridium acetobutylicum was cloned on recombinant plasmid pHZ200 and enabled Escherichia coli glnA deletion mutants to utilize (NH/sub 4/)/sub 2/ as a sole source of nitrogen. The cloned C. acetobutylicum gene was expressed from a regulatory region contained within the cloned DNA fragment. glnA expression was subject to nitrogen regulation in E. coli. This cloned glnA DNA did not enable an E. coli glnA ntrB ntrC deletion mutant to utilize arginine or low levels of glutamine as sole nitrogen sources, and failed to activate histidase activity in this strain which contained the Klebsiella aerogenes hut operon. The GS produced by pHZ200 was purified and had an apparent subunit molecular weight of approximately 59,000. There was no DNA or protein homology between the cloned C. acetobutylicum glnA gene and GS and the corresponding gene and GS from E. coli. The C. acetobutylicum GS was inhibited by Mg/sup 2 +/ in the ..gamma..-glutamyl transferase assay, but there was no evidence that the GS was adenylylated.

  14. Small RNAs in the genus Clostridium.

    PubMed

    Chen, Yili; Indurthi, Dinesh C; Jones, Shawn W; Papoutsakis, Eleftherios T

    2011-01-25

    The genus Clostridium includes major human pathogens and species important to cellulose degradation, the carbon cycle, and biotechnology. Small RNAs (sRNAs) are emerging as crucial regulatory molecules in all organisms, but they have not been investigated in clostridia. Research on sRNAs in clostridia is hindered by the absence of a systematic method to identify sRNA candidates, thus delegating clostridial sRNA research to a hit-and-miss process. Thus, we wanted to develop a method to identify potential sRNAs in the Clostridium genus to open up the field of sRNA research in clostridia. Using comparative genomics analyses combined with predictions of rho-independent terminators and promoters, we predicted sRNAs in 21 clostridial genomes: Clostridium acetobutylicum, C. beijerinckii, C. botulinum (eight strains), C. cellulolyticum, C. difficile, C. kluyveri (two strains), C. novyi, C. perfringens (three strains), C. phytofermentans, C. tetani, and C. thermocellum. Although more than one-third of predicted sRNAs have Shine-Dalgarno (SD) sequences, only one-sixth have a start codon downstream of SD sequences; thus, most of the predicted sRNAs are noncoding RNAs. Quantitative reverse transcription-PCR (Q-RT-PCR) and Northern analysis were employed to test the presence of a randomly chosen set of sRNAs in C. acetobutylicum and several C. botulinum strains, leading to the confirmation of a large fraction of the tested sRNAs. We identified a conserved, novel sRNA which, together with the downstream gene coding for an ATP-binding cassette (ABC) transporter gene, responds to the antibiotic clindamycin. The number of predicted sRNAs correlated with the physiological function of the species (high for pathogens, low for cellulolytic, and intermediate for solventogenic), but not with 16S rRNA-based phylogeny.

  15. Genome Sequence of a Toxin-Positive Clostridium difficile Strain Isolated from Murine Feces

    PubMed Central

    Chassaing, Benoit; Adekunle, Oluwaseyi; Mattei, Lisa M.; Edwards, Adrianne N.; McBride, Shonna M.; Bushman, Frederic D.; Gewirtz, Andrew T.

    2017-01-01

    ABSTRACT Herein, we report the genome sequence of a Clostridium difficile strain isolated from the feces of antibiotic-treated C57BL/6 mice. We have named this strain, which differs considerably from those of the previously sequenced C. difficile strains, LEM1. PMID:28385835

  16. Draft Genome Sequence of Clostridium difficile Belonging to Ribotype 018 and Sequence Type 17

    PubMed Central

    Riccobono, E.; Di Pilato, V.; Della Malva, N.; Meini, S.; Ciraolo, F.; Torricelli, F.

    2016-01-01

    Clostridium difficile, belonging to ribotype 018 (RT018), is one of the most prevalent genotypes circulating in hospital settings in Italy. Here, we report the draft genome of C. difficile CD8-15 belonging to RT018, isolated from a patient with fatal C. difficile-associated infection. PMID:27587821

  17. First Insights into the Draft Genome of Clostridium colicanis DSM 13634, Isolated from Canine Feces

    PubMed Central

    Poehlein, Anja; Schilling, Tobias; Bhaskar Sathya Narayanan, Udhaya

    2016-01-01

    Clostridium colicanis DSM 13634 is a strictly anaerobic, rod-shaped, and spore-forming bacterium. It produces acids from common sugars such as glucose and fructose. The draft genome consists of one chromosome (2.6 Mbp) and contains 2,159 predicted protein-encoding genes. PMID:27198021

  18. Draft Genome Sequence of the Cellulolytic and Xylanolytic Thermophile Clostridium clariflavum Strain 4-2a

    PubMed Central

    Rooney, Elise A.; Rowe, Kenneth T.; Guseva, Anna; Huntemann, Marcel; Han, James K.; Chen, Amy; Kyrpides, Nikos C.; Mavromatis, Konstantinos; Markowitz, Victor M.; Palaniappan, Krishna; Ivanova, Natalia; Pati, Amrita; Liolios, Konstantinos; Nordberg, Henrik P.; Cantor, Michael N.; Hua, Susan X.; Shapiro, Nicole; Woyke, Tanja; Lynd, Lee R.

    2015-01-01

    Clostridium clariflavum strain 4-2a, a novel strain isolated from a thermophilic biocompost pile, has demonstrated an extensive capability to utilize both cellulose and hemicellulose under thermophilic anaerobic conditions. Here, we report the draft genome of this strain. PMID:26205857

  19. First Insights into the Genome of the Amino Acid-Metabolizing Bacterium Clostridium litorale DSM 5388

    PubMed Central

    Poehlein, Anja; Alghaithi, Hamed S.; Chandran, Lenin; Chibani, Cynthia M.; Davydova, Elena; Dhamotharan, Karthikeyan; Ge, Wanwan; Gutierrez-Gutierrez, David A.; Jagirdar, Advait; Khonsari, Bahar; Nair, Kamal Prakash P. R.

    2014-01-01

    Clostridium litorale is a Gram-positive, rod-shaped, and spore-forming bacterium, which is able to use amino acids such as glycine, sarcosine, proline, and betaine as single carbon and energy sources via Stickland reactions. The genome consists of a circular chromosome (3.41 Mb) and a circular plasmid (27 kb). PMID:25081264

  20. Near complete genome sequence of Clostridium paradoxum strain JW-YL-7

    SciTech Connect

    Lancaster, Andrew; Utturkar, Sagar M.; Poole, Farris; Klingeman, Dawn Marie; Elias, Dwayne A.; Adams, Michael W. W.; Brown, Steven D.

    2016-05-05

    Clostridium paradoxum strain JW-YL-7 is a moderately thermophilic anaerobic alkaliphile isolated from the municipal sewage treatment plant in Athens, GA. We report the near-complete genome sequence of C. paradoxum strain JW-YL-7 obtained by using PacBio DNA sequencing and Pilon for sequence assembly refinement with Illumina data.

  1. Complete Genome Sequence of the Cellulolytic Thermophile Clostridium thermocellum DSM1313

    SciTech Connect

    Feinberg, Lawrence F; Foden, Justine; Barrett, Trisha; Davenport, Karen W.; Bruce, David; Detter, J. Chris; Tapia, Roxanne; Han, Cliff; Lapidus, Alla L.; Lucas, Susan; Cheng, Jan-Fang; Pitluck, Sam; Woyke, Tanja; Ivanova, N; Mikhailova, Natalia; Land, Miriam L; Hauser, Loren John; Argyros, Aaron; Goodwin, Lynne A.; Hogsett, David; Caiazza, Nicky

    2011-01-01

    Clostridium thermocellum DSM1313 is a thermophilic, anaerobic bacterium with some of the highest rates of cellulose hydrolysis reported. The complete genome sequence reveals a suite of carbohydrate-active enzymes and demonstrates a level of diversity at the species level distinguishing it from the type strain ATCC27405.

  2. Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy

    PubMed Central

    Weigand, Michael R.; Pena-Gonzalez, Angela; Shirey, Timothy B.; Broeker, Robin G.; Ishaq, Maliha K.; Konstantinidis, Konstantinos T.

    2015-01-01

    Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification. PMID:26048939

  3. Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy.

    PubMed

    Weigand, Michael R; Pena-Gonzalez, Angela; Shirey, Timothy B; Broeker, Robin G; Ishaq, Maliha K; Konstantinidis, Konstantinos T; Raphael, Brian H

    2015-08-15

    Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification.

  4. Non contiguous-finished genome sequence and description of Clostridium jeddahense sp. nov.

    PubMed Central

    Lagier, Jean-Christophe; Bibi, Fehmida; Ramasamy, Dhamodharan; Azhar, Esam I.; Robert, Catherine; Yasir, Muhammad; Jiman-Fatani, Asif A.; Alshali, Khalid Z.; Fournier, Pierre-Edouard

    2014-01-01

    Clostridium jeddahense strain JCDT (= CSUR P693 = DSM 27834) is the type strain of C. jeddahense sp. nov. This strain, whose genome is described here, was isolated from the fecal flora of an obese 24 year-old Saudian male (BMI=52 kg/m2). Clostridium jeddahense strain JCDT is an obligate Gram-positive bacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,613,503 bp long genome (1 chromosome, no plasmid) exhibits a G+C content of 51.95% and contains 3,462 protein-coding and 53 RNA genes, including 4 rRNA genes. PMID:25197479

  5. Draft Genome Sequence of Clostridium bifermentans Strain WYM, a Promising Biohydrogen Producer Isolated from Landfill Leachate Sludge.

    PubMed

    Wong, Y M; Juan, J C; Gan, H M; Austin, C M

    2014-03-06

    Clostridium bifermentans strain WYM is an effective biohydrogen producer isolated from landfill leachate sludge. Here, we present the assembly and annotation of its genome, which may provide further insights into the metabolic pathways involved in efficient biohydrogen production.

  6. Application of long sequence reads to improve genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7

    SciTech Connect

    Utturkar, Sagar M.; Bayer, Edward A.; Borovok, Ilya; Lamed, Raphael; Hurt, Richard A.; Land, Miriam L.; Klingeman, Dawn M.; Elias, Dwayne; Zhou, Jizhong; Huntemann, Marcel; Clum, Alicia; Pillay, Manoj; Palaniappan, Krishnaveni; Varghese, Neha; Mikhailova, Natalia; Stamatis, Dimitrios; Reddy, T. B. K.; Ngan, Chew Yee; Daum, Chris; Shapiro, Nicole; Markowitz, Victor; Ivanova, Natalia; Kyrpides, Nikos; Woyke, Tanja; Brown, Steven D.

    2016-09-29

    Here, we and others have shown the utility of long sequence reads to improve genome assembly quality. In this study, we generated PacBio DNA sequence data to improve the assemblies of draft genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7.

  7. Genomic approach to studying nutritional requirements of Clostridium tyrobutyricum and other Clostridia causing late blowing defects.

    PubMed

    Storari, Michelangelo; Kulli, Sandra; Wüthrich, Daniel; Bruggmann, Rémy; Berthoud, Hélène; Arias-Roth, Emmanuelle

    2016-10-01

    Clostridium tyrobutyricum is the main microorganism responsible for the late blowing defect in hard and semi-hard cheeses, causing considerable economic losses to the cheese industry. Deeper knowledge of the metabolic requirements of this microorganism can lead to the development of more effective control approaches. In this work, the amino acids and B vitamins essential for sustaining the growth of C. tyrobutyricum were investigated using a genomic approach. As the first step, the genomes of four C. tyrobutyricum strains were analyzed for the presence of genes putatively involved in the biosynthesis of amino acids and B vitamins. Metabolic pathways could be reconstructed for all amino acids and B vitamins with the exception of biotin (vitamin B7) and folate (vitamin B9). The biotin pathway was missing the enzyme amino-7-oxononanoate synthase that catalyzes the condensation of pimeloyl-ACP and l-alanine to 8-amino-7-oxononanoate. In the folate pathway, the missing genes were those coding for para-aminobenzoate synthase and aminodeoxychorismate lyase enzymes. These enzymes are responsible for the conversion of chorismate into para-aminobenzoate (PABA). Two C. tyrobutyircum strains whose genome was analyzed in silico as well as other 10 strains isolated from cheese were tested in liquid media to confirm these observations. 11 strains showed growth in a defined liquid medium containing biotin and PABA after 6-8 days of incubation. No strain showed growth when only one or none of these compounds were added, confirming the observations obtained in silico. Furthermore, the genome analysis was extended to genomes of single strains of other Clostridium species potentially causing late blowing, namely Clostridium beijerinckii, Clostridium sporogenes and Clostridium butyricum. Only the biotin biosynthesis pathway was incomplete for C. butyricum and C. beijerincki. In contrast, C. sporogenes showed missing enzymes in biosynthesis pathways of several amino acids as well

  8. Complete Genome Sequence of Clostridium septicum Strain CSUR P1044, Isolated from the Human Gut Microbiota

    PubMed Central

    Benamar, Samia; Cassir, Nadim; Caputo, Aurélia; Cadoret, Frédéric

    2016-01-01

    Clostridium septicum is one of the first pathogenic anaerobes to be identified. Here, we announce the genome draft sequence of C. septicum strain CSUR P1044 isolated from the gut of a healthy adult. Its chromosome genome consists of 3.2 Mbp with a plasmid of 32 Kbp. C. septicum strain CSUR P1044 has a G+C content of 27.5%, and is composed of 3,125 protein-coding genes together with 103 RNA genes, including 22 rRNA genes. PMID:27609912

  9. Complete Genome Sequence of Clostridium estertheticum DSM 8809, a Microbe Identified in Spoiled Vacuum Packed Beef

    PubMed Central

    Yu, Zhongyi; Gunn, Lynda; Brennan, Evan; Reid, Rachael; Wall, Patrick G.; Gaora, Peadar Ó.; Hurley, Daniel; Bolton, Declan; Fanning, Séamus

    2016-01-01

    Blown pack spoilage (BPS) is a major issue for the beef industry. Etiological agents of BPS involve members of a group of Clostridium species, including Clostridium estertheticum which has the ability to produce gas, mostly carbon dioxide, under anaerobic psychotrophic growth conditions. This spore-forming bacterium grows slowly under laboratory conditions, and it can take up to 3 months to produce a workable culture. These characteristics have limited the study of this commercially challenging bacterium. Consequently information on this bacterium is limited and no effective controls are currently available to confidently detect and manage this production risk. In this study the complete genome of C. estertheticum DSM 8809 was determined by SMRT® sequencing. The genome consists of a circular chromosome of 4.7 Mbp along with a single plasmid carrying a potential tellurite resistance gene tehB and a Tn3-like resolvase-encoding gene tnpR. The genome sequence was searched for central metabolic pathways that would support its biochemical profile and several enzymes contributing to this phenotype were identified. Several putative antibiotic/biocide/metal resistance-encoding genes and virulence factors were also identified in the genome, a feature that requires further research. The availability of the genome sequence will provide a basic blueprint from which to develop valuable biomarkers that could support and improve the detection and control of this bacterium along the beef production chain. PMID:27891116

  10. Genome sequence of Clostridium sporogenes DSM 795(T), an amino acid-degrading, nontoxic surrogate of neurotoxin-producing Clostridium botulinum.

    PubMed

    Poehlein, Anja; Riegel, Karin; König, Sandra M; Leimbach, Andreas; Daniel, Rolf; Dürre, Peter

    2015-01-01

    Clostridium sporogenes DSM 795 is the type strain of the species Clostridium sporogenes, first described by Metchnikoff in 1908. It is a Gram-positive, rod-shaped, anaerobic bacterium isolated from human faeces and belongs to the proteolytic branch of clostridia. C. sporogenes attracts special interest because of its potential use in a bacterial therapy for certain cancer types. Genome sequencing and annotation revealed several gene clusters coding for proteins involved in anaerobic degradation of amino acids, such as glycine and betaine via Stickland reaction. Genome comparison showed that C. sporogenes is closely related to C. botulinum. The genome of C. sporogenes DSM 795 consists of a circular chromosome of 4.1 Mb with an overall GC content of 27.81 mol% harboring 3,744 protein-coding genes, and 80 RNAs.

  11. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    PubMed Central

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J.; Church, George M.; Leschine, Susan B.; Blanchard, Jeffrey L.

    2015-01-01

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels. PMID:26035711

  12. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    SciTech Connect

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; Tolonen, Andrew C.; Warnick, Thomas; Latouf, William G.; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J.; Church, George M.; Leschine, Susan B.; Blanchard, Jeffrey L.

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.

  13. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    DOE PAGES

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; ...

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer.more » These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.« less

  14. Mobile genetic elements in Clostridium difficile and their role in genome function

    PubMed Central

    Mullany, Peter; Allan, Elaine; Roberts, Adam P.

    2015-01-01

    Approximately 11% the Clostridium difficile genome is made up of mobile genetic elements which have a profound effect on the biology of the organism. This includes transfer of antibiotic resistance and other factors that allow the organism to survive challenging environments, modulation of toxin gene expression, transfer of the toxin genes themselves and the conversion of non-toxigenic strains to toxin producers. Mobile genetic elements have also been adapted by investigators to probe the biology of the organism and the various ways in which these have been used are reviewed. PMID:25576774

  15. Efficient Genome Editing in Clostridium cellulolyticum via CRISPR-Cas9 Nickase

    PubMed Central

    Xu, Tao; Li, Yongchao; Shi, Zhou; Hemme, Christopher L.; Li, Yuan; Zhu, Yonghua; Van Nostrand, Joy D.; He, Zhili

    2015-01-01

    The CRISPR-Cas9 system is a powerful and revolutionary genome-editing tool for eukaryotic genomes, but its use in bacterial genomes is very limited. Here, we investigated the use of the Streptococcus pyogenes CRISPR-Cas9 system in editing the genome of Clostridium cellulolyticum, a model microorganism for bioenergy research. Wild-type Cas9-induced double-strand breaks were lethal to C. cellulolyticum due to the minimal expression of nonhomologous end joining (NHEJ) components in this strain. To circumvent this lethality, Cas9 nickase was applied to develop a single-nick-triggered homologous recombination strategy, which allows precise one-step editing at intended genomic loci by transforming a single vector. This strategy has a high editing efficiency (>95%) even using short homologous arms (0.2 kb), is able to deliver foreign genes into the genome in a single step without a marker, enables precise editing even at two very similar target sites differing by two bases preceding the seed region, and has a very high target site density (median interval distance of 9 bp and 95.7% gene coverage in C. cellulolyticum). Together, these results establish a simple and robust methodology for genome editing in NHEJ-ineffective prokaryotes. PMID:25911483

  16. Comparison of assembled Clostridium botulinum A1 genomes revealed their evolutionary relationship.

    PubMed

    Ng, Virginia; Lin, Wei-Jen

    2014-01-01

    Clostridium botulinum encompasses bacteria that produce at least one of the seven serotypes of botulinum neurotoxin (BoNT/A-G). The availability of genome sequences of four closely related Type A1 or A1(B) strains, as well as the A1-specific microarray, allowed the analysis of their genomic organizations and evolutionary relationship. The four genomes share >90% core genes and >96% functional groups. Phylogenetic analysis based on COG shows closer relations of the A1(B) strain, NCTC 2916, to B1 and F1 than A1 strains. Alignment of the genomes of the three A1 strains revealed a highly similar chromosomal structure with three small gaps in the genome of ATCC 19397 and one additional gap in the genome of Hall A, suggesting ATCC 19379 as an evolutionary intermediate between Hall A and ATCC 3502. Analyses of the four gap regions indicated potential horizontal gene transfer and recombination events important for the evolution of A1 strains.

  17. Whole-genome single-nucleotide-polymorphism analysis for discrimination of Clostridium botulinum group I strains.

    PubMed

    Gonzalez-Escalona, Narjol; Timme, Ruth; Raphael, Brian H; Zink, Donald; Sharma, Shashi K

    2014-04-01

    Clostridium botulinum is a genetically diverse Gram-positive bacterium producing extremely potent neurotoxins (botulinum neurotoxins A through G [BoNT/A-G]). The complete genome sequences of three strains harboring only the BoNT/A1 nucleotide sequence are publicly available. Although these strains contain a toxin cluster (HA(+) OrfX(-)) associated with hemagglutinin genes, little is known about the genomes of subtype A1 strains (termed HA(-) OrfX(+)) that lack hemagglutinin genes in the toxin gene cluster. We sequenced the genomes of three BoNT/A1-producing C. botulinum strains: two strains with the HA(+) OrfX(-) cluster (69A and 32A) and one strain with the HA(-) OrfX(+) cluster (CDC297). Whole-genome phylogenic single-nucleotide-polymorphism (SNP) analysis of these strains along with other publicly available C. botulinum group I strains revealed five distinct lineages. Strains 69A and 32A clustered with the C. botulinum type A1 Hall group, and strain CDC297 clustered with the C. botulinum type Ba4 strain 657. This study reports the use of whole-genome SNP sequence analysis for discrimination of C. botulinum group I strains and demonstrates the utility of this analysis in quickly differentiating C. botulinum strains harboring identical toxin gene subtypes. This analysis further supports previous work showing that strains CDC297 and 657 likely evolved from a common ancestor and independently acquired separate BoNT/A1 toxin gene clusters at distinct genomic locations.

  18. Genome Wide Analysis for Searching Novel Markers to Rapidly Identify Clostridium Strains.

    PubMed

    Kekre, Anay; Bhushan, Ashish; Kumar, Prasun; Kalia, Vipin Chandra

    2015-09-01

    Microbial classification is based largely on the 16S rRNA (rrs) gene sequence, which is conserved throughout the prokaryotic domain. The Ribosomal Database Project (RDP) has become a reference point for almost all practical purposes. The use of this gene is limited by the fact that it can be used to identify only to the extent to what has been known and is available in the RDP. In order to identify an organism whose rrs is not present in the RDP database, we need to generate novel markers to place the unknown on the evolutionary map. Here, sequenced genomes of 27 Clostridium strains belonging to 9 species have been used to identify two sets of genes: (1) common to most of the species, and (2) unique to a species. Combinations of genes (recN, dnaJ, secA, mutS, and/or grpE) and their unique restriction endonuclease digestion (AluI, BfaI and/or Tru9I) patterns have been established to rapidly identify Clostridium species. This strategy for identifying novel markers can be extended to all other organisms and diagnostic applications.

  19. Clostridium botulinum Group II Isolate Phylogenomic Profiling Using Whole-Genome Sequence Data

    PubMed Central

    Weedmark, K. A.; Mabon, P.; Hayden, K. L.; Lambert, D.; Van Domselaar, G.; Austin, J. W.

    2015-01-01

    Clostridium botulinum group II isolates (n = 163) from different geographic regions, outbreaks, and neurotoxin types and subtypes were characterized in silico using whole-genome sequence data. Two clusters representing a variety of botulinum neurotoxin (BoNT) types and subtypes were identified by multilocus sequence typing (MLST) and core single nucleotide polymorphism (SNP) analysis. While one cluster included BoNT/B4/F6/E9 and nontoxigenic members, the other comprised a wide variety of different BoNT/E subtype isolates and a nontoxigenic strain. In silico MLST and core SNP methods were consistent in terms of clade-level isolate classification; however, core SNP analysis showed higher resolution capability. Furthermore, core SNP analysis correctly distinguished isolates by outbreak and location. This study illustrated the utility of next-generation sequence-based typing approaches for isolate characterization and source attribution and identified discrete SNP loci and MLST alleles for isolate comparison. PMID:26116673

  20. Clostridium botulinum Group II Isolate Phylogenomic Profiling Using Whole-Genome Sequence Data.

    PubMed

    Weedmark, K A; Mabon, P; Hayden, K L; Lambert, D; Van Domselaar, G; Austin, J W; Corbett, C R

    2015-09-01

    Clostridium botulinum group II isolates (n = 163) from different geographic regions, outbreaks, and neurotoxin types and subtypes were characterized in silico using whole-genome sequence data. Two clusters representing a variety of botulinum neurotoxin (BoNT) types and subtypes were identified by multilocus sequence typing (MLST) and core single nucleotide polymorphism (SNP) analysis. While one cluster included BoNT/B4/F6/E9 and nontoxigenic members, the other comprised a wide variety of different BoNT/E subtype isolates and a nontoxigenic strain. In silico MLST and core SNP methods were consistent in terms of clade-level isolate classification; however, core SNP analysis showed higher resolution capability. Furthermore, core SNP analysis correctly distinguished isolates by outbreak and location. This study illustrated the utility of next-generation sequence-based typing approaches for isolate characterization and source attribution and identified discrete SNP loci and MLST alleles for isolate comparison.

  1. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab on "Metabolic engineering of Clostridium thermocellum for biofuel production" at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, Calif.

  2. Whole genome sequences of three Clade 3 Clostridium difficile strains carrying binary toxin genes in China.

    PubMed

    Chen, Rong; Feng, Yu; Wang, Xiaohui; Yang, Jingyu; Zhang, Xiaoxia; Lü, Xiaoju; Zong, Zhiyong

    2017-03-06

    Clostridium difficile consists of six clades but studies on Clade 3 are limited. Here, we report genome sequences of three Clade 3 C. difficile strains carrying genes encoding toxin A and B and the binary toxin. Isolates 103 and 133 (both of ST5) and isolate 106 (ST285) were recovered from three ICU patients. Whole genome sequencing using HiSeq 2500 revealed 4.1-Mb genomes with 28-29% GC content. There were ≥1,104 SNP between the isolates, suggesting they were not of a single clone. The toxin A and B gene-carrying pathogenicity locus (PaLoc) of the three isolates were identical and had the insertion of the transposon Tn6218. The genetic components of PaLoc among Clade 3 strains were the same with only a few nucleotide mutations and deletions/insertions, suggesting that the Tn6218 insertion might have occurred before the divergence within Clade 3. The binary toxin-genes carrying CDT locus (CdtLoc) of the three isolates were identical and were highly similar to those of other Clade 3 strains, but were more divergent from those of other clades. In conclusion, Clade 3 has an unusual clade-specific PaLoc characteristic of a Tn6218 insertion which appears to be the main feature to distinguish Clade 3 from other C. difficile.

  3. Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray

    SciTech Connect

    Brown, Steven David; Raman, Babu; McKeown, Catherine K; Kale, Shubhangi P; He, Zhili; Mielenz, Jonathan R

    2007-04-01

    Clostridium thermocellum is an anaerobic, thermophilic bacterium that can directly convert cellulosic substrates into ethanol. Microarray technology is a powerful tool to gain insights into cellular processes by examining gene expression under various physiological states. Oligonucleotide microarray probes were designed for 96.7% of the 3163 C. thermocellum ATCC 27405 candidate protein-encoding genes and then a partial-genome microarray containing 70 C. thermocellum specific probes was constructed and evaluated. We detected a signal-to-noise ratio of three with as little as 1.0 ng of genomic DNA and only low signals from negative control probes (nonclostridial DNA), indicating the probes were sensitive and specific. In order to further test the specificity of the array we amplified and hybridized 10 C. thermocellum polymerase chain reaction products that represented different genes and found gene specific hybridization in each case. We also constructed a whole-genome microarray and prepared total cellular RNA from the same point in early-logarithmic growth phase from two technical replicates during cellobiose fermentation. The reliability of the microarray data was assessed by cohybridization of labeled complementary DNA from the cellobiose fermentation samples and the pattern of hybridization revealed a linear correlation. These results taken together suggest that our oligonucleotide probe set can be used for sensitive and specific C. thermocellum transcriptomic studies in the future.

  4. Whole genome sequences of three Clade 3 Clostridium difficile strains carrying binary toxin genes in China

    PubMed Central

    Chen, Rong; Feng, Yu; Wang, Xiaohui; Yang, Jingyu; Zhang, Xiaoxia; Lü, Xiaoju; Zong, Zhiyong

    2017-01-01

    Clostridium difficile consists of six clades but studies on Clade 3 are limited. Here, we report genome sequences of three Clade 3 C. difficile strains carrying genes encoding toxin A and B and the binary toxin. Isolates 103 and 133 (both of ST5) and isolate 106 (ST285) were recovered from three ICU patients. Whole genome sequencing using HiSeq 2500 revealed 4.1-Mb genomes with 28–29% GC content. There were ≥1,104 SNP between the isolates, suggesting they were not of a single clone. The toxin A and B gene-carrying pathogenicity locus (PaLoc) of the three isolates were identical and had the insertion of the transposon Tn6218. The genetic components of PaLoc among Clade 3 strains were the same with only a few nucleotide mutations and deletions/insertions, suggesting that the Tn6218 insertion might have occurred before the divergence within Clade 3. The binary toxin-genes carrying CDT locus (CdtLoc) of the three isolates were identical and were highly similar to those of other Clade 3 strains, but were more divergent from those of other clades. In conclusion, Clade 3 has an unusual clade-specific PaLoc characteristic of a Tn6218 insertion which appears to be the main feature to distinguish Clade 3 from other C. difficile. PMID:28262711

  5. Genome shuffling in Clostridium diolis DSM 15410 for improved 1,3-propanediol production.

    PubMed

    Otte, Burkhard; Grunwaldt, Eike; Mahmoud, Osama; Jennewein, Stefan

    2009-12-01

    Several microorganisms are known for their efficient anaerobic conversion of glycerol to 1,3-propanediol, with Clostridium diolis DSM 15410 as one of the better performers in terms of molar yield and volumetric productivity. However, this performance is still insufficient to compete with established chemical processes. Previous studies have shown that high concentrations of 1,3-propanediol, glycerol, and fermentation side products can limit the productivity of C. diolis DSM 15410. Here, we describe the use of genome shuffling for improved 1,3-propanediol fermentation by the strict anaerobe C. diolis DSM 15410. By using chemical mutagenesis, strains with superior substrate and product tolerance levels were isolated and higher product yields were obtained. These superior strains were then used for genome shuffling and selection for 1,3-propanediol and organic acid tolerance. After four rounds of genome shuffling and selection, significant improvements were observed, with one strain attaining a 1,3-propanediol volumetric yield of 85 g/liter. This result represents an 80% improvement compared to the yield from the parental wild-type strain.

  6. Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing.

    PubMed

    Tamaru, Yutaka; Miyake, Hideo; Kuroda, Kouichi; Ueda, Mitsuyoshi; Doi, Roy H

    2010-01-01

    Clostridium cellulovorans is an anaerobic, mesophilic bacterium that efficiently degrades native substrates in soft biomass such as corn fibre and rice straw by producing an extracellular enzyme complex called the cellulosomes. By examining genome sequences from multiple Clostridium species, comparative genomics offers new insight into genome evolution and the way natural selection moulds functional DNA sequence evolution. Recently, we reported the whole genome sequence of C. cellulovorans. A total of 57 cellulosomal genes were found in the C. cellulovorans genome and coded for not only carbohydrate-active enzymes but also lipase, peptidase and proteinase inhibitors, in addition to two novel genes encoding scaffolding proteins CbpB and CbpC. Interestingly, the genome size of C. cellulovorans was about 1 Mbp larger than that of other cellulosome-producing clostridia: mesophilic C. cellulolyticum and thermophilic C. thermocellum. Since the C. cellulovorans genome included not only cellulosomal genes but also a large number of genes encoding non-cellulosomal enzymes, the genome expansion of C. cellulovorans included genes more related to degradation of polysaccharides, such as hemicelluloses and pectins, than to cellulose. In this review, we propose a strategy for industrial applications such as biofuel production using enhanced mesophilic cellulosome- and solvent-producing clostridia.

  7. Genome-Based Infection Tracking Reveals Dynamics of Clostridium difficile Transmission and Disease Recurrence

    PubMed Central

    Kumar, Nitin; Miyajima, Fabio; He, Miao; Roberts, Paul; Swale, Andrew; Ellison, Louise; Pickard, Derek; Smith, Godfrey; Molyneux, Rebecca; Dougan, Gordon; Parkhill, Julian; Wren, Brendan W.; Parry, Christopher M.; Pirmohamed, Munir; Lawley, Trevor D.

    2016-01-01

    Background. Accurate tracking of Clostridium difficile transmission within healthcare settings is key to its containment but is hindered by the lack of discriminatory power of standard genotyping methods. We describe a whole-genome phylogenetic-based method to track the transmission of individual clones in infected hospital patients from the epidemic C. difficile 027/ST1 lineage, and to distinguish between the 2 causes of recurrent disease, relapse (same strain), or reinfection (different strain). Methods. We monitored patients with C. difficile infection in a UK hospital over a 2-year period. We performed whole-genome sequencing and phylogenetic analysis of 108 strains isolated from symptomatic patients. High-resolution phylogeny was integrated with in-hospital transfers and contact data to create an infection network linking individual patients and specific hospital wards. Results. Epidemic C. difficile 027/ST1 caused the majority of infections during our sampling period. Integration of whole-genome single nucleotide polymorphism (SNP) phylogenetic analysis, which accurately discriminated between 27 distinct SNP genotypes, with patient movement and contact data identified 32 plausible transmission events, including ward-based contamination (66%) or direct donor–recipient contact (34%). Highly contagious donors were identified who contributed to the persistence of clones within distinct hospital wards and the spread of clones between wards, especially in areas of intense turnover. Recurrent cases were identified between 4 and 26 weeks, highlighting the limitation of the standard <8-week cutoff used for patient diagnosis and management. Conclusions. Genome-based infection tracking to monitor the persistence and spread of C. difficile within healthcare facilities could inform infection control and patient management. PMID:26683317

  8. New Insights into the Genetic Diversity of Clostridium botulinum Group III through Extensive Genome Exploration

    PubMed Central

    Woudstra, Cédric; Le Maréchal, Caroline; Souillard, Rozenn; Bayon-Auboyer, Marie-Hélène; Mermoud, Isabelle; Desoutter, Denise; Fach, Patrick

    2016-01-01

    Animal botulism is caused by group III Clostridium botulinum strains producing type C and D toxins, or their chimeric forms C/D and D/C. Animal botulism is considered an emerging disease in Europe, notably in poultry production. Before our study, 14 genomes from different countries were available in the public database, but none were from France. In order to investigate the genetic relationship of French strains with different geographical areas and find new potential typing targets, 17 strains of C. botulinum group III were sequenced (16 from France and one from New Caledonia). Fourteen were type C/D strains isolated from chickens, ducks, guinea fowl and turkeys and three were type D/C strains isolated from cattle. The New Caledonian strain was a type D/C strain. Whole genome sequence analysis showed the French strains to be closely related to European strains from C. botulinum group III lineages Ia and Ib. The investigation of CRISPR sequences as genetic targets for differentiating strains in group III proved to be irrelevant for type C/D due to a deficient CRISPR/Cas mechanism, but not for type D/C. Conversely, the extrachromosomal elements of type C/D strains could be used to generate a genetic ID card. The highest level of discrimination was achieved with SNP core phylogeny, which allowed differentiation up to strain level and provide the most relevant information for genetic epidemiology studies and discrimination. PMID:27242769

  9. Comparative genomics of VirR regulons in Clostridium perfringens strains

    PubMed Central

    2010-01-01

    Background Clostridium perfringens is a Gram-positive anaerobic bacterium causing severe diseases such as gas gangrene and pseudomembranosus colitis, that are generally due to the secretion of powerful extracellular toxins. The expression of toxin genes is mainly regulated by VirR, the response regulator of a two-component system. Up to now few targets only are known for this regulator and mainly in one strain (Strain 13). Due to the high genomic and phenotypic variability in toxin production by different strains, the development of effective strategies to counteract C. perfringens infections requires methodologies to reconstruct the VirR regulon from genome sequences. Results We implemented a two step computational strategy allowing to consider available information concerning VirR binding sites in a few species to scan all genomes of the same species, assuming the VirR targets are at least partially conserved across these strains. Results obtained are in agreement with previous works where experimental validation of the promoters have been performed and showed the presence of a core and an accessory regulon of VirR in C. perfringens strains with three target genes also located on plasmids. Moreover, the type E strain JGS1987 has the largest predicted regulon with as many as 10 VirR targets not found in the other genomes. Conclusions In this work we exploited available experimental information concerning the targets of the VirR toxin regulator in one C. perfringens strain to obtain plausible predictions concerning target genes in genomes and plasmids of nearby strains. Our predictions are available for wet-lab researchers working on less characterized C. perfringens strains that can thus design focused experiments reducing the search space of their experiments and increasing the probability of characterizing positive targets with less efforts. Main result was that the VirR regulon is variable in different C. perfringens strains with 4 genes controlled in all but

  10. Genome editing in Clostridium saccharoperbutylacetonicum N1-4 using CRISPR-Cas9 system.

    PubMed

    Wang, Shaohua; Dong, Sheng; Wang, Pixiang; Tao, Yong; Wang, Yi

    2017-03-03

    Clostridium saccharoperbutylacetonicum N1-4 is well known as a hyper-butanol-producing strain. However, the lack of genetic engineering tools hinders further elucidation of its solvent production mechanism and development of more robust strains. In this study, we set out to develop an efficient genome engineering system for this microorganism based on the CRISPR-Cas9 system. First, the functionality of the CRISPR-Cas9 system previously customized for C. beijerinckii was evaluated in C. saccharoperbutylacetonicum by targeting on pta and buk, two essential genes for acetate and butyrate production, respectively. The pta, buk single deletion, and the pta and buk double deletion mutants were successfully obtained based on this system. However, the genome engineering efficiency was rather low (the mutation rate is < 20%). Therefore, the efficiency was further optimized by evaluating various promoters for the gRNA expression. With promoter P J23119 , we achieved a mutation rate of 75% for pta deletion without serial subculturing as suggested previously for C. beijerinckii Thus, this developed CRISPR-Cas9 system is highly desirable for efficient genome editing in C. saccharoperbutylacetonicum Batch fermentation results revealed that both the acid and solvent production profiles were altered due to the disruption of acid production pathways, however neither acetate nor butyrate production was eliminated with the deletion of the corresponding gene. The butanol production, yield and selectivity were improved in mutants dependent on the fermentation medium. In the pta-buk double deletion mutant, the butanol production reached 19.0 g/l in P2 medium, which is one of the highest among the ever reported from batch fermentations.IMPORTANCE An efficient CRISPR-Cas9 genome engineering system was developed for C. saccharoperbutylacetonicum N1-4. This paves the way for elucidating the solvent production mechanism in this hyper-butanol-producing microorganism and developing strains

  11. Genomic and physiological variability within Group II (non-proteolytic) Clostridium botulinum

    PubMed Central

    2013-01-01

    Background Clostridium botulinum is a group of four physiologically and phylogenetically distinct bacteria that produce botulinum neurotoxin. While studies have characterised variability between strains of Group I (proteolytic) C. botulinum, the genetic and physiological variability and relationships between strains within Group II (non-proteolytic) C. botulinum are not well understood. In this study the genome of Group II strain C. botulinum Eklund 17B (NRP) was sequenced and used to construct a whole genome DNA microarray. This was used in a comparative genomic indexing study to compare the relatedness of 43 strains of Group II C. botulinum (14 type B, 24 type E and 5 type F). These results were compared with characteristics determined from physiological tests. Results Whole genome indexing showed that strains of Group II C. botulinum isolated from a wide variety of environments over more than 75 years clustered together indicating the genetic background of Group II C. botulinum is stable. Further analysis showed that strains forming type B or type F toxin are closely related with only toxin cluster genes targets being unique to either type. Strains producing type E toxin formed a separate subset. Carbohydrate fermentation tests supported the observation that type B and F strains form a separate subset to type E strains. All the type F strains and most of type B strains produced acid from amylopectin, amylose and glycogen whereas type E strains did not. However, these two subsets did not differ strongly in minimum growth temperature or maximum NaCl concentration for growth. No relationship was found between tellurite resistance and toxin type despite all the tested type B and type F strains carrying tehB, while the sequence was absent or diverged in all type E strains. Conclusions Although Group II C. botulinum form a tight genetic group, genomic and physiological analysis indicates there are two distinct subsets within this group. All type B strains and type F

  12. Physiology, Genomics, and Pathway Engineering of an Ethanol-Tolerant Strain of Clostridium phytofermentans

    PubMed Central

    Zuroff, Trevor R.; Ramya, Mohandass; Boutard, Magali; Cerisy, Tristan; Curtis, Wayne R.

    2015-01-01

    Novel processing strategies for hydrolysis and fermentation of lignocellulosic biomass in a single reactor offer large potential cost savings for production of biocommodities and biofuels. One critical challenge is retaining high enzyme production in the presence of elevated product titers. Toward this goal, the cellulolytic, ethanol-producing bacterium Clostridium phytofermentans was adapted to increased ethanol concentrations. The resulting ethanol-tolerant (ET) strain has nearly doubled ethanol tolerance relative to the wild-type level but also reduced ethanol yield and growth at low ethanol concentrations. The genome of the ET strain has coding changes in proteins involved in membrane biosynthesis, the Rnf complex, cation homeostasis, gene regulation, and ethanol production. In particular, purification of the mutant bifunctional acetaldehyde coenzyme A (CoA)/alcohol dehydrogenase showed that a G609D variant abolished its activities, including ethanol formation. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase in the ET strain increased cellulose consumption and restored ethanol production, demonstrating how metabolic engineering can be used to overcome disadvantageous mutations incurred during adaptation to ethanol. We discuss how genetic changes in the ET strain reveal novel potential strategies for improving microbial solvent tolerance. PMID:26048945

  13. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    PubMed

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  14. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii

    SciTech Connect

    Nagarajan, H; Sahin, M; Nogales, J; Latif, H; Lovley, DR; Ebrahim, A; Zengler, K

    2013-11-25

    Background: The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H-2/CO2, and more importantly on synthesis gas (H-2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results: Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions: iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels.

  15. Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of Clostridium ljungdahlii

    PubMed Central

    2013-01-01

    Background The metabolic capabilities of acetogens to ferment a wide range of sugars, to grow autotrophically on H2/CO2, and more importantly on synthesis gas (H2/CO/CO2) make them very attractive candidates as production hosts for biofuels and biocommodities. Acetogenic metabolism is considered one of the earliest modes of bacterial metabolism. A thorough understanding of various factors governing the metabolism, in particular energy conservation mechanisms, is critical for metabolic engineering of acetogens for targeted production of desired chemicals. Results Here, we present the genome-scale metabolic network of Clostridium ljungdahlii, the first such model for an acetogen. This genome-scale model (iHN637) consisting of 637 genes, 785 reactions, and 698 metabolites captures all the major central metabolic and biosynthetic pathways, in particular pathways involved in carbon fixation and energy conservation. A combination of metabolic modeling, with physiological and transcriptomic data provided insights into autotrophic metabolism as well as aided the characterization of a nitrate reduction pathway in C. ljungdahlii. Analysis of the iHN637 metabolic model revealed that flavin based electron bifurcation played a key role in energy conservation during autotrophic growth and helped identify genes for some of the critical steps in this mechanism. Conclusions iHN637 represents a predictive model that recapitulates experimental data, and provides valuable insights into the metabolic response of C. ljungdahlii to genetic perturbations under various growth conditions. Thus, the model will be instrumental in guiding metabolic engineering of C. ljungdahlii for the industrial production of biocommodities and biofuels. PMID:24274140

  16. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.

    PubMed

    Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis

    2013-07-01

    Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.

  17. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

    PubMed Central

    2010-01-01

    Background Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. Results C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. Conclusions Analysis of the C. sticklandii genome and

  18. Draft Genome Sequence of Clostridium sp. Strain W14A Isolated from a Cellulose-Degrading Biofilm in a Landfill Leachate Microcosm

    PubMed Central

    2016-01-01

    Here, we report the draft genome of Clostridium sp. strain W14A, isolated from the anaerobic, cellulolytic biofilm of a cotton string sample incubated in a landfill leachate microcosm. The draft genome comprises 131 contigs, 3,823,510 bp, 51.5% G+C content, and 4,119 predicted coding domain sequences. PMID:27660778

  19. Genomic study of the Type IVC secretion system in Clostridium difficile: understanding C. difficile evolution via horizontal gene transfer.

    PubMed

    Zhang, Wen; Cheng, Ying; Du, Pengcheng; Zhang, Yuanyuan; Jia, Hongbing; Li, Xianping; Wang, Jing; Han, Na; Qiang, Yujun; Chen, Chen; Lu, Jinxing

    2017-01-01

    Clostridium difficile, the etiological agent of Clostridium difficile infection (CDI), is a gram-positive, spore-forming bacillus that is responsible for ∼20% of antibiotic-related cases of diarrhea and nearly all cases of pseudomembranous colitis. Previous data have shown that a substantial proportion (11%) of the C. difficile genome consists of mobile genetic elements, including seven conjugative transposons. However, the mechanism underlying the formation of a mosaic genome in C. difficile is unknown. The type-IV secretion system (T4SS) is the only secretion system known to transfer DNA segments among bacteria. We searched genome databases to identify a candidate T4SS in C. difficile that could transfer DNA among different C. difficile strains. All T4SS gene clusters in C. difficile are located within genomic islands (GIs), which have variable lengths and structures and are all conjugative transposons. During the horizontal-transfer process of T4SS GIs within the C. difficile population, the excision sites were altered, resulting in different short-tandem repeat sequences among the T4SS GIs, as well as different chromosomal insertion sites and additional regions in the GIs.

  20. Genome-Wide Identification of Regulatory RNAs in the Human Pathogen Clostridium difficile

    PubMed Central

    Soutourina, Olga A.; Monot, Marc; Boudry, Pierre; Saujet, Laure; Pichon, Christophe; Sismeiro, Odile; Semenova, Ekaterina; Severinov, Konstantin; Le Bouguenec, Chantal; Coppée, Jean-Yves; Dupuy, Bruno; Martin-Verstraete, Isabelle

    2013-01-01

    Clostridium difficile is an emergent pathogen, and the most common cause of nosocomial diarrhea. In an effort to understand the role of small noncoding RNAs (sRNAs) in C. difficile physiology and pathogenesis, we used an in silico approach to identify 511 sRNA candidates in both intergenic and coding regions. In parallel, RNA–seq and differential 5′-end RNA–seq were used for global identification of C. difficile sRNAs and their transcriptional start sites at three different growth conditions (exponential growth phase, stationary phase, and starvation). This global experimental approach identified 251 putative regulatory sRNAs including 94 potential trans riboregulators located in intergenic regions, 91 cis-antisense RNAs, and 66 riboswitches. Expression of 35 sRNAs was confirmed by gene-specific experimental approaches. Some sRNAs, including an antisense RNA that may be involved in control of C. difficile autolytic activity, showed growth phase-dependent expression profiles. Expression of each of 16 predicted c-di-GMP-responsive riboswitches was observed, and experimental evidence for their regulatory role in coordinated control of motility and biofilm formation was obtained. Finally, we detected abundant sRNAs encoded by multiple C. difficile CRISPR loci. These RNAs may be important for C. difficile survival in bacteriophage-rich gut communities. Altogether, this first experimental genome-wide identification of C. difficile sRNAs provides a firm basis for future RNome characterization and identification of molecular mechanisms of sRNA–based regulation of gene expression in this emergent enteropathogen. PMID:23675309

  1. Complete genome sequence of Clostridium butyricum JKY6D1 isolated from the pit mud of a Chinese flavor liquor-making factory.

    PubMed

    Li, Changrun; Wang, Yansheng; Xie, Guopai; Peng, Bing; Zhang, Baonian; Chen, Wei; Huang, Xunduan; Wu, Hang; Zhang, Buchang

    2016-02-20

    Clostridium butyricum is an important fragrance-producing bacterium in the traditional Chinese flavor liquor-making industry. Here the complete genome sequence of C. butyricum JKY6D1 isolated from the pit mud of a Chinese flavor liquor-making factory is presented. The genome is 4,618,327bp with the GC content of 28.74% and a plasmid of 8060bp. This is the first complete genome sequence of C. butyricum strains available so far.

  2. Transcriptomic and genomic analysis of cellulose fermentation by Clostridium thermocellum ATCC 27405

    SciTech Connect

    Raman, Babu; McKeown, Catherine K; Rodriguez, Jr., Miguel; Brown, Steven D; Mielenz, Jonathan R

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  3. The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny.

    PubMed

    Sakaguchi, Yoshihiko; Hayashi, Tetsuya; Kurokawa, Ken; Nakayama, Keisuke; Oshima, Kenshiro; Fujinaga, Yukako; Ohnishi, Makoto; Ohtsubo, Eiichi; Hattori, Masahira; Oguma, Keiji

    2005-11-29

    Botulinum neurotoxins (BoNTXs) produced by Clostridium botulinum are among the most poisonous substances known. Of the seven types of BoNTXs, genes for type C1 and D toxins (BoNTX/C1 and D) are carried by bacteriophages. The gene for exoenzyme C3 also resides on these phages. Here, we present the complete genome sequence of c-st, a representative of BoNTX/C1-converting phages. The genome is a linear double-stranded DNA of 185,682 bp with 404-bp terminal direct repeats, the largest known temperate phage genome. We identified 198 potential protein-coding regions, including the genes for production of BoNTX/C1 and exoenzyme C3. Very exceptionally, as a viable bacteriophage, a number of insertion sequences were found on the c-st genome. By analyzing the molecular structure of the c-st genome in lysogens, we also found that it exists as a circular plasmid prophage. These features account for the unstable lysogeny of BoNTX phages, which has historically been called "pseudolysogeny." The PCR scanning analysis of other BoNTX/C1 and D phages based on the c-st sequence further revealed that BoNTX phages comprise a divergent phage family, probably generated by exchanging genomic segments among BoNTX phages and their relatives.

  4. The genome sequence of Clostridium botulinum type C neurotoxin-converting phage and the molecular mechanisms of unstable lysogeny

    PubMed Central

    Sakaguchi, Yoshihiko; Hayashi, Tetsuya; Kurokawa, Ken; Nakayama, Keisuke; Oshima, Kenshiro; Fujinaga, Yukako; Ohnishi, Makoto; Ohtsubo, Eiichi; Hattori, Masahira; Oguma, Keiji

    2005-01-01

    Botulinum neurotoxins (BoNTXs) produced by Clostridium botulinum are among the most poisonous substances known. Of the seven types of BoNTXs, genes for type C1 and D toxins (BoNTX/C1 and D) are carried by bacteriophages. The gene for exoenzyme C3 also resides on these phages. Here, we present the complete genome sequence of c-st, a representative of BoNTX/C1-converting phages. The genome is a linear double-stranded DNA of 185,682 bp with 404-bp terminal direct repeats, the largest known temperate phage genome. We identified 198 potential protein-coding regions, including the genes for production of BoNTX/C1 and exoenzyme C3. Very exceptionally, as a viable bacteriophage, a number of insertion sequences were found on the c-st genome. By analyzing the molecular structure of the c-st genome in lysogens, we also found that it exists as a circular plasmid prophage. These features account for the unstable lysogeny of BoNTX phages, which has historically been called “pseudolysogeny.” The PCR scanning analysis of other BoNTX/C1 and D phages based on the c-st sequence further revealed that BoNTX phages comprise a divergent phage family, probably generated by exchanging genomic segments among BoNTX phages and their relatives. PMID:16287978

  5. Draft Genome Sequences for Clostridium thermocellum Wild-Type Strain YS and Derived Cellulose Adhesion-Defective Mutant Strain AD2

    SciTech Connect

    Brown, Steven D; Lamed, Raphael; Morag, Ely; Borovok, Ilya; Shoham, Yuval; Klingeman, Dawn Marie; Johnson, Courtney M; Yang, Zamin; Land, Miriam L; Utturkar, Sagar M; Keller, Martin; Bayer, Edward A

    2012-01-01

    Clostridium thermocellum wild-type strain YS is an anaerobic, thermophilic, cellulolytic bacterium capable of directly converting cellulosic substrates into ethanol. Strain YS and a derived cellulose adhesion-defective mutant strain AD2 played pivotal roles in describing the original cellulosome concept. We present their draft genome sequences.

  6. Draft Genome Sequence of Clostridium sp. Strain Ade.TY, a New Biohydrogen- and Biochemical-Producing Bacterium Isolated from Landfill Leachate Sludge.

    PubMed

    Wong, Y M; Juan, J C; Ting, Adeline; Wu, T Y; Gan, H M; Austin, C M

    2014-03-06

    Clostridium sp. strain Ade.TY is potentially a new biohydrogen-producing species isolated from landfill leachate sludge. Here we present the assembly and annotation of its genome, which may provide further insights into its gene interactions for efficient biohydrogen production.

  7. Draft Genome Sequence of the Cellulolytic Strain Clostridium sp. Bc-iso-3 Isolated from an Industrial-Scale Anaerobic Digester

    PubMed Central

    2016-01-01

    Clostridium sp. Bc-iso-3 is a cellulolytic strain isolated from a Swedish industrial-scale biogas digester. Here, we present the draft genome sequence of this strain, which consists of four contigs with a total length of 4,327,139 bp and an average coverage of 312.97×. PMID:27789641

  8. The Genome Sequence of Bacteriophage CPV1 Virulent for Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of bacteriophages and their lytic enzymes to control Clostridium perfringens is one potential approach to reduce the pathogen on poultry farms and in poultry-processing facilities. Bacteriophages lytic for C. perfringens were isolated from sewage, feces and broiler intestinal contents. P...

  9. Complete genome sequence of the podoviral bacteriophage CP24R virulent for Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage 'CP24R was isolated from raw sewage of a waste treatment plant and lytic activity was observed against a type C Clostridium perfringens isolate. Electron microscopy revealed a small virion (44nm diameter icosahedral capsid) with a short, non-contractile tail, indicative of the family ...

  10. Comparative genomic analysis of single-molecule sequencing and hybrid approaches for finishing the Clostridium autoethanogenum JA1-1 strain DSM 10061 genome

    SciTech Connect

    Brown, Steven D; Nagaraju, Shilpa; Utturkar, Sagar M; De Tissera, Sashini; Segovia, Simón; Mitchell, Wayne; Land, Miriam L; Dassanayake, Asela; Köpke, Michael

    2014-01-01

    Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a

  11. FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay

    NASA Astrophysics Data System (ADS)

    Grube, Mara; Gavare, Marita; Nescerecka, Alina; Tihomirova, Kristina; Mezule, Linda; Juhna, Talis

    2013-07-01

    Grass hay is one of assailable cellulose containing non-food agricultural wastes that can be used as a carbohydrate source by microorganisms producing biofuels. In this study three Clostridium strains Clostridium acetobutylicum, Clostridium beijerinckii and Clostridium tetanomorphum, capable of producing acetone, butanol and ethanol (ABE) were adapted to convert enzymatically hydrolyzed hay used as a growth media additive. The results of growth curves, substrate degradation kinetics and FT-IR analyses of bacterial biomass macromolecular composition showed diverse strain-specific cell response to the growth medium composition.

  12. Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011.

    PubMed

    Knetsch, C W; Connor, T R; Mutreja, A; van Dorp, S M; Sanders, I M; Browne, H P; Harris, D; Lipman, L; Keessen, E C; Corver, J; Kuijper, E J; Lawley, T D

    2014-11-13

    Farm animals are a potential reservoir for human Clostridium difficile infection (CDI), particularly PCR ribotype 078 which is frequently found in animals and humans. Here, whole genome single-nucleotide polymorphism (SNP) analysis was used to study the evolutionary relatedness of C. difficile 078 isolated from humans and animals on Dutch pig farms. All sequenced genomes were surveyed for potential antimicrobial resistance determinants and linked to an antimicrobial resistance phenotype. We sequenced the whole genome of 65 C. difficile 078 isolates collected between 2002 and 2011 from pigs (n = 19), asymptomatic farmers (n = 15) and hospitalised patients (n = 31) in the Netherlands. The collection included 12 pairs of human and pig isolates from 2011 collected at 12 different pig farms. A mutation rate of 1.1 SNPs per genome per year was determined for C. difficile 078. Importantly, we demonstrate that farmers and pigs were colonised with identical (no SNP differences) and nearly identical (less than two SNP differences) C. difficile clones. Identical tetracycline and streptomycin resistance determinants were present in human and animal C. difficile 078 isolates. Our observation that farmers and pigs share identical C. difficile strains suggests transmission between these populations, although we cannot exclude the possibility of transmission from a common environmental source.

  13. Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum.

    PubMed

    Pyne, Michael E; Liu, Xuejia; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-09-19

    Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism's genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism's defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism's restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism's central metabolism within the context of metabolic engineering is provided.

  14. Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum

    PubMed Central

    Pyne, Michael E.; Liu, Xuejia; Moo-Young, Murray; Chung, Duane A.; Chou, C. Perry

    2016-01-01

    Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism’s genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism’s defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism’s restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism’s central metabolism within the context of metabolic engineering is provided. PMID:27641836

  15. Comparison of GenomEra C. difficile and Xpert C. difficile as confirmatory tests in a multistep algorithm for diagnosis of Clostridium difficile infection.

    PubMed

    Alcalá, Luis; Reigadas, Elena; Marín, Mercedes; Fernández-Chico, Antonia; Catalán, Pilar; Bouza, Emilio

    2015-01-01

    We compared two multistep diagnostic algorithms based on C. Diff Quik Chek Complete and, as confirmatory tests, GenomEra C. difficile and Xpert C. difficile. The sensitivity, specificity, positive predictive value, and negative predictive value were 87.2%, 99.7%, 97.1%, and 98.3%, respectively, for the GenomEra-based algorithm and 89.7%, 99.4%, 95.5%, and 98.6%, respectively, for the Xpert-based algorithm. GenomEra represents an alternative to Xpert as a confirmatory test of a multistep algorithm for Clostridium difficile infection (CDI) diagnosis.

  16. MLST analysis reveals a highly conserved core genome among poultry isolates of Clostridium septicum.

    PubMed

    Neumann, Anthony P; Rehberger, Thomas G

    2009-06-01

    Clostridium septicum is a highly virulent, anaerobic bacterium capable of establishing necrotizing tissue infections and forming heat resistant endospores. Disease is primarily facilitated by secretion of numerous toxic products including a lethal pore-forming cytolysin. Spontaneously occurring clostridial myonecrosis involving C. septicum has recently reemerged as a concern for many poultry producers. However, despite its increasing prevalence, the epidemiology of infection and population structure of C. septicum remains largely unknown. In this study a multilocus sequence typing (MLST) approach was utilized to examine evolutionary relationships within a diverse collection of C. septicum isolates recovered from poultry flocks experiencing episodes of gangrenous dermatitis. The 109 isolates examined represented 42 turkey flocks and 24 different flocks of broiler chickens as well as C. septicum type strain, ATCC 12464. Isolates were recovered predominantly from gangrenous lesions although isolates from livers, gastrointestinal tracts, spleens and blood were included. The loci analyzed were csa, the major lethal toxin produced by C. septicum, and the housekeeping genes gyrA, groEL, dnaK, recA, tpi, ddl, colA and glpK. These loci were included in part because of their previous use in MLST analysis of Clostridium perfringens and Clostridium difficile. Results indicated a high level of conservation present within these housekeeping gene fragments when compared to what has been previously reported for the aforementioned clostridia. Of the 5352 bp of sequence data examined for each isolate, 99.7% (5335/5352) was absolutely conserved among the 109 isolates. Only one of the ten unique sequence types, or allelic profiles, identified among the isolates was recovered from both turkeys and broiler chickens suggesting some host species preference. Phylogenetic analyses identified two unique clusters, or clonal complexes, among these poultry isolates which may have important

  17. Molecular and Genomic Analysis of Genes Encoding Surface-Anchored Proteins from Clostridium difficile

    PubMed Central

    Karjalainen, Tuomo; Waligora-Dupriet, Anne-Judith; Cerquetti, Marina; Spigaglia, Patrizia; Maggioni, Andrea; Mauri, Pierluigi; Mastrantonio, Paola

    2001-01-01

    The gene slpA, encoding the S-layer precursor protein in the virulent Clostridium difficile strains C253 and 79–685, was identified. The precursor protein carries a C-terminal highly conserved anchoring domain, similar to the one found in the Cwp66 adhesin (previously characterized in strain 79–685), an SLH domain, and a variable N-terminal domain mediating cell adherence. The genes encoding the S-layer precursor proteins and the Cwp66 adhesin are present in a genetic locus carrying 17 open reading frames, 11 of which encode a similar two-domain architecture, likely to include surface-anchored proteins. PMID:11292772

  18. The Complete Genome Sequence of Clostridium aceticum: a Missing Link between Rnf- and Cytochrome-Containing Autotrophic Acetogens

    PubMed Central

    Poehlein, Anja; Cebulla, Martin; Ilg, Marcus M.; Bengelsdorf, Frank R.; Schiel-Bengelsdorf, Bettina; Whited, Gregg; Andreesen, Jan R.; Gottschalk, Gerhard; Daniel, Rolf

    2015-01-01

    ABSTRACT Clostridium aceticum was the first isolated autotrophic acetogen, converting CO2 plus H2 or syngas to acetate. Its genome has now been completely sequenced and consists of a 4.2-Mbp chromosome and a small circular plasmid of 5.7 kbp. Sequence analysis revealed major differences from other autotrophic acetogens. C. aceticum contains an Rnf complex for energy conservation (via pumping protons or sodium ions). Such systems have also been found in C. ljungdahlii and Acetobacterium woodii. However, C. aceticum also contains a cytochrome, as does Moorella thermoacetica, which has been proposed to be involved in the generation of a proton gradient. Thus, C. aceticum seems to represent a link between Rnf- and cytochrome-containing autotrophic acetogens. In C. aceticum, however, the cytochrome is probably not involved in an electron transport chain that leads to proton translocation, as no genes for quinone biosynthesis are present in the genome. PMID:26350967

  19. Genomic Epidemiology of Clostridium botulinum Isolates from Temporally Related Cases of Infant Botulism in New South Wales, Australia.

    PubMed

    McCallum, Nadine; Gray, Timothy J; Wang, Qinning; Ng, Jimmy; Hicks, Leanne; Nguyen, Trang; Yuen, Marion; Hill-Cawthorne, Grant A; Sintchenko, Vitali

    2015-09-01

    Infant botulism is a potentially life-threatening paralytic disease that can be associated with prolonged morbidity if not rapidly diagnosed and treated. Four infants were diagnosed and treated for infant botulism in NSW, Australia, between May 2011 and August 2013. Despite the temporal relationship between the cases, there was no close geographical clustering or other epidemiological links. Clostridium botulinum isolates, three of which produced botulism neurotoxin serotype A (BoNT/A) and one BoNT serotype B (BoNT/B), were characterized using whole-genome sequencing (WGS). In silico multilocus sequence typing (MLST) found that two of the BoNT/A-producing isolates shared an identical novel sequence type, ST84. The other two isolates were single-locus variants of this sequence type (ST85 and ST86). All BoNT/A-producing isolates contained the same chromosomally integrated BoNT/A2 neurotoxin gene cluster. The BoNT/B-producing isolate carried a single plasmid-borne bont/B gene cluster, encoding BoNT subtype B6. Single nucleotide polymorphism (SNP)-based typing results corresponded well with MLST; however, the extra resolution provided by the whole-genome SNP comparisons showed that the isolates differed from each other by >3,500 SNPs. WGS analyses indicated that the four infant botulism cases were caused by genomically distinct strains of C. botulinum that were unlikely to have originated from a common environmental source. The isolates did, however, cluster together, compared with international isolates, suggesting that C. botulinum from environmental reservoirs throughout NSW have descended from a common ancestor. Analyses showed that the high resolution of WGS provided important phylogenetic information that would not be captured by standard seven-loci MLST.

  20. Comparative genomic analysis of a neurotoxigenic Clostridium species using partial genome sequence: Phylogenetic analysis of a few conserved proteins involved in cellular processes and metabolism.

    PubMed

    Alam, Syed Imteyaz; Dixit, Aparna; Tomar, Arvind; Singh, Lokendra

    2010-04-01

    Clostridial organisms produce neurotoxins, which are generally regarded as the most potent toxic substances of biological origin and potential biological warfare agents. Clostridium tetani produces tetanus neurotoxin and is responsible for the fatal tetanus disease. In spite of the extensive immunization regimen, the disease is an important cause of death especially among neonates. Strains of C. tetani have not been genetically characterized except the complete genome sequencing of strain E88. The present study reports the genetic makeup and phylogenetic affiliations of an environmental strain of this bacterium with respect to C. tetani E88 and other clostridia. A shot gun library was constructed from the genomic DNA of C. tetani drde, isolated from decaying fish sample. Unique clones were sequenced and sequences compared with its closest relative C. tetani E88. A total of 275 clones were obtained and 32,457 bases of non-redundant sequence were generated. A total of 150 base changes were observed over the entire length of sequence obtained, including, additions, deletions and base substitutions. Of the total 120 ORFs detected, 48 exhibited closest similarity to E88 proteins of which three are hypothetical proteins. Eight of the ORFs exhibited similarity with hypothetical proteins from other organisms and 10 aligned with other proteins from unrelated organisms. There is an overall conservation of protein sequences among the two strains of C. tetani and. Selected ORFs involved in cellular processes and metabolism were subjected to phylogenetic analysis.

  1. Genomic diversity of Clostridium perfringens strains isolated from food and human sources

    PubMed Central

    Afshari, A.; Jamshidi, A.; Razmyar, J.; Rad, M.

    2016-01-01

    Clostridium perfringens is a serious pathogen which causes enteric diseases in domestic animals and food poisoning in humans. Spores can survive cooking processes and play an important role in the possible onset of disease. In this study, RAPD-PCR and REP-PCR were used to examine the genetic diversity of 49 isolates of C. perfringens type A from three different sources. The results of RAPD-PCR revealed the most genetic diversity among poultry isolates, while human isolates showed the least genetic diversity. Cluster analysis obtained from RAPD-PCR and based on the genetic distances split the 49 strains into five distinct major clusters (A, B, C, D, and E). Cluster A and C were composed of isolates from poultry meat, cluster B was composed of isolates from human stool, cluster D was composed of isolates from minced meat, poultry meat and human stool and cluster E was composed of isolates from minced meat. Further characterization of these strains by using (GTG) 5 fingerprint repetitive sequence-based PCR analysis did not show further differentiation between various types of strains. In conclusion, RAPD-PCR method seems to be very promising for contamination source tracking in the field of food hygiene. PMID:27822244

  2. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores.

    PubMed

    Lawley, Trevor D; Croucher, Nicholas J; Yu, Lu; Clare, Simon; Sebaihia, Mohammed; Goulding, David; Pickard, Derek J; Parkhill, Julian; Choudhary, Jyoti; Dougan, Gordon

    2009-09-01

    Clostridium difficile, a major cause of antibiotic-associated diarrhea, produces highly resistant spores that contaminate hospital environments and facilitate efficient disease transmission. We purified C. difficile spores using a novel method and show that they exhibit significant resistance to harsh physical or chemical treatments and are also highly infectious, with <7 environmental spores per cm(2) reproducibly establishing a persistent infection in exposed mice. Mass spectrometric analysis identified approximately 336 spore-associated polypeptides, with a significant proportion linked to translation, sporulation/germination, and protein stabilization/degradation. In addition, proteins from several distinct metabolic pathways associated with energy production were identified. Comparison of the C. difficile spore proteome to those of other clostridial species defined 88 proteins as the clostridial spore "core" and 29 proteins as C. difficile spore specific, including proteins that could contribute to spore-host interactions. Thus, our results provide the first molecular definition of C. difficile spores, opening up new opportunities for the development of diagnostic and therapeutic approaches.

  3. Clostridium perfringens bacteriophages FCP39O and FCP26F: genomic organization and proteomic analysis of the virions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initial screening for bacteriophages lytic for Clostridium perfringens was performed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Lytic phage preparations were initially characterized by transmission electron microscopy ...

  4. Genome Sequencing and Analysis of a Type A Clostridium perfringens Isolate from a Case of Bovine Clostridial Abomasitis

    PubMed Central

    Nowell, Victoria J.; Kropinski, Andrew M.; Songer, J. Glenn; MacInnes, Janet I.; Parreira, Valeria R.; Prescott, John F.

    2012-01-01

    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified. PMID:22412860

  5. Detection of mixed infection from bacterial whole genome sequence data allows assessment of its role in Clostridium difficile transmission.

    PubMed

    Eyre, David W; Cule, Madeleine L; Griffiths, David; Crook, Derrick W; Peto, Tim E A; Walker, A Sarah; Wilson, Daniel J

    2013-01-01

    Bacterial whole genome sequencing offers the prospect of rapid and high precision investigation of infectious disease outbreaks. Close genetic relationships between microorganisms isolated from different infected cases suggest transmission is a strong possibility, whereas transmission between cases with genetically distinct bacterial isolates can be excluded. However, undetected mixed infections-infection with ≥2 unrelated strains of the same species where only one is sequenced-potentially impairs exclusion of transmission with certainty, and may therefore limit the utility of this technique. We investigated the problem by developing a computationally efficient method for detecting mixed infection without the need for resource-intensive independent sequencing of multiple bacterial colonies. Given the relatively low density of single nucleotide polymorphisms within bacterial sequence data, direct reconstruction of mixed infection haplotypes from current short-read sequence data is not consistently possible. We therefore use a two-step maximum likelihood-based approach, assuming each sample contains up to two infecting strains. We jointly estimate the proportion of the infection arising from the dominant and minor strains, and the sequence divergence between these strains. In cases where mixed infection is confirmed, the dominant and minor haplotypes are then matched to a database of previously sequenced local isolates. We demonstrate the performance of our algorithm with in silico and in vitro mixed infection experiments, and apply it to transmission of an important healthcare-associated pathogen, Clostridium difficile. Using hospital ward movement data in a previously described stochastic transmission model, 15 pairs of cases enriched for likely transmission events associated with mixed infection were selected. Our method identified four previously undetected mixed infections, and a previously undetected transmission event, but no direct transmission between the

  6. An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii.

    PubMed

    Zagrodnik, R; Laniecki, M

    2016-01-01

    The role of light intensity on biohydrogen production from glucose by Clostridium beijerinckii, Clostridium acetobutylicum, and Rhodobacter sphaeroides was studied to evaluate the performance and possible application in co-culture fermentation system. The applied source of light had spectrum similar to the solar radiation. The influence of light intensity on hydrogen production in dark process by C. acetobutylicum was negligible. In contrast, dark fermentation by C. beijerinckii bacteria showed a significant decrease (83%) in produced hydrogen at light intensity of 540W/m(2). Here, the redirection of metabolism from acetic and butyric acid formation towards lactic acid was observed. This not yet reported effect was probably caused by irradiation of these bacteria by light within UVA range, which is an important component of the solar radiation. The excessive illumination with light of intensity higher than 200W/m(2) resulted in decrease in hydrogen production with photofermentative bacteria as well.

  7. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable "Clean" Mutant Selection in Clostridium beijerinckii as an Example.

    PubMed

    Wang, Yi; Zhang, Zhong-Tian; Seo, Seung-Oh; Lynn, Patrick; Lu, Ting; Jin, Yong-Su; Blaschek, Hans P

    2016-07-15

    CRISPR-Cas9 has been demonstrated as a transformative genome engineering tool for many eukaryotic organisms; however, its utilization in bacteria remains limited and ineffective. Here we explored Streptococcus pyogenes CRISPR-Cas9 for genome editing in Clostridium beijerinckii (industrially significant but notorious for being difficult to metabolically engineer) as a representative attempt to explore CRISPR-Cas9 for genome editing in microorganisms that previously lacked sufficient genetic tools. By combining inducible expression of Cas9 and plasmid-borne editing templates, we successfully achieved gene deletion and integration with high efficiency in single steps. We further achieved single nucleotide modification by applying innovative two-step approaches, which do not rely on availability of Protospacer Adjacent Motif sequences. Severe vector integration events were observed during the genome engineering process, which is likely difficult to avoid but has never been reported by other researchers for the bacterial genome engineering based on homologous recombination with plasmid-borne editing templates. We then further successfully employed CRISPR-Cas9 as an efficient tool for selecting desirable "clean" mutants in this study. The approaches we developed are broadly applicable and will open the way for precise genome editing in diverse microorganisms.

  8. Complete genome analysis of Clostridium bornimense strain M2/40(T): A new acidogenic Clostridium species isolated from a mesophilic two-phase laboratory-scale biogas reactor.

    PubMed

    Tomazetto, Geizecler; Hahnke, Sarah; Koeck, Daniela E; Wibberg, Daniel; Maus, Irena; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas

    2016-08-20

    Taxonomic and functional profiling based on metagenome analyses frequently revealed that members of the class Clostridia dominate biogas reactor communities and perform different essential metabolic pathways in the biogas fermentation process. Clostridium bornimense strain M2/40(T) was recently isolated from a mesophilic two-phase lab-scale biogas reactor continuously fed with maize silage and wheat straw. The genome of the strain was completely sequenced and manually annotated to reconstruct its metabolic potential regarding carbohydrate active enzyme production and fermentation of organic compounds for consolidated biofuel production from biomass. The C. bornimense M2/40(T) genome consists of a chromosome (2,917,864bp in size) containing 2613 protein coding sequences, and a 699,161bp chromid (secondary replicon) harboring 680 coding sequences. Both replicons feature very similar GC-contents of approximately 29%. The complex genome comprises three prophage regions, two CRISPR-cas systems and a putative cellulosomal gene cluster that is located on the second replicon (chromid) of the strain. The overexpressed glycosyl hydrolases (GH) CelK (GH9) and CelA (GH48) encoded in the cellulosomal gene cluster were shown to be active on the substrates xylan and xyloglucan whereas XghA (GH74) is highly active on xyloglucan. Reconstruction of fermentation pathways from genome sequence data revealed that strain M2/40(T) encodes all enzymes for hydrogen, acetate, formate, lactate, butyrate, and ethanol production, leading to the classification of the isolate as acidogenic bacterium. Phylogenetic analyses uncovered that the closest characterized relative of C. bornimense is C. cellulovorans. Comparative analyses of the C. bornimense and C. cellulovorans genomes revealed considerable rearrangements within their chromosomes suggesting that both species evolved separately for a relatively long period of time and adapted to specific tasks within microbial consortia responsible for

  9. Complementation of a Clostridium perfringens spo0A mutant with wild-type spo0A from other Clostridium species.

    PubMed

    Huang, I-Hsiu; Sarker, Mahfuzur R

    2006-09-01

    To evaluate whether C. perfringens can be used as a model organism for studying the sporulation process in other clostridia, C. perfringens spo0A mutant IH101 was complemented with wild-type spo0A from four different Clostridium species. Wild-type spo0A from C. acetobutylicum or C. tetani, but not from C. botulinum or C. difficile, restored sporulation and enterotoxin production in IH101. The ability of spo0A from C. botulinum or C. difficile to complement the lack of spore formation in IH101 might be due, at least in part, to the low levels of spo0A transcription and Spo0A production.

  10. Genomics of Clostridium

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Joseph; Johnson, Eric A.

    The clostridia have a rich history and contemporary importance in industrial, environmental, and medical microbiology. Due to their ability to form endospores, clostridia are ubiquitous in nature and are found in many environments, especially in soils and the intestinal tract of animals including humans. Many clostridia cause devastating diseases of humans and animals, such as botulism, tetanus, and gas gangrene, through the production of protein toxins. The clostridia produce more protein toxins that are lethal for humans and animals than any other bacterial genus (Johnson, 2005; Van Heyningen, 1950). Other species are important in the formation of solvents and organic acids by anaerobic fermentations or as a source of unique enzymes for biocatalysis (Bradshaw and Johnson, 2010; Hatheway and Johnson, 1998).

  11. Biotechnological potential of Clostridium butyricum bacteria

    PubMed Central

    Szymanowska-Powałowska, Daria; Orczyk, Dorota; Leja, Katarzyna

    2014-01-01

    In response to demand from industry for microorganisms with auspicious biotechnological potential, a worldwide interest has developed in bacteria and fungi isolation. Microorganisms of interesting metabolic properties include non-pathogenic bacteria of the genus Clostridium, particularly C. acetobutylicum, C. butyricum and C. pasteurianum. A well-known property of C. butyricum is their ability to produce butyric acid, as well as effectively convert glycerol to 1,3-propanediol (38.2 g/L). A conversion rate of 0.66 mol 1,3-propanediol/mol of glycerol has been obtained. Results of the studies described in the present paper broaden our knowledge of characteristic features of C. butyricum specific isolates in terms of their phylogenetic affiliation, fermentation capacity and antibacterial properties. PMID:25477923

  12. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile.

    PubMed

    Hargreaves, Katherine R; Otieno, James R; Thanki, Anisha; Blades, Matthew J; Millard, Andrew D; Browne, Hilary P; Lawley, Trevor D; Clokie, Martha R J

    2015-05-27

    The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile "mobilome," which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics.

  13. Genome Analysis of Clostridium difficile PCR Ribotype 014 Lineage in Australian Pigs and Humans Reveals a Diverse Genetic Repertoire and Signatures of Long-Range Interspecies Transmission

    PubMed Central

    Knight, Daniel R.; Squire, Michele M.; Collins, Deirdre A.; Riley, Thomas V.

    2017-01-01

    Clostridium difficile PCR ribotype (RT) 014 is well-established in both human and porcine populations in Australia, raising the possibility that C. difficile infection (CDI) may have a zoonotic or foodborne etiology. Here, whole genome sequencing and high-resolution core genome phylogenetics were performed on a contemporaneous collection of 40 Australian RT014 isolates of human and porcine origin. Phylogenies based on MLST (7 loci, STs 2, 13, and 49) and core orthologous genes (1260 loci) showed clustering of human and porcine strains indicative of very recent shared ancestry. Core genome single nucleotide variant (SNV) analysis found 42% of human strains showed a clonal relationship (separated by ≤2 SNVs in their core genome) with one or more porcine strains, consistent with recent inter-host transmission. Clones were spread over a vast geographic area with 50% of the human cases occurring without recent healthcare exposure. These findings suggest a persistent community reservoir with long-range dissemination, potentially due to agricultural recycling of piggery effluent. We also provide the first pan-genome analysis for this lineage, characterizing its resistome, prophage content, and in silico virulence potential. The RT014 is defined by a large “open” pan-genome (7587 genes) comprising a core genome of 2296 genes (30.3% of the total gene repertoire) and an accessory genome of 5291 genes. Antimicrobial resistance genotypes and phenotypes varied across host populations and ST lineages and were characterized by resistance to tetracycline [tetM, tetA(P), tetB(P) and tetW], clindamycin/erythromycin (ermB), and aminoglycosides (aph3-III-Sat4A-ant6-Ia). Resistance was mediated by clinically important mobile genetic elements, most notably Tn6194 (harboring ermB) and a novel variant of Tn5397 (harboring tetM). Numerous clinically important prophages (Siphoviridae and Myoviridae) were identified as well as an uncommon accessory gene regulator locus (agr3

  14. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing.

    PubMed

    Salimi, Fahimeh; Zhuang, Kai; Mahadevan, Radhakrishnan

    2010-07-01

    An alternative consolidated bioprocessing approach is the use of a co-culture containing cellulolytic and solventogenic clostridia. It has been demonstrated that the rate of cellulose utilization in the co-culture of Clostridium acetobutylicum and Clostridium cellulolyticum is improved compared to the mono-culture of C. cellulolyticum, suggesting the presence of syntrophy between these two species. However, the metabolic interactions in the co-culture are not well understood. To understand the metabolic interactions in the co-culture, we developed a genome-scale metabolic model of C. cellulolyticum comprising of 431 genes, 621 reactions, and 603 metabolites. The C. cellulolyticum model can successfully predict the chemostat growth and byproduct secretion with cellulose as the substrate. However, a growth arrest phenomenon, which occurs in batch cultures of C. cellulolyticum at cellulose concentrations higher than 6.7 g/L, cannot be predicted by dynamic flux balance analysis due to the lack of understanding of the underlying mechanism. These genome-scale metabolic models of the pure cultures have also been integrated using a community modeling framework to develop a dynamic model of metabolic interactions in the co-culture. Co-culture simulations suggest that cellobiose inhibition cannot be the main factor that is responsible for improved cellulose utilization relative to mono-culture of C. cellulolyticum.

  15. Selective medium for isolation of Clostridium butyricum from human feces.

    PubMed Central

    Popoff, M R

    1984-01-01

    A selective medium, Clostridium butyricum isolation medium (BIM), is described for the isolation of C. butyricum from human feces. The BIM is a synthetic minimal medium and contains trimethoprim (16 micrograms/ml), D-cycloserine (10 micrograms/ml), and polymyxin B sulfate (20 micrograms/ml) as selective inhibitory agents. Qualitative tests indicated that C. butyricum and other butyric acid-producing clostridia grew on BIM, Clostridium sphenoides and Bacillus cereus produced small colonies, and other clostridia and other obligate anaerobic or facultatively anerobic bacteria were inhibited. Quantitative recovery of C. butyricum from cultures or seeded fecal samples was comparable with BIM and with complex medium, but the quantitative recovery of the other butyric acid-producing clostridia tested (C. beijerinckii, C. acetobutylicum) was lower with BIM than with complex medium. The BIM should aid the rapid isolation of C. butyricum from fecal samples and should be useful for bacteriological investigation of neonatal necrotizing enterocolitis. PMID:6490827

  16. Physiology and Sporulation in Clostridium.

    PubMed

    Dürre, Peter

    2014-08-01

    Clostridia are Gram-positive, anaerobic, endospore-forming bacteria, incapable of dissimilatory sulfate reduction. Comprising approximately 180 species, the genus Clostridium is one of the largest bacterial genera. Physiology is mostly devoted to acid production. Numerous pathways are known, such as the homoacetate fermentation by acetogens, the propionate fermentation by Clostridium propionicum, and the butyrate/butanol fermentation by C. acetobutylicum, a well-known solvent producer. Clostridia degrade sugars, alcohols, amino acids, purines, pyrimidines, and polymers such as starch and cellulose. Energy conservation can be performed by substrate-level phosphorylation as well as by the generation of ion gradients. Endospore formation resembles the mechanism elucidated in Bacillus. Morphology, contents, and properties of spores are very similar to bacilli endospores. Sporulating clostridia usually form swollen mother cells and accumulate the storage substance granulose. However, clostridial sporulation differs by not employing the so-called phosphorelay. Initiation starts by direct phosphorylation of the master regulator Spo0A. The cascade of sporulation-specific sigma factors is again identical to what is known from Bacillus. The onset of sporulation is coupled in some species to either solvent (acetone, butanol) or toxin (e.g., C. perfringens enterotoxin) formation. The germination of spores is often induced by various amino acids, often in combination with phosphate and sodium ions. In medical applications, C. butyricum spores are used as a C. difficile prophylaxis and as treatment against diarrhea. Recombinant spores are currently under investigation and testing as antitumor agents, because they germinate only in hypoxic tissues (i.e., tumor tissue), allowing precise targeting and direct killing of tumor cells.

  17. Two Novel Toxin Variants Revealed by Whole-Genome Sequencing of 175 Clostridium botulinum Type E Strains

    PubMed Central

    Weedmark, K. A.; Lambert, D. L.; Mabon, P.; Hayden, K. L.; Urfano, C. J.; Leclair, D.; Van Domselaar, G.; Austin, J. W.

    2014-01-01

    We sequenced 175 Clostridium botulinum type E strains isolated from food, clinical, and environmental sources from northern Canada and analyzed their botulinum neurotoxin (bont) coding sequences (CDSs). In addition to bont/E1 and bont/E3 variant types, neurotoxin sequence analysis identified two novel BoNT type E variants termed E10 and E11. Strains producing type E10 were found along the eastern coastlines of Hudson Bay and the shores of Ungava Bay, while strains producing type E11 were only found in the Koksoak River region of Nunavik. Strains producing BoNT/E3 were widespread throughout northern Canada, with the exception of the coast of eastern Hudson Bay. PMID:25107978

  18. Whole genome sequence of Clostridium bornimense strain M2/40 isolated from a lab-scale mesophilic two-phase biogas reactor digesting maize silage and wheat straw.

    PubMed

    Hahnke, Sarah; Wibberg, Daniel; Tomazetto, Geizecler; Pühler, Alfred; Klocke, Michael; Schlüter, Andreas

    2014-08-20

    The bacterium Clostridium bornimense M2/40 is a mesophilic, anaerobic bacterium isolated from a two-phase biogas reactor continuously fed with maize silage and 5% wheat straw. Grown on glucose, it produced H2, CO2, formiate, lactate and propionate as the main fermentation products, of which some compounds serve as substrates for methanogenic Archaea to form methane. Here, the whole genome sequence of the bacterium consisting of two circular replicons is reported. This genome information provides the basis for further studies addressing metabolic features of the isolate and its role in anaerobic biomass degradation.

  19. Comparative Genome Analysis and Global Phylogeny of the Toxin Variant Clostridium difficile PCR Ribotype 017 Reveals the Evolution of Two Independent Sublineages

    PubMed Central

    Cairns, M. D.; Preston, M. D.; Hall, C. L.; Gerding, D. N.; Hawkey, P. M.; Kato, H.; Kim, H.; Kuijper, E. J.; Lawley, T. D.; Pituch, H.; Reid, S.; Kullin, B.; Riley, T. V.; Solomon, K.; Tsai, P. J.; Weese, J. S.

    2016-01-01

    ABSTRACT The diarrheal pathogen Clostridium difficile consists of at least six distinct evolutionary lineages. The RT017 lineage is anomalous, as strains only express toxin B, compared to strains from other lineages that produce toxins A and B and, occasionally, binary toxin. Historically, RT017 initially was reported in Asia but now has been reported worldwide. We used whole-genome sequencing and phylogenetic analysis to investigate the patterns of global spread and population structure of 277 RT017 isolates from animal and human origins from six continents, isolated between 1990 and 2013. We reveal two distinct evenly split sublineages (SL1 and SL2) of C. difficile RT017 that contain multiple independent clonal expansions. All 24 animal isolates were contained within SL1 along with human isolates, suggesting potential transmission between animals and humans. Genetic analyses revealed an overrepresentation of antibiotic resistance genes. Phylogeographic analyses show a North American origin for RT017, as has been found for the recently emerged epidemic RT027 lineage. Despite having only one toxin, RT017 strains have evolved in parallel from at least two independent sources and can readily transmit between continents. PMID:28031436

  20. Comparative Genome Analysis and Global Phylogeny of the Toxin Variant Clostridium difficile PCR Ribotype 017 Reveals the Evolution of Two Independent Sublineages.

    PubMed

    Cairns, M D; Preston, M D; Hall, C L; Gerding, D N; Hawkey, P M; Kato, H; Kim, H; Kuijper, E J; Lawley, T D; Pituch, H; Reid, S; Kullin, B; Riley, T V; Solomon, K; Tsai, P J; Weese, J S; Stabler, R A; Wren, B W

    2017-03-01

    The diarrheal pathogen Clostridium difficile consists of at least six distinct evolutionary lineages. The RT017 lineage is anomalous, as strains only express toxin B, compared to strains from other lineages that produce toxins A and B and, occasionally, binary toxin. Historically, RT017 initially was reported in Asia but now has been reported worldwide. We used whole-genome sequencing and phylogenetic analysis to investigate the patterns of global spread and population structure of 277 RT017 isolates from animal and human origins from six continents, isolated between 1990 and 2013. We reveal two distinct evenly split sublineages (SL1 and SL2) of C. difficile RT017 that contain multiple independent clonal expansions. All 24 animal isolates were contained within SL1 along with human isolates, suggesting potential transmission between animals and humans. Genetic analyses revealed an overrepresentation of antibiotic resistance genes. Phylogeographic analyses show a North American origin for RT017, as has been found for the recently emerged epidemic RT027 lineage. Despite having only one toxin, RT017 strains have evolved in parallel from at least two independent sources and can readily transmit between continents.

  1. The acetate kinase of Clostridum acetobutylicum strain P262.

    PubMed

    Diez-Gonzalez, F; Russell, J B; Hunter, J B

    1996-12-01

    Clostridum acetobutylicum strain P262 fermented glucose, pyruvate, or lactate, and the butyrate production was substrate-dependent. Differences in butyrate yield could not be explained by changes in butyrate kinase activities, but the butyrate production was inversely related to acetate kinase activity. The acetate kinase had a pH optimum of 8.0, a Km for acetate of 160 mM, and a kcat of 16, 800 min-1. The enyzme had a native molecular mass of 78 kDa; the size of 42 kDa on SDS-PAGE indicated that the acetate kinase of strain P262 was a homodimer.

  2. Comparison of Multilocus Variable-Number Tandem-Repeat Analysis and Whole-Genome Sequencing for Investigation of Clostridium difficile Transmission

    PubMed Central

    Fawley, W. N.; Best, E. L.; Griffiths, D.; Stoesser, N. E.; Crook, D. W.; Peto, T. E. A.; Walker, A. S.; Wilcox, M. H.

    2013-01-01

    No study to date has compared multilocus variable-number tandem-repeat analysis (MLVA) and whole-genome sequencing (WGS) in an investigation of the transmission of Clostridium difficile infection. Isolates from 61 adults with ongoing and/or recurrent C. difficile infections and 17 asymptomatic carriage episodes in children (201 samples), as well as from 61 suspected outbreaks affecting 2 to 41 patients in 31 hospitals in the United Kingdom (300 samples), underwent 7-locus MLVA and WGS in parallel. When the first and last samples from the same individual taken for a median (interquartile range [IQR]) of 63 days (43 to 105 days) apart were compared, the estimated rates of the evolution of single nucleotide variants (SNVs), summed tandem-repeat differences (STRDs), and locus variants (LVs) were 0.79 (95% confidence interval [CI], 0.00 to 1.75), 1.63 (95% CI, 0.00 to 3.59), and 1.21 (95% CI, 0.00 to 2.67)/called genome/year, respectively. Differences of >2 SNVs and >10 STRDs have been used to exclude direct case-to-case transmission. With the first serial sample per individual being used to assess discriminatory power, across all pairs of samples sharing a PCR ribotype, 192/283 (68%) differed by >10 STRDs and 217/283 (77%) by >2 SNVs. Among all pairs of cases from the same suspected outbreak, 1,190/1,488 (80%) pairs had concordant results using >2 SNVs and >10 STRDs to exclude transmission. For the discordant pairs, 229 (15%) had ≥2 SNVs but ≤10 STRDs, and 69 (5%) had ≤2 SNVs but ≥10 STRDs. Discordant pairs had higher numbers of LVs than concordant pairs, supporting the more diverse measure in each type of discordant pair. Conclusions on whether the potential outbreaks were confirmed were concordant in 58/61 (95%) investigations. Overall findings using MLVA and WGS were very similar despite the fact that they analyzed different parts of the bacterial genome. With improvements in WGS technology, it is likely that MLVA locus data will be available from WGS in the

  3. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics

    PubMed Central

    Xiao, Yinghua; van Hijum, Sacha A. F. T.; Abee, Tjakko; Wells-Bennik, Marjon H. J.

    2015-01-01

    The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies. PMID:25978838

  4. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains.

    PubMed

    Abd-Alla, Mohamed Hemida; Zohri, Abdel-Naser Ahmed; El-Enany, Abdel-Wahab Elsadek; Ali, Shimaa Mohamed

    2015-04-01

    One hundred and seven mesophilic isolates of Clostridium were isolated from agricultural soils cultivated with different plants in Assuit Governorate, Egypt. Eighty isolates (out of 107) showed the ability to produce ABE (Acetone, butanol and ethanol) on T6 medium ranging from 0.036 to 31.89 g/L. The highest numbers of ABE producing isolates were obtained from soil samples of potato contributing 27 isolates, followed by 18 isolates from wheat and 10 isolates from onion. On the other hand, there were three native isolates that produced ABE more than those produced by the reference isolate Clostridium acetobutylicum ATCC 824 (11.543 g/L). The three isolates were identified based on phenotypic and gene encoding 16S rRNA as Clostridium beijerinckii ASU10 (KF372577), Clostridium chauvoei ASU55 (KF372580) and Clostridium roseum ASU58 (KF372581). The highest ABE level from substandard and surplus dates was produced by C. beijerinckii ASU10 (24.07 g/L) comprising butanol 67.15% (16.16 g/L), acetone 30.73% (7.4 g/L) and ethanol 2.12% (0.51 g/L), while C. roseum ASU58 and C. chauvoei ASU55 produced ABE contributing 20.20 and 13.79 g/L, respectively. ABE production by C. acetobutylicum ATCC 824 was 15.01 g/L. This study proved that the native strains C. beijerinckii ASU10 and C. roseum ASU58 have high competitive efficacy on ABE production from economical substrate as substandard and surplus date fruits. Additionally, using this substrate without any nutritional components is considered to be a commercial substrate for desired ABE production.

  5. Clostridium guangxiense sp. nov. and Clostridium neuense sp. nov., two phylogenetically closely related hydrogen-producing species isolated from lake sediment.

    PubMed

    Zhao, Xin; Li, Danyang; Xu, Shuhong; Guo, Zhanghao; Zhang, Yan; Man, Lin; Jiang, Binhui; Hu, Xiaomin

    2017-03-01

    Two novel anaerobic, mesophilic, biohydrogen-producing bacteria, designated strains ZGM211T and G1T, were isolated from lake sediment. 16S rRNA and ATP synthase beta subunit (atpD) gene sequences and phylogenetic analysis of strains ZGM211T and G1T revealed an affiliation to the genus Clostridium sensu stricto (cluster I of the clostridia), with Clostridium acetobutylicum as the closest characterized species, showing the same sequence similarity of 96.4 % to the type strain (98.9 % between the two isolates). Cells of the two strains were rod shaped. Growth occurred at 20-45 °C, pH 4.0-8.0 and NaCl concentrations up to 2 % (w/v). Grown on glucose, the main fermentation products were H2, CO2, acetate and butyrate. The major fatty acids were C14 : 0 and C16 : 0. The DNA G+C contents of strains ZGM211T and G1T were 40.7 and 41.5 mol%, respectively. Based on phenotypic, chemotaxonomic and phylogenetic differences, strains ZGM211T (=CICC 24070T=BCRC 80950T) and G1T (=CICC 24069T=BCRC 80949T) are proposed as the type strains of novel species of the genus Clostridium with the names Clostridium guangxiense sp. nov. and Clostridium neuense sp. nov., respectively.

  6. Alternative non-chromatographic method for alcohols determination in Clostridium acetobutylicum fermentations.

    PubMed

    Noriega-Medrano, Laura J; Vega-Estrada, Jesús; Ortega-López, Jaime; Ruiz-Medrano, Roberto; Cristiani-Urbina, Eliseo; Montes-Horcasitas, Maria Del Carmen

    2016-07-01

    An economic, simple, quantitative, and non-chromatographic method for the determination of alcohols using microdiffusion principle has been adapted and validated for acetone-butanol-ethanol (ABE) fermentation samples. This method, based on alcohols oxidation using potassium dichromate in acid medium, and detection by spectrophotometry, was evaluated varying, both, temperature (35°C, 45°C, and 55°C) and reaction time (0 to 125min). With a sample analysis time of 90min at 45°C, a limit of detection (LOD), and a limit of quantification (LOQ) of 0.10, and 0.40g/L, respectively. The proposed method has been successfully applied to determine butanol and ethanol concentrations in ABE fermentation samples with the advantage that multiple samples can be analyzed simultaneously. The measurements obtained with the proposed method were in good agreement with those obtained with the Gas Chromatography Method (GCM). This proposed method is useful for routine analysis of alcohols and screening samples in laboratories and industries.

  7. TRANSFORMATION OF TNT AND RELATED NITROAROMATIC COMPOUNDS BY CLOSTRIDIUM ACETOBUTYLICUM. (R825513C006)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor.

    PubMed

    Kudahettige-Nilsson, Rasika L; Helmerius, Jonas; Nilsson, Robert T; Sjöblom, Magnus; Hodge, David B; Rova, Ulrika

    2015-01-01

    Acetone-butanol-ethanol (ABE) fermentation was studied using acid-hydrolyzed xylan recovered from hardwood Kraft black liquor by CO2 acidification as the only carbon source. Detoxification of hydrolyzate using activated carbon was conducted to evaluate the impact of inhibitor removal and fermentation. Xylose hydrolysis yields as high as 18.4% were demonstrated at the highest severity hydrolysis condition. Detoxification using active carbon was effective for removal of both phenolics (76-81%) and HMF (38-52%). Batch fermentation of the hydrolyzate and semi-defined P2 media resulted in a total solvent yield of 0.12-0.13g/g and 0.34g/g, corresponding to a butanol concentration of 1.8-2.1g/L and 7.3g/L respectively. This work is the first study of a process for the production of a biologically-derived biofuel from hemicelluloses solubilized during Kraft pulping and demonstrates the feasibility of utilizing xylan recovered directly from industrial Kraft pulping liquors as a feedstock for biological production of biofuels such as butanol.

  9. Molecular characterization of two Clostridium acetobutylicum ATCC 824 butanol dehydrogenase isozyme genes.

    PubMed Central

    Walter, K A; Bennett, G N; Papoutsakis, E T

    1992-01-01

    A 4-kb segment of DNA containing two previously cloned butanol dehydrogenase (BDH) isozyme genes (D. Petersen, R. Welch, F. Rudolph, and G. Bennett, J. Bacteriol. 173:1831-1834, 1991) was sequenced. Two complete open reading frames (ORFs) were identified (bdhA and bdhB), along with a third truncated ORF (ORF1). The translation products of bdhA and bdhB corresponded to the N-terminal sequences of the purified BDH I and BDH II proteins, respectively. The two isozymes had a high amino acid identity (73%) and showed homology to a newly described class of alcohol dehydrogenases. Northern blots revealed that bdhA and bdhB did not form an operon. Primer extension experiments located single transcriptional start sites 37 and 58 bp upstream of the start codons of bdhA and bdhB, respectively. The -10 and -35 promoter regions for these genes were almost identical. bdhA and bdhB were found to be induced or derepressed immediately prior to significant butanol production in controlled pH 5.0 batch fermentations. Images PMID:1385386

  10. Recent progress on industrial fermentative production of acetone-butanol-ethanol by Clostridium acetobutylicum in China.

    PubMed

    Ni, Ye; Sun, Zhihao

    2009-06-01

    China is one of the few countries, which maintained the fermentative acetone-butanol-ethanol (ABE) production for several decades. Until the end of the last century, the ABE fermentation from grain was operated in a few industrial scale plants. Due to the strong competition from the petrochemical industries, the fermentative ABE production lost its position in the 1990s, when all the solvent fermentation plants in China were closed. Under the current circumstances of concern about energy limitations and environmental pollution, new opportunities have emerged for the traditional ABE fermentation industry since it could again be potentially competitive with chemical synthesis. From 2006, several ABE fermentation plants in China have resumed production. The total solvent (acetone, butanol, and ethanol) production capacity from ten plants reached 210,000 tons, and the total solvent production is expected to be extended to 1,000,000 tons (based on the available data as of Sept. 2008). This article reviews current work in strain development, the continuous fermentation process, solvent recovery, and economic evaluation of ABE process in China. Challenges for an economically competitive ABE process in the future are also discussed.

  11. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052

    PubMed Central

    2011-01-01

    Background Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol--an important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive microorganism for strain design to improve butanol production because it (i) naturally produces the highest recorded butanol concentrations as a byproduct of fermentation; and (ii) can co-ferment pentose and hexose sugars (the primary products from lignocellulosic hydrolysis). Interrogating C. beijerinckii metabolism from a systems viewpoint using constraint-based modeling allows for simulation of the global effect of genetic modifications. Results We present the first genome-scale metabolic model (iCM925) for C. beijerinckii, containing 925 genes, 938 reactions, and 881 metabolites. To build the model we employed a semi-automated procedure that integrated genome annotation information from KEGG, BioCyc, and The SEED, and utilized computational algorithms with manual curation to improve model completeness. Interestingly, we found only a 34% overlap in reactions collected from the three databases--highlighting the importance of evaluating the predictive accuracy of the resulting genome-scale model. To validate iCM925, we conducted fermentation experiments using the NCIMB 8052 strain, and evaluated the ability of the model to simulate measured substrate uptake and product production rates. Experimentally observed fermentation profiles were found to lie within the solution space of the model; however, under an optimal growth objective, additional constraints were needed to reproduce the observed profiles--suggesting the existence of selective pressures other than optimal growth. Notably, a significantly enriched fraction of actively utilized reactions in simulations--constrained to reflect experimental rates--originated from the set of reactions that overlapped between all three databases (P = 3.52 × 10-9, Fisher's exact test). Inhibition of the

  12. Genome wide transcriptomic analysis identifies pathways affected by the infusion of Clostridium perfringens culture supernatant in the duodenum of broilers in situ.

    PubMed

    Athanasiadou, S; Russell, K M; Kaiser, P; Kanellos, T; Burgess, S T G; Mitchell, M; Clutton, E; Naylor, S W; Low, C J; Hutchings, M R; Sparks, N

    2015-06-01

    Clostridium perfringens type A is the main etiological factor for necrotic enteritis, a multifactorial enteric disease that penalizes performance, health, and welfare of poultry. Lack of knowledge of host responses and disease pathogenesis is slowing down progress on developing therapies for disease control. A combined genomewide and targeted gene approach was used to investigate pathways and biological functions affected by the infusion of C. perfringens culture supernatant in the duodenum of broilers in 2 experiments. An in situ isolated loop of duodenum was prepared in anesthetized broilers of 3 wk of age (Exp. 1) and was infused either with crude C. perfringens culture supernatant (n = 7; treated), positive for necrotic enteritis B-like toxin (NetB) as determined by a cytotoxicity assay, or with a control preparation (n = 6; control). Birds were maintained alive for 1 h and then euthanized for tissue recovery. The use of the Affymetrix chicken genome array on RNA samples from loop tissue showed top biological functions affected by culture supernatant infusion included cell morphology, immune cell trafficking, and cell death; pathways affected included death receptor signaling, inflammatory response, and nuclear factor (NF)-κB signaling. In a second in situ study (Exp. 2), broilers were maintained alive for 4 h to monitor temporal expression patterns of targeted genes. Duodenal tissue was removed at 0.5, 1, 2, and 4 h post-infusion with culture supernatant (n = 9) or a control preparation (n = 5) for histology and gene expression analysis. Genes encoding proinflammatory cytokines, such as interferon γ (IFNγ), cell trafficking, such as neuroblastoma 1 (NBL1) and B cell CLL/Lymphoma 6 (BCL6), and cell death, such as Fas cell surface death receptor (FAS) and GTPase IMAP family member 8 (GIMAP8), were differentially expressed in the duodenum of treated and control broilers (P < 0.05). We have demonstrated that C. perfringens culture supernatant (NetB positive

  13. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints.

    PubMed

    Yen, Jiun Y; Nazem-Bokaee, Hadi; Freedman, Benjamin G; Athamneh, Ahmad I M; Senger, Ryan S

    2013-05-01

    Optimized production of bio-based fuels and chemicals from microbial cell factories is a central goal of systems metabolic engineering. To achieve this goal, a new computational method of using flux balance analysis with flux ratios (FBrAtio) was further developed in this research and applied to five case studies to evaluate and design metabolic engineering strategies. The approach was implemented using publicly available genome-scale metabolic flux models. Synthetic pathways were added to these models along with flux ratio constraints by FBrAtio to achieve increased (i) cellulose production from Arabidopsis thaliana; (ii) isobutanol production from Saccharomyces cerevisiae; (iii) acetone production from Synechocystis sp. PCC6803; (iv) H2 production from Escherichia coli MG1655; and (v) isopropanol, butanol, and ethanol (IBE) production from engineered Clostridium acetobutylicum. The FBrAtio approach was applied to each case to simulate a metabolic engineering strategy already implemented experimentally, and flux ratios were continually adjusted to find (i) the end-limit of increased production using the existing strategy, (ii) new potential strategies to increase production, and (iii) the impact of these metabolic engineering strategies on product yield and culture growth. The FBrAtio approach has the potential to design "fine-tuned" metabolic engineering strategies in silico that can be implemented directly with available genomic tools.

  14. Variability in DPA and Calcium Content in the Spores of Clostridium Species

    PubMed Central

    Jamroskovic, Jan; Chromikova, Zuzana; List, Cornelia; Bartova, Barbora; Barak, Imrich; Bernier-Latmani, Rizlan

    2016-01-01

    Spores of a number of clostridial species, and their resistance to thermal treatment is a major concern for the food industry. Spore resistance to wet heat is related to the level of spore hydration, which is inversely correlated with the content of calcium and dipicolinic acid (DPA) in the spore core. It is widely believed that the accumulation of DPA and calcium in the spore core is a fundamental component of the sporulation process for all endospore forming species. We have noticed heterogeneity in the heat resistance capacity and overall DPA/calcium content among the spores of several species belonging to Clostridium sensu stricto group: two C. acetobutylicum strains (DSM 792 and 1731), two C. beijerinckii strains (DSM 791 and NCIMB 8052), and a C. collagenovorans strain (DSM 3089). A C. beijerinckii strain (DSM 791) and a C. acetobutylicum strain (DSM 792) display low Ca and DPA levels. In addition, these two species, with the lowest average Ca/DPA content amongst the strains considered, also exhibit minimal heat resistance. There appears to be no correlation between the Ca/DPA content and the phylogenetic distribution of the C. acetobutylicum and C. beijerinckii species based either on the 16S rRNA or the spoVA gene. This finding suggests that a subset of Clostridium sensu stricto species produce spores with low resistance to wet heat. Additionally, analysis of individual spores using STEM-EDS and STXM revealed that DPA and calcium levels can also vary amongst individual spores in a single spore population. PMID:27891119

  15. Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528.

    PubMed

    Tan, Yang; Liu, Zi-Yong; Liu, Zhen; Li, Fu-Li

    2015-11-01

    Acetoin reductase catalyzes the formation of 2,3-butanediol from acetoin. In Clostridium ljungdahlii DSM 13528, the gene CLJU_c23220 encoding the putative Zn(2+)-dependent alcohol dehydrogenase was cloned and expressed in Escherichia coli. The recombinant enzyme, CLAR, can catalyze the conversion of acetoin to 2,3-butanediol with NADPH as the cofactor. Furthermore, the gene CLJU_c23220 was introduced into Clostridium acetobutylicum ATCC 824 and the transformant was conferred the capacity of 2,3-butanediol production. In batch fermentation the transformant produced up to 3.1g/L of 2,3-butanediol, as well as acetone, butanol and ethanol (ABE, 17.8 g/L) in amounts similar to those produced by the wild type strain. This study provides conclusive evidence at the protein level that CLJU_c23220 is the key gene responsible for the conversion of acetoin to 2,3-butanediol in C. ljungdahlii DSM 13528. Moreover, the C. acetobutylicum ATCC 824 was modified via one-step metabolic engineering to produce 2,3-butanediol without influencing the ABE production.

  16. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  17. Biofilms of Clostridium species.

    PubMed

    Pantaléon, Véronique; Bouttier, Sylvie; Soavelomandroso, Anna Philibertine; Janoir, Claire; Candela, Thomas

    2014-12-01

    The biofilm is a microbial community embedded in a synthesized matrix and is the main bacterial way of life. A biofilm adheres on surfaces or is found on interfaces. It protects bacteria from the environment, toxic molecules and may have a role in virulence. Clostridium species are spread throughout both environments and hosts, but their biofilms have not been extensively described in comparison with other bacterial species. In this review we describe all biofilms formed by Clostridium species during both industrial processes and in mammals where biofilms may be formed either during infections or associated to microbiota in the gut. We have specifically focussed on Clostridium difficile and Clostridium perfringens biofilms, which have been studied in vitro. Regulatory processes including sporulation and germination highlight how these Clostridium species live in biofilms. Furthermore, biofilms may have a role in the survival and spreading of Clostridium species.

  18. Purification of Clostridium toxoids.

    PubMed

    Buchowicz, I; Hay, M; Schiller, B; Korbecki, M; Sochańska, R

    1977-01-01

    A two-step fractionation procedure was applied for purification and concentration of the individual Clostridium toxoids. The toxoids were precipitated with hydrochloric acid in the presence of sodium sextametaphosphate, then antigenic fractions were separated from inactive contaminants by Sephadex G-75 filtration. Specific activity of the preparations thus obtained, as determined by Mancini radial immunodiffusion, was 150--565 binding units per mg of protein nitrogen for Clostridium perfringens toxoid, 204--352 binding units for Clostridium oedematiens toxoid and 26.6 -- 51.2 binding units for Clostridium septicum toxoid.

  19. Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani.

    PubMed

    Connan, Chloé; Denève, Cécile; Mazuet, Christelle; Popoff, Michel R

    2013-12-01

    Botulinum and tetanus neurotoxins are structurally and functionally related proteins that are potent inhibitors of neuroexocytosis. Botulinum neurotoxin (BoNT) associates with non-toxic proteins (ANTPs) to form complexes of various sizes, whereas tetanus toxin (TeNT) does not form any complex. The BoNT and ANTP genes are clustered in a DNA segment called the botulinum locus, which has different genomic localization (chromosome, plasmid, phage) in the various Clostridium botulinum types and subtypes. The botulinum locus genes are organized in two polycistronic operons (ntnh-bont and ha/orfX operons) transcribed in opposite orientations. A gene called botR lying between the two operons in C. botulinum type A encodes an alternative sigma factor which regulates positively the synthesis of BoNT and ANTPs at the late exponential growth phase and beginning of the stationary phase. In Clostridium tetani, the gene located immediately upstream of tent encodes a positive regulatory protein, TetR, which is related to BotR. C. botulinum and C. tetani genomes contain several two-component systems and predicted regulatory orphan genes. In C. botulinum type A, four two-component systems have been found that positively or negatively regulate the synthesis of BoNT and ANTPs independently of BotR/A. The synthesis of neurotoxin in Clostridia seems to be under the control of complex network of regulation.

  20. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from maltose and soluble starch by overexpressing α-glucosidase.

    PubMed

    Yu, Le; Xu, Mengmeng; Tang, I-Ching; Yang, Shang-Tian

    2015-07-01

    Clostridium tyrobutyricum does not have the enzymes needed for using maltose or starch. Two extracellular α-glucosidases encoded by agluI and agluII from Clostridium acetobutylicum ATCC 824 catalyzing the hydrolysis of α-1,4-glycosidic bonds in maltose and starch from the non-reducing end were cloned and expressed in C. tyrobutyricum (Δack, adhE2), and their effects on n-butanol production from maltose and soluble starch in batch fermentations were studied. Compared to the parental strain grown on glucose, mutants expressing agluI showed robust activity in breaking down maltose and produced more butanol (17.2 vs. 9.5 g/L) with a higher butanol yield (0.20 vs. 0.10 g/g) and productivity (0.29 vs. 0.16 g/L h). The mutant was also able to use soluble starch as substrate, although at a slower rate compared to maltose. Compared to C. acetobutylicum ATCC 824, the mutant produced more butanol from maltose (17.2 vs. 11.2 g/L) and soluble starch (16.2 vs. 8.8 g/L) in batch fermentations. The mutant was stable in batch fermentation without adding antibiotics, achieving a high butanol productivity of 0.40 g/L h. This mutant strain thus can be used in industrial production of n-butanol from maltose and soluble starch.

  1. Felled oil palm trunk as a renewable source for biobutanol production by Clostridium spp.

    PubMed

    Komonkiat, Itsara; Cheirsilp, Benjamas

    2013-10-01

    This study aimed to convert felled oil palm trunk to biobutanol by Clostridium spp. For efficient utilization of oil palm trunk, it was separated into sap and trunk fiber. The sap was used directly while the trunk fiber was hydrolyzed to fermentable sugars before use. Among five clostridia strains screened, Clostridium acetobutylicum DSM 1731 was the most suitable strain for butanol production from the sap without any supplementation of nutrients. It produced the highest amount of butanol (14.4 g/L) from the sap (sugar concentration of 50 g/L) with butanol yield of 0.35 g/g. When hydrolysate from the trunk fiber was used as an alternative carbon source (sugar concentration of 30 g/L), of the strains tested Clostridium beijerinckii TISTR 1461 produced the highest amount of butanol (10.0 g/L) with butanol yield of 0.41 g/g. The results presented herein suggest that oil palm trunk is a promising renewable substrate for biobutanol production.

  2. Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes.

    PubMed

    Chua, Teck Khiang; Liang, Da-Wei; Qi, Chao; Yang, Kun-Lin; He, Jianzhong

    2013-05-01

    A unique Clostridium species strain G117 was obtained in this study to be capable of producing dominant butanol from glucose. Butanol of 13.50 g/L was produced when culture G117 was fed with 60 g/L glucose, which is ~20% higher than previously reported butanol production by wild-type Clostridium acetobutylicum ATCC 824 under similar conditions. Strain G117 also distinguishes itself by generating negligible amount of ethanol, but producing butanol and acetone as biosolvent end-products. A butanol dehydrogenase gene (bdh gene) was identified in strain G117, which demonstrated a ~200-fold increase in transcription level measured by quantitative real-time PCR after 10h of culture growth. The high transcription suggests that this bdh gene could be a putative gene involved in butanol production. In all, Clostridium sp. strain G117 serves as a potential candidate for industrial biobutanol production while the absence of ethanol ensures an economic-efficient separation and purification of butanol.

  3. Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors.

    PubMed

    Dupuy, Bruno; Raffestin, Stéphanie; Matamouros, Susana; Mani, Nagraj; Popoff, Michel R; Sonenshein, Abraham L

    2006-05-01

    The production of major extracellular toxins by pathogenic strains of Clostridium botulinum, Clostridium tetani and Clostridium difficile, and a bacteriocin by Clostridium perfringens is dependent on a related group of RNA polymerase sigma-factors. These sigma-factors (BotR, TetR, TcdR and UviA) were shown to be sufficiently similar that they could substitute for one another in in vitro DNA binding and run-off transcription experiments. In cells, however, the sigma-factors fell into two subclasses. BotR and TetR were able to direct transcription of their target genes in a fully reciprocal manner. Similarly, UviA and TcdR were fully interchangeable. Neither BotR nor TetR could substitute for UviA or TcdR, however, and neither UviA nor TcdR could direct transcription of the natural targets of BotR or TetR. The extent of functional interchangeability of the sigma-factors was attributed to the strong conservation of their subregion 4.2 sequences and the conserved -35 sequences of their target promoters, while restrictions on interchangeability were attributed to variations in their subregion 2.4 sequences and the target site -10 sequences. The four sigma-factors have been assigned to group 5 of the sigma(70) family and seem to have arisen from a common ancestral protein that may have co-evolved with the genes whose transcription they direct. A fifth Clostridiumsigma-factor, sigma(Y) of Clostridium acetobutylicum, resembles the TcdR family, but was not functionally interchangeable with members of this family.

  4. Collagenase Clostridium Histolyticum Injection

    MedlinePlus

    ... disease (a thickening of tissue [plaque] inside the penis that causes the penis to curve). Collagenase Clostridium histolyticum injection is in ... the plaque of thickened tissue and allows the penis to be straightened.

  5. Clostridium Difficile Infections

    MedlinePlus

    Clostridium difficile (C. difficile) is a bacterium that causes diarrhea and more serious intestinal conditions such as colitis. Symptoms include Watery ... Nausea Abdominal pain or tenderness You might get C. difficile disease if you have an illness that ...

  6. Novel Real-Time PCR Assay for Simultaneous Detection and Differentiation of Clostridium chauvoei and Clostridium septicum in Clostridial Myonecrosis▿

    PubMed Central

    Halm, Anna; Wagner, Martin; Köfer, Josef; Hein, Ingeborg

    2010-01-01

    A real-time PCR assay based on the 16S rRNA gene sequence was designed for differentiation of blackleg-causing Clostridium chauvoei and Clostridium septicum, a phylogenetically closely related bacterium responsible for malignant edema. In order to exclude false-negative results, an internal amplification control was included in the assay. A set of three probes, one specific for C. chauvoei, one specific for C. septicum, and one specific for both species, permitted unequivocal detection of C. chauvoei in tests of 32 Clostridium sp. strains and 10 non-Clostridium strains. The assay proved to be sensitive, detecting one genome of C. chauvoei or C. septicum per PCR and 1.79 × 103 C. chauvoei cells/g artificially contaminated muscle tissue. In tests of 11 clinical specimens, the real-time PCR assay yielded the same results as an established conventional PCR method. PMID:20129968

  7. Novel real-time PCR assay for simultaneous detection and differentiation of Clostridium chauvoei and Clostridium septicum in clostridial myonecrosis.

    PubMed

    Halm, Anna; Wagner, Martin; Köfer, Josef; Hein, Ingeborg

    2010-04-01

    A real-time PCR assay based on the 16S rRNA gene sequence was designed for differentiation of blackleg-causing Clostridium chauvoei and Clostridium septicum, a phylogenetically closely related bacterium responsible for malignant edema. In order to exclude false-negative results, an internal amplification control was included in the assay. A set of three probes, one specific for C. chauvoei, one specific for C. septicum, and one specific for both species, permitted unequivocal detection of C. chauvoei in tests of 32 Clostridium sp. strains and 10 non-Clostridium strains. The assay proved to be sensitive, detecting one genome of C. chauvoei or C. septicum per PCR and 1.79 x 10(3) C. chauvoei cells/g artificially contaminated muscle tissue. In tests of 11 clinical specimens, the real-time PCR assay yielded the same results as an established conventional PCR method.

  8. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis

    PubMed Central

    Bengelsdorf, Frank R.; Poehlein, Anja; Linder, Sonja; Erz, Catarina; Hummel, Tim; Hoffmeister, Sabrina; Daniel, Rolf; Dürre, Peter

    2016-01-01

    Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood–Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (PthlA) from C. acetobutylicum or native pta-ack promoter (Ppta-ack) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2

  9. Formation of involatile methylantimony species by Clostridium spp.

    PubMed

    Smith, L M; Craig, P J; Jenkins, R O

    2002-04-01

    Trimethylantimony was detected by gas chromatography-mass spectrometry (GC-MS) in the headspace of a soil enrichment culture designed to promote growth of clostridia. Clostridial isolates from the soil enrichment culture were shown to biomethylate inorganic antimony in monseptic culture, using hydride generation-gas chromatographyatomic absorption spectrometry (HG-GC-AAS). GC-MS profiles of headspace gases from soil enrichment cultures shown to generate trimethylantimony, were used to select characterised Clostridium spp for assessment of antimony biomethylation capability. Involatile methylantimony species (up to 21 microg Sb dm(-3)) were detected by HG-GC-AAS in the medium of monoseptic cultures of C. acetobutylicum, C. butyricum and C. cochlearium. The relative quantities of involatile mono-, di- and trimethylantimony species produced over the course of a 28-day cultivation period is consistent with trimethylantimony oxide being a final product of antimony biomethylation by these bacteria, with mono- and dimethylantimony species appearing transiently in the cultures as intermediates of an antimony biomethylation pathway. Clostridia may be the principal agents of antimony biomethylation in methanogenic environments and could give rise to methylated forms of antimony in both the aqueous and gaseous phases.

  10. Botulinum neurotoxin homologs in non-Clostridium species.

    PubMed

    Mansfield, Michael J; Adams, Jeremy B; Doxey, Andrew C

    2015-01-30

    Clostridial neurotoxins (CNTs) are the deadliest toxins known and the causative agents of botulism and tetanus. Despite their structural and functional complexity, no CNT homologs are currently known outside Clostridium. Here, we report the first homologs of Clostridium CNTs within the genome of the rice fermentation organism Weissella oryzae SG25. One gene in W. oryzae S25 encodes a protein with a four-domain architecture and HExxH protease motif common to botulinum neurotoxins (BoNTs). An adjacent gene with partial similarity to CNTs is also present, and both genes seem to have been laterally transferred into the W. oryzae genome from an unknown source. Identification of mobile, CNT-related genes outside of Clostridium has implications for our understanding of the evolution of this important toxin family.

  11. Plasmidome Interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum Converts Strains of Independent Lineages into Distinctly Different Pathogens

    PubMed Central

    Skarin, Hanna; Segerman, Bo

    2014-01-01

    Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains. PMID:25254374

  12. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    PubMed

    Skarin, Hanna; Segerman, Bo

    2014-01-01

    Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  13. Clostridium chauvoei in hens.

    PubMed

    Prukner-Radovcic, E; Milakovic-Novak, L; Ivesa-Petricevic, S; Grgic, N

    1995-03-01

    The bacterium Clostridium chauvoei causes disease in certain animals, most frequently in cattle and sheep. It occurs rarely in pigs, while equines and poultry appear to be resistant to infection. Two cases are presented in which C. chauvoei was isolated from disease of complex aetiology in hens. In Case I, 15-week-old light hybrid chickens were affected with chronic respiratory disease, coccidiosis, ascariasis and inflammation of the skin on the head, with necrosis of the comb. Growth was uneven and mortality reached 24%. Clostridium chauvoei was isolated from two of three combs examined. In Case II a flock of broiler breeders aged 11 weeks developed coccidiosis and, owing to disease or death, 60% were excluded from production. Clostridium chauvoei was isolated from all of 10 livers examined. These results demonstrate that C. chauvoei can infect chickens and that its possible role as a pathogen under certain circumstances should be further investigated.

  14. Genetic and biochemical analysis of solvent formation in Clostridium acetobutylicum. Progress report, September 1, 1992--July 31, 1996

    SciTech Connect

    Bennett, G.N.; Rudolph, F.B.

    1997-01-01

    Several degenerate strains were isolated and characterized by sporulation, motility and growth properties. Cell appearance and colony morphology were also recorded. Enzymatic assays revealed reduced butyraldehyde dehydrogenase and Co-A transferase enzyme activities in the degenerates. DNA analysis revealed that in complete degenerate strains the genes of the solvent locus were absent. Gyrase inhibitors slightly reduced the growth rate and decreased acetone formation preferentially. In an effort to analyze the role of sporulation sigma factors in solvent gene expression, recombination experiments were conducted and led to strains with increased solvent production. Analysis of redox systems has resulted in the sequence analysis of a cluster encoding formyl transferase proteins and an oxidoreductase-like gene. The genes for the two subunits of an apparent electron transfer flavoprotein were sequenced and suggest this factor acts to carry electrons to the butyryl-CoA dehydrogenase. The genes encoding the Fo subunits of the membrane ATPase have been sequenced.

  15. Impact of sweet sorghum cuticular waxes (SSCW) on acetone-butanol-ethanol fermentation using Clostridium acetobutylicum ABE1201.

    PubMed

    Cai, Di; Chang, Zhen; Wang, Chengyu; Ren, Wenqiang; Wang, Zheng; Qin, Peiyong; Tan, Tianwei

    2013-12-01

    The effect of cuticular waxes of sweet sorghum stem on acetone-butanol-ethanol (ABE) fermentation process was investigated. About 22.9% of butanol and 25.4% of ABE were decreased with fermentation period extended when SSCW was added. The inhibition of SSCW militate against both acidogenesis and solventogenesis phase, which were inconsistent with the inhibition of lignocellulose hydrolysate. Further studies on the composition of SSCW were performed. Regulations of inhibition with different carbon chain length of main compositions of SSCW on ABE fermentation were also investigated.

  16. REDUCTION OF 2,4,6-TRINITROTOLUENE BY CLOSTRIDIUM ACETOBUTYLICUM THROUGH HYDROXYLAMINO-NITROTOLUENE INTERMEDIATES. (R825513C006)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Analysis of Redox Responses During TNT Transformation by Clostridium acetobutylicum ATCC 824 and Mutants Exhibiting Altered Metabolism

    DTIC Science & Technology

    2012-01-01

    2006) Functional studies of [ FeFe ] hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 188(6):2163–2172 Kutty R, Bennett...activation of [ FeFe ] hydrogenase: new insights into hydrogenase maturation. J Biol Inorg Chem 12(4):443–447 Mermelstein LD, Papoutsakis ET (1993) In

  18. Bacteriophages of Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The specific aims of the book chapter are to: (1) Briefly review the nomenclature of bacteriophages and how these agents are classified. (2) Discuss the problems associated with addition/removal of antibiotics in commercial animal feeds. (3) Provide a brief overview of Clostridium perfringens biolog...

  19. Clostridium tetani bacteraemia.

    PubMed

    Hallit, Rabih Riad; Afridi, Muhammad; Sison, Raymund; Salem, Elie; Boghossian, Jack; Slim, Jihad

    2013-01-01

    Tetanus is a neuromuscular disease in which Clostridium tetani exotoxin (tetanospasmin) produces muscle spasms, incapacitating its host. To our knowledge, C. tetani bacteraemia has never been reported in the literature. The ideal management of this entity remains unresolved given that there is no literature to guide the therapy.

  20. The Pangenome of the genus Clostridium.

    PubMed

    Udaondo, Zulema; Duque, Estrella; Ramos, Juan Luis

    2017-03-21

    We present the pangenome for the genus Clostridium sensu stricto, which was obtained using highly curated and annotated genomes from 16 species, some of these cause disease, while others are used for the production of added-value chemicals. Multilocus sequencing analysis revealed that species of this genus group into at least two clades that include non-pathogenic and pathogenic strains, suggesting that pathogenicity is dispersed across the phylogenetic tree. The core genome of the genus includes 546 protein families, which mainly comprise those involved in protein translation and DNA repair. The GS-GOGAT may represent the central pathway for generating organic nitrogen from inorganic nitrogen sources. Glycerol and glucose metabolism genes are well represented in the core genome together with a set of energy conservation systems. A metabolic network comprising proteins/enzymes, RNAs and metabolites, whose topological structure is a non-random and scale-free network with hierarchically structured modules was built. These modules shed light on the interactions between RNAs, proteins and metabolites, revealing biological features of transcription and translation, cell wall biosynthesis, C1 metabolism and N metabolism. Network analysis identified four nodes that function as hubs and bottlenecks, namely, coenzyme A, HPr kinases, S-adenosylmethionine and the ribonuclease P-protein, suggesting pivotal roles for them in Clostridium. This article is protected by copyright. All rights reserved.

  1. Clostridiolysin S, a Post-translationally Modified Biotoxin from Clostridium botulinum*

    PubMed Central

    Gonzalez, David J.; Lee, Shaun W.; Hensler, Mary E.; Markley, Andrew L.; Dahesh, Samira; Mitchell, Douglas A.; Bandeira, Nuno; Nizet, Victor; Dixon, Jack E.; Dorrestein, Pieter C.

    2010-01-01

    Through elaboration of its botulinum toxins, Clostridium botulinum produces clinical syndromes of infant botulism, wound botulism, and other invasive infections. Using comparative genomic analysis, an orphan nine-gene cluster was identified in C. botulinum and the related foodborne pathogen Clostridium sporogenes that resembled the biosynthetic machinery for streptolysin S, a key virulence factor from group A Streptococcus responsible for its hallmark β-hemolytic phenotype. Genetic complementation, in vitro reconstitution, mass spectral analysis, and plasmid intergrational mutagenesis demonstrate that the streptolysin S-like gene cluster from Clostridium sp. is responsible for the biogenesis of a novel post-translationally modified hemolytic toxin, clostridiolysin S. PMID:20581111

  2. Clostridium difficile Infection

    PubMed Central

    Heinlen, Latisha; Ballard, Jimmy D.

    2010-01-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhea in Europe and North America and is a serious re-emerging pathogen. Recent outbreaks have led to increasing morbidity and mortality and have been associated with a new strain (BI/NAP1/027) of C. difficile that produces more toxin than historical strains. With the increasing incidence of C. difficile infection, clinicians have also seen a change in the epidemiology with increased infections in previously low-risk populations. This chapter highlights the current knowledge on C. difficile virulence, human disease, epidemic outbreaks, and optimal treatment strategies. PMID:20697257

  3. Genomics of clostridial pathogens: implication of extrachromosomal elements in pathogenicity.

    PubMed

    Brüggemann, Holger

    2005-10-01

    The recently decoded genomes of the major clostridial toxin-producing pathogens Clostridium perfringens, Clostridium tetani, Clostridium botulinum and Clostridium difficile have provided a huge amount of new sequence data. Recent studies have focused on the identification and investigation of pathogenic determinants and the regulatory events governing their expression. The sequence data revealed also the genomic background of virulence genes, as well as the contribution of extrachromosomal elements to a pathogenic phenotype. This has generated new insights in clostridial pathogenesis - and will continue to do so in the future - and has deepened our understanding of the anaerobic lifestyle of clostridial species.

  4. Clostridium difficile phages: still difficult?

    PubMed Central

    Hargreaves, Katherine R.; Clokie, Martha R. J.

    2014-01-01

    Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage–host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using “whole-phages” are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen. PMID:24808893

  5. Vaccines against Clostridium difficile.

    PubMed

    Leuzzi, Rosanna; Adamo, Roberto; Scarselli, Maria

    2014-01-01

    Clostridium difficile infection (CDI) is recognized as a major cause of nosocomial diseases ranging from antibiotic related diarrhea to fulminant colitis. Emergence during the last 2 decades of C. difficile strains associated with high incidence, severity and lethal outcomes has increased the challenges for CDI treatment. A limited number of drugs have proven to be effective against CDI and concerns about antibiotic resistance as well as recurring disease solicited the search for novel therapeutic strategies. Active vaccination provides the attractive opportunity to prevent CDI, and intense research in recent years led to development of experimental vaccines, 3 of which are currently under clinical evaluation. This review summarizes recent achievements and remaining challenges in the field of C. difficile vaccines, and discusses future perspectives in view of newly-identified candidate antigens.

  6. Organization and regulation of the neurotoxin genes in Clostridium botulinum and Clostridium tetani.

    PubMed

    Raffestin, Stéphanie; Marvaud, Jean Christophe; Cerrato, Rosario; Dupuy, Bruno; Popoff, Michel R

    2004-04-01

    Botulinum and tetanus neurotoxins are structurally and functionally related 150 kDa proteins that are potent inhibitors of neuroexocytosis. Botulinum neurotoxin associates with non-toxic proteins to form complexes of various sizes. The botulinum neurotoxin and non-toxic protein genes are clustered in a DNA segment called the botulinum locus. This locus is probably located on a mobile or degenerate mobile element, which accounts for the various genomic localizations (chromosome, plasmid, phage) in different Clostridium botulinum types. The botulinum neurotoxin and non-toxic protein genes are organized in two polycistronic operons (ntnh-bont and ha operons) transcribed in opposite orientations. The gene that separates the two operons of the botulinum locus in C. botulinum A encodes a 21 kDa protein BotR/A, which is a positive regulator of the expression of the botulinum locus genes. Similarly, in Clostridium tetani, the gene located immediately upstream of the tetanus toxin gene, encodes a positive regulatory protein, TetR. BotR and TetR are possibly alternative sigma factors related to TxeR and UviA, which regulate C. difficile toxin and C. perfringens bacteriocin production, respectively. TxeR and UviA define a new sub-group of the sigma(70) family of RNA polymerase initiation factors. In addition, the C. botulinum genome contains predicted two-component system genes, some of which are possibly involved in regulation of toxinogenesis.

  7. Development and validation of a multiplex real-time PCR for detection of Clostridium chauvoei and Clostridium septicum.

    PubMed

    Lange, Martin; Neubauer, Heinrich; Seyboldt, Christian

    2010-08-01

    Clostridium chauvoei is the causative agent of blackleg in cattle and sheep. The clinical symptoms of this severe disease are very similar to that of malignant edema (Clostridium septicum), infections of other Clostridium species belonging to the gas edema complex, and anthrax (Bacillus anthracis). C. chauvoei and C. septicum are closely related taxa and share many phenotypic properties hampering diagnosis by using traditional microbiological methods. Thus, there is a need for a fast and reliable identification method for specific detection of both species in clinical samples. The multiplex real-time PCR assay presented here is based on the detection of the spo0A gene and enables the simultaneous identification of C. chauvoei and C. septicum. The assay design includes an amplification control DNA template for the recognition of PCR-inhibitors. Assay validation was performed using a collection of 29 C. chauvoei, 38 C. septicum strains and 26 strains of other Clostridium species. Furthermore, the real-time PCR assay was successfully tested on tissue samples from 19 clinical blackleg cases. The assay allowed the reliable detection of one picogram DNA which represents approximate 239 genome equivalents.

  8. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.

    PubMed

    Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V

    2017-04-01

    Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era.

  9. Clostridium polynesiense sp. nov., a new member of the human gut microbiota in French Polynesia.

    PubMed

    Sankar, Senthil Alias; Rathored, Jaishriram; Metidji, Sarah; Lagier, Jean-Christophe; Khelaifia, Saber; Labas, Noemie; Musso, Didier; Raoult, Didier; Fournier, Pierre-Edouard

    2015-12-01

    Strain MS1, a Gram-positive, obligately anaerobic, motile and spore-forming rod belonging to the Clostridium genus, was isolated from the feces of a healthy Polynesian male living in French Polynesia. The temperature range for growth was 30-45 °C. We sequenced its complete genome and studied its phenotypic characteristics. The 3,560,738-bp long genome (one chromosome, no plasmid, G + C content 34%) contained 3535 protein-coding and 70 RNA genes. Strain MS1 exhibited a 98.24% 16S rRNA similarity with Clostridium amylolyticum, the phylogenetically closest species. When compared with other Clostridium species with standing in nomenclature, it had an average genomic similarity of 68.8-70%, a unique MALDI-TOF spectrum, and differed in nitrate reduction, motility and L-arabinose and D-lactose metabolism with most of the closest species. Therefore, strain MS1 is sufficiently distinct from type strains of the genus Clostridium to represent a novel species within this genus, for which the name Clostridium polynesiense sp. nov. is proposed. The type strain of C. polynesiense is MS1(T) (= CSUR P630 = DSM 27072).

  10. Patho-genetics of Clostridium chauvoei.

    PubMed

    Frey, Joachim; Falquet, Laurent

    2015-05-01

    The genomic sequence of Clostridium chauvoei, the etiological agent of blackleg, a severe disease of ruminants with high mortality specified by a myonecrosis reveals a chromosome of 2.8 million base-pairs and a cryptic plasmid of 5.5 kilo base-pairs. The chromosome contains the main pathways like glycolysis/gluconeogenesis, sugar metabolism, purine and pyrimidine metabolisms, but the notable absence of genes of the citric acid cycle and deficient or partially deficient amino acid metabolism for Histidine, Tyrosine, Phenylalanine, and Tryptophan. These essential amino acids might be acquired from host tissue damage caused by various toxins and by protein metabolism that includes 57 genes for peptidases, and several ABC transporters for amino acids import.

  11. Physical Characterization of Clostridium Botulinum Neurotoxin Genes

    DTIC Science & Technology

    1992-02-17

    type A toxin of Clostridium difficile ; Von Eichel-Streiber, 1989) or total failure (eg., the bacteriocir, of the Clostridium perf•ingens plasmid... CLOSTRIDIUM BOTULINUM NEUROTOXIN GENES PRINCIPAL INVESTIGATIR: NIGEL P. MINTON PI ADDRESS: Public Health Laboratory Service Center for Applied...NUMBERS Physical Characterization of Clostridium botulinum DAMDl7-90-Z-0033 Neurotoxin Genes 61102A 6. AUTHOR(S) 3Ml61102BSI2 AA Nigel P. Minton DA335530

  12. 2,4,6-Trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum

    SciTech Connect

    Huang, S.; Lindahl, P.A.; Wang, C.; Bennett, G.N.; Rudolph, F.B.; Hughes, J.B.

    2000-03-01

    Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2 HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2,4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent K{sub m} and k{sub cat} values of TNT reduction were 165 {+-} 43 {micro}M for TNT and 400 {+-} 94 s{sup {minus}1}, respectively. Cyanide, an inhibitor for the CO/CO{sub 2} oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH.

  13. 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum.

    PubMed

    Huang, S; Lindahl, P A; Wang, C; Bennett, G N; Rudolph, F B; Hughes, J B

    2000-04-01

    Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2, 4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent K(m) and k(cat) values of TNT reduction were 165 +/- 43 microM for TNT and 400 +/- 94 s(-1), respectively. Cyanide, an inhibitor for the CO/CO(2) oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH.

  14. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    PubMed

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources.

  15. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4.

    PubMed

    Herman, Nicolaus A; Li, Jeffrey; Bedi, Ripika; Turchi, Barbara; Liu, Xiaoji; Miller, Michael J; Zhang, Wenjun

    2017-01-15

    While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 10(6) CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production.

  16. Autism and Clostridium tetani.

    PubMed

    Bolte, E R

    1998-08-01

    Autism is a severe developmental disability believed to have multiple etiologies. This paper outlines the possibility of a subacute, chronic tetanus infection of the intestinal tract as the underlying cause for symptoms of autism observed in some individuals. A significant percentage of individuals with autism have a history of extensive antibiotic use. Oral antibiotics significantly disrupt protective intestinal microbiota, creating a favorable environment for colonization by opportunistic pathogens. Clostridium tetani is an ubiquitous anaerobic bacillus that produces a potent neurotoxin. Intestinal colonization by C. tetani, and subsequent neurotoxin release, have been demonstrated in laboratory animals which were fed vegetative cells. The vagus nerve is capable of transporting tetanus neurotoxin (TeNT) and provides a route of ascent from the intestinal tract to the CNS. This route bypasses TeNT's normal preferential binding sites in the spinal cord, and therefore the symptoms of a typical tetanus infection are not evident. Once in the brain, TeNT disrupts the release of neurotransmitters by the proteolytic cleavage of synaptobrevin, a synaptic vesicle membrane protein. This inhibition of neurotransmitter release would explain a wide variety of behavioral deficits apparent in autism. Lab animals injected in the brain with TeNT have exhibited many of these behaviors. Some children with autism have also shown a significant reduction in stereotyped behaviors when treated with antimicrobials effective against intestinal clostridia. When viewed as sequelae to a subacute, chronic tetanus infection, many of the puzzling abnormalities of autism have a logical basis. A review of atypical tetanus cases, and strategies to test the validity of this paper's hypothesis, are included.

  17. Policy development for Clostridium difficile.

    PubMed

    Wilcox, Mark H

    2012-07-01

    The Advisory Committee on Antimicrobial Resistance and Healthcare Associated Infection (ARHAI) was created at the height of the incidence of Clostridium difficile infection (CDI). This article describes the role of ARHAI in the evaluation of laboratory testing for CDI, a related consultation on the legal requirements for manufacturers of in vitro diagnostic medical devices, a CDI healthcare bundle and surveillance of CDI in children.

  18. Survey of neuraminidase production by Clostridium butyricum, Clostridium beijerinckii, and Clostridium difficile strains from clinical and nonclinical sources.

    PubMed Central

    Popoff, M R; Dodin, A

    1985-01-01

    Neuraminidase production was investigated in 57 Clostridium butyricum strains, 16 Clostridium beijerinckii strains, and 25 Clostridium difficile strains. Neuraminidase activity was found only in C. butyricum strains originating from one human newborn with neonatal necrotizing enterocolitis, two newborns with hemorrhagic colitis, one infected placenta, and one adult with peritonitis, It was concluded that neuraminidase was not a major virulence factor in C. butyricum strains. PMID:4056013

  19. Physical Characterization of Clostridium Botulinum Neurotoxin Genes

    DTIC Science & Technology

    1993-10-01

    jacewoburylicwn was obtained. 14. SUBJECT TERMS 115. NUMBER OF PAGES Foreign, BD, Clostridium , Cloning, Vaccines , BL3, ________ DNAotrahnsfery, Gn...met with either very limited success (eg., type A toxin of Clostridium difficile ; von Eichel-Streiber, 1989) or total failure (eg., the bacteriocin of...AD-A27 2 939 GRANT NO: DAMDl7-90-Z-0033 TITLE: PHYSICAL CHARACTERIZATION OF CLOSTRIDIUM BOTULINUM NEUROTOXIN GENES PRINCIPAL INVESTIGATOR: Nigel P

  20. Quantitative real-time PCR assay for Clostridium septicum in poultry gangrenous dermatitis associated samples.

    PubMed

    Neumann, A P; Dunham, S M; Rehberger, T G; Siragusa, G R

    2010-08-01

    Clostridium septicum is a spore-forming anaerobe frequently implicated in cases of gangrenous dermatitis (GD) and other spontaneously occurring myonecrotic infections of poultry. Although C. septicum is readily cultured from diseased tissues it can be difficult to enumerate due to its tendency to swarm over the surface of agar plates. In this study a quantitative real-time PCR assay was developed in order to more accurately measure the levels of C. septicum in healthy as well as GD associated poultry samples. The assay was specifically designed to target the C. septicum alpha toxin gene, csa, which is, to our knowledge, carried by all strains of C. septicum and has been shown to be essential for virulence. Genomic DNAs from a diverse collection of bacterial species, including closely related Clostridium chauvoei, Clostridium carnis, Clostridium tertium as well as several strains of Clostridium perfringens, all failed to produce a positive reaction. An approximate reproducible limit of detection in spiked extracts of at least 10(3) cfu/g of C. septicum was observed for a variety of different sample types. C. septicum levels in broiler chicken field samples estimated from the results of qPCR were statistically correlated to culture based enumerations obtained from those same tissues.

  1. Electrophoretic study of Clostridium species.

    PubMed Central

    Cato, E P; Hash, D E; Holdeman, L V; Moore, W E

    1982-01-01

    Polyacrylamide gel electrophoretic analysis of soluble cellular proteins (without sodium dodecyl sulfate) of 70 Clostridium species indicated that the procedure was readily applicable to the differentiation of species in the genus. The protein patterns correlated well with the available DNA homology data and with most accepted differential tests. Results indicated that several earlier names for species were synonyms of those of accepted species and that two accepted species may be synonymous. Images PMID:6175658

  2. Paraclostridium benzoelyticum gen. nov. sp. nov., isolated from marine sediment and reclassification of Clostridium bifermentans as Paraclostridium bifermentans comb. nov. Proposal of a new genus Paeniclostridium gen. nov. to accommodate Clostridium sordellii and Clostridium ghonii.

    PubMed

    T S, Sasi Jyothsna; L, Tushar; Ch, Sasikala; Ch V, Ramana

    2016-01-05

    Twenty three rod shaped, endospore forming, Gram-stain-positive, obligately anaerobic bacteria were isolated from different marine sediment samples of Gujarat. All the twenty three strains have 16S rRNA gene sequence similarity of ~100%. Strain JC272T was designated as the type strain and has sequence similarity with Clostridium bifermentans ATCC638T (99.8%), Clostridium ghonii JCM1400T (98.0%), Clostridium sordellii ATCC9714T (97.9%) and other members of the genus Clostridium (<96.4%). C16:0, C18:0, C17:0, C16:1ω9C and iso-C16:0 are the major (>5%) fatty acids. Strain JC272T contains diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and unidentified amino lipids (AL1&AL2). However, genome based analysis of ANI and in silico DDH of strain JC272T with C. bifermentans ATCC 638T yielded values of 94.35% and 58.5+2.8%, respectively. G+C mol% of strain JC272T was 28.3%. Strain JC272T together with C. bifermentans fall outside Clostridium rRNA cluster I considered as Clostridium senso stricto. Based on ANI value, in-silico DDH, distinct morphological and physiological differences from the previously described taxa, we propose strain JC272T as a representative of a new genus and species in the family Clostridiaceae, for which the name Paraclostridium benzoelyticum gen. nov., sp. nov. is proposed. Type strain is JC272T (=KCTC15476T =LMG28745T). It is also proposed to transfer C. bifermentans to this new genus, as Paraclostridium bifermentans comb. nov. (type strain is ATCC638T =DSM14991T =JCM1386T). We also propose the genus Paeniclostridium gen. nov. to accommodate Clostridium sordellii and Clostridium ghonii as Paeniclostridium sordellii comb. nov. (type strain is ATCC9714T =LMG15708T =JCM3814T) and Paeniclostridium ghonii comb. nov. (type strain is ATCC25757T = DSM15049T =JCM1400T).

  3. Hydrogen production from starch by co-culture of Clostridium acetobutylicum and Rhodobacter sphaeroides in one step hybrid dark- and photofermentation in repeated fed-batch reactor.

    PubMed

    Zagrodnik, R; Łaniecki, M

    2017-01-01

    Hydrogen production from starch by a co-culture hybrid dark and photofermentation under repeated fed-batch conditions at different organic loading rates (OLR) was studied. Effective cooperation between bacteria in co-culture during initial days was observed at controlled pH 7.0. However, at pH above 6.5 dark fermentation phase was redirected from H2 formation towards production of formic acid, lactic acid and ethanol (which are not coupled with hydrogen production) with simultaneous lower starch removal efficiency. This resulted in decrease in the hydrogen production rate. The highest H2 production in co-culture process (3.23LH2/Lmedium - after 11days) was achieved at OLR of 1.5gstarch/L/day, and it was twofold higher than for dark fermentation process (1.59LH2/Lmedium). The highest H2 yield in the co-culture (2.62molH2/molhexose) was obtained at the OLR of 0.375gstarch/L/day. Different pH requirements of bacteria were proven to be a key limitation in co-culture system.

  4. Use of the composite membrane of poly(ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum.

    PubMed

    Yen, Hong-Wei; Chen, Zhi-Heng; Yang, I-Kuan

    2012-04-01

    Fermentation incorporated with pervaporation was regarded as an efficient way to relieve the feedback inhibition of butanol in acetone-butanol-ethanol (ABE) fermentation. The addition of CNTs (carbon nanotubes) to PEBA (poly(ether-block-amide)) could greatly enhance the removal flux of solvents (acetone, butanol and ethanol) in a model solution test. The butanol removing rate results in a 61% increase in the batch with PEBA+CNTs (5%) membrane compared with that of the batch with PEBA alone. Besides the increase of removal flux, the addition of CNTs enforces the mechanical strength of the pervaporation membrane, which leads to more resistance for a longer operational time. The combination of a 5-L fermenter with the pervaporation membrane of PEBA+CNTs (10%) indicates a 20% increase both in productivity and yield compared to using PEBA. In conclusion, the addition of CNTs to a PEBA pervaporation membrane has great potential when applied in the ABE fermentation industry.

  5. Use of poly(ether-block-amide) in pervaporation coupling with a fermentor to enhance butanol production in the cultivation of Clostridium acetobutylicum.

    PubMed

    Yen, Hong-Wei; Lin, Shang-Fu; Yang, I-Kuan

    2012-03-01

    The toxicity of the end-products of acetone-butanol-ethanol (ABE) process, mainly butanol, is recognized as the major problem contributing to the low productivity of butanol. The pervaporation technique was regarded as one of the ways to efficiently remove organic components. The results of pervaporation performance of poly(ether-block-amide) (PEBA) and polydimethylsiloxane (PDMS) membrane in a model solution indicated that PEBA membrane owned a higher butanol permeation flux of 9.975 gm(-2)h(-1) as opposed to 3.911 gm(-2)h(-1) using a PDMS membrane. Moreover, a higher temperature would result in a higher permeation flux, but has a lower separation factor (α) obtained, while using PEBA membrane. The batch fermentor operation connected to the pervaporation with PEBA membrane created 43% and 34% of increase in the butanol productivity and in the yield as compared to that of the simple batch. The fed-batch fermentation mode by glucose feeding combined with PEBA pervaporation lasting for 24h could achieve 39% increase of butanol productivity as compared to a simple batch. Conclusively, the pervaporation with PEBA membrane coupling with fermentor was presumed to be capable of enhancing butanol production in ABE fermentation, which might have the potential applied in the commercialized ABE fermentation process.

  6. Effect of chemical pretreatments on corn stalk bagasse as immobilizing carrier of Clostridium acetobutylicum in the performance of a fermentation-pervaporation coupled system.

    PubMed

    Cai, Di; Li, Ping; Chen, Changjing; Wang, Yong; Hu, Song; Cui, Caixia; Qin, Peiyong; Tan, Tianwei

    2016-11-01

    In this study, different pretreatment methods were evaluated for modified the corn stalk bagasse and further used the pretreated bagasse as immobilized carrier in acetone-butanol-ethanol fermentation process. Structural changes of the bagasses pretreated by different methods were analyzed by Fourier transform infrared, crystallinity index and scanning pictures by electron microscope. And the performances of batch fermentation using the corn stalk based carriers were evaluated. Results indicated that the highest ABE concentration of 23.86g/L was achieved using NaOH pretreated carrier in batch fermentation. Immobilized fermentation-pervaporation integration process was further carried out. The integration process showed long-term stability with 225-394g/L of ABE solvents on the permeate side of pervaporation membrane. This novel integration process was found to be an efficient method for biobutanol production.

  7. Multilocus Sequence Typing of Clostridium difficile▿

    PubMed Central

    Griffiths, David; Fawley, Warren; Kachrimanidou, Melina; Bowden, Rory; Crook, Derrick W.; Fung, Rowena; Golubchik, Tanya; Harding, Rosalind M.; Jeffery, Katie J. M.; Jolley, Keith A.; Kirton, Richard; Peto, Tim E.; Rees, Gareth; Stoesser, Nicole; Vaughan, Alison; Walker, A. Sarah; Young, Bernadette C.; Wilcox, Mark; Dingle, Kate E.

    2010-01-01

    A robust high-throughput multilocus sequence typing (MLST) scheme for Clostridium difficile was developed and validated using a diverse collection of 50 reference isolates representing 45 different PCR ribotypes and 102 isolates from recent clinical samples. A total of 49 PCR ribotypes were represented overall. All isolates were typed by MLST and yielded 40 sequence types (STs). A web-accessible database was set up (http://pubmlst.org/cdifficile/) to facilitate the dissemination and comparison of C. difficile MLST genotyping data among laboratories. MLST and PCR ribotyping were similar in discriminatory abilities, having indices of discrimination of 0.90 and 0.92, respectively. Some STs corresponded to a single PCR ribotype (32/40), other STs corresponded to multiple PCR ribotypes (8/40), and, conversely, the PCR ribotype was not always predictive of the ST. The total number of variable nucleotide sites in the concatenated MLST sequences was 103/3,501 (2.9%). Concatenated MLST sequences were used to construct a neighbor-joining tree which identified four phylogenetic groups of STs and one outlier (ST-11; PCR ribotype 078). These groups apparently correlate with clades identified previously by comparative genomics. The MLST scheme was sufficiently robust to allow direct genotyping of C. difficile in total stool DNA extracts without isolate culture. The direct (nonculture) MLST approach may prove useful as a rapid genotyping method, potentially benefiting individual patients and informing hospital infection control. PMID:20042623

  8. Current Status of Clostridium difficile Infection Epidemiology

    PubMed Central

    Lessa, Fernanda C.; Gould, Carolyn V.; McDonald, L. Clifford

    2012-01-01

    The dramatic changes in the epidemiology of Clostridium difficile infection (CDI) during recent years, with increases in incidence and severity of disease in several countries, have made CDI a global public health challenge. Increases in CDI incidence have been largely attributed to the emergence of a previously rare and more virulent strain, BI/NAP1/027. Increased toxin production and high-level resistance to fluoroquinolones have made this strain a very successful pathogen in healthcare settings. In addition, populations previously thought to be at low risk are now being identified as having severe CDI. Recent genetic analysis suggests that C. difficile has a highly fluid genome with multiple mechanisms to modify its content and functionality, which can make C. difficile adaptable to environmental changes and potentially lead to the emergence of more virulent strains. In the face of these changes in the epidemiology and microbiology of CDI, surveillance systems are necessary to monitor trends and inform public health actions. PMID:22752867

  9. Phylogenetic analysis and PCR detection of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum based on the flagellin gene.

    PubMed

    Sasaki, Yoshimasa; Kojima, Akemi; Aoki, Hiroshi; Ogikubo, Yasuaki; Takikawa, Noriyasu; Tamura, Yutaka

    2002-05-01

    The flagellin genes (fliC) of Clostridium chauvoei, Clostridium haemolyticum, Clostridium novyi types A and B, and Clostridium septicum were analysed by PCR amplification and DNA sequencing. The five Clostridium species have at least two copies of the flagellin gene (fliC) arranged in tandem on the chromosome. The deduced N- and C-terminal aminoacid sequences of the flagellin proteins (FliCs) of these clostridia are well conserved but their central region aminoacid sequences are not. Phylogenic analysis based on the N-terminal aminoacid sequence of the FliC protein revealed that these clostridia, which belong to Clostridium 16S rDNA phylogenic cluster I (), are more closely related to Bacillus subtilis than to Clostridium difficile, which belongs to the cluster XI. Moreover, a multiplex polymerase reaction (PCR) system based on the fliC sequence was developed to rapidly identify C. chauvoei, C. haemolyticum, C. novyi types A and B, and C. septicum. PCR of each Clostridium amplified a species-specific band. The multiplex PCR system may be useful for rapid identification of pathogenic clostridia.

  10. Technical guide for genetic advancement of underdeveloped and intractable Clostridium.

    PubMed

    Pyne, Michael E; Bruder, Mark; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2014-01-01

    In recent years, the genus Clostridium has risen to the forefront of both medical biotechnology and industrial biotechnology owing to its potential in applications as diverse as anticancer therapy and production of commodity chemicals and biofuels. The prevalence of hyper-virulent strains of C. difficile within medical institutions has also led to a global epidemic that demands a more thorough understanding of clostridial genetics, physiology, and pathogenicity. Unfortunately, Clostridium suffers from a lack of sophisticated genetic tools and techniques which has hindered the biotechnological exploitation of this important bacterial genus. This review provides a comprehensive summary of biotechnological progress made in clostridial genetic tool development, while also aiming to serve as a technical guide for the advancement of underdeveloped clostridial strains, including recalcitrant species, novel environmental samples, and non-type strains. Relevant strain engineering techniques, from genome sequencing and establishment of a gene transfer methodology through to deployment of advanced genome editing procedures, are discussed in detail to provide a blueprint for future clostridial strain construction endeavors. It is expected that a more thorough and rounded-out genetic toolkit available for use in the clostridia will bring about the construction of superior bioprocessing strains and a more complete understanding of clostridial genetics, physiology, and pathogenicity.

  11. Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I).

    PubMed

    Gupta, Radhey S; Gao, Beile

    2009-02-01

    The species of Clostridium comprise a very heterogeneous assemblage of bacteria that do not form a phylogenetically coherent group. It has been proposed previously that only a subset of the species of Clostridium that form a distinct cluster in the 16S rRNA tree (cluster I) should be regarded as the true representatives of the genus Clostridium (i.e. Clostridium sensu stricto). However, this cluster is presently defined only in phylogenetic terms, and no biochemical, molecular or phenotypic characteristic is known that is unique to species from this cluster. We report here phylogenomic and comparative analyses based on sequenced clostridial genomes in an attempt to bridge this gap and to clarify the evolutionary relationships among species of clostridia. In phylogenetic trees for species of clostridia based on concatenated sequences for 37 highly conserved proteins, the species of Clostridium cluster I formed a strongly supported clade that was separated from all other clostridia by a long branch. Several other Clostridium species that are not part of this cluster grouped reliably with other species of clostridia in a number of well-resolved clades. Our comparative genomic analyses have identified three conserved indels in three highly conserved proteins (a 4 aa insert in DNA gyrase A, a 1 aa deletion in ATP synthase beta subunit and a 1 aa insert in ribosomal protein S2) that are unique to the species of Clostridium cluster I and are not found in any other bacteria. blastp searches on various proteins in the genomes of Clostridium tetani E88 and Clostridium perfringens SM101 have also identified more than 10 proteins that are found uniquely in the cluster I species. These results provide evidence that the species of Clostridium cluster I not only are phylogenetically distinct but also share many unique molecular characteristics. These newly identified molecular markers provide useful tools to define and circumscribe the genus Clostridium sensu stricto in more

  12. An atypical outbreak of food-borne botulism due to Clostridium botulinum types B and E from ham.

    PubMed

    Mazuet, Christelle; Sautereau, Jean; Legeay, Christine; Bouchier, Christiane; Bouvet, Philippe; Popoff, Michel R

    2015-02-01

    An outbreak of human botulism was due to consumption of ham containing botulinum neurotoxins B and E. A Clostridium botulinum type E strain isolated from ham was assigned to a new subtype (E12) based on bont/E gene sequencing and belongs to a new multilocus sequence subtype, as analyzed by whole-genome sequencing.

  13. Clostridium difficile and the microbiota

    PubMed Central

    Seekatz, Anna M.; Young, Vincent B.

    2014-01-01

    Clostridium difficile infection (CDI) is the leading health care–associated illness. Both human and animal models have demonstrated the importance of the gut microbiota’s capability of providing colonization resistance against C. difficile. Risk factors for disease development include antibiotic use, which disrupts the gut microbiota, leading to the loss of colonization resistance and subsequent CDI. Identification of the specific microbes capable of restoring this function remains elusive. Future studies directed at how microbial communities influence the metabolic environment may help elucidate the role of the microbiota in disease development. These findings will improve current biotherapeutics for patients with CDI, particularly those with recurrent disease. PMID:25036699

  14. Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species.

    PubMed

    Ueki, Atsuko; Ohtaki, Yoshimi; Kaku, Nobuo; Ueki, Katsuji

    2016-09-01

    Strictly anaerobic bacterial strains (FH052T and SN021T) belonging to clostridial cluster XIVa were isolated from a methanogenic reactor. Cells of the two strains were Gram-stain-positive, slender or curved rods producing terminal spores. The strains were slightly alkaliphilic. They fermented various carbohydrates including xylan and produced acetate, ethanol and H2. Strain SN021T decomposed cellulose. The genomic DNA G+C contents were 47.2 mol% for strain FH052T and 38.1 mol% for strain SN021T. The two strains had common cellular fatty acids such as C16 : 0, C16 : 0 dimethylacetal and C18 : 1ω7c dimethylacetal as major components. 16S rRNA gene sequence similarity between the two strains was 94.3 % and they shared closely related species such as Clostridium jejuense, Clostridium xylanovorans and Clostridium aminovalericum (92.6-95.7 % sequence similarity). Phenotypic and phylogenetic analyses suggested that these two isolates should be assigned to novel genera other than the genus Clostridium, and thus the genera Anaerotaenia gen. nov. and Anaerocolumna gen. nov. in the family Lachnospiraceae were proposed to accommodate them as Anaerotaenia torta gen. nov., sp. nov. for strain FH052T (=JCM 30820T=DSM 100431T) and Anaerocolumna cellulosilytica gen. nov., sp. nov. for strain SN021T (=JCM 30819T=DSM 100423T). For the three related Clostridium species, Anaerocolumna aminovalerica DSM 1283T (=JCM 11016T=ATCC 13725T) comb. nov., Anaerocolumna jejuensis HY-35-12T (=DSM 15929T=KCTC 5026T) comb. nov. and Anaerocolumna xylanovoransstrain HESP1T (=DSM 12503T=JCM 31057T) comb. nov. are proposed with emended descriptions of these species.

  15. Evidence for antibiotic induced Clostridium perfringens diarrhoea

    PubMed Central

    Modi, N; Wilcox, M

    2001-01-01

    Clostridium difficile is a well documented cause of antibiotic associated diarrhoea in hospitalised patients, but may account for only approximately 20% of all cases. This leader reviews the current knowledge and understanding of the pathogenesis, epidemiology, and diagnosis of non-food borne Clostridium perfringens diarrhoea. Although enterotoxigenic C perfringens has been implicated in some C difficile negative cases of antibiotic associated diarrhoea, C perfringens enterotoxin detection methods are not part of the routine laboratory investigation of such cases. Testing for C perfringens enterotoxin in faecal samples from patients with antibiotic associated diarrhoea and sporadic diarrhoea on a routine basis would have considerable resource implications. Therefore, criteria for initiating investigations and optimum laboratory tests need to be established. In addition, establishing the true burden of C perfringens antibiotic associated diarrhoea is important before optimum control and treatment measures can be defined. Key Words: Clostridium perfringens • Clostridium difficile • hospital acquired infective diarrhoea PMID:11577119

  16. Clostridium difficile and C. difficile Toxin Testing

    MedlinePlus

    ... C diff antigen; GDH Formal name: Clostridium difficile Culture; C. difficile Toxin, A and B; C. difficile Cytotoxin Assay; Glutamate Dehydrogenase Test Related tests: Stool Culture ; O&P At a Glance Test Sample The ...

  17. Effect of ozonolysis parameters on the inhibitory compound generation and on the production of ethanol by Pichia stipitis and acetone-butanol-ethanol by Clostridium from ozonated and water washed sugarcane bagasse.

    PubMed

    Travaini, Rodolfo; Barrado, Enrique; Bolado-Rodríguez, Silvia

    2016-10-01

    Sugarcane bagasse (SCB) was ozone pretreated and detoxified by water washing, applying a L9(3)(4) orthogonal array (OA) design of experiments to study the effect of pretreatment parameters (moisture content, ozone concentration, ozone/oxygen flow and particle size) on the generation of inhibitory compounds and on the composition of hydrolysates of ozonated-washed samples. Ozone concentration resulted the highest influence process parameter on delignification and sugar release after washing; while, for inhibitory compound formation, moisture content also had an important role. Ozone expended in pretreatment related directly with sugar release and inhibitory compound formation. Washing detoxification was effective, providing non-inhibitory hydrolysates. Maximum glucose and xylose release yields obtained were 84% and 67%, respectively, for ozonated-washed SCB. Sugar concentration resulted in the decisive factor for biofuels yields. Ethanol production achieved an 88% yield by Pichia stipitis, whereas Clostridium acetobutylicum produced 0.072gBUTANOL/gSUGAR and 0.188gABE/gSUGAR, and, Clostridium beijerinckii 0.165gBUTANOL/gSUGAR and 0.257gABE/gSUGAR.

  18. Identification and Characterization of Clostridium sordellii Toxin Gene Regulator

    PubMed Central

    Sirigi Reddy, Apoorva Reddy; Girinathan, Brintha Parasumanna; Zapotocny, Ryan

    2013-01-01

    Toxigenic Clostridium sordellii causes uncommon but highly lethal infections in humans and animals. Recently, an increased incidence of C. sordellii infections has been reported in women undergoing obstetric interventions. Pathogenic strains of C. sordellii produce numerous virulence factors, including sordellilysin, phospholipase, neuraminidase, and two large clostridial glucosylating toxins, TcsL and TcsH. Recent studies have demonstrated that TcsL toxin is an essential virulence factor for the pathogenicity of C. sordellii. In this study, we identified and characterized TcsR as the toxin gene (tcsL) regulator in C. sordellii. High-throughput sequencing of two C. sordellii strains revealed that tcsR lies within a genomic region that encodes TcsL, TcsH, and TcsE, a putative holin. By using ClosTron technology, we inactivated the tcsR gene in strain ATCC 9714. Toxin production and tcsL transcription were decreased in the tcsR mutant strain. However, the complemented tcsR mutant produced large amounts of toxins, similar to the parental strain. Expression of the Clostridium difficile toxin gene regulator tcdR also restored toxin production to the C. sordellii tcsR mutant, showing that these sigma factors are functionally interchangeable. PMID:23873908

  19. [Clostridium-difficile-associated diarrhea].

    PubMed

    Bujanda, Luis; Cosme, Angel

    2009-01-01

    Clostridium difficile is the most frequent cause of nosocomial diarrhea and is a significant cause of morbidity among hospitalized patients. The inflammation is produced as a result of a non-specific response to toxins. In the last few years, a hypervirulent strain, NAP1/BI/027, has been reported. Symptoms usually consist of abdominal pain and diarrhea. The diagnosis should be suspected in any patient who develops diarrhea during antibiotic therapy or 6-8 weeks after treatment. Diagnosis should be confirmed by the detection of CD toxin in stool and by colonoscopy in special situations. The treatment of choice is metronidazole or vancomycin. In some patients who do not respond to this therapy or who have complications, subtotal colectomy may be required. Relapse is frequent and must be distinguished from reinfection. Prevention and control in healthcare settings requires careful attention.

  20. Identification of Clostridium Species and DNA Fingerprinting of Clostridium perfringens by Amplified Fragment Length Polymorphism Analysis▿

    PubMed Central

    Keto-Timonen, Riikka; Heikinheimo, Annamari; Eerola, Erkki; Korkeala, Hannu

    2006-01-01

    An amplified fragment length polymorphism (AFLP) method was applied to 129 strains representing 24 different Clostridium species, with special emphasis on pathogenic clostridia of medical or veterinary interest, to assess the potential of AFLP for identification of clostridia. In addition, the ability of the same AFLP protocol to type clostridia at the strain level was assessed by focusing on Clostridium perfringens strains. All strains were typeable by AFLP, so the method seemed to overcome the problem of extracellular DNase production. AFLP differentiated all Clostridium species tested, except for Clostridium ramosum and Clostridium limosum, which clustered together with a 45% similarity level. Other Clostridium species were divided into species-specific clusters or occupied separate positions. Wide genetic diversity was observed among Clostridium botulinum strains, which were divided into seven species-specific clusters. The same AFLP protocol was also suitable for typing C. perfringens at the strain level. A total of 29 different AFLP types were identified for 37 strains of C. perfringens; strains initially originating from the same isolate showed identical fingerprinting patterns and were distinguished from unrelated strains. AFLP proved to be a highly reproducible, easy-to-perform, and relatively fast method which enables high throughput of samples and can serve in the generation of identification libraries. These results indicate that the AFLP method provides a promising tool for the identification and characterization of Clostridium species. PMID:16971642

  1. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellumto utilize hemicellulose and unpretreated plant material

    DOE PAGES

    Izquierdo, Javier A.; Pattathil, Sivakumar; Guseva, Anna; ...

    2014-11-18

    Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum. Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass,more » and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum. In conclusion, C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.« less

  2. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellumto utilize hemicellulose and unpretreated plant material

    SciTech Connect

    Izquierdo, Javier A.; Pattathil, Sivakumar; Guseva, Anna; Hahn, Michael G.; Lynd, Lee R.

    2014-11-18

    Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum. Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass, and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum. In conclusion, C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.

  3. Prophage carriage and diversity within clinically relevant strains of Clostridium difficile.

    PubMed

    Shan, Jinyu; Patel, Krusha V; Hickenbotham, Peter T; Nale, Janet Y; Hargreaves, Katherine R; Clokie, Martha R J

    2012-09-01

    Prophages are encoded in most genomes of sequenced Clostridium difficile strains. They are key components of the mobile genetic elements and, as such, are likely to influence the biology of their host strains. The majority of these phages are not amenable to propagation, and therefore the development of a molecular marker is a useful tool with which to establish the extent and diversity of C. difficile prophage carriage within clinical strains. To design markers, several candidate genes were analyzed including structural and holin genes. The holin gene is the only gene present in all sequenced phage genomes, conserved at both terminals, with a variable mid-section. This allowed us to design two sets of degenerate PCR primers specific to C. difficile myoviruses and siphoviruses. Subsequent PCR analysis of 16 clinical C. difficile ribotypes showed that 15 of them are myovirus positive, and 2 of them are also siphovirus positive. Antibiotic induction and transmission electron microscope analysis confirmed the molecular prediction of myoviruses and/or siphovirus presence. Phylogenetic analysis of the holin sequences identified three groups of C. difficile phages, two within the myoviruses and a divergent siphovirus group. The marker also produced tight groups within temperate phages that infect other taxa, including Clostridium perfringens, Clostridium botulinum, and Bacillus spp., which suggests the potential application of the holin gene to study prophage carriage in other bacteria. This study reveals the high incidence of prophage carriage in clinically relevant strains of C. difficile and correlates the molecular data to the morphological observation.

  4. Prophage Carriage and Diversity within Clinically Relevant Strains of Clostridium difficile

    PubMed Central

    Shan, Jinyu; Patel, Krusha V.; Hickenbotham, Peter T.; Nale, Janet Y.; Hargreaves, Katherine R.

    2012-01-01

    Prophages are encoded in most genomes of sequenced Clostridium difficile strains. They are key components of the mobile genetic elements and, as such, are likely to influence the biology of their host strains. The majority of these phages are not amenable to propagation, and therefore the development of a molecular marker is a useful tool with which to establish the extent and diversity of C. difficile prophage carriage within clinical strains. To design markers, several candidate genes were analyzed including structural and holin genes. The holin gene is the only gene present in all sequenced phage genomes, conserved at both terminals, with a variable mid-section. This allowed us to design two sets of degenerate PCR primers specific to C. difficile myoviruses and siphoviruses. Subsequent PCR analysis of 16 clinical C. difficile ribotypes showed that 15 of them are myovirus positive, and 2 of them are also siphovirus positive. Antibiotic induction and transmission electron microscope analysis confirmed the molecular prediction of myoviruses and/or siphovirus presence. Phylogenetic analysis of the holin sequences identified three groups of C. difficile phages, two within the myoviruses and a divergent siphovirus group. The marker also produced tight groups within temperate phages that infect other taxa, including Clostridium perfringens, Clostridium botulinum, and Bacillus spp., which suggests the potential application of the holin gene to study prophage carriage in other bacteria. This study reveals the high incidence of prophage carriage in clinically relevant strains of C. difficile and correlates the molecular data to the morphological observation. PMID:22706062

  5. EtfA catalyses the formation of dipicolinic acid in Clostridium perfringens.

    PubMed

    Orsburn, Benjamin C; Melville, Stephen B; Popham, David L

    2010-01-01

    Dipicolinic acid (DPA) is a major component of bacterial endospores, comprising 5-15% of the spore dry weight, and is important for spore stability and resistance properties. The biosynthetic precursor to DPA, dihydro-dipicolinic acid (DHDPA), is produced by DHDPA synthase within the lysine biosynthesis pathway. In Bacillus subtilis, and most other bacilli and clostridia, DHDPA is oxidized to DPA by the products of the spoVF operon. Analysis of the genomes of the clostridia in Cluster I, including the pathogens Clostridium perfringens, Clostridium botulinum and Clostridium tetani, has shown that no spoVF orthologues exist in these organisms. DPA synthase was purified from extracts of sporulating C. perfringens cells. Peptide sequencing identified an electron transfer flavoprotein, EtfA, in this purified protein fraction. A C. perfringens strain with etfA inactivated is blocked in late stage sporulation and produces < or = 11% of wild-type DPA levels. C. perfringens EtfA was expressed in and purified from Escherichia coli, and this protein catalysed DPA formation in vitro. The sequential production of DHDPA and DPA in C. perfringens appears to be catalysed by DHDPA synthase followed by EtfA. Genome sequence data and the taxonomy of spore-forming species suggest that this may be the ancestral mechanism for DPA synthesis.

  6. Adjuvants for Clostridium tetani and Clostridium diphtheriae vaccines updating.

    PubMed

    Alshanqiti, Fatimah M; Al-Masaudi, Saad B; Al-Hejin, Ahmed M; Redwan, Elrashdy M

    2017-01-01

    It's known that diphtheria and tetanus are a contagious lethal diseases over the years, they caused by pathogenic microbes corynebacterium diphtheria and Clostridium tetani, respectively. The diseases result from the production of bacterial toxin. Vaccination with bacterial toxoid vaccines adsorbed on particulates adjuvants still are the best way to prevent this epidemic diseases from spread. The particulate vaccines have been shown to be more efficient than soluble one for the induction of the immune responses. Nanoparticles can be engineered to enhance the immune responses. As well known the immune response to inactivate killed and subunit vaccine enhances by alum adjuvants. The adjuvants examined and tested after reducing its size to particle size, thus mimic size of viruses which is considered smallest units can derive the immune system. The major issue is minimizing the adjuvant particles, to gain insight of resulting immunity types and impact on immune response. The adjuvant effect of micro/nanoparticles appears to largely be a consequence of their uptake into antigen presenting cells.

  7. Clostridium difficile infection in Thailand.

    PubMed

    Putsathit, Papanin; Kiratisin, Pattarachai; Ngamwongsatit, Puriya; Riley, Thomas V

    2015-01-01

    Clostridium difficile is the aetiological agent in ca. 20% of cases of antimicrobial-associated diarrhoea in hospitalised adults. Diseases caused by this organism range from mild diarrhoea to occasional fatal pseudomembranous colitis. The epidemiology of C. difficile infection (CDI) has changed notably in the past decade, following epidemics in the early 2000s of PCR ribotype (RT) 027 infection in North America and Europe, where there was an increase in disease severity and mortality. Another major event has been the emergence of RT 078, initially as the predominant ribotype in production animals in the USA and Europe, and then in humans in Europe. Although there have been numerous investigations of the epidemiology of CDI in North America and Europe, limited studies have been undertaken elsewhere, particularly in Asia. Antimicrobial exposure remains the major risk factor for CDI. Given the high prevalence of indiscriminate and inappropriate use of antimicrobials in Asia, it is conceivable that CDI is relatively common among humans and animals. This review describes the level of knowledge in Thailand regarding C. difficile detection methods, prevalence and antimicrobial susceptibility profile, as well as the clinical features of, treatment options for and outcomes of the disease. In addition, antimicrobial usage in livestock in Thailand will be reviewed. A literature search yielded 18 studies mentioning C. difficile in Thailand, a greater number than from any other Asian country. It is possible that the situation in Thailand in relation to CDI may mirror the situation in other developing Asians countries.

  8. Thermostable chaperonin from Clostridium thermocellum.

    PubMed

    Cross, S J; Ciruela, A; Poomputsa, K; Romaniec, M P; Freedman, R B

    1996-06-01

    Homologues of the chaperonins Cpn60 and Cpn10 have been purified from the Gram-positive cellulolytic thermophile Clostridium thermocellum. The Cpn60 protein was purified by ATP-affinity chromatography and the Cpn10 protein was purified by gel-filtration, ion-exchange and hydrophobic interaction chromatographies. The identities of the proteins were confirmed by N-terminal sequence analysis and antigenic cross-reactivity. The Cpn60 homologue is a weak, thermostable ATPase (t1/2 at 70 decrees C more than 90 min) with optimum activity (Kcat 0.07 S-1) between 60 degrees C and 70 degrees C. The ATPase activity of the authentic Cpn60 was inhibited by Escherichia coli GroES. The catalytic properties of a recombinant C. thermocellum Cpn60 purified from a GST-Cpn60 fusion protein expressed in E. coli [Ciruela (1995) Ph.D. Thesis, University of Kent] were identical with those of the authentic C. thermocellum Cpn60. Gel-filtration studies show that at room temperature the Cpn60 migrates mainly as a heptamer. Electron microscopy confirms the presence of complexes showing 7-fold rotational symmetry and also reveals a small number of particles that seem to be tetradecamers with a similar structure to E. coli GroEL complexes.

  9. Probiotics in Clostridium difficile Infection

    PubMed Central

    Na, Xi; Kelly, Ciaran

    2017-01-01

    Clostridium difficile infection (CDI) is one of the most prevalent nosocomial infections. A dramatic increase in the incidence and severity of CDI has been noted in the past decade. Current recommendations suggest metronidazole as first-line therapy in mild to moderately severe CDI and oral vancomycin in individuals with severe CDI, or when metronidazole fails or is contradicted. Alterations of the colonic microbiota, usually caused by antimicrobial therapy, seem to play a critical role in CDI pathogenesis. Probiotics are live microorganisms that confer a health benefit to the host, and have been used in CDI. Although a wide variety of probiotics have been studied, the exact role of probiotics in preventing and treating CDI is not clear. In this study, we reviewed the current literature and recommendations on the most commonly studied protiotic agents (Saccharomyces boulardii, Lactobacillus species, and probiotic mixtures) used to prevent or treat CDI. Lactobacillus-containing probiotic mixtures and S. boulardii may be effective in the prevention of CDI in high-risk antibiotic recipients but this finding is based on small, individual studies, and further, larger, well-controlled studies are needed to confirm preliminary positive findings and to better delineate the efficacy of probiotics in CDI prevention or treatment. PMID:21992956

  10. Management of Clostridium difficile Infection

    PubMed Central

    Al-Jashaami, Layth S.

    2016-01-01

    Since the discovery of Clostridium difficile infection (CDI) in the 1970s, there has been an increase in the incidence, severity, and recurrence rate of the disease. We reviewed the recent CDI literature in PubMed published before February 28, 2016 that focused on advances in therapy. Despite a large number of studies describing methods for diagnosing the disease, there is currently no definitive test that identifies this infection with certainty, which complicates therapy. Recommended therapy for CDI includes oral metronidazole for mild cases and oral vancomycin or fidaxomicin for moderate to severe cases, each given for 10 to 14 days. For infection with spore-forming C difficile, this length of treatment may be insufficient to lead to cure; however, continuing antibiotics for longer periods of time may unfavorably alter the microbiome, preventing recovery. Treatment with metronidazole has been associated with an increasing failure rate, and the only clear recommended form of metronidazole for treatment of CDI is the intravenous formulation for patients unable to take oral medications. For vancomycin or fidaxomicin treatment of first CDI recurrences, the drug used in the initial bout can be repeated. For second or future recurrences, vancomycin can be given in pulsed or tapered doses. New modalities of treatment, such as bacteriotherapy and immunotherapy, show promise for the treatment of recurrent CDI. PMID:27917075

  11. Fidaxomicin: in Clostridium difficile infection.

    PubMed

    Duggan, Sean T

    2011-12-24

    Fidaxomicin is a first-in-class macrocyclic antibacterial that primarily demonstrates activity against species of clostridia, predominantly Clostridium difficile, while having limited or no activity against normal faecal microflora. Fidaxomicin is minimally absorbed following oral administration and is excreted almost solely in the faeces. Fidaxomicin displayed a high level of antibacterial activity against C. difficile in vitro, with a minimum inhibitory concentration required to inhibit 90% of C. difficile strains of 0.125-0.5 μg/mL, and was ≈2- to 8-fold more active than vancomycin or metronidazole. Fidaxomicin demonstrated a prolonged postantibiotic effect against C. difficile relative to vancomycin and metronidazole. In two randomized, double-blind, phase III trials, oral fidaxomicin 200 mg every 12 hours for 10 days was no less effective than oral vancomycin 125 mg every 6 hours for 10 days in the treatment of C. difficile infection, based on noninferiority analyses of clinical cure rates (primary endpoint). Fidaxomicin therapy was associated with a significantly lower rate of recurrence, as well as a significantly higher rate of global cure (i.e. sustained clinical response; resolution of diarrhoea without recurrence) compared with vancomycin therapy in the two clinical trials. Fidaxomicin was generally well tolerated in patients with C. difficile infection, with a tolerability profile generally similar to that of vancomycin.

  12. Prevention of Infection Due to Clostridium difficile.

    PubMed

    Cooper, Christopher C; Jump, Robin L P; Chopra, Teena

    2016-12-01

    Clostridium difficile is one of the foremost nosocomial pathogens. Preventing infection is particularly challenging. Effective prevention efforts typically require a multifaceted bundled approach. A variety of infection control procedures may be advantageous, including strict hand decontamination with soap and water, contact precautions, and using chlorine-containing decontamination agents. Additionally, risk factor reduction can help reduce the burden of disease. The risk factor modification is principally accomplished though antibiotic stewardship programs. Unfortunately, most of the current evidence for prevention is in acute care settings. This review focuses on preventative approaches to reduce the incidence of Clostridium difficile infection in healthcare settings.

  13. ISOLATION OF CLOSTRIDIUM TETANI FROM SOIL.

    PubMed

    SANADA, I; NISHIDA, S

    1965-03-01

    Sanada, Ichiro (Kanazawa University, Kanazawa, Japan), and Shoki Nishida. Isolation of Clostridium tetani from soil. J. Bacteriol. 89:626-629. 1965.-The higher the temperatures applied to soil specimens, the weaker the toxigenicity of Clostridium tetani strains isolated from them. The glucose- and maltose-fermenting ability of these isolates was inversely proportional to their toxigenicity. The biological properties of atoxic strains were indistinguishable from those of C. tetanomorphum. Since a considerable number of toxic strains fermented glucose and maltose, these criteria are of doubtful value for differentiating C. tetani from C. tetanomorphum.

  14. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  15. Identification of Clostridium botulinum, Clostridium argentinense, and related organisms by cellular fatty acid analysis.

    PubMed Central

    Ghanem, F M; Ridpath, A C; Moore, W E; Moore, L V

    1991-01-01

    On the basis of 686 analyses of 285 strains of Clostridium botulinum, Clostridium argentinense (formerly C. botulinum type G), and phenotypically related organisms, 14 cellular fatty acid (CFA) groups of toxic organisms and 6 CFA groups of nontoxic organisms were delineated. The CFA groups of toxic strains included two of type A, three of proteolytic strains of type B, two of proteolytic strains of type F, one each of nonproteolytic strains of types B, E, and F, and one each of types C alpha, C beta, and D and C. argentinense. The groups of phenotypically similar nontoxic strains included Clostridium sporogenes, Clostridium putrificum, nontoxic strains with phenotypic characteristics similar to those of nonproteolytic strains of C. botulinum types B, E, and F (BEF-like), two groups of nontoxigenic organisms with phenotypic characteristics similar to those of C. botulinum types C and D and Clostridium novyi (CDN-like), and Clostridium subterminale, which has phenotypic characteristics similar to those of C. argentinense. Within the toxin types, 89 to 100% of the strains were correctly identified by CFA analysis, and 74 to 100% of the analyses were correct. Of 36 strains of C. sporogenes, 30 (83%) were correctly identified; 17% of the strains of C. sporogenes were incorrectly identified as C. botulinum type A or B. All analyses of C. putrificum and C. subterminale were correctly identified. There was no significant level of similarity between strains of C. botulinum and phenotypically similar organisms and 85 other species of clostridia or 407 other taxa of gram-positive and gram-negative bacteria. Additionally, the one strain each of Clostridium baratii and Clostridium butyricum previously reported to produce C. botulinum toxin could be differentiated from C.botulinum types as well as from strains of C. baratii and C. butyricum that did not produce neurotoxin. PMID:1864927

  16. Phylogenetic positions of Clostridium chauvoei and Clostridium septicum based on 16S rRNA gene sequences.

    PubMed

    Kuhnert, P; Capaul, S E; Nicolet, J; Frey, J

    1996-10-01

    The sequences of the 16S rRNA genes (rrs genes) of Clostridium chauvoei, the causative agent of blackleg in cattle, and the phenotypically related organism Clostridium septicum were determined. After amplification of 1,507-bp PCR fragments from the corresponding rrs genes, the sequences were determined in a single round of sequencing by using conserved region primers. A sequence similarity analysis of the sequences revealed the close phylogenetic relationship of C. chauvoei and C. septicum in Clostridium cluster I (M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994), which includes Clostridium carnis, Clostridium perfringens, Clostridium botulinum, and Clostridium tetani. We found that 99.3% of the nucleotides in the genes of C. chauvoei and C. septicum are identical.

  17. Toxin Plasmids of Clostridium perfringens

    PubMed Central

    Li, Jihong; Adams, Vicki; Bannam, Trudi L.; Miyamoto, Kazuaki; Garcia, Jorge P.; Uzal, Francisco A.; Rood, Julian I.

    2013-01-01

    SUMMARY In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  18. Comparative Analysis of Clostridium perfringens Bacteriophage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Clostridium perfringens are Gram-positive bacteria that are a major bacterial cause of food-borne disease and gas gangrene among humans. These anaerobic bacteria are also the presumptive etiologic agent of necrotic enteritis among chickens. Pathogenesis and symptoms of a necrotic enterit...

  19. Coculture Production of Butanol by Clostridium Bacteria

    NASA Technical Reports Server (NTRS)

    Bergstrom, S. L.; Foutch, G. L.

    1985-01-01

    Production of butanol by anaerobic fermentation of sugars enhanced by use of two Clostridium species, one of which feeds on metabolic product of other. Renewed interest in fermentation process for making butanol stimulated by potential use of butanol as surfactant in enhanced oil recovery. Butanol also used as fuel or as chemical feedstock and currently produced synthetically from petroleum.

  20. Isolation of Clostridium tetani from anaerobic empyema.

    PubMed

    Mayall, B C; Snashall, E A; Peel, M M

    1998-11-01

    We report the isolation of Clostridium tetani (along with Fusobacterium mortiferum) from empyema pus. The patient, a 68 year old retired farmer from rural NSW, had recently undergone cholecystectomy, had heart failure and developed an empyema. He improved after drainage of the empyema and penicillin therapy, but died suddenly during convalescence.

  1. Clostridium difficile in poultry and poultry meat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America from the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer t...

  2. Clostridium ljungdahlii represents a microbial production platform based on syngas

    PubMed Central

    Köpke, Michael; Held, Claudia; Hujer, Sandra; Liesegang, Heiko; Wiezer, Arnim; Wollherr, Antje; Ehrenreich, Armin; Liebl, Wolfgang; Gottschalk, Gerhard; Dürre, Peter

    2010-01-01

    Clostridium ljungdahlii is an anaerobic homoacetogen, able to ferment sugars, other organic compounds, or CO2/H2 and synthesis gas (CO/H2). The latter feature makes it an interesting microbe for the biotech industry, as important bulk chemicals and proteins can be produced at the expense of CO2, thus combining industrial needs with sustained reduction of CO and CO2 in the atmosphere. Sequencing the complete genome of C. ljungdahlii revealed that it comprises 4,630,065 bp and is one of the largest clostridial genomes known to date. Experimental data and in silico comparisons revealed a third mode of anaerobic homoacetogenic metabolism. Unlike other organisms such as Moorella thermoacetica or Acetobacterium woodii, neither cytochromes nor sodium ions are involved in energy generation. Instead, an Rnf system is present, by which proton translocation can be performed. An electroporation procedure has been developed to transform the organism with plasmids bearing heterologous genes for butanol production. Successful expression of these genes could be demonstrated, leading to formation of the biofuel. Thus, C. ljungdahlii can be used as a unique microbial production platform based on synthesis gas and carbon dioxide/hydrogen mixtures. PMID:20616070

  3. The impact of horizontal gene transfer on the biology of Clostridium difficile.

    PubMed

    Roberts, Adam P; Allan, Elaine; Mullany, Peter

    2014-01-01

    Clostridium difficile infection (CDI) is now recognised as the main cause of healthcare associated diarrhoea. Over the recent years there has been a change in the epidemiology of CDI with certain related strains dominating infection. These strains have been termed hyper-virulent and have successfully spread across the globe. Many C. difficile strains have had their genomes completely sequenced allowing researchers to build up a very detailed picture of the contribution of horizontal gene transfer to the adaptive potential, through the acquisition of mobile DNA, of this organism. Here, we review and discuss the contribution of mobile genetic elements to the biology of this clinically important pathogen.

  4. Mechanisms of Toxin Production of Food Bacteria (Clostridium botulinum)

    DTIC Science & Technology

    1983-12-01

    l~ V- 9;-iC -’.1,- r, 4. •, . . . . . MECHANISMS OF TOXIN PRODUCTION OF FOOD BACTERIA ( CLOSTRIDIUM BOTULINUM) FINAL REPORT DR. H. U. EKLUND F. T...Mechanisms of Toxin Production of Food Bacteria Clostridium botulinum Final Y,’v/ ’ "D30 • ’q• 6, PERFORM G ORG. REPORT NUMBER 7. AUTHOR(.) S...WORDS (Continue on reverse aide If necessary and Identify by block number) Clostridium botulinum Bacteriophages Plasmids Food Poisoning Toxins

  5. Genetic Engineering of Clostridium difficile Toxin A Vaccine

    DTIC Science & Technology

    1988-07-14

    AD N o GENETIC ENGINEERING OF CLOSTRIDIUM DIFFICILE TOXIN A VACCINE 0 C%" ANNUAL REPORT ! Lycurgus L. Muldrow Joe Johnson July 14, 1988 Supported by...17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Clostridium difficile Vaccine ...development of vaccines . Improvement of vaccine biotechnology in the area of recombinant DNA studies using Clostridium difficile toxin A as the model, is

  6. Immunization strategies for Clostridium difficile infections.

    PubMed

    Rebeaud, Fabien; Bachmann, Martin F

    2012-04-01

    Clostridium difficile infection is a major cause of nosocomial disease in Western countries. The recent emergence of hypervirulent strains resistant to most antibiotics correlates with increasing disease incidence, severity and lethal outcomes. Current treatments rely on metronidazol and vancomycin, but the limited ability of these antibiotics to cure infection and prevent relapse highlights the need for new strategies. A better knowledge of the molecular mechanisms of the disease, the host immune response and identification of key virulence factors of Clostridium difficile now permits the development of new products specifically targeting the pathogen. Immune-based strategies relying on active vaccination or passive administration of antibody products are the focus of intense research and, today, the efficacy of monoclonal antibodies and of two vaccines are evaluated clinically. This review presents recent data, discusses the different strategies and highlights the challenges linked to the development of immunization strategies against this emerging threat.

  7. Genetic Analysis of Nitroaromatic Degradation by Clostridium

    DTIC Science & Technology

    2013-07-30

    Phenazine , a molecule produced by some soil bacteria was found to have a significant effect on metabolite pattern in two clostridium test strains...potential Effect on butyrate levels Methylene blue +0.011 no phenazine -1-carboxylic acid -0.116 More butyrate TNT -0.253 More butyrate Neutral red -0.325...interesting in light of the analysis of natural mobile soluble electron carriers in natural soil ecosystems where molecules such as quinones, and phenazines

  8. Wukongibacter baidiensis gen. nov., sp. nov., an anaerobic bacterium isolated from hydrothermal sulfides, and proposal for the reclassification of the closely related Clostridium halophilum and Clostridium caminithermale within Maledivibacter gen. nov. and Paramaledivibacter gen. nov., respectively.

    PubMed

    Li, Guangyu; Zeng, Xiang; Liu, Xiupian; Zhang, Xiaobo; Shao, Zongze

    2016-11-01

    An anaerobic, Gram-stain-positive, spore-forming bacterium, designated DY30321T, was isolated from a sample of mixed hydrothermal sulfides collected during cruise DY30 of R/V Da Yang Yi Hao. Cells of strain DY30321T were rod-shaped with rounded ends, and were not motile. Strain DY30321T grew optimally at pH 8.0, at 30 °C and at a salinity (sea salts) of 30-40 g l-1. The principal fatty acids of strain DY30321T were C14 : 0 and summed feature 1 (comprising iso H-C15 : 1/C13 : 0 3-OH). The predominant polar lipids of strain DY30321T were diphosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine. No respiratory quinone was detected. The G+C content of the genomic DNA of strain DY30321T was 33.4 mol%. Phylogenetically, strain DY30321T branched within the family Peptostreptococcaceae, with (misclassified) Clostridium halophilum M1T being its closest phylogenetic relative (94.6 % 16S rRNA gene sequence similarity), followed by (misclassified) Clostridium caminithermale DVird3T (92.1 %). These strains showed very low 16S rRNA gene sequence similarity (<84 %) to Clostrdium butyricum ATCC 19398T, the type species of the genus Clostridium sensu stricto. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, strain DY30321T (=KCTC 15549T=MCCC 1A01532T) is considered as the type strain of a novel species of a new genus in the family Peptostreptococcaceae, for which the name Wukongibacterbaidiensis gen. nov., sp. nov. is proposed. Maledivibacter gen. nov. is proposed to accommodate Clostridium halophilum as Maledivibacter halophilus comb. nov. (type species of the genus), and Paramaledivibacter gen. nov. to accommodate Clostridium caminithermale as Paramaledivibacter caminithermalis comb. nov. (type species of the genus).

  9. Proteomic analysis of cell surface proteins from Clostridium difficile.

    PubMed

    Wright, Anne; Wait, Robin; Begum, Shajna; Crossett, Ben; Nagy, Judit; Brown, Katherine; Fairweather, Neil

    2005-06-01

    Clostridium difficile is a bacterium that causes disease of the large intestine, particularly after treatment with antibiotics. The bacterium produces two toxins (A and B) that are responsible for the pathology of the disease. In addition, a number of bacterial virulence factors associated with adhesion to the gut have previously been identified, including the cell wall protein Cwp66, the high-molecular weight surface layer protein (HMW-SLP) and the flagella. As the genome sequence predicts many other cell wall associated proteins, we have investigated the diversity of proteins in cell wall extracts, with the aim of identifying further virulence factors. We have used a number of methods to remove the proteins associated with the cell wall of C. difficile. Two of the resulting extracts, obtained using low pH glycine treatment and lysozyme digestion of the cell wall, have been analysed in detail by two-dimensional electrophoresis and mass spectrometry. One hundred and nineteen spots, comprising 49 different proteins, have been identified. The two surface layer proteins (SLPs) are the most abundant proteins, and we have also found components of the flagellum. Interestingly, we have also determined that a number of paralogs of the HMW-SLP are expressed, and these could represent targets for further investigation as virulence factors.

  10. Fecal Microbiota Transplantation for Clostridium difficile-Associated Diarrhea.

    PubMed

    Cohen, Nathaniel A; Ben Ami, Ronen; Guzner-Gur, Hanan; Santo, Moshe E; Halpern, Zamir; Maharshak, Nitsan

    2015-08-01

    Clostridium difficile-associated diarrhea is a problem most hospital-based physicians will face in their career. This review aims to refresh current knowledge with regard to Clostridium difficile infection and bring physicians up to date with the latest developments in the growing field of fecal microbiota transplantation, the benefits it offers, and the promise this and other developments hold for the future.

  11. Development of a microarray for identification of pathogenic Clostridium species

    PubMed Central

    Janvilisri, Tavan; Scaria, Joy; Gleed, Robin; Fubini, Susan; Bonkosky, Michelle M.; Gröhn, Yrjö T.; Chang, Yung-Fu

    2009-01-01

    In recent years, Clostridium species have rapidly reemerged as human and animal pathogens. The detection and identification of pathogenic Clostridium species is therefore critical for clinical diagnosis and antimicrobial therapy. Traditional diagnostic techniques for clostridia are laborious, time-consuming and may adversely affect the therapeutic outcome. In this study, we developed an oligonucleotide diagnostic microarray for pathogenic Clostridium species. The microarray specificity was tested against 65 Clostridium isolates. The applicability of this microarray in a clinical setting was assessed with the use of mock stool samples. The microarray was successful in discriminating at least four species with the limit of detection as low as 104 CFU/ml. In addition, the pattern of virulence and antibiotic resistance genes of tested strains were determined through the microarrays. This approach demonstrates the high-throughput detection and identification of Clostridium species and provides advantages over traditional methods. Microarray-based techniques are promising applications for clinical diagnosis and epidemiological investigations. PMID:19879710

  12. [Spontaneous gas gangrene in a diabetic patient with Clostridium septicum].

    PubMed

    Mischke, A; Besier, S; Walcher, F; Waibel, H; Brade, V; Brandt, C

    2005-10-01

    Atraumatic infections due to Clostridium septicum are known to be associated with immunosuppression or even malignancy. In this case report, we present a patient with severe Clostridium septicum infection related to advanced colon cancer that had not previously been diagnosed. The case demonstrates the strong association between Clostridium septicum infections and malignancy, particularly in the presence of other predisposing diseases such as diabetes mellitus. It strongly suggests excluding malignant neoplasms, especially of the gastrointestinal tract, when severe Clostridium septicum infections occur. Moreover, if patients with known colorectal or other malignancy develop septicaemia or spontaneous gas gangrene, clinicians should be aware of Clostridium septicum as one of the main causative agents, as early diagnosis and aggressive treatment are important to improve prognosis.

  13. An Atypical Clostridium Strain Related to the Clostridium botulinum Group III Strain Isolated from a Human Blood Culture

    PubMed Central

    Ruimy, Raymond; Bouchier, Christiane; Faucher, Nathalie; Mazuet, Christelle; Popoff, Michel R.

    2014-01-01

    A nontoxigenic strain isolated from a fatal human case of bacterial sepsis was identified as a Clostridium strain from Clostridium botulinum group III, based on the phenotypic characters and 16S rRNA gene sequence, and was found to be related to the mosaic C. botulinum D/C strain according to a multilocus sequence analysis of 5 housekeeping genes. PMID:24088855

  14. An atypical Clostridium strain related to the Clostridium botulinum group III strain isolated from a human blood culture.

    PubMed

    Bouvet, Philippe; Ruimy, Raymond; Bouchier, Christiane; Faucher, Nathalie; Mazuet, Christelle; Popoff, Michel R

    2014-01-01

    A nontoxigenic strain isolated from a fatal human case of bacterial sepsis was identified as a Clostridium strain from Clostridium botulinum group III, based on the phenotypic characters and 16S rRNA gene sequence, and was found to be related to the mosaic C. botulinum D/C strain according to a multilocus sequence analysis of 5 housekeeping genes.

  15. Safety assessment of the Clostridium butyricum MIYAIRI 588® probiotic strain including evaluation of antimicrobial sensitivity and presence of Clostridium toxin genes in vitro and teratogenicity in vivo.

    PubMed

    Isa, K; Oka, K; Beauchamp, N; Sato, M; Wada, K; Ohtani, K; Nakanishi, S; McCartney, E; Tanaka, M; Shimizu, T; Kamiya, S; Kruger, C; Takahashi, M

    2016-08-01

    Probiotics are live microorganisms ingested for the purpose of conferring a health benefit on the host. Development of new probiotics includes the need for safety evaluations that should consider factors such as pathogenicity, infectivity, virulence factors, toxicity, and metabolic activity. Clostridium butyricum MIYAIRI 588(®) (CBM 588(®)), an anaerobic spore-forming bacterium, has been developed as a probiotic for use by humans and food animals. Safety studies of this probiotic strain have been conducted and include assessment of antimicrobial sensitivity, documentation of the lack of Clostridium toxin genes, and evaluation of CBM 588(®) on reproductive and developmental toxicity in a rodent model. With the exception of aminoglycosides, to which anaerobes are intrinsically resistant, CBM 588(®) showed sensitivity to all antibiotic classes important in human and animal therapeutics. In addition, analysis of the CBM 588(®) genome established the absence of genes for encoding for α, β, or ε toxins and botulin neurotoxins types A, B, E, or F. There were no deleterious reproductive and developmental effects observed in mice associated with the administration of CBM 588(®) These data provide further support for the safety of CBM 588(®) for use as a probiotic in animals and humans.

  16. Protective cellular antigen of Clostridium chauvoei.

    PubMed

    Stevenson, J R; Stonger, K A

    1980-04-01

    Cellular antigens of Clostridium chauvoei, strain IRP-128, were demonstrated to be important in induction of immunity against this bacterium in guinea pigs. At least one major component of the cellular antigen complex was heat-labile. Acid extraction of the bacterial cells, followed by selective purification for flagella, led to the preparation of an acid extract antigen that possessed a high degree of immunogenicity. The acid extract antigen contained flagellar components and was resolved into two major and approximately five minor protein components by polyacrylamide-gel electrophoresis.

  17. An Update on Clostridium difficile Toxinotyping

    PubMed Central

    Janezic, Sandra

    2015-01-01

    Toxinotyping is a PCR-restriction fragment length polymorphism (RFLP)-based method for differentiation of Clostridium difficile strains according to the changes in the pathogenicity locus (PaLoc), a region coding for toxins A and B. Toxinotypes are a heterogenous group of strains that are important in the development of molecular diagnostic tests and vaccines and are a good basis for C. difficile phylogenetic studies. Here we describe an overview of the 34 currently known toxinotypes (I to XXXIV) and some changes in nomenclature. PMID:26511734

  18. Regulation of Toxin Production in Clostridium perfringens

    PubMed Central

    Ohtani, Kaori; Shimizu, Tohru

    2016-01-01

    The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here. PMID:27399773

  19. Chronic Clostridium botulinum infections in farmers.

    PubMed

    Rodloff, Arne C; Krüger, Monika

    2012-04-01

    Although botulism is usually an acute, often lethal disease that is caused by the ingestion of botulinum neurotoxin, there are also recognized forms like infant botulism, wound botulism, or "botulism of undefined origin" that are characterized by the fact that Clostridium botulinum colonizes the host and produces its toxin in the host. Evidence is presented here that a disease in cattle and in human care takers of diseased animals that has evolved over the past two decades, may be a chronic, visceral form of C. botulinum infection.

  20. Clostridium difficile: from obscurity to superbug.

    PubMed

    Brazier, J S

    2008-01-01

    According to the UK media and popular press, Clostridium difficile is now a fully fledged member of that notorious but ill-defined group of microorganisms portrayed to the general public as superbugs. Following the trail blazed by methicillin-resistant Staphylococcus aureus (MRSA), C. difficile has made the transition from being an obscure anaerobic bacterium, mainly of interest to specialist anaerobic microbiologists, to that of an infamous superbug responsible for outbreaks of hospital-acquired infection that commonly result in serious disease and death. This review tracks the rise in scientific knowledge and public awareness of this organism.

  1. Diagnosis of Clostridium difficile Infections in Children

    PubMed Central

    Leber, Amy L.

    2016-01-01

    The detection and diagnosis of Clostridium difficile infection in pediatric populations have some unique considerations in comparison to testing in adults. The testing methodologies, including toxigenic culture, cell cytotoxicity, antigen detection, and, more recently, molecular testing, are the same in all age groups. However, limited data exist on the specific performance characteristics in children. In this review, we focus on the challenges of testing in pediatric populations and assess the available data on test performance in these populations. Additionally, a review of the existing guidance for testing is provided. PMID:26912759

  2. An Update on Clostridium difficile Toxinotyping.

    PubMed

    Rupnik, Maja; Janezic, Sandra

    2016-01-01

    Toxinotyping is a PCR-restriction fragment length polymorphism (RFLP)-based method for differentiation of Clostridium difficile strains according to the changes in the pathogenicity locus (PaLoc), a region coding for toxins A and B. Toxinotypes are a heterogenous group of strains that are important in the development of molecular diagnostic tests and vaccines and are a good basis for C. difficile phylogenetic studies. Here we describe an overview of the 34 currently known toxinotypes (I to XXXIV) and some changes in nomenclature.

  3. Clostridium difficile infection: Updates in management.

    PubMed

    Tariq, Raseen; Khanna, Sahil

    2017-01-01

    Clostridium difficile was first identified in 1978 as a diarrhea-causing bacterium in humans. In the last three decades, C. difficile infection (CDI) has reached an epidemic state, both in health care and community settings worldwide. There has been substantial progress in the field of CDI, including identification of novel risk factors, presence of CDI in individuals not considered at risk previously, and treatment options including new drugs, monoclonal antibodies, and fecal microbiota transplantation. This review discusses epidemiology, novel and traditional risk factors, and updates in management for CDI.

  4. Clostridium difficile colitis: pathogenesis and host defence.

    PubMed

    Abt, Michael C; McKenney, Peter T; Pamer, Eric G

    2016-10-01

    Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis.

  5. Genetic Engineering of Clostridium Difficile Toxin A Vaccine

    DTIC Science & Technology

    1991-09-04

    AD-A242 265 AD GENETIC ENGINEERING OF CLOSTRIDIUM DIFFICILE TOXIN A VACCINE ANNUAL/FINAL REPORT DTIC LYCJRGUS L. MULDROW F EIECTE JOE JOHNSON ’ N OVI...62770A 62770A871 AA DA314471 (U) Genetic Engineering of Clostridium difficile Toxin A Vaccine 12. PERSONAL AUTHOR(S) Lycurgus L. Muldrow and Joe... Clostridium difficile Vaccine 06 o2 Recombinant DNA 06 o3 RA 1 19. ABSTRACT (Continue on revere if n.ece•x••y and itd•entify by 0o/ r ou er).. .... Recombinant

  6. Clostridium novyi, sordellii, and tetani: mechanisms of disease.

    PubMed

    Aronoff, David M

    2013-12-01

    Clostridia represent a diverse group of spore-forming gram positive anaerobes that include several pathogenic species. In general, diseases caused by clostridia are a result of intoxication of the infected host. Thus, clostridial toxins have been targeted for diagnostic, therapeutic, and preventive strategies against infection. Studying the mechanisms of action of clostridial toxins has not only shed light on the pathogenesis of infection but has provided important new insights into cell biology and immunology. A primary purpose of this manuscript is to provide a succinct review on the mechanisms of disease caused by intoxication by the pathogens Clostridium tetani, Clostridium novyi, and Clostridium sordellii.

  7. Secretion of clostridium cellulase by E. coli

    DOEpatents

    Yu, Ida Kuo

    1998-01-01

    A gene, encoding an endocellulase from a newly isolated mesophilic Clostridium strain IY-2 which can digest bamboo fibers, cellulose, rice straw, and sawdust, was isolated by shotgun cloning in an E. coli expression plasmid pLC2833. E. coli positive clones were selected based on their ability to hydrolyze milled bamboo fibers and cellulose present in agar plates. One clone contained a 2.8 kb DNA fragment that was responsible for cellulase activity. Western blot analyses indicated that the positive clone produced a secreted cellulase with a mass of about 58,000 daltons that was identical in size to the subunit of one of the three major Clostridium cellulases. The products of cellulose digestion by this cloned cellulase were cellotetraose and soluble higher polymers. The cloned DNA contained signal sequences capable of directing the secretion of heterologous proteins from an E. coli host. The invention describes a bioprocess for the treatment of cellulosic plant materials to produce cellular growth substrates and fermentation end products suitable for production of liquid fuels, solvents, and acids.

  8. Tea and Recurrent Clostridium difficile Infection

    PubMed Central

    Starley, Brad; Galagan, Jack Carl; Yabes, Joseph Michael; Evans, Sara

    2016-01-01

    Background and Aims. Studies have shown effects of diet on gut microbiota. We aimed to identify foods associated with recurrent Clostridium difficile infection (CDI). Methods. In this cross-sectional survey, consecutive patients diagnosed with CDI were identified by electronic medical records. Colitis symptoms and positive Clostridium difficile assay were confirmed. Health-care onset-health-care facility associated CDI was excluded. Food surveys were mailed to 411 patients. Survey responses served as the primary outcome measure. Spearman's rank correlation identified risk factors for CDI recurrence. Results. Surveys were returned by 68 patients. Nineteen patients experienced CDI recurrence. Compared to patients without CDI recurrence, patients with CDI recurrence had more antibiotics prescribed preceding their infection (p = 0.003). Greater numbers of the latter also listed tea (p = 0.002), coffee (p = 0.013), and eggs (p = 0.013), on their 24-hour food recall. Logistic regression identified tea as the only food risk factor for CDI recurrence (adjusted OR: 5.71; 95% CI: 1.26–25.89). Conclusion. The present results indicate a possible association between tea and CDI recurrence. Additional studies are needed to characterize and confirm this association. PMID:27651790

  9. [Selected aspects of Clostridium difficile infection].

    PubMed

    Mehlich, Agnieszka; Górska, Sabina; Gamian, Andrzej; Myc, Andrzej

    2015-05-05

    Clostridium difficile pathogen is a cause of the most frequent nosocomial infection, which is antibiotic-associated diarrhea. Antibiotic treatment causes disruption of the microbiome balance, which makes the gut a friendly environment for the pathogen. It leads to pseudomembranous colitis, toxic megacolon and even death. Clostridium difficile infection (CDI) is particularly dangerous to elderly patients, leading to the highest mortality rate. C. difficile is equipped with many virulence factors such as toxin A and B, binary toxin CDT, flagellum, S-layer proteins, Cwp66 and GroEL proteins, protease Cwp84, fibronectin-binding protein and the ability to form biofilm and spores. Problems with anti-CDI therapy prompt researchers and clinicians to seek alternative ways of therapy. Identification of immunological epitopes in outer layer proteins and the use of them as antigens for anti-CDI vaccines would be a rational approach to prevent the disease, but unfortunately such vaccines are not available yet. In this article we review the course of the disease, virulence and risk factors. We summarize briefly epidemiological data and the latest achievements in CDI treatment.

  10. Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks

    PubMed Central

    Suzuki, Yasunori; Nakama, Akiko; Kai, Akemi; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko; Kamata, Yoichi

    2015-01-01

    There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins’ gene(s) among the Genus Clostridium. PMID:26584048

  11. Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks.

    PubMed

    Irikura, Daisuke; Monma, Chie; Suzuki, Yasunori; Nakama, Akiko; Kai, Akemi; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko; Kamata, Yoichi

    2015-01-01

    There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins' gene(s) among the Genus Clostridium.

  12. Detection of toxigenic Clostridium perfringens and Clostridium botulinum from food sold in Lagos, Nigeria.

    PubMed

    Chukwu, Emelda E; Nwaokorie, Francisca O; Coker, Akitoye O; Avila-Campos, Mario J; Solis, Rosa L; Llanco, Luis A; Ogunsola, Folasade T

    2016-12-01

    Food-borne diseases contribute to the huge burden of sickness and death globally and in the last decade, have become more frequently reported in Africa. In line with this, food safety is becoming a significant and growing public health problem in Nigeria. Diarrhoea is a common problem in Nigeria and has been reported but there has been little data on the possibility of clostridia as aetiological agents. Clostridium species are ubiquitous in the environment and in the gastrointestinal tract of man and animals and can serve as a marker for faecal contamination. We set out to determine the potential of these foods to transmit Clostridium species. A total of 220 food commodities from six local governments in Lagos State were sampled. Isolates obtained were identified based on cultural, morphological and biochemical characteristics. Toxinotyping was done using multiplex-PCR with primers specific for alpha, beta, epsilon and iota-toxin genes, enterotoxigenic cpe gene and neurotoxigenic BoNt gene. Fifty (22.7%) clostridial species were isolated of which 29 (58%) were identified as C. perfringens. Toxinotyping of the 29 strains showed that 28 (96.6%) were toxin producing C. perfringens type A while one (3.4%) was C. perfringens type D. Two (4%) C. botulinum species were isolated and identified by 16S rRNA sequencing, both harbouring BoNt/A gene. The contamination rates of food with Clostridium species show that food hygiene is a problem and Clostridium species may be a source of food borne disease in Lagos State, Nigeria.

  13. Sigma Factor Regulated Cellular Response in a Non-solvent Producing Clostridium beijerinckii Degenerated Strain: A Comparative Transcriptome Analysis

    PubMed Central

    Zhang, Yan; Jiao, Shengyin; Lv, Jia; Du, Renjia; Yan, Xiaoni; Wan, Caixia; Zhang, Ruijuan; Han, Bei

    2017-01-01

    Clostridium beijerinckii DG-8052, derived from NCIMB 8052, cannot produce solvent or form spores, a phenomenon known as degeneration. To explore the mechanisms of degeneration at the gene level, transcriptomic profiles of the wild-type 8052 and DG-8052 strains were compared. Expression of 5168 genes comprising 98.6% of the genome was assessed. Interestingly, 548 and 702 genes were significantly up-regulated in the acidogenesis and solventogenesis phases of DG-8052, respectively, and mainly responsible for the phosphotransferase system, sugar metabolic pathways, and chemotaxis; meanwhile, 699 and 797 genes were significantly down-regulated, respectively, and mainly responsible for sporulation, oxidoreduction, and solventogenesis. The functions of some altered genes, including 286 and 333 at the acidogenesis and solventogenesis phases, respectively, remain unknown. Dysregulation of the fermentation machinery was accompanied by lower transcription levels of glycolysis rate-limiting enzymes (pfk and pyk), and higher transcription of cell chemotaxis genes (cheA, cheB, cheR, cheW, and cheY), controlled mainly by σ54 at acidogenesis. Meanwhile, abnormal spore formation was associated with repressed spo0A, sigE, sigF, sigG, and sigK which are positively regulated by σ70, and correspondingly inhibited expression of CoA-transferase at the solventogenesis phase. These findings indicated that morphological and physiological changes in the degenerated Clostridium strain may be related to altered expression of sigma factors, providing valuable targets for strain development of Clostridium species. PMID:28194137

  14. Clostridium botulinum: a bug with beauty and weapon.

    PubMed

    Shukla, H D; Sharma, S K

    2005-01-01

    Clostridium botulinum, a Gram-positive, anaerobic spore-forming bacteria, is distinguished by its significant clinical applications as well as its potential to be used as bioterror agent. Growing cells secrete botulinum neurotoxin (BoNT), the most poisonous of all known poisons. While BoNT is the causative agent of deadly neuroparalytic botulism, it also serves as a remarkably effective treatment for involuntary muscle disorders such as blepharospasm, strabismus, hemifacial spasm, certain types of spasticity in children, and other ailments. BoNT is also used in cosmetology for the treatment of glabellar lines, and is well-known as the active component of the anti-aging medications Botox and Dysport. In addition, recent reports show that botulinum neurotoxin can be used as a tool for pharmaceutical drug delivery. However, BoNT remains the deadliest of all toxins, and is viewed by biodefense researchers as a possible agent of bioterrorism (BT). Among seven serotypes, C. botulinum type A is responsible for the highest mortality rate in botulism, and thus has the greatest potential to act as biological weapon. Genome sequencing of C. botulinum type A Hall strain (ATCC 3502) is now complete, and has shown the genome size to be 3.89 Mb with a G+C content of approximately 28.2%. The bacterium harbors a 16.3 kb plasmid with a 26.8% G+C content--slightly lower than that of the chromosome. Most of the virulence factors in C. botulinum are chromosomally encoded; bioinformatic analysis of the genome sequence has shown that the plasmid does not harbor toxin genes or genes for related virulence factors. Interestingly, the plasmid does harbor genes essential to replication, including dnaE, which encodes the alpha subunit of DNA polymerase III which has close similarity with its counterpart in C. perfringens strain 13. The plasmid also contains similar genes to those that encode the ABC-type multidrug transport ATPase, and permease. The presence of ABC-type multidrug transport

  15. Production and counting of spores of Clostridium chauvoei.

    PubMed

    Bagadi, H O

    1977-06-01

    The concentration and viability of spores produced by four different strains of Clostridium chauvoei (C. feseri) grown in a modified medium for 18 days are described. The medium yielded enough viable spores for experimental work.

  16. First Report of Clostridium lavalense Isolated in Human Blood Cultures

    PubMed Central

    Bourque, Christine; Thibault, Louise; Côté, Jean-Charles; Domingo, Marc-Christian

    2016-01-01

    An 88-year-old man was admitted to the hospital with worsening malaise, fever, and weakness. Anaerobic blood culture bottles revealed the presence of an anaerobic, Gram-positive sporulated bacillus. Empirical antibiotherapy with intravenous piperacillin-tazobactam was initiated. The patient defervesced after four days and was switched to oral amoxicillin on his 6th day of antibiotic therapy and later discharged from the hospital. Four months later, he had recovered. The bacterium was initially identified as Clostridium butyricum using anaerobic manual identification panel. 16S rRNA gene sequence and phylogenetic analysis showed the bacterium to be Clostridium lavalense, a recently described species with no previously published case of isolation in human diagnostic samples so far. This is the first report of Clostridium lavalense isolation from human blood cultures. Further studies are needed in order to elucidate the role of Clostridium lavalense in human disease and its virulence factors. PMID:27478446

  17. Flooding and Clostridium difficile infection: a case-crossover analysis

    EPA Science Inventory

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospttalized and/or receiving antibiotics; however, community­ associated infections affecting otherwise healthy individuals have become more ...

  18. Characterization of Clostridium sp. RKD producing botulinum-like neurotoxin.

    PubMed

    Dixit, Aparna; Dhaked, Ram Kumar; Alam, Syed Imteyaz; Singh, Lokendra

    2005-07-01

    A Gram positive, motile, rod-shaped, strictly anaerobic bacterium isolated from intestine of decaying fish was identified as Clostridium sp. RKD and produced a botulinum type B-like neurotoxin as suggested by mouse bioassay and protection with anti botulinum antibodies. The neurotoxicity was functionally characterized by the phrenic nerve hemi-diaphragm assay. Phylogenetic analysis based on 16S rDNA sequence, placed it at a different position from the reported strains of Clostridium botulinum. The strain exhibited differences from both Clostridium botulinum and Clostridium tetani with respect to morphological, biochemical and chemotaxonomic characteristics. Botulinum group specific and serotype specific primers amplified the DNA fragments of 260 and 727 bp, respectively, indicating presence of botulinum type 'B' toxin gene. Sequence of nearly 700 bp amplified using primers specific for botulinum neurotoxin type B gene, did not show any significant match in the database when subjected to BLAST search.

  19. Molecular Characterization of a Clostridium difficile Bacteriophage and Its Cloned Biologically Active Endolysin▿ †

    PubMed Central

    Mayer, Melinda J.; Narbad, Arjan; Gasson, Michael J.

    2008-01-01

    Clostridium difficile infection is increasing in both frequency and severity, with the emergence of new highly virulent strains highlighting the need for more rapid and effective methods of control. Here, we show that bacteriophage endolysin can be used to inhibit and kill C. difficile. The genome sequence of a novel bacteriophage that is active against C. difficile was determined, and the bacteriophage endolysin gene was subcloned and expressed in Escherichia coli. The partially purified endolysin was active against 30 diverse strains of C. difficile, and importantly, this group included strains of the major epidemic ribotype 027 (B1/NAP1). In contrast, a range of commensal species that inhabit the gastrointestinal tract, including several representatives of the clostridium-like Firmicutes, were insensitive to the endolysin. This endolysin provides a platform for the generation of both therapeutic and detection systems to combat the C. difficile problem. To investigate a method for the protected delivery and production of the lysin in the gastrointestinal tract, we demonstrated the expression of active CD27L endolysin in the lactic acid bacterium Lactococcus lactis MG1363. PMID:18708505

  20. Analysis of Proline Reduction in the Nosocomial Pathogen Clostridium difficile▿

    PubMed Central

    Jackson, Sarah; Calos, Mary; Myers, Andrew; Self, William T.

    2006-01-01

    Clostridium difficile, a proteolytic strict anaerobe, has emerged as a clinically significant nosocomial pathogen in recent years. Pathogenesis is due to the production of lethal toxins, A and B, members of the large clostridial cytotoxin family. Although it has been established that alterations in the amino acid content of the growth medium affect toxin production, the molecular mechanism for this observed effect is not yet known. Since there is a paucity of information on the amino acid fermentation pathways used by this pathogen, we investigated whether Stickland reactions might be at the heart of its bioenergetic pathways. Growth of C. difficile on Stickland pairs yielded large increases in cell density in a limiting basal medium, demonstrating that these reactions are tied to ATP production. Selenium supplementation was required for this increase in cell yield. Analysis of genome sequence data reveals genes encoding the protein components of two key selenoenzyme reductases, glycine reductase and d-proline reductase (PR). These selenoenzymes were expressed upon the addition of the corresponding Stickland acceptor (glycine, proline, or hydroxyproline). Purification of the selenoenzyme d-proline reductase revealed a mixed complex of PrdA and PrdB (SeCys-containing) proteins. PR utilized only d-proline but not l-hydroxyproline, even in the presence of an expressed and purified proline racemase. PR was found to be independent of divalent cations, and zinc was a potent inhibitor of PR. These results show that Stickland reactions are key to the growth of C. difficile and that the mechanism of PR may differ significantly from that of previously studied PR from nonpathogenic species. PMID:17041035

  1. The effect of probiotics on Clostridium difficile diarrhea.

    PubMed

    Pochapin, M

    2000-01-01

    Clostridium difficile is the leading cause of nosocomially acquired intestinal infection in the United States, affecting virtually all cases of pseudomembranous colitis and up to 20% of cases of antibiotic-associated diarrhea. Even after receiving antibiotic treatment with either metronidazole or vancomycin, 20% of patients will have recurrent Clostridium difficile diarrhea. An innovative approach to the problem involves the introduction of competing, nonpathogenic (probiotic) organisms into the intestinal tract to restore microbial balance. The theoretical premise behind this approach is that the protective intestinal microflora is damaged by antibiotic treatment; the initial antibiotic exposure thus leaves the host susceptible to colonization and subsequent infection by Clostridium difficile. A so-called "second-hit" to the intestinal microflora occurs when the infected host is treated with flagyl or vancomycin, further destroying susceptible bacterial flora. Probiotic agents, such as Lactobacillus GG and Saccharomyces boulardii, have been studied for the treatment of Clostridium difficile. We are currently running a prospective, randomized, placebo-controlled trial of Lactobacillus GG in combination with standard antibiotics for the treatment of Clostridium difficile infection. Although it is too early to draw statistically significant conclusions, two patterns seem to be emerging: Lactobacillus GG is effective in reducing the 3-wk recurrence rate of Clostridium difficile, and patients feel better when taking Lactobacillus GG, as compared with the placebo, with early disappearance of abdominal cramps and diarrhea. In conclusion, the use of probiotics for the treatment of primary and recurrent Clostridium difficile diarrhea looks promising. Patients seem to have less recurrent Clostridium difficile diarrhea and early symptomatic improvement when using the probiotic Lactobacillus GG.

  2. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation.

    PubMed

    Ota, Miki; Sakuragi, Hiroshi; Morisaka, Hironobu; Kuroda, Kouichi; Miyake, Hideo; Tamaru, Yutaka; Ueda, Mitsuyoshi

    2013-01-01

    Xylose isomerase (XI) is a key enzyme in the conversion of D-xylose, which is a major component of lignocellulosic biomass, to D-xylulose. Genomic analysis of the bacterium Clostridium cellulovorans revealed the presence of XI-related genes. In this study, XI derived from C. cellulovorans was produced and displayed using the yeast cell-surface display system, and the xylose assimilation and fermentation properties of this XI-displaying yeast were examined. XI-displaying yeast grew well in medium containing xylose as the sole carbon source and directly produced ethanol from xylose under anaerobic conditions.

  3. Fecal microbiota transplantation in the treatment of Clostridium difficile infections.

    PubMed

    Austin, Matthew; Mellow, Mark; Tierney, William M

    2014-06-01

    In recent years, Clostridium difficile infections have become more frequent, more severe, more refractory to standard treatment, and more likely to recur. Current antibiotic treatment regimens for Clostridium difficile infection alter the normal gut flora, which provide colonization resistance against Clostridium difficile. Over the past few years, there has been a marked increase in the knowledge of the gut microbiota and its role in health maintenance and disease causation. This has, fortuitously, coincided with the use of a unique microbial replacement therapy, fecal microbiota transplantation, in the treatment of patients with multiple recurrent Clostridium difficile infections. We briefly review current knowledge of the gut microbiota's functions. We then review the indications for use of fecal microbiota transplantation in Clostridium difficile infection, the techniques employed, and results of treatment. Fecal microbiota transplantation has been shown to be efficacious for patients with multiply recurrent Clostridium difficile infections (reported cure rates of 90%), with an excellent short-term safety profile, and has been included in the American College of Gastroenterology treatment guidelines for this troublesome disease.

  4. Characterization of flagellin from Clostridium chauvoei.

    PubMed

    Kojima, A; Amimoto, K; Ohgitani, T; Tamura, Y

    1999-06-30

    Differential centrifugation and cesium chloride-equilibrium centrifugation were used to purify the flagella from the strain Okinawa of the formalin-fixed Clostridium chauvoei. SDS-PAGE profile of purified flagella showed that a major protein band with a molecular mass of 46 kDa, corresponding to the flagellin monomer, and at least two minor protein bands with molecular masses of approximately 73 and 100 kDa were found. The amino acid composition of C. chauvoei flagellin was similar to the flagellin of Salmonella typhimurium and Bacillus subtilis. In addition, C. chauvoei flagellin monomer shared limited sequence homology with the N-terminal amino acid sequence reported for other bacterial flagellins. N-terminal sequences of two minor bands corresponded to the flagellin monomer, indicating that higher molecular mass bands were polymeric forms of the flagellin monomer.

  5. [Laboratory diagnosis of Clostridium difficile infection].

    PubMed

    Alcalá-Hernández, Luis; Mena-Ribas, Ana; Niubó-Bosh, Jordi; Marín-Arriaza, Mercedes

    2016-11-01

    Clostridium difficile is the leading cause of nosocomial diarrhoea in developed countries, and is one of the main aetiologic agents of community diarrhea. The eruption of the hypervirulent strain BI/NAP1/027 has given rise to an increase in the morbidity and mortality of C.difficile infection (CDI). This document aims to review the main clinical pictures of CDI and the laboratory diagnosis, including sampling, transport and storage of specimens, specimen processing, diagnostic procedures, antimicrobial susceptibility testing, and molecular characterisation of the isolates. The main purpose of the article is to develop a practical document that provides answers to the main questions that arise in the laboratory diagnosis of CDI.

  6. Clostridium difficile infection in older adults

    PubMed Central

    Jump, Robin LP

    2014-01-01

    Clostridium difficile infection, the most frequent cause of nosocomial diarrhea, disproportionately affects older adults. The two most important risk factors for developing C. difficile infection are antimicrobial exposure and age >65 years old. Risk factors specific to older adults are frequent interactions with healthcare systems and age-related changes in physiology, including immune senescence and changes to the gut microbiome. Metronidazole and oral vancomcyin are the mainstays of conventional treatment for C. difficile infection. Alternative therapies include fidaxomicin, a narrow-spectrum macrocyclic antibiotic, and fectal bacteriotherapy, which offers an excellent therapeutic outcome. Strategies to prevent C. difficile infections include enhanced infection control measures and reducing inappropriate antimicrobial use through stewardship. PMID:24955106

  7. Clostridium difficile Infection and Fecal Microbiota Transplant.

    PubMed

    Liubakka, Alyssa; Vaughn, Byron P

    2016-07-01

    Clostridium difficile infection (CDI) is a major source of morbidity and mortality for hospitalized patients. Although most patients have a clinical response to existing antimicrobial therapies, recurrent infection develops in up to 30% of patients. Fecal microbiota transplant is a novel approach to this complex problem, with an efficacy rate of nearly 90% in the setting of multiple recurrent CDI. This review covers the current epidemiology of CDI (including toxigenic and nontoxigenic strains, risk factors for infection, and recurrent infection), methods of diagnosis, existing first-line therapies in CDI, the role of fecal microbiota transplant for multiple recurrent CDIs, and the potential use of fecal microbial transplant for patients with severe or refractory infection.

  8. Carbohydrate-based Clostridium difficile vaccines.

    PubMed

    Monteiro, Mario A; Ma, Zuchao; Bertolo, Lisa; Jiao, Yuening; Arroyo, Luis; Hodgins, Douglas; Mallozzi, Michael; Vedantam, Gayatri; Sagermann, Martin; Sundsmo, John; Chow, Herbert

    2013-04-01

    Clostridium difficile is responsible for thousands of deaths each year and a vaccine would be welcomed, especially one that would disrupt bacterial maintenance, colonization and persistence in carriers and convalescent patients. Structural explorations at the University of Guelph (ON, Canada) discovered that C. difficile may express three phosphorylated polysaccharides, named PSI, PSII and PSIII; this review captures our recent efforts to create vaccines based on these glycans, especially PSII, the common antigen that has precipitated immediate attention. The authors describe the design and immunogenicity of vaccines composed of raw polysaccharides and conjugates thereof. So far, it has been observed that anti-PSII antibodies can be raised in farm animals, mice and hamster models; humans and horses carry anti-PSII IgA and IgG antibodies from natural exposure to C. difficile, respectively; phosphate is an indispensable immunogenic epitope and vaccine-induced PSII antibodies recognize PSII on C. difficile outer surface.

  9. Therapeutic approaches for Clostridium difficile infections.

    PubMed

    Marsh, Jane W; Curry, Scott R

    2013-10-02

    Metronidazole and vancomycin remain the front-line therapies for most Clostridium difficile infections (CDI). However, recurrent CDI occurs in ∼ 25% of patients, causing significant morbidity and mortality and healthcare costs. For this population, traditional antibiotic therapies fail and new treatment options are greatly needed. The US Food and Drug Administration recently approved fidaxomicin for CDI treatment. This narrow-spectrum antibiotic preserves the normal gut microbiota and shows promise as a treatment for severe and recurrent CDI. Monoclonal antibodies and vaccines directed against toxin are currently in clinical trials and represent alternative, non-antibiotic therapies. Less traditional therapeutic interventions include bacteriotherapy with non-toxigenic C. difficile and fecal transplant. This commentary will provide an overview of current and forthcoming CDI therapies.

  10. Investigational new treatments for Clostridium difficile infection.

    PubMed

    Ivarsson, Mattias E; Leroux, Jean-Christophe; Castagner, Bastien

    2015-05-01

    Significant progress has been made by industry and academia in the past two years to address the medical threats posed by Clostridium difficile infection. These developments provide an excellent example of how patient need has driven a surge of innovation in drug discovery. Indeed, only two drugs were approved for the infection in the past 30 years but there are 13 treatment candidates in clinical trials today. What makes the latter number even more remarkable is the diversity in the strategies represented (antibiotics, microbiota supplements, vaccines, antibiotic quenchers and passive immunization). In this review, we provide a snapshot of the current stage of these breakthroughs and argue that there is still room for further innovation in treating C. difficile infection.

  11. Clostridium difficile: clinical disease and diagnosis.

    PubMed Central

    Knoop, F C; Owens, M; Crocker, I C

    1993-01-01

    Clostridium difficile is an opportunistic pathogen that causes a spectrum of disease ranging from antibiotic-associated diarrhea to pseudomembranous colitis. Although the disease was first described in 1893, the etiologic agent was not isolated and identified until 1978. Since clinical and pathological features of C. difficile-associated disease are not easily distinguished from those of other gastrointestinal diseases, including ulcerative colitis, chronic inflammatory bowel disease, and Crohn's disease, diagnostic methods have relied on either isolation and identification of the microorganism or direct detection of bacterial antigens or toxins in stool specimens. The current review focuses on the sensitivity, specificity, and practical use of several diagnostic tests, including methods for culture of the etiologic agent, cellular cytotoxicity assays, latex agglutination tests, enzyme immunoassay systems, counterimmunoelectrophoresis, fluorescent-antibody assays, and polymerase chain reactions. PMID:8358706

  12. Clostridium difficile outbreaks: prevention and treatment strategies

    PubMed Central

    Martinez, Fernando J; Leffler, Daniel A; Kelly, Ciaran P

    2012-01-01

    The incidence and severity of Clostridium difficile infection (CDI) have increased dramatically over the past decade. Its treatment, however, has largely remained the same with the exception of oral vancomycin use as a first-line agent in severe disease. From 1999 to 2004, 20,642 deaths were attributed to CDI in the United States, almost 7 times the rate of all other intestinal infections combined. Worldwide, several major CDI outbreaks have occurred, and many of these were associated with the NAP1 strain. This ‘epidemic’ strain has contributed to the rising incidence and mortality of CDI. The purpose of this article is to review the current management, treatment, infection control, and prevention strategies that are needed to combat this increasingly morbid disease. PMID:22826646

  13. Clostridium difficile infection in horses: a review.

    PubMed

    Diab, S S; Songer, G; Uzal, F A

    2013-11-29

    Clostridium difficile is considered one of the most important causes of diarrhea and enterocolitis in horses. Foals and adult horses are equally susceptible to the infection. The highly resistant spore of C. difficile is the infectious unit of transmission, which occurs primarily via the fecal-oral route, with sources of infection including equine feces, contaminated soil, animal hospitals, and feces of other animals. Two major risk factors for the development of C. difficile associated disease (CDAD) in adult horses are hospitalization and antimicrobial treatment, although sporadically, cases of CDAD can occur in horses that have not received antimicrobials or been hospitalized. The most common antibiotics associated with CDAD in horses are erythromycin, trimethoprim/sulfonamides, β-lactam antimicrobials, clindamycin, rifampicin, and gentamicin. Clinical signs and intestinal lesions of CDAD infection are not specific and they cannot be used to distinguish infections by C. difficile from infections by other agents, such as Clostridium perfringens or Salmonella sp. The distribution of lesions throughout the intestinal tract seems to be age-dependent. Small intestine is invariably affected, and colon and cecum may or may not have lesions in foals<1-month old. Naturally acquired disease in older foals and adult horses has a more aboral distribution, affecting colon and sometimes cecum, but rarely the small intestine. Detection of toxin A, toxin B or both in intestinal contents or feces is considered the most reliable diagnostic criterion for CDAD in horses. Isolation of toxigenic strains of C. difficile from horses with intestinal disease is highly suggestive of CDAD. A better understanding of pathogenesis, reservoirs of infection, and vaccines and other methods of control is needed. Also further studies are recommended to investigate other possible predisposing factors and/or etiological agents of enteric diseases of horses.

  14. Ferredoxin and Formyltetrahydrofolate Synthetase: Comparative Studies with Clostridium acidiurici, Clostridium cylindrosporum, and Newly Isolated Anaerobic Uric Acid-Fermenting Strains

    PubMed Central

    Champion, Alexander B.; Rabinowitz, Jesse C.

    1977-01-01

    Six strains of Clostridium acidiurici and three strains of C. cylindrosporum were isolated from soil samples by enrichment culture with uric acid as the source of carbon, nitrogen, and energy. The newly isolated strains were characterized by their spore morphology and the amounts of glycine and formate formed by the fermentation of uric acid. The strains were easily identified as belonging to one species or the other on the basis of spore morphology and formate production. The crystal properties and spectra of the native ferredoxins of all the strains isolated and the amino acid composition and partial carboxy-terminal sequence of all their apoferredoxins were determined. All the ferredoxins were tested for cross-reactivity with antiserum to C. acidiurici ferredoxin by microcomplement fixation. Five of the six C. acidiurici strains, which had ferredoxins with amino acid compositions identical to that from C. acidiurici, also showed immunological identity (immunological distance = 0.0). These results suggest sequence identity. The one strain with a different amino acid composition failed to show complete cross-reactivity. Two of the three C. cylindrosporum strains have ferredoxin amino acid compositions identical to that from C. cylindrosporum. The third strain had a minimum of five differences in sequence. All C. cylindrosporum strains had ferredoxins that differed considerably from C. acidiurici strains (minimum of eight to nine differences), and none of these ferredoxins cross-reacted with antisera to C. acidiurici ferredoxin. Antisera were prepared to formyltetrahydrofolate synthetase from C. acidiurici and C. cylindrosporum, and all possible comparisons were made by using immunodiffusion and microcomplement fixation. There is more intraspecies variation in the synthetases than in the ferredoxins; however, the results suggest considerable interspecies differences in both proteins. These results suggest a low degree of genomic relatedness between the two species

  15. Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation

    SciTech Connect

    McKeown, Catherine K; Brown, Steven D

    2011-01-01

    The ability of Clostridium thermocellum ATCC 27405 wild-type strain to hydrolyze cellulose and ferment the degradation products directly to ethanol and other metabolic byproducts makes it an attractive candidate for consolidated bioprocessing of cellulosic biomass to biofuels. In this study, whole-genome microarrays were used to investigate the expression of C. thermocellum mRNA during growth on crystalline cellulose in controlled replicate batch fermentations. A time-series analysis of gene expression revealed changes in transcript levels of {approx}40% of genes ({approx}1300 out of 3198 ORFs encoded in the genome) during transition from early-exponential to late-stationary phase. K-means clustering of genes with statistically significant changes in transcript levels identified six distinct clusters of temporal expression. Broadly, genes involved in energy production, translation, glycolysis and amino acid, nucleotide and coenzyme metabolism displayed a decreasing trend in gene expression as cells entered stationary phase. In comparison, genes involved in cell structure and motility, chemotaxis, signal transduction and transcription showed an increasing trend in gene expression. Hierarchical clustering of cellulosome-related genes highlighted temporal changes in composition of this multi-enzyme complex during batch growth on crystalline cellulose, with increased expression of several genes encoding hydrolytic enzymes involved in degradation of non-cellulosic substrates in stationary phase. Overall, the results suggest that under low substrate availability, growth slows due to decreased metabolic potential and C. thermocellum alters its gene expression to (i) modulate the composition of cellulosomes that are released into the environment with an increased proportion of enzymes than can efficiently degrade plant polysaccharides other than cellulose, (ii) enhance signal transduction and chemotaxis mechanisms perhaps to sense the oligosaccharide hydrolysis products

  16. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    SciTech Connect

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V; Parks, Jerry M; Smolin, Nikolai; Yang, Shihui; Land, Miriam L; Klingeman, Dawn Marie; Bhandiwad, Ashwini; Rodriguez, Jr., Miguel; Raman, Babu; Shao, Xiongjun; Mielenz, Jonathan R; Smith, Jeremy C; Keller, Martin; Lynd, Lee R

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

  17. Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions.

    PubMed

    Xie, Bin-Tao; Liu, Zi-Yong; Tian, Lei; Li, Fu-Li; Chen, Xiao-Hua

    2015-02-01

    In this study, cell growth, gene expression and ethanol production were monitored under different fermentation conditions. Like its heterotrophical ABE-producing relatives, a switch from acidogenesis to solventogenesis of Clostridium ljungdahlii during the autotrophic fermentation with CO/CO2 could be observed, which occurred surprisingly in the late-log phase rather than in the transition phase. The gene expression profiles indicated that aor1, one of the putative aldehyde oxidoreductases in its genome played a critical role in the formation of ethanol, and its transcription could be induced by external acids. Moreover, a low amount of CaCO3 was proved to have positive influences on the cell density and substrate utilization, followed by an increase of over 40% ethanol and 30% acetate formation.

  18. Identification and characterization of the surface-layer protein of Clostridium tetani.

    PubMed

    Qazi, Omar; Brailsford, Alan; Wright, Anne; Faraar, Jeremy; Campbell, Jim; Fairweather, Neil

    2007-09-01

    Many bacterial species produce a paracrystalline layer, the surface layer, which completely surrounds the exterior of the cell. In some bacteria, the surface layer is implicated in pathogenesis. Two proteins present in cell wall extracts from Clostridium tetani have been investigated and identified one of these has been unambiguously as the surface-layer protein (SLP). The gene, slpA, has been located in the genome of C. tetani E88 that encodes the SLP. The molecular mass of the protein as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is considerably larger than that predicted from the gene; however the protein does not appear to be glycosylated. Furthermore, analysis of five C. tetani strains, including three recent clinical isolates, shows considerable variation in the sizes of the SLP.

  19. Characterization of a heme oxygenase of Clostridium tetani and its possible role in oxygen tolerance.

    PubMed

    Brüggemann, Holger; Bauer, Rosalie; Raffestin, Stéphanie; Gottschalk, Gerhard

    2004-10-01

    In order to colonize mammalian wounds, the anaerobic bacterium Clostridium tetani must presumably cope with temporary oxic conditions. Therefore, the recently decoded genome sequence was searched for genes which could confer oxygen tolerance. A few identified systems such as superoxide dismutases and peroxidases are probably responsible for this protection against toxic oxygen species. Another system was detected, a heme oxygenase which could have a role in establishing or maintaining an anoxic microenvironment in the process of wound colonization. The hemT gene encoding the heme oxygenase is expressed in C. tetani, as shown by reverse transcription-PCR. When overexpressed in Escherichia coli, the enzyme converts heme to biliverdin under strict oxic conditions.

  20. Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria.

    PubMed

    Sun, Jibin; van den Heuvel, Joop; Soucaille, Philippe; Qu, Yinbo; Zeng, An-Ping

    2003-01-01

    The dihydroxyacetone (dha) regulon of bacteria encodes genes for the anaerobic metabolism of glycerol. In this work, genomic data are used to analyze and compare the dha regulon and related genes in different organisms in silico with respect to gene organization, sequence similarity, and possible functions. Database searches showed that among the organisms, the genomes of which have been sequenced so far, only two, i.e., Klebsiella pneumoniae MGH 78578 and Clostridium perfringens contain a complete dha regulon bearing all known enzymes. The components and their organization in the dha regulon of these two organisms differ considerably from each other and also from the previously partially sequenced dha regulons in Citrobacter freundii, Clostridium pasteurianum, and Clostridium butyricum. Unlike all of the other organisms, genes for the oxidative and reductive pathways of anaerobic glycerol metabolism in C. perfringens are located in two separate organization units on the chromosome. Comparisons of deduced protein sequences of genes with similar functions showed that the dha regulon components in K. pneumoniae and C. freundii have high similarities (80-95%) but lower similarities to those of the Clostridium species (30-80%). Interestingly, the protein sequence similarities among the dha genes of the Clostridium species are in many cases even lower than those between the Clostridium species and K. pneumoniae or C. freundii, suggesting two different types of dha regulon in the Clostridium species studied. The in silico reconstruction and comparison of dha regulons revealed several new genes in the microorganisms studied. In particular, a novel dha kinase that is phosphoenolpyruvate-dependent is identified and experimentally confirmed for K. pneumoniae in addition to the known ATP-dependent dha kinase. This finding gives new insights into the regulation of glycerol metabolism in K. pneumoniae and explains some hitherto not well understood experimental observations.

  1. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov

    NASA Technical Reports Server (NTRS)

    Paster, B. J.; Russell, J. B.; Yang, C. M.; Chow, J. M.; Woese, C. R.; Tanner, R.

    1993-01-01

    In previous studies, gram-positive bacteria which grew rapidly with peptides or an amino acid as the sole energy source were isolated from bovine rumina. Three isolates, strains C, FT (T = type strain), and SR, were considered to be ecologically important since they produced up to 20-fold more ammonia than other ammonia-producing ruminal bacteria. On the basis of phenotypic criteria, the taxonomic position of these new isolates was uncertain. In this study, the 16S rRNA sequences of these isolates and related bacteria were determined to establish the phylogenetic positions of the organisms. The sequences of strains C, FT, and SR and reference strains of Peptostreptococcus anaerobius, Clostridium sticklandii, Clostridium coccoides, Clostridium aminovalericum, Acetomaculum ruminis, Clostridium leptum, Clostridium lituseburense, Clostridium acidiurici, and Clostridium barkeri were determined by using a modified Sanger dideoxy chain termination method. Strain C, a large coccus purported to belong to the genus Peptostreptococcus, was closely related to P. anaerobius, with a level of sequence similarity of 99.6%. Strain SR, a heat-resistant, short, rod-shaped organism, was closely related to C. sticklandii, with a level of sequence similarity of 99.9%. However, strain FT, a heat-resistant, pleomorphic, rod-shaped organism, was only distantly related to some clostridial species and P. anaerobius. On the basis of the sequence data, it was clear that strain FT warranted designation as a separate species. The closest known relative of strain FT was C. coccoides (level of similarity, only 90.6%). Additional strains that are phenotypically similar to strain FT were isolated in this study.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil.

    PubMed

    Warnick, Thomas A; Methé, Barbara A; Leschine, Susan B

    2002-07-01

    An obligately anaerobic, mesophilic, cellulolytic bacterium, strain ISDgT, was isolated from forest soil. Cells of this isolate stained Gram-negative, despite possessing a Gram-positive cell-wall ultrastructure, and were motile, straight rods that formed spherical terminal spores that swelled the sporangium. Cellulose, pectin, polygalacturonic acid, starch, xylan, arabinose, cellobiose, fructose, galactose, gentiobiose, glucose, lactose, maltose, mannose, ribose and xylose supported growth. The major end products of fermentation were ethanol, acetate, CO2 and H2; formate and lactate were minor products. The optimum temperature for growth was 35-37 degrees C. Phylogenetic analyses based on 16S rRNA sequence comparisons showed that strain ISDgT was related to a group of anaerobes that included Clostridium herbivorans, Clostridium polysaccharolyticum and Clostridium populeti. The G+C content of this strain was 35.9 mol%. On the basis of numerous genotypic and phenotypic differences between strain ISDgT and its close relatives, strain ISDgT is proposed as a novel species in the genus Clostridium, for which the name Clostridium phytofermentans sp. nov. is proposed. The type strain is ISDgT (= ATCC 700394T).

  3. Antimicrobial stewardship and Clostridium difficile-associated diarrhea.

    PubMed

    Piacenti, Frank J; Leuthner, Kimberly D

    2013-10-01

    Antimicrobial stewardship programs are essential to health care institutions to promote the appropriate use of antibiotics not only to decrease antimicrobial resistance but to prevent the spread and infection of Clostridium difficile. Clostridium difficile-associated diarrhea is increasing rapidly in the United States and is now considered a major public health problem that poses an immediate threat to the health of patients prescribed antibiotics, more so than antimicrobial resistance. Clostridium difficile-associated disease is the result of collateral damage to the normal bacterial flora of the human body, which is an inevitable consequence of any antibiotic use. Antimicrobial stewardship programs such as audit with feedback and antibiotic restriction are designed to help limit Clostridium difficile infections and other hospital-associated organisms by optimizing antimicrobial selection, dosing, de-escalation, and duration of therapy. These programs also incorporate implementation of hospital-wide guidelines, staff education, enforcement of infection-control policies, and the use of electronic medical records when possible to help control antibiotic use. This article reviews the literature on how antimicrobial stewardship programs impact Clostridium difficile rates and discusses experiences in designing, implementing, monitoring, and follow-through of such programs.

  4. Purification and characterization of neurotoxin complex from a dual toxin gene containing Clostridium Botulinum Strain PS-5.

    PubMed

    Singh, Ajay K; Sachdeva, Amita; Degrasse, Jeffrey A; Croley, Timothy R; Stanker, Larry H; Hodge, David; Sharma, Shashi K

    2013-04-01

    Botulinum neurotoxins are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins. The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presence of NT genes was validated by PCR amplification of toxin specific fragments from genomic DNA of Clostridium botulinum strain PS-5 which indicated the presence of both serotype A and B genes on PS-5 genome. Further, TC was purified and characterized by Western blotting, Digoxin-enzyme linked immunosorbent assay, endopeptidase activity assay, and Liquid chromatography-Mass spectrometry. The data showed the presence of serotype A specific neurotoxin. Based on the analysis of neurotoxin genes and characterization of TC, PS-5 strain appears as a serotype A (B) strain of C. botulinum which produces only serotype A specific TC in the cell culture medium.

  5. Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum.

    PubMed

    Li, Lin; Ai, Hongxia; Zhang, Shexi; Li, Shuang; Liang, Zexin; Wu, Zhen-Qiang; Yang, Shang-Tian; Wang, Ju-Fang

    2013-09-01

    Cocultures of Clostridium beijerinckii and Clostridium tyrobutyricum in free-cell and immobilized-cell fermentation modes were investigated as a means of enhancing butanol production. The immobilized fermentation was performed in a fibrous-bed bioreactor (FBB). The results demonstrated that two-strain coculture significantly enhanced butanol production, yield and volumetric productivity compared with those in pure culture with or without butyric acid. Further, continuous immobilized-cell cocultures in two FBBs using glucose, cassava starch, or cane molasses were conducted at a dilution rate of 0.144 h(-1). The butanol production (6.66 g/L), yield (0.18 g/g), and productivity (0.96 g/L/h) were obtained with cassava starch as the substrate. Meanwhile, the acetone-butanol-ethanol (ABE) yield (0.36 g/g) was the highest among all processes investigated, suggesting that this continuous coculture mode may be suitable for industrial ABE production with no need for repeated sterilization and inoculation.

  6. Action of nitroheterocyclic drugs against Clostridium difficile

    PubMed Central

    Kumar, Manish; Adhikari, Sudip; Hurdle, Julian G.

    2014-01-01

    The nitroheterocyclic classes of drugs have a long history of use in treating anaerobic infections, as exemplified by metronidazole as a first-line treatment for mild-to-moderate Clostridium difficile infection (CDI). Since direct comparisons of the three major classes of nitroheterocyclic drugs (i.e. nitroimidazole, nitazoxanide and nitrofurans) and nitrosating agents against C. difficile are under-examined, in this study their actions against C. difficile were compared. Results show that whilst transient resistance occurs to metronidazole and nitazoxanide, stable resistance arises to nitrofurans upon serial passage. All compounds killed C. difficile at high concentrations in addition to the host defence nitrosating agent S-nitrosoglutathione (GSNO). This suggests that GSNO killing of C. difficile contributes to its efficacy in murine CDI. Although nitric oxide production could not be detected for the nitroheterocyclic drugs, the cellular response to metronidazole and nitrofurans has some overlap with the response to GSNO, causing significant upregulation of the hybrid-cluster protein Hcp that responds to nitrosative stress. These findings provide new insights into the action of nitroheterocyclic drugs against C. difficile. PMID:25129314

  7. Molecular genetics and pathogenesis of Clostridium perfringens.

    PubMed Central

    Rood, J I; Cole, S T

    1991-01-01

    Clostridium perfringens is the causative agent of a number of human diseases, such as gas gangrene and food poisoning, and many diseases of animals. Recently significant advances have been made in the development of C. perfringens genetics. Studies on bacteriocin plasmids and conjugative R plasmids have led to the cloning and analysis of many C. perfringens genes and the construction of shuttle plasmids. The relationship of antibiotic resistance genes to similar genes from other bacteria has been elucidated. A detailed physical map of the C. perfringens chromosome has been prepared, and numerous genes have been located on that map. Reproducible transformation methods for the introduction of plasmids into C. perfringens have been developed, and several genes coding for the production of extracellular toxins and enzymes have been cloned. Now that it is possible to freely move genetic information back and forth between C. perfringens and Escherichia coli, it will be possible to apply modern molecular methods to studies on the pathogenesis of C. perfringens infections. PMID:1779929

  8. Crystal structure of Clostridium difficile toxin A

    PubMed Central

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-01

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon1,2. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host3,4. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics. PMID:27571750

  9. Elimination of formate production in Clostridium thermocellum

    DOE PAGES

    Rydzak, Thomas; Lynd, Lee R.; Guss, Adam M.

    2015-07-11

    We study the ability of Clostridium thermocellum to rapidly degrade cellulose and ferment resulting hydrolysis products into ethanol makes it a promising platform organism for cellulosic biofuel production via consolidated bioprocessing. Currently, however, ethanol yield are far below theoretical maximum due to branched product pathways that divert carbon and electrons towards formate, H2, lactate, acetate, and secreted amino acids. To redirect carbon and electron flux away from formate, pyruvate:formate lyase (pfl) and respective PFL-activating enzyme were deleted. Formate production in the resulting Δpfl strain was eliminated and acetate production decreased by 50% on both complex and defined medium. Growth ratemore » of Δpfl decreased by 2.9-fold on defined medium and diauxic growth was observed on complex medium. Supplementation of defined medium with 2 mM formate restored Δpfl growth rate to 80% of the parent strain. Finally, we discuss the role of pfl in metabolic engineering strategies and C1 metabolism.« less

  10. Perfringolysin O: The Underrated Clostridium perfringens Toxin?

    PubMed Central

    Verherstraeten, Stefanie; Goossens, Evy; Valgaeren, Bonnie; Pardon, Bart; Timbermont, Leen; Haesebrouck, Freddy; Ducatelle, Richard; Deprez, Piet; Wade, Kristin R.; Tweten, Rodney; Van Immerseel, Filip

    2015-01-01

    The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin), a pore-forming cholesterol-dependent cytolysin (CDC). PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis. PMID:26008232

  11. Secretome analysis of Clostridium difficile strains.

    PubMed

    Boetzkes, Alexander; Felkel, Katharina Wiebke; Zeiser, Johannes; Jochim, Nelli; Just, Ingo; Pich, Andreas

    2012-08-01

    Clostridium difficile causes infections ranging from mild C. difficile-associated diarrhea to severe pseudomembranous colitis. Since 2003 new hypervirulent C. difficile strains (PCR ribotype 027) emerged characterized by a dramatically increased mortality. The secretomes of the three C. difficile strains CDR20291, CD196, and CD630 were analyzed and compared. Proteins were separated and analyzed by means of SDS--PAGE and LC-MS. MS data were analyzed using Mascot and proteins were checked for export signals with SecretomeP and SignalP. LC-MS analysis revealed 158 different proteins in the supernatant of C. difficile. Most of the identified proteins originate from the cytoplasm. Thirty-two proteins in CDR20291, 36 in CD196 and 26 in CD630 were identified to be secreted by C. difficile strains. Those were mainly S-layer proteins, substrate-binding proteins of ABC-transporters, cell wall hydrolases, pilin and unknown hypothetical proteins. Toxin A and toxin B were identified after growth in brain heart infusion medium using immunological techniques. The ADP-ribosyltransferase-binding component protein, which is a part of the binary toxin CDT, was only identified in the hypervirulent ribotype 027 strains. Further proteins that are secreted specifically by hypervirulent strains were identified.

  12. Clostridium difficile in poultry and poultry meat.

    PubMed

    Harvey, Roger B; Norman, Keri N; Andrews, Kathleen; Hume, Michael E; Scanlan, Charles M; Callaway, Todd R; Anderson, Robin C; Nisbet, David J

    2011-12-01

    The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America from the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer to human beings. The objective of the present study was to determine the prevalence of toxigenic C. difficile in chickens and retail poultry meat in Texas. Seven C. difficile isolates were detected in fecal samples of 300 (2.3%) broiler chickens. Three cultivation procedures were evaluated for isolation of C. difficile from poultry meat and detected 1/32 (3.1%), 2/32 (6.2%), and 4/32 (12.5%) for the three procedures, respectively. Chicken and poultry meat isolates were characterized as toxinotype V and pulsed-field gel electrophoresis gel type-NAP7 or NAP7-variant. Susceptibilities to 11 antimicrobial agents in the current study suggested somewhat reduced resistance than reported for other meat or animal toxinotype V isolates.

  13. The Tcp conjugation system of Clostridium perfringens.

    PubMed

    Wisniewski, Jessica A; Rood, Julian I

    2017-03-07

    The Gram-positive pathogen Clostridium perfringens possesses a family of large conjugative plasmids that is typified by the tetracycline resistance plasmid pCW3. Since these plasmids may carry antibiotic resistance genes or genes encoding extracellular or sporulation-associated toxins, the conjugative transfer of these plasmids appears to be important for the epidemiology of C. perfringens-mediated diseases. Sequence analysis of members of this plasmid family identified a highly conserved 35kb region that encodes proteins with various functions, including plasmid replication and partitioning. The tcp conjugation locus also was identified in this region, initially based on low-level amino acid sequence identity to conjugation proteins from the integrative conjugative element Tn916. Genetic studies confirmed that the tcp locus is required for conjugative transfer and combined with biochemical and structural analyses have led to the development of a functional model of the Tcp conjugation apparatus. This review summarises our current understanding of the Tcp conjugation system, which is now one of the best-characterized conjugation systems in Gram-positive bacteria.

  14. Regulation of protease production in Clostridium sporogenes.

    PubMed Central

    Allison, C; Macfarlane, G T

    1990-01-01

    The physiological and nutritional factors that regulate protease synthesis in Clostridium sporogenes C25 were studied in batch and continuous cultures. Formation of extracellular proteases occurred at the end of active growth and during the stationary phase in batch cultures. Protease production was inversely related to growth rate in glucose-excess and glucose-limited chemostats over the range D = 0.05 to 0.70 h-1. In pulse experiments, glucose, ammonia, phosphate, and some amino acids (tryptophan, proline, tyrosine, and isoleucine) strongly repressed protease synthesis. This repression was not relieved by addition of 4 mM cyclic AMP, cyclic GMP, or dibutyryl cyclic AMP. Protease formation was markedly inhibited by 4 mM ATP and ADP, but GTP and GDP had little effect on the process. It is concluded that protease production by C. sporogenes is strongly influenced by the amount of energy available to the cells, with the highest levels of protease synthesis occurring under energy-limiting conditions. PMID:2268158

  15. Clostridium botulinum in cattle and dairy products.

    PubMed

    Lindström, Miia; Myllykoski, Jan; Sivelä, Seppo; Korkeala, Hannu

    2010-04-01

    The use of plastic-wrapped and nonacidified silage as cattle feed has led to an increasing number of botulism outbreaks due to Clostridium botulinum Groups I-III in dairy cattle. The involvement of Groups I and II organisms in cattle botulism has raised concern of human botulism risk associated with the consumption of dairy products. Multiplication of C. botulinum in silage and in the gastrointestinal tract of cattle with botulism has been reported, thus contamination of the farm environment and raw milk, and further transmission through the dairy chain, are possible. The standard milk pasteurization treatment does not eliminate spores, and the intrinsic factors of many dairy products allow botulinal growth and toxin production. Although rare, several large botulism outbreaks due to both commercial and home-prepared dairy products have been reported. Factors explaining these outbreaks include most importantly temperature abuse, but also unsafe formulation, inadequate fermentation, insufficient thermal processing, post-process contamination, and lack of adequate quality control for adjunct ingredients were involved. The small number of outbreaks is probably explained by a low incidence of spores in milk, the presence of competitive bacteria in pasteurized milk and other dairy products, and growth-inhibitory combinations of intrinsic and extrinsic factors in cultured and processed dairy products.

  16. Clostridium difficile: its disease and toxins.

    PubMed Central

    Lyerly, D M; Krivan, H C; Wilkins, T D

    1988-01-01

    Clostridium difficile is the etiologic agent of pseudomembranous colitis, a severe, sometimes fatal disease that occurs in adults undergoing antimicrobial therapy. The disease, ironically, has been most effectively treated with antibiotics, although some of the newer methods of treatment such as the replacement of the bowel flora may prove more beneficial for patients who continue to relapse with pseudomembranous colitis. The organism produces two potent exotoxins designated toxin A and toxin B. Toxin A is an enterotoxin believed to be responsible for the diarrhea and mucosal tissue damage which occur during the disease. Toxin B is an extremely potent cytotoxin, but its role in the disease has not been as well studied. There appears to be a cascade of events which result in the expression of the activity of these toxins, and these events, ranging from the recognition of a trisaccharide receptor by toxin A to the synergistic action of the toxins and their possible dissemination in the body, are discussed in this review. The advantages and disadvantages of the various assays, including tissue culture assay, enzyme immunoassay, and latex agglutination, currently used in the clinical diagnosis of the disease also are discussed. PMID:3144429

  17. Clostridium difficile infection: monoclonal or polyclonal genesis?

    PubMed

    Hell, M; Permoser, M; Chmelizek, G; Kern, J M; Maass, M; Huhulescu, S; Indra, A; Allerberger, F

    2011-10-01

    Clostridium difficile is considered to be a leading cause of hospital-acquired diarrhea. C. difficile (CDI) infection shows a high rate of recurrence. There would have to be a predominantly monoclonal mechanism of CDI within individual patients in order for molecular epidemiologic tools such as polymerase chain reaction (PCR) ribotyping to be useful in outbreak investigation or differentiation between infection relapse versus re-infection. It was the aim of our study to determine whether CDI is of monoclonal or of polyclonal genesis. Between December 2009 and June 2010, 11 patients with nosocomial CDI were chosen arbitrarily. Five individual colonies of C. difficile were picked from each of the primary culture plates. Of 55 isolates gained, 47 were available for PCR ribotyping (eight isolates failed attempts to re-culture). Among these 47 isolates, eight different PCR ribotypes were identified. Only one of the 11 patients had a stool sample that yielded more than one ribotype (PCR ribotypes 438 and 232); this 67-year-old female cancer patient was already suffering from recurring diarrhea prior to the fatal episode of colitis which was subsequently investigated. We conclude that polyclonal infections may occasionally occur in patients with CDI. Our findings of predominantly monoclonal origin of CDI within patients suggest that molecular epidemiologic investigations can be used reliably for outbreak investigations or discrimination between relapse and re-infection.

  18. Parameters affecting solvent production by Clostridium pasteurianum

    SciTech Connect

    Dabrock, B.; Bahl, H.; Gottschalk, G. )

    1992-04-01

    The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/10 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.

  19. Glycolysis without pyruvate kinase in Clostridium thermocellum

    SciTech Connect

    Olson, Daniel G.; Horl, Manuel; Fuhrer, Tobias; Cui, Jingxuan; Zhou, Jilai; Maloney, Marybeth I.; Amador-Noguez, Daniel; Tian, Liang; Sauer, Uwe; Lynd, Lee R.

    2016-12-01

    The metabolism of Clostridium thermocellum is notable in that it assimilates sugar via the EMP pathway but does not possess a pyruvate kinase enzyme. In the wild type organism, there are three proposed pathways for conversion of phosphoenolpyruvate (PEP) to pyruvate, which differ in their cofactor usage. One path uses pyruvate phosphate dikinase (PPDK), another pathway uses the combined activities of PEP carboxykinase (PEPCK) and oxaloacetate decarboxylase (ODC). Yet another pathway, the malate shunt, uses the combined activities of PEPCK, malate dehydrogenase and malic enzyme. First we showed that there is no flux through the ODC pathway by enzyme assay. Flux through the remaining two pathways (PPDK and malate shunt) was determined by dynamic 13C labeling. In the wild-type strain, the malate shunt accounts for about 33 ± 2% of the flux to pyruvate, with the remainder via the PPDK pathway. Deletion of the ppdk gene resulted in a redirection of all pyruvate flux through the malate shunt. Lastly, this provides the first direct evidence of the in-vivo function of the malate shunt.

  20. Glycolysis without pyruvate kinase in Clostridium thermocellum

    DOE PAGES

    Olson, Daniel G.; Horl, Manuel; Fuhrer, Tobias; ...

    2016-12-01

    The metabolism of Clostridium thermocellum is notable in that it assimilates sugar via the EMP pathway but does not possess a pyruvate kinase enzyme. In the wild type organism, there are three proposed pathways for conversion of phosphoenolpyruvate (PEP) to pyruvate, which differ in their cofactor usage. One path uses pyruvate phosphate dikinase (PPDK), another pathway uses the combined activities of PEP carboxykinase (PEPCK) and oxaloacetate decarboxylase (ODC). Yet another pathway, the malate shunt, uses the combined activities of PEPCK, malate dehydrogenase and malic enzyme. First we showed that there is no flux through the ODC pathway by enzyme assay.more » Flux through the remaining two pathways (PPDK and malate shunt) was determined by dynamic 13C labeling. In the wild-type strain, the malate shunt accounts for about 33 ± 2% of the flux to pyruvate, with the remainder via the PPDK pathway. Deletion of the ppdk gene resulted in a redirection of all pyruvate flux through the malate shunt. Lastly, this provides the first direct evidence of the in-vivo function of the malate shunt.« less

  1. The Changing Epidemiology of Clostridium difficile Infections

    PubMed Central

    Freeman, J.; Bauer, M. P.; Baines, S. D.; Corver, J.; Fawley, W. N.; Goorhuis, B.; Kuijper, E. J.; Wilcox, M. H.

    2010-01-01

    Summary: The epidemiology of Clostridium difficile infection (CDI) has changed dramatically during this millennium. Infection rates have increased markedly in most countries with detailed surveillance data. There have been clear changes in the clinical presentation, response to treatment, and outcome of CDI. These changes have been driven to a major degree by the emergence and epidemic spread of a novel strain, known as PCR ribotype 027 (sometimes referred to as BI/NAP1/027). We review the evidence for the changing epidemiology, clinical virulence and outcome of treatment of CDI, and the similarities and differences between data from various countries and continents. Community-acquired CDI has also emerged, although the evidence for this as a distinct new entity is less clear. There are new data on the etiology of and potential risk factors for CDI; controversial issues include specific antimicrobial agents, gastric acid suppressants, potential animal and food sources of C. difficile, and the effect of the use of alcohol-based hand hygiene agents. PMID:20610822

  2. Laboratory diagnosis of Clostridium difficile disease.

    PubMed

    Delmée, M

    2001-08-01

    The laboratory diagnosis of Clostridium difficile-associated disease (CDAD) is based on culture and toxin detection in fecal specimens. Culture is performed on a commercially available selective media. C. difficile colony morphology is typical when viewed under a dissecting microscope. Definitive identification is best obtained by gas liquid chromatography. Culture is very sensitive but, when used alone without toxin testing, it leads to low specificity and misdiagnosis of CDAD when high rates of asymptomatic carriage exist. Toxin detection by a tissue culture cytotoxin assay followed by neutralisation with specific antiserum is often considered the standard. However, this approach lacks sensitivity and has not detected up to 30% of patients with confirmed CDAD. Multiple enzyme immunoassays (EIAs) have been introduced by various manufacturers for the detection of toxin A alone or for both toxins A and B. Some of these are designed to give results in less than 1 h. Comparative studies of EIA kits reported that the sensitivity and specificity are slightly lower than cytotoxin assays. Toxigenic culture tests C. difficile isolates for toxin production: colonies isolated on selective media are tested for in-vitro toxin production either by a cytotoxicity assay or by direct EIA. It has higher sensitivity than the cytotoxicity assay and equivalent specificity. In the routine laboratory, culture and toxin detection should be performed on every specimen and, in culture-positive and fecal toxin-negative cases, toxigenic cultures should be performed on isolated colonies.

  3. Promoters and proteins from Clostridium thermocellum and uses thereof

    DOEpatents

    Wu, J. H. David; Newcomb, Michael

    2012-11-13

    The present invention relates to an inducible and a high expression nucleic acid promoter isolated from Clostridium thermocellum. These promoters are useful for directing expression of a protein or polypeptide encoded by a nucleic acid molecule operably associated with the nucleic acid promoters. The present invention also relates to nucleic acid constructs including the C. thermocellum promoters, and expression vectors and hosts containing such nucleic acid constructs. The present invention also relates to protein isolated from Clostridium thermocellum, including a repressor protein. The present invention also provides methods of using the isolated promoters and proteins from Clostridium thermocellum, including methods for directing inducible in vitro and in vivo expression of a protein or polypeptide in a host, and methods of producing ethanol from a cellulosic biomass.

  4. Thermolabile triose phosphate isomerase in a psychrophilic Clostridium.

    NASA Technical Reports Server (NTRS)

    Shing, Y. W.; Akagi, J. M.; Himes, R. H.

    1972-01-01

    It was found that a psychrophilic Clostridium contains a triose phosphate isomerase which is very labile at moderate temperatures. An investigation showed that the optimal growth temperature of the psychrophile was between 15 and 20 deg C. No growth occurred at 25 deg C. The thermostability of the glycolytic enzymes in the cell-free extracts of Clostridium sp. strain 69 was studied. The data obtained show that the triose phosphate isomerase is quite labile at moderate temperatures. The instability of the enzyme is sufficient to explain the low maximum growth temperature of the psychrophile.

  5. A case of Clostridium septicum spontaneous gas gangrene.

    PubMed

    Dylewski, Joe; Drummond, Robert; Rowen, John

    2007-03-01

    Severe skin and soft tissue infections (SSTIs) are often life-threatening emergencies that require a rapid diagnosis. Gas gangrene is one of the most fulminant types of SSTI and is usually caused by Clostridium perfringens' contamination of an open wound. Although gas gangrene is usually associated with fecally contaminated wounds, "spontaneous" cases occur and are most commonly caused by Clostridium (C.) septicum. We report a case of spontaneous gas gangrene caused by C. septicum that only became manifest while the patient was being monitored in the emergency department. We also review the diagnosis and treatment aspects of this entity.

  6. The story of Clostridium botulinum: from food poisoning to Botox.

    PubMed

    Ting, Patricia T; Freiman, Anatoli

    2004-01-01

    In the last fifty years, Clostridium botulinum has become notorious for its ability to produce the deadly botulinum neurotoxins. While botulinum toxin A, better known as Botox, is universally recognised by the public as a cosmetic enhancement tool, the botulinum neurotoxins are commonly used off-label for many medical conditions in ophthalmology, neurology and dermatology. The versatility of these botulinum toxins has made Clostridium botulinum one of the most widely known bacterial pathogens in medical history. This article outlines the discovery of botulinum toxins through to their present day applications in medicine.

  7. Genetic Engineering of Clostridium Difficile Toxin a Vaccine

    DTIC Science & Technology

    1990-08-16

    D’iC FILE COPY • AD I’- GENETIC ENGINEERING OF 0 CLOSTRIDIUM DIFFICILE TOXIN A VACCINE ANNUAL REPORT Lycurgus L. Muldrow Joe Johnson August 16, 1990...62770A 1 62770A871 I AA f 348 11. TITLE (kicAld Sowufy 0aiaflcanon) (U) Genetic Engineering of Clostridium difficile Toxin A Vaccine 12. PERSONAL...FIELD GROUP ISU3.GROUP- Clastridlum difficile Vaccine __ 02IRU Recomb in nta ~ 06 1 03 -9 4W .RA-W--I It ABSTRACT (Contin. on ’erser if neconay and

  8. Diagnosis and management of Clostridium difficile infection.

    PubMed

    Dupont, Herbert L

    2013-10-01

    Clostridium difficile infection (CDI) is increasing in frequency and severity in and out of the hospital, with a high probability of recurrence after treatment. The recent literature on CDI was reviewed using PubMed to include recent publications dealing with diagnosis and therapy. Real-time polymerase chain reaction is a sensitive and useful diagnostic test for CDI but there are growing concerns of false-positive test results if the rate of CDI is low in the patient population providing samples and/or if the population being studied commonly includes people with C difficile colonization. Recommended therapy of CDI includes oral metronidazole for milder cases of CDI and oral vancomycin or fidaxomicin for more severe cases, each given for 10 days. Colectomy is being performed more frequently in patients with fulminant CDI. For treatment of first recurrences the drug used in the first bout can be used again and for second recurrences longer courses of vancomycin often are given in a tapered dose or intermittently to allow gut flora reconstitution, or other treatments including fidaxomicin may be used. Bacteriotherapy with fecal transplantation is playing an increasing role in therapy of recurrent cases. Metagenomic studies of patients with CDI during successful therapy are needed to determine how best to protect the flora from assaults from antibacterial drugs and to develop optimal therapeutic approaches. Immunotherapy and immunoprophylaxis offer opportunities to prevent CDI, to speed up recovery from CDI, and to eliminate recurrent infection. Humanized monoclonal antitoxin antibodies and active immunization with vaccines against C difficile or its toxins are both in development and appear to be of potential value.

  9. Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum.

    PubMed

    Sleytr, U B; Thorne, K J

    1976-04-01

    Clostridum thermosaccharolyticum and Clostridium thermohydrosulfuricum possess as outermost cell wall layer a tetragonal or hexagonal ordered array of macromolecules. The subunits of the surface layer can be detached from isolated cell walls with urea (8M) or guanidine-HCl (4 to 5 M). Triton X-100, dithiothreitol, ethylenediaminetetracetate, and KCl (3 M) had no visible effect on the regular arrays. Sodium dodecyl sulfate-polyacrylamide electrophroesis showed that, in both organisms, the surface layer is composed of glycoprotein of molecular weight 140,000. The glycoprotein from both microorganisms has a predominantly acidic amino acid composition and an acidic isoelectric point after isoelectric focusing on polyacrylamide gels. The glycocomponent is composed of glucose, galactose, mannose, and rhamnose.

  10. Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes.

    PubMed

    Hill, Karen K; Smith, Theresa J

    2013-01-01

    Clostridium botulinum is a species of spore-forming anaerobic bacteria defined by the expression of any one or two of seven serologically distinct botulinum neurotoxins (BoNTs) designated BoNT/A-G. This Gram-positive bacterium was first identified in 1897 and since then the paralyzing and lethal effects of its toxin have resulted in the recognition of different forms of the intoxication known as food-borne, infant, or wound botulism. Early microbiological and biochemical characterization of C. botulinum isolates revealed that the bacteria within the species had different characteristics and expressed different toxin types. To organize the variable bacterial traits within the species, Group I-IV designations were created. Interestingly, it was observed that isolates within different Groups could express the same toxin type and conversely a single Group could express different toxin types. This discordant phylogeny between the toxin and the host bacteria indicated that horizontal gene transfer of the toxin was responsible for the variation observed within the species. The recent availability of multiple C. botulinum genomic sequences has offered the ability to bioinformatically analyze the locations of the bont genes, the composition of their toxin gene clusters, and the genes flanking these regions to understand their variation. Comparison of the genomic sequences representing multiple serotypes indicates that the bont genes are not in random locations. Instead the analyses revealed specific regions where the toxin genes occur within the genomes representing serotype A, B, C, E, and F C. botulinum strains and C. butyricum type E strains. The genomic analyses have provided evidence of horizontal gene transfer, site-specific insertion, and recombination events. These events have contributed to the variation observed among the neurotoxins, the toxin gene clusters and the bacteria that contain them, and has supported the historical microbiological, and biochemical

  11. Clostridium botulinum strains producing BoNT/F4 or BoNT/F5.

    PubMed

    Raphael, Brian H; Bradshaw, Marite; Kalb, Suzanne R; Joseph, Lavin A; Lúquez, Carolina; Barr, John R; Johnson, Eric A; Maslanka, Susan E

    2014-05-01

    Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.

  12. Neurotoxin Gene Profiling of Clostridium botulinum Types C and D Native to Different Countries within Europe

    PubMed Central

    Woudstra, Cedric; Skarin, Hanna; Anniballi, Fabrizio; Fenicia, Lucia; Bano, Luca; Drigo, Ilenia; Koene, Miriam; Bäyon-Auboyer, Marie-Hélène; Buffereau, Jean-Philippe; De Medici, Dario

    2012-01-01

    Clostridium botulinum types C and D, as well as their mosaic variants C-D and D-C, are associated with avian and mammalian botulism. This study reports on the development of low-density macroarrays based on the GeneDisc cycler platform (Pall-GeneDisc Technologies) applied to the simultaneous detection of the C. botulinum subtypes C, C-D, D, and D-C. The limit of detection of the PCR assays was 38 fg of total DNA, corresponding to 15 genome copies. Artificially contaminated samples of cecum showed a limit of detection below 50 spores/g. The tests were performed with a large variety of bacterial strains, including C. botulinum types C (n = 12), C-D (n = 29), D (n = 5), and D-C (n = 10), other botulinum neurotoxin (BoNT)-producing Clostridium strains (n = 20), non-BoNT-producing clostridia (n = 20), and other bacterial species (n = 23), and showed a high specificity. These PCR assays were compared to previously published real-time PCRs for the detection of C. botulinum in 292 samples collected from cases of botulism events in four European regions. The majority of the samples originated from wild birds (n = 108), poultry (n = 60), and bovines (n = 56). Among the 292 samples, 144 were positive for either the bont/C-D or the bont/D-C gene by using the GeneDisc arrays. The reliability of the results tallied to 97.94%. Interestingly, only BoNT mosaics, types C-D and D-C, were found in naturally contaminated samples whatever their animal origin and their geographical location. Further investigations should now be performed in order to check that mosaic types dominate in Europe and that acquisition of mosaic types helps in survival or adaptation to particular niche. PMID:22344654

  13. Functional analysis of an feoB mutant in Clostridium perfringens strain 13.

    PubMed

    Awad, Milena M; Cheung, Jackie K; Tan, Joanne E; McEwan, Alastair G; Lyras, Dena; Rood, Julian I

    2016-10-01

    Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections.

  14. Neurotoxin gene profiling of clostridium botulinum types C and D native to different countries within Europe.

    PubMed

    Woudstra, Cedric; Skarin, Hanna; Anniballi, Fabrizio; Fenicia, Lucia; Bano, Luca; Drigo, Ilenia; Koene, Miriam; Bäyon-Auboyer, Marie-Hélène; Buffereau, Jean-Philippe; De Medici, Dario; Fach, Patrick

    2012-05-01

    Clostridium botulinum types C and D, as well as their mosaic variants C-D and D-C, are associated with avian and mammalian botulism. This study reports on the development of low-density macroarrays based on the GeneDisc cycler platform (Pall-GeneDisc Technologies) applied to the simultaneous detection of the C. botulinum subtypes C, C-D, D, and D-C. The limit of detection of the PCR assays was 38 fg of total DNA, corresponding to 15 genome copies. Artificially contaminated samples of cecum showed a limit of detection below 50 spores/g. The tests were performed with a large variety of bacterial strains, including C. botulinum types C (n = 12), C-D (n = 29), D (n = 5), and D-C (n = 10), other botulinum neurotoxin (BoNT)-producing Clostridium strains (n = 20), non-BoNT-producing clostridia (n = 20), and other bacterial species (n = 23), and showed a high specificity. These PCR assays were compared to previously published real-time PCRs for the detection of C. botulinum in 292 samples collected from cases of botulism events in four European regions. The majority of the samples originated from wild birds (n = 108), poultry (n = 60), and bovines (n = 56). Among the 292 samples, 144 were positive for either the bont/C-D or the bont/D-C gene by using the GeneDisc arrays. The reliability of the results tallied to 97.94%. Interestingly, only BoNT mosaics, types C-D and D-C, were found in naturally contaminated samples whatever their animal origin and their geographical location. Further investigations should now be performed in order to check that mosaic types dominate in Europe and that acquisition of mosaic types helps in survival or adaptation to particular niche.

  15. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B

    PubMed Central

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the “Large clostridial glycosylating toxins.” These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB—together with Toxin A (TcdA)—is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn2+ > Co2+ > Mg2+ >> Ca2+, Cu2+, Zn2+. TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn2+ and 180 µM for Mg2+. TcsL and TcdB further require co-stimulation by monovalent K+ (not by Na+). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K+ and Mg2+ (rather than Mn2+) in mammalian target cells. PMID:27089365

  16. Molecular and Cellular Basis of Microvascular Perfusion Deficits Induced by Clostridium perfringens and Clostridium septicum

    PubMed Central

    Hickey, Michael J.; Kwan, Rain Y. Q.; Awad, Milena M.; Kennedy, Catherine L.; Young, Lauren F.; Hall, Pam; Cordner, Leanne M.; Lyras, Dena; Emmins, John J.; Rood, Julian I.

    2008-01-01

    Reduced tissue perfusion leading to tissue ischemia is a central component of the pathogenesis of myonecrosis caused by Clostridium perfringens. The C. perfringens α-toxin has been shown capable of inducing these changes, but its potential synergy with perfringolysin O (θ-toxin) is less well understood. Similarly, Clostridium septicum is a highly virulent causative agent of spontaneous gas gangrene, but its effect on the microcirculation has not been examined. Therefore, the aim of this study was to use intravital microscopy to examine the effects of C. perfringens and C. septicum on the functional microcirculation, coupled with the use of isogenic toxin mutants to elucidate the role of particular toxins in the resultant microvascular perfusion deficits. This study represents the first time this integrated approach has been used in the analysis of the pathological response to clostridial toxins. Culture supernatants from wild-type C. perfringens induced extensive cell death within 30 min, as assessed by in vivo uptake of propidium iodide. Furthermore, significant reductions in capillary perfusion were observed within 60 min. Depletion of either platelets or neutrophils reduced the alteration in perfusion, consistent with a role for these blood-borne cells in obstructing perfusion. In addition, mutation of either the α-toxin or perfringolysin O structural genes attenuated the reduction in perfusion, a process that was reversed by genetic complementation. C. septicum also induced a marked reduction in perfusion, with the degree of microvascular compromise correlating with the level of the C. septicum α-toxin. Together, these data indicate that as a result of its ability to produce α-toxin and perfringolysin O, C. perfringens rapidly induces irreversible cellular injury and a marked reduction in microvascular perfusion. Since C. septicum induces a similar reduction in microvascular perfusion, it is postulated that this function is central to the pathogenesis of

  17. Clostridium difficile and Clostridium perfringens from wild carnivore species in Brazil.

    PubMed

    Silva, Rodrigo Otávio Silveira; D'Elia, Mirella Lauria; Tostes Teixeira, Erika Procópio; Pereira, Pedro Lúcio Lithg; de Magalhães Soares, Danielle Ferreira; Cavalcanti, Álvaro Roberto; Kocuvan, Aleksander; Rupnik, Maja; Santos, André Luiz Quagliatto; Junior, Carlos Augusto Oliveira; Lobato, Francisco Carlos Faria

    2014-08-01

    Despite some case reports, the importance of Clostridium perfringens and Clostridium difficile for wild carnivores remains unclear. Thus, the objective of this study was to identify C. perfringens and C. difficile strains in stool samples from wild carnivore species in Brazil. A total of 34 stool samples were collected and subjected to C. perfringens and C. difficile isolation. Suggestive colonies of C. perfringens were then analyzed for genes encoding the major C. perfringens toxins (alpha, beta, epsilon and iota) and the beta-2 toxin (cpb2), enterotoxin (cpe) and NetB (netb) genes. C. difficile strains were analyzed by multiplex-PCR for toxins A (tcdA) and B (tcdB) and a binary toxin gene (cdtB) and also submitted to a PCR ribotyping. Unthawed aliquots of samples positive for C. difficile isolation were subjected to the detection of A/B toxins by a cytotoxicity assay (CTA). C. perfringens was isolated from 26 samples (76.5%), all of which were genotyped as type A. The netb gene was not detected, whereas the cpb2 and cpe genes were found in nine and three C. perfringens strains, respectively. C. difficile was isolated from two (5.9%) samples. A non-toxigenic strain was recovered from a non-diarrheic maned wolf (Chrysocyon brachyurus). Conversely, a toxigenic strain was found in the sample of a diarrheic ocelot (Leopardus pardallis); an unthawed stool sample was also positive for A/B toxins by CTA, indicating a diagnosis of C. difficile-associated diarrhea in this animal. The present work suggests that wild carnivore species could carry C. difficile strains and that they could be susceptible to C. difficile infection.

  18. Human fulminant gas gangrene caused by Clostridium chauvoei.

    PubMed

    Nagano, Noriyuki; Isomine, Shinji; Kato, Haru; Sasaki, Yoshimasa; Takahashi, Motohide; Sakaida, Koji; Nagano, Yukiko; Arakawa, Yoshichika

    2008-04-01

    The first human case of fulminant gas gangrene caused by Clostridium chauvoei, a pathogen causing ruminant blackleg, was confirmed for a 58-year-old man suffering from diabetes mellitus. The patient developed conspicuous emphysematous gangrene in the right chest wall as well as intravascular gas entrapments and died 2 h after hospital arrival.

  19. Biosynthesis of a thiamin antivitamin in Clostridium botulinum.

    PubMed

    Cooper, Lisa E; O'Leary, Seán E; Begley, Tadhg P

    2014-04-15

    Bacimethrin-derived 2'-methoxythiamin pyrophosphate inhibits microbial growth by disrupting metabolic pathways dependent on thiamin-utilizing enzymes. This study describes the discovery of the bacimethrin biosynthetic gene cluster of Clostridium botulinum A ATCC 19397 and in vitro reconstitution of bacimethrin biosynthesis from cytidine 5'-monophosphate.

  20. Clostridium difficile from healthy food animals: Optimized isolation and prevalence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two isolation methods were compared for isolation of Clostridium difficile from food animal feces. The single alcohol shock method (SS) used selective enrichment in cycloserine-cefoxitin fructose broth supplemented with 0.1% sodium taurocholate (TCCFB) followed by alcohol shock and isolation on tryp...

  1. Clostridium septicum Aortitis of the Infrarenal Abdominal Aorta

    PubMed Central

    Shah, Aditya; Yousuf, Tariq; Rachid, Mohammed; Ali, Naureen; Tabriz, Muhammad; Loughry, Kevin

    2016-01-01

    Clostridium septicum aortitis is a rare infection that has a strong association with occult colonic malignancy. There is also emerging evidence to support the combination of medical and surgical management over medical management alone. To the best of our knowledge, we report the 40th known case of C. septicum aortitis. PMID:26767087

  2. Clostridium glycolicum isolated from a patient with otogenic brain abscesses.

    PubMed

    Van Leer, C; Wensing, A M J; van Leeuwen, J P; Zandbergen, E G J; Swanink, C M A

    2009-02-01

    We describe a case of brain abscesses with gas formation following otitis media, for which the patient treated himself by placing clay in his ear. Several microorganisms, including Clostridium glycolicum, were cultured from material obtained from the patient. This is the first report of an infection in an immunocompetent patient associated with this microorganism.

  3. Human Fulminant Gas Gangrene Caused by Clostridium chauvoei▿

    PubMed Central

    Nagano, Noriyuki; Isomine, Shinji; Kato, Haru; Sasaki, Yoshimasa; Takahashi, Motohide; Sakaida, Koji; Nagano, Yukiko; Arakawa, Yoshichika

    2008-01-01

    The first human case of fulminant gas gangrene caused by Clostridium chauvoei, a pathogen causing ruminant blackleg, was confirmed for a 58-year-old man suffering from diabetes mellitus. The patient developed conspicuous emphysematous gangrene in the right chest wall as well as intravascular gas entrapments and died 2 h after hospital arrival. PMID:18256217

  4. Prevention of Healthcare-Associated Clostridium difficile: What Works?

    PubMed Central

    Dubberke, Erik R.

    2013-01-01

    Prevention of Clostridium difficile infection (CDI) has become extremely important because of increases in CDI incidence and severity. Unfortunately CDI prevention efforts are hampered by lack of data to support optimal prevention methods, especially for endemic CDI. Studies are needed to define optimal prevention practices and to investigate novel prevention methods. PMID:20929366

  5. Clostridium difficile in retail meat and processing plants in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The incidence and severity of disease associated with toxigenic Clostridium difficile (Cd) have increased in hospitals in North America from the emergence of newer, more virulent strains of Cd. Toxigenic Cd has been isolated from food animals and retail meat with potential implications of transfer ...

  6. Risk factors for Clostridium difficile infection in a hepatology ward.

    PubMed

    Vanjak, Dominique; Girault, Guillaume; Branger, Catherine; Rufat, Pierre; Valla, Dominique-Charles; Fantin, Bruno

    2007-02-01

    During 2001, Clostridium difficile infection was observed in 23 patients hospitalized in a hepatology ward (attack rate, 0.9%). Since strain typing ruled out a clonal dissemination, we performed a case-control study. In addition to antibiotic use as a risk factor, the C. difficile infection rate was higher among patients with autoimmune hepatitis (P<.01).

  7. Clostridium difficile: New Insights into the Evolution of the Pathogenicity Locus

    PubMed Central

    Monot, Marc; Eckert, Catherine; Lemire, Astrid; Hamiot, Audrey; Dubois, Thomas; Tessier, Carine; Dumoulard, Bruno; Hamel, Benjamin; Petit, Amandine; Lalande, Valérie; Ma, Laurence; Bouchier, Christiane; Barbut, Frédéric; Dupuy, Bruno

    2015-01-01

    The major virulence factors of Clostridium difficile are toxins A and B. These toxins are encoded by tcdA and tcdB genes, which form a pathogenicity locus (PaLoc) together with three additional genes that have been implicated in regulation (tcdR and tcdC) and secretion (tcdE). To date, the PaLoc has always been found in the same location and is replaced in non-toxigenic strains by a highly conserved 75/115 bp non-coding region. Here, we show new types of C. difficile pathogenicity loci through the genome analysis of three atypical clinical strains and describe for the first time a variant strain producing only toxin A (A+B−). Importantly, we found that the PaLoc integration sites of these three strains are located in the genome far from the usual single known PaLoc integration site. These findings allowed us to propose a new model of PaLoc evolution in which two “Mono-Toxin PaLoc” sites are merged to generate a single “Bi-Toxin PaLoc”. PMID:26446480

  8. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.

    PubMed

    Wang, Yi; Zhang, Zhong-Tian; Seo, Seung-Oh; Lynn, Patrick; Lu, Ting; Jin, Yong-Su; Blaschek, Hans P

    2016-12-01

    CRISPR-Cas9 has been explored as a powerful tool for genome engineering for many organisms. Meanwhile, dCas9 which lacks endonuclease activity but can still bind to target loci has been engineered for efficient gene transcription repression. Clostridium beijerinckii, an industrially significant species capable of biosolvent production, is generally difficult to metabolically engineer. Recently, we reported our work in developing customized CRISPR-Cas9 system for genome engineering in C. beijerinckii. However, in many cases, gene expression repression (rather than actual DNA mutation) is more desirable for various biotechnological applications. Here, we further demonstrated gene transcription repression in C. beijerinckii using CRISPR-dCas9. A small RNA promoter was employed to drive the expression of the single chimeric guide RNA targeting on the promoter region of amylase gene, while a constitutive thiolase promoter was used to drive Streptococcus pyogenes dCas9 expression. The growth assay on starch agar plates showed qualitatively significant repression of amylase activity in C. beijerinckii transformant with CRISPR-dCas9 compared to the control strain. Further amylase activity quantification demonstrated consistent repression (65-97% through the fermentation process) on the activity in the transformant with CRISPR-dCas9 versus in the control. Our results provided essential references for engineering CRISPR-dCas9 as an effective tool for tunable gene transcription repression in diverse microorganisms. Biotechnol. Bioeng. 2016;113: 2739-2743. © 2016 Wiley Periodicals, Inc.

  9. Identification, Immunogenicity and Crossreactivity of Type IV Pilin and Pilin-like Proteins from Clostridium difficile

    PubMed Central

    Maldarelli, Grace A.; De Masi, Leon; von Rosenvinge, Erik C.; Carter, Mihaela; Donnenberg, Michael S.

    2014-01-01

    The Gram-positive anaerobe Clostridium difficile is the major cause of nosocomial diarrhea; manifestations of infection include diarrhea, pseudomembranous colitis, and death. Genes for type IV pili, a bacterial nanofiber often involved in colonization and until relatively recently described only in Gram-negatives, are present in all members of the Clostridiales. We hypothesized that any pilins encoded in the C. difficile genome would be immunogenic, as has been shown with pilins from Gram-negative organisms. We describe nine pilin or pilin-like protein genes, for which we introduce a coherent nomenclature, in the C. difficile R20291 genome. The nine predicted pilin or pilin-like proteins have relatively conserved N-terminal hydrophobic regions, but diverge at their C-termini. Analysis of synonymous and nonsynonymous substitutions revealed evidence of diversifying selective pressure in two pilin genes. Six of the nine identified proteins were purified and used to immunize mice. Immunization of mice with each individual protein generated antibody responses that varied in titer and crossreactivity, a notable result given the low amino acid sequence identity among the pilins. Further studies in other small mammals mirrored our results in mice. Our results illuminate components of the C. difficile type IV pilus, and help identify targets for an anti-C. difficile vaccine. PMID:24550179

  10. Regulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum.

    PubMed

    Cooksley, Clare M; Davis, Ian J; Winzer, Klaus; Chan, Weng C; Peck, Michael W; Minton, Nigel P

    2010-07-01

    A significant number of genome sequences of Clostridium botulinum and related species have now been determined. In silico analysis of these data revealed the presence of two distinct agr loci (agr-1 and agr-2) in all group I strains, each encoding putative proteins with similarity to AgrB and AgrD of the well-studied Staphylococcus aureus agr quorum sensing system. In S. aureus, a small diffusible autoinducing peptide is generated from AgrD in a membrane-located processing event that requires AgrB. Here the characterization of both agr loci in the group I strain C. botulinum ATCC 3502 and of their homologues in a close relative, Clostridium sporogenes NCIMB 10696, is reported. In C. sporogenes NCIMB 10696, agr-1 and agr-2 appear to form transcriptional units that consist of agrB, agrD, and flanking genes of unknown function. Several of these flanking genes are conserved in Clostridium perfringens. In agreement with their proposed role in quorum sensing, both loci were maximally expressed during late-exponential-phase growth. Modulation of agrB expression in C. sporogenes was achieved using antisense RNA, whereas in C. botulinum, insertional agrD mutants were generated using ClosTron technology. In comparison to the wild-type strains, these strains exhibited drastically reduced sporulation and, for C. botulinum, also reduced production of neurotoxin, suggesting that both phenotypes are controlled by quorum sensing. Interestingly, while agr-1 appeared to control sporulation, agr-2 appeared to regulate neurotoxin formation.

  11. Switchgrass (Panicum virgatum) fermentation by Clostridium thermocellum and Clostridium saccharoperbutylacetonicum sequential culture in a continuous flow reactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study was conducted to evaluate fermentation by Clostridium thermocellum and C. saccharoperbutylacetonicum in a continuous-flow, high-solids reactor. Liquid medium was continuously flowed through switchgrass (2 mm particle size) at one of three flow rates: 83.33 mL h-1 (2 L d-1), 41.66 mL h-1(1 ...

  12. Development of a real time PCR Taqman assay based on the TPI gene for simultaneous identification of Clostridium chauvoei and Clostridium septicum.

    PubMed

    Garofolo, G; Galante, D; Serrecchia, L; Buonavoglia, D; Fasanella, A

    2011-02-01

    In the present study, a Taqman allelic discrimination assay based on three SNPs of the TPI gene is described. It was used as a differential diagnostic tool to detect blackleg and malignant edema. Sudden deaths of grazing ruminants, such as cattle, sheep and goats, which show clinical signs related to hyperacute infective processes, encouraged the development of a rapid and precise diagnostic molecular method. Specific primers and probes for Clostridium septicum and Clostridium chauvoei were designed on the basis of the TPI gene sequence. The multiplex PCR was tested on the DNA of a total of 57 strains, including 24 Clostridium chauvoei, 20 Clostridium septicum, 1 Bacillus anthracis and 12 other Clostridium spp. The DNA samples from Clostridium chauvoei and Clostridium septicum strains were amplified. Amplification of other DNA samples was not observed, with the exception of Clostridium tertium, which showed a weak positive signal. To avoid misdiagnosis, a confirmatory assay based on a Sybr green real time PCR was proposed. The authors confirmed the efficacy and the specificity of the test used in this study, which proved to be a useful tool for the diagnosis of clostridiosis that are often diagnosed using only traditional tools.

  13. Characterisation of non-toxigenic Clostridium spp. strains, to use as surrogates for non-proteolytic Clostridium botulinum in chilled food challenge testing.

    PubMed

    Parker, M D; Barrett, P I; Shepherd, J; Price, L J; Bull, S D

    2015-01-01

    Under many of the conditions studied, a two-strain cocktail of non-toxigenic Clostridium spp. was found to be suitable as a surrogate for non-proteolytic Clostridium botulinum, and has the potential for use in chilled food challenge tests measuring growth. Non-toxigenic surrogates could also be used in thermal process screening studies.

  14. Clostridium difficile associated infection, diarrhea and colitis

    PubMed Central

    Hookman, Perry; Barkin, Jamie S

    2009-01-01

    A new, hypervirulent strain of Clostridium difficile, called NAP1/BI/027, has been implicated in C. difficile outbreaks associated with increased morbidity and mortality since the early 2000s. The epidemic strain is resistant to fluoroquinolones in vitro, which was infrequent prior to 2001. The name of this strain reflects its characteristics, demonstrated by different typing methods: pulsed-field gel electrophoresis (NAP1), restriction endonuclease analysis (BI) and polymerase chain reaction (027). In 2004 and 2005, the US Centers for Disease Control and Prevention (CDC) emphasized that the risk of C. difficile-associated diarrhea (CDAD) is increased, not only by the usual factors, including antibiotic exposure, but also gastrointestinal surgery/manipulation, prolonged length of stay in a healthcare setting, serious underlying illness, immune-compromising conditions, and aging. Patients on proton pump inhibitors (PPIs) have an elevated risk, as do peripartum women and heart transplant recipients. Before 2002, toxic megacolon in C. difficile-associated colitis (CDAC), was rare, but its incidence has increased dramatically. Up to two-thirds of hospitalized patients may be infected with C. difficile. Asymptomatic carriers admitted to healthcare facilities can transmit the organism to other susceptible patients, thereby becoming vectors. Fulminant colitis is reported more frequently during outbreaks of C. difficile infection in patients with inflammatory bowel disease (IBD). C. difficile infection with IBD carries a higher mortality than without underlying IBD. This article reviews the latest information on C. difficile infection, including presentation, vulnerable hosts and choice of antibiotics, alternative therapies, and probiotics and immunotherapy. We review contact precautions for patients with known or suspected C. difficile-associated disease. Healthcare institutions require accurate and rapid diagnosis for early detection of possible outbreaks, to initiate

  15. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing

    PubMed Central

    Wang, Yun; Butler, Robert R.; Reddy, N. Rukma; Skinner, Guy E.; Larkin, John W.

    2015-01-01

    Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance. PMID:26519392

  16. Detection of Clostridium sordellii strains expressing hemorrhagic toxin (TcsH) and implications for diagnostics and regulation of veterinary vaccines.

    PubMed

    Thiele, Teri L; Stuber, Tod P; Hauer, Paul J

    2013-10-17

    Clostridium sordellii is a Gram positive anaerobic bacterium that causes multiple disease syndromes in both humans and animals. As with many clostridial pathogens, toxins contribute to the virulence of C. sordellii. Two large toxins have been identified: a lethal toxin (TcsL) and a hemorrhagic toxin (TcsH) which are similar in structure and function to Clostridium difficile toxin B (TcdB) and toxin A (TcdA), respectively. While TcdA, TcdB, and TcsL have been extensively studied, relatively little is known about TcsH. This study elucidated the TcsH gene sequence using whole genome sequencing, compared the genotype with toxin expression of 52 C. sordellii strains, and examined the role of TcsH in batch release potency tests required for veterinary vaccines licensed in the United States and other testing utilizing WHO standard antitoxin. Data from this study will assist in future research to clarify the TcsH contribution to the pathogenesis of C. sordellii infections and may aid in the development of improved vaccines.

  17. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin.

    PubMed

    Del Torre, M; Stecchini, M L; Braconnier, A; Peck, M W

    2004-11-01

    Sales and consumption of refrigerated processed foods of extended durability (REPFEDs) have increased many-fold in Europe over the last 10 years. The safety and quality of these convenient ready-to-eat foods relies on a combination of mild heat treatment and refrigerated storage, sometimes in combination with other hurdles such as mild preservative factors. The major hazard to the microbiological safety of these foods is Clostridium botulinum. This paper reports on the prevalence and behaviour of proteolytic C. botulinum and non-proteolytic C. botulinum in gnocchi, a potato-based REPFED of Italian origin. Attempts to isolate proteolytic C. botulinum and non-proteolytic C. botulinum from gnocchi and its ingredients were unsuccessful. Based on assessment of the adequacy of the methods used, it was estimated that for proteolytic C. botulinum there was < 25 spores/kg of gnocchi and < 70 spores/kg of ingredients. The total anaerobic microbial load of gnocchi and its ingredients was low, with an estimated 1 MPN/g in processed gnocchi. Most of the anaerobic flora was facultatively anaerobic. A few obligately anaerobic bacteria were isolated from gnocchi and its ingredients and belonged to different Clostridium species. The protection factor, number of decimal reductions in the probability of toxigenesis from a single spore, was determined for eight different gnocchi formulations by challenge test studies. For all gnocchi stored at 8 degrees C (as recommended by the manufacturer) or 12 degrees C (mild temperature abuse), growth and toxin production were not detected in 75 days. The protection factor was >4.2 for proteolytic C. botulinum, and >6.2 for non-proteolytic C. botulinum. When inoculated packs were stored at 20 degrees C (severe temperature abuse), toxin production in 75 days was prevented by the inclusion of 0.09% (w/w) sorbic acid (protection factors as above), however in the absence of sorbic acid the packs became toxic before the end of the intended shelf

  18. Prioritizing drug targets in Clostridium botulinum with a computational systems biology approach.

    PubMed

    Muhammad, Syed Aun; Ahmed, Safia; Ali, Amjad; Huang, Hui; Wu, Xiaogang; Yang, X Frank; Naz, Anam; Chen, Jake

    2014-07-01

    A computational and in silico system level framework was developed to identify and prioritize the antibacterial drug targets in Clostridium botulinum (Clb), the causative agent of flaccid paralysis in humans that can be fatal in 5 to 10% of cases. This disease is difficult to control due to the emergence of drug-resistant pathogenic strains and the only available treatment antitoxin which can target the neurotoxin at the extracellular level and cannot reverse the paralysis. This study framework is based on comprehensive systems-scale analysis of genomic sequence homology and phylogenetic relationships among Clostridium, other infectious bacteria, host and human gut flora. First, the entire 2628-annotated genes of this bacterial genome were categorized into essential, non-essential and virulence genes. The results obtained showed that 39% of essential proteins that functionally interact with virulence proteins were identified, which could be a key to new interventions that may kill the bacteria and minimize the host damage caused by the virulence factors. Second, a comprehensive comparative COGs and blast sequence analysis of these proteins and host proteins to minimize the risks of side effects was carried out. This revealed that 47% of a set of C. botulinum proteins were evolutionary related with Homo sapiens proteins to sort out the non-human homologs. Third, orthology analysis with other infectious bacteria to assess broad-spectrum effects was executed and COGs were mostly found in Clostridia, Bacilli (Firmicutes), and in alpha and beta Proteobacteria. Fourth, a comparative phylogenetic analysis was performed with human microbiota to filter out drug targets that may also affect human gut flora. This reduced the list of candidate proteins down to 131. Finally, the role of these putative drug targets in clostridial biological pathways was studied while subcellular localization of these candidate proteins in bacterial cellular system exhibited that 68% of the

  19. Discrimination of clostridium species using a magnetic bead based hybridization assay

    NASA Astrophysics Data System (ADS)

    Pahlow, Susanne; Seise, Barbara; Pollok, Sibyll; Seyboldt, Christian; Weber, Karina; Popp, Jürgen

    2014-05-01

    Clostridium chauvoei is the causative agent of blackleg, which is an endogenous bacterial infection. Mainly cattle and other ruminants are affected. The symptoms of blackleg are very similar to those of malignant edema, an infection caused by Clostridium septicum. [1, 2] Therefore a reliable differentiation of Clostridium chauvoei from other Clostridium species is required. Traditional microbiological detection methods are time consuming and laborious. Additionally, the unique identification is hindered by the overgrowing tendency of swarming Clostridium septicum colonies when both species are present. [1, 3, 4] Thus, there is a crucial need to improve and simplify the specific detection of Clostridium chauvoei and Clostridium septicum. Here we present an easy and fast Clostridium species discrimination method combining magnetic beads and fluorescence spectroscopy. Functionalized magnetic particles exhibit plentiful advantages, like their simple manipulation in combination with a large binding capacity of biomolecules. A specific region of the pathogenic DNA is amplified and labelled with biotin by polymerase chain reaction (PCR). These PCR products were then immobilized on magnetic beads exploiting the strong biotin-streptavidin interaction. The specific detection of different Clostridium species is achieved by using fluorescence dye labeled probe DNA for the hybridization with the immobilized PCR products. Finally, the samples were investigated by fluorescence spectroscopy. [5

  20. Common Mesophilic Anaerobes, Including Clostridium botulinum and Clostridium tetani, in 21 Soil Specimens

    PubMed Central

    Smith, Louis Ds.

    1975-01-01

    A relatively rich medium was markedly superior to a dilute medium for the isolation of anaerobic bacteria from soil. The obligate anaerobes isolated from 21 soil samples were all clostridia and the counts ranged from 2.7 × 102 to 3.3 × 106 per g. The organisms most frequently isolated were Clostridium subterminale, C. sordellii, C. sporogenes, C. indolis, C. bifermentans, C. mangenoti, and C. perfringens. Seventeen other species were also recognized but almost one-third of the isolates could not be identified with any known species of Clostridum. C. botulinum type A was demonstrated in six soil samples, and type B in one. These soils were neutral to alkaline in reaction (average pH 7.9) and low in organic matter content (1.4%). The association of C. botulinum types A and B with neutral to alkaline soils was statistically significant (P = 0.001) as was their association with soils low in organic matter (P = 0.005). C. botulinum types E and F were found in one soil sample, pH 4.5, with organic matter 13.7%. C. tetani was isolated from two soil samples, both of intermediate pH value and higher than average organic matter content. PMID:238468

  1. Models for the study of Clostridium difficile infection

    PubMed Central

    Best, Emma L.; Freeman, Jane; Wilcox, Mark H.

    2012-01-01

    Models of Clostridium difficile infection (C. difficile) have been used extensively for Clostridium difficile (C. difficile) research. The hamster model of C. difficile infection has been most extensively employed for the study of C. difficile and this has been used in many different areas of research, including the induction of C. difficile, the testing of new treatments, population dynamics and characterization of virulence. Investigations using in vitro models for C. difficile introduced the concept of colonization resistance, evaluated the role of antibiotics in C. difficile development, explored population dynamics and have been useful in the evaluation of C. difficile treatments. Experiments using models have major advantages over clinical studies and have been indispensible in furthering C. difficile research. It is important for future study programs to carefully consider the approach to use and therefore be better placed to inform the design and interpretation of clinical studies. PMID:22555466

  2. Necrotizing gastritis associated with Clostridium septicum in a rabbit.

    PubMed

    Garcia, Jorge P; Moore, Janet; Loukopoulos, Panayiotis; Diab, Santiago S; Uzal, Francisco A

    2014-09-01

    Clostridium septicum is the causative agent of histotoxic infections, including malignant edema and braxy (necrotizing abomasitis) in several animal species. The carcass of a 2-year-old, female New Zealand white rabbit with a history of acute depression and obtundation followed by death was received at the California Animal Health and Food Safety Laboratory System (San Bernardino, California) for necropsy and diagnostic workup. No gross lesions were detected at necropsy. Microscopically, there was moderate to severe, multifocal fibrinonecrotizing, transmural gastritis with numerous intralesional Gram-positive, sporulated rods, and disseminated thrombosis of the brain, lungs, heart, and liver, with occasional intravascular rods. The rods observed within the gastric wall and thrombi in the stomach and lung were positive for C. septicum by immunohistochemical staining. However, this microorganism was not isolated from stomach content. Clostridium septicum should be included in the list of possible etiologies of gastritis in rabbits.

  3. [Clostridium difficile infecion--diagnostics, prevention and treatment].

    PubMed

    Piekarska, Marta; Wandałowicz, Alicja D; Miigoć, Henryka

    2014-04-01

    Clostridium difficile is the most common cause of an antibiotic-associated diarrhoea. Frequency of Clostridium difficile infections (CDI) increased in the last decade. This study presents current preventive measure i.e. hand washing, disposable gloves. Additionally, the article presents diagnostic methods: detection glutamine dehydrogenase (GDH), toxins A and B, cytotoxicity neutralization test, polymerase chain reaction methods (PCR) i.e. nucleic acid amplification test (NAAT) and stool culture. Moreover available methods of treatment were presented depending on severity of CDI e.i. metronidazole, vancomycin, fidaxomicin, rifaximin. Furthermore, the review provides information about alternative methods of treatment in view of new hypervirulent strains of C. difficile and increasing resistance to commonly used antibiotics, including: fuscid acid, bacitracin, probiotics, non-toxigenic strains, immunoglobulins, monoclonal antibodies, vaccines, toxins binders and fecal transplant.

  4. Beneficial and harmful roles of bacteria from the Clostridium genus.

    PubMed

    Samul, Dorota; Worsztynowicz, Paulina; Leja, Katarzyna; Grajek, Włodzimierz

    2013-01-01

    Bacteria of the Clostridium genus are often described only as a biological threat and a foe of mankind. However, many of them have positive properties and thanks to them they may be used in many industry branches (e.g., in solvents and alcohol production, in medicine, and also in esthetic cosmetology). During the last 10 years interest in application of C. botulinum and C. tetani in medicine significantly increased. Currently, the structure and biochemical properties of neurotoxins produced by these bacterial species, as well as possibilities of application of such toxins as botulinum as a therapeutic factor in humans, are being intensely researched. The main aim of this article is to demonstrate that bacteria from Clostridium spp. are not only pathogens and the enemy of humanity but they also have many important beneficial properties which make them usable among many chemical, medical, and cosmetic applications.

  5. Determination of the attP and attB sites of phage CD27 from Clostridium difficile NCTC 12727.

    PubMed

    Williams, Rachel; Meader, Emma; Mayer, Melinda; Narbad, Arjan; Roberts, Adam P; Mullany, Peter

    2013-09-01

    The attP region of the Clostridium difficile phage CD27 was identified, located immediately downstream of the putative recombinase. The phage could integrate into two specific sites (attB) in the C. difficile genome, one of which was in an open reading frame encoding a putative ATPase of an ABC transporter and the other in an open reading frame encoding a putative ATPase of the flagella protein export apparatus. The prophage was capable of excision and formation of a circular molecule and phages were spontaneously released at a low frequency during growth. Infection and lysogeny of a C. difficile strain previously shown to be sensitive to CD27 were demonstrated, leading to a reduction in toxin production. Finally, a putative repressor was identified which is likely to be involved in maintaining lysogeny in these strains.

  6. The utilization of a commercial soil nucleic acid extraction kit and PCR for the detection of Clostridium tetanus and Clostridium chauvoei on farms after flooding in Taiwan.

    PubMed

    Huang, Shr-Wei; Chan, Jacky Peng-Wen; Shia, Wei-Yau; Shyu, Chin-Lin; Tung, Kwon-Chung; Wang, Chi-Young

    2013-05-02

    Clostridial diseases are zoonoses and are classified as soil-borne diseases. Clostridium chauvoei and Clostridium tetani cause blackleg disease and tetanus, respectively. Since bacteria and spores are re-distributed by floods and then, subsequently, contaminate soils, pastures and water; the case numbers associated with clostridial diseases usually increase after floods. Because Taiwan is often affected by flood damage during the typhoon season, possible threats from these diseases are present. Thus, this study's aim is to apply a combination of a commercial nucleic acid extraction kit and PCR to assess the prevalence of Clostridia spp. in soil and to compare the positivity rates for farms before and after floods. The minimum amounts of Clostridium tetanus and Clostridium chauvoei that could be extracted from soils and detected by PCR were 10 and 50 colony forming units (cfu), respectively. In total, 76 samples were collected from the central and southern regions of Taiwan, which are the areas that are most frequently damaged by typhoons. Noteworthy, the positive rates for Clostridium tetanus and Clostridium chauvoei in Pingtung county after the severe floods caused by a typhoon increased significantly from 13.73 and 7.84% to 53.85 and 50.00%, respectively. This study for the first time provides the evidence from surveillance data that there are changes in the environmental distribution of Clostridium spp. after floods. This study indicates that screening for soil-related zoonotic pathogens is a potential strategy that may help to control these diseases.

  7. Clostridium chauvoei-associated meningoencephalitis in a calf.

    PubMed

    2016-01-16

    ·Meningoencephalitis in a calf associated with Clostridium chauvoei infection. ·Bovine papular stomatitis in calves. ·Otitis media due to Mycoplasma bovis in calves. ·Sporadic porcine abortion due to Nocardia species. ·Spotty liver disease in hens. These are among matters discussed in the disease surveillance report for September 2015 from SAC Consulting: Veterinary Services (SAC C VS).

  8. Characterization of Clostridium spp. isolated from spoiled processed cheese products.

    PubMed

    Lycken, Lena; Borch, Elisabeth

    2006-08-01

    Of 42 spoiled cheese spread products, 35 were found to harbor Clostridium spp. Typical signs of spoilage were gas production and off-odor. The identity was determined for about half of the isolates (n = 124) by Analytab Products (API), Biolog, the RiboPrinter System, 16S rDNA sequencing, cellular fatty acid analysis, or some combination of these. The majority of isolates were identified as Clostridium sporogenes (in 33% of products), but Clostridium cochlearium (in 12% of products) and Clostridium tyrobutyricum (in 2% of products) were also retrieved. Similarity analysis of the riboprint patterns for 21 isolates resulted in the identification of 10 ribogroups. A high degree of relatedness was observed between isolates of C. sporogenes originating from products produced 3 years apart, indicating a common and, over time, persistent source of infection. The spoilage potential of 11 well-characterized isolates and two culture collection strains was analyzed by inoculating shrimp cheese spread with single cultures and then storing them at 37 degrees C. Tubes inoculated with C. tyrobutyricum did not show any visible signs of growth (e.g., coagulation, discoloration, gas formation) in the cheese spread. After 2 weeks of incubation, tubes inoculated with C. cochlearium or C. sporogenes showed gas-holes, syneresis with separation of coagulated casein and liquid, and a change in color of the cheese. The amount of CO2 produced by C. cochlearium strains was approximately one-third that produced by the majority of C. sporogenes strains. To our knowledge, this is the first study to isolate and identify C. cochlearium as a spoilage organism in cheese spread.

  9. A Quantitative Electrochemiluminescence Assay for Clostridium perfringens alpha toxin

    DTIC Science & Technology

    2006-08-10

    is the predominant etiolog- ical agent responsible for gas gangrene [1], although other Clostridium species including C. novyi, C. bifermentans, and...great reduction of the inci- dence of gangrene [1]. Gas gangrene remains a potential problematic disease after traumatic injury such as burns and...is a bacterium associated with three disease syndromes: classic gas gangrene (a muscle tis- sue infection resulting in muscle necrosis), enteritis

  10. Fecal microbiota transplantation for the management of Clostridium difficile infection.

    PubMed

    Rao, Krishna; Young, Vincent B

    2015-03-01

    This article discusses the use of fecal microbiota transplantation (FMT) for the treatment of recurrent Clostridium difficile infection (CDI). The disruption of the normal gut microbiota is central to the pathogenesis of CDI, and disruption persists in recurrent disease. The use of FMT for recurrent CDI is characterized by a high response rate and short term safety is excellent, although the long-term effects of FMT are as yet unknown.

  11. Mechanisms of Toxin Production of Food Bacteria (Clostridium botulinum)

    DTIC Science & Technology

    1980-03-25

    food bacteria such as ’Clostridium botulinum. and closely related > organisms. Results from these studies show that C. botulinum types C and D cease...S to produce their dominant toxins when -they are cured o’ftheir prophages.’. These i nontoxigenic derivatives then become sensitive to bacteriophages...of other. culture C.) which induce the production of different toxins . One cured-strain of type C was shown to be sensitive to bacteriophages from C

  12. An ultrasensitive rapid immunocytotoxicity assay for detecting Clostridium difficile toxins

    PubMed Central

    He, Xiangyun; Wang, Jufang; Steele, Jennifer; Sun, Xingmin; Nie, Weijia; Tzipori, Saul; Feng, Hanping

    2009-01-01

    We describe a novel ultrasensitive cell-based immunocytotoxicity assay for detecting less then 1 pg/ml of Clostridium difficile toxins in porcine clinical samples. The assay is simple to perform with a turnaround time of approximately 3 hours and capable of detecting less then 1 pg/ml of toxin A. Using this assay, we were able to detect the presence of C. difficile toxins in the fecal and serum specimens of experimentally infected piglets. PMID:19393695

  13. Clostridium defficiel in the urogenital tract of males and females.

    PubMed

    Hafiz, S; McEntegart, M G; Morton, R S; Waitkins, S A

    1975-02-22

    A study of the occurrence of Clostridium difficile in the urogenital tract of males and females revealed higher isolation-rates in patients attending the special (venereal-disease) clinic than in patients attending family-planning and urological clinics. The presence of Cl. difficile in patients with venereal diseases is being investigated to see if the organism is simply an opportunist infecting a urethra disturbed by some antecedent disease, or if it is perhaps a primary cuase of disease.

  14. Historical and current perspectives on Clostridium botulinum diversity.

    PubMed

    Smith, Theresa J; Hill, Karen K; Raphael, Brian H

    2015-05-01

    For nearly one hundred years, researchers have attempted to categorize botulinum neurotoxin-producing clostridia and the toxins that they produce according to biochemical characterizations, serological comparisons, and genetic analyses. Throughout this period the bacteria and their toxins have defied such attempts at categorization. Below is a description of both historic and current Clostridium botulinum strain and neurotoxin information that illustrates how each new finding has significantly added to the knowledge of the botulinum neurotoxin-containing clostridia and their diversity.

  15. [Toxins of Clostridium perfringens as a natural and bioterroristic threats].

    PubMed

    Omernik, Andrzej; Płusa, Tadeusz

    2015-09-01

    Clostridium perfringens is absolutely anaerobic rod-shaped, sporeforming bacterium. The morbidity is connected with producing toxins. Depending on the type of toxin produced Clostridium perfringens can be divided into five serotypes:A-E. Under natural conditions, this bacterium is responsible for local outbreaks of food poisoning associated with eating contaminated food which which was improperly heat treated. Some countries with lower economic level are endemic foci of necrotizing enteritis caused by Clostridium perfringens. The bacterium is also a major cause of gas gangrene. It is a disease, associated with wound infection, with potentially fatal prognosis in the case of treatment's delays. In the absence of early radical surgery, antibiotic therapy and (if available) hyperbaric treatment leads to the spread of toxins in the body causing shock, coma and death. Due to the force of produced toxins is a pathogen that poses a substrate for the production of biological weapons. It could potentially be used to induce outbreaks of food poisoning and by missiles contamination by spore lead to increased morbidity of gas gangrene in injured soldiers. C. perfringens types B and D produce epsilon toxin considered to be the third most powerful bacterial toxin. Because of the ability to disperse the toxin as an aerosol and a lack of methods of treatment and prevention of poisoning possible factors it is a potential tool for bioterrorism It is advisable to continue research into vaccines and treatments for poisoning toxins of C. perfringens.

  16. Necrotic Enteritis in Chickens Associated with Clostridium sordellii.

    PubMed

    Rimoldi, Guillermo; Uzal, Francisco; Chin, R P; Palombo, Enzo A; Awad, Milena; Lyras, Dena; Shivaprasad, H L

    2015-09-01

    Three outbreaks of necrotic enteritis-like disease associated with Clostridium sordelii were diagnosed in commercial broiler chicken flocks with 18,000 to 31,000 birds between 18 and 26 days old. Clinical signs in the affected flocks included high mortality up to 2% a day, depression, and diarrhea. The main gross changes included segmental dilation of the small intestine with watery contents, gas, mucoid exudate, and roughened and uneven mucosa, occasionally covered with a pseudomembrane. Microscopic lesions in the small intestine were characterized by extensive areas of coagulative necrosis of the villi, fibrinous exudate in the lumen, and high numbers of large, Gram-positive rods, occasionally containing subterminal spores, seen in the necrotic tissue and lumen. These rods were identified as C. sordellii by immunohistochemistry. Clostridium sordellii was isolated in an almost pure culture from the intestine of affected birds. A retrospective study of commercial broiler chicken and turkey submissions to the California Animal Health and Food Safety Laboratory System revealed that C. sordellii had been isolated from intestinal lesions in outbreaks of necrotic enteritis-like disease in 8 of 39 cases, 5 times together with Clostridium perfringens and 3 times alone. The latter three cases are reported here.

  17. Electron capture gas chromatography study of the acid and alcohol products of Clostridium septicum and Clostridium chauvoei.

    PubMed

    Brooks, J B; Selin, M J; Alley, C C

    1976-02-01

    The metabolic products produced by several strains of Clostridium septicum obtained from patients and animals, along with strains of Clostridium chauvoei, were studied in chopped meat glucose medium by electron capture gas-liquid chromatography (EC-GLC). The strains of C. septicum and C. chauvoei were shown to comprise five different metabolic groups. Both the EC-GLC study and the O and H antigenic study performed previously showed that strains of C. septicum comprise a heterogeneous group. One type of metabolic profile was found only in strains of C. chauvoei. The O antigen types and EC-GLC metabolic types of C. septicum correlated fairly well in isolates from cancer patients but not in stock culture and animal isolates.

  18. Development of Clostridium septicum gas gangrene as an adverse effect of clindamycin-induced Clostridium difficile infection in a pediatric patient.

    PubMed

    Kiser, Casey J; Urish, Kenneth L; Boateng, Henry A

    2014-09-01

    Clostridium myonecrosis or gas gangrene is a life-threatening infection characterized by either traumatic or atraumatic etiology. It has been widely described in patients with traumatic open wounds and in immunocompromised patients, including malignancy. A third source can result from natural flora in the gastrointestinal tract after bowel ischemia. This is a rare occurrence and is even less commonly described in the pediatric population. We present a pediatric patient who developed Clostridium septicum myonecrosis as an iatrogenic complication from clindamycin-induced Clostridium difficile ischemic colitis.

  19. Influence of long-chain polyphosphate and heat treatment on Clostridium cochlearium and Clostridium sporogenes isolated from processed cheese spread.

    PubMed

    Borch, Elisabeth; Lycken, Lena

    2007-03-01

    The outgrowth of Clostridium spp. spores causes spoilage in processed cheese products due to gas and off-odor formation. The present study focuses on the response of spores of Clostridium sporogenes and Clostridium cochlearium at 25 degrees C to polyphosphate, both alone and in combination with heat treatment. The two strains used were isolated from spoiled cheese spread. The addition of 1.5% polyphosphate but not 0.75% polyphosphate totally inhibited the growth of C. sporogenes SIK4.3; in contrast, 0.75% polyphosphate was sufficient to totally inhibit C. cochlearium CCUG 45978. The highest polyphosphate concentration tested (1.5%) was sporicidal for C. sporogenes SIK4.3 but not for C. cochlearium CCUG 45978. When 0.75% polyphosphate Bekaplus FS was combined with a holding time of 5 min at 98 degrees C, no survival or growth of C. sporogenes SIK4.3 was detected; however, the same effect was not achieved through heating alone or through application of polyphosphate alone. C. cochlearium CCUG 45978 was more heat tolerant, as shown by higher D-values. In conclusion, the results strongly suggest that polyphosphate Bekaplus FS has the potential to restrict the growth of C. sporogenes and C. cochlearium in cheese spread stored at ambient storage temperature. Experiments with cheese are needed in order to verify this effect.

  20. Different substrate recognition requirements for cleavage of synaptobrevin-2 by Clostridium baratii and Clostridium botulinum type F neurotoxins.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Egan, Christina; Smith, Theresa J; Smith, Leonard A; Pirkle, James L; Barr, John R

    2011-02-01

    Botulinum neurotoxins (BoNTs) cause botulism, which can be fatal if it is untreated. BoNTs cleave proteins necessary for nerve transmission, resulting in paralysis. The in vivo protein target has been reported for all seven serotypes of BoNT, i.e., serotypes A to G. Knowledge of the cleavage sites has led to the development of several assays to detect BoNT based on its ability to cleave a peptide substrate derived from its in vivo protein target. Most serotypes of BoNT can be subdivided into subtypes, and previously, we demonstrated that three of the currently known subtypes of BoNT/F cleave a peptide substrate, a shortened version of synaptobrevin-2, between Q58 and K59. However, our research indicated that Clostridium baratii type F toxin did not cleave this peptide. In this study, we detail experiments demonstrating that Clostridium baratii type F toxin cleaves recombinant synaptobrevin-2 in the same location as that cleaved by proteolytic F toxin. In addition, we demonstrate that Clostridium baratii type F toxin can cleave a peptide substrate based on the sequence of synaptobrevin-2. This peptide substrate is an N-terminal extension of the original peptide substrate used for detection of other BoNT/F toxins and can be used to detect four of the currently known BoNT/F subtypes by mass spectrometry.