Sample records for clostridium acetobutylicum genome

  1. Annotation of the Clostridium Acetobutylicum Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, M. J.

    The genome sequence of the solvent producing bacterium Clostridium acetobutylicum ATCC824, has been determined by the shotgun approach. The genome consists of a 3.94 Mb chromosome and a 192 kb megaplasmid that contains the majority of genes responsible for solvent production. Comparison of C. acetobutylicum to Bacillus subtilis reveals significant local conservation of gene order, which has not been seen in comparisons of other genomes with similar, or, in some cases, closer, phylogenetic proximity. This conservation allows the prediction of many previously undetected operons in both bacteria.

  2. Genetic manipulation of clostridium acetobutylicum for enhanced butanol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaschek, H.P.; Holt, S.

    Recent developments in the genetic manipulation of the acetone-butanol-ethanol fermentation microorganism, Clostridium acetobutylicum will be discussed. This specifically involves the characterization of an M13-like genetic system for C. acetobutylicum based on the pCAK1 phagemid, as well as the development of a plasmid-based vector based on the indigenous pDM11 plasmid recovered from C. acetobutylicum NCIB 6443. In addition, a macrorestriction map of the C. acetobutylicum ATCC 824 genome was constructed by utilizing two-dimensional transverse alternating field electrophoresis combined with reciprocal enzyme digestions and hybridization with previously cloned genes. We also describe the genetic engineering of a C. acetobutylicum strain with amplifiedmore » encloglucanase activity and to development and characterization of C. acetobutylicum hyper-amylolytic mutants with enhanced potential for commercial processes and evaluate their ability to produce butanol under batch and continuous culture conditions.« less

  3. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    DOE PAGES

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; ...

    2014-10-14

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation.

  4. Transformation of Clostridium acetobutylicum Protoplasts with Bacteriophage DNA

    PubMed Central

    Reid, Sharon J.; Allcock, Errol R.; Jones, David T.; Woods, David R.

    1983-01-01

    Techniques for the transformation of Clostridium acetobutylicum protoplasts with bacteriophage DNA are described. Transformation required regeneration of protoplasts and a 2-h eclipse period. PMID:16346174

  5. Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid.

    PubMed

    Jang, Yu-Sin; Woo, Hee Moon; Im, Jung Ae; Kim, In Ho; Lee, Sang Yup

    2013-11-01

    Clostridium acetobutylicum has been considered as an attractive platform host for biorefinery due to its metabolic diversity. Considering its capability to overproduce butanol through butyrate, it was thought that butyric acid can also be efficiently produced by this bacterium through metabolic engineering. The pta-ctfB-deficient C. acetobutylicum CEKW, in which genes encoding phosphotransacetylase and CoA-transferase were knocked out, was assessed for its potential as a butyric acid producer in fermentations with four controlled pH values at 5.0, 5.5, 6.0, and 6.4. Butyric acid could be best produced by fermentation of the CEKW at pH 6.0, resulting in the highest titer of 26.6 g/l, which is 6.4 times higher than that obtained with the wild type. However, due to the remaining solventogenic ability of the CEKW, 3.6 g/l solvents were also produced. Thus, the CEKW was further engineered by knocking out the adhE1-encoding aldehyde/alcohol dehydrogenase to prevent solvent production. Batch fermentation of the resulting C. acetobutylicum HCEKW at pH 6.0 showed increased butyric acid production to 30.8 g/l with a ratio of butyric-to-acetic acid (BA/AA) of 6.6 g/g and a productivity of 0.72 g/l/h from 86.9 g/l glucose, while negligible solvent (0.8 g/l ethanol only) was produced. The butyric acid titer, BA/AA ratio, and productivity obtained in this study were the highest values reported for C. acetobutylicum, and the BA/AA ratio and productivity were also comparable to those of native butyric acid producer Clostridium tyrobutyricum. These results suggested that the simultaneous deletion of the pta-ctfB-adhE1 in C. acetobutylicum resulted in metabolic switch from biphasic to acidogenic fermentation, which enhanced butyric acid production.

  6. Properties of the glucose phosphotransferase system of Clostridium acetobutylicum NCIB 8052

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, W.J.; Shaw, J.E.; Andrews, L.

    1991-09-01

    Acetone-butanol-ethanol fermentation by Clostridium acetobutylicum has been exploited on an industrial scale in the past, but for economic reasons the process has declined. However, with an increased understanding of solvent formation and the potential for genetic manipulation of the organism, this fermentation is once again receiving attention. An economical process would be founded on the use of cheap, renewable substrates, ideally carbohydrate-based waste materials. However, little is known about the mechanism and regulation of carbohydrate accumulation by C. acetobutylicum. The glucose phosphotransferase system (PTS) of C. acetobutylicum was studied by using cell extracts. The system exhibited a K{sub m} formore » glucose of 34 {mu}M, and glucose phosphorylation was inhibited competitively by mannose and 2-deoxyglucose. The analogs 3-O-methylglucoside and methyl {alpha}-glucoside did not inhibit glucose phosphorylation significantly. Activity showed no dependence on Mg{sup 2+} ions or on pH in the range 6.0 to 8.0. The PTS comprised both soluble and membrane-bound proteins, which interacted functionally with the PTSs of Clostridium pasteurianum, Bacillus subtilis, and Escherichia coli. In addition to a membrane-bound enzyme II{sup Glc}, sugar phosphorylation assays in heterologous systems incorporating extracts of pts mutants of other organisms provided evidence for enzyme I, HPr, and III{sup Glc} components. The HPr was found in the soluble fraction of C. acetobutylicum extracts, whereas enzyme I, and probably also III{sup Glc}, was present in both the soluble and membrane fractions, suggesting a membrane location in the intact cell.« less

  7. Shotgun proteomic monitoring of Clostridium acetobutylicum during stationary phase of butanol fermentation using xylose and comparison with the exponential phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B

    2012-01-01

    Economically viable production of solvents through acetone butanol ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of fivemore » proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.« less

  8. Butanol production under microaerobic conditions with a symbiotic system of Clostridium acetobutylicum and Bacillus cereus.

    PubMed

    Wu, Pengfei; Wang, Genyu; Wang, Gehua; Børresen, Børre Tore; Liu, Hongjuan; Zhang, Jianan

    2016-01-14

    One major problem of ABE (acetone, butanol and ethanol) fermentation is high oxygen sensitivity of Clostridium acetobutylicum. Currently, no single strain has been isolated or genetically engineered to produce butanol effectively under aerobic conditions. In our previous work, a symbiotic system TSH06 has been developed successfully by our group, and two strains, C. acetobutylicum TSH1 and Bacillus cereus TSH2, were isolated from TSH06. Compared with single culture, TSH06 showed promotion on cell growth and solvent accumulation under microaerobic conditions. To simulate TSH06, a new symbiotic system was successfully re-constructed by adding living cells of B. cereus TSH2 into C. acetobutylicum TSH1 cultures. During the fermentation process, the function of B. cereus TSH2 was found to deplete oxygen and provide anaerobic environment for C. acetobutylicum TSH1. Furthermore, inoculation ratio of C. acetobutylicum TSH1 and B. cereus TSH2 affected butanol production. In a batch fermentation with optimized inoculation ratio of 5 % C. acetobutylicum TSH1 and 0.5 % B. cereus TSH2, 11.0 g/L butanol and 18.1 g/L ABE were produced under microaerobic static condition. In contrast to the single culture of C. acetobutylicum TSH1, the symbiotic system became more aerotolerant and was able to produce 11.2 g/L butanol in a 5 L bioreactor even with continuous 0.15 L/min air sparging. In addition, qPCR assay demonstrated that the abundance of B. cereus TSH2 increased quickly at first and then decreased sharply to lower than 1 %, whereas C. acetobutylicum TSH1 accounted for more than 99 % of the whole population in solventogenic phase. The characterization of a novel symbiotic system on butanol fermentation was studied. The new symbiotic system re-constructed by co-culture of C. acetobutylicum TSH1 and B. cereus TSH2 showed excellent performance on butanol production under microaerobic conditions. B. cereus TSH2 was a good partner for C. acetobutylicum TSH1 by providing an anaerobic

  9. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Guanhui; University of Chinese Academy of Sciences, Beijing; Dong, Hongjun

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work,more » we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.« less

  10. Metronidazole activation and isolation of Clostridium acetobutylicum electron transport genes.

    PubMed Central

    Santangelo, J D; Jones, D T; Woods, D R

    1991-01-01

    An Escherichia coli F19 recA, nitrate reductase-deficient mutant was constructed by transposon mutagenesis and shown to be resistant to metronidazole. This mutant was a most suitable host for the isolation of Clostridium acetobutylicum genes on recombinant plasmids, which activated metronidazole and rendered the E. coli F19 strain sensitive to metronidazole. Twenty-five E. coli F19 clones containing different recombinant plasmids were isolated and classified into five groups on the basis of their sensitivity to metronidazole. The clones were tested for nitrate reductase, pyruvate-ferredoxin oxidoreductase, and hydrogenase activities. DNA hybridization and restriction endonuclease mapping revealed that four of the C. acetobutylicum insert DNA fragments on recombinant plasmids were linked in an 11.1-kb chromosomal fragment. DNA sequencing and amino acid homology studies indicated that this DNA fragment contained a flavodoxin gene which encoded a protein of 160 amino acids that activated metronidazole and made the E. coli F19 mutant very sensitive to metronidazole. The flavodoxin and hydrogenase genes which are involved in electron transfer systems were linked on the 11.1-kb DNA fragment from C. acetobutylicum. Images PMID:1991710

  11. Direct selection of Clostridium acetobutylicum fermentation mutants by a proton suicide method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cueto, P.H.; Mendez, B.S.

    Clostridium acetobutylicum ATCC 10132 mutants altered in acetic acid synthesis or in the shift to solventogenesis were directly selected by a proton suicide method after mutagenic treatment, by using bromide and bromate as selective agents. The mutants were characterized according to their solvent and acid production. On the selection plates they differed in colony phenotype from the parent strain.

  12. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum.

    PubMed

    Xue, Chuang; Zhao, Jingbo; Chen, Lijie; Yang, Shang-Tian; Bai, Fengwu

    Butanol as an advanced biofuel has gained great attention due to its environmental benefits and superior properties compared to ethanol. However, the cost of biobutanol production via conventional acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum is not economically competitive, which has hampered its industrial application. The strain performance and downstream process greatly impact the economics of biobutanol production. Although various engineered strains with carefully orchestrated metabolic and sporulation-specific pathways have been developed, none of them is ideal for industrial biobutanol production. For further strain improvement, it is necessary to develop advanced genome editing tools and a deep understanding of cellular functioning of genes in metabolic and regulatory pathways. Processes with integrated product recovery can increase fermentation productivity by continuously removing inhibitory products while generating butanol (ABE) in a concentrated solution. In this review, we provide an overview of recent advances in C. acetobutylicum strain engineering and process development focusing on in situ product recovery. With deep understanding of systematic cellular bioinformatics, the exploration of state-of-the-art genome editing tools such as CRISPR-Cas for targeted gene knock-out and knock-in would play a vital role in Clostridium cell engineering for biobutanol production. Developing advanced hybrid separation processes for in situ butanol recovery, which will be discussed with a detailed comparison of advantages and disadvantages of various recovery techniques, is also imperative to the economical development of biobutanol. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Enhancement of butanol tolerance and butanol yield in Clostridium acetobutylicum mutant NT642 obtained by nitrogen ion beam implantation.

    PubMed

    Liu, Xiao-Bo; Gu, Qiu-Ya; Yu, Xiao-Bin; Luo, Wei

    2012-12-01

    As a promising alternative biofuel, biobutanol can be produced through acetone/butanol/ethanol (ABE) fermentation. Currently, ABE fermentation is still a small-scale industry due to its low production and high input cost. Moreover, butanol toxicity to the Clostridium fermentation host limits the accumulation of butanol in the fermentation broth. The wild-type Clostridium acetobutylicum D64 can only produce about 13 g butanol/L and tolerates less than 2% (v/v) butanol. To improve the tolerance of C. acetobutylicum D64 for enhancing the production of butanol, nitrogen ion beam implantation was employed and finally five mutants with enhanced butanol tolerance were obtained. Among these, the most butanol tolerant mutant C. acetobutylicum NT642 can tolerate above 3% (v/v) butanol while the wide-type strain can only withstand 2% (v/v). In batch fermentation, the production of butanol and ABE yield of C. acetobutylicum NT642 was 15.4 g/L and 22.3 g/L, respectively, which were both higher than those of its parental strain and the other mutants using corn or cassava as substrate. Enhancing butanol tolerance is a great precondition for obtaining a hyper-yield producer. Nitrogen ion beam implantation could be a promising biotechnology to improve butanol tolerance and production of the host strain C. acetobutylicum.

  14. Metabolic engineering of Clostridium acetobutylicum for butyric acid production with high butyric acid selectivity.

    PubMed

    Jang, Yu-Sin; Im, Jung Ae; Choi, So Young; Lee, Jung Im; Lee, Sang Yup

    2014-05-01

    A typical characteristic of the butyric acid-producing Clostridium is coproduction of both butyric and acetic acids. Increasing the butyric acid selectivity important for economical butyric acid production has been rather difficult in clostridia due to their complex metabolic pathways. In this work, Clostridium acetobutylicum was metabolically engineered for highly selective butyric acid production. For this purpose, the second butyrate kinase of C. acetobutylicum encoded by the bukII gene instead of butyrate kinase I encoded by the buk gene was employed. Furthermore, metabolic pathways were engineered to further enhance the NADH-driving force. Batch fermentation of the metabolically engineered C. acetobutylicum strain HCBEKW (pta(-), buk(-), ctfB(-) and adhE1(-)) at pH 6.0 resulted in the production of 32.5g/L of butyric acid with a butyric-to-acetic acid ratio (BA/AA ratio) of 31.3g/g from 83.3g/L of glucose. By further knocking out the hydA gene (encoding hydrogenase) in the HCBEKW strain, the butyric acid titer was not further improved in batch fermentation. However, the BA/AA ratio (28.5g/g) obtained with the HYCBEKW strain (pta(-), buk(-), ctfB(-), adhE1(-) and hydA(-)) was 1.6 times higher than that (18.2g/g) obtained with the HCBEKW strain at pH 5.0, while no improvement was observed at pH 6.0. These results suggested that the buk gene knockout was essential to get a high butyric acid selectivity to acetic acid in C. acetobutylicum. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Mechanisms of microbial oil recovery by Clostridium acetobutylicum and Bacillus strain JF-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, T.L.; Zhang, X.; Knapp, R.M.

    1995-12-31

    Core displacement experiments at elevated pressures were conducted to determine whether microbial processes are effective under conditions that simulate those found in an actual oil reservoir. The in-situ growth of Clostridium acetobutylicum and Bacillus strain JF-2 resulted in the recovery of residual oil. About 21 and 23% of the residual oil was recovered by C. acetobutylicum and Bacillus strain JF-2, respectively. Flooding cores with cell-free culture fluids of C. acetobutylicum with and without the addition of 50 mM acetone and 100 mM butanol did not result in the recovery of residual oil. Mathematical simulations showed that the amount of gasmore » produced by the clostridial fermentation was not showed that the amount of gas produced by the clostridial fermentation was not sufficient to recover residual oil. Oil recovery by Bacillus strain JF-2 was highly correlated to surfactant production. A biosurfactant-deficient mutant of strain JF-2 was not capable of recovering residual oil. These data show that surfactant production is an important mechanism for microbially enhanced oil recovery. The mechanism for oil recovery by C. acetobutylicum is not understood at this time, but the production of acids, solvents, or gases alone cannot explain the observed increases in oil recovery by this organism.« less

  16. Phosphoketolase Pathway for Xylose Catabolism in Clostridium acetobutylicum Revealed by 13C Metabolic Flux Analysis

    PubMed Central

    Liu, Lixia; Zhang, Lei; Tang, Wei; Gu, Yang; Hua, Qiang; Yang, Sheng; Jiang, Weihong

    2012-01-01

    Solvent-producing clostridia are capable of utilizing pentose sugars, including xylose and arabinose; however, little is known about how pentose sugars are catabolized through the metabolic pathways in clostridia. In this study, we identified the xylose catabolic pathways and quantified their fluxes in Clostridium acetobutylicum based on [1-13C]xylose labeling experiments. The phosphoketolase pathway was found to be active, which contributed up to 40% of the xylose catabolic flux in C. acetobutylicum. The split ratio of the phosphoketolase pathway to the pentose phosphate pathway was markedly increased when the xylose concentration in the culture medium was increased from 10 to 20 g liter−1. To our knowledge, this is the first time that the in vivo activity of the phosphoketolase pathway in clostridia has been revealed. A phosphoketolase from C. acetobutylicum was purified and characterized, and its activity with xylulose-5-P was verified. The phosphoketolase was overexpressed in C. acetobutylicum, which resulted in slightly increased xylose consumption rates during the exponential growth phase and a high level of acetate accumulation. PMID:22865845

  17. Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B

    2011-01-01

    Background: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetonebutanol- ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production. Results: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylosemore » substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates. Conclusion: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.« less

  18. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.

    PubMed

    Zhang, Yan; Han, Bei; Ezeji, Thaddeus Chukwuemeka

    2012-02-15

    The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Intracellular metabolic changes of Clostridium acetobutylicum and promotion to butanol tolerance during biobutanol fermentation.

    PubMed

    Wang, Yan-Feng; Tian, Juan; Ji, Zhi-Hua; Song, Mao-Yong; Li, Hao

    2016-09-01

    During the fermentation process, Clostridium acetobutylicum cells are often inhibited by the accumulated butanol. However, the mechanism underlying response of C. acetobutylicum to butanol stress remains poorly understood. This study was performed to clarify such mechanism through investigating the butanol stress-associated intracellular biochemical changes at acidogenesis phase (i.e., middle exponential phase) and solventogenesis phase (i.e., early stationary phase) by a gas chromatography-mass spectrometry-based metabolomics strategy. With the aid of partial least-squares-discriminant analysis, a pairwise discrimination between control group and butanol-treated groups was revealed, and 27 metabolites with variable importance in the projection value greater than 1 were identified. Under butanol stress, the glycolysis might be inhibited while TCA cycle might be promoted. Moreover, changes of lipids and fatty acids compositions, amino acid metabolism and osmoregulator concentrations might be the key factors involved in C. acetobutylicum metabolic response to butanol stress. It was suggested that C. acetobutylicum cells might change the levels of long acyl chain saturated fatty acids and branched-chain amino acids to maintain the integrity of cell membrane through adjusting membrane fluidity under butanol stress. The increased level of glycerol was considered to be correlated with osmoregulation and regulating redox balance. In addition, increased levels of some amino acids (i.e., threonine, glycine, alanine, phenylalanine, tyrosine, tryptophan, aspartate and glutamate) might also confer butanol tolerance to C. acetobutylicum. These results highlighted our knowledge about the response or adaptation of C. acetobutylicum to butanol stress, and would contribute to the construction of feasible butanologenic strains with higher butanol tolerance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Analysis of Redox Responses During TNT Transformation by Clostridium acetobutylicum ATCC 824 and Mutants Exhibiting Altered Metabolism

    DTIC Science & Technology

    2012-01-01

    consistent with this explanation (Girbal and Soucaille 1994; Vasconcelos et al. 1994). These findings of the effect of competition of other factors and...acetone formation path- way of Clostridium acetobutylicum. J Bacteriol 185(6):1923–1934 Vasconcelos I, Girbal L, Soucaille P (1994) Regulation of carbon

  1. Enhancing Butanol Production under the Stress Environments of Co-Culturing Clostridium acetobutylicum/Saccharomyces cerevisiae Integrated with Exogenous Butyrate Addition

    PubMed Central

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Zhao, Yanli; Ding, Jian; Li, Zhigang; He, Zhenni; Chen, Rui; Shi, Zhongping

    2015-01-01

    In this study, an efficient acetone-butanol-ethanol (ABE) fermentation strategy integrating Clostridium acetobutylicum/Saccharomyces cerevisiae co-culturing system with exogenous butyrate addition, was proposed and experimentally conducted. In solventogenic phase, by adding 0.2 g-DCW/L-broth viable S. cerevisiae cells and 4.0 g/L-broth concentrated butyrate solution into C. acetobutylicum culture broth, final butanol concentration and butanol/acetone ratio in a 7 L anaerobic fermentor reached the highest levels of 15.74 g/L and 2.83 respectively, with the increments of 35% and 43% as compared with those of control. Theoretical and experimental analysis revealed that, the proposed strategy could, 1) extensively induce secretion of amino acids particularly lysine, which are favorable for both C. acetobutylicum survival and butanol synthesis under high butanol concentration environment; 2) enhance the utilization ability of C. acetobutylicum on glucose and over-produce intracellular NADH for butanol synthesis in C. acetobutylicum metabolism simultaneously; 3) direct most of extra consumed glucose into butanol synthesis route. The synergetic actions of effective amino acids assimilation, high rates of substrate consumption and NADH regeneration yielded highest butanol concentration and butanol ratio in C. acetobutylicum under this stress environment. The proposed method supplies an alternative way to improve ABE fermentation performance by traditional fermentation technology. PMID:26489085

  2. Mutant strain of C. acetobutylicum and process for making butanol

    DOEpatents

    Jain, Mahendra K.; Beacom, Daniel; Datta, Rathin

    1993-01-01

    A biologically pure asporogenic mutant of Clostridium acetobutylicum is produced by growing sporogenic C. acetobutylicum ATCC 4259 and treating the parent strain with ethane methane sulfonate. The mutant which as been designated C. acetobutylicum ATCC 55025 is useful in an improved ABE fermentation process, and produces high concentrations of butanol and total solvents.

  3. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum

    PubMed Central

    Carlson, Ellinor D.

    2017-01-01

    ABSTRACT With recent advances in synthetic biology, CO2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO2, and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum, which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum, which is natively incapable of CO2 fixation. The expression of CODH, alone or together with the C. carboxidivorans

  4. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum.

    PubMed

    Carlson, Ellinor D; Papoutsakis, Eleftherios T

    2017-08-15

    With recent advances in synthetic biology, CO 2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO 2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO 2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO 2 , and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO 2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum , which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO 2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO 2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO 2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum , which is natively incapable of CO 2 fixation. The expression of CODH, alone or together with the C. carboxidivorans

  5. Engineering Clostridium acetobutylicum for production of kerosene and diesel blendstock precursors.

    PubMed

    Bormann, Sebastian; Baer, Zachary C; Sreekumar, Sanil; Kuchenreuther, Jon M; Dean Toste, F; Blanch, Harvey W; Clark, Douglas S

    2014-09-01

    Processes for the biotechnological production of kerosene and diesel blendstocks are often economically unattractive due to low yields and product titers. Recently, Clostridium acetobutylicum fermentation products acetone, butanol, and ethanol (ABE) were shown to serve as precursors for catalytic upgrading to higher chain-length molecules that can be used as fuel substitutes. To produce suitable kerosene and diesel blendstocks, the butanol:acetone ratio of fermentation products needs to be increased to 2-2.5:1, while ethanol production is minimized. Here we show that the overexpression of selected proteins changes the ratio of ABE products relative to the wild type ATCC 824 strain. Overexpression of the native alcohol/aldehyde dehydrogenase (AAD) has been reported to primarily increase ethanol formation in C. acetobutylicum. We found that overexpression of the AAD(D485G) variant increased ethanol titers by 294%. Catalytic upgrading of the 824(aad(D485G)) ABE products resulted in a blend with nearly 50wt%≤C9 products, which are unsuitable for diesel. To selectively increase butanol production, C. beijerinckii aldehyde dehydrogenase and C. ljungdhalii butanol dehydrogenase were co-expressed (strain designate 824(Cb ald-Cl bdh)), which increased butanol titers by 27% to 16.9gL(-1) while acetone and ethanol titers remained essentially unaffected. The solvent ratio from 824(Cb ald-Cl bdh) resulted in more than 80wt% of catalysis products having a carbon chain length≥C11 which amounts to 9.8gL(-1) of products suitable as kerosene or diesel blendstock based on fermentation volume. To further increase solvent production, we investigated expression of both native and heterologous chaperones in C. acetobutylicum. Expression of a heat shock protein (HSP33) from Bacillus psychrosaccharolyticus increased the total solvent titer by 22%. Co-expression of HSP33 and aldehyde/butanol dehydrogenases further increased ABE formation as well as acetone and butanol yields. HSP33 was

  6. In situ hydrogen, acetone, butanol, ethanol and microdiesel production by Clostridium acetobutylicum ATCC 824 from oleaginous fungal biomass.

    PubMed

    Hassan, Elhagag Ahmed; Abd-Alla, Mohamed Hemida; Bagy, Magdy Mohamed Khalil; Morsy, Fatthy Mohamed

    2015-08-01

    An in situ batch fermentation technique was employed for biohydrogen, acetone, butanol, ethanol and microdiesel production from oleaginous fungal biomass using the anaerobic fermentative bacterium Clostridium acetobutylicum ATCC 824. Oleaginous fungal Cunninghamella echinulata biomass which has ability to accumulate up to 71% cellular lipid was used as the substrate carbon source. The maximum cumulative hydrogen by C. acetobutylicum ATCC 824 from crude C. echinulata biomass was 260 ml H2 l(-1), hydrogen production efficiency was 0.32 mol H2 mole(-1) glucose and the hydrogen production rate was 5.2 ml H2 h(-1). Subsequently, the produced acids (acetic and butyric acids) during acidogenesis phase are re-utilized by ABE-producing clostridia and converted into acetone, butanol, and ethanol. The total ABE produced by C. acetobutylicum ATCC 824 during batch fermentation was 3.6 g l(-1) from crude fungal biomass including acetone (1.05 g l(-1)), butanol (2.19 g l(-1)) and ethanol (0.36 g l(-1)). C. acetobutylicum ATCC 824 has ability to produce lipolytic enzymes with a specific activity 5.59 U/mg protein to hydrolyze ester containing substrates. The lipolytic potential of C. acetobutylicum ATCC 824 was used as a biocatalyst for a lipase transesterification process using the produced ethanol from ABE fermentation for microdiesel production. The fatty acid ethyl esters (microdiesel) generated from the lipase transesterification of crude C. echinulata dry mass was analyzed by GC/MS as 15.4% of total FAEEs. The gross energy content of biohydrogen, acetone, butanol, ethanol and biodiesel generated through C. acetobutylicum fermentation from crude C. echinulata dry mass was 3113.14 kJ mol(-1). These results suggest a possibility of integrating biohydrogen, acetone, butanol and ethanol production technology by C. acetobutylicum with microdiesel production from crude C. echinulata dry mass and therefore improve the feasibility and commercialization of bioenergy production

  7. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum.

    PubMed

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-07-07

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels.

  8. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum

    PubMed Central

    Liao, Chen; Seo, Seung-Oh; Celik, Venhar; Liu, Huaiwei; Kong, Wentao; Wang, Yi; Blaschek, Hans; Jin, Yong-Su; Lu, Ting

    2015-01-01

    Microbial metabolism involves complex, system-level processes implemented via the orchestration of metabolic reactions, gene regulation, and environmental cues. One canonical example of such processes is acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum, during which cells convert carbon sources to organic acids that are later reassimilated to produce solvents as a strategy for cellular survival. The complexity and systems nature of the process have been largely underappreciated, rendering challenges in understanding and optimizing solvent production. Here, we present a system-level computational framework for ABE fermentation that combines metabolic reactions, gene regulation, and environmental cues. We developed the framework by decomposing the entire system into three modules, building each module separately, and then assembling them back into an integrated system. During the model construction, a bottom-up approach was used to link molecular events at the single-cell level into the events at the population level. The integrated model was able to successfully reproduce ABE fermentations of the WT C. acetobutylicum (ATCC 824), as well as its mutants, using data obtained from our own experiments and from literature. Furthermore, the model confers successful predictions of the fermentations with various network perturbations across metabolic, genetic, and environmental aspects. From foundation to applications, the framework advances our understanding of complex clostridial metabolism and physiology and also facilitates the development of systems engineering strategies for the production of advanced biofuels. PMID:26100881

  9. Cell growth behaviors of Clostridium acetobutylicum in a pervaporation membrane bioreactor for butanol fermentation.

    PubMed

    Yao, Peina; Xiao, Zeyi; Chen, Chunyan; Li, Weijia; Deng, Qing

    2016-01-01

    Acetone-butanol-ethanol fermentation using Clostridium acetobutylicum was studied in the continuous and closed-circulating fermentation (CCCF) system. The experiment lasting for 192 H was carried out by integrating fermentation with in situ pervaporation. In the entire process, the cell growth profile took place in the following two phases: the logarithmic phase during early 28 H and the linear phase from 130 to 150 H. This was a unique characteristic compared with the curve of traditional fermentation, and the fitting equations of two growth phases were obtained by Origin software according to the kinetic model of cell growth. Besides, the kinetic parameters that include the butanol yield, maximum specific growth rate, average specific formation rate, and volumetric productivity of butanol were measured as 0.19 g g(-1) , 0.345 H(-1) , 0.134 H(-1) and 0.23 g L(-1)  H(-1) , respectively. The C. acetobutylicum in the CCCF system showed good adaptability and fermentation performance, and the prolonged fermentation period and high production were also the main advantages of CCCF technology. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  10. A Novel Dual-cre Motif Enables Two-Way Autoregulation of CcpA in Clostridium acetobutylicum.

    PubMed

    Zhang, Lu; Liu, Yanqiang; Yang, Yunpeng; Jiang, Weihong; Gu, Yang

    2018-04-15

    The master regulator CcpA (catabolite control protein A) manages a large and complex regulatory network that is essential for cellular physiology and metabolism in Gram-positive bacteria. Although CcpA can affect the expression of target genes by binding to a cis -acting catabolite-responsive element ( cre ), whether and how the expression of CcpA is regulated remain poorly explored. Here, we report a novel dual- cre motif that is employed by the CcpA in Clostridium acetobutylicum , a typical solventogenic Clostridium species, for autoregulation. Two cre sites are involved in CcpA autoregulation, and they reside in the promoter and coding regions of CcpA. In this dual- cre motif, cre P , in the promoter region, positively regulates ccpA transcription, whereas cre ORF , in the coding region, negatively regulates this transcription, thus enabling two-way autoregulation of CcpA. Although CcpA bound cre P more strongly than cre ORF in vitro , the in vivo assay showed that cre ORF -based repression dominates CcpA autoregulation during the entire fermentation. Finally, a synonymous mutation of cre ORF was made within the coding region, achieving an increased intracellular CcpA expression and improved cellular performance. This study provides new insights into the regulatory role of CcpA in C. acetobutylicum and, moreover, contributes a new engineering strategy for this industrial strain. IMPORTANCE CcpA is known to be a key transcription factor in Gram-positive bacteria. However, it is still unclear whether and how the intracellular CcpA level is regulated, which may be essential for maintaining normal cell physiology and metabolism. We discovered here that CcpA employs a dual- cre motif to autoregulate, enabling dynamic control of its own expression level during the entire fermentation process. This finding answers the questions above and fills a void in our understanding of the regulatory network of CcpA. Interference in CcpA autoregulation leads to improved cellular

  11. The industrial anaerobe Clostridium acetobutylicum uses polyketides to regulate cellular differentiation.

    PubMed

    Herman, Nicolaus A; Kim, Seong Jong; Li, Jeffrey S; Cai, Wenlong; Koshino, Hiroyuki; Zhang, Wenjun

    2017-11-15

    Polyketides are an important class of bioactive small molecules valued not only for their diverse therapeutic applications, but also for their role in controlling interesting biological phenotypes in their producing organisms. While numerous polyketides are known to be derived from aerobic organisms, only a single family of polyketides has been identified from anaerobic organisms. Here we uncover a family of polyketides native to the anaerobic bacterium Clostridium acetobutylicum, an organism well-known for its historical use as an industrial producer of the organic solvents acetone, butanol, and ethanol. Through mutational analysis and chemical complementation assays, we demonstrate that these polyketides act as chemical triggers of sporulation and granulose accumulation in this strain. This study represents a significant addition to the body of work demonstrating the existence and importance of polyketides in anaerobes, and showcases a strategy of manipulating the secondary metabolism of an organism to improve traits relevant for industrial applications.

  12. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture.

    PubMed

    Jang, Yu-Sin; Malaviya, Alok; Lee, Joungmin; Im, Jung Ae; Lee, Sang Yup; Lee, Julia; Eom, Moon-Ho; Cho, Jung-Hee; Seung, Do Young

    2013-01-01

    Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone-butanol-ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol-butanol-ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab-scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot-scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab-scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production. © 2013 American Institute of Chemical Engineers.

  13. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae integrated with exogenous acetate addition.

    PubMed

    Luo, Hongzhen; Ge, Laibing; Zhang, Jingshu; Ding, Jian; Chen, Rui; Shi, Zhongping

    2016-01-01

    Acetone is the major by-product in ABE fermentations, most researches focused on increasing butanol/acetone ratio by decreasing acetone biosynthesis. However, economics of ABE fermentation industry strongly relies on evaluating acetone as a valuable platform chemical. Therefore, a novel ABE fermentation strategy focusing on bio-acetone production by co-culturing Clostridium acetobutylicum/Saccharomyces cerevisiae with exogenous acetate addition was proposed. Experimental and theoretical analysis revealed the strategy could, enhance C. acetobutylicum survival oriented amino acids assimilation in the cells; control NADH regeneration rate at moderately lower level to enhance acetone synthesis but without sacrificing butanol production; enhance the utilization ability of C. acetobutylicum on glucose and direct most of extra consumed glucose into acetone/butanol synthesis routes. By implementing the strategy using synthetic or acetate fermentative supernatant, acetone concentrations increased to 8.27-8.55g/L from 5.86g/L of the control, while butanol concentrations also elevated to the higher levels of 13.91-14.23g/L from 11.63g/L simultaneously. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 2,4,6-Trinitrotoluene Reduction by an Fe-Only Hydrogenase in Clostridium acetobutylicum

    PubMed Central

    Watrous, Mary M.; Clark, Sandra; Kutty, Razia; Huang, Shouqin; Rudolph, Frederick B.; Hughes, Joseph B.; Bennett, George N.

    2003-01-01

    The role of hydrogenase on the reduction of 2,4,6-trinitrotoluene (TNT) in Clostridium acetobutylicum was evaluated. An Fe-only hydrogenase was isolated and identified by using TNT reduction activity as the selection basis. The formation of hydroxylamino intermediates by the purified enzyme corresponded to expected products for this reaction, and saturation kinetics were determined with a Km of 152 μM. Comparisons between the wild type and a mutant strain lacking the region encoding an alternative Fe-Ni hydrogenase determined that Fe-Ni hydrogenase activity did not significantly contribute to TNT reduction. Hydrogenase expression levels were altered in various strains, allowing study of the role of the enzyme in TNT reduction rates. The level of hydrogenase activity in a cell system correlated (R2 = 0.89) with the organism's ability to reduce TNT. A strain that overexpressed the hydrogenase activity resulted in maintained TNT reduction during late growth phases, which it is not typically observed in wild type strains. Strains exhibiting underexpression of hydrogenase produced slower TNT rates of reduction correlating with the determined level of expression. The isolated Fe-only hydrogenase is the primary catalyst for reducing TNT nitro substituents to the corresponding hydroxylamines in C. acetobutylicum in whole-cell systems. A mechanism for the reaction is proposed. Due to the prevalence of hydrogenase in soil microbes, this research may enhance the understanding of nitroaromatic compound transformation by common microbial communities. PMID:12620841

  15. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture.

    PubMed

    Haus, Sylvia; Jabbari, Sara; Millat, Thomas; Janssen, Holger; Fischer, Ralf-Jörg; Bahl, Hubert; King, John R; Wolkenhauer, Olaf

    2011-01-19

    Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required.

  16. A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture

    PubMed Central

    2011-01-01

    Background Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel. For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood as fully as possible. Results We present an ordinary differential equation model combining the metabolic network governing solvent production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products: at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through steady-state analyses of the model we focus our investigations on how alteration in gene expression of C. acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation. Conclusions Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an accurate representation of the pH-induced switch to solvent production to be obtained and theoretical investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more complex approach targeting two or more genes is required. PMID:21247470

  17. The Clostridium sporulation programs: diversity and preservation of endospore differentiation.

    PubMed

    Al-Hinai, Mohab A; Jones, Shawn W; Papoutsakis, Eleftherios T

    2015-03-01

    Bacillus and Clostridium organisms initiate the sporulation process when unfavorable conditions are detected. The sporulation process is a carefully orchestrated cascade of events at both the transcriptional and posttranslational levels involving a multitude of sigma factors, transcription factors, proteases, and phosphatases. Like Bacillus genomes, sequenced Clostridium genomes contain genes for all major sporulation-specific transcription and sigma factors (spo0A, sigH, sigF, sigE, sigG, and sigK) that orchestrate the sporulation program. However, recent studies have shown that there are substantial differences in the sporulation programs between the two genera as well as among different Clostridium species. First, in the absence of a Bacillus-like phosphorelay system, activation of Spo0A in Clostridium organisms is carried out by a number of orphan histidine kinases. Second, downstream of Spo0A, the transcriptional and posttranslational regulation of the canonical set of four sporulation-specific sigma factors (σ(F), σ(E), σ(G), and σ(K)) display different patterns, not only compared to Bacillus but also among Clostridium organisms. Finally, recent studies demonstrated that σ(K), the last sigma factor to be activated according to the Bacillus subtilis model, is involved in the very early stages of sporulation in Clostridium acetobutylicum, C. perfringens, and C. botulinum as well as in the very late stages of spore maturation in C. acetobutylicum. Despite profound differences in initiation, propagation, and orchestration of expression of spore morphogenetic components, these findings demonstrate not only the robustness of the endospore sporulation program but also the plasticity of the program to generate different complex phenotypes, some apparently regulated at the epigenetic level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. The Clostridium Sporulation Programs: Diversity and Preservation of Endospore Differentiation

    PubMed Central

    Al-Hinai, Mohab A.; Jones, Shawn W.

    2015-01-01

    SUMMARY Bacillus and Clostridium organisms initiate the sporulation process when unfavorable conditions are detected. The sporulation process is a carefully orchestrated cascade of events at both the transcriptional and posttranslational levels involving a multitude of sigma factors, transcription factors, proteases, and phosphatases. Like Bacillus genomes, sequenced Clostridium genomes contain genes for all major sporulation-specific transcription and sigma factors (spo0A, sigH, sigF, sigE, sigG, and sigK) that orchestrate the sporulation program. However, recent studies have shown that there are substantial differences in the sporulation programs between the two genera as well as among different Clostridium species. First, in the absence of a Bacillus-like phosphorelay system, activation of Spo0A in Clostridium organisms is carried out by a number of orphan histidine kinases. Second, downstream of Spo0A, the transcriptional and posttranslational regulation of the canonical set of four sporulation-specific sigma factors (σF, σE, σG, and σK) display different patterns, not only compared to Bacillus but also among Clostridium organisms. Finally, recent studies demonstrated that σK, the last sigma factor to be activated according to the Bacillus subtilis model, is involved in the very early stages of sporulation in Clostridium acetobutylicum, C. perfringens, and C. botulinum as well as in the very late stages of spore maturation in C. acetobutylicum. Despite profound differences in initiation, propagation, and orchestration of expression of spore morphogenetic components, these findings demonstrate not only the robustness of the endospore sporulation program but also the plasticity of the program to generate different complex phenotypes, some apparently regulated at the epigenetic level. PMID:25631287

  19. The Clostridium Sporulation Programs: Diversity and Preservation of Endospore Differentiation

    DOE PAGES

    Al-Hinai, Mohab A.; Jones, Shawn W.; Papoutsakis, Eleftherios T.

    2015-01-28

    Bacillus and Clostridium organisms initiate the sporulation process when unfavorable conditions are detected. The sporulation process is a carefully orchestrated cascade of events at both the transcriptional and posttranslational levels involving a multitude of sigma factors, transcription factors, proteases, and phosphatases. Like Bacillus genomes, sequenced Clostridium genomes contain genes for all major sporulation-specific transcription and sigma factors (spo0A, sigH, sigF, sigE, sigG, and sigK) that orchestrate the sporulation program. However, recent studies have shown that there are substantial differences in the sporulation programs between the two genera as well as among different Clostridium species. First, in the absence of amore » Bacillus-like phosphorelay system, activation of Spo0A in Clostridium organisms is carried out by a number of orphan histidine kinases. Second, downstream of Spo0A, the transcriptional and posttranslational regulation of the canonical set of four sporulation-specific sigma factors (σF, σE, σG, and σK) display different patterns, not only compared to Bacillus but also among Clostridium organisms. Finally, recent studies demonstrated that σK, the last sigma factor to be activated according to the Bacillus subtilis model, is involved in the very early stages of sporulation in Clostridium acetobutylicum, C. perfringens, and C. botulinum as well as in the very late stages of spore maturation in C. acetobutylicum. Despite profound differences in initiation, propagation, and orchestration of expression of spore morphogenetic components, these findings demonstrate not only the robustness of the endospore sporulation program but also the plasticity of the program to generate different complex phenotypes, some apparently regulated at the epigenetic level.« less

  20. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    PubMed

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air. © 2014 Wiley Periodicals, Inc.

  1. Predictive modeling in Clostridium acetobutylicum fermentations employing Raman spectroscopy and multivariate data analysis for real-time culture monitoring

    NASA Astrophysics Data System (ADS)

    Zu, Theresah N. K.; Liu, Sanchao; Germane, Katherine L.; Servinsky, Matthew D.; Gerlach, Elliot S.; Mackie, David M.; Sund, Christian J.

    2016-05-01

    The coupling of optical fibers with Raman instrumentation has proven to be effective for real-time monitoring of chemical reactions and fermentations when combined with multivariate statistical data analysis. Raman spectroscopy is relatively fast, with little interference from the water peak present in fermentation media. Medical research has explored this technique for analysis of mammalian cultures for potential diagnosis of some cancers. Other organisms studied via this route include Escherichia coli, Saccharomyces cerevisiae, and some Bacillus sp., though very little work has been performed on Clostridium acetobutylicum cultures. C. acetobutylicum is a gram-positive anaerobic bacterium, which is highly sought after due to its ability to use a broad spectrum of substrates and produce useful byproducts through the well-known Acetone-Butanol-Ethanol (ABE) fermentation. In this work, real-time Raman data was acquired from C. acetobutylicum cultures grown on glucose. Samples were collected concurrently for comparative off-line product analysis. Partial-least squares (PLS) models were built both for agitated cultures and for static cultures from both datasets. Media components and metabolites monitored include glucose, butyric acid, acetic acid, and butanol. Models were cross-validated with independent datasets. Experiments with agitation were more favorable for modeling with goodness of fit (QY) values of 0.99 and goodness of prediction (Q2Y) values of 0.98. Static experiments did not model as well as agitated experiments. Raman results showed the static experiments were chaotic, especially during and shortly after manual sampling.

  2. The Two-Component System PhoPR of Clostridium acetobutylicum Is Involved in Phosphate-Dependent Gene Regulation ▿

    PubMed Central

    Fiedler, Tomas; Mix, Maren; Meyer, Uta; Mikkat, Stefan; Glocker, Michael O.; Bahl, Hubert; Fischer, Ralf-Jörg

    2008-01-01

    The phoPR gene locus of Clostridium acetobutylicum ATCC 824 comprises two genes, phoP and phoR. Deduced proteins are predicted to represent a response regulator and sensor kinase of a phosphate-dependent two-component regulatory system. We analyzed the expression patterns of phoPR in Pi-limited chemostat cultures and in response to Pi pulses. A basic transcription level under high-phosphate conditions was shown, and a significant increase in mRNA transcript levels was found when external Pi concentrations dropped below 0.3 mM. In two-dimensional gel electrophoresis experiments, a 2.5-fold increase in PhoP was observed under Pi-limiting growth conditions compared to growth with an excess of Pi. At least three different transcription start points for phoP were determined by primer extension analyses. Proteins PhoP and an N-terminally truncated *PhoR were individually expressed heterologously in Escherichia coli and purified. Autophosphorylation of *PhoR and phosphorylation of PhoP were shown in vitro. Electromobility shift assays proved that there was a specific binding of PhoP to the promoter region of the phosphate-regulated pst operon of C. acetobutylicum. PMID:18689481

  3. Cloning and expression of clostridium acetobutylicum ATCC 824 acetoacetyl-coenzyme A:acetate/butyrate:coenzyme A-transferase in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, J.W.; Petersen, D.J.; Bennett, G.N.

    1990-06-01

    Coenzyme A (CoA)-transferase (acetoacetyl-CoA:acetate/butyrate:CoA-transferase (butyrate-acetoacetate CoA-transferase) (EC 2.8.3.9)) of Clostridium acetobutylicum ATCC 824 is an important enzyme in the metabolic shift between the acid-producing and solvent-forming states of this organism. The genes encoding the two subunits of this enzyme have been cloned and subsequent subcloning experiments established the position of the structural genes for CoA-transferase. Complementation of Escherichia coli ato mutants with the recombinant plasmid pCoAT4 (pUC19 carrying a 1.8-kilobase insert of C. acetobutylicum DNA encoding CoA-transferase activity) enabled the transformants to grow on butyrate as a sole carbon source. Despite the ability of CoA-transferase to complement the ato defectmore » in E. coli mutants, Southern blot and Western blot (immunoblot) analyses showed showed that neither the C. acetobutylicum genes encoding CoA-transferase nor the enzyme itself shared any apparent homology with its E. coli counterpart. Polypeptides of M{sub r} of the purified CoA-transferase subunits were observed by Western blot and maxicell analysis of whole-cell extracts of E.coli harboring pCoAT4. The proximity and orientation of the genes suggest that the genes encoding the two subunits of CoA-transferase may form an operon similar to that found in E. coli. In the plasmid, however, transcription appears to be primarily from the lac promoter of the vector.« less

  4. Transcriptional analysis of micronutrient zinc-associated response for enhanced carbohydrate utilization and earlier solventogenesis in Clostridium acetobutylicum.

    PubMed

    Wu, You-Duo; Xue, Chuang; Chen, Li-Jie; Wan, Hui-Hui; Bai, Feng-Wu

    2015-11-20

    The micronutrient zinc plays vital roles in ABE fermentation by Clostridium acetobutylicum. In order to elucidate the zinc-associated response for enhanced glucose utilization and earlier solventogenesis, transcriptional analysis was performed on cells grown in glucose medium at the exponential growth phase of 16 h without/with supplementary zinc. Correspondingly, the gene glcG (CAC0570) encoding a glucose-specific PTS was significantly upregulated accompanied with the other two genes CAC1353 and CAC1354 for glucose transport in the presence of zinc. Additionally, genes involved in the metabolisms of six other carbohydrates (maltose, cellobiose, fructose, mannose, xylose and arabinose) were differentially expressed, indicating that the regulatory effect of micronutrient zinc is carbohydrate-specific with respects to the improved/inhibited carbohydrate utilization. More importantly, multiple genes responsible for glycolysis (glcK and pykA), acidogenesis (thlA, crt, etfA, etfB and bcd) and solventogenesis (ctfB and bdhA) of C. acetobutylicum prominently responded to the supplementary zinc at differential expression levels. Comparative analysis of intracellular metabolites revealed that the branch node intermediates such as acetyl-CoA, acetoacetyl-CoA, butyl-CoA, and reducing power NADH remained relatively lower whereas more ATP was generated due to enhanced glycolysis pathway and earlier initiation of solventogenesis, suggesting that the micronutrient zinc-associated response for the selected intracellular metabolisms is significantly pleiotropic.

  5. Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study.

    PubMed

    Khedkar, Manisha A; Nimbalkar, Pranhita R; Gaikwad, Shashank G; Chavan, Prakash V; Bankar, Sandip B

    2017-02-01

    Present investigation explores the use of pineapple peel, a food industry waste, for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum B 527. Proximate analysis of pineapple peel shows that it contains 35% cellulose, 19% hemicellulose, and 16% lignin on dry basis. Drying experiments on pineapple peel waste were carried out in the temperature range of 60-120°C and experimental drying data was modeled using moisture diffusion control model to study its effect on ABE production. The production of ABE was further accomplished via acid hydrolysis, detoxification, and fermentation process. Maximum total sugar release obtained by using acid hydrolysis was 97g/L with 95-97% and 10-50% removal of phenolics and acetic acid, respectively during detoxification process. The maximum ABE titer obtained was 5.23g/L with 55.6% substrate consumption when samples dried at 120°C were used as a substrate (after detoxification). Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Synergistic dark and photo-fermentation continuous system for hydrogen production from molasses by Clostridium acetobutylicum ATCC 824 and Rhodobacter capsulatus DSM 1710.

    PubMed

    Morsy, Fatthy Mohamed

    2017-04-01

    This study investigated synergistic dark and photo-fermentation using continuous fermentation system (CFS). The system relies on connecting several fermenters from bottom of one to top culture level of the next in a manner that allows for delaying movement of the substrate and thus for its full consumption. While H 2 was collected, CFS allowed for moving liquid byproducts toward the outlet and hence continuous productivity. CFS could be efficiently used for: (1) Continuous dark and photo-fermentation H 2 production by Clostridium acetobutylicum and Rhodobacter capsulatus producing 5.65moleH 2 mole -1 hexose; (2) Continuous dark-fermentation synergistic H 2 , acetone, butanol and ethanol (ABE) production by C. acetobutylicum which produced per mole hexose, 2.43mol H 2 along with 73.08g ABE (3) Continuous H 2 and methane production by C. acetobutylicum and bacterial sludge producing, per mole hexose, 1.64mol pure H 2 and 2.56mol CH 4 mixed with 0.37mol H 2 ·The hydraulic retention time (HRT) for whole system was short where organic acids produced in dark-fermentation in first fermenter were synergistically utilized for H 2 production by R. capsulatus in subsequent fermenters. CFS is suitable for fast-digestible sugars but not lignocelluloses or other hard-digestible organics, requiring prolonged HRT, unless such polymeric organics were hydrolyzed prior to fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Elucidating the contributions of multiple aldehyde/alcohol dehydrogenases to butanol and ethanol production in Clostridium acetobutylicum.

    PubMed

    Dai, Zongjie; Dong, Hongjun; Zhang, Yanping; Li, Yin

    2016-06-20

    Ethanol and butanol biosynthesis in Clostridium acetobutylicum share common aldehyde/alcohol dehydrogenases. However, little is known about the relative contributions of these multiple dehydrogenases to ethanol and butanol production respectively. The contributions of six aldehyde/alcohol dehydrogenases of C. acetobutylicum on butanol and ethanol production were evaluated through inactivation of the corresponding genes respectively. For butanol production, the relative contributions from these enzymes were: AdhE1 > BdhB > BdhA ≈ YqhD > SMB_P058 > AdhE2. For ethanol production, the contributions were: AdhE1 > BdhB > YqhD > SMB_P058 > AdhE2 > BdhA. AdhE1 and BdhB are two essential enzymes for butanol and ethanol production. AdhE1 was relatively specific for butanol production over ethanol, while BdhB, YqhD, and SMB_P058 favor ethanol production over butanol. Butanol synthesis was increased in the adhE2 mutant, which had a higher butanol/ethanol ratio (8.15:1) compared with wild type strain (6.65:1). Both the SMB_P058 mutant and yqhD mutant produced less ethanol without loss of butanol formation, which led to higher butanol/ethanol ratio, 10.12:1 and 10.17:1, respectively. To engineer a more efficient butanol-producing strain, adhE1 could be overexpressed, furthermore, adhE2, SMB_P058, yqhD are promising gene inactivation targets. This work provides useful information guiding future strain improvement for butanol production.

  8. Effect of pH and lactose concentration on solvent production from whey permeate using Clostridium acetobutylicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ennis, B.M.; Maddox, I.S.

    1987-02-20

    A study was performed to optimize the production of solvents from whey permeate in batch fermentation using Clostridium acetobutylicum P262. Fermentations performed at relatively low pH values resulted in high solvent yields and productivities, but lactose utilization was incomplete. At higher pH values, lactose-utilization was improved but acid production dominated over solvent production. When operating at the higher pH values, an increase in the initial lactose concentration of the whey permeate resulted in lower rates of lactose utilization, and this was accompanied by increased solvent production and decreased acid production. Analysis of data from several experiments revealed a strong inversemore » relationship between solvent yield and lactose utilization rate. Thus, conditions which minimize the lactose utilization rate such as low culture pH values or high initial lactose concentrations, favor solventogenesis at the expense of acid production. 12 references.« less

  9. Antisense RNA Strategies for Metabolic Engineering of Clostridium acetobutylicum

    PubMed Central

    Desai, Ruchir P.; Papoutsakis, Eleftherios T.

    1999-01-01

    We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by ∼100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes. PMID:10049845

  10. Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum.

    PubMed

    Desai, R P; Papoutsakis, E T

    1999-03-01

    We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by approximately 100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes.

  11. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum.

    PubMed

    Tummala, Seshu B; Welker, Neil E; Papoutsakis, Eleftherios T

    2003-03-01

    We investigated the effect of antisense RNA (asRNA) structural properties on the downregulation efficacy of enzymes in the acetone-formation pathway (acetoacetate decarboxylase [AADC] and coenzyme A-transferase [CoAT]) of Clostridium acetobutylicum strain ATCC 824. First, we generated three strains, C. acetobutylicum ATCC 824 (pADC38AS), 824(pADC68AS), and 824(pADC100AS), which contain plasmids that produce asRNAs of various lengths against the AADC (adc) transcript. Western analysis showed that all three strains exhibit low levels of AADC compared to the plasmid control [ATCC 824(pSOS95del)]. By using computational algorithms, the three different asRNAs directed toward AADC, along with previously reported clostridial asRNAs, were examined for structural features (free nucleotides and components). When the normalized metrics of these structural features were plotted against percent downregulation, only the component/nucleotide ratio correlated well with in vivo asRNA effectiveness. Despite the significant downregulation of AADC in these strains, there were no concomitant effects on acetone formation. These findings suggest that AADC does not limit acetone formation and, thus, we targeted next the CoAT. Using the component/nucleotide ratio as a selection parameter, we developed three strains [ATCC 824 (pCTFA2AS), 824(pCTFB1AS), and 824(pCOAT11AS)] which express asRNAs to downregulate either or both of the CoAT subunits. Compared to the plasmid control strain, these strains produced substantially low levels of acetone and butanol and Western blot analyses showed significantly low levels of both CoAT subunits. These results show that CoAT is the rate-limiting enzyme in acetone formation and strengthen the hypothesis that the component/nucleotide ratio is a predictive indicator of asRNA effectiveness.

  12. Design of Antisense RNA Constructs for Downregulation of the Acetone Formation Pathway of Clostridium acetobutylicum

    PubMed Central

    Tummala, Seshu B.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    2003-01-01

    We investigated the effect of antisense RNA (asRNA) structural properties on the downregulation efficacy of enzymes in the acetone-formation pathway (acetoacetate decarboxylase [AADC] and coenzyme A-transferase [CoAT]) of Clostridium acetobutylicum strain ATCC 824. First, we generated three strains, C. acetobutylicum ATCC 824 (pADC38AS), 824(pADC68AS), and 824(pADC100AS), which contain plasmids that produce asRNAs of various lengths against the AADC (adc) transcript. Western analysis showed that all three strains exhibit low levels of AADC compared to the plasmid control [ATCC 824(pSOS95del)]. By using computational algorithms, the three different asRNAs directed toward AADC, along with previously reported clostridial asRNAs, were examined for structural features (free nucleotides and components). When the normalized metrics of these structural features were plotted against percent downregulation, only the component/nucleotide ratio correlated well with in vivo asRNA effectiveness. Despite the significant downregulation of AADC in these strains, there were no concomitant effects on acetone formation. These findings suggest that AADC does not limit acetone formation and, thus, we targeted next the CoAT. Using the component/nucleotide ratio as a selection parameter, we developed three strains [ATCC 824 (pCTFA2AS), 824(pCTFB1AS), and 824(pCOAT11AS)] which express asRNAs to downregulate either or both of the CoAT subunits. Compared to the plasmid control strain, these strains produced substantially low levels of acetone and butanol and Western blot analyses showed significantly low levels of both CoAT subunits. These results show that CoAT is the rate-limiting enzyme in acetone formation and strengthen the hypothesis that the component/nucleotide ratio is a predictive indicator of asRNA effectiveness. PMID:12618456

  13. Regulation of the sol Locus Genes for Butanol and Acetone Formation in Clostridium acetobutylicum ATCC 824 by a Putative Transcriptional Repressor

    PubMed Central

    Nair, Ramesh V.; Green, Edward M.; Watson, David E.; Bennett, George N.; Papoutsakis, Eleftherios T.

    1999-01-01

    A gene (orf1, now designated solR) previously identified upstream of the aldehyde/alcohol dehydrogenase gene aad (R. V. Nair, G. N. Bennett, and E. T. Papoutsakis, J. Bacteriol. 176:871–885, 1994) was found to encode a repressor of the sol locus (aad, ctfA, ctfB and adc) genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824. Primer extension analysis identified a transcriptional start site 35 bp upstream of the solR start codon. Amino acid comparisons of SolR identified a potential helix-turn-helix DNA-binding motif in the C-terminal half towards the center of the protein, suggesting a regulatory role. Overexpression of SolR in strain ATCC 824(pCO1) resulted in a solvent-negative phenotype owing to its deleterious effect on the transcription of the sol locus genes. Inactivation of solR in C. acetobutylicum via homologous recombination yielded mutants B and H (ATCC 824 solR::pO1X) which exhibited deregulated solvent production characterized by increased flux towards butanol and acetone formation, earlier induction of aad, lower overall acid production, markedly improved yields of solvents on glucose, a prolonged solvent production phase, and increased biomass accumulation compared to those of the wild-type strain. PMID:9864345

  14. Structural analysis of Clostridium acetobutylicum ATCC 824 glycoside hydrolase from CAZy family GH105

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germane, Katherine L., E-mail: katherine.germane.civ@mail.mil; Servinsky, Matthew D.; Gerlach, Elliot S.

    2015-07-29

    The crystal structure of the protein product of the C. acetobutylicum ATCC 824 gene CA-C0359 is structurally similar to YteR, an unsaturated rhamnogalacturonyl hydrolase from B. subtilis strain 168. Substrate modeling and electrostatic studies of the active site of the structure of CA-C0359 suggests that the protein can now be considered to be part of CAZy glycoside hydrolase family 105. Clostridium acetobutylicum ATCC 824 gene CA-C0359 encodes a putative unsaturated rhamnogalacturonyl hydrolase (URH) with distant amino-acid sequence homology to YteR of Bacillus subtilis strain 168. YteR, like other URHs, has core structural homology to unsaturated glucuronyl hydrolases, but hydrolyzes themore » unsaturated disaccharide derivative of rhamnogalacturonan I. The crystal structure of the recombinant CA-C0359 protein was solved to 1.6 Å resolution by molecular replacement using the phase information of the previously reported structure of YteR (PDB entry (http://scripts.iucr.org/cgi-bin/cr.cgi?rm)) from Bacillus subtilis strain 168. The YteR-like protein is a six-α-hairpin barrel with two β-sheet strands and a small helix overlaying the end of the hairpins next to the active site. The protein has low primary protein sequence identity to YteR but is structurally similar. The two tertiary structures align with a root-mean-square deviation of 1.4 Å and contain a highly conserved active pocket. There is a conserved aspartic acid residue in both structures, which has been shown to be important for hydration of the C=C bond during the release of unsaturated galacturonic acid by YteR. A surface electrostatic potential comparison of CA-C0359 and proteins from CAZy families GH88 and GH105 reveals the make-up of the active site to be a combination of the unsaturated rhamnogalacturonyl hydrolase and the unsaturated glucuronyl hydrolase from Bacillus subtilis strain 168. Structural and electrostatic comparisons suggests that the protein may have a slightly different substrate

  15. The Purine-Utilizing Bacterium Clostridium acidurici 9a: A Genome-Guided Metabolic Reconsideration

    PubMed Central

    Hartwich, Katrin; Poehlein, Anja; Daniel, Rolf

    2012-01-01

    Clostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, C. acidurici serves as a model organism for investigation of purine fermentation. Here, we present the first complete sequence and analysis of a genome derived from a purinolytic Clostridium. The genome of C. acidurici 9a consists of one chromosome (3,105,335 bp) and one small circular plasmid (2,913 bp). The lack of candidate genes encoding glycine reductase indicates that C. acidurici 9a uses the energetically less favorable glycine-serine-pyruvate pathway for glycine degradation. In accordance with the specialized lifestyle and the corresponding narrow substrate spectrum of C. acidurici 9a, the number of genes involved in carbohydrate transport and metabolism is significantly lower than in other clostridia such as C. acetobutylicum, C. saccharolyticum, and C. beijerinckii. The only amino acid that can be degraded by C. acidurici is glycine but growth on glycine only occurs in the presence of a fermentable purine. Nevertheless, the addition of glycine resulted in increased transcription levels of genes encoding enzymes involved in the glycine-serine-pyruvate pathway such as serine hydroxymethyltransferase and acetate kinase, whereas the transcription levels of formate dehydrogenase-encoding genes decreased. Sugars could not be utilized by C. acidurici but the full genetic repertoire for glycolysis was detected. In addition, genes encoding enzymes that mediate resistance against several antimicrobials and metals were identified. High resistance of C. acidurici towards bacitracin, acriflavine and azaleucine was experimentally confirmed. PMID:23240052

  16. The purine-utilizing bacterium Clostridium acidurici 9a: a genome-guided metabolic reconsideration.

    PubMed

    Hartwich, Katrin; Poehlein, Anja; Daniel, Rolf

    2012-01-01

    Clostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, C. acidurici serves as a model organism for investigation of purine fermentation. Here, we present the first complete sequence and analysis of a genome derived from a purinolytic Clostridium. The genome of C. acidurici 9a consists of one chromosome (3,105,335 bp) and one small circular plasmid (2,913 bp). The lack of candidate genes encoding glycine reductase indicates that C. acidurici 9a uses the energetically less favorable glycine-serine-pyruvate pathway for glycine degradation. In accordance with the specialized lifestyle and the corresponding narrow substrate spectrum of C. acidurici 9a, the number of genes involved in carbohydrate transport and metabolism is significantly lower than in other clostridia such as C. acetobutylicum, C. saccharolyticum, and C. beijerinckii. The only amino acid that can be degraded by C. acidurici is glycine but growth on glycine only occurs in the presence of a fermentable purine. Nevertheless, the addition of glycine resulted in increased transcription levels of genes encoding enzymes involved in the glycine-serine-pyruvate pathway such as serine hydroxymethyltransferase and acetate kinase, whereas the transcription levels of formate dehydrogenase-encoding genes decreased. Sugars could not be utilized by C. acidurici but the full genetic repertoire for glycolysis was detected. In addition, genes encoding enzymes that mediate resistance against several antimicrobials and metals were identified. High resistance of C. acidurici towards bacitracin, acriflavine and azaleucine was experimentally confirmed.

  17. Expression of Clostridium acetobutylicum ATCC 824 Genes in Escherichia coli for Acetone Production and Acetate Detoxification

    PubMed Central

    Bermejo, Lourdes L.; Welker, Neil E.; Papoutsakis, Eleftherios T.

    1998-01-01

    A synthetic acetone operon (ace4) composed of four Clostridium acetobutylicum ATCC 824 genes (adc, ctfAB, and thl, coding for the acetoacetate decarboxylase, coenzyme A transferase, and thiolase, respectively) under the control of the thl promoter was constructed and was introduced into Escherichia coli on vector pACT. Acetone production demonstrated that ace4 is expressed in E. coli and resulted in the reduction of acetic acid levels in the fermentation broth. Since different E. coli strains vary significantly in their growth characteristics and acetate metabolism, ace4 was expressed in three E. coli strains: ER2275, ATCC 11303, and MC1060. Shake flask cultures of MC1060(pACT) produced ca. 2 mM acetone, while both strains ER2275(pACT) and ATCC 11303(pACT) produced ca. 40 mM acetone. Glucose-fed cultures of strain ATCC 11303(pACT) resulted in a 150% increase in acetone titers compared to those of batch shake flask cultures. External addition of sodium acetate to glucose-fed cultures of ATCC 11303(pACT) resulted in further increased acetone titers. In bioreactor studies, acidic conditions (pH 5.5 versus 6.5) improved acetone production. Despite the substantial acetone evaporation due to aeration and agitation in the bioreactor, 125 to 154 mM acetone accumulated in ATCC 11303(pACT) fermentations. These acetone titers are equal to or higher than those produced by wild-type C. acetobutylicum. This is the first study to demonstrate the ability to use clostridial genes in nonclostridial hosts for solvent production. In addition, acetone-producing E. coli strains may be useful hosts for recombinant protein production in that detrimental acetate accumulation can be avoided. PMID:9501448

  18. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum

    PubMed Central

    2013-01-01

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h−1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production. PMID:23294525

  19. A comparison of three pH control methods for revealing effects of undissociated butyric acid on specific butanol production rate in batch fermentation of Clostridium acetobutylicum.

    PubMed

    Yang, Xuepeng; Tu, Maobing; Xie, Rui; Adhikari, Sushil; Tong, Zhaohui

    2013-01-07

    pH control has been essential for butanol production with Clostridium acetobutylicum. However, it is not very clear at what pH level the acid crash will occur, at what pH level butanol production will be dominant, and at what pH level butyric acid production will be prevailing. Furthermore, contradictory results have been reported about required acidic conditions for initiation of solventogenesis. In this study, with the aim of further understanding the role of undissociated butyric acid in butanol production, we investigated the correlation between undissociated butyric acid concentration and specific butanol production rate in batch fermentation of Clostridium acetobutylicum by comparing three pH control approaches: NaOH neutralization (at 12, 24 or 36 h), CaCO3 supplementation (2, 5, or 8 g/l) and NaOAc buffering (pH 4.6, 5.0 or 5.6). By neutralizing the fermentation pH to ~5.0 at different time, we observed that neutralization should take place at the beginning of exponential phase (12 h), and otherwise resulting in lower concentrations of undissociated butyric acid, cell biomass and final butanol. CaCO3 supplementation extended cell growth to 36 h and resulted in higher butyrate yield under 8 g/L of CaCO3. In the NaOAc buffering, the highest specific butanol rate (0.58 h-1) was associated with the highest undissociated butyric acid (1.92 g/L). The linear correlation of the undissociated butyric acid with the specific butanol production rates suggested the undissociated butyric acid could be the major driving force for butanol production.

  20. Integrative modelling of pH-dependent enzyme activity and transcriptomic regulation of the acetone–butanol–ethanol fermentation of Clostridium acetobutylicum in continuous culture

    PubMed Central

    Millat, Thomas; Janssen, Holger; Bahl, Hubert; Fischer, Ralf-Jörg; Wolkenhauer, Olaf

    2013-01-01

    Summary In a continuous culture under phosphate limitation the metabolism of Clostridium acetobutylicum depends on the external pH level. By comparing seven steady-state conditions between pH 5.7 and pH 4.5 we show that the switch from acidogenesis to solventogenesis occurs between pH 5.3 and pH 5.0 with an intermediate state at pH 5.1. Here, an integrative study is presented investigating how a changing external pH level affects the clostridial acetone–butanol–ethanol (ABE) fermentation pathway. This is of particular interest as the biotechnological production of n-butanol as biofuel has recently returned into the focus of industrial applications. One prerequisite is the furthering of the knowledge of the factors determining the solvent production and their integrative regulations. We have mathematically analysed the influence of pH-dependent specific enzyme activities of branch points of the metabolism on the product formation. This kinetic regulation was compared with transcriptomic regulation regarding gene transcription and the proteomic profile. Furthermore, both regulatory mechanisms were combined yielding a detailed projection of their individual and joint effects on the product formation. The resulting model represents an important platform for future developments of industrial butanol production based on C. acetobutylicum. PMID:23332010

  1. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

    PubMed

    Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E

    2006-02-01

    A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  2. Acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 and in situ recovery by PDMS/ceramic composite membrane.

    PubMed

    Wu, Hao; Chen, Xiao-Peng; Liu, Gong-Ping; Jiang, Min; Guo, Ting; Jin, Wan-Qin; Wei, Ping; Zhu, Da-Wei

    2012-09-01

    PDMS/ceramic composite membrane was directly integrated with acetone-butanol-ethanol (ABE) fermentation using Clostridium acetobutylicum XY16 at 37 °C and in situ removing ABE from fermentation broth. The membrane was integrated with batch fermentation, and approximately 46 % solvent was extracted. The solvent in permeates was 118 g/L, and solvent productivity was 0.303 g/(L/h), which was approximately 33 % higher compared with the batch fermentation without in situ recovery. The fed-batch fermentation with in situ recovery by pervaporation continued for more than 200 h, 61 % solvent was extracted, and the solvent in penetration was 96.2 g/L. The total flux ranged from 0.338 to 0.847 kg/(m(2)/h) and the separation factor of butanol ranged from 5.1 to 27.1 in this process. The membrane was fouled by the active fermentation broth, nevertheless the separation performances were partially recovered by offline membrane cleaning, and the solvent productivity was increased to 0.252 g/(L/h), which was 19 % higher compared with that in situ recovery process without membrane cleaning.

  3. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum.

    PubMed

    Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry

    2015-01-01

    Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.

  4. FT-IR spectroscopic analysis for studying Clostridium cell response to conversion of enzymatically hydrolyzed hay

    NASA Astrophysics Data System (ADS)

    Grube, Mara; Gavare, Marita; Nescerecka, Alina; Tihomirova, Kristina; Mezule, Linda; Juhna, Talis

    2013-07-01

    Grass hay is one of assailable cellulose containing non-food agricultural wastes that can be used as a carbohydrate source by microorganisms producing biofuels. In this study three Clostridium strains Clostridium acetobutylicum, Clostridium beijerinckii and Clostridium tetanomorphum, capable of producing acetone, butanol and ethanol (ABE) were adapted to convert enzymatically hydrolyzed hay used as a growth media additive. The results of growth curves, substrate degradation kinetics and FT-IR analyses of bacterial biomass macromolecular composition showed diverse strain-specific cell response to the growth medium composition.

  5. Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1.

    PubMed

    Al-Shorgani, Najeeb Kaid Nasser; Kalil, Mohd Sahaid; Yusoff, Wan Mohtar Wan; Hamid, Aidil Abdul

    2018-02-01

    The effect of pH and butyric acid supplementation on the production of butanol by a new local isolate of Clostridium acetobutylicum YM1 during batch culture fermentation was investigated. The results showed that pH had a significant effect on bacterial growth and butanol yield and productivity. The optimal initial pH that maximized butanol production was pH 6.0 ± 0.2. Controlled pH was found to be unsuitable for butanol production in strain YM1, while the uncontrolled pH condition with an initial pH of 6.0 ± 0.2 was suitable for bacterial growth, butanol yield and productivity. The maximum butanol concentration of 13.5 ± 1.42 g/L was obtained from cultures grown under the uncontrolled pH condition, resulting in a butanol yield ( Y P / S ) and productivity of 0.27 g/g and 0.188 g/L h, respectively. Supplementation of the pH-controlled cultures with 4.0 g/L butyric acid did not improve butanol production; however, supplementation of the uncontrolled pH cultures resulted in high butanol concentrations, yield and productivity (16.50 ± 0.8 g/L, 0.345 g/g and 0.163 g/L h, respectively). pH influenced the activity of NADH-dependent butanol dehydrogenase, with the highest activity obtained under the uncontrolled pH condition. This study revealed that pH is a very important factor in butanol fermentation by C. acetobutylicum YM1.

  6. Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants.

    PubMed

    Dehoux, Pierre; Marvaud, Jean Christophe; Abouelleil, Amr; Earl, Ashlee M; Lambert, Thierry; Dauga, Catherine

    2016-10-21

    Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. Genomic comparison of C. bolteae and C. clostridiofrome revealed

  7. Application of long sequence reads to improve genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7

    DOE PAGES

    Utturkar, Sagar M.; Bayer, Edward A.; Borovok, Ilya; ...

    2016-09-29

    Here, we and others have shown the utility of long sequence reads to improve genome assembly quality. In this study, we generated PacBio DNA sequence data to improve the assemblies of draft genomes for Clostridium thermocellum AD2, Clostridium thermocellum LQRI, and Pelosinus fermentans R7.

  8. Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792.

    PubMed

    Survase, Shrikant A; van Heiningen, Adriaan; Granström, Tom

    2012-03-01

    Continuous production of acetone, n-butanol, and ethanol (ABE) was carried out using immobilized cells of Clostridium acetobutylicum DSM 792 using glucose and sugar mixture as a substrate. Among various lignocellulosic materials screened as a support matrix, coconut fibers and wood pulp fibers were found to be promising in batch experiments. With a motive of promoting wood-based bio-refinery concept, wood pulp was used as a cell holding material. Glucose and sugar mixture (glucose, mannose, galactose, arabinose, and xylose) comparable to lignocellulose hydrolysate was used as a substrate for continuous production of ABE. We report the best solvent productivity among wild-type strains using column reactor. The maximum total solvent concentration of 14.32 g L(-1) was obtained at a dilution rate of 0.22 h(-1) with glucose as a substrate compared to 12.64 g L(-1) at 0.5 h(-1) dilution rate with sugar mixture. The maximum solvent productivity (13.66 g L(-1) h(-1)) was obtained at a dilution rate of 1.9 h(-1) with glucose as a substrate whereas solvent productivity (12.14 g L(-1) h(-1)) was obtained at a dilution rate of 1.5 h(-1) with sugar mixture. The immobilized column reactor with wood pulp can become an efficient technology to be integrated with existing pulp mills to convert them into wood-based bio-refineries.

  9. Antisense RNA Downregulation of Coenzyme A Transferase Combined with Alcohol-Aldehyde Dehydrogenase Overexpression Leads to Predominantly Alcohologenic Clostridium acetobutylicum Fermentations

    PubMed Central

    Tummala, Seshu B.; Junne, Stefan G.; Papoutsakis, Eleftherios T.

    2003-01-01

    Plasmid pAADB1 for the overexpression of the alcohol-aldehyde dehydrogenase (aad) gene and downregulation of the coenzyme A transferase (CoAT) using antisense RNA (asRNA) against ctfB (the second CoAT gene on the polycistronic aad-ctfA-ctfB message) was used in order to increase the butanol/acetone ratio of Clostridium acetobutylicum ATCC 824 fermentations. Acetone and butanol levels were drastically reduced in 824(pCTFB1AS) (expresses only an asRNA against ctfB) compared to 824(pSOS95del) (plasmid control). Compared to strain 824(pCTFB1AS), 824(pAADB1) fermentations exhibited two profound differences. First, butanol levels were ca. 2.8-fold higher in 824(pAADB1) and restored back to plasmid control levels, thus supporting the hypothesis that asRNA downregulation of ctfB leads to degradation of the whole aad-ctfA-ctfB transcript. Second, ethanol titers in 824(pAADB1) were ca. 23-fold higher and the highest (ca. 200 mM) ever reported in C. acetobutylicum. Western blot analysis confirmed that CoAT was downregulated in 824(pAADB1) at nearly the same levels as in strain 824(pCTFB1AS). Butyrate depletion in 824(pAADB1) fermentations suggested that butyryl-CoA was limiting butanol production in 824(pAADB1). This was confirmed by exogenously adding butyric acid to 824(pAADB1) fermentations to increase the butanol/ethanol ratio. DNA microarray analysis showed that aad overexpression profoundly affects the large-scale transcriptional program of the cells. Several classes of genes were differentially expressed [strain 824(pAADB1) versus strain 824(pCTFB1AS)], including genes of the stress response, sporulation, and chemotaxis. The expression patterns of the CoAT genes (ctfA and ctfB) and aad were consistent with the overexpression of aad and asRNA downregulation of ctfB. PMID:12775702

  10. Antisense RNA downregulation of coenzyme A transferase combined with alcohol-aldehyde dehydrogenase overexpression leads to predominantly alcohologenic Clostridium acetobutylicum fermentations.

    PubMed

    Tummala, Seshu B; Junne, Stefan G; Papoutsakis, Eleftherios T

    2003-06-01

    Plasmid pAADB1 for the overexpression of the alcohol-aldehyde dehydrogenase (aad) gene and downregulation of the coenzyme A transferase (CoAT) using antisense RNA (asRNA) against ctfB (the second CoAT gene on the polycistronic aad-ctfA-ctfB message) was used in order to increase the butanol/acetone ratio of Clostridium acetobutylicum ATCC 824 fermentations. Acetone and butanol levels were drastically reduced in 824(pCTFB1AS) (expresses only an asRNA against ctfB) compared to 824(pSOS95del) (plasmid control). Compared to strain 824(pCTFB1AS), 824(pAADB1) fermentations exhibited two profound differences. First, butanol levels were ca. 2.8-fold higher in 824(pAADB1) and restored back to plasmid control levels, thus supporting the hypothesis that asRNA downregulation of ctfB leads to degradation of the whole aad-ctfA-ctfB transcript. Second, ethanol titers in 824(pAADB1) were ca. 23-fold higher and the highest (ca. 200 mM) ever reported in C. acetobutylicum. Western blot analysis confirmed that CoAT was downregulated in 824(pAADB1) at nearly the same levels as in strain 824(pCTFB1AS). Butyrate depletion in 824(pAADB1) fermentations suggested that butyryl-CoA was limiting butanol production in 824(pAADB1). This was confirmed by exogenously adding butyric acid to 824(pAADB1) fermentations to increase the butanol/ethanol ratio. DNA microarray analysis showed that aad overexpression profoundly affects the large-scale transcriptional program of the cells. Several classes of genes were differentially expressed [strain 824(pAADB1) versus strain 824(pCTFB1AS)], including genes of the stress response, sporulation, and chemotaxis. The expression patterns of the CoAT genes (ctfA and ctfB) and aad were consistent with the overexpression of aad and asRNA downregulation of ctfB.

  11. Genome sequence of Clostridium tunisiense TJ, isolated from drain sediment from a pesticide factory.

    PubMed

    Sun, Lili; Wang, Yu; Yu, Chunyan; Zhao, Yongqin; Gan, Yinbo

    2012-12-01

    Clostridium tunisiense is a Gram-positive, obligate anaerobe that was first isolated in an anaerobic environment under eutrophication. Here we report the first genome sequence of the Clostridium tunisiense TJ isolated from drain sediment of a pesticide factory in Tianjin, China. The genome is of great importance for both basic and application research.

  12. Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption

    PubMed Central

    2014-01-01

    Background Clostridium acetobutylicum can propagate on fibrous matrices and form biofilms that have improved butanol tolerance and a high fermentation rate and can be repeatedly used. Previously, a novel macroporous resin, KA-I, was synthesized in our laboratory and was demonstrated to be a good adsorbent with high selectivity and capacity for butanol recovery from a model solution. Based on these results, we aimed to develop a process integrating a biofilm reactor with simultaneous product recovery using the KA-I resin to maximize the production efficiency of biobutanol. Results KA-I showed great affinity for butanol and butyrate and could selectively enhance acetoin production at the expense of acetone during the fermentation. The biofilm reactor exhibited high productivity with considerably low broth turbidity during repeated batch fermentations. By maintaining the butanol level above 6.5 g/L in the biofilm reactor, butyrate adsorption by the KA-I resin was effectively reduced. Co-adsorption of acetone by the resin improved the fermentation performance. By redox modulation with methyl viologen (MV), the butanol-acetone ratio and the total product yield increased. An equivalent solvent titer of 96.5 to 130.7 g/L was achieved with a productivity of 1.0 to 1.5 g · L-1 · h-1. The solvent concentration and productivity increased by 4 to 6-fold and 3 to 5-fold, respectively, compared to traditional batch fermentation using planktonic culture. Conclusions Compared to the conventional process, the integrated process dramatically improved the productivity and reduced the energy consumption as well as water usage in biobutanol production. While genetic engineering focuses on strain improvement to enhance butanol production, process development can fully exploit the productivity of a strain and maximize the production efficiency. PMID:24401161

  13. Improving Fructose Utilization and Butanol Production by Clostridium acetobutylicum via Extracellular Redox Potential Regulation and Intracellular Metabolite Analysis.

    PubMed

    Chen, Li-Jie; Wu, You-Duo; Xue, Chuang; Bai, Feng-Wu

    2017-10-01

    Jerusalem artichoke (JA) can grow well in marginal lands with high biomass yield, and thus is a potential energy crop for biorefinery. The major biomass of JA is from tubers, which contain inulin that can be easily hydrolyzed into a mixture of fructose and glucose, but fructose utilization for producing butanol as an advanced biofuel is poor compared to glucose-based ABE fermentation by Clostridium acetobutylicum. In this article, the impact of extracellular redox potential (ORP) on the process is studied using a mixture of fructose and glucose to simulate the hydrolysate of JA tubers. When the extracellular ORP is controlled above -460 mV, 13.2 g L -1 butanol is produced from 51.0 g L -1 total sugars (40.1 g L -1 fructose and 10.9 g L -1 glucose), leading to dramatically increased butanol yield and butanol/ABE ratio of 0.26 g g -1 and 0.67, respectively. Intracellular metabolite and q-PCR analysis further indicate that intracellular ATP and NADH availabilities are significantly improved together with the fructose-specific PTS expression at the lag phase, which consequently facilitate fructose transport, metabolic shift toward solventogenesis and carbon flux redistribution for butanol biosynthesis. Therefore, the extracellular ORP control can be an effective strategy to improve butanol production from fructose-based feedstock. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. σK of Clostridium acetobutylicum Is the First Known Sporulation-Specific Sigma Factor with Two Developmentally Separated Roles, One Early and One Late in Sporulation

    PubMed Central

    Al-Hinai, Mohab A.; Jones, Shawn W.

    2014-01-01

    Sporulation in the model endospore-forming organism Bacillus subtilis proceeds via the sequential and stage-specific activation of the sporulation-specific sigma factors, σH (early), σF, σE, σG, and σK (late). Here we show that the Clostridium acetobutylicum σK acts both early, prior to Spo0A expression, and late, past σG activation, thus departing from the B. subtilis model. The C. acetobutylicum sigK deletion (ΔsigK) mutant was unable to sporulate, and solventogenesis, the characteristic stationary-phase phenomenon for this organism, was severely diminished. Transmission electron microscopy demonstrated that the ΔsigK mutant does not develop an asymmetric septum and produces no granulose. Complementation of sigK restored sporulation and solventogenesis to wild-type levels. Spo0A and σG proteins were not detectable by Western analysis, while σF protein levels were significantly reduced in the ΔsigK mutant. spo0A, sigF, sigE, sigG, spoIIE, and adhE1 transcript levels were all downregulated in the ΔsigK mutant, while those of the sigH transcript were unaffected during the exponential and transitional phases of culture. These data show that σK is necessary for sporulation prior to spo0A expression. Plasmid-based expression of spo0A in the ΔsigK mutant from a nonnative promoter restored solventogenesis and the production of Spo0A, σF, σE, and σG, but not sporulation, which was blocked past the σG stage of development, thus demonstrating that σK is also necessary in late sporulation. sigK is expressed very early at low levels in exponential phase but is strongly upregulated during the middle to late stationary phase. This is the first sporulation-specific sigma factor shown to have two developmentally separated roles. PMID:24187083

  15. σK of Clostridium acetobutylicum is the first known sporulation-specific sigma factor with two developmentally separated roles, one early and one late in sporulation.

    PubMed

    Al-Hinai, Mohab A; Jones, Shawn W; Papoutsakis, Eleftherios T

    2014-01-01

    Sporulation in the model endospore-forming organism Bacillus subtilis proceeds via the sequential and stage-specific activation of the sporulation-specific sigma factors, σ(H) (early), σ(F), σ(E), σ(G), and σ(K) (late). Here we show that the Clostridium acetobutylicum σ(K) acts both early, prior to Spo0A expression, and late, past σ(G) activation, thus departing from the B. subtilis model. The C. acetobutylicum sigK deletion (ΔsigK) mutant was unable to sporulate, and solventogenesis, the characteristic stationary-phase phenomenon for this organism, was severely diminished. Transmission electron microscopy demonstrated that the ΔsigK mutant does not develop an asymmetric septum and produces no granulose. Complementation of sigK restored sporulation and solventogenesis to wild-type levels. Spo0A and σ(G) proteins were not detectable by Western analysis, while σ(F) protein levels were significantly reduced in the ΔsigK mutant. spo0A, sigF, sigE, sigG, spoIIE, and adhE1 transcript levels were all downregulated in the ΔsigK mutant, while those of the sigH transcript were unaffected during the exponential and transitional phases of culture. These data show that σ(K) is necessary for sporulation prior to spo0A expression. Plasmid-based expression of spo0A in the ΔsigK mutant from a nonnative promoter restored solventogenesis and the production of Spo0A, σ(F), σ(E), and σ(G), but not sporulation, which was blocked past the σ(G) stage of development, thus demonstrating that σ(K) is also necessary in late sporulation. sigK is expressed very early at low levels in exponential phase but is strongly upregulated during the middle to late stationary phase. This is the first sporulation-specific sigma factor shown to have two developmentally separated roles.

  16. Evaluation of industrial dairy waste (milk dust powder) for acetone-butanol-ethanol production by solventogenic Clostridium species.

    PubMed

    Ujor, Victor; Bharathidasan, Ashok Kumar; Cornish, Katrina; Ezeji, Thaddeus Chukwuemeka

    2014-01-01

    Readily available inexpensive substrate with high product yield is the key to restoring acetone-butanol-ethanol (ABE) fermentation to economic competitiveness. Lactose-replete cheese whey tends to favor the production of butanol over acetone. In the current study, we investigated the fermentability of milk dust powder with high lactose content, for ABE production by Clostridium acetobutylicum and Clostridium beijerinckii. Both microorganisms produced 7.3 and 5.8 g/L of butanol respectively, with total ABE concentrations of 10.3 and 8.2 g/L, respectively. Compared to fermentation with glucose, fermentation of milk dust powder increased butanol to acetone ratio by 16% and 36% for C. acetobutylicum and C. beijerinckii, respectively. While these results demonstrate the fermentability of milk dust powder, the physico-chemical properties of milk dust powder appeared to limit sugar utilization, growth and ABE production. Further work aimed at improving the texture of milk dust powder-based medium would likely improve lactose utilization and ABE production.

  17. Acetone-butanol-ethanol production from substandard and surplus dates by Egyptian native Clostridium strains.

    PubMed

    Abd-Alla, Mohamed Hemida; Zohri, Abdel-Naser Ahmed; El-Enany, Abdel-Wahab Elsadek; Ali, Shimaa Mohamed

    2015-04-01

    One hundred and seven mesophilic isolates of Clostridium were isolated from agricultural soils cultivated with different plants in Assuit Governorate, Egypt. Eighty isolates (out of 107) showed the ability to produce ABE (Acetone, butanol and ethanol) on T6 medium ranging from 0.036 to 31.89 g/L. The highest numbers of ABE producing isolates were obtained from soil samples of potato contributing 27 isolates, followed by 18 isolates from wheat and 10 isolates from onion. On the other hand, there were three native isolates that produced ABE more than those produced by the reference isolate Clostridium acetobutylicum ATCC 824 (11.543 g/L). The three isolates were identified based on phenotypic and gene encoding 16S rRNA as Clostridium beijerinckii ASU10 (KF372577), Clostridium chauvoei ASU55 (KF372580) and Clostridium roseum ASU58 (KF372581). The highest ABE level from substandard and surplus dates was produced by C. beijerinckii ASU10 (24.07 g/L) comprising butanol 67.15% (16.16 g/L), acetone 30.73% (7.4 g/L) and ethanol 2.12% (0.51 g/L), while C. roseum ASU58 and C. chauvoei ASU55 produced ABE contributing 20.20 and 13.79 g/L, respectively. ABE production by C. acetobutylicum ATCC 824 was 15.01 g/L. This study proved that the native strains C. beijerinckii ASU10 and C. roseum ASU58 have high competitive efficacy on ABE production from economical substrate as substandard and surplus date fruits. Additionally, using this substrate without any nutritional components is considered to be a commercial substrate for desired ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Transcription of the pst Operon of Clostridium acetobutylicum Is Dependent on Phosphate Concentration and pH

    PubMed Central

    Fischer, Ralf-Jörg; Oehmcke, Sonja; Meyer, Uta; Mix, Maren; Schwarz, Katrin; Fiedler, Tomas; Bahl, Hubert

    2006-01-01

    The pst operon of Clostridium acetobutylicum ATCC 824 comprises five genes, pstS, pstC, pstA, pstB, and phoU, and shows a gene architecture identical to that of Escherichia coli. Deduced proteins are predicted to represent a high-affinity phosphate-specific ABC (ATP-binding cassette) transport system (Pst) and a protein homologous to PhoU, a negative phosphate regulon regulator. We analyzed the expression patterns of the pst operon in Pi-limited chemostat cultures during acid production at pH 5.8 or solvent production at pH 4.5 and in response to Pi pulses. Specific mRNA transcripts were found only when external Pi concentrations had dropped below 0.2 mM. Two specific transcripts were detected, a 4.7-kb polycistronic mRNA spanning the whole operon and a quantitatively dominating 1.2-kb mRNA representing the first gene, pstS. The mRNA levels clearly differed depending on the external pH. The amounts of the full-length mRNA detected were about two times higher at pH 5.8 than at pH 4.5. The level of pstS mRNA increased by a factor of at least 8 at pH 5.8 compared to pH 4.5 results. Primer extension experiments revealed only one putative transcription start point 80 nucleotides upstream of pstS. Thus, additional regulatory sites are proposed in the promoter region, integrating two different extracellular signals, namely, depletion of inorganic phosphate and the pH of the environment. After phosphate pulses were applied to a phosphate-limited chemostat we observed faster phosphate consumption at pH 5.8 than at pH 4.5, although higher optical densities were recorded at pH 4.5. PMID:16855236

  19. Genome Sequence of Clostridium paraputrificum 373-A1 Isolated in Chile from a Patient Infected with Clostridium difficile

    PubMed Central

    Guerrero-Araya, Enzo; Plaza-Garrido, Angela; Díaz-Yañez, Fernando; Pizaro-Guajardo, Marjorie; Valenzuela, Sandro L.; Meneses, Claudio; Gil, Fernando

    2016-01-01

    Clostridium paraputrificum is a gut microbiota member reported in several cases of bacteremia and coinfections. So far, only one genome sequence of a C. paraputrificum (AGR2156) isolate is available. Here, we present the draft genome of C. paraputrificum strain 373-A1, isolated from stools from a patient with C. difficile infection. PMID:27811092

  20. A dynamic metabolic flux analysis of ABE (acetone-butanol-ethanol) fermentation by Clostridium acetobutylicum ATCC 824, with riboflavin as a by-product.

    PubMed

    Zhao, Xinhe; Kasbi, Mayssa; Chen, Jingkui; Peres, Sabine; Jolicoeur, Mario

    2017-12-01

    The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L -1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis. © 2017 Wiley Periodicals, Inc.

  1. Improvement of the butanol production selectivity and butanol to acetone ratio (B:A) by addition of electron carriers in the batch culture of a new local isolate of Clostridium acetobutylicum YM1.

    PubMed

    Nasser Al-Shorgani, Najeeb Kaid; Kalil, Mohd Sahaid; Wan Yusoff, Wan Mohtar; Shukor, Hafiza; Hamid, Aidil Abdul

    2015-12-01

    Improvement in the butanol production selectivity or enhanced butanol:acetone ratio (B:A) is desirable in acetone-butanol-ethanol (ABE) fermentation by Clostridium strains. In this study, artificial electron carriers were added to the fermentation medium of a new isolate of Clostridium acetobutylicum YM1 in order to improve the butanol yield and B:A ratio. The results revealed that medium supplementation with electron carriers changed the metabolism flux of electron and carbon in ABE fermentation by YM1. A decrease in acetone production, which subsequently improved the B:A ratio, was observed. Further improvement in the butanol production and B:A ratios were obtained when the fermentation medium was supplemented with butyric acid. The maximum butanol production (18.20 ± 1.38 g/L) was gained when a combination of methyl red and butyric acid was added. Although the addition of benzyl viologen (0.1 mM) and butyric acid resulted in high a B:A ratio of 16:1 (800% increment compared with the conventional 2:1 ratio), the addition of benzyl viologen to the culture after 4 h resulted in the production of 18.05 g/L butanol. Manipulating the metabolic flux to butanol through the addition of electron carriers could become an alternative strategy to achieve higher butanol productivity and improve the B:A ratio. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Near complete genome sequence of Clostridium paradoxum strain JW-YL-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, Andrew; Utturkar, Sagar M.; Poole, Farris

    2016-05-05

    Clostridium paradoxum strain JW-YL-7 is a moderately thermophilic anaerobic alkaliphile isolated from the municipal sewage treatment plant in Athens, GA. We report the near-complete genome sequence of C. paradoxum strain JW-YL-7 obtained by using PacBio DNA sequencing and Pilon for sequence assembly refinement with Illumina data.

  3. Draft Genome Sequences of Clostridium Strains Native to Colombia with the Potential To Produce Solvents

    PubMed Central

    Rosas-Morales, Juan Pablo; Perez-Mancilla, Ximena; López-Kleine, Liliana

    2015-01-01

    Genomes from four Clostridium sp. strains considered to be mesophilic anaerobic bacteria, isolated from crop soil in Colombia, with a strong potential to produce alcohols like 1,3-propanediol, were analyzed. We present the draft genome of these strains, which will be useful for developing genetic engineering strategies. PMID:25999575

  4. Characterization of a Glucosamine/Glucosaminide N-Acetyltransferase of Clostridium acetobutylicum▿†

    PubMed Central

    Reith, Jan; Mayer, Christoph

    2011-01-01

    Many bacteria, in particular Gram-positive bacteria, contain high proportions of non-N-acetylated amino sugars, i.e., glucosamine (GlcN) and/or muramic acid, in the peptidoglycan of their cell wall, thereby acquiring resistance to lysozyme. However, muramidases with specificity for non-N-acetylated peptidoglycan have been characterized as part of autolytic systems such as of Clostridium acetobutylicum. We aim to elucidate the recovery pathway for non-N-acetylated peptidoglycan fragments and present here the identification and characterization of an acetyltransferase of novel specificity from C. acetobutylicum, named GlmA (for glucosamine/glucosaminide N-acetyltransferase). The enzyme catalyzes the specific transfer of an acetyl group from acetyl coenzyme A to the primary amino group of GlcN, thereby generating N-acetylglucosamine. GlmA is also able to N-acetylate GlcN residues at the nonreducing end of glycosides such as (partially) non-N-acetylated peptidoglycan fragments and β-1,4-glycosidically linked chitosan oligomers. Km values of 114, 64, and 39 μM were determined for GlcN, (GlcN)2, and (GlcN)3, respectively, and a 3- to 4-fold higher catalytic efficiency was determined for the di- and trisaccharides. GlmA is the first cloned and biochemically characterized glucosamine/glucosaminide N-acetyltransferase and a member of the large GCN5-related N-acetyltransferases (GNAT) superfamily of acetyltransferases. We suggest that GlmA is required for the recovery of non-N-acetylated muropeptides during cell wall rescue in C. acetobutylicum. PMID:21784938

  5. Draft Genome Sequence of Clostridium pasteurianum NRRL B-598, a Potential Butanol or Hydrogen Producer.

    PubMed

    Kolek, Jan; Sedlár, Karel; Provazník, Ivo; Patáková, Petra

    2014-03-20

    We present a draft genome sequence of Clostridium pasteurianum NRRL B-598. This strain ferments saccharides by two-stage acetone-butanol (AB) fermentation, is oxygen tolerant, and has high hydrogen yields.

  6. Draft Genome Sequence of the Butyric Acid Producer Clostridium tyrobutyricum Strain CIP I-776 (IFP923).

    PubMed

    Wasels, François; Clément, Benjamin; Lopes Ferreira, Nicolas

    2016-03-03

    Here, we report the draft genome sequence of Clostridium tyrobutyricum CIP I-776 (IFP923), an efficient producer of butyric acid. The genome consists of a single chromosome of 3.19 Mb and provides useful data concerning the metabolic capacities of the strain. Copyright © 2016 Wasels et al.

  7. Phosphoproteomic investigation of a solvent producing bacterium Clostridium acetobutylicum.

    PubMed

    Bai, Xue; Ji, Zhihong

    2012-07-01

    In this study, we employed TiO₂ enrichment and high accuracy liquid chromatography-mass spectrometry-mass spectrometry to identify the phosphoproteome of Clostridium acetobutyicum ATCC824 in acidogenesis and solventogenesis. As many as 82 phosphopeptides in 61 proteins, with 107 phosphorylated sites on serine, threonine, or tyrosine, were identified with high confidence. We detected 52 phosphopeptides from 44 proteins in acidogenesis and 70 phosphopeptides from 51 proteins in solventogenesis, respectively. Bioinformatic analysis revealed most of the phosphoproteins located in cytoplasm and participated in carbon metabolism. Based on comparison between the two stages, we found 27 stage-specific phosphorylated proteins (10 in acidogenesis and 17 in solventogenesis), some of which were solvent production-related enzymes and metabolic regulators, showed significantly different phosphorylated status. Further analysis indicated that protein phosphorylation could be involved in the shift of stages or in solvent production pathway directly. Comparison against several other organisms revealed the evolutionary diversity among them on phosphorylation level in spite of their high homology on protein sequence level.

  8. Complete genome sequence of Clostridium pasteurianum NRRL B-598, a non-type strain producing butanol.

    PubMed

    Sedlar, Karel; Kolek, Jan; Skutkova, Helena; Branska, Barbora; Provaznik, Ivo; Patakova, Petra

    2015-11-20

    The strain Clostridium pasteurianum NRRL B-598 is non-type, oxygen tolerant, spore-forming, mesophilic and heterofermentative strain with high hydrogen production and ability of acetone-butanol fermentation (ethanol production being negligible). Here, we present the annotated complete genome sequence of this bacterium, replacing the previous draft genome assembly. The genome consisting of a single circular 6,186,879 bp chromosome with no plasmid was determined using PacBio RSII and Roche 454 sequencing. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways.

    PubMed

    Martínez, Irene; Zhu, Jiangfeng; Lin, Henry; Bennett, George N; San, Ka-Yiu

    2008-11-01

    Reactions requiring reducing equivalents, NAD(P)H, are of enormous importance for the synthesis of industrially valuable compounds such as carotenoids, polymers, antibiotics and chiral alcohols among others. The use of whole-cell biocatalysis can reduce process cost by acting as catalyst and cofactor regenerator at the same time; however, product yields might be limited by cofactor availability within the cell. Thus, our study focussed on the genetic manipulation of a whole-cell system by modifying metabolic pathways and enzymes to improve the overall production process. In the present work, we genetically engineered an Escherichia coli strain to increase NADPH availability to improve the productivity of products that require NADPH in its biosynthesis. The approach involved an alteration of the glycolysis step where glyceraldehyde-3-phosphate (GAP) is oxidized to 1,3 bisphophoglycerate (1,3-BPG). This reaction is catalyzed by NAD-dependent endogenous glyceraldehyde-3-phosphate dehydrogenase (GAPDH) encoded by the gapA gene. We constructed a recombinant E. coli strain by replacing the native NAD-dependent gapA gene with a NADP-dependent GAPDH from Clostridium acetobutylicum, encoded by the gene gapC. The beauty of this approach is that the recombinant E. coli strain produces 2 mol of NADPH, instead of NADH, per mole of glucose consumed. Metabolic flux analysis showed that the flux through the pentose phosphate (PP) pathway, one of the main pathways that produce NADPH, was reduced significantly in the recombinant strain when compared to that of the parent strain. The effectiveness of the NADPH enhancing system was tested using the production of lycopene and epsilon-caprolactone as model systems using two different background strains. The recombinant strains, with increased NADPH availability, consistently showed significant higher productivity than the parent strains.

  10. Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395).

    PubMed

    Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A; Cate, Jamie H D

    2013-09-12

    We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes.

  11. Draft Genome Sequence of the Cellulolytic Bacterium Clostridium papyrosolvens C7 (ATCC 700395)

    PubMed Central

    Zepeda, Veronica; Dassa, Bareket; Borovok, Ilya; Lamed, Raphael; Bayer, Edward A.

    2013-01-01

    We report the draft genome sequence of the cellulose-degrading bacterium Clostridium papyrosolvens C7, originally isolated from mud collected below a freshwater pond in Massachusetts. This Gram-positive bacterium grows in a mesophilic anaerobic environment with filter paper as the only carbon source, and it has a simple cellulosome system with multiple carbohydrate-degrading enzymes. PMID:24029755

  12. The complete genome sequence of Clostridium indolis DSM 755T

    PubMed Central

    Leschine, Susan; Huntemann, Marcel; Han, James; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Schaumberg, Andrew; Pati, Amrita; Stamatis, Dimitrios; Reddy, Tatiparthi; Lobos, Elizabeth; Goodwin, Lynne; Nordberg, Henrik P.; Cantor, Michael N.; Hua, Susan X.; Woyke, Tanja; Blanchard, Jeffrey L.

    2014-01-01

    Clostridium indolis DSM 755T is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755T reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC, are also detected. Our genome analysis suggests hypotheses to be tested in future culture based work to better understand the physiology of this poorly described species. PMID:25197485

  13. The complete genome sequence of Clostridium indolis DSM 755(T.).

    PubMed

    Biddle, Amy S; Leschine, Susan; Huntemann, Marcel; Han, James; Chen, Amy; Kyrpides, Nikos; Markowitz, Victor; Palaniappan, Krishna; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Schaumberg, Andrew; Pati, Amrita; Stamatis, Dimitrios; Reddy, Tatiparthi; Lobos, Elizabeth; Goodwin, Lynne; Nordberg, Henrik P; Cantor, Michael N; Hua, Susan X; Woyke, Tanja; Blanchard, Jeffrey L

    2014-06-15

    Clostridium indolis DSM 755(T) is a bacterium commonly found in soils and the feces of birds and mammals. Despite its prevalence, little is known about the ecology or physiology of this species. However, close relatives, C. saccharolyticum and C. hathewayi, have demonstrated interesting metabolic potentials related to plant degradation and human health. The genome of C. indolis DSM 755(T) reveals an abundance of genes in functional groups associated with the transport and utilization of carbohydrates, as well as citrate, lactate, and aromatics. Ecologically relevant gene clusters related to nitrogen fixation and a unique type of bacterial microcompartment, the CoAT BMC, are also detected. Our genome analysis suggests hypotheses to be tested in future culture based work to better understand the physiology of this poorly described species.

  14. Draft Genome Sequence of Clostridium mangenotii TR, Isolated from the Fecal Material of a Timber Rattlesnake

    PubMed Central

    Cochran, Philip A.; Dowd, Scot E.; Andersen, Kylie; Anderson, Nichole; Brennan, Rachel; Brook, Nicole; Callaway, Tracie; Diamante, Kimberly; Duberstine, Annie; Fitch, Karla; Freiheit, Heidi; Godlewski, Chantel; Gorman, Kelly; Haubrich, Mark; Hernandez, Mercedes; Hirtreiter, Amber; Ivanoski, Beth; Jaminet, Xochitl; Kirkpatrick, Travis; Kratowicz, Jennifer; Latus, Casey; Leable, Tiegen; Lingafelt, Nicole; Lowe, DeAnna; Lowrance, Holly; Malsack, Latiffa; Mazurkiewicz, Julie; Merlos, Persida; Messley, Jamie; Montemurro, Dawn; Nakitare, Samora; Nelson, Christine; Nye, Amber; Pazera, Valerie; Pierangeli, Gina; Rellora, Ashley; Reyes, Angelica; Roberts, Jennifer; Robins, Shadara; Robinson, Jeshannah; Schultz, Alissa; Seifert, Sara; Sigler, Elona; Spangler, Julie; Swift, Ebony; TenCate, Rebecca; Thurber, Jessica; Vallee, Kristin; Wamboldt, Jennifer; Whitten, Shannon; Woods, De’andrea; Wright, Amanda; Yankunas, Darin

    2014-01-01

    Here, we report the draft genome sequence of Clostridium mangenotii strain TR, which was isolated from the fecal material of a timber rattlesnake. This bacterium is nonpathogenic but contains 68 genes involved in virulence, disease, and defense. PMID:24407632

  15. Draft Genome Sequences of Five Enterococcus Species Isolated from the Gut of Patients with Suspected Clostridium difficile Infection

    PubMed Central

    Castro-Nallar, Eduardo; Valenzuela, Sandro L.; Baquedano, Sebastián; Sánchez, Carolina; Fernández, Fabiola

    2017-01-01

    ABSTRACT We present draft genome sequences of five Enterococcus species from patients suspected of Clostridium difficile infection. Genome completeness was confirmed by presence of bacterial orthologs (97%). Gene searches using Hidden-Markov models revealed that the isolates harbor between seven and 11 genes involved in antibiotic resistance to tetracyclines, beta-lactams, and vancomycin. PMID:28522725

  16. Aldehyde-alcohol dehydrogenase and/or thiolase overexpression coupled with CoA transferase downregulation lead to higher alcohol titers and selectivity in Clostridium acetobutylicum fermentations.

    PubMed

    Sillers, Ryan; Al-Hinai, Mohab Ali; Papoutsakis, Eleftherios T

    2009-01-01

    Metabolic engineering (ME) of Clostridium acetobutylicum has led to increased solvent (butanol, acetone, and ethanol) production and solvent tolerance, thus demonstrating that further efforts have the potential to create strains of industrial importance. With recently developed ME tools, it is now possible to combine genetic modifications and thus implement more advanced ME strategies. We have previously shown that antisense RNA (asRNA)-based downregulation of CoA transferase (CoAT, the first enzyme in the acetone-formation pathway) results in increased butanol to acetone selectivity, but overall reduced butanol yields and titers. In this study the alcohol/aldehyde dehydrogenase (aad) gene (encoding the bifunctional protein AAD responsible for butanol and ethanol production from butyryl-CoA and acetyl-CoA, respectively) was expressed from the phosphotransbutyrylase (ptb) promoter to enhance butanol formation and selectivity, while CoAT downregulation was used to minimize acetone production. This led to early production of high alcohol (butanol plus ethanol) titers, overall solvent titers of 30 g/L, and a higher alcohol/acetone ratio. Metabolic flux analysis revealed the likely depletion of butyryl-CoA. In order to increase then the flux towards butyryl-CoA, we examined the impact of thiolase (THL, thl) overexpression. THL converts acetyl-CoA to acetoacetyl-CoA, the first step of the pathway from acetyl-CoA to butyryl-CoA, and thus, combining thl overexpression with aad overexpression decreased, as expected, acetate and ethanol production while increasing acetone and butyrate formation. thl overexpression in strains with asRNA CoAT downregulation did not significantly alter product formation thus suggesting that a more complex metabolic engineering strategy is necessary to enhance the intracellular butyryl-CoA pool and reduce the acetyl-CoA pool in order to achieve improved butanol titers and selectivity.

  17. Discovery of External Modulators of the Fe-Fe Hydrogenase Enzyme in Clostridium acetobutylicum

    DTIC Science & Technology

    2015-02-01

    I-TASSER (orange) with the experimental structure ( PDB ID: 1FEH, blue) ................5 Fig. 4 Putative docking site 1 of Fd (blue) to Fe-only...dock small molecules to a homologous structure of the C. acet. HydA from Clostridium pasteurianum (C. past.; protein data bank [ PDB ] id: 1FEH1) (Fig. 2...Agreement among these models was excellent, as well as agreement with the C. past. crystal structure ( PDB id: 1FEH1). Alignment and comparison with the

  18. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    DOE PAGES

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; ...

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer.more » These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.« less

  19. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels.

    PubMed

    Petit, Elsa; Coppi, Maddalena V; Hayes, James C; Tolonen, Andrew C; Warnick, Thomas; Latouf, William G; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J; Church, George M; Leschine, Susan B; Blanchard, Jeffrey L

    2015-01-01

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.

  20. Draft Genome Sequences of Clostridium tyrobutyricum Strains FAM22552 and FAM22553, Isolated from Swiss Semihard Red-Smear Cheese

    PubMed Central

    Wüthrich, Daniel; Bruggmann, Rémy; Berthoud, Hélène; Arias-Roth, Emmanuelle

    2015-01-01

    Clostridium tyrobutyricum is the main microorganism responsible for late blowing defect in cheeses. Here, we present the draft genome sequences of two C. tyrobutyricum strains isolated from a Swiss semihard red-smear cheese. The two draft genomes comprise 3.05 and 3.08 Mbp and contain 3,030 and 3,089 putative coding sequences, respectively. PMID:25767226

  1. Whole-genome sequence of Clostridium lituseburense L74, isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus.

    PubMed

    Lee, Yookyung; Lim, Sooyeon; Rhee, Moon-Soo; Chang, Dong-Ho; Kim, Byoung-Chan

    2016-03-01

    Clostridium lituseburense L74 was isolated from the larval gut of the rhinoceros beetle, Trypoxylus dichotomus collected in Yeong-dong, Chuncheongbuk-do, South Korea and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession NZ_LITJ00000000.

  2. Draft Genome Sequences of Clostridium tyrobutyricum Strains FAM22552 and FAM22553, Isolated from Swiss Semihard Red-Smear Cheese.

    PubMed

    Storari, Michelangelo; Wüthrich, Daniel; Bruggmann, Rémy; Berthoud, Hélène; Arias-Roth, Emmanuelle

    2015-03-12

    Clostridium tyrobutyricum is the main microorganism responsible for late blowing defect in cheeses. Here, we present the draft genome sequences of two C. tyrobutyricum strains isolated from a Swiss semihard red-smear cheese. The two draft genomes comprise 3.05 and 3.08 Mbp and contain 3,030 and 3,089 putative coding sequences, respectively. Copyright © 2015 Storari et al.

  3. Genomic study of the Type IVC secretion system in Clostridium difficile: understanding C. difficile evolution via horizontal gene transfer.

    PubMed

    Zhang, Wen; Cheng, Ying; Du, Pengcheng; Zhang, Yuanyuan; Jia, Hongbing; Li, Xianping; Wang, Jing; Han, Na; Qiang, Yujun; Chen, Chen; Lu, Jinxing

    2017-01-01

    Clostridium difficile, the etiological agent of Clostridium difficile infection (CDI), is a gram-positive, spore-forming bacillus that is responsible for ∼20% of antibiotic-related cases of diarrhea and nearly all cases of pseudomembranous colitis. Previous data have shown that a substantial proportion (11%) of the C. difficile genome consists of mobile genetic elements, including seven conjugative transposons. However, the mechanism underlying the formation of a mosaic genome in C. difficile is unknown. The type-IV secretion system (T4SS) is the only secretion system known to transfer DNA segments among bacteria. We searched genome databases to identify a candidate T4SS in C. difficile that could transfer DNA among different C. difficile strains. All T4SS gene clusters in C. difficile are located within genomic islands (GIs), which have variable lengths and structures and are all conjugative transposons. During the horizontal-transfer process of T4SS GIs within the C. difficile population, the excision sites were altered, resulting in different short-tandem repeat sequences among the T4SS GIs, as well as different chromosomal insertion sites and additional regions in the GIs.

  4. Reclassification of non-type strain Clostridium pasteurianum NRRL B-598 as Clostridium beijerinckii NRRL B-598.

    PubMed

    Sedlar, Karel; Kolek, Jan; Provaznik, Ivo; Patakova, Petra

    2017-02-20

    The complete genome sequence of non-type strain Clostridium pasteurianum NRRL B-598 was introduced last year; it is an oxygen tolerant, spore-forming, mesophilic heterofermentative bacterium with high hydrogen production and acetone-butanol fermentation ability. The basic genome statistics have shown its similarity to C. beijerinckii rather than the C. pasteurianum species. Here, we present a comparative analysis of the strain with several other complete clostridial genome sequences. Besides a 16S rRNA gene sequence comparison, digital DNA-DNA hybridization (dDDH) and phylogenomic analysis confirmed an inaccuracy of the taxonomic status of strain Clostridium pasteurianum NRRL B-598. Therefore, we suggest its reclassification to be Clostridium beijerinckii NRRL B-598. This is a specific strain and is not identical to other C. beijerinckii strains. This misclassification explains its unexpected behavior, different from other C. pasteurianum strains; it also permits better understanding of the bacterium for a future genetic manipulation that might increase its biofuel production potential. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparative genomic analysis of single-molecule sequencing and hybrid approaches for finishing the Clostridium autoethanogenum JA1-1 strain DSM 10061 genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Steven D; Nagaraju, Shilpa; Utturkar, Sagar M

    Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G +more » C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a

  6. Plasmidome Interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum Converts Strains of Independent Lineages into Distinctly Different Pathogens

    PubMed Central

    Skarin, Hanna; Segerman, Bo

    2014-01-01

    Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains. PMID:25254374

  7. Plasmidome interchange between Clostridium botulinum, Clostridium novyi and Clostridium haemolyticum converts strains of independent lineages into distinctly different pathogens.

    PubMed

    Skarin, Hanna; Segerman, Bo

    2014-01-01

    Clostridium botulinum (group III), Clostridium novyi and Clostridium haemolyticum are well-known pathogens causing animal botulism, gas gangrene/black disease, and bacillary hemoglobinuria, respectively. A close genetic relationship exists between the species, which has resulted in the collective term C. novyi sensu lato. The pathogenic traits in these species, e.g., the botulinum neurotoxin and the novyi alpha toxin, are mainly linked to a large plasmidome consisting of plasmids and circular prophages. The plasmidome of C. novyi sensu lato has so far been poorly characterized. In this study we explored the genomic relationship of a wide range of strains of C. novyi sensu lato with a special focus on the dynamics of the plasmidome. Twenty-four genomes were sequenced from strains selected to represent as much as possible the genetic diversity in C. novyi sensu lato. Sixty-one plasmids were identified in these genomes and 28 of them were completed. The genomic comparisons revealed four separate lineages, which did not strictly correlate with the species designations. The plasmids were categorized into 13 different plasmid groups on the basis of their similarity and conservation of plasmid replication or partitioning genes. The plasmid groups, lineages and species were to a large extent entwined because plasmids and toxin genes had moved across the lineage boundaries. This dynamic process appears to be primarily driven by phages. We here present a comprehensive characterization of the complex species group C. novyi sensu lato, explaining the intermixed genetic properties. This study also provides examples how the reorganization of the botulinum toxin and the novyi alpha toxin genes within the plasmidome has affected the pathogenesis of the strains.

  8. Diversity and Evolution in the Genome of Clostridium difficile

    PubMed Central

    Knight, Daniel R.; Elliott, Briony; Chang, Barbara J.; Perkins, Timothy T.

    2015-01-01

    SUMMARY Clostridium difficile infection (CDI) is the leading cause of antimicrobial and health care-associated diarrhea in humans, presenting a significant burden to global health care systems. In the last 2 decades, PCR- and sequence-based techniques, particularly whole-genome sequencing (WGS), have significantly furthered our knowledge of the genetic diversity, evolution, epidemiology, and pathogenicity of this once enigmatic pathogen. C. difficile is taxonomically distinct from many other well-known clostridia, with a diverse population structure comprising hundreds of strain types spread across at least 6 phylogenetic clades. The C. difficile species is defined by a large diverse pangenome with extreme levels of evolutionary plasticity that has been shaped over long time periods by gene flux and recombination, often between divergent lineages. These evolutionary events are in response to environmental and anthropogenic activities and have led to the rapid emergence and worldwide dissemination of virulent clonal lineages. Moreover, genome analysis of large clinically relevant data sets has improved our understanding of CDI outbreaks, transmission, and recurrence. The epidemiology of CDI has changed dramatically over the last 15 years, and CDI may have a foodborne or zoonotic etiology. The WGS era promises to continue to redefine our view of this significant pathogen. PMID:26085550

  9. Metabolic Engineering of Clostridium thermocellum for Biofuel Production (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guess, Adam

    2013-03-01

    Adam Guss of Oak Ridge National Lab presents on Metabolic engineering of Clostridium thermocellum for biofuel production at the 8th Annual Genomics of Energy & Environment Meeting on March 28, 2013 in Walnut Creek, CA.

  10. Genomic analyses of Clostridium perfringens isolates from five toxinotypes.

    PubMed

    Hassan, Karl A; Elbourne, Liam D H; Tetu, Sasha G; Melville, Stephen B; Rood, Julian I; Paulsen, Ian T

    2015-05-01

    Clostridium perfringens can be isolated from a range of environments, including soil, marine and fresh water sediments, and the gastrointestinal tracts of animals and humans. Some C. perfringens strains have attractive industrial applications, e.g., in the degradation of waste products or the production of useful chemicals. However, C. perfringens has been most studied as the causative agent of a range of enteric and soft tissue infections of varying severities in humans and animals. Host preference and disease type in C. perfringens are intimately linked to the production of key extracellular toxins and on this basis toxigenic C. perfringens strains have been classified into five toxinotypes (A-E). To date, twelve genome sequences have been generated for a diverse collection of C. perfringens isolates, including strains associated with human and animal infections, a human commensal strain, and a strain with potential industrial utility. Most of the sequenced strains are classified as toxinotype A. However, genome sequences of representative strains from each of the other four toxinotypes have also been determined. Analysis of this collection of sequences has highlighted a lack of features differentiating toxinotype A strains from the other isolates, indicating that the primary defining characteristic of toxinotype A strains is their lack of key plasmid-encoded extracellular toxin genes associated with toxinotype B to E strains. The representative B-E strains sequenced to date each harbour many unique genes. Additional genome sequences are needed to determine if these genes are characteristic of their respective toxinotypes. Copyright © 2014. Published by Elsevier Masson SAS.

  11. Improving isopropanol tolerance and production of Clostridium beijerinckii DSM 6423 by random mutagenesis and genome shuffling.

    PubMed

    Gérando, H Máté de; Fayolle-Guichard, F; Rudant, L; Millah, S K; Monot, F; Ferreira, Nicolas Lopes; López-Contreras, A M

    2016-06-01

    Random mutagenesis and genome shuffling was applied to improve solvent tolerance and isopropanol/butanol/ethanol (IBE) production in the strictly anaerobic bacteria Clostridium beijerinckii DSM 6423. Following chemical mutagenesis with N-methyl-N-nitro-N-nitrosoguanidine (NTG), screening of putatively improved strains was done by submitting the mutants to toxic levels of inhibitory chemicals or by screening for their tolerance to isopropanol (>35 g/L). Suicide substrates, such as ethyl or methyl bromobutyrate or alcohol dehydrogenase inhibitors like allyl alcohol, were tested and, finally, 36 mutants were isolated. The fermentation profiles of these NTG mutant strains were characterized, and the best performing mutants were used for consecutive rounds of genome shuffling. Screening of strains with further enhancement in isopropanol tolerance at each recursive shuffling step was then used to spot additionally improved strains. Three highly tolerant strains were finally isolated and able to withstand up to 50 g/L isopropanol on plates. Even if increased tolerance to the desired end product was not always accompanied by higher production capabilities, some shuffled strains showed increased solvent titers compared to the parental strains and the original C. beijerinckii DSM 6423. This study confirms the efficiency of genome shuffling to generate improved strains toward a desired phenotype such as alcohol tolerance. This tool also offers the possibility of obtaining improved strains of Clostridium species for which targeted genetic engineering approaches have not been described yet.

  12. Determining the cause of recurrent Clostridium difficile infection using whole genome sequencing.

    PubMed

    Sim, James Heng Chiak; Truong, Cynthia; Minot, Samuel S; Greenfield, Nick; Budvytiene, Indre; Lohith, Akshar; Anikst, Victoria; Pourmand, Nader; Banaei, Niaz

    2017-01-01

    Understanding the contribution of relapse and reinfection to recurrent Clostridium difficile infection (CDI) has implications for therapy and infection prevention, respectively. We used whole genome sequencing to determine the relation of C. difficile strains isolated from patients with recurrent CDI at an academic medical center in the United States. Thirty-five toxigenic C. difficile isolates from 16 patients with 19 recurrent CDI episodes with median time of 53.5days (range, 13-362) between episodes were whole genome sequenced on the Illumina MiSeq platform. In 84% (16) of recurrences, the cause of recurrence was relapse with prior strain of C. difficile. In 16% (3) of recurrent episodes, reinfection with a new strain of C. difficile was the cause. In conclusion, the majority of CDI recurrences at our institution were due to infection with the same strain rather than infection with a new strain. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Draft genome sequences of clostridium perfringens strain LLY_N11, a pathogenic isolate of necrotic enteritis from a healthy chicken

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens strain LLY_N11 is a commensal bacterial isolate from a healthy chicken that produced a necrotic enteritis in experimental studies. Here we present the assembly and annotation of its genome, which may provide further insights into improved understanding of the molecular mechan...

  14. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review.

    PubMed

    Lacey, Jake A; Johanesen, Priscilla A; Lyras, Dena; Moore, Robert J

    2016-06-01

    The investigation of genomic variation between Clostridium perfringens isolates from poultry has been an important tool to enhance our understanding of the genetic basis of strain pathogenicity and the epidemiology of virulent and avirulent strains within the context of necrotic enteritis (NE). The earliest studies used whole genome profiling techniques such as pulsed-field gel electrophoresis to differentiate isolates and determine their relative levels of relatedness. DNA sequencing has been used to investigate genetic variation in (a) individual genes, such as those encoding the alpha and NetB toxins; (b) panels of housekeeping genes for multi-locus sequence typing and (c) most recently whole genome sequencing to build a more complete picture of genomic differences between isolates. Conclusions drawn from these studies include: differential carriage of large conjugative plasmids accounts for a large proportion of inter-strain differences; plasmid-encoded genes are more highly conserved than chromosomal genes, perhaps indicating a relatively recent origin for the plasmids; isolates from NE-affected birds fall into three distinct sequence-based clades while non-pathogenic isolates from healthy birds tend to be more genomically diverse. Overall, the NE causing strains are closely related to C. perfringens isolates from other birds and other diseases whereas the non-pathogenic poultry strains are generally more remotely related to either the pathogenic strains or the strains from other birds. Genomic analysis has indicated that genes in addition to netB are associated with NE pathogenic isolates. Collectively, this work has resulted in a deeper understanding of the pathogenesis of this important poultry disease.

  15. Botulinum neurotoxin homologs in non-Clostridium species.

    PubMed

    Mansfield, Michael J; Adams, Jeremy B; Doxey, Andrew C

    2015-01-30

    Clostridial neurotoxins (CNTs) are the deadliest toxins known and the causative agents of botulism and tetanus. Despite their structural and functional complexity, no CNT homologs are currently known outside Clostridium. Here, we report the first homologs of Clostridium CNTs within the genome of the rice fermentation organism Weissella oryzae SG25. One gene in W. oryzae S25 encodes a protein with a four-domain architecture and HExxH protease motif common to botulinum neurotoxins (BoNTs). An adjacent gene with partial similarity to CNTs is also present, and both genes seem to have been laterally transferred into the W. oryzae genome from an unknown source. Identification of mobile, CNT-related genes outside of Clostridium has implications for our understanding of the evolution of this important toxin family. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. The Draft Genome Sequence of a Novel High-Efficient Butanol-Producing Bacterium Clostridium Diolis Strain WST.

    PubMed

    Chen, Chaoyang; Sun, Chongran; Wu, Yi-Rui

    2018-03-21

    A wild-type solventogenic strain Clostridium diolis WST, isolated from mangrove sediments, was characterized to produce high amount of butanol and acetone with negligible level of ethanol and acids from glucose via a unique acetone-butanol (AB) fermentation pathway. Through the genomic sequencing, the assembled draft genome of strain WST is calculated to be 5.85 Mb with a GC content of 29.69% and contains 5263 genes that contribute to the annotation of 5049 protein-coding sequences. Within these annotated genes, the butanol dehydrogenase gene (bdh) was determined to be in a higher amount from strain WST compared to other Clostridial strains, which is positively related to its high-efficient production of butanol. Therefore, we present a draft genome sequence analysis of strain WST in this article that should facilitate to further understand the solventogenic mechanism of this special microorganism.

  17. Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Genome-Wide Typing of Clostridium difficile.

    PubMed

    Bletz, Stefan; Janezic, Sandra; Harmsen, Dag; Rupnik, Maja; Mellmann, Alexander

    2018-06-01

    Clostridium difficile , recently renamed Clostridioides difficile , is the most common cause of antibiotic-associated nosocomial gastrointestinal infections worldwide. To differentiate endogenous infections and transmission events, highly discriminatory subtyping is necessary. Today, methods based on whole-genome sequencing data are increasingly used to subtype bacterial pathogens; however, frequently a standardized methodology and typing nomenclature are missing. Here we report a core genome multilocus sequence typing (cgMLST) approach developed for C. difficile Initially, we determined the breadth of the C. difficile population based on all available MLST sequence types with Bayesian inference (BAPS). The resulting BAPS partitions were used in combination with C. difficile clade information to select representative isolates that were subsequently used to define cgMLST target genes. Finally, we evaluated the novel cgMLST scheme with genomes from 3,025 isolates. BAPS grouping ( n = 6 groups) together with the clade information led to a total of 11 representative isolates that were included for cgMLST definition and resulted in 2,270 cgMLST genes that were present in all isolates. Overall, 2,184 to 2,268 cgMLST targets were detected in the genome sequences of 70 outbreak-associated and reference strains, and on average 99.3% cgMLST targets (1,116 to 2,270 targets) were present in 2,954 genomes downloaded from the NCBI database, underlining the representativeness of the cgMLST scheme. Moreover, reanalyzing different cluster scenarios with cgMLST were concordant to published single nucleotide variant analyses. In conclusion, the novel cgMLST is representative for the whole C. difficile population, is highly discriminatory in outbreak situations, and provides a unique nomenclature facilitating interlaboratory exchange. Copyright © 2018 American Society for Microbiology.

  18. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.

    PubMed

    Wang, Shaohua; Dong, Sheng; Wang, Pixiang; Tao, Yong; Wang, Yi

    2017-05-15

    Clostridium saccharoperbutylacetonicum N1-4 is well known as a hyper-butanol-producing strain. However, the lack of genetic engineering tools hinders further elucidation of its solvent production mechanism and development of more robust strains. In this study, we set out to develop an efficient genome engineering system for this microorganism based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated 9 (CRISPR-Cas9) system. First, the functionality of the CRISPR-Cas9 system previously customized for Clostridium beijerinckii was evaluated in C. saccharoperbutylacetonicum by targeting pta and buk , two essential genes for acetate and butyrate production, respectively. pta and buk single and double deletion mutants were successfully obtained based on this system. However, the genome engineering efficiency was rather low (the mutation rate is <20%). Therefore, the efficiency was further optimized by evaluating various promoters for guide RNA (gRNA) expression. With promoter P J23119 , we achieved a mutation rate of 75% for pta deletion without serial subculturing as suggested previously for C. beijerinckii Thus, this developed CRISPR-Cas9 system is highly desirable for efficient genome editing in C. saccharoperbutylacetonicum Batch fermentation results revealed that both the acid and solvent production profiles were altered due to the disruption of acid production pathways; however, neither acetate nor butyrate production was eliminated with the deletion of the corresponding gene. The butanol production, yield, and selectivity were improved in mutants, depending on the fermentation medium. In the pta buk double deletion mutant, the butanol production in P2 medium reached 19.0 g/liter, which is one of the highest levels ever reported from batch fermentations. IMPORTANCE An efficient CRISPR-Cas9 genome engineering system was developed for C. saccharoperbutylacetonicum N1-4. This paves the way for elucidating the solvent

  19. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors.

    PubMed

    Kiu, Raymond; Caim, Shabhonam; Alexander, Sarah; Pachori, Purnima; Hall, Lindsay J

    2017-01-01

    Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an "open" pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens -associated exotoxins genes including α-toxin ( plc ), enterotoxin ( cpe ), and Perfringolysin O ( pfo or pfoA ), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes ( tet ) and anti-defensins genes ( mprF ) were consistently detected in silico ( tet : 75%; mprF : 100%). However, pre-antibiotic era strain genomes did not encode for tet , thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen.

  20. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light.

    PubMed

    Kusakabe, Tamami; Tatsuke, Tsuneyuki; Tsuruno, Keigo; Hirokawa, Yasutaka; Atsumi, Shota; Liao, James C; Hanai, Taizo

    2013-11-01

    Production of alternate fuels or chemicals directly from solar energy and carbon dioxide using engineered cyanobacteria is an attractive method to reduce petroleum dependency and minimize carbon emissions. Here, we constructed a synthetic pathway composed of acetyl-CoA acetyl transferase (encoded by thl), acetoacetyl-CoA transferase (encoded by atoAD), acetoacetate decarboxylase (encoded by adc) and secondary alcohol dehydrogenase (encoded by adh) in Synechococcus elongatus strain PCC 7942 to produce isopropanol. The enzyme-coding genes, heterogeneously originating from Clostridium acetobutylicum ATCC 824 (thl and adc), Escherichia coli K-12 MG1655 (atoAD) and Clostridium beijerinckii (adh), were integrated into the S. elongatus genome. Under the optimized production conditions, the engineered cyanobacteria produced 26.5 mg/L of isopropanol after 9 days. © 2013 Published by Elsevier Inc.

  1. Probing Genomic Aspects of the Multi-Host Pathogen Clostridium perfringens Reveals Significant Pangenome Diversity, and a Diverse Array of Virulence Factors

    PubMed Central

    Kiu, Raymond; Caim, Shabhonam; Alexander, Sarah; Pachori, Purnima; Hall, Lindsay J.

    2017-01-01

    Clostridium perfringens is an important cause of animal and human infections, however information about the genetic makeup of this pathogenic bacterium is currently limited. In this study, we sought to understand and characterise the genomic variation, pangenomic diversity, and key virulence traits of 56 C. perfringens strains which included 51 public, and 5 newly sequenced and annotated genomes using Whole Genome Sequencing. Our investigation revealed that C. perfringens has an “open” pangenome comprising 11667 genes and 12.6% of core genes, identified as the most divergent single-species Gram-positive bacterial pangenome currently reported. Our computational analyses also defined C. perfringens phylogeny (16S rRNA gene) in relation to some 25 Clostridium species, with C. baratii and C. sardiniense determined to be the closest relatives. Profiling virulence-associated factors confirmed presence of well-characterised C. perfringens-associated exotoxins genes including α-toxin (plc), enterotoxin (cpe), and Perfringolysin O (pfo or pfoA), although interestingly there did not appear to be a close correlation with encoded toxin type and disease phenotype. Furthermore, genomic analysis indicated significant horizontal gene transfer events as defined by presence of prophage genomes, and notably absence of CRISPR defence systems in >70% (40/56) of the strains. In relation to antimicrobial resistance mechanisms, tetracycline resistance genes (tet) and anti-defensins genes (mprF) were consistently detected in silico (tet: 75%; mprF: 100%). However, pre-antibiotic era strain genomes did not encode for tet, thus implying antimicrobial selective pressures in C. perfringens evolutionary history over the past 80 years. This study provides new genomic understanding of this genetically divergent multi-host bacterium, and further expands our knowledge on this medically and veterinary important pathogen. PMID:29312194

  2. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production

    PubMed Central

    2010-01-01

    Background Microorganisms possess diverse metabolic capabilities that can potentially be leveraged for efficient production of biofuels. Clostridium thermocellum (ATCC 27405) is a thermophilic anaerobe that is both cellulolytic and ethanologenic, meaning that it can directly use the plant sugar, cellulose, and biochemically convert it to ethanol. A major challenge in using microorganisms for chemical production is the need to modify the organism to increase production efficiency. The process of properly engineering an organism is typically arduous. Results Here we present a genome-scale model of C. thermocellum metabolism, iSR432, for the purpose of establishing a computational tool to study the metabolic network of C. thermocellum and facilitate efforts to engineer C. thermocellum for biofuel production. The model consists of 577 reactions involving 525 intracellular metabolites, 432 genes, and a proteomic-based representation of a cellulosome. The process of constructing this metabolic model led to suggested annotation refinements for 27 genes and identification of areas of metabolism requiring further study. The accuracy of the iSR432 model was tested using experimental growth and by-product secretion data for growth on cellobiose and fructose. Analysis using this model captures the relationship between the reduction-oxidation state of the cell and ethanol secretion and allowed for prediction of gene deletions and environmental conditions that would increase ethanol production. Conclusions By incorporating genomic sequence data, network topology, and experimental measurements of enzyme activities and metabolite fluxes, we have generated a model that is reasonably accurate at predicting the cellular phenotype of C. thermocellum and establish a strong foundation for rational strain design. In addition, we are able to draw some important conclusions regarding the underlying metabolic mechanisms for observed behaviors of C. thermocellum and highlight remaining gaps

  3. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis

    PubMed Central

    Bengelsdorf, Frank R.; Poehlein, Anja; Linder, Sonja; Erz, Catarina; Hummel, Tim; Hoffmeister, Sabrina; Daniel, Rolf; Dürre, Peter

    2016-01-01

    Synthesis gas (syngas) fermentation by anaerobic acetogenic bacteria employing the Wood–Ljungdahl pathway is a bioprocess for production of biofuels and biocommodities. The major fermentation products of the most relevant biocatalytic strains (Clostridium ljungdahlii, C. autoethanogenum, C. ragsdalei, and C. coskatii) are acetic acid and ethanol. A comparative metabolic and genomic analysis using the mentioned biocatalysts might offer targets for metabolic engineering and thus improve the production of compounds apart from ethanol. Autotrophic growth and product formation of the four wild type (WT) strains were compared in uncontrolled batch experiments. The genomes of C. ragsdalei and C. coskatii were sequenced and the genome sequences of all four biocatalytic strains analyzed in comparative manner. Growth and product spectra (acetate, ethanol, 2,3-butanediol) of C. autoethanogenum, C. ljungdahlii, and C. ragsdalei were rather similar. In contrast, C. coskatii produced significantly less ethanol and its genome sequence lacks two genes encoding aldehyde:ferredoxin oxidoreductases (AOR). Comparative genome sequence analysis of the four WT strains revealed high average nucleotide identity (ANI) of C. ljungdahlii and C. autoethanogenum (99.3%) and C. coskatii (98.3%). In contrast, C. ljungdahlii WT and C. ragsdalei WT showed an ANI-based similarity of only 95.8%. Additionally, recombinant C. ljungdahlii strains were constructed that harbor an artificial acetone synthesis operon (ASO) consisting of the following genes: adc, ctfA, ctfB, and thlA (encoding acetoacetate decarboxylase, acetoacetyl-CoA:acetate/butyrate:CoA-transferase subunits A and B, and thiolase) under the control of thlA promoter (PthlA) from C. acetobutylicum or native pta-ack promoter (Ppta-ack) from C. ljungdahlii. Respective recombinant strains produced 2-propanol rather than acetone, due to the presence of a NADPH-dependent primary-secondary alcohol dehydrogenase that converts acetone to 2

  4. Clostridium neonatale sp. nov. linked to necrotizing enterocolitis in neonates and a clarification of species assignable to the genus Clostridium (Prazmowski 1880) emend. Lawson and Rainey 2016.

    PubMed

    Bernard, Kathryn; Burdz, Tamara; Wiebe, Deborah; Alfa, Michelle; Bernier, Anne-Marie

    2018-06-11

    A description of an outbreak of necrotizing enterocolitis among neonates, linked to the putative novel species Clostridium neonatale and assignable to the genus Clostridium, was previously reported in brief but that name had never been validly published (Alfa et al. Clin Inf Dis 2002;35:S101-S105). Features of this taxon group and its phylogenetic position with respect to contemporary species in the genus Clostridium were recently reviewed and still found to be unique. Therefore, we provide here a description based on biochemical, chemotaxonomic and antimicrobial susceptibility testing (AST), matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, 16S rRNA gene sequencing as well as information obtained by whole genome sequencing (WGS) for strains 99A005 T and 99A006. Those two C. neonatale strains were essentially identical to each other, with genome sizes of 4 658 596-4 705 520 bp and G+C content of 28.4-28.5 mol% (WGS). AST inferred susceptibility to 14 antibiotics. MALDI-TOF spectra were unique and could potentially be used for identification. The type strain is (NML) LCDC 99A005 T [=ATCC BAA-265 T =CCUG 46077 T =St. Boniface Hospital 30686 T ]. While performing this review, we found that the names of 24 validly published species assignable to the genus Clostridium had been omitted from the emended description of the genus (Lawson and Rainey Int J Syst Evol Microbiol 2016;66 :1009-1016). Those species are listed in brief here. Lastly, based on this review, we also propose that Eubacterium budayi, Eubacterium nitritogenes and Eubacterium combesii be transferred to the emended genus Clostridium, as Clostridium budayi comb. nov., Clostridium nitritogenes comb. nov. and Clostridium combesii comb. nov., respectively.

  5. Isolation of mesophilic solvent-producing clostridia from Colombian sources: physiological characterization, solvent production and polysaccharide hydrolysis.

    PubMed

    Montoya, D; Spitia, S; Silva, E; Schwarz, W H

    2000-04-28

    One hundred and seventy-eight new butanol-acetone producing bacteria related to saccharolytic clostridia were isolated from agricultural sources in Colombia and their fermentation potential was evaluated. Thirteen isolates produced more total solvents from glucose than Clostridium acetobutylicum ATCC 824. The isolates with the highest single solvent production were IBUN 125C and IBUN 18A with 0.46 mol butanol and 0.96 mol ethanol formed from 1 mol glucose, yielding 25. 2 and 29.1 g l(-1) total solvents, respectively, which is close to the maximum values described to date. Most of the new isolates produced exoenzymes for the hydrolysis of starch, carboxymethyl cellulose, xylan, polygalacturonic acid, inulin and chitosan. Together with the high efficiency of solvent production, these hydrolytic isolates may be useful for the direct fermentation of biomass. According to their physiological profile, the most solvent-productive isolates could be classified as strains of C. acetobutylicum, Clostridium beijerinckii, and Clostridium NCP262.

  6. Comparative pathogenomics of Clostridium tetani.

    PubMed

    Cohen, Jonathan E; Wang, Rong; Shen, Rong-Fong; Wu, Wells W; Keller, James E

    2017-01-01

    Clostridium tetani and Clostridium botulinum produce two of the most potent neurotoxins known, tetanus neurotoxin and botulinum neurotoxin, respectively. Extensive biochemical and genetic investigation has been devoted to identifying and characterizing various C. botulinum strains. Less effort has been focused on studying C. tetani likely because recently sequenced strains of C. tetani show much less genetic diversity than C. botulinum strains and because widespread vaccination efforts have reduced the public health threat from tetanus. Our aim was to acquire genomic data on the U.S. vaccine strain of C. tetani to better understand its genetic relationship to previously published genomic data from European vaccine strains. We performed high throughput genomic sequence analysis on two wild-type and two vaccine C. tetani strains. Comparative genomic analysis was performed using these and previously published genomic data for seven other C. tetani strains. Our analysis focused on single nucleotide polymorphisms (SNP) and four distinct constituents of the mobile genome (mobilome): a hypervariable flagellar glycosylation island region, five conserved bacteriophage insertion regions, variations in three CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems, and a single plasmid. Intact type IA and IB CRISPR/Cas systems were within 10 of 11 strains. A type IIIA CRISPR/Cas system was present in two strains. Phage infection histories derived from CRISPR-Cas sequences indicate C. tetani encounters phages common among commensal gut bacteria and soil-borne organisms consistent with C. tetani distribution in nature. All vaccine strains form a clade distinct from currently sequenced wild type strains when considering variations in these mobile elements. SNP, flagellar glycosylation island, prophage content and CRISPR/Cas phylogenic histories provide tentative evidence suggesting vaccine and wild type strains share a common ancestor.

  7. Genome-Based Infection Tracking Reveals Dynamics of Clostridium difficile Transmission and Disease Recurrence.

    PubMed

    Kumar, Nitin; Miyajima, Fabio; He, Miao; Roberts, Paul; Swale, Andrew; Ellison, Louise; Pickard, Derek; Smith, Godfrey; Molyneux, Rebecca; Dougan, Gordon; Parkhill, Julian; Wren, Brendan W; Parry, Christopher M; Pirmohamed, Munir; Lawley, Trevor D

    2016-03-15

    Accurate tracking of Clostridium difficile transmission within healthcare settings is key to its containment but is hindered by the lack of discriminatory power of standard genotyping methods. We describe a whole-genome phylogenetic-based method to track the transmission of individual clones in infected hospital patients from the epidemic C. difficile 027/ST1 lineage, and to distinguish between the 2 causes of recurrent disease, relapse (same strain), or reinfection (different strain). We monitored patients with C. difficile infection in a UK hospital over a 2-year period. We performed whole-genome sequencing and phylogenetic analysis of 108 strains isolated from symptomatic patients. High-resolution phylogeny was integrated with in-hospital transfers and contact data to create an infection network linking individual patients and specific hospital wards. Epidemic C. difficile 027/ST1 caused the majority of infections during our sampling period. Integration of whole-genome single nucleotide polymorphism (SNP) phylogenetic analysis, which accurately discriminated between 27 distinct SNP genotypes, with patient movement and contact data identified 32 plausible transmission events, including ward-based contamination (66%) or direct donor-recipient contact (34%). Highly contagious donors were identified who contributed to the persistence of clones within distinct hospital wards and the spread of clones between wards, especially in areas of intense turnover. Recurrent cases were identified between 4 and 26 weeks, highlighting the limitation of the standard <8-week cutoff used for patient diagnosis and management. Genome-based infection tracking to monitor the persistence and spread of C. difficile within healthcare facilities could inform infection control and patient management. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.

  8. 2,4,6-Trinitrotoluene Reduction by Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum

    PubMed Central

    Huang, Shouqin; Lindahl, Paul A.; Wang, Chuanyue; Bennett, George N.; Rudolph, Frederick B.; Hughes, Joseph B.

    2000-01-01

    Purified CO dehydrogenase (CODH) from Clostridium thermoaceticum catalyzed the transformation of 2,4,6-trinitrotoluene (TNT). The intermediates and reduced products of TNT transformation were separated and appear to be identical to the compounds formed by C. acetobutylicum, namely, 2-hydroxylamino-4,6-dinitrotoluene (2HA46DNT), 4-hydroxylamino-2,6-dinitrotoluene (4HA26DNT), 2,4-dihydroxylamino-6-nitrotoluene (24DHANT), and the Bamberger rearrangement product of 2,4-dihydroxylamino-6-nitrotoluene. In the presence of saturating CO, CODH catalyzed the conversion of TNT to two monohydroxylamino derivatives (2HA46DNT and 4HA26DNT), with 4HA26DNT as the dominant isomer. These derivatives were then converted to 24DHANT, which slowly converted to the Bamberger rearrangement product. Apparent Km and kcat values of TNT reduction were 165 ± 43 μM for TNT and 400 ± 94 s−1, respectively. Cyanide, an inhibitor for the CO/CO2 oxidation/reduction activity of CODH, inhibited the TNT degradation activity of CODH. PMID:10742229

  9. Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential

    PubMed Central

    2011-01-01

    Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase) and a holin (PF04531). Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1) strongly significant host-specific sequence variation within the endolysin, and 2) a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products. PMID:21631945

  10. New Insight into Sugarcane Industry Waste Utilization (Press Mud) for Cleaner Biobutanol Production by Using C. acetobutylicum NRRL B-527.

    PubMed

    Nimbalkar, Pranhita R; Khedkar, Manisha A; Gaikwad, Shashank G; Chavan, Prakash V; Bankar, Sandip B

    2017-11-01

    In the present study, press mud, a sugar industry waste, was explored for biobutanol production to strengthen agricultural economy. The fermentative production of biobutanol was investigated via series of steps, viz. characterization, drying, acid hydrolysis, detoxification, and fermentation. Press mud contains an adequate amount of cellulose (22.3%) and hemicellulose (21.67%) on dry basis, and hence, it can be utilized for further acetone-butanol-ethanol (ABE) production. Drying experiments were conducted in the temperature range of 60-120 °C to circumvent microbial spoilage and enhance storability of press mud. Furthermore, acidic pretreatment variables, viz. sulfuric acid concentration, solid to liquid ratio, and time, were optimized using response surface methodology. The corresponding values were found to be 1.5% (v/v), 1:5 g/mL, and 15 min, respectively. In addition, detoxification studies were also conducted using activated charcoal, which removed almost 93-97% phenolics and around 98% furans, which are toxic to microorganisms during fermentation. Finally, the batch fermentation of detoxified press mud slurry (the sample dried at 100 °C and pretreated) using Clostridium acetobutylicum NRRL B-527 resulted in a higher butanol production of 4.43 g/L with a total ABE of 6.69 g/L.

  11. Fourteen-Genome Comparison Identifies DNA Markers for Severe-Disease-Associated Strains of Clostridium difficile▿†

    PubMed Central

    Forgetta, Vincenzo; Oughton, Matthew T.; Marquis, Pascale; Brukner, Ivan; Blanchette, Ruth; Haub, Kevin; Magrini, Vince; Mardis, Elaine R.; Gerding, Dale N.; Loo, Vivian G.; Miller, Mark A.; Mulvey, Michael R.; Rupnik, Maja; Dascal, Andre; Dewar, Ken

    2011-01-01

    Clostridium difficile is a common cause of infectious diarrhea in hospitalized patients. A severe and increased incidence of C. difficile infection (CDI) is associated predominantly with the NAP1 strain; however, the existence of other severe-disease-associated (SDA) strains and the extensive genetic diversity across C. difficile complicate reliable detection and diagnosis. Comparative genome analysis of 14 sequenced genomes, including those of a subset of NAP1 isolates, allowed the assessment of genetic diversity within and between strain types to identify DNA markers that are associated with severe disease. Comparative genome analysis of 14 isolates, including five publicly available strains, revealed that C. difficile has a core genome of 3.4 Mb, comprising ∼3,000 genes. Analysis of the core genome identified candidate DNA markers that were subsequently evaluated using a multistrain panel of 177 isolates, representing more than 50 pulsovars and 8 toxinotypes. A subset of 117 isolates from the panel had associated patient data that allowed assessment of an association between the DNA markers and severe CDI. We identified 20 candidate DNA markers for species-wide detection and 10,683 single nucleotide polymorphisms (SNPs) associated with the predominant SDA strain (NAP1). A species-wide detection candidate marker, the sspA gene, was found to be the same across 177 sequenced isolates and lacked significant similarity to those of other species. Candidate SNPs in genes CD1269 and CD1265 were found to associate more closely with disease severity than currently used diagnostic markers, as they were also present in the toxin A-negative and B-positive (A-B+) strain types. The genetic markers identified illustrate the potential of comparative genomics for the discovery of diagnostic DNA-based targets that are species specific or associated with multiple SDA strains. PMID:21508155

  12. Genome-directed analysis of prophage excision, host defence systems, and central fermentative metabolism in Clostridium pasteurianum.

    PubMed

    Pyne, Michael E; Liu, Xuejia; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-09-19

    Clostridium pasteurianum is emerging as a prospective host for the production of biofuels and chemicals, and has recently been shown to directly consume electric current. Despite this growing biotechnological appeal, the organism's genetics and central metabolism remain poorly understood. Here we present a concurrent genome sequence for the C. pasteurianum type strain and provide extensive genomic analysis of the organism's defence mechanisms and central fermentative metabolism. Next generation genome sequencing produced reads corresponding to spontaneous excision of a novel phage, designated φ6013, which could be induced using mitomycin C and detected using PCR and transmission electron microscopy. Methylome analysis of sequencing reads provided a near-complete glimpse into the organism's restriction-modification systems. We also unveiled the chief C. pasteurianum Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) locus, which was found to exemplify a Type I-B system. Finally, we show that C. pasteurianum possesses a highly complex fermentative metabolism whereby the metabolic pathways enlisted by the cell is governed by the degree of reductance of the substrate. Four distinct fermentation profiles, ranging from exclusively acidogenic to predominantly alcohologenic, were observed through redox consideration of the substrate. A detailed discussion of the organism's central metabolism within the context of metabolic engineering is provided.

  13. The pangenome of the genus Clostridium.

    PubMed

    Udaondo, Zulema; Duque, Estrella; Ramos, Juan-Luis

    2017-07-01

    The pangenome for the genus Clostridium sensu stricto, which was obtained using highly curated and annotated genomes from 16 species is presented; some of these cause disease, while others are used for the production of added-value chemicals. Multilocus sequencing analysis revealed that species of this genus group into at least two clades that include non-pathogenic and pathogenic strains, suggesting that pathogenicity is dispersed across the phylogenetic tree. The core genome of the genus includes 546 protein families, which mainly comprise those involved in protein translation and DNA repair. The GS-GOGAT may represent the central pathway for generating organic nitrogen from inorganic nitrogen sources. Glycerol and glucose metabolism genes are well represented in the core genome together with a set of energy conservation systems. A metabolic network comprising proteins/enzymes, RNAs and metabolites, whose topological structure is a non-random and scale-free network with hierarchically structured modules was built. These modules shed light on the interactions between RNAs, proteins and metabolites, revealing biological features of transcription and translation, cell wall biosynthesis, C1 metabolism and N metabolism. Network analysis identified four nodes that function as hubs and bottlenecks, namely, coenzyme A, HPr kinases, S-adenosylmethionine and the ribonuclease P-protein, suggesting pivotal roles for them in Clostridium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Clostridium difficile: Investigating Transmission Patterns between Infected and Colonized Patients using whole Genome Sequencing.

    PubMed

    Kong, L Y; Eyre, D W; Corbeil, J; Raymond, F; Walker, A S; Wilcox, M H; Crook, D W; Michaud, S; Toye, B; Frost, E; Dendukuri, N; Schiller, I; Bourgault, A M; Dascal, A; Oughton, M; Longtin, Y; Poirier, L; Brassard, P; Turgeon, N; Gilca, R; Loo, V G

    2018-05-28

    Whole genome sequencing (WGS) studies can enhance our understanding of the role of patients with asymptomatic Clostridium difficile colonization in transmission. Isolates obtained from patients with Clostridium difficile infection (CDI) and colonization identified in a study conducted during 2006 - 2007 at six Canadian hospitals underwent typing by pulsed-field gel electrophoresis, multilocus sequence typing, and WGS. Isolates from incident CDI cases not in the initial study were also sequenced where possible. Ward movement and typing data were combined to identify plausible donors for each CDI case, as defined by shared time and space within predefined limits. Proportions of plausible donors for CDI cases that were colonized, infected, or both were examined. Five hundred and fifty-four isolates were sequenced successfully, 353 from colonized and 201 from CDI cases. The NAP1/027/ST1 strain was the most common strain, found in 124 (62%) of infected and 92 (26%) of colonized patients. A donor with a plausible ward link was found for 81 CDI cases (40%) using WGS with a threshold of ≤2 single nucleotide variants to determine relatedness. Sixty-five (32%) CDI cases could be linked to both infected and colonized donors. Exclusive linkages to infected and colonized donors were found for 28 (14%) and 12 (6%) CDI cases, respectively. Colonized patients contribute to transmission, but CDI cases are more likely linked to other infected patients than colonized patients in this cohort with high rates of NAP1/027/ST1 strain, highlighting the importance of local prevalence of virulent strains in determining transmission dynamics.

  15. Comparison of single-molecule sequencing and hybrid approaches for finishing the genome of Clostridium autoethanogenum and analysis of CRISPR systems in industrial relevant Clostridia

    PubMed Central

    2014-01-01

    Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a

  16. Genomic Sequence and Characterization of the Virulent Bacteriophage φCTP1 from Clostridium tyrobutyricum and Heterologous Expression of Its Endolysin▿

    PubMed Central

    Mayer, Melinda J.; Payne, John; Gasson, Michael J.; Narbad, Arjan

    2010-01-01

    The growth of Clostridium tyrobutyricum in developing cheese leads to spoilage and cheese blowing. Bacteriophages or their specific lytic enzymes may provide a biological control method for eliminating such undesirable organisms without affecting other microflora. We isolated the virulent bacteriophage φCTP1 belonging to the Siphoviridae and have shown that it is effective in causing lysis of sensitive strains. The double-stranded DNA genome of φCTP1 is 59,199 bp, and sequence analysis indicated that it has 86 open reading frames. orf29 was identified as the gene coding for the phage endolysin responsible for cell wall degradation prior to virion release. We cloned and expressed the ctp1l gene in E. coli and demonstrated that the partially purified protein induced lysis of C. tyrobutyricum cells and reduced viable counts both in buffer and in milk. The endolysin was inactive against a range of clostridial species but did show lysis of Clostridium sporogenes, another potential spoilage organism. Removal of the C-terminal portion of the endolysin completely abolished lytic activity. PMID:20581196

  17. The Draft Genome Sequence of Clostridium sp. Strain NJ4, a Bacterium Capable of Producing Butanol from Inulin Through Consolidated Bioprocessing.

    PubMed

    Jiang, Yujia; Lu, Jiasheng; Chen, Tianpeng; Yan, Wei; Dong, Weiliang; Zhou, Jie; Zhang, Wenming; Ma, Jiangfeng; Jiang, Min; Xin, Fengxue

    2018-05-23

    A novel butanogenic Clostridium sp. NJ4 was successfully isolated and characterized, which could directly produce relatively high titer of butanol from inulin through consolidated bioprocessing (CBP). The assembled draft genome of strain NJ4 is 4.09 Mp, containing 3891 encoded protein sequences with G+C content of 30.73%. Among these annotated genes, a levanase, a hypothetical inulinase, and two bifunctional alcohol/aldehyde dehydrogenases (AdhE) were found to play key roles in the achievement of ABE production from inulin through CBP.

  18. Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca.

    PubMed

    van der Wal, Hetty; Sperber, Bram L H M; Houweling-Tan, Bwee; Bakker, Robert R C; Brandenburg, Willem; López-Contreras, Ana M

    2013-01-01

    Green seaweed Ulva lactuca harvested from the North Sea near Zeeland (The Netherlands) was characterized as feedstock for acetone, ethanol and ethanol fermentation. Solubilization of over 90% of sugars was achieved by hot-water treatment followed by hydrolysis using commercial cellulases. A hydrolysate was used for the production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum and Clostridium beijerinckii. Hydrolysate-based media were fermentable without nutrient supplementation. C. beijerinckii utilized all sugars in the hydrolysate and produced ABE at high yields (0.35 g ABE/g sugar consumed), while C. acetobutylicum produced mostly organic acids (acetic and butyric acids). These results demonstrate the great potential of U. lactuca as feedstock for fermentation. Interestingly, in control cultures of C. beijerinckii on rhamnose and glucose, 1,2 propanediol was the main fermentation product (9.7 g/L). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Calorimetric studies of the growth of anaerobic microbes.

    PubMed

    Miyake, Hideo; Maeda, Yukiko; Ishikawa, Takashi; Tanaka, Akiyoshi

    2016-09-01

    This article aims to validate the use of calorimetry to measure the growth of anaerobic microbes. It has been difficult to monitor the growth of strict anaerobes while maintaining optimal growth conditions. Traditionally, optical density and ATP concentration are usually used as measures of the growth of anaerobic microbes. However, to take these measurements it is necessary to extract an aliquot of the culture, which can be difficult while maintaining anaerobic conditions. In this study, calorimetry was used to continuously and nondestructively measure the heat generated by the growth of anaerobic microbes as a function of time. Clostridium acetobutylicum, Clostridium beijerinckii, and Clostridium cellulovorans were used as representative anaerobic microbes. Using a multiplex isothermal calorimeter, we observed that peak time (tp) of C. acetobutylicum heat evolution increased as the inoculation rate decreased. This strong correlation between the inoculation rate and tp showed that it was possible to measure the growth rate of anaerobic microbes by calorimetry. Overall, our results showed that there is a very good correlation between heat evolution and optical density/ATP concentration, validating the use of the method. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Clostridium sphenoides Chronic Osteomyelitis Diagnosed Via Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry, Conflicting With 16S rRNA Sequencing but Confirmed by Whole Genome Sequencing.

    PubMed

    Perkins, Matthew J; Snesrud, Erik; McGann, Patrick; Duplessis, Christopher A

    2017-01-01

    We report a case of successful treatment of chronic osteomyelitis (emanating from contaminated soil exposure) caused by Clostridium sphenoides, an organism infrequently identified as a cause of human infection and more saliently osteomyelitis (only 1 reported case in the literature). Additional impetus for reporting this case resides in the insights gained regarding pathogen identification exploiting sophisticated molecular platforms coupled to traditional microbial culture-based methods. The fastidious nature of cultivating anaerobic organisms required initial attempts at 16S rRNA sequencing to identify a Clostridium species (Clostridium celerecrescens). However, on exploiting matrix-assisted laser desorption ionization time of flight (MALDI TOF) technology, C. sphenoides was identified, and confirmed on whole genome sequencing. The discrepancies noted in the varying platforms require vigilance to seek complementary testing for conflicting results. Although highly accurate, the MALDI TOF and 16S rRNA sequencing platforms are not immune to false identification particularly in differentiating closely related organisms. More germane, whole genome sequencing should be entertained when conflicting results are obtained from MALDI TOF and 16S rRNA sequencing. Precise species and/or strain level identification can be clinically relevant as antimicrobial sensitivity profiles may be discrepant between closely related species influencing clinical outcomes. Thus, it is incumbent on us to strive to acquire the correct species characterization when resources allow to dictate optimal treatment. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  1. Fermentation and genomic analysis of acetone-uncoupled butanol production by Clostridium tetanomorphum.

    PubMed

    Gong, Fuyu; Bao, Guanhui; Zhao, Chunhua; Zhang, Yanping; Li, Yin; Dong, Hongjun

    2016-02-01

    In typical acetone-butanol-ethanol (ABE) fermentation, acetone is the main by-product (50 % of butanol mass) of butanol production, resulting in a low yield of butanol. It is known that some Clostridium tetanomorphum strains are able to produce butanol without acetone in nature. Here, we described that C. tetanomorphum strain DSM665 can produce 4.16 g/L butanol and 4.98 g/L ethanol at pH 6.0, and 9.81 g/L butanol and 1.01 g/L ethanol when adding 1 mM methyl viologen. Butyrate and acetate could be reassimilated and no acetone was produced. Further analysis indicated that the activity of the acetate/butyrate:acetoacetyl-CoA transferase responsible for acetone production is lost in C. tetanomorphum DSM665. The genome of C. tetanomorphum DSM665 was sequenced and deposited in DDBJ, EMBL, and GenBank under the accession no. APJS00000000. Sequence analysis indicated that there are no typical genes (ctfA/B and adc) that are typically parts of an acetone synthesis pathway in C. tetanomorphum DSM665. This work provides new insights in the mechanism of clostridial butanol production and should prove useful for the design of a high-butanol-producing strain.

  2. The Genome Sequence of Bacteriophage CPV1 Virulent for Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    Application of bacteriophages and their lytic enzymes to control Clostridium perfringens is one potential approach to reduce the pathogen on poultry farms and in poultry-processing facilities. Bacteriophages lytic for C. perfringens were isolated from sewage, feces and broiler intestinal contents. P...

  3. Whole genome analysis reveals the diversity and evolutionary relationships between necrotic enteritis-causing strains of Clostridium perfringens.

    PubMed

    Lacey, Jake A; Allnutt, Theodore R; Vezina, Ben; Van, Thi Thu Hao; Stent, Thomas; Han, Xiaoyan; Rood, Julian I; Wade, Ben; Keyburn, Anthony L; Seemann, Torsten; Chen, Honglei; Haring, Volker; Johanesen, Priscilla A; Lyras, Dena; Moore, Robert J

    2018-05-22

    Clostridium perfringens causes a range of diseases in animals and humans including necrotic enteritis in chickens and food poisoning and gas gangrene in humans. Necrotic enteritis is of concern in commercial chicken production due to the cost of the implementation of infection control measures and to productivity losses. This study has focused on the genomic analysis of a range of chicken-derived C. perfringens isolates, from around the world and from different years. The genomes were sequenced and compared with 20 genomes available from public databases, which were from a diverse collection of isolates from chickens, other animals, and humans. We used a distance based phylogeny that was constructed based on gene content rather than sequence identity. Similarity between strains was defined as the number of genes that they have in common divided by their total number of genes. In this type of phylogenetic analysis, evolutionary distance can be interpreted in terms of evolutionary events such as acquisition and loss of genes, whereas the underlying properties (the gene content) can be interpreted in terms of function. We also compared these methods to the sequence-based phylogeny of the core genome. Distinct pathogenic clades of necrotic enteritis-causing C. perfringens were identified. They were characterised by variable regions encoded on the chromosome, with predicted roles in capsule production, adhesion, inhibition of related strains, phage integration, and metabolism. Some strains have almost identical genomes, even though they were isolated from different geographic regions at various times, while other highly distant genomes appear to result in similar outcomes with regard to virulence and pathogenesis. The high level of diversity in chicken isolates suggests there is no reliable factor that defines a chicken strain of C. perfringens, however, disease-causing strains can be defined by the presence of netB-encoding plasmids. This study reveals that horizontal

  4. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4

    PubMed Central

    Herman, Nicolaus A.; Li, Jeffrey; Bedi, Ripika; Turchi, Barbara; Liu, Xiaoji

    2016-01-01

    ABSTRACT While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 106 CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. IMPORTANCE This paper presents the first steps toward advanced genetic engineering of the

  5. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer Clostridium saccharoperbutylacetonicum Strain N1-4.

    PubMed

    Herman, Nicolaus A; Li, Jeffrey; Bedi, Ripika; Turchi, Barbara; Liu, Xiaoji; Miller, Michael J; Zhang, Wenjun

    2017-01-15

    While a majority of academic studies concerning acetone, butanol, and ethanol (ABE) production by Clostridium have focused on Clostridium acetobutylicum, other members of this genus have proven to be effective industrial workhorses despite the inability to perform genetic manipulations on many of these strains. To further improve the industrial performance of these strains in areas such as substrate usage, solvent production, and end product versatility, transformation methods and genetic tools are needed to overcome the genetic intractability displayed by these species. In this study, we present the development of a high-efficiency transformation method for the industrial butanol hyperproducer Clostridium saccharoperbutylacetonicum strain N1-4 (HMT) ATCC 27021. Following initial failures, we found that the key to creating a successful transformation method was the identification of three distinct colony morphologies (types S, R, and I), which displayed significant differences in transformability. Working with the readily transformable type I cells (transformation efficiency, 1.1 × 10 6 CFU/μg DNA), we performed targeted gene deletions in C. saccharoperbutylacetonicum N1-4 using a homologous recombination-mediated allelic exchange method. Using plasmid-based gene overexpression and targeted knockouts of key genes in the native acetone-butanol-ethanol (ABE) metabolic pathway, we successfully implemented rational metabolic engineering strategies, yielding in the best case an engineered strain (Clostridium saccharoperbutylacetonicum strain N1-4/pWIS13) displaying an 18% increase in butanol titers and 30% increase in total ABE titer (0.35 g ABE/g sucrose) in batch fermentations. Additionally, two engineered strains overexpressing aldehyde/alcohol dehydrogenases (encoded by adh11 and adh5) displayed 8.5- and 11.8-fold increases (respectively) in batch ethanol production. This paper presents the first steps toward advanced genetic engineering of the industrial butanol

  6. Genomics of Clostridium taeniosporum, an organism which forms endospores with ribbon-like appendages

    PubMed Central

    Cambridge, Joshua M.; Blinkova, Alexandra L.; Salvador Rocha, Erick I.; Bode Hernández, Addys; Moreno, Maday; Ginés-Candelaria, Edwin; Goetz, Benjamin M.; Hunicke-Smith, Scott; Satterwhite, Ed; Tucker, Haley O.

    2018-01-01

    Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12–14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism. PMID:29293521

  7. Genomics of Clostridium taeniosporum, an organism which forms endospores with ribbon-like appendages.

    PubMed

    Cambridge, Joshua M; Blinkova, Alexandra L; Salvador Rocha, Erick I; Bode Hernández, Addys; Moreno, Maday; Ginés-Candelaria, Edwin; Goetz, Benjamin M; Hunicke-Smith, Scott; Satterwhite, Ed; Tucker, Haley O; Walker, James R

    2018-01-01

    Clostridium taeniosporum, a non-pathogenic anaerobe closely related to the C. botulinum Group II members, was isolated from Crimean lake silt about 60 years ago. Its endospores are surrounded by an encasement layer which forms a trunk at one spore pole to which about 12-14 large, ribbon-like appendages are attached. The genome consists of one 3,264,813 bp, circular chromosome (with 26.6% GC) and three plasmids. The chromosome contains 2,892 potential protein coding sequences: 2,124 have specific functions, 147 have general functions, 228 are conserved but without known function and 393 are hypothetical based on the fact that no statistically significant orthologs were found. The chromosome also contains 101 genes for stable RNAs, including 7 rRNA clusters. Over 84% of the protein coding sequences and 96% of the stable RNA coding regions are oriented in the same direction as replication. The three known appendage genes are located within a single cluster with five other genes, the protein products of which are closely related, in terms of sequence, to the known appendage proteins. The relatedness of the deduced protein products suggests that all or some of the closely related genes might code for minor appendage proteins or assembly factors. The appendage genes might be unique among the known clostridia; no statistically significant orthologs were found within other clostridial genomes for which sequence data are available. The C. taeniosporum chromosome contains two functional prophages, one Siphoviridae and one Myoviridae, and one defective prophage. Three plasmids of 5.9, 69.7 and 163.1 Kbp are present. These data are expected to contribute to future studies of developmental, structural and evolutionary biology and to potential industrial applications of this organism.

  8. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.

    PubMed

    Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V

    2017-04-01

    Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Toxins, Butyric Acid, and Other Short-Chain Fatty Acids Are Coordinately Expressed and Down-Regulated by Cysteine in Clostridium difficile

    PubMed Central

    Karlsson, Sture; Lindberg, Anette; Norin, Elisabeth; Burman, Lars G.; Åkerlund, Thomas

    2000-01-01

    It was recently found that a mixture of nine amino acids down-regulate Clostridium difficile toxin production when added to peptone yeast extract (PY) cultures of strain VPI 10463 (S. Karlsson, L. G. Burman, and T. Åkerlund, Microbiology 145:1683–1693, 1999). In the present study, seven of these amino acids were found to exhibit a moderate suppression of toxin production, whereas proline and particularly cysteine had the greatest impact, on both reference strains (n = 6) and clinical isolates (n = 28) of C. difficile (>99% suppression by cysteine in the highest toxin-producing strain). Also, cysteine derivatives such as acetylcysteine, glutathione, and cystine effectively down-regulated toxin expression. An impact of both cysteine and cystine but not of thioglycolate on toxin yield indicated that toxin expression was not regulated by the oxidation-reduction potential. Several metabolic pathways, including butyric acid and butanol production, were coinduced with the toxins in PY and down-regulated by cysteine. The enzyme 3-hydroxybutyryl coenzyme A dehydrogenase, a key enzyme in solventogenesis in Clostridium acetobutylicum, was among the most up-regulated proteins during high toxin production. The addition of butyric acid to various growth media induced toxin production, whereas the addition of butanol had the opposite effect. The results indicate a coupling between specific metabolic processes and toxin expression in C. difficile and that certain amino acids can alter these pathways coordinately. We speculate that down-regulation of toxin production by the administration of such amino acids to the colon may become a novel approach to prophylaxis and therapy for C. difficile-associated diarrhea. PMID:10992498

  10. Identification of accessory genome regions in poultry Clostridium perfringens isolates carrying the netB plasmid.

    PubMed

    Lepp, D; Gong, J; Songer, J G; Boerlin, P; Parreira, V R; Prescott, J F

    2013-03-01

    Necrotic enteritis (NE) is an economically important disease of poultry caused by certain Clostridium perfringens type A strains. NE pathogenesis involves the NetB toxin, which is encoded on a large conjugative plasmid within a 42-kb pathogenicity locus. Recent multilocus sequence type (MLST) studies have identified two predominant NE-associated clonal groups, suggesting that host genes are also involved in NE pathogenesis. We used microarray comparative genomic hybridization (CGH) to assess the gene content of 54 poultry isolates from birds that were healthy or that suffered from NE. A total of 400 genes were variably present among the poultry isolates and nine nonpoultry strains, many of which had putative functions related to nutrient uptake and metabolism and cell wall and capsule biosynthesis. The variable genes were organized into 142 genomic regions, 49 of which contained genes significantly associated with netB-positive isolates. These regions included three previously identified NE-associated loci as well as several apparent fitness-related loci, such as a carbohydrate ABC transporter, a ferric-iron siderophore uptake system, and an adhesion locus. Additional loci were related to plasmid maintenance. Cluster analysis of the CGH data grouped all of the netB-positive poultry isolates into two major groups, separated according to two prevalent clonal groups based on MLST analysis. This study identifies chromosomal loci associated with netB-positive poultry strains, suggesting that the chromosomal background can confer a selective advantage to NE-causing strains, possibly through mechanisms involving iron acquisition, carbohydrate metabolism, and plasmid maintenance.

  11. Genome analysis of Clostridium perfringens isolates from healthy and necrotic enteritis infected chickens and turkeys.

    PubMed

    Ronco, Troels; Stegger, Marc; Ng, Kim Lee; Lilje, Berit; Lyhs, Ulrike; Andersen, Paal Skytt; Pedersen, Karl

    2017-07-11

    Clostridium perfringens causes gastrointestinal diseases in both humans and domestic animals. Type A strains expressing the NetB toxin are the main cause of necrotic enteritis (NE) in chickens, which has remarkable impact on animal welfare and production economy in the international poultry industry. Three pathogenicity loci NELoc-1, -2 and -3 and a collagen adhesion gene cnaA have been found to be associated with NE in chickens, whereas the presence of these has not been investigated in diseased turkeys. The purpose was to investigate the virulence associated genome content and the genetic relationship among 30 C. perfringens isolates from both healthy and NE infected chickens and turkeys, applying whole-genome sequencing. NELoc-1, -3, netB and cnaA were significantly associated with NE isolates from chickens, whereas only NELoc-2 was commonly observed in both diseased turkeys and chickens. A putative collagen adhesion gene that encodes a von Willebrand Factor (vWF) domain was identified in all diseased turkeys and designated as cnaD. The phylogenetic analysis based on single nucleotide polymorphisms showed that the isolates generally were not closely related. These results indicate that virulence factors and pathogenicity loci associated with NE in chickens are not important to the same extent in diseased turkeys except for NELoc-2. A putative collagen adhesion gene which potentially could be of importance in regard to the NE pathogenesis in turkeys was identified and need to be further investigated. Thus, the pathogenesis of NE in turkeys appears to be different from that of broiler chickens.

  12. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile

    PubMed Central

    Hargreaves, Katherine R.; Otieno, James R.; Thanki, Anisha; Blades, Matthew J.; Millard, Andrew D.; Browne, Hilary P.; Lawley, Trevor D.; Clokie, Martha R.J.

    2015-01-01

    The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile “mobilome,” which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics. PMID:26019165

  13. Physical Characterization of Clostridium Botulinum Neurotoxin Genes

    DTIC Science & Technology

    1993-10-01

    Acid Res. 14, 7809-78 12. 10 Fujii, N., Kimura, K., Murakami, T ., Indoh, I., Yashiki, T ., Tsuzuki, K., Yokosawa , N. & Oguma, K. (1990) Microbiol...from Clostridium spp. whose genomic DNA is of a high A+ T content (greater than 70% A+ T ), exhibit an extremely strong discrimination against all...BoNT/E, 4-12 Sathyamoorthy T T et al. (1985) H E L I H S L H G LE2 YES 5’-CACGAACTTATACATTCTCTACATGG-3’ 861-886 BoNT/E, 212-220 Wernars & T T A AT

  14. Genomic and expression analysis of the vanG-like gene cluster of Clostridium difficile.

    PubMed

    Peltier, Johann; Courtin, Pascal; El Meouche, Imane; Catel-Ferreira, Manuella; Chapot-Chartier, Marie-Pierre; Lemée, Ludovic; Pons, Jean-Louis

    2013-07-01

    Primary antibiotic treatment of Clostridium difficile intestinal diseases requires metronidazole or vancomycin therapy. A cluster of genes homologous to enterococcal glycopeptides resistance vanG genes was found in the genome of C. difficile 630, although this strain remains sensitive to vancomycin. This vanG-like gene cluster was found to consist of five ORFs: the regulatory region consisting of vanR and vanS and the effector region consisting of vanG, vanXY and vanT. We found that 57 out of 83 C. difficile strains, representative of the main lineages of the species, harbour this vanG-like cluster. The cluster is expressed as an operon and, when present, is found at the same genomic location in all strains. The vanG, vanXY and vanT homologues in C. difficile 630 are co-transcribed and expressed to a low level throughout the growth phases in the absence of vancomycin. Conversely, the expression of these genes is strongly induced in the presence of subinhibitory concentrations of vancomycin, indicating that the vanG-like operon is functional at the transcriptional level in C. difficile. Hydrophilic interaction liquid chromatography (HILIC-HPLC) and MS analysis of cytoplasmic peptidoglycan precursors of C. difficile 630 grown without vancomycin revealed the exclusive presence of a UDP-MurNAc-pentapeptide with an alanine at the C terminus. UDP-MurNAc-pentapeptide [d-Ala] was also the only peptidoglycan precursor detected in C. difficile grown in the presence of vancomycin, corroborating the lack of vancomycin resistance. Peptidoglycan structures of a vanG-like mutant strain and of a strain lacking the vanG-like cluster did not differ from the C. difficile 630 strain, indicating that the vanG-like cluster also has no impact on cell-wall composition.

  15. As Clear as Mud? Determining the Diversity and Prevalence of Prophages in the Draft Genomes of Estuarine Isolates of Clostridium difficile.

    PubMed

    Hargreaves, Katherine R; Otieno, James R; Thanki, Anisha; Blades, Matthew J; Millard, Andrew D; Browne, Hilary P; Lawley, Trevor D; Clokie, Martha R J

    2015-05-27

    The bacterium Clostridium difficile is a significant cause of nosocomial infections worldwide. The pathogenic success of this organism can be attributed to its flexible genome which is characterized by the exchange of mobile genetic elements, and by ongoing genome evolution. Despite its pathogenic status, C. difficile can also be carried asymptomatically, and has been isolated from natural environments such as water and sediments where multiple strain types (ribotypes) are found in close proximity. These include ribotypes which are associated with disease, as well as those that are less commonly isolated from patients. Little is known about the genomic content of strains in such reservoirs in the natural environment. In this study, draft genomes have been generated for 13 C. difficile isolates from estuarine sediments including clinically relevant and environmental associated types. To identify the genetic diversity within this strain collection, whole-genome comparisons were performed using the assemblies. The strains are highly genetically diverse with regards to the C. difficile "mobilome," which includes transposons and prophage elements. We identified a novel transposon-like element in two R078 isolates. Multiple, related and unrelated, prophages were detected in isolates across ribotype groups, including two novel prophage elements and those related to the transducing phage φC2. The susceptibility of these isolates to lytic phage infection was tested using a panel of characterized phages found from the same locality. In conclusion, estuarine sediments are a source of genetically diverse C. difficile strains with a complex network of prophages, which could contribute to the emergence of new strains in clinics. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Genomic Epidemiology of Clostridium botulinum Isolates from Temporally Related Cases of Infant Botulism in New South Wales, Australia

    PubMed Central

    Gray, Timothy J.; Wang, Qinning; Ng, Jimmy; Hicks, Leanne; Nguyen, Trang; Yuen, Marion; Hill-Cawthorne, Grant A.; Sintchenko, Vitali

    2015-01-01

    Infant botulism is a potentially life-threatening paralytic disease that can be associated with prolonged morbidity if not rapidly diagnosed and treated. Four infants were diagnosed and treated for infant botulism in NSW, Australia, between May 2011 and August 2013. Despite the temporal relationship between the cases, there was no close geographical clustering or other epidemiological links. Clostridium botulinum isolates, three of which produced botulism neurotoxin serotype A (BoNT/A) and one BoNT serotype B (BoNT/B), were characterized using whole-genome sequencing (WGS). In silico multilocus sequence typing (MLST) found that two of the BoNT/A-producing isolates shared an identical novel sequence type, ST84. The other two isolates were single-locus variants of this sequence type (ST85 and ST86). All BoNT/A-producing isolates contained the same chromosomally integrated BoNT/A2 neurotoxin gene cluster. The BoNT/B-producing isolate carried a single plasmid-borne bont/B gene cluster, encoding BoNT subtype B6. Single nucleotide polymorphism (SNP)-based typing results corresponded well with MLST; however, the extra resolution provided by the whole-genome SNP comparisons showed that the isolates differed from each other by >3,500 SNPs. WGS analyses indicated that the four infant botulism cases were caused by genomically distinct strains of C. botulinum that were unlikely to have originated from a common environmental source. The isolates did, however, cluster together, compared with international isolates, suggesting that C. botulinum from environmental reservoirs throughout NSW have descended from a common ancestor. Analyses showed that the high resolution of WGS provided important phylogenetic information that would not be captured by standard seven-loci MLST. PMID:26109442

  17. Comparative genomic analysis of full genome sequences of two closely related isolates of Clostridium perfringens reveals regions of genome plasticity with prevention potential

    USDA-ARS?s Scientific Manuscript database

    The spore-forming anaerobic Clostridium perfringens (CP) is the primary etiological agent of necrotic enteritis (NE) disease, one of priority enteric diseases in chickens which is responsible for annual losses of $6 billion in the US poultry industry. Our long term goal is to develop a recombinant v...

  18. Genetics of solvent-producing clostridia. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Specific Aims 1 and 2 of the original project proposal were specifically addressed during this project period. This involved the development of the pCAK1 phagemid delivery vector, refinement of the C. acetobutylicum electroporation protocol, selection and characterization of the engB cellulase gene from C. cellulovorans and the introduction and successful expression of this heterologous engB gene from C. cellulovorans in C. acetobutylicum. The successful expression of a heterologous engB gene from C. cellulovorans in C. acetobutylicum ATCC 824 has important industrial significance for the utilization of cellulose by this ABE fermentation microorganism. Conversion efficiency testing of the developed recombinant strainsmore » in batch and continuous culture (Specific Aim 3) will be carried out once suitable strains have been developed which can utilize cellulose as sole carbon source. The functionality of pCAK1 in the E. coli host system, especially in generating ssDNA, in the absence of impairing E. coli cell viability, together with successful introduction of pCAK1 into C. acetobutylicum and C. perfringens is the basis for the construction of a M13-like genetic system for the genus Clostridium and is expected to allow for more sophisticated molecular genetic analysis of this genus.« less

  19. Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess.

    PubMed

    Wang, Zhenyu; Cao, Guangli; Zheng, Ju; Fu, Defeng; Song, Jinzhu; Zhang, Junzheng; Zhao, Lei; Yang, Qian

    2015-01-01

    Consolidated bioprocessing (CBP) of butanol production from cellulosic biomass is a promising strategy for cost saving compared to other processes featuring dedicated cellulase production. CBP requires microbial strains capable of hydrolyzing biomass with enzymes produced on its own with high rate and high conversion and simultaneously produce a desired product at high yield. However, current reported butanol-producing candidates are unable to utilize cellulose as a sole carbon source and energy source. Consequently, developing a co-culture system using different microorganisms by taking advantage of their specific metabolic capacities to produce butanol directly from cellulose in consolidated bioprocess is of great interest. This study was mainly undertaken to find complementary organisms to the butanol producer that allow simultaneous saccharification and fermentation of cellulose to butanol in their co-culture under mesophilic condition. Accordingly, a highly efficient and stable consortium N3 on cellulose degradation was first developed by multiple subcultures. Subsequently, the functional microorganisms with 16S rRNA sequences identical to the denaturing gradient gel electrophoresis (DGGE) profile were isolated from consortium N3. The isolate Clostridium celevecrescens N3-2 exhibited higher cellulose-degrading capability was thus chosen as the partner strain for butanol production with Clostridium acetobutylicum ATCC824. Meanwhile, the established stable consortium N3 was also investigated to produce butanol by co-culturing with C. acetobutylicum ATCC824. Butanol was produced from cellulose when C. acetobutylicum ATCC824 was co-cultured with either consortium N3 or C. celevecrescens N3-2. Co-culturing C. acetobutylicum ATCC824 with the stable consortium N3 resulted in a relatively higher butanol concentration, 3.73 g/L, and higher production yield, 0.145 g/g of glucose equivalent. The newly isolated microbial consortium N3 and strain C. celevecrescens N3

  20. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production.

    PubMed

    Zhang, Jie; Zong, Wenming; Hong, Wei; Zhang, Zhong-Tian; Wang, Yi

    2018-03-09

    Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endogenous immune systems. Here, we report the exploitation of Type I-B CRISPR-Cas of Clostridium tyrobutyricum for genome engineering. In silico CRISPR array analysis and plasmid interference assay revealed that TCA or TCG at the 5'-end of the protospacer was the functional protospacer adjacent motif (PAM) for CRISPR targeting. With a lactose inducible promoter for CRISPR array expression, we significantly decreased the toxicity of CRISPR-Cas and enhanced the transformation efficiency, and successfully deleted spo0A with an editing efficiency of 100%. We further evaluated effects of the spacer length on genome editing efficiency. Interestingly, spacers ≤ 20 nt led to unsuccessful transformation consistently, likely due to severe off-target effects; while a spacer of 30-38 nt is most appropriate to ensure successful transformation and high genome editing efficiency. Moreover, multiplex genome editing for the deletion of spo0A and pyrF was achieved in a single transformation, with an editing efficiency of up to 100%. Finally, with the integration of the alcohol dehydrogenase gene (adhE1 or adhE2) to replace cat1 (the key gene responsible for butyrate production and previously could not be deleted), two mutants were created for n-butanol production, with the butanol titer reached historically record high of 26.2 g/L in a batch fermentation. Altogether, our results demonstrated the easy programmability and high efficiency of endogenous CRISPR-Cas. The developed protocol herein has a broader applicability to other prokaryotes containing endogenous CRISPR-Cas systems. C. tyrobutyricum could be employed as an excellent platform to be engineered for biofuel

  1. Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria

    PubMed Central

    Manzoor, Shahid; Schnürer, Anna; Müller, Bettina

    2018-01-01

    Syntrophic acetate oxidation operates close to the thermodynamic equilibrium and very little is known about the participating organisms and their metabolism. Clostridium ultunense is one of the most abundant syntrophic acetate-oxidising bacteria (SAOB) that are found in engineered biogas processes operating with high ammonia concentrations. It has been proven to oxidise acetate in cooperation with hydrogenotrophic methanogens. There is evidence that the Wood-Ljungdahl (WL) pathway plays an important role in acetate oxidation. In this study, we analysed the physiological and metabolic capacities of C. ultunense strain Esp and strain BST on genome scale and conducted a comparative study of all the known characterised SAOB, namely Syntrophaceticus schinkii, Thermacetogenium phaeum, Tepidanaerobacter acetatoxydans, and Pseudothermotoga lettingae. The results clearly indicated physiological robustness to be beneficial for anaerobic digestion environments and revealed unexpected metabolic diversity with respect to acetate oxidation and energy conservation systems. Unlike S. schinkii and Th. phaeum, C. ultunense clearly does not employ the oxidative WL pathway for acetate oxidation, as its genome (and that of P. lettingae) lack important key genes. In both of those species, a proton motive force is likely formed by chemical protons involving putative electron-bifurcating [Fe-Fe] hydrogenases rather than proton pumps. No genes encoding a respiratory Ech (energy-converting hydrogenase), as involved in energy conservation in Th. phaeum and S. schinkii, were identified in C. ultunense and P. lettingae. Moreover, two respiratory complexes sharing similarities to the proton-translocating ferredoxin:NAD+ oxidoreductase (Rnf) and the Na+ pumping NADH:quinone hydrogenase (NQR) were predicted. These might form a respiratory chain that is involved in the reduction of electron acceptors rather than protons. However, involvement of these complexes in acetate oxidation in C. ultunense

  2. Genome-Guided Analysis of Clostridium ultunense and Comparative Genomics Reveal Different Strategies for Acetate Oxidation and Energy Conservation in Syntrophic Acetate-Oxidising Bacteria.

    PubMed

    Manzoor, Shahid; Schnürer, Anna; Bongcam-Rudloff, Erik; Müller, Bettina

    2018-04-23

    Syntrophic acetate oxidation operates close to the thermodynamic equilibrium and very little is known about the participating organisms and their metabolism. Clostridium ultunense is one of the most abundant syntrophic acetate-oxidising bacteria (SAOB) that are found in engineered biogas processes operating with high ammonia concentrations. It has been proven to oxidise acetate in cooperation with hydrogenotrophic methanogens. There is evidence that the Wood-Ljungdahl (WL) pathway plays an important role in acetate oxidation. In this study, we analysed the physiological and metabolic capacities of C. ultunense strain Esp and strain BS T on genome scale and conducted a comparative study of all the known characterised SAOB, namely Syntrophaceticus schinkii , Thermacetogenium phaeum , Tepidanaerobacter acetatoxydans , and Pseudothermotoga lettingae . The results clearly indicated physiological robustness to be beneficial for anaerobic digestion environments and revealed unexpected metabolic diversity with respect to acetate oxidation and energy conservation systems. Unlike S. schinkii and Th. phaeum , C. ultunense clearly does not employ the oxidative WL pathway for acetate oxidation, as its genome (and that of P. lettingae ) lack important key genes. In both of those species, a proton motive force is likely formed by chemical protons involving putative electron-bifurcating [Fe-Fe] hydrogenases rather than proton pumps. No genes encoding a respiratory Ech (energy-converting hydrogenase), as involved in energy conservation in Th. phaeum and S. schinkii, were identified in C. ultunense and P. lettingae . Moreover, two respiratory complexes sharing similarities to the proton-translocating ferredoxin:NAD⁺ oxidoreductase (Rnf) and the Na⁺ pumping NADH:quinone hydrogenase (NQR) were predicted. These might form a respiratory chain that is involved in the reduction of electron acceptors rather than protons. However, involvement of these complexes in acetate oxidation in C

  3. Sequence Similarity of Clostridium difficile Strains by Analysis of Conserved Genes and Genome Content Is Reflected by Their Ribotype Affiliation

    PubMed Central

    Kurka, Hedwig; Ehrenreich, Armin; Ludwig, Wolfgang; Monot, Marc; Rupnik, Maja; Barbut, Frederic; Indra, Alexander; Dupuy, Bruno; Liebl, Wolfgang

    2014-01-01

    PCR-ribotyping is a broadly used method for the classification of isolates of Clostridium difficile, an emerging intestinal pathogen, causing infections with increased disease severity and incidence in several European and North American countries. We have now carried out clustering analysis with selected genes of numerous C. difficile strains as well as gene content comparisons of their genomes in order to broaden our view of the relatedness of strains assigned to different ribotypes. We analyzed the genomic content of 48 C. difficile strains representing 21 different ribotypes. The calculation of distance matrix-based dendrograms using the neighbor joining method for 14 conserved genes (standard phylogenetic marker genes) from the genomes of the C. difficile strains demonstrated that the genes from strains with the same ribotype generally clustered together. Further, certain ribotypes always clustered together and formed ribotype groups, i.e. ribotypes 078, 033 and 126, as well as ribotypes 002 and 017, indicating their relatedness. Comparisons of the gene contents of the genomes of ribotypes that clustered according to the conserved gene analysis revealed that the number of common genes of the ribotypes belonging to each of these three ribotype groups were very similar for the 078/033/126 group (at most 69 specific genes between the different strains with the same ribotype) but less similar for the 002/017 group (86 genes difference). It appears that the ribotype is indicative not only of a specific pattern of the amplified 16S–23S rRNA intergenic spacer but also reflects specific differences in the nucleotide sequences of the conserved genes studied here. It can be anticipated that the sequence deviations of more genes of C. difficile strains are correlated with their PCR-ribotype. In conclusion, the results of this study corroborate and extend the concept of clonal C. difficile lineages, which correlate with ribotypes affiliation. PMID:24482682

  4. Genomic Epidemiology of Clostridium botulinum Isolates from Temporally Related Cases of Infant Botulism in New South Wales, Australia.

    PubMed

    McCallum, Nadine; Gray, Timothy J; Wang, Qinning; Ng, Jimmy; Hicks, Leanne; Nguyen, Trang; Yuen, Marion; Hill-Cawthorne, Grant A; Sintchenko, Vitali

    2015-09-01

    Infant botulism is a potentially life-threatening paralytic disease that can be associated with prolonged morbidity if not rapidly diagnosed and treated. Four infants were diagnosed and treated for infant botulism in NSW, Australia, between May 2011 and August 2013. Despite the temporal relationship between the cases, there was no close geographical clustering or other epidemiological links. Clostridium botulinum isolates, three of which produced botulism neurotoxin serotype A (BoNT/A) and one BoNT serotype B (BoNT/B), were characterized using whole-genome sequencing (WGS). In silico multilocus sequence typing (MLST) found that two of the BoNT/A-producing isolates shared an identical novel sequence type, ST84. The other two isolates were single-locus variants of this sequence type (ST85 and ST86). All BoNT/A-producing isolates contained the same chromosomally integrated BoNT/A2 neurotoxin gene cluster. The BoNT/B-producing isolate carried a single plasmid-borne bont/B gene cluster, encoding BoNT subtype B6. Single nucleotide polymorphism (SNP)-based typing results corresponded well with MLST; however, the extra resolution provided by the whole-genome SNP comparisons showed that the isolates differed from each other by >3,500 SNPs. WGS analyses indicated that the four infant botulism cases were caused by genomically distinct strains of C. botulinum that were unlikely to have originated from a common environmental source. The isolates did, however, cluster together, compared with international isolates, suggesting that C. botulinum from environmental reservoirs throughout NSW have descended from a common ancestor. Analyses showed that the high resolution of WGS provided important phylogenetic information that would not be captured by standard seven-loci MLST. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compere, A.L.; Griffith, W.L.

    The production was evaluated of ethanol, acetone, and butanol from several different carbohydrate materials by five strains of Clostridia and two mixed cultures. The substrates, which were tested at concn ranging between 2.5 and 10% w/v, included pentoses, hexoses, disaccharides, and polysaccharides. The organisms used were Clostridium acetobutylicum strains NRRL B527 and NRRL B3179; Clostridium butylicum strains NRRL B592 and NRRL B593; and Clostridium pasteurianum strain NRRL B598. The mixed cultures contained all of these organisms. Mixed culture 1 contained in addition to the Clostridia, Klebsiella pneumoniae strain NRRL B427. Mixed culture 2 contained mixed culture 1 plus a yeastmore » isolated from kefir culture. Where possible, maxima were found for the conversion of different substrates. 7 tables.« less

  6. Genome characterization of a novel binary toxin-positive strain of Clostridium difficile and comparison with the epidemic 027 and 078 strains.

    PubMed

    Peng, Zhong; Liu, Sidi; Meng, Xiujuan; Liang, Wan; Xu, Zhuofei; Tang, Biao; Wang, Yuanguo; Duan, Juping; Fu, Chenchao; Wu, Bin; Wu, Anhua; Li, Chunhui

    2017-01-01

    Clostridium difficile is an anaerobic Gram-positive spore-forming gut pathogen that causes antibiotic-associated diarrhea worldwide. A small number of C. difficile strains express the binary toxin (CDT), which is generally found in C. difficile 027 (ST1) and/or 078 (ST11) in clinic. However, we isolated a binary toxin-positive non-027, non-078 C. difficile LC693 that is associated with severe diarrhea in China. The genotype of this strain was determined as ST201. To understand the pathogenesis-basis of C. difficile ST201, the strain LC693 was chosen for whole genome sequencing, and its genome sequence was analyzed together with the other two ST201 strains VL-0104 and VL-0391 and compared to the epidemic 027/ST1 and 078/ST11 strains. The project finally generated an estimated genome size of approximately 4.07 Mbp for strain LC693. Genome size of the three ST201 strains ranged from 4.07 to 4.16 Mb, with an average GC content between 28.5 and 28.9%. Phylogenetic analysis demonstrated that the ST201 strains belonged to clade 3. The ST201 genomes contained more than 40 antibiotic resistance genes and 15 of them were predicted to be associated with vancomycin-resistance. The ST201 strains contained a larger PaLoc with a Tn6218 element inserted than the 027/ST1 and 078/ST11 strains, and encoded a truncated TcdC. In addition, the ST201 strains contained intact binary toxin coding and regulation genes which are highly homologous to the 027/ST1 strain. Genome comparison of the ST201 strains with the epidemic 027 and 078 strain identified 641 genes specific for C. difficile ST201, and a number of them were predicted as fitness and virulence associated genes. The presence of those genes also contributes to the pathogenesis of the ST201 strains. In this study, the genomic characterization of three binary toxin-positive C. difficile ST201 strains in clade 3 was discussed and compared to the genomes of the epidemic 027 and the 078 strains. Our analysis identified a number

  7. A quantitative metabolomics study of high sodium response in Clostridium acetobutylicum ATCC 824 acetone-butanol-ethanol (ABE) fermentation

    PubMed Central

    Zhao, Xinhe; Condruz, Stefan; Chen, Jingkui; Jolicoeur, Mario

    2016-01-01

    Hemicellulose hydrolysates, sugar-rich feedstocks used in biobutanol refinery, are normally obtained by adding sodium hydroxide in the hydrolyze process. However, the resulting high sodium concentration in the hydrolysate inhibits ABE (acetone-butanol-ethanol) fermentation, and thus limits the use of these low-cost feedstocks. We have thus studied the effect of high sodium on the metabolic behavior of Clostridium acetobutyricum ATCC 824, with xylose as the carbon source. At a threshold sodium concentration of 200 mM, a decrease of the maximum cell dry weight (−19.50 ± 0.85%) and of ABE yield (−35.14 ± 3.50% acetone, −33.37 ± 0.74% butanol, −22.95 ± 1.81% ethanol) were observed compared to control culture. However, solvents specific productivities were not affected by supplementing sodium. The main effects of high sodium on cell metabolism were observed in acidogenesis, during which we observed the accumulation of ATP and NADH, and the inhibition of the pentose phosphate (PPP) and the glycolytic pathways with up to 80.73 ± 1.47% and 68.84 ± 3.42% decrease of the associated metabolic intermediates, respectively. However, the NADP+-to-NADPH ratio was constant for the whole culture duration, a phenomenon explaining the robustness of solvents specific productivities. Therefore, high sodium, which inhibited biomass growth through coordinated metabolic effects, interestingly triggered cell robustness on solvents specific productivity. PMID:27321153

  8. Improving the performance of solventogenic clostridia by reinforcing the biotin synthetic pathway.

    PubMed

    Yang, Yunpeng; Lang, Nannan; Yang, Gaohua; Yang, Sheng; Jiang, Weihong; Gu, Yang

    2016-05-01

    An efficient production process is important for industrial microorganisms. The cellular efficiency of solventogenic clostridia, a group of anaerobes capable of producing a wealth of bulk chemicals and biofuels, must be improved for competitive commercialization. Here, using Clostridium acetobutylicum, a species of solventogenic clostridia, we revealed that the insufficient biosynthesis of biotin, a pivotal coenzyme for many important biological processes, is a major limiting bottleneck in this anaerobe's performance. To address this problem, we strengthened the biotin synthesis of C. acetobutylicum by overexpressing four relevant genes involved in biotin transport and biosynthesis. This strategy led to faster growth and improved the titer and productivity of acetone, butanol and ethanol (ABE solvents) of C. acetobutylicum in both biotin-containing and biotin-free media. Expressionally modulating these four genes by modifying the ribosome binding site further promoted cellular performance, achieving ABE solvent titer and productivity as high as 21.9g/L and 0.30g/L/h, respectively, in biotin-free medium; these values exceeded those of the wild-type strain by over 30%. More importantly, biotin synthesis reinforcement also conferred improved ability of C. acetobutylicum to use hexose and pentose sugars, further demonstrating the potential of this metabolic-engineering strategy in solventogenic clostridia. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  9. A repeat offender: Recurrent extraintestinal Clostridium difficile infection following fecal microbiota transplantation.

    PubMed

    Gardiner, Bradley J; Thorpe, Cheleste M; Pinkham, Nicholas V; McDermott, Laura A; Walk, Seth T; Snydman, David R

    2018-06-01

    Extraintestinal infection with Clostridium difficile has been reported but remains uncommon. Treatment of this unusual complication is complex given the limitations of current therapeutic options. Here we report a novel case of recurrent extraintestinal C. difficile infection that occurred following fecal microbiota transplantation. Using whole genome sequencing, we confirmed recrudescence rather than reinfection was responsible. The patient ultimately responded to prolonged, targeted antimicrobial therapy informed by susceptibility testing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effect of pretreatment on simultaneous saccharification and fermentation of hardwood into acetone/butanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, M.M.; Song, S.K.; Lee, Y.Y.

    1991-12-31

    The effectiveness of pretreatments on hardwood substrate was investigated in connection with its subsequent conversion by simultaneous saccharification and fermentation (SSF), using Clostridium acetobutylicum. The main objectives of the pretreatment were to achieve efficient separation of lignin from carbohydrates, and to obtain maximum sugar yield on enzymatic hydrolysis of pretreated wood. Two methods have given promising results: (1) supercritical CO{sub 2}-SO{sub 2} treatment, and (2) monoethanolamine (MEA) treatment. The MEA pretreatment removed above 90% of hardwood lignin while retaining 83% of carbohydrates. With CO{sub 2}-SO{sub 2} pretreatment, the degree of lignin separation was lower. Under the scheme of SSF, themore » pretreated hardwood was converted to acetone, butanol, and ethanol (ABE) via single stage processing by cellulose enzyme system and C. acetobutylicum cells. The product yield in the process was such that 15 g of ABE/100 g of dry aspen wood was produced. In the overall process of SSF, the enzymatic hydrolysis was found to be the rate-limiting step. The ability of C. acetobutylicum to metabolize various 6-carbon and 5-carbon sugars resulted in efficient utilization of all available sugars from hardwood.« less

  11. Comparative analysis of the ability of Clostridium clariflavum strains and Clostridium thermocellumto utilize hemicellulose and unpretreated plant material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izquierdo, Javier A.; Pattathil, Sivakumar; Guseva, Anna

    2014-11-18

    Among themophilic consolidated bioprocessing (CBP) candidate organisms, environmental isolates of Clostridium clariflavum have demonstrated the ability to grow on xylan, and the genome of C. clariflavum DSM 19732 has revealed a number of mechanisms that foster solubilization of hemicellulose that are distinctive relative to the model cellulolytic thermophile Clostridium thermocellum. Growth experiments on xylan, xylooligosaccharides, and xylose reveal that C. clariflavum strains are able to completely break down xylan to xylose and that the environmental strain C. clariflavum sp. 4-2a is able to grow on monomeric xylose. C. clariflavum strains were able to utilize a larger proportion of unpretreated switchgrass,more » and solubilize a higher proportion of glucan, xylan, and arabinan, with strain 4-2a reaching the highest extent of solubilization of these components (64.7 to 69.4%) compared to C. thermocellum (29.5 to 42.5%). In addition, glycome immunoanalyses of residual plant biomass reveal differences in the extent of degradation of easily accessible xylans, with C. clariflavum strains having increased solubilization of this fraction of xylans relative to C. thermocellum. In conclusion, C. clariflavum strains exhibit higher activity than C. thermocellum in the breakdown of hemicellulose and are capable of degrading xylan to xylooligomers and xylose. This capability seems to also play a role in the higher levels of utilization of unpretreated plant material.« less

  12. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov

    NASA Technical Reports Server (NTRS)

    Paster, B. J.; Russell, J. B.; Yang, C. M.; Chow, J. M.; Woese, C. R.; Tanner, R.

    1993-01-01

    In previous studies, gram-positive bacteria which grew rapidly with peptides or an amino acid as the sole energy source were isolated from bovine rumina. Three isolates, strains C, FT (T = type strain), and SR, were considered to be ecologically important since they produced up to 20-fold more ammonia than other ammonia-producing ruminal bacteria. On the basis of phenotypic criteria, the taxonomic position of these new isolates was uncertain. In this study, the 16S rRNA sequences of these isolates and related bacteria were determined to establish the phylogenetic positions of the organisms. The sequences of strains C, FT, and SR and reference strains of Peptostreptococcus anaerobius, Clostridium sticklandii, Clostridium coccoides, Clostridium aminovalericum, Acetomaculum ruminis, Clostridium leptum, Clostridium lituseburense, Clostridium acidiurici, and Clostridium barkeri were determined by using a modified Sanger dideoxy chain termination method. Strain C, a large coccus purported to belong to the genus Peptostreptococcus, was closely related to P. anaerobius, with a level of sequence similarity of 99.6%. Strain SR, a heat-resistant, short, rod-shaped organism, was closely related to C. sticklandii, with a level of sequence similarity of 99.9%. However, strain FT, a heat-resistant, pleomorphic, rod-shaped organism, was only distantly related to some clostridial species and P. anaerobius. On the basis of the sequence data, it was clear that strain FT warranted designation as a separate species. The closest known relative of strain FT was C. coccoides (level of similarity, only 90.6%). Additional strains that are phenotypically similar to strain FT were isolated in this study.(ABSTRACT TRUNCATED AT 250 WORDS).

  13. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  14. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  15. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose.

    PubMed

    Gaida, Stefan Marcus; Liedtke, Andrea; Jentges, Andreas Heinz Wilhelm; Engels, Benedikt; Jennewein, Stefan

    2016-01-13

    Sustainable alternatives for the production of fuels and chemicals are needed to reduce our dependency on fossil resources and to avoid the negative impact of their excessive use on the global climate. Lignocellulosic feedstock from agricultural residues, energy crops and municipal solid waste provides an abundant and carbon-neutral alternative, but it is recalcitrant towards microbial degradation and must therefore undergo extensive pretreatment to release the monomeric sugar units used by biofuel-producing microbes. These pretreatment steps can be reduced by using microbes such as Clostridium cellulolyticum that naturally digest lignocellulose, but this limits the range of biofuels that can be produced. We therefore developed a metabolic engineering approach in C. cellulolyticum to expand its natural product spectrum and to fine tune the engineered metabolic pathways. Here we report the metabolic engineering of C. cellulolyticum to produce n-butanol, a next-generation biofuel and important chemical feedstock, directly from crystalline cellulose. We introduced the CoA-dependent pathway for n-butanol synthesis from C. acetobutylicum and measured the expression of functional enzymes (using targeted proteomics) and the abundance of metabolic intermediates (by LC-MS/MS) to identify potential bottlenecks in the n-butanol biosynthesis pathway. We achieved yields of 40 and 120 mg/L n-butanol from cellobiose and crystalline cellulose, respectively, after cultivating the bacteria for 6 and 20 days. The analysis of enzyme activities and key intracellular metabolites provides a robust framework to determine the metabolic flux through heterologous pathways in C. cellulolyticum, allowing further improvements by fine tuning individual steps to improve the yields of n-butanol.

  16. Amino acid catabolism-directed biofuel production in Clostridium sticklandii: An insight into model-driven systems engineering.

    PubMed

    Sangavai, C; Chellapandi, P

    2017-12-01

    Model-driven systems engineering has been more fascinating process for the microbial production of biofuel and bio-refineries in chemical and pharmaceutical industries. Genome-scale modeling and simulations have been guided for metabolic engineering of Clostridium species for the production of organic solvents and organic acids. Among them, Clostridium sticklandii is one of the potential organisms to be exploited as a microbial cell factory for biofuel production. It is a hyper-ammonia producing bacterium and is able to catabolize amino acids as important carbon and energy sources via Stickland reactions and the development of the specific pathways. Current genomic and metabolic aspects of this bacterium are comprehensively reviewed herein, which provided information for learning about protein catabolism-directed biofuel production. It has a metabolic potential to drive energy and direct solventogenesis as well as acidogenesis from protein catabolism. It produces by-products such as ethanol, acetate, n -butanol, n -butyrate and hydrogen from amino acid catabolism. Model-driven systems engineering of this organism would improve the performance of the industrial sectors and enhance the industrial economy by using protein-based waste in environment-friendly ways.

  17. Transcriptional analysis of product-concentration driven changes in cellular programs of recombinant Clostridium acetobutylicumstrains.

    PubMed

    Tummala, Seshu B; Junne, Stefan G; Paredes, Carlos J; Papoutsakis, Eleftherios T

    2003-12-30

    Antisense RNA (asRNA) downregulation alters protein expression without changing the regulation of gene expression. Downregulation of primary metabolic enzymes possibly combined with overexpression of other metabolic enzymes may result in profound changes in product formation, and this may alter the large-scale transcriptional program of the cells. DNA-array based large-scale transcriptional analysis has the potential to elucidate factors that control cellular fluxes even in the absence of proteome data. These themes are explored in the study of large-scale transcriptional analysis programs and the in vivo primary-metabolism fluxes of several related recombinant C. acetobutylicum strains: C. acetobutylicum ATCC 824(pSOS95del) (plasmid control; produces high levels of butanol snd acetone), 824(pCTFB1AS) (expresses antisense RNA against CoA transferase (ctfb1-asRNA); produces very low levels of butanol and acetone), and 824(pAADB1) (expresses ctfb1-asRNA and the alcohol-aldehyde dahydrogenase gene (aad); produce high alcohol and low acetone levels). DNA-array based transcriptional analysis revealed that the large changes in product concentrations (snd notably butanol concentration) due to ctfb1-asRNA expression alone and in combination with aad overexpression resulted in dramatic changes of the cellular transcriptome. Cluster analysis and gene expression patterns of established and putative operons involved in stress response, motility, sporulation, and fatty-acid biosynthesis indicate that these simple genetic changes dramatically alter the cellular programs of C. acetobutylicum. Comparison of gene expression and flux analysis data may point to possible flux-controling steps and suggest unknown regulatory mechanisms. Copyright 2003; Wiley Periodicals, Inc.

  18. Special Concerns for Seniors: Clostridium difficile

    MedlinePlus

    ... and Drugs" Home | Contact Us Special Concerns for Seniors Clostridium difficile - an introduction Clostridium difficile (“C. diff”) ... see APUA’s contribution to CDC’s Vital Signs campaign . Seniors are especially at risk People over the age ...

  19. Acetone-butanol fermentation of marine macroalgae.

    PubMed

    Huesemann, Michael H; Kuo, Li-Jung; Urquhart, Lindsay; Gill, Gary A; Roesijadi, Guri

    2012-03-01

    The objective of this study was to subject mannitol, either as a sole carbon source or in combination with glucose, and aqueous extracts of the kelp Saccharina spp., containing mannitol and laminarin, to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, and bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Motility and Flagellar Glycosylation in Clostridium difficile▿ †

    PubMed Central

    Twine, Susan M.; Reid, Christopher W.; Aubry, Annie; McMullin, David R.; Fulton, Kelly M.; Austin, John; Logan, Susan M.

    2009-01-01

    In this study, intact flagellin proteins were purified from strains of Clostridium difficile and analyzed using quadrupole time of flight and linear ion trap mass spectrometers. Top-down studies showed the flagellin proteins to have a mass greater than that predicted from the corresponding gene sequence. These top-down studies revealed marker ions characteristic of glycan modifications. Additionally, diversity in the observed masses of glycan modifications was seen between strains. Electron transfer dissociation mass spectrometry was used to demonstrate that the glycan was attached to the flagellin protein backbone in O linkage via a HexNAc residue in all strains examined. Bioinformatic analysis of C. difficile genomes revealed diversity with respect to glycan biosynthesis gene content within the flagellar biosynthesis locus, likely reflected by the observed flagellar glycan diversity. In C. difficile strain 630, insertional inactivation of a glycosyltransferase gene (CD0240) present in all sequenced genomes resulted in an inability to produce flagellar filaments at the cell surface and only minor amounts of unmodified flagellin protein. PMID:19749038

  1. Clostridium difficile associated diarrhoea: An increased problem.

    PubMed

    Urbina Soto, Leticia; García Ávila, Sara; Córdoba Alonso, Ana Isabel; Roiz Mesones, M Pía; Arnaiz García, Ana M; Valero Díaz de Lamadrid, M Carmen

    2016-12-16

    Clostridium difficile associated diarrhoea is a major health problem that seems to be on the increase. In our study, we analyse the changes in the incidence of this infection over the last 11 years. A descriptive study in hospitalised patients with Clostridium difficile associated diarrhoea in University Hospital Marqués de Valdecilla (Santander, Spain) from 2004 to 2014. A total of 244 adults were identified [53% men; 66 (SD 15) years]. The cases of nosocomial acquisition (80%), with respect to community acquired Clostridium difficile infection, were older [67 (SD 15) years vs. 63 (19) years; P=.01), high comorbidity (86% vs. 75%; P=.01), use of antibiotics (95% vs. 75%; P<.001) and proton pump inhibitors (87% vs. 48% P<.001). There has been an increasing incidence of Clostridium difficile associated diarrhoea in our hospital over an 11-year period. The clinical profile of patients with Clostridium difficile diarrhoea varies by place of acquisition of infection. The prevalence of this disease is increasing. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  2. Clostridium perfringens bacteriophages FCP39O and FCP26F: genomic organization and proteomic analysis of the virions

    USDA-ARS?s Scientific Manuscript database

    Initial screening for bacteriophages lytic for Clostridium perfringens was performed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Lytic phage preparations were initially characterized by transmission electron microscopy ...

  3. Clostridium kogasensis sp. nov., a novel member of the genus Clostridium, isolated from soil under a corroded gas pipeline.

    PubMed

    Shin, Yeseul; Kang, Seok-Seong; Paek, Jayoung; Jin, Tae Eun; Song, Hong Seok; Kim, Hongik; Park, Hee-Moon; Chang, Young-Hyo

    2016-06-01

    Two bacterial strains, YHK0403(T) and YHK0508, isolated from soil under a corroded gas pipe line, were revealed as Gram-negative, obligately anaerobic, spore-forming and mesophilic bacteria. The cells were rod-shaped and motile by means of peritrichous flagella. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates were members of the genus Clostridium and were the most closely related to Clostridium scatologenes KCTC 5588(T) (95.8% sequence similarity), followed by Clostridium magnum KCTC 15177(T) (95.8%), Clostridium drakei KCTC 5440(T) (95.7%) and Clostridium tyrobutyricum KCTC 5387(T) (94.9%). The G + C contents of the isolates were 29.6 mol%. Peptidoglycan in the cell wall was of the A1γ type with meso-diaminopimelic acid. The major polar lipid was diphosphatidylglycerol (DPG), and other minor lipids were revealed as phosphatidylglycerol (PG), phosphatidylethanolamine (PE), two unknown glycolipids (GL1 and GL2), an unknown aminoglycolipid (NGL), two unknown aminophospholipids (PN1 and PN2) and four unknown phospholipids (PL1 to PL4). Predominant fatty acids were C16:0 and C16:1cis9 DMA. The major end products from glucose fermentation were identified as butyrate (12.2 mmol) and acetate (9.8 mmol). Collectively, the results from a wide range of phenotypic tests, chemotaxonomic tests, and phylogenetic analysis indicated that the two isolates represent novel species of the genus Clostridium, for which the name Clostridium kogasensis sp. nov. (type strain, YHK0403(T) = KCTC 15258(T) = JCM 18719(T)) is proposed. Copyright © 2016. Published by Elsevier Ltd.

  4. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  5. Comparison of Two Capillary Gel Electrophoresis Systems for Clostridium difficile Ribotyping, Using a Panel of Ribotype 027 Isolates and Whole-Genome Sequences as a Reference Standard

    PubMed Central

    Xiao, Meng; Kong, Fanrong; Jin, Ping; Wang, Qinning; Xiao, Kelin; Jeoffreys, Neisha; James, Gregory

    2012-01-01

    PCR ribotyping is the most commonly used Clostridium difficile genotyping method, but its utility is limited by lack of standardization. In this study, we analyzed four published whole genomes and tested an international collection of 21 well-characterized C. difficile ribotype 027 isolates as the basis for comparison of two capillary gel electrophoresis (CGE)-based ribotyping methods. There were unexpected differences between the 16S-23S rRNA intergenic spacer region (ISR) allelic profiles of the four ribotype 027 genomes, but six bands were identified in all four and a seventh in three genomes. All seven bands and another, not identified in any of the whole genomes, were found in all 21 isolates. We compared sequencer-based CGE (SCGE) with three different primer pairs to the Qiagen QIAxcel CGE (QCGE) platform. Deviations from individual reference/consensus band sizes were smaller for SCGE (0 to 0.2 bp) than for QCGE (4.2 to 9.5 bp). Compared with QCGE, SCGE more readily distinguished bands of similar length (more discriminatory), detected bands of larger size and lower intensity (more sensitive), and assigned band sizes more accurately and reproducibly, making it more suitable for standardization. Specifically, QCGE failed to identify the largest ISR amplicon. Based on several criteria, we recommend the primer set 16S-USA/23S-USA for use in a proposed standard SCGE method. Similar differences between SCGE and QCGE were found on testing of 14 isolates of four other C. difficile ribotypes. Based on our results, ISR profiles based on accurate sequencer-based band lengths would be preferable to agarose gel-based banding patterns for the assignment of ribotypes. PMID:22692737

  6. Comparison of Control of Clostridium difficile Infection in Six English Hospitals Using Whole-Genome Sequencing.

    PubMed

    Eyre, David W; Fawley, Warren N; Rajgopal, Anu; Settle, Christopher; Mortimer, Kalani; Goldenberg, Simon D; Dawson, Susan; Crook, Derrick W; Peto, Tim E A; Walker, A Sarah; Wilcox, Mark H

    2017-08-01

    Variation in Clostridium difficile infection (CDI) rates between healthcare institutions suggests overall incidence could be reduced if the lowest rates could be achieved more widely. We used whole-genome sequencing (WGS) of consecutive C. difficile isolates from 6 English hospitals over 1 year (2013-14) to compare infection control performance. Fecal samples with a positive initial screen for C. difficile were sequenced. Within each hospital, we estimated the proportion of cases plausibly acquired from previous cases. Overall, 851/971 (87.6%) sequenced samples contained toxin genes, and 451 (46.4%) were fecal-toxin-positive. Of 652 potentially toxigenic isolates >90-days after the study started, 128 (20%, 95% confidence interval [CI] 17-23%) were genetically linked (within ≤2 single nucleotide polymorphisms) to a prior patient's isolate from the previous 90 days. Hospital 2 had the fewest linked isolates, 7/105 (7%, 3-13%), hospital 1, 9/70 (13%, 6-23%), and hospitals 3-6 had similar proportions of linked isolates (22-26%) (P ≤ .002 comparing hospital-2 vs 3-6). Results were similar adjusting for locally circulating ribotypes. Adjusting for hospital, ribotype-027 had the highest proportion of linked isolates (57%, 95% CI 29-81%). Fecal-toxin-positive and toxin-negative patients were similarly likely to be a potential transmission donor, OR = 1.01 (0.68-1.49). There was no association between the estimated proportion of linked cases and testing rates. WGS can be used as a novel surveillance tool to identify varying rates of C. difficile transmission between institutions and therefore to allow targeted efforts to reduce CDI incidence. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  7. Mortality and Clostridium difficile infection in an Australian setting.

    PubMed

    Mitchell, Brett G; Gardner, Anne; Hiller, Janet E

    2013-10-01

    To quantify the risk of death associated with Clostridium difficile infection, in an Australian tertiary hospital. Two reviews examining Clostridium difficile infection and mortality indicate that Clostridium difficile infection is associated with increased mortality in hospitalized patients. Studies investigating the mortality of Clostridium difficile infection in settings outside of Europe and North America are required, so that the epidemiology of Clostridium difficile infection in these regions can be understood and appropriate prevention strategies made. An observational non-concurrent cohort study design was used. Data from all persons who had (exposed) and a matched sample of persons who did not have Clostridium difficile infection, for the calendar years 2007-2010, were analysed. The risk of dying within 30, 60, 90 and 180 days was compared using the two groups. Kaplan-Meier survival analysis and conditional logistic regression models were applied to the data to examine time to death and mortality risk adjusted for comorbidities using the Charlson Comorbidity Index. One hundred and fifty-eight cases of infection were identified. A statistically significant difference in all-cause mortality was identified between exposed and non-exposed groups at 60 and 180 days. In a conditional regression model, mortality in the exposed group was significantly higher at 180 days. In this Australian study, Clostridium difficile infection was associated with increased mortality. In doing so, it highlights the need for nurses to immediately instigate contact precautions for persons suspected of having Clostridium difficile infection and to facilitate a timely faecal collection for testing. Our findings support ongoing surveillance of Clostridium difficile infection and associated prevention and control activities. © 2013 Blackwell Publishing Ltd.

  8. Clostridium subterminale septicemia in an immunocompetent patient.

    PubMed

    Daganou, Maria; Kyriakoudi, Ann; Moraitou, Helen; Pontikis, Konstantinos; Avgeropoulou, Stavrina; Tripolitsioti, Paraskevi; Koutsoukou, Antonia

    2016-01-01

    Clostridium subterminale is a Clostridium species that has been rarely isolated in the blood of immunocompromised patients. We report a case of C. subterminale septicemia in an immunocompetent patient who presented with acute mediastinitis following spontaneous esophageal rupture.

  9. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-01-01

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins. PMID:28800062

  10. Acetone-butanol Fermentation of Marine Macroalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.; Kuo, Li-Jung; Urquhart, Lindsay A.

    2012-03-01

    Mannitol and laminarin, which are present at high concentrations in the brown macroalga Saccharina spp., a type of kelp, are potential biochemical feedstocks for butanol production. To test their bioconversion potential, aqueous extracts of the kelp Saccharina spp., mannitol, and glucose (a product of laminarin hydrolysis) were subjected to acetone-butanol fermentation by Clostridium acetobutylicum (ATCC 824). Both mannitol and glucose were readily fermented. Mixed substrate fermentations with glucose and mannitol resulted in diauxic growth of C. acetobutylicum with glucose depletion preceding mannitol utilization. Fermentation of kelp extract exhibited triauxic growth, with an order of utilization of free glucose, mannitol, andmore » bound glucose, presumably laminarin. The lag in laminarin utilization reflected the need for enzymatic hydrolysis of this polysaccharide into fermentable sugars. The butanol and total solvent yields were 0.12 g/g and 0.16 g/g, respectively, indicating that significant improvements are still needed to make industrial-scale acetone-butanol fermentations of seaweed economically feasible.« less

  11. Fatal neutropenic enterocolitis due to clostridium septicum.

    PubMed

    Shah, B K; KC, R

    2011-10-01

    We describe a case of Clostridium septicum enterocolitis in a patient with pre-B acute lymphoblastic leukaemia undergoing autologous stem cell transplant. In the setting of neutropenia, Clostridium septicum should be suspected in patients who develop signs and symptoms of acute abdomen.

  12. Discrimination of clostridium species using a magnetic bead based hybridization assay

    NASA Astrophysics Data System (ADS)

    Pahlow, Susanne; Seise, Barbara; Pollok, Sibyll; Seyboldt, Christian; Weber, Karina; Popp, Jürgen

    2014-05-01

    Clostridium chauvoei is the causative agent of blackleg, which is an endogenous bacterial infection. Mainly cattle and other ruminants are affected. The symptoms of blackleg are very similar to those of malignant edema, an infection caused by Clostridium septicum. [1, 2] Therefore a reliable differentiation of Clostridium chauvoei from other Clostridium species is required. Traditional microbiological detection methods are time consuming and laborious. Additionally, the unique identification is hindered by the overgrowing tendency of swarming Clostridium septicum colonies when both species are present. [1, 3, 4] Thus, there is a crucial need to improve and simplify the specific detection of Clostridium chauvoei and Clostridium septicum. Here we present an easy and fast Clostridium species discrimination method combining magnetic beads and fluorescence spectroscopy. Functionalized magnetic particles exhibit plentiful advantages, like their simple manipulation in combination with a large binding capacity of biomolecules. A specific region of the pathogenic DNA is amplified and labelled with biotin by polymerase chain reaction (PCR). These PCR products were then immobilized on magnetic beads exploiting the strong biotin-streptavidin interaction. The specific detection of different Clostridium species is achieved by using fluorescence dye labeled probe DNA for the hybridization with the immobilized PCR products. Finally, the samples were investigated by fluorescence spectroscopy. [5

  13. Development of Clostridium septicum gas gangrene as an adverse effect of clindamycin-induced Clostridium difficile infection in a pediatric patient.

    PubMed

    Kiser, Casey J; Urish, Kenneth L; Boateng, Henry A

    2014-09-01

    Clostridium myonecrosis or gas gangrene is a life-threatening infection characterized by either traumatic or atraumatic etiology. It has been widely described in patients with traumatic open wounds and in immunocompromised patients, including malignancy. A third source can result from natural flora in the gastrointestinal tract after bowel ischemia. This is a rare occurrence and is even less commonly described in the pediatric population. We present a pediatric patient who developed Clostridium septicum myonecrosis as an iatrogenic complication from clindamycin-induced Clostridium difficile ischemic colitis.

  14. Updates on the sporulation process in Clostridium species.

    PubMed

    Talukdar, Prabhat K; Olguín-Araneda, Valeria; Alnoman, Maryam; Paredes-Sabja, Daniel; Sarker, Mahfuzur R

    2015-05-01

    Sporulation is an important strategy for certain bacterial species within the phylum Firmicutes to survive longer periods of time in adverse conditions. All spore-forming bacteria have two phases in their life; the vegetative form, where they can maintain all metabolic activities and replicate to increase numbers, and the spore form, where no metabolic activities exist. Although many essential components of sporulation are conserved among the spore-forming bacteria, there are differences in the regulation and the pathways among different genera, even at the species level. While we have gained much information from the most studied spore-forming bacterial genus, Bacillus, we still lack an in-depth understanding of spore formation in the genus Clostridium. Clostridium and Bacillus share the master regulator of sporulation, Spo0A, and its downstream pathways, but there are differences in the activation of the Spo0A pathway. While Bacillus species use a multi-component phosphorylation pathway for phosphorylation of Spo0A, termed phosphorelay, such a phosphorelay system is absent in Clostridium. On the other hand, a number of genes regulated by the different sporulation-specific transcription factors are conserved between different Clostridium and Bacillus species. In this review, we discuss the recent findings on Clostridium sporulation and compare the sporulation mechanism in Clostridium and Bacillus. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Switchgrass (Panicum virgatum) fermentation by sequential culture of Clostridium thermocellum and Clostridium beijerinckii: effect of particle size on gas production

    USDA-ARS?s Scientific Manuscript database

    Fuel alcohols can be produced by fermenting cellulosic biomass. Clostridium beijerinckii produces both ethanol and butanol, but it is non-cellulolytic. Cellulose requires saccharification prior to fermentation by C. beijerinckii. In contrast, the thermophile, Clostridium thermocellum, is highly ce...

  16. Feasibility of biohydrogen production from industrial wastes using defined microbial co-culture.

    PubMed

    Chen, Peng; Wang, Yuxia; Yan, Lei; Wang, Yiqing; Li, Suyue; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2015-05-06

    The development of clean or novel alternative energy has become a global trend that will shape the future of energy. In the present study, 3 microbial strains with different oxygen requirements, including Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, were used to construct a hydrogen production system that was composed of a mixed aerobic-facultative anaerobic-anaerobic consortium. The effects of metal ions, organic acids and carbohydrate substrates on this system were analyzed and compared using electrochemical and kinetic assays. It was then tested using small-scale experiments to evaluate its ability to convert starch in 5 L of organic wastewater into hydrogen. For the one-step biohydrogen production experiment, H1 medium (nutrient broth and potato dextrose broth) was mixed directly with GAM broth to generate H2 medium (H1 medium and GAM broth). Finally, Clostridium acetobutylicum ATCC 824, Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D of three species microbial co-culture to produce hydrogen under anaerobic conditions. For the two-step biohydrogen production experiment, the H1 medium, after cultured the microbial strains Enterobacter cloacae ATCC 13047 and Kluyveromyces marxianus 15D, was centrifuged to remove the microbial cells and then mixed with GAM broth (H2 medium). Afterward, the bacterial strain Clostridium acetobutylicum ATCC 824 was inoculated into the H2 medium to produce hydrogen by anaerobic fermentation. The experimental results demonstrated that the optimum conditions for the small-scale fermentative hydrogen production system were at pH 7.0, 35°C, a mixed medium, including H1 medium and H2 medium with 0.50 mol/L ferrous chloride, 0.50 mol/L magnesium sulfate, 0.50 mol/L potassium chloride, 1% w/v citric acid, 5% w/v fructose and 5% w/v glucose. The overall hydrogen production efficiency in the shake flask fermentation group was 33.7 mL/h(-1).L(-1), and those the two

  17. [Spontaneous gas gangrene in a diabetic patient with Clostridium septicum].

    PubMed

    Mischke, A; Besier, S; Walcher, F; Waibel, H; Brade, V; Brandt, C

    2005-10-01

    Atraumatic infections due to Clostridium septicum are known to be associated with immunosuppression or even malignancy. In this case report, we present a patient with severe Clostridium septicum infection related to advanced colon cancer that had not previously been diagnosed. The case demonstrates the strong association between Clostridium septicum infections and malignancy, particularly in the presence of other predisposing diseases such as diabetes mellitus. It strongly suggests excluding malignant neoplasms, especially of the gastrointestinal tract, when severe Clostridium septicum infections occur. Moreover, if patients with known colorectal or other malignancy develop septicaemia or spontaneous gas gangrene, clinicians should be aware of Clostridium septicum as one of the main causative agents, as early diagnosis and aggressive treatment are important to improve prognosis.

  18. Risk factors for Clostridium difficile infection in HIV-infected patients.

    PubMed

    Imlay, Hannah; Kaul, Daniel; Rao, Krishna

    2016-01-01

    Clostridium difficile infection is a healthcare-associated infection resulting in significant morbidity. Although immunosuppression is associated with Clostridium difficile infection acquisition and adverse outcomes, the epidemiology of Clostridium difficile infection in HIV-infected patients has been little studied in the era of antiretroviral therapy. This study identifies the risk factors for acquisition of Clostridium difficile infection in HIV-infected patients. A retrospective, propensity score-matched case-control study design was employed, with patients selected from our institution's outpatient HIV clinic. Clostridium difficile infection cases were defined as having positive stool testing plus an appropriate clinical presentation. The propensity score was generated via multiple logistic regression from year of HIV diagnosis, age at first contact, duration of follow-up, gender, and initial CD4 count. The 46 cases included were matched to a total of 180 controls. Prior antibiotic treatment was a significant predictor of Clostridium difficile infection (odds ratio: 13, 95% confidence interval: 3.49-48.8, p  < .001) as was number of hospital admissions in the preceding year (odds ratio: 4.02, confidence interval: 1.81-8.94, p  < .001). Having both proton pump inhibitor use and CD4 count <200 cells/µL significantly increased odds of Clostridium difficile infection in the multivariable model (odds ratio: 15.17, confidence interval: 1.31-175.9, p  = .021). As in the general population, frequent hospitalizations and exposure to antimicrobials are independent predictors of Clostridium difficile infection acquisition in patients with HIV. Additionally, low CD4 count and proton pump inhibitor use are new potentially modifiable variables that can be targeted for prevention of Clostridium difficile infection in future interventional studies.

  19. Detection of toxigenic Clostridium perfringens and Clostridium botulinum from food sold in Lagos, Nigeria.

    PubMed

    Chukwu, Emelda E; Nwaokorie, Francisca O; Coker, Akitoye O; Avila-Campos, Mario J; Solis, Rosa L; Llanco, Luis A; Ogunsola, Folasade T

    2016-12-01

    Food-borne diseases contribute to the huge burden of sickness and death globally and in the last decade, have become more frequently reported in Africa. In line with this, food safety is becoming a significant and growing public health problem in Nigeria. Diarrhoea is a common problem in Nigeria and has been reported but there has been little data on the possibility of clostridia as aetiological agents. Clostridium species are ubiquitous in the environment and in the gastrointestinal tract of man and animals and can serve as a marker for faecal contamination. We set out to determine the potential of these foods to transmit Clostridium species. A total of 220 food commodities from six local governments in Lagos State were sampled. Isolates obtained were identified based on cultural, morphological and biochemical characteristics. Toxinotyping was done using multiplex-PCR with primers specific for alpha, beta, epsilon and iota-toxin genes, enterotoxigenic cpe gene and neurotoxigenic BoNt gene. Fifty (22.7%) clostridial species were isolated of which 29 (58%) were identified as C. perfringens. Toxinotyping of the 29 strains showed that 28 (96.6%) were toxin producing C. perfringens type A while one (3.4%) was C. perfringens type D. Two (4%) C. botulinum species were isolated and identified by 16S rRNA sequencing, both harbouring BoNt/A gene. The contamination rates of food with Clostridium species show that food hygiene is a problem and Clostridium species may be a source of food borne disease in Lagos State, Nigeria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparative Genomic Hybridization Analysis of Two Predominant Nordic Group I (Proteolytic) Clostridium botulinum Type B Clusters▿ †

    PubMed Central

    Lindström, Miia; Hinderink, Katja; Somervuo, Panu; Kiviniemi, Katri; Nevas, Mari; Chen, Ying; Auvinen, Petri; Carter, Andrew T.; Mason, David R.; Peck, Michael W.; Korkeala, Hannu

    2009-01-01

    Comparative genomic hybridization analysis of 32 Nordic group I Clostridium botulinum type B strains isolated from various sources revealed two homogeneous clusters, clusters BI and BII. The type B strains differed from reference strain ATCC 3502 by 413 coding sequence (CDS) probes, sharing 88% of all the ATCC 3502 genes represented on the microarray. The two Nordic type B clusters differed from each other by their response to 145 CDS probes related mainly to transport and binding, adaptive mechanisms, fatty acid biosynthesis, the cell membranes, bacteriophages, and transposon-related elements. The most prominent differences between the two clusters were related to resistance to toxic compounds frequently found in the environment, such as arsenic and cadmium, reflecting different adaptive responses in the evolution of the two clusters. Other relatively variable CDS groups were related to surface structures and the gram-positive cell wall, suggesting that the two clusters possess different antigenic properties. All the type B strains carried CDSs putatively related to capsule formation, which may play a role in adaptation to different environmental and clinical niches. Sequencing showed that representative strains of the two type B clusters both carried subtype B2 neurotoxin genes. As many of the type B strains studied have been isolated from foods or associated with botulism, it is expected that the two group I C. botulinum type B clusters present a public health hazard in Nordic countries. Knowing the genetic and physiological markers of these clusters will assist in targeting control measures against these pathogens. PMID:19270141

  1. Clostridium Difficile Infections

    MedlinePlus

    Clostridium difficile (C. difficile) is a bacterium that causes diarrhea and more serious intestinal conditions such as colitis. Symptoms include Watery ... Loss of appetite Nausea Abdominal pain or tenderness C. difficile is more common in people who need ...

  2. Comparative Genome Analysis and Global Phylogeny of the Toxin Variant Clostridium difficile PCR Ribotype 017 Reveals the Evolution of Two Independent Sublineages

    PubMed Central

    Cairns, M. D.; Preston, M. D.; Hall, C. L.; Gerding, D. N.; Hawkey, P. M.; Kato, H.; Kim, H.; Kuijper, E. J.; Lawley, T. D.; Pituch, H.; Reid, S.; Kullin, B.; Riley, T. V.; Solomon, K.; Tsai, P. J.; Weese, J. S.

    2016-01-01

    ABSTRACT The diarrheal pathogen Clostridium difficile consists of at least six distinct evolutionary lineages. The RT017 lineage is anomalous, as strains only express toxin B, compared to strains from other lineages that produce toxins A and B and, occasionally, binary toxin. Historically, RT017 initially was reported in Asia but now has been reported worldwide. We used whole-genome sequencing and phylogenetic analysis to investigate the patterns of global spread and population structure of 277 RT017 isolates from animal and human origins from six continents, isolated between 1990 and 2013. We reveal two distinct evenly split sublineages (SL1 and SL2) of C. difficile RT017 that contain multiple independent clonal expansions. All 24 animal isolates were contained within SL1 along with human isolates, suggesting potential transmission between animals and humans. Genetic analyses revealed an overrepresentation of antibiotic resistance genes. Phylogeographic analyses show a North American origin for RT017, as has been found for the recently emerged epidemic RT027 lineage. Despite having only one toxin, RT017 strains have evolved in parallel from at least two independent sources and can readily transmit between continents. PMID:28031436

  3. Proposal for the reclassification of obligately purine-fermenting bacteria Clostridium acidurici (Barker 1938) and Clostridium purinilyticum (Dürre et al. 1981) as Gottschalkia acidurici gen. nov. comb. nov. and Gottschalkia purinilytica comb. nov. and of Eubacterium angustum (Beuscher and Andreesen 1985) as Andreesenia angusta gen. nov. comb. nov. in the family Gottschalkiaceae fam. nov.

    PubMed Central

    Poehlein, Anja; Yutin, Natalya; Daniel, Rolf

    2017-01-01

    Several strictly anaerobic bacteria that are Gram-stain-positive have the ability to use uric acid as the sole source of carbon and energy. The phylogeny of three such species, Clostridium acidurici, Clostridium purinilyticum, and Eubacterium angustum, members of the Clostridium cluster XII that ferment purines, but not most amino acids or carbohydrates, has been re-examined, taking advantage of their recently sequenced genomes. Phylogenetic analyses, based on 16S rRNA gene sequences, protein sequences of RpoB and GyrB, and on a concatenated alignment of 50 ribosomal proteins, revealed tight clustering of C. acidurici and C. purinilyticum. Eubacterium angustum showed consistent association with C. acidurici and C. purinilyticum , but differed from these two in terms of the genome size, G+C content of its chromosomal DNA and its inability to form spores. We propose reassigning C. acidurici and C. purinilyticum to the novel genus Gottschalkia as Gottschalkia acidurici gen. nov. comb. nov. (the type species of the genus) and Gottschalkia purinilytica comb. nov., respectively. Eubacterium angustum is proposed to be reclassified as Andreesenia angusta gen. nov. comb. nov. Furthermore, based on the phylogenetic data and similar metabolic properties, we propose assigning genera Gottschalkia and Andreesenia to the novel family Gottschalkiaceae. Metagenomic sequencing data indicate the widespread distibution of organisms falling within the radiation of the proposed family Gottschalkiaceae in terrestrial and aquatic habitats from upstate New York to Antarctica, most likely due to their ability to metabolize avian-produced uric acid. PMID:28853681

  4. CRISPR Diversity and Microevolution in Clostridium difficile

    PubMed Central

    Andersen, Joakim M.; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E.P.; Barrangou, Rodolphe

    2016-01-01

    Abstract Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. PMID:27576538

  5. A plasmid borne, functionally novel glycoside hydrolase family 30 subfamily 8 endoxylanase from solventogenic Clostridium

    PubMed Central

    Dietrich, Diane; Crooks, Casey; Balogun, Peter; deSerrano, Vesna; Pozharski, Edwin; Smith, James Kennon; Bales, Elizabeth; Hurlbert, Jason

    2018-01-01

    Glycoside hydrolase family 30 subfamily 8 (GH30-8) β-1,4-endoxylanases are known for their appendage-dependent function requiring recognition of an α-1,2-linked glucuronic acid (GlcA) common to glucuronoxylans for hydrolysis. Structural studies have indicated that the GlcA moiety of glucuronoxylans is coordinated through six hydrogen bonds and a salt bridge. These GlcA-dependent endoxylanases do not have significant activity on xylans that do not bear GlcA substitutions such as unsubstituted linear xylooligosaccharides or cereal bran arabinoxylans. In the present study, we present the structural and biochemical characteristics of xylanase 30A from Clostridium acetobutylicum (CaXyn30A) which was originally selected for study due to predicted structural differences within the GlcA coordination loops. Amino acid sequence comparisons indicated that this Gram-positive-derived GH30-8 more closely resembles Gram-negative derived forms of these endoxylanases: a hypothesis borne out in the developed crystallographic structure model of the CaXyn30A catalytic domain (CaXyn30A-CD). CaXyn30A-CD hydrolyzes xylans to linear and substituted oligoxylosides showing the greatest rate with the highly arabinofuranose (Araf)-substituted cereal arabinoxylans. CaXyn30A-CD hydrolyzes xylooligosaccharides larger than xylotriose and shows an increased relative rate of hydrolysis for xylooligosaccharides containing α-1,2-linked arabinofuranose substitutions. Biochemical analysis confirms that CaXyn30A benefits from five xylose-binding subsites which extend from the −3 subsite to the +2 subsite of the binding cleft. These studies indicate that CaXyn30A is a GlcA-independent endoxylanase that may have evolved for the preferential recognition of α-1,2-Araf substitutions on xylan chains. PMID:29626157

  6. Identification of the cellular receptor of Clostridium spiroforme toxin.

    PubMed

    Papatheodorou, Panagiotis; Wilczek, Claudia; Nölke, Thilo; Guttenberg, Gregor; Hornuss, Daniel; Schwan, Carsten; Aktories, Klaus

    2012-04-01

    Clostridium spiroforme produces the binary actin-ADP-ribosylating toxin CST (C. spiroforme toxin), which has been proposed to be responsible for diarrhea, enterocolitis, and eventually death, especially in rabbits. Here we report on the recombinant production of the enzyme component (CSTa) and the binding component (CSTb) of C. spiroforme toxin in Bacillus megaterium. By using the recombinant toxin components, we show that CST enters target cells via the lipolysis-stimulated lipoprotein receptor (LSR), which has been recently identified as the host cell receptor of the binary toxins Clostridium difficile transferase (CDT) and Clostridium perfringens iota toxin. Microscopic studies revealed that CST, but not the related Clostridium botulinum C2 toxin, colocalized with LSR during toxin uptake and traffic to endosomal compartments. Our findings indicate that CST shares LSR with C. difficile CDT and C. perfringens iota toxin as a host cell surface receptor.

  7. The impact of horizontal gene transfer on the biology of Clostridium difficile.

    PubMed

    Roberts, Adam P; Allan, Elaine; Mullany, Peter

    2014-01-01

    Clostridium difficile infection (CDI) is now recognised as the main cause of healthcare associated diarrhoea. Over the recent years there has been a change in the epidemiology of CDI with certain related strains dominating infection. These strains have been termed hyper-virulent and have successfully spread across the globe. Many C. difficile strains have had their genomes completely sequenced allowing researchers to build up a very detailed picture of the contribution of horizontal gene transfer to the adaptive potential, through the acquisition of mobile DNA, of this organism. Here, we review and discuss the contribution of mobile genetic elements to the biology of this clinically important pathogen. © 2014 Elsevier Ltd All rights reserved.

  8. Collagenase Clostridium Histolyticum Injection

    MedlinePlus

    Collagenase Clostridium histolyticum injection is used to treat Dupuytren's contracture (a painless thickening and tightening of tissue [ ... class of medications called enzymes. In people with Dupuytren's contracture, it works by helping to break down ...

  9. Identification of the Cellular Receptor of Clostridium spiroforme Toxin

    PubMed Central

    Papatheodorou, Panagiotis; Wilczek, Claudia; Nölke, Thilo; Guttenberg, Gregor; Hornuss, Daniel; Schwan, Carsten

    2012-01-01

    Clostridium spiroforme produces the binary actin-ADP-ribosylating toxin CST (C. spiroforme toxin), which has been proposed to be responsible for diarrhea, enterocolitis, and eventually death, especially in rabbits. Here we report on the recombinant production of the enzyme component (CSTa) and the binding component (CSTb) of C. spiroforme toxin in Bacillus megaterium. By using the recombinant toxin components, we show that CST enters target cells via the lipolysis-stimulated lipoprotein receptor (LSR), which has been recently identified as the host cell receptor of the binary toxins Clostridium difficile transferase (CDT) and Clostridium perfringens iota toxin. Microscopic studies revealed that CST, but not the related Clostridium botulinum C2 toxin, colocalized with LSR during toxin uptake and traffic to endosomal compartments. Our findings indicate that CST shares LSR with C. difficile CDT and C. perfringens iota toxin as a host cell surface receptor. PMID:22252869

  10. Genome tailoring powered production of isobutanol in continuous CO2/H2 blend fermentation using engineered acetogen biocatalyst.

    PubMed

    Gak, Eugene; Tyurin, Michael; Kiriukhin, Michael

    2014-05-01

    The cell energy fraction that powered maintenance and expression of genes encoding pro-phage elements, pta-ack cluster, early sporulation, sugar ABC transporter periplasmic proteins, 6-phosphofructokinase, pyruvate kinase, and fructose-1,6-disphosphatase in acetogen Clostridium sp. MT871 was re-directed to power synthetic operon encoding isobutanol biosynthesis at the expense of these genes achieved via their elimination. Genome tailoring decreased cell duplication time by 7.0 ± 0.1 min (p < 0.05) compared to the parental strain, with intact genome and cell duplication time of 68 ± 1 min (p < 0.05). Clostridium sp. MT871 with tailored genome was UVC-mutated to withstand 6.1 % isobutanol in fermentation broth to prevent product inhibition in an engineered commercial biocatalyst producing 5 % (674.5 mM) isobutanol during two-step continuous fermentation of CO2/H2 gas blend. Biocatalyst Clostridium sp. MT871RG- 11IBR6 was engineered to express six copies of synthetic operon comprising optimized synthetic format dehydrogenase, pyruvate formate lyase, acetolactate synthase, acetohydroxyacid reductoisomerase, 2,3-dihydroxy-isovalerate dehydratase, branched-chain alpha-ketoacid decarboxylase gene, aldehyde dehydrogenase, and alcohol dehydrogenase, regaining cell duplication time of 68 ± 1 min (p < 0.05) for the parental strain. This is the first report on isobutanol production by an engineered acetogen biocatalyst suitable for commercial manufacturing of this chemical/fuel using continuous fermentation of CO2/H2 blend thus contributing to the reversal of global warming.

  11. Clostridium perfringens in Long Island Sound sediments: An urban sedimentary record

    USGS Publications Warehouse

    Buchholtz ten Brink, Marilyn R.; Mecray, E.L.; Galvin, E.L.

    2000-01-01

    Clostridium perfringens is a conservative tracer and an indicator of sewage-derived pollution in the marine environment. The distribution of Clostridium perfringens spores was measured in sediments from Long Island Sound, USA, as part of a regional study designed to: (1) map the distribution of contaminated sediments; (2) determine transport and dispersal paths; (3) identify the locations of sediment and contaminant focusing; and (4) constrain predictive models. In 1996, sediment cores were collected at 58 stations, and surface sediments were collected at 219 locations throughout the Sound. Elevated concentrations of Clostridium perfringens in the sediments indicate that sewage pollution is present throughout Long Island Sound and has persisted for more than a century. Concentrations range from undetectable amounts to 15,000 spores/g dry sediment and are above background levels in the upper 30 cm at nearly all core locations. Sediment focusing strongly impacts the accumulation of Clostridium perfringens spores. Inventories in the cores range from 28 to 70,000 spores/cm2, and elevated concentrations can extend to depths of 50 cm. The steep gradients in Clostridium perfringens profiles in muddier cores contrast with concentrations that are generally constant with depth in sandier cores. Clostridium perfringens concentrations rarely decrease in the uppermost sediment, unlike those reported for metal contaminants. Concentrations in surface sediments are highest in the western end of the Sound, very low in the eastern region, and intermediate in the central part. This pattern reflects winnowing and focusing of Clostridium perfringens spores and fine-grained sediment by the hydrodynamic regime; however, the proximity of sewage sources to the westernmost Sound locally enhances the Clostridium perfringens signals.

  12. Ferrous Ion and Medium Composition Effects on Acidogenic Phase in Biobutanol Production from Molasses

    NASA Astrophysics Data System (ADS)

    Restiawaty, E.; Grinanda, D.

    2017-07-01

    Clostridium acetobutylicum B530 has ability to convert sugar into biobutanol through two phases, i.e. acidogenic and solventogenic. This fermentation process is often hampered by high raw material cost and low product yield. In order to suppress the production cost, the molasses, a byproduct of sugar cane process production, was used as carbon source in this research. Molasses has nitrogen content in a small amount, thus could be negating the beef extract component, which is expected not to affect the growth of C. acetobutylicum B530 and also can reduce the production cost. In addition, a certain amount of Fe2+ (ferrous ion), a precursor in the formation of the enzyme ferredoxin, was added to the fermentation medium to contribute in the synthesis of acetyl-CoA, so that the formation of acidogenic products such as butyric acid and acetic acid is affected. This study aimed to investigate the effect of ferrous ion and the medium composition in acidogenic phase. The addition of 20 ppm FeSO4.7H2O in the fermentation medium without beef extract can increase the concentration of butyric acid by 20% at a temperature of 35°C, while acetic acid concentration decreased by 6%. According to those results, it is expected that the product selectivity of butanol will increase in solventogenic phase. In addition, the removal of beef extract in the fermentation medium does not affect the kinetics of growth of C. acetobutylicum B530.

  13. CRISPR Diversity and Microevolution in Clostridium difficile.

    PubMed

    Andersen, Joakim M; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E P; Barrangou, Rodolphe

    2016-09-19

    Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Characterization of a Stable, Metronidazole-Resistant Clostridium difficile Clinical Isolate

    PubMed Central

    Lynch, Tarah; Chong, Patrick; Zhang, Jason; Hizon, Romeo; Du, Tim; Graham, Morag R.; Beniac, Daniel R.; Booth, Timothy F.; Kibsey, Pamela; Miller, Mark; Gravel, Denise; Mulvey, Michael R.

    2013-01-01

    Background Clostridium difficile are Gram-positive, spore forming anaerobic bacteria that are the leading cause of healthcare-associated diarrhea, usually associated with antibiotic usage. Metronidazole is currently the first-line treatment for mild to moderate C. difficile diarrhea however recurrence occurs at rates of 15–35%. There are few reports of C. difficile metronidazole resistance in the literature, and when observed, the phenotype has been transient and lost after storage or exposure of the bacteria to freeze/thaw cycles. Owing to the unstable nature of the resistance phenotype in the laboratory, clinical significance and understanding of the resistance mechanisms is lacking. Methodology/Principal Findings Genotypic and phenotypic characterization was performed on a metronidazole resistant clinical isolate of C. difficile. Whole-genome sequencing was used to identify potential genetic contributions to the phenotypic variation observed with molecular and bacteriological techniques. Phenotypic observations of the metronidazole resistant strain revealed aberrant growth in broth and elongated cell morphology relative to a metronidazole-susceptible, wild type NAP1 strain. Comparative genomic analysis revealed single nucleotide polymorphism (SNP) level variation within genes affecting core metabolic pathways such as electron transport, iron utilization and energy production. Conclusions/Significance This is the first characterization of stable, metronidazole resistance in a C. difficile isolate. The study provides an in-depth genomic and phenotypic analysis of this strain and provides a foundation for future studies to elucidate mechanisms conferring metronidazole resistance in C. difficile that have not been previously described. PMID:23349739

  15. Genome sequencing and analysis of a type A Clostridium perfringens isolate from a case of bovine clostridial abomasitis.

    PubMed

    Nowell, Victoria J; Kropinski, Andrew M; Songer, J Glenn; MacInnes, Janet I; Parreira, Valeria R; Prescott, John F

    2012-01-01

    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified.

  16. Genome Sequencing and Analysis of a Type A Clostridium perfringens Isolate from a Case of Bovine Clostridial Abomasitis

    PubMed Central

    Nowell, Victoria J.; Kropinski, Andrew M.; Songer, J. Glenn; MacInnes, Janet I.; Parreira, Valeria R.; Prescott, John F.

    2012-01-01

    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified. PMID:22412860

  17. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  18. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen.

    PubMed

    Hargreaves, Katherine R; Flores, Cesar O; Lawley, Trevor D; Clokie, Martha R J

    2014-08-26

    Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. Clostridium difficile is a significant bacterial human pathogen which undergoes continual genome evolution, resulting in the emergence of new virulent strains. Phages are major facilitators of genome evolution in other bacterial species, and we use sequence analysis-based approaches in order to examine whether the CRISPR/Cas system could control these interactions across divergent C. difficile strains. The presence of spacer sequences in prophages that are homologous to phage genomes raises an

  19. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum

    PubMed Central

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-01-01

    Background Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Results Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Conclusion Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks. PMID:19298644

  20. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum.

    PubMed

    Carter, Andrew T; Paul, Catherine J; Mason, David R; Twine, Susan M; Alston, Mark J; Logan, Susan M; Austin, John W; Peck, Michael W

    2009-03-19

    Proteolytic Clostridium botulinum is the causative agent of botulism, a severe neuroparalytic illness. Given the severity of botulism, surprisingly little is known of the population structure, biology, phylogeny or evolution of C. botulinum. The recent determination of the genome sequence of C. botulinum has allowed comparative genomic indexing using a DNA microarray. Whole genome microarray analysis revealed that 63% of the coding sequences (CDSs) present in reference strain ATCC 3502 were common to all 61 widely-representative strains of proteolytic C. botulinum and the closely related C. sporogenes tested. This indicates a relatively stable genome. There was, however, evidence for recombination and genetic exchange, in particular within the neurotoxin gene and cluster (including transfer of neurotoxin genes to C. sporogenes), and the flagellar glycosylation island (FGI). These two loci appear to have evolved independently from each other, and from the remainder of the genetic complement. A number of strains were atypical; for example, while 10 out of 14 strains that formed type A1 toxin gave almost identical profiles in whole genome, neurotoxin cluster and FGI analyses, the other four strains showed divergent properties. Furthermore, a new neurotoxin sub-type (A5) has been discovered in strains from heroin-associated wound botulism cases. For the first time, differences in glycosylation profiles of the flagella could be linked to differences in the gene content of the FGI. Proteolytic C. botulinum has a stable genome backbone containing specific regions of genetic heterogeneity. These include the neurotoxin gene cluster and the FGI, each having evolved independently of each other and the remainder of the genetic complement. Analysis of these genetic components provides a high degree of discrimination of strains of proteolytic C. botulinum, and is suitable for clinical and forensic investigations of botulism outbreaks.

  1. Global analysis of the sporulation pathway of Clostridium difficile.

    PubMed

    Fimlaid, Kelly A; Bond, Jeffrey P; Schutz, Kristin C; Putnam, Emily E; Leung, Jacqueline M; Lawley, Trevor D; Shen, Aimee

    2013-01-01

    The Gram-positive, spore-forming pathogen Clostridium difficile is the leading definable cause of healthcare-associated diarrhea worldwide. C. difficile infections are difficult to treat because of their frequent recurrence, which can cause life-threatening complications such as pseudomembranous colitis. The spores of C. difficile are responsible for these high rates of recurrence, since they are the major transmissive form of the organism and resistant to antibiotics and many disinfectants. Despite the importance of spores to the pathogenesis of C. difficile, little is known about their composition or formation. Based on studies in Bacillus subtilis and other Clostridium spp., the sigma factors σ(F), σ(E), σ(G), and σ(K) are predicted to control the transcription of genes required for sporulation, although their specific functions vary depending on the organism. In order to determine the roles of σ(F), σ(E), σ(G), and σ(K) in regulating C. difficile sporulation, we generated loss-of-function mutations in genes encoding these sporulation sigma factors and performed RNA-Sequencing to identify specific sigma factor-dependent genes. This analysis identified 224 genes whose expression was collectively activated by sporulation sigma factors: 183 were σ(F)-dependent, 169 were σ(E)-dependent, 34 were σ(G)-dependent, and 31 were σ(K)-dependent. In contrast with B. subtilis, C. difficile σ(E) was dispensable for σ(G) activation, σ(G) was dispensable for σ(K) activation, and σ(F) was required for post-translationally activating σ(G). Collectively, these results provide the first genome-wide transcriptional analysis of genes induced by specific sporulation sigma factors in the Clostridia and highlight that diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes.

  2. Genetic homogeneity of Clostridium botulinum type A1 strains with unique toxin gene clusters.

    PubMed

    Raphael, Brian H; Luquez, Carolina; McCroskey, Loretta M; Joseph, Lavin A; Jacobson, Mark J; Johnson, Eric A; Maslanka, Susan E; Andreadis, Joanne D

    2008-07-01

    A group of five clonally related Clostridium botulinum type A strains isolated from different sources over a period of nearly 40 years harbored several conserved genetic properties. These strains contained a variant bont/A1 with five nucleotide polymorphisms compared to the gene in C. botulinum strain ATCC 3502. The strains also had a common toxin gene cluster composition (ha-/orfX+) similar to that associated with bont/A in type A strains containing an unexpressed bont/B [termed A(B) strains]. However, bont/B was not identified in the strains examined. Comparative genomic hybridization demonstrated identical genomic content among the strains relative to C. botulinum strain ATCC 3502. In addition, microarray data demonstrated the absence of several genes flanking the toxin gene cluster among the ha-/orfX+ A1 strains, suggesting the presence of genomic rearrangements with respect to this region compared to the C. botulinum ATCC 3502 strain. All five strains were shown to have identical flaA variable region nucleotide sequences. The pulsed-field gel electrophoresis patterns of the strains were indistinguishable when digested with SmaI, and a shift in the size of at least one band was observed in a single strain when digested with XhoI. These results demonstrate surprising genomic homogeneity among a cluster of unique C. botulinum type A strains of diverse origin.

  3. Sigma Factor Regulated Cellular Response in a Non-solvent Producing Clostridium beijerinckii Degenerated Strain: A Comparative Transcriptome Analysis

    PubMed Central

    Zhang, Yan; Jiao, Shengyin; Lv, Jia; Du, Renjia; Yan, Xiaoni; Wan, Caixia; Zhang, Ruijuan; Han, Bei

    2017-01-01

    Clostridium beijerinckii DG-8052, derived from NCIMB 8052, cannot produce solvent or form spores, a phenomenon known as degeneration. To explore the mechanisms of degeneration at the gene level, transcriptomic profiles of the wild-type 8052 and DG-8052 strains were compared. Expression of 5168 genes comprising 98.6% of the genome was assessed. Interestingly, 548 and 702 genes were significantly up-regulated in the acidogenesis and solventogenesis phases of DG-8052, respectively, and mainly responsible for the phosphotransferase system, sugar metabolic pathways, and chemotaxis; meanwhile, 699 and 797 genes were significantly down-regulated, respectively, and mainly responsible for sporulation, oxidoreduction, and solventogenesis. The functions of some altered genes, including 286 and 333 at the acidogenesis and solventogenesis phases, respectively, remain unknown. Dysregulation of the fermentation machinery was accompanied by lower transcription levels of glycolysis rate-limiting enzymes (pfk and pyk), and higher transcription of cell chemotaxis genes (cheA, cheB, cheR, cheW, and cheY), controlled mainly by σ54 at acidogenesis. Meanwhile, abnormal spore formation was associated with repressed spo0A, sigE, sigF, sigG, and sigK which are positively regulated by σ70, and correspondingly inhibited expression of CoA-transferase at the solventogenesis phase. These findings indicated that morphological and physiological changes in the degenerated Clostridium strain may be related to altered expression of sigma factors, providing valuable targets for strain development of Clostridium species. PMID:28194137

  4. Non-Clostridium perfringens infectious agents producing necrotic enteritis-like lesions in poultry.

    PubMed

    Uzal, F A; Sentíes-Cué, C G; Rimoldi, G; Shivaprasad, H L

    2016-06-01

    Necrotic enteritis (NE) produced by Clostridium perfringens is amongst the most prevalent enteric diseases of chickens and turkeys. However, several other bacterial, parasitic and viral agents can cause clinical signs, gross and microscopic lesions in poultry very similar to those of NE and the diseases produced by those agents need to be differentiated from NE. The main differential diagnoses for C. perfringens NE include bacterial (Clostridium colinum, Clostridium sordellii, Clostridium difficile, Pasteurella multocida, Brachyspira spp.), parasitic (Eimeria spp., Histomonas meleagridis) and viral (Duck Herpesvirus type 1, Avian Paramyxovirus type 1) diseases. Confirmation of the diagnosis of these diseases requires identification of the aetiological agents by morphological, cultural and/or molecular methods.

  5. The potential economic value of screening hospital admissions for Clostridium difficile.

    PubMed

    Bartsch, S M; Curry, S R; Harrison, L H; Lee, B Y

    2012-11-01

    Asymptomatic Clostridium difficile carriage has a prevalence reported as high as 51-85 %; with up to 84 % of incident hospital-acquired infections linked to carriers. Accurately identifying carriers may limit the spread of Clostridium difficile. Since new technology adoption depends heavily on its economic value, we developed an analytic simulation model to determine the cost-effectiveness screening hospital admissions for Clostridium difficile from the hospital and third party payer perspectives. Isolation precautions were applied to patients testing positive, preventing transmission. Sensitivity analyses varied Clostridium difficile colonization rate, infection probability among secondary cases, contact isolation compliance, and screening cost. Screening was cost-effective (i.e., incremental cost-effectiveness ratio [ICER] ≤ $50,000/QALY) for every scenario tested; all ICER values were ≤ $256/QALY. Screening was economically dominant (i.e., saved costs and provided health benefits) with a ≥10.3 % colonization rate and ≥5.88 % infection probability when contact isolation compliance was ≥25 % (hospital perspective). Under some conditions screening led to cost savings per case averted (range, $53-272). Clostridium difficile screening, coupled with isolation precautions, may be a cost-effective intervention to hospitals and third party payers, based on prevalence. Limiting Clostridium difficile transmission can reduce the number of infections, thereby reducing its economic burden to the healthcare system.

  6. The Potential Economic Value of Screening Hospital Admissions for Clostridium difficile

    PubMed Central

    Bartsch, Sarah M.; Curry, Scott R.; Harrison, Lee H.; Lee, Bruce Y.

    2012-01-01

    Purpose Asymptomatic Clostridium difficile carriage has a prevalence reported as high as 51% to 85%; with up to 84% of incident hospital-acquired infections linked to carriers. Accurately identifying carriers may limit the spread of Clostridium difficile. Methods Since new technology adoption depends heavily on its economic value, we developed a analytic simulation model to determine the cost-effectiveness screening hospital admissions for Clostridium difficile from the hospital and third party payer perspectives. Isolation precautions were applied to patients testing positive, preventing transmission. Sensitivity analyses varied Clostridium difficile colonization rate, infection probability among secondary cases, contact isolation compliance, and screening cost. Results Screening was cost-effective [i.e., incremental cost-effectiveness ratio (ICER) ≤$50,000/QALY] for every scenario tested; all ICER values ≤$256/QALY. Screening was economically dominant (i.e., saved costs and provided health benefits) with a ≥10.3% colonization rate and ≥5.88% infection probability when contact isolation compliance was ≥25% (hospital perspective). Under some conditions screening led to cost-savings per case averted (range: $53 to $272). Conclusion Clostridium difficile screening, coupled with isolation precautions, may be a cost-effective intervention to hospitals and third party payers, based on prevalence. Limiting Clostridium difficile transmission can reduce the number of infections, thereby reducing its economic burden to the healthcare system. PMID:22752150

  7. Clostridium botulinum strains producing BoNT/F4 or BoNT/F5.

    PubMed

    Raphael, Brian H; Bradshaw, Marite; Kalb, Suzanne R; Joseph, Lavin A; Lúquez, Carolina; Barr, John R; Johnson, Eric A; Maslanka, Susan E

    2014-05-01

    Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.

  8. Clostridium difficile infection

    PubMed Central

    Vedantam, Gayatri; Clark, Andrew; Chu, Michele; McQuade, Rebecca; Mallozzi, Michael; Viswanathan, V. K.

    2012-01-01

    Clostridium difficile infection is the leading cause of antibiotic- and healthcare-associated diarrhea, and its containment and treatment imposes a significant financial burden, estimated to be over $3 billion in the USA alone. Since the year 2000, CDI epidemics/outbreaks have occurred in North America, Europe and Asia. These outbreaks have been variously associated with, or attributed to, the emergence of Clostridium difficile strains with increased virulence, an increase in resistance to commonly used antimicrobials such as the fluoroquinolones, or host susceptibilities, including the use of gastric acid suppressants, to name a few. Efforts to elucidate C. difficile pathogenic mechanisms have been hampered by a lack of molecular tools, manipulatable animal models, and genetic intractability of clinical C. difficile isolates. However, in the past 5 y, painstaking efforts have resulted in the unraveling of multiple C. difficile virulence-associated pathways and mechanisms. We have recently reviewed the disease, its associated risk factors, transmission and interventions (Viswanathan, Gut Microbes 2010). This article summarizes genetics, non-toxin virulence factors, and host-cell biology associated with C. difficile pathogenesis as of 2011, and highlights those findings/factors that may be of interest as future intervention targets. PMID:22555464

  9. Metabolic engineering of Clostridium tyrobutyricum for enhanced butyric acid production from glucose and xylose.

    PubMed

    Fu, Hongxin; Yu, Le; Lin, Meng; Wang, Jufang; Xiu, Zhilong; Yang, Shang-Tian

    2017-03-01

    Clostridium tyrobutyricum is a promising microorganism for butyric acid production. However, its ability to utilize xylose, the second most abundant sugar found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, CCR in C. tyrobutyricum was eliminated by overexpressing three heterologous xylose catabolism genes (xylT, xylA and xlyB) cloned from C. acetobutylicum. Compared to the parental strain, the engineered strain Ct-pTBA produced more butyric acid (37.8g/L vs. 19.4g/L) from glucose and xylose simultaneously, at a higher xylose utilization rate (1.28g/L·h vs. 0.16g/L·h) and efficiency (94.3% vs. 13.8%), resulting in a higher butyrate productivity (0.53g/L·h vs. 0.26g/L·h) and yield (0.32g/g vs. 0.28g/g). When the initial total sugar concentration was ~120g/L, both glucose and xylose utilization rates increased with increasing their respective concentration or ratio in the co-substrates but the total sugar utilization rate remained almost unchanged in the fermentation at pH 6.0. Decreasing the pH to 5.0 significantly decreased sugar utilization rates and butyrate productivity, but the effect was more pronounced for xylose than glucose. The addition of benzyl viologen (BV) as an artificial electron carrier facilitated the re-assimilation of acetate and increased butyrate production to a final titer of 46.4g/L, yield of 0.43g/g sugar consumed, productivity of 0.87g/L·h, and acid purity of 98.3% in free-cell batch fermentation, which were the highest ever reported for butyric acid fermentation. The engineered strain with BV addition thus can provide an economical process for butyric acid production from lignocellulosic biomass. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Promoters and proteins from Clostridium thermocellum and uses thereof

    DOEpatents

    Wu, J. H. David; Newcomb, Michael

    2012-11-13

    The present invention relates to an inducible and a high expression nucleic acid promoter isolated from Clostridium thermocellum. These promoters are useful for directing expression of a protein or polypeptide encoded by a nucleic acid molecule operably associated with the nucleic acid promoters. The present invention also relates to nucleic acid constructs including the C. thermocellum promoters, and expression vectors and hosts containing such nucleic acid constructs. The present invention also relates to protein isolated from Clostridium thermocellum, including a repressor protein. The present invention also provides methods of using the isolated promoters and proteins from Clostridium thermocellum, including methods for directing inducible in vitro and in vivo expression of a protein or polypeptide in a host, and methods of producing ethanol from a cellulosic biomass.

  11. Clostridium perfringens in the Environment1

    PubMed Central

    Matches, Jack R.; Liston, John; Curran, Donald

    1974-01-01

    Clostridium perfringens was isolated from samples collected in Puget Sound in the state of Washington and areas considered as possible sources of these organisms to Puget Sound. The distribution of C. perfringens in the total Clostridium population was determined for fish gut contents and sediments collected in highly polluted and less polluted areas, sewage samples, freshwater sediments, and soils. The greatest numbers of C. perfringens were obtained from marine sediments collected near the sewage outfall at West Point. Fewer isolates were made from fish collected from less polluted stations, although the number of C. perfringens remained high in sediments from other Puget Sound stations. The proportion of C. perfringens in the total Clostridium populations varied between 56 and 71% for sewage samples and only 0.4 to 4.1% for freshwater sediments and soil samples. Only 25 C. perfringens isolates out of 137 from fish guts, or 18%, were identifiable serologically and these fell into 12 groups. C. perfringens were fed to fish and the fish were sacrificed after varying lengths of time. The number of C. perfringens increased slightly in the gut during the first 24 h and then the numbers decreased rapidly for the next 120 h. PMID:4371684

  12. Dissemination of Clostridium difficile in food and the environment: Significant sources of C. difficile community-acquired infection?

    PubMed

    Warriner, K; Xu, C; Habash, M; Sultan, S; Weese, S J

    2017-03-01

    Clostridium difficile is a significant pathogen with over 300 000 cases reported in North America annually. Previously, it was thought that C. difficile was primarily a clinically associated infection. However, through the use of whole genome sequencing it has been revealed that the majority of cases are community acquired. The source of community-acquired C. difficile infections (CDI) is open to debate with foodborne being one route considered. Clostridium difficile fits the criteria of a foodborne pathogen with respect to being commonly encountered in a diverse range of foods that includes meat, seafood and fresh produce. However, no foodborne illness outbreaks have been directly linked to C. difficile there is also no conclusive evidence that its spores can germinate in food matrices. This does not exclude food as a potential vehicle but it is likely that the pathogen is also acquired through zoonosis and the environment. The most significant factor that defines susceptibility to CDI is the host microbiome and functioning immune system. In this respect, effective control can be exercised by reducing the environmental burden of C. difficile along with boosting the host defences against the virulent enteric pathogen. © 2016 The Society for Applied Microbiology.

  13. Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks.

    PubMed

    Irikura, Daisuke; Monma, Chie; Suzuki, Yasunori; Nakama, Akiko; Kai, Akemi; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko; Kamata, Yoichi

    2015-01-01

    There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins' gene(s) among the Genus Clostridium.

  14. Enhancement of n-butanol production by in situ butanol removal using permeating-heating-gas stripping in acetone-butanol-ethanol fermentation.

    PubMed

    Chen, Yong; Ren, Hengfei; Liu, Dong; Zhao, Ting; Shi, Xinchi; Cheng, Hao; Zhao, Nan; Li, Zhenjian; Li, Bingbing; Niu, Huanqing; Zhuang, Wei; Xie, Jingjing; Chen, Xiaochun; Wu, Jinglan; Ying, Hanjie

    2014-07-01

    Butanol recovery from acetone-butanol-ethanol (ABE) fed-batch fermentation using permeating-heating-gas was determined in this study. Fermentation was performed with Clostridium acetobutylicum B3 in a fibrous bed bioreactor and permeating-heating-gas stripping was used to eliminate substrate and product inhibition, which normally restrict ABE production and sugar utilization to below 20 g/L and 60 g/L, respectively. In batch fermentation (without permeating-heating-gas stripping), C. acetobutylicum B3 utilized 60 g/L glucose and produced 19.9 g/L ABE and 12 g/L butanol, while in the integrated process 290 g/L glucose was utilized and 106.27 g/L ABE and 66.09 g/L butanol were produced. The intermittent gas stripping process generated a highly concentrated condensate containing approximately 15% (w/v) butanol, 4% (w/v) acetone, a small amount of ethanol (<1%), and almost no acids, resulting in a highly concentrated butanol solution [∼ 70% (w/v)] after phase separation. Butanol removal by permeating-heating-gas stripping has potential for commercial ABE production. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Controlling autonomous underwater floating platforms using bacterial fermentation.

    PubMed

    Biffinger, Justin C; Fitzgerald, Lisa A; Howard, Erinn C; Petersen, Emily R; Fulmer, Preston A; Wu, Peter K; Ringeisen, Bradley R

    2013-01-01

    Biogenic gas has a wide range of energy applications from being used as a source for crude bio-oil components to direct ignition for heating. The current study describes the use of biogenic gases from Clostridium acetobutylicum for a new application-renewable ballast regeneration for autonomous underwater devices. Uninterrupted (continuous) and blocked flow (pressurization) experiments were performed to determine the overall biogas composition and total volume generated from a semirigid gelatinous matrix. For stopped flow experiments, C. acetobutylicum generated a maximum pressure of 55 psi over 48 h composed of 60 % hydrogen gas when inoculated in a 5 % agar (w/v) support with 5 % glucose (w/v) in the matrix. Typical pressures over 24 h at 318 K ranged from 10 to 33 psi. These blocked flow experiments show for the first time the use of microbial gas production as a way to repressurize gas cylinders. Continuous flow experiments successfully demonstrated how to deliver biogas to an open ballast control configuration for deployable underwater platforms. This study is a starting point for engineering and microbiology investigations of biogas which will advance the integration of biology within autonomous systems.

  16. Mapping of ribosomal 23S ribosomal RNA modifications in Clostridium sporogenes.

    PubMed

    Kirpekar, Finn; Hansen, Lykke H; Mundus, Julie; Tryggedsson, Stine; Teixeira Dos Santos, Patrícia; Ntokou, Eleni; Vester, Birte

    2018-06-27

    All organisms contain RNA modifications in their ribosomal RNA (rRNA), but the importance, positions and exact function of these are still not fully elucidated. Various functions such as stabilising structures, controlling ribosome assembly and facilitating interactions have been suggested and in some cases substantiated. Bacterial rRNA contains much fewer modifications than eukaryotic rRNA. The rRNA modification patterns in bacteria differ from each other, but too few organisms have been mapped to draw general conclusions. This study maps 23S ribosomal RNA modifications in Clostridium sporogenes that can be characterised as a non-toxin producing Clostridium botulinum. Clostridia are able to sporulate and thereby survive harsh conditions, and are in general considered to be resilient to antibiotics. Selected regions of the 23S rRNA were investigated by mass spectrometry and by primer extension analysis to pinpoint modified sites and the nature of the modifications. Apparently, C. sporogenes 23S rRNA contains few modifications compared to other investigated bacteria. No modifications were identified in domain II and III of 23S rRNA. Three modifications were identified in domain IV, all of which have also been found in other organisms. Two unusual modifications were identified in domain V, methylated dihydrouridine at position U2449 and dihydrouridine at position U2500 (Escherichia coli numbering), in addition to four previously known modified positions. The enzymes responsible for the modifications were searched for in the C. sporogenes genome using BLAST with characterised enzymes as query. The search identified genes potentially coding for RNA modifying enzymes responsible for most of the found modifications.

  17. Mathematical modeling and growth kinetics of Clostridium sporogenes in cooked beef

    USDA-ARS?s Scientific Manuscript database

    Clostridium sporogenes PA 3679 is a common surrogate for proteolytic Clostridium botulinum for thermal process development and validation. However, little information is available concerning the growth kinetics of C. sporogenes in food. Therefore, the objective of this study was to investigate the...

  18. Clostridium botulinum type E occurs and grows in the alga Cladophora glomerata

    USGS Publications Warehouse

    Byappanahalli, M.N.; Whitman, R.L.

    2009-01-01

    In recent years, massive avian die-offs from Clostridium botulinum type E infection have occurred in the Sleeping Bear Dunes National Lakeshore (SLBE) area of Lake Michigan. These outbreaks have been coincidental with massive blooms of the green algae Cladophora, mostly Cladophora glomerata. We tested the hypothesis that Clostridium botulinum type E can grow under suitable conditions in these algal mats. In a lab mesocosm study, Cladophora from four outbreak-impacted beaches from SLBE were compared with four unimpacted beaches in the Milwaukee–Racine area for bontE gene of Clostridium botulinum. Frequency of the bontE gene was higher after incubation (25 °C for up to 6 weeks) of Cladophora from impacted vs. the unimpacted area. Since no type E gene was detected initially in Cladophora from any of the eight locations, we infer that the increased occurrence of type E gene arose from spore germination or vegetative Clostridium growth within the existing algal mats of SLBE. Moreover, we found that the congener Clostridium perfringens readily grows in mesocosms containing Cladophora.

  19. Global Analysis of the Sporulation Pathway of Clostridium difficile

    PubMed Central

    Fimlaid, Kelly A.; Bond, Jeffrey P.; Schutz, Kristin C.; Putnam, Emily E.; Leung, Jacqueline M.; Lawley, Trevor D.; Shen, Aimee

    2013-01-01

    The Gram-positive, spore-forming pathogen Clostridium difficile is the leading definable cause of healthcare-associated diarrhea worldwide. C. difficile infections are difficult to treat because of their frequent recurrence, which can cause life-threatening complications such as pseudomembranous colitis. The spores of C. difficile are responsible for these high rates of recurrence, since they are the major transmissive form of the organism and resistant to antibiotics and many disinfectants. Despite the importance of spores to the pathogenesis of C. difficile, little is known about their composition or formation. Based on studies in Bacillus subtilis and other Clostridium spp., the sigma factors σF, σE, σG, and σK are predicted to control the transcription of genes required for sporulation, although their specific functions vary depending on the organism. In order to determine the roles of σF, σE, σG, and σK in regulating C. difficile sporulation, we generated loss-of-function mutations in genes encoding these sporulation sigma factors and performed RNA-Sequencing to identify specific sigma factor-dependent genes. This analysis identified 224 genes whose expression was collectively activated by sporulation sigma factors: 183 were σF-dependent, 169 were σE-dependent, 34 were σG-dependent, and 31 were σK-dependent. In contrast with B. subtilis, C. difficile σE was dispensable for σG activation, σG was dispensable for σK activation, and σF was required for post-translationally activating σG. Collectively, these results provide the first genome-wide transcriptional analysis of genes induced by specific sporulation sigma factors in the Clostridia and highlight that diverse mechanisms regulate sporulation sigma factor activity in the Firmicutes. PMID:23950727

  20. ▼ Bezlotoxumab for prevention of recurrence of Clostridium difficile infection.

    PubMed

    2018-05-01

    Clostridium difficile infection is a significant cause of infectious diarrhoea and is associated with considerable morbidity and mortality. 1,2 Management of Clostridium difficile infection often requires treatment with antibiotics (metronidazole, vancomycin or fidaxomicin) alongside supportive care to manage hydration, electrolytes and nutrition. However, the risk of recurrence is approximately 20%. 2 Here, we review the evidence for bezlotoxumab (▼ Zinplava - Merck Sharp & Dohme Limited), a monoclonal antibody licensed for the prevention of recurrence of Clostridium difficile in adults who are at high risk of recurrence. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  2. Submission of nucleotide sequence clostridium perfringens alpha-toxin to genbank database

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens (CP) is ubiquitous in the nature, and a normal inhabitant in the intestinal tracts of animals and humans. However, pathogenic CP is also a causative agent of poultry disease necrotic enteritis (NE). Clostridium perfringens alpha toxin is a toxin produced by the bacterium Clo...

  3. Prevention of Infection Due to Clostridium difficile.

    PubMed

    Cooper, Christopher C; Jump, Robin L P; Chopra, Teena

    2016-12-01

    Clostridium difficile is one of the foremost nosocomial pathogens. Preventing infection is particularly challenging. Effective prevention efforts typically require a multifaceted bundled approach. A variety of infection control procedures may be advantageous, including strict hand decontamination with soap and water, contact precautions, and using chlorine-containing decontamination agents. Additionally, risk factor reduction can help reduce the burden of disease. The risk factor modification is principally accomplished though antibiotic stewardship programs. Unfortunately, most of the current evidence for prevention is in acute care settings. This review focuses on preventative approaches to reduce the incidence of Clostridium difficile infection in healthcare settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Coinfection and Emergence of Rifamycin Resistance during a Recurrent Clostridium difficile Infection.

    PubMed

    Stevenson, Emma C; Major, Giles A; Spiller, Robin C; Kuehne, Sarah A; Minton, Nigel P

    2016-11-01

    Clostridium difficile (Peptoclostridium difficile) is a common health care-associated infection with a disproportionately high incidence in elderly patients. Disease symptoms range from mild diarrhea to life-threatening pseudomembranous colitis. Around 20% of patients may suffer recurrent disease, which often requires rehospitalization of patients. C. difficile was isolated from stool samples from a patient with two recurrent C. difficile infections. PCR ribotyping, whole-genome sequencing, and phenotypic assays were used to characterize these isolates. Genotypic and phenotypic screening of C. difficile isolates revealed multiple PCR ribotypes present and the emergence of rifamycin resistance during the infection cycle. Understanding both the clinical and bacterial factors that contribute to the course of recurrent infection could inform strategies to reduce recurrence. (This study has been registered at ClinicalTrials.gov under registration no. NCT01670149.). Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Thermolabile triose phosphate isomerase in a psychrophilic Clostridium.

    NASA Technical Reports Server (NTRS)

    Shing, Y. W.; Akagi, J. M.; Himes, R. H.

    1972-01-01

    It was found that a psychrophilic Clostridium contains a triose phosphate isomerase which is very labile at moderate temperatures. An investigation showed that the optimal growth temperature of the psychrophile was between 15 and 20 deg C. No growth occurred at 25 deg C. The thermostability of the glycolytic enzymes in the cell-free extracts of Clostridium sp. strain 69 was studied. The data obtained show that the triose phosphate isomerase is quite labile at moderate temperatures. The instability of the enzyme is sufficient to explain the low maximum growth temperature of the psychrophile.

  6. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures

    PubMed Central

    Repar, Jelena; Warnecke, Tobias

    2017-01-01

    Abstract Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin–terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus–Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. PMID:28407093

  7. Detection of Mixed Infection from Bacterial Whole Genome Sequence Data Allows Assessment of Its Role in Clostridium difficile Transmission

    PubMed Central

    Eyre, David W.; Cule, Madeleine L.; Griffiths, David; Crook, Derrick W.; Peto, Tim E. A.

    2013-01-01

    Bacterial whole genome sequencing offers the prospect of rapid and high precision investigation of infectious disease outbreaks. Close genetic relationships between microorganisms isolated from different infected cases suggest transmission is a strong possibility, whereas transmission between cases with genetically distinct bacterial isolates can be excluded. However, undetected mixed infections—infection with ≥2 unrelated strains of the same species where only one is sequenced—potentially impairs exclusion of transmission with certainty, and may therefore limit the utility of this technique. We investigated the problem by developing a computationally efficient method for detecting mixed infection without the need for resource-intensive independent sequencing of multiple bacterial colonies. Given the relatively low density of single nucleotide polymorphisms within bacterial sequence data, direct reconstruction of mixed infection haplotypes from current short-read sequence data is not consistently possible. We therefore use a two-step maximum likelihood-based approach, assuming each sample contains up to two infecting strains. We jointly estimate the proportion of the infection arising from the dominant and minor strains, and the sequence divergence between these strains. In cases where mixed infection is confirmed, the dominant and minor haplotypes are then matched to a database of previously sequenced local isolates. We demonstrate the performance of our algorithm with in silico and in vitro mixed infection experiments, and apply it to transmission of an important healthcare-associated pathogen, Clostridium difficile. Using hospital ward movement data in a previously described stochastic transmission model, 15 pairs of cases enriched for likely transmission events associated with mixed infection were selected. Our method identified four previously undetected mixed infections, and a previously undetected transmission event, but no direct transmission between

  8. Typing Clostridium difficile strains based on tandem repeat sequences

    PubMed Central

    2009-01-01

    Background Genotyping of epidemic Clostridium difficile strains is necessary to track their emergence and spread. Portability of genotyping data is desirable to facilitate inter-laboratory comparisons and epidemiological studies. Results This report presents results from a systematic screen for variation in repetitive DNA in the genome of C. difficile. We describe two tandem repeat loci, designated 'TR6' and 'TR10', which display extensive sequence variation that may be useful for sequence-based strain typing. Based on an investigation of 154 C. difficile isolates comprising 75 ribotypes, tandem repeat sequencing demonstrated excellent concordance with widely used PCR ribotyping and equal discriminatory power. Moreover, tandem repeat sequences enabled the reconstruction of the isolates' largely clonal population structure and evolutionary history. Conclusion We conclude that sequence analysis of the two repetitive loci introduced here may be highly useful for routine typing of C. difficile. Tandem repeat sequence typing resolves phylogenetic diversity to a level equivalent to PCR ribotypes. DNA sequences may be stored in databases accessible over the internet, obviating the need for the exchange of reference strains. PMID:19133124

  9. Identification and Characterization of a New Enterotoxin Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks

    PubMed Central

    Suzuki, Yasunori; Nakama, Akiko; Kai, Akemi; Fukui-Miyazaki, Aya; Horiguchi, Yasuhiko; Yoshinari, Tomoya; Sugita-Konishi, Yoshiko; Kamata, Yoichi

    2015-01-01

    There is a strain of Clostridium perfringens, W5052, which does not produce a known enterotoxin. We herein report that the strain W5052 expressed a homologue of the iota-like toxin components sa and sb of C. spiroforme, named Clostridium perfringens iota-like enterotoxin, CPILE-a and CPILE-b, respectively, based on the results of a genome sequencing analysis and a systematic protein screening. In the nicotinamide glyco-hydrolase (NADase) assay the hydrolysis activity was dose-dependently increased by the concentration of rCPILE-a, as judged by the mass spectrometry analysis. In addition, the actin monomer of the lysates of Vero and L929 cells were radiolabeled in the presence of [32P]NAD and rCPILE-a. These findings indicated that CPILE-a possesses ADP-ribosylation activity. The culture supernatant of W5052 facilitated the rounding and killing of Vero and L929 cells, but the rCPILE-a or a non-proteolyzed rCPILE-b did not. However, a trypsin-treated rCPILE-b did. Moreover, a mixture of rCPILE-a and the trypsin-treated rCPILE-b enhanced the cell rounding and killing activities, compared with that induced by the trypsin-treated rCPILE-b alone. The injection of the mixture of rCPILE-a and the trypsin-treated rCPILE-b into an ileum loop of rabbits evoked the swelling of the loop and accumulation of the fluid dose-dependently, suggesting that CPILE possesses enterotoxic activity. The evidence presented in this communication will facilitate the epidemiological, etiological, and toxicological studies of C. perfringens food poisoning, and also stimulate studies on the transfer of the toxins’ gene(s) among the Genus Clostridium. PMID:26584048

  10. Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being.

    PubMed

    Stiles, Bradley G; Pradhan, Kisha; Fleming, Jodie M; Samy, Ramar Perumal; Barth, Holger; Popoff, Michel R

    2014-09-05

    Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin.

  11. A case of Clostridium septicum spontaneous gas gangrene.

    PubMed

    Dylewski, Joe; Drummond, Robert; Rowen, John

    2007-03-01

    Severe skin and soft tissue infections (SSTIs) are often life-threatening emergencies that require a rapid diagnosis. Gas gangrene is one of the most fulminant types of SSTI and is usually caused by Clostridium perfringens' contamination of an open wound. Although gas gangrene is usually associated with fecally contaminated wounds, "spontaneous" cases occur and are most commonly caused by Clostridium (C.) septicum. We report a case of spontaneous gas gangrene caused by C. septicum that only became manifest while the patient was being monitored in the emergency department. We also review the diagnosis and treatment aspects of this entity.

  12. Submission of nucleotide sequence clostridium perfringens elongation factor-tu to genbank database

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens (CP) is ubiquitous in the nature, and a normal inhabitant in the intestinal tracts of animals and humans. However, pathogenic CP is also a causative agent of poultry disease necrotic enteritis (NE). Clostridium-related poultry diseases such as necrotic enteritis (NE) and gang...

  13. Flagellar glycosylation in Clostridium botulinum.

    PubMed

    Twine, Susan M; Paul, Catherine J; Vinogradov, Evgeny; McNally, David J; Brisson, Jean-Robert; Mullen, James A; McMullin, David R; Jarrell, Harold C; Austin, John W; Kelly, John F; Logan, Susan M

    2008-09-01

    Flagellins from Clostridium botulinum were shown to be post-translationally modified with novel glycan moieties by top-down MS analysis of purified flagellin protein from strains of various toxin serotypes. Detailed analyses of flagellin from two strains of C. botulinum demonstrated that the protein is modified by a novel glycan moiety of mass 417 Da in O-linkage. Bioinformatic analysis of available C. botulinum genomes identified a flagellar glycosylation island containing homologs of genes recently identified in Campylobacter coli that have been shown to be responsible for the biosynthesis of legionaminic acid derivatives. Structural characterization of the carbohydrate moiety was completed utilizing both MS and NMR spectroscopy, and it was shown to be a novel legionaminic acid derivative, 7-acetamido-5-(N-methyl-glutam-4-yl)-amino-3,5,7,9-tetradeoxy-D-glycero-alpha-D-galacto-nonulosonic acid, (alphaLeg5GluNMe7Ac). Electron transfer dissociation MS with and without collision-activated dissociation was utilized to map seven sites of O-linked glycosylation, eliminating the need for chemical derivatization of tryptic peptides prior to analysis. Marker ions for novel glycans, as well as a unique C-terminal flagellin peptide marker ion, were identified in a top-down analysis of the intact protein. These ions have the potential for use in for rapid detection and discrimination of C. botulinum cells, indicating botulinum neurotoxin contamination. This is the first report of glycosylation of Gram-positive flagellar proteins by the 'sialic acid-like' nonulosonate sugar, legionaminic acid.

  14. Complete genome sequence of Lactobacillus johnsonii FI9785, a competitive exclusion agent against pathogens in poultry.

    PubMed

    Wegmann, Udo; Overweg, Karin; Horn, Nikki; Goesmann, Alexander; Narbad, Arjan; Gasson, Michael J; Shearman, Claire

    2009-11-01

    Lactobacillus johnsonii is a member of the acidophilus group of lactobacilli. Because of their probiotic properties, including attachment to epithelial cells, immunomodulation, and competitive exclusion of pathogens, representatives of this group are being intensively studied. Here we report the complete annotated genome sequence of Lactobacillus johnsonii FI9785, a strain which prevents the colonization of specific-pathogen-free chicks by Clostridium perfringens.

  15. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission.

    PubMed

    Martin, Jessica S H; Monaghan, Tanya M; Wilcox, Mark H

    2016-04-01

    Clostridium difficile infection (CDI) continues to affect patients in hospitals and communities worldwide. The spectrum of clinical disease ranges from mild diarrhoea to toxic megacolon, colonic perforation and death. However, this bacterium might also be carried asymptomatically in the gut, potentially leading to 'silent' onward transmission. Modern technologies, such as whole-genome sequencing and multi-locus variable-number tandem-repeat analysis, are helping to track C. difficile transmission across health-care facilities, countries and continents, offering the potential to illuminate previously under-recognized sources of infection. These typing strategies have also demonstrated heterogeneity in terms of CDI incidence and strain types reflecting different stages of epidemic spread. However, comparison of CDI epidemiology, particularly between countries, is challenging due to wide-ranging approaches to sampling and testing. Diagnostic strategies for C. difficile are complicated both by the wide range of bacterial targets and tests available and the need to differentiate between toxin-producing and non-toxigenic strains. Multistep diagnostic algorithms have been recommended to improve sensitivity and specificity. In this Review, we describe the latest advances in the understanding of C. difficile epidemiology, transmission and diagnosis, and discuss the effect of these developments on the clinical management of CDI.

  16. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V

    2011-01-01

    Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assaysmore » confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.« less

  17. Clostridium and Bacillus Binary Enterotoxins: Bad for the Bowels, and Eukaryotic Being

    PubMed Central

    Stiles, Bradley G.; Pradhan, Kisha; Fleming, Jodie M.; Samy, Ramar Perumal; Barth, Holger; Popoff, Michel R.

    2014-01-01

    Some pathogenic spore-forming bacilli employ a binary protein mechanism for intoxicating the intestinal tracts of insects, animals, and humans. These Gram-positive bacteria and their toxins include Clostridium botulinum (C2 toxin), Clostridium difficile (C. difficile toxin or CDT), Clostridium perfringens (ι-toxin and binary enterotoxin, or BEC), Clostridium spiroforme (C. spiroforme toxin or CST), as well as Bacillus cereus (vegetative insecticidal protein or VIP). These gut-acting proteins form an AB complex composed of ADP-ribosyl transferase (A) and cell-binding (B) components that intoxicate cells via receptor-mediated endocytosis and endosomal trafficking. Once inside the cytosol, the A components inhibit normal cell functions by mono-ADP-ribosylation of globular actin, which induces cytoskeletal disarray and death. Important aspects of each bacterium and binary enterotoxin will be highlighted in this review, with particular focus upon the disease process involving the biochemistry and modes of action for each toxin. PMID:25198129

  18. In vitro and in vivo antagonistic activity of new probiotic culture against Clostridium difficile and Clostridium perfringens.

    PubMed

    Golić, Nataša; Veljović, Katarina; Popović, Nikola; Djokić, Jelena; Strahinić, Ivana; Mrvaljević, Igor; Terzić-Vidojević, Amarela

    2017-05-06

    Genus Clostridium accompanies more than 200 known species and at least 30 among them are associated with human and animal diseases. At the moment, the treatment of clostridial infections is based on use of antibiotics. However, due to the European ban on the use of antibiotics in livestock production, novel therapeutic strategies for treatment of these hardly curable infections have been evaluated. Hence, in this study the antimicrobial effect of newly designed probiotic culture consisted of natural isolates Lactobacillus helveticus BGRA43, Lactobacillus fermentum BGHI14 and Streptococcus thermophilus BGVLJ1-44 against Clostridium difficile and Clostridium perfringens was analyzed. The probiotic culture showed strong in vitro antimicrobial effect on C. difficile (human clinical isolate). In addition, individual strains and the probiotic combination exhibited immunomodulatory activity. The probiotic combination significantly increased the proliferation of GALT lymphocytes. At the other hand, none of the bacterial treatments (individual strains and the combination) induced the production of proinflammatory cytokines IL-6 and IL-1β by intestinal epithelial cells, Caco-2. Interestingly, Caco-2 cells exposed to the probiotic combination produced significantly elevated amount of TGFβ pointing to potential protecting effect of the probiotic. In addition, the results of field trial on spontaneously infected goats revealed reduction of C. perfringens in goats (below the detection threshold) after the probiotic treatment. The results of this study indicated that the novel probiotic deserves to be further investigated as a promising antimicrobial agent against C. difficile and C. perfringens.

  19. Hungatella effluvii gen. nov., sp. nov., an obligately anaerobic bacterium isolated from an effluent treatment plant, and reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov.

    PubMed

    Kaur, Sukhpreet; Yawar, Mir; Kumar, P Anil; Suresh, K

    2014-03-01

    A Gram-stain-positive, rod-shaped, spore-forming and strictly anaerobic bacterium, designated UB-B.2(T), was isolated from an industrial effluent anaerobic digester sample. It grew optimally at 30 °C and pH 7.0. Comparative analysis of the 16S rRNA gene sequence confirmed that strain UB-B.2(T) was closely related to Clostridium hathewayi DSM 13479(T) (97.84% similarity), a member of rRNA gene cluster XIVa of the genus Clostridium, and formed a coherent cluster with other related members of the Blautia (Clostridium) coccoides rRNA group in phylogenetic analyses. The end products of glucose fermentation by strain UB-B.2(T) were acetate and propionate. The G+C content of the DNA was 51.4 mol%. Although strain UB-B.2(T) showed 97.8% 16S rRNA gene sequence identity to the type strain of C. hathewayi, it exhibited only 38.4% relatedness at the whole-genome level. It also showed differences from its closest phylogenetic relative, C. hathewayi DSM 13479(T), in phenotypic characteristics such as hydrolysis of aesculin, starch and urea and fermentation end products. Both strains showed phenotypic differences from the members of rRNA gene cluster XIVa of the genus Clostridium. Based on these differences, C. hathewayi DSM 13479(T) and strain UB-B.2(T) were identified as representatives of a new genus of the family Clostridiaceae. Thus, we propose the reclassification of Clostridium hathewayi as Hungatella hathewayi gen. nov., comb. nov., the type species of the new genus (type strain DSM 13479(T) = CCUG 43506(T) = MTCC 10951(T)). Strain UB-B.2(T) ( = MTCC 11101(T) = DSM 24995(T)) is assigned to the novel species Hungatella effluvii gen. nov., sp. nov as the type strain.

  20. Structural Insight into the Clostridium difficile Ethanolamine Utilisation Microcompartment

    PubMed Central

    Faulds-Pain, Alexandra; Lewis, Richard J.; Marles-Wright, Jon

    2012-01-01

    Bacterial microcompartments form a protective proteinaceous barrier around metabolic enzymes that process unstable or toxic chemical intermediates. The genome of the virulent, multidrug-resistant Clostridium difficile 630 strain contains an operon, eut, encoding a bacterial microcompartment with genes for the breakdown of ethanolamine and its utilisation as a source of reduced nitrogen and carbon. The C. difficile eut operon displays regulatory genetic elements and protein encoding regions in common with homologous loci found in the genomes of other bacteria, including the enteric pathogens Salmonella enterica and Enterococcus faecalis. The crystal structures of two microcompartment shell proteins, CD1908 and CD1918, and an uncharacterised protein with potential enzymatic activity, CD1925, were determined by X-ray crystallography. CD1908 and CD1918 display the same protein fold, though the order of secondary structure elements is permuted in CD1908 and this protein displays an N-terminal β-strand extension. These proteins form hexamers with molecules related by crystallographic and non-crystallographic symmetry. The structure of CD1925 has a cupin β-barrel fold and a putative active site that is distinct from the metal-ion dependent catalytic cupins. Thin-section transmission electron microscopy of Escherichia coli over-expressing eut proteins indicates that CD1918 is capable of self-association into arrays, suggesting an organisational role for CD1918 in the formation of this microcompartment. The work presented provides the basis for further study of the architecture and function of the C. difficile eut microcompartment, its role in metabolism and the wider consequences of intestinal colonisation and virulence in this pathogen. PMID:23144756

  1. Lumbar Discitis Caused by Clostridium perfringens

    PubMed Central

    Popoff, M. R.; Degand, Nicolas; Lotte, Laurene; Bouvet, Philippe; Baudin, Guillaume; Cua, Eric; Roger, Pierre-Marie; Ruimy, Raymond

    2014-01-01

    We report here a rare case of chronic lumbar discitis caused by Clostridium perfringens in an elderly patient that was treated with a combination of β-lactams and clindamycin. Molecular analysis performed on the strain revealed an unusual toxin gene pattern. PMID:25056327

  2. A penicillin- and metronidazole-resistant Clostridium botulinum strain responsible for an infant botulism case.

    PubMed

    Mazuet, C; Yoon, E-J; Boyer, S; Pignier, S; Blanc, T; Doehring, I; Meziane-Cherif, D; Dumant-Forest, C; Sautereau, J; Legeay, C; Bouvet, P; Bouchier, C; Quijano-Roy, S; Pestel-Caron, M; Courvalin, P; Popoff, M R

    2016-07-01

    The clinical course of a case of infant botulism was characterized by several relapses despite therapy with amoxicillin and metronidazole. Botulism was confirmed by identification of botulinum toxin and Clostridium botulinum in stools. A C. botulinum A2 strain resistant to penicillins and with heterogeneous resistance to metronidazole was isolated from stool samples up to 110 days after onset. Antibiotic susceptibility was tested by disc agar diffusion and MICs were determined by Etest. Whole genome sequencing allowed detection of a gene cluster composed of blaCBP for a novel penicillinase, blaI for a regulator, and blaR1 for a membrane-bound penicillin receptor in the chromosome of the C. botulinum isolate. The purified recombinant penicillinase was assayed. Resistance to β-lactams was in agreement with the kinetic parameters of the enzyme. In addition, the β-lactamase gene cluster was found in three C. botulinum genomes in databanks and in two of 62 genomes of our collection, all the strains belonging to group I C. botulinum. This is the first report of a C. botulinum isolate resistant to penicillins. This stresses the importance of antibiotic susceptibility testing for adequate therapy of botulism. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Clostridium botulinum: a bug with beauty and weapon.

    PubMed

    Shukla, H D; Sharma, S K

    2005-01-01

    Clostridium botulinum, a Gram-positive, anaerobic spore-forming bacteria, is distinguished by its significant clinical applications as well as its potential to be used as bioterror agent. Growing cells secrete botulinum neurotoxin (BoNT), the most poisonous of all known poisons. While BoNT is the causative agent of deadly neuroparalytic botulism, it also serves as a remarkably effective treatment for involuntary muscle disorders such as blepharospasm, strabismus, hemifacial spasm, certain types of spasticity in children, and other ailments. BoNT is also used in cosmetology for the treatment of glabellar lines, and is well-known as the active component of the anti-aging medications Botox and Dysport. In addition, recent reports show that botulinum neurotoxin can be used as a tool for pharmaceutical drug delivery. However, BoNT remains the deadliest of all toxins, and is viewed by biodefense researchers as a possible agent of bioterrorism (BT). Among seven serotypes, C. botulinum type A is responsible for the highest mortality rate in botulism, and thus has the greatest potential to act as biological weapon. Genome sequencing of C. botulinum type A Hall strain (ATCC 3502) is now complete, and has shown the genome size to be 3.89 Mb with a G+C content of approximately 28.2%. The bacterium harbors a 16.3 kb plasmid with a 26.8% G+C content--slightly lower than that of the chromosome. Most of the virulence factors in C. botulinum are chromosomally encoded; bioinformatic analysis of the genome sequence has shown that the plasmid does not harbor toxin genes or genes for related virulence factors. Interestingly, the plasmid does harbor genes essential to replication, including dnaE, which encodes the alpha subunit of DNA polymerase III which has close similarity with its counterpart in C. perfringens strain 13. The plasmid also contains similar genes to those that encode the ABC-type multidrug transport ATPase, and permease. The presence of ABC-type multidrug transport

  4. Emergence and global spread of epidemic healthcare-associated Clostridium difficile

    PubMed Central

    He, Miao; Miyajima, Fabio; Roberts, Paul; Ellison, Louise; Pickard, Derek J.; Martin, Melissa J.; Connor, Thomas R.; Harris, Simon R.; Fairley, Derek; Bamford, Kathleen B.; D’Arc, Stephanie; Brazier, Jon; Brown, Derek; Coia, John E.; Douce, Gill; Gerding, Dale; Kim, Hee Jung; Koh, Tse Hsien; Kato, Haru; Senoh, Mitsutoshi; Louie, Tom; Michell, Stephen; Butt, Emma; Peacock, Sharon J.; Brown, Nick M.; Riley, Tom; Songer, Glen; Wilcox, Mark; Pirmohamed, Munir; Kuijper, Ed; Hawkey, Peter; Wren, Brendan W.; Dougan, Gordon; Parkhill, Julian; Lawley, Trevor D.

    2012-01-01

    Epidemic Clostridium difficile (027/BI/NAP1) rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key moments in the evolutionary history leading to its emergence and subsequent patterns of global spread remain unknown. Here we define the global population structure of C. difficile 027/BI/NAP1 based on whole-genome sequencing and phylogenetic analysis. We demonstrate that two distinct epidemic lineages, FQR1 and FQR2, not one as previously thought, emerged in North America within a relatively short period after acquiring the same fluoroquinolone resistance mutation and a highly-related conjugative transposon. The two epidemic lineages displayed distinct patterns of global spread, and the FQR2 lineage spread more widely leading to healthcare outbreaks in the UK, continental Europe and Australia. Our analysis identifies key genetic changes linked to the rapid trans-continental dissemination of epidemic C. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system. PMID:23222960

  5. Clostridium difficile Infection.

    PubMed

    Bartlett, John G

    2017-09-01

    Clostridium difficile infection is a major health care challenge in terms of patient and economic consequences. For the patient, it is a morbid and sometimes a life-threatening iatrogenic complication of antibiotic treatment. In the United States, the provider's institution may face financial penalties, because the Centers for Disease Control and Prevention views this as an iatrogenic health care-associated complication that may not be reimbursable by the Centers for Medicare and Medicaid Services; this has resulted in substantial incentives for new approaches to prevention and treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1

    PubMed Central

    Ehlers, Claudia; Veit, Katharina; Gottschalk, Gerhard; Schmitz, Ruth A.

    2002-01-01

    The mesophilic methanogenic archaeon Methanosarcina mazei strain Gö1 is able to utilize molecular nitrogen (N2) as its sole nitrogen source. We have identified and characterized a single nitrogen fixation (nif) gene cluster in M. mazei Gö1 with an approximate length of 9 kbp. Sequence analysis revealed seven genes with sequence similarities to nifH, nifI1, nifI2, nifD, nifK, nifE and nifN, similar to other diazotrophic methanogens and certain bacteria such as Clostridium acetobutylicum, with the two glnB-like genes (nifI1 and nifI2) located between nifH and nifD. Phylogenetic analysis of deduced amino acid sequences for the nitrogenase structural genes of M. mazei Gö1 showed that they are most closely related to Methanosarcina barkeri nif2 genes, and also closely resemble those for the corresponding nif products of the gram-positive bacterium C. acetobutylicum. Northern blot analysis and reverse transcription PCR analysis demonstrated that the M. mazei nif genes constitute an operon transcribed only under nitrogen starvation as a single 8 kb transcript. Sequence analysis revealed a palindromic sequence at the transcriptional start site in front of the M. mazei nifH gene, which may have a function in transcriptional regulation of the nif operon. PMID:15803652

  7. Submission of nucleotide sequence clostridium perfringens pyruvate-flavodoxin oxi-reductase to genbank database

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens (CP) is ubiquitous in the nature, and a normal inhabitant in the intestinal tracts of animals and humans. However, pathogenic CP is also a causative agent of poultry disease necrotic enteritis (NE). Clostridium-related poultry diseases such as necrotic enteritis (NE) and gang...

  8. Community-acquired Clostridium difficile infection in children: A retrospective study.

    PubMed

    Borali, Elena; Ortisi, Giuseppe; Moretti, Chiara; Stacul, Elisabetta Francesca; Lipreri, Rita; Gesu, Giovanni Pietro; De Giacomo, Costantino

    2015-10-01

    Community acquired-Clostridium difficile infection (CDI) has increased also in children in the last years. To determine the incidence of community-acquired CDI and to understand whether Clostridium difficile could be considered a symptom-triggering pathogen in infants. A five-year retrospective analysis (January 2007-December 2011) of faecal specimens from 124 children hospitalized in the Niguarda Ca' Granda Hospital for prolonged or muco-haemorrhagic diarrhoea was carried out. Stool samples were evaluated for common infective causes of diarrhoea and for Clostridium difficile toxins. Patients with and without CDI were compared for clinical characteristics and known risk factors for infection. Twenty-two children with CDI were identified in 5 years. An increased incidence of community-acquired CDI was observed, ranging from 0.75 per 1000 hospitalizations in 2007 to 9.8 per 1000 hospitalizations in 2011. Antimicrobial treatment was successful in all 19 children in whom it was administered; 8/22 CDI-positive children were younger than 2 years. No statistically significant differences in clinical presentation were observed between patients with and without CDI, nor in patients with and without risk factors for CDI. Our study shows that Clostridium difficile infection is increasing and suggests a possible pathogenic role in the first 2 years of life. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  9. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures.

    PubMed

    Repar, Jelena; Warnecke, Tobias

    2017-08-01

    Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin-terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus-Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Fidaxomicin for the treatment of Clostridium difficile infections.

    PubMed

    Whitman, Craig B; Czosnowski, Quinn A

    2012-02-01

    To evaluate the pharmacology, microbiology, safety, and efficacy of fidaxomicin for treatment of Clostridium difficile infections (CDI). Literature was identified through Ovid MEDLINE (1948-December 2011) and International Pharmaceutical Abstracts (1970-December 2011) using the search terms fidaxomicin, OPT-80, PAR-101, OP-118, difimicin, tiacumicin, lipiarmycin, Clostridium difficile, Clostridium difficile infection, Clostridium difficile-associated diarrhea, and cost. Drug monographs were retrieved from manufacturers' Web pages, and the Red Book component of Micromedex was used for cost information. All pertinent Phase 1, 2, and 3 studies published in English were included. Fidaxomicin is a macrocyclic compound bactericidal against C. difficile and inhibits toxin and spore production. It has poor oral absorption with high fecal concentrations. Available Phase 2 and 3 data with fidaxomicin 200 mg orally every 12 hours demonstrate similar effectiveness in treating CDI compared to oral vancomycin. Fidaxomicin was shown to have less frequency of recurrent infections. Adverse effects are uncommon and occur at similar rates as with oral vancomycin. The most frequently reported adverse effects are gastrointestinal, hematologic, and electrolyte disorders. Available data are lacking in several areas, including the efficacy and safety of fidaxomicin compared to established regimens for mild-to-moderate, life-threatening, and recurrent CDIs. The cost of a 10-day course of fidaxomicin is significantly more than that of metronidazole and vancomycin for treatment of mild-to-moderate CDI. Fidaxomicin appears to be an effective and safe alternative to oral vancomycin for treatment of mild-to-moderate and severe CDI. Data on its use compared to guideline-recommended therapies for mild-to-moderate and life-threatening CDI are needed. Further data assessing the cost-effectiveness of fidaxomicin are needed. Currently, it cannot be recommended over vancomycin for treatment of CDI

  11. Evaluation of CP Chromo Select Agar for the enumeration of Clostridium perfringens from water.

    PubMed

    Manafi, Mammad; Waldherr, Kerstin; Kundi, Michael

    2013-10-01

    The European Directive on drinking water quality has included mCP agar as the reference method for recovering Clostridium perfringens from drinking waters. In the present study, three media (mCP, TSCF and CP Chromo Select Agar) were evaluated for recovery of C. perfringens in different surface water samples. Out of 139 water samples, using a membrane filtration technique, 131 samples (94.2%) were found to be presumptively positive for C. perfringens in at least one of the culture media. Green colored colonies on CP Chromo Select Agar (CCP agar) were counted as presumptive C. perfringens isolates. Out of 483 green colonies on CCP agar, 96.3% (465 strains, indole negative) were identified as C. perfringens, and 15 strains (3.1%) were indole positive and were identified as Clostridium sordellii, Clostridium bifermentans or Clostridium tetani. Only 3 strains (0.6%) gave false positive results and were identified as Clostridium fallax, Clostridium botulinum, and Clostridium tertium. Variance analysis of the data obtained shows statistically no significant differences in the counts obtained between media employed in this work. The mCP method is very onerous for routine screening and bacterial colonies could not be used for further biochemical testing. The colonies on CCP and TSCF were easy to count and subculture for confirmation tests. TSCF detects sulfite-reducing clostridia, including species other than C. perfringens, and in some cases excessive blackening of the agar frustrated counting of the colonies. If the contamination was too high, TSCF did not consistently produce black colonies and as a consequence, the colonies were white and gave false negative results. On the other hand, the identification of typical and atypical colonies isolated from all media demonstrated that CCP agar was the most useful medium for C. perfringens recovery in water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Butyric acid production from red algae by a newly isolated Clostridium sp. S1.

    PubMed

    Lee, Kyung Min; Choi, Okkyoung; Kim, Ki-Yeon; Woo, Han Min; Kim, Yunje; Han, Sung Ok; Sang, Byoung-In; Um, Youngsoon

    2015-09-01

    To produce butyric acid from red algae such as Gelidium amansii in which galactose is a main carbohydrate, microorganisms utilizing galactose and tolerating inhibitors in hydrolysis including levulinic acid and 5-hydroxymethylfurfural (HMF) are required. A newly isolated bacterium, Clostridium sp. S1 produced butyric acid not only from galactose as the sole carbon source but also from a mixture of galactose and glucose through simultaneous utilization. Notably, Clostridium sp. S1 produced butyric acid and a small amount of acetic acid with the butyrate:acetate ratio of 45.4:1 and it even converted acetate to butyric acid. Clostridium sp. S1 tolerated 0.5-2 g levulinic acid/l and recovered from HMF inhibition at 0.6-2.5 g/l, resulting in 85-92% butyric acid concentration of the control culture. When acid-pretreated G. amansii hydrolysate was used, Clostridium sp. S1 produced 4.83 g butyric acid/l from 10 g galactose/l and 1 g glucose/l. Clostridium sp. S1 produces butyric acid from red algae due to its characteristics in sugar utilization and tolerance to inhibitors, demonstrating its advantage as a red algae-utilizing microorganism.

  13. Analysis of Strand-Specific RNA-Seq Data Using Machine Learning Reveals the Structures of Transcription Units in Clostridium thermocellum

    DOE PAGES

    Chou, Wen-Chi; Ma, Qin; Yang, Shihui; ...

    2015-03-12

    The identification of transcription units (TUs) encoded in a bacterial genome is essential to elucidation of transcriptional regulation of the organism. To gain a detailed understanding of the dynamically composed TU structures, we have used four strand-specific RNA-seq (ssRNA-seq) datasets collected under two experimental conditions to derive the genomic TU organization of Clostridium thermocellum using a machine-learning approach. Our method accurately predicted the genomic boundaries of individual TUs based on two sets of parameters measuring the RNA-seq expression patterns across the genome: expression-level continuity and variance. A total of 2590 distinct TUs are predicted based on the four RNA-seq datasets.more » Moreover, among the predicted TUs, 44% have multiple genes. We assessed our prediction method on an independent set of RNA-seq data with longer reads. The evaluation confirmed the high quality of the predicted TUs. Functional enrichment analyses on a selected subset of the predicted TUs revealed interesting biology. To demonstrate the generality of the prediction method, we have also applied the method to RNA-seq data collected on Escherichia coli and achieved high prediction accuracies. The TU prediction program named SeqTU is publicly available athttps://code.google.com/p/seqtu/. We expect that the predicted TUs can serve as the baseline information for studying transcriptional and post-transcriptional regulation in C. thermocellum and other bacteria.« less

  14. Formate Dehydrogenase from Clostridium acidiurici

    PubMed Central

    Kearny, James J.; Sagers, Richard D.

    1972-01-01

    Partial purification of formate dehydrogenase from Clostridium acidiurici has been accomplished, and some properties of the enzyme have been determined. The molecular weight of the protein is at least 200,000 daltons. The enzyme showed marked instability to freezing and thawing and was inhibited strongly by oxygen and by light. Such inhibition was not reversed by incubation in the presence of thiol compounds. Cyanide inhibited the enzyme 90% at 0.1 mm concentrations, but ethylenediaminetetraacetate produced only slight inhibition at concentrations as high as 50 mm. The purified enzyme showed no ferredoxin activity in the Clostridium pasteurianum clastic system during pyruvate oxidation. Crude preparations of the enzyme could be coupled through ferredoxin to the reduction of nicotinamide adenine dinucleotide during formate oxidation, but the purified enzyme could not catalyze the reduction of pyridine nucleotides by formate in the presence of ferredoxin. Formate oxidation with the purified enzyme was readily coupled to benzyl viologen reduction, in which case ferredoxin was not required. An exchange between formate and bicarbonate was catalyzed by both crude and purified preparations of the enzyme, but the net synthesis of formate from CO2 was not accomplished. PMID:4333376

  15. Closed Genome Sequence of Chryseobacterium piperi Strain CTMT/ATCC BAA-1782, a Gram-Negative Bacterium with Clostridial Neurotoxin-Like Coding Sequences

    PubMed Central

    Wentz, Travis G.; Muruvanda, Tim; Thirunavukkarasu, Nagarajan; Hoffmann, Maria; Allard, Marc W.; Hodge, David R.; Pillai, Segaran P.; Hammack, Thomas S.; Brown, Eric W.

    2017-01-01

    ABSTRACT Clostridial neurotoxins, including botulinum and tetanus neurotoxins, are among the deadliest known bacterial toxins. Until recently, the horizontal mobility of this toxin gene family appeared to be limited to the genus Clostridium. We report here the closed genome sequence of Chryseobacterium piperi, a Gram-negative bacterium containing coding sequences with homology to clostridial neurotoxin family proteins. PMID:29192076

  16. The story of Clostridium botulinum: from food poisoning to Botox.

    PubMed

    Ting, Patricia T; Freiman, Anatoli

    2004-01-01

    In the last fifty years, Clostridium botulinum has become notorious for its ability to produce the deadly botulinum neurotoxins. While botulinum toxin A, better known as Botox, is universally recognised by the public as a cosmetic enhancement tool, the botulinum neurotoxins are commonly used off-label for many medical conditions in ophthalmology, neurology and dermatology. The versatility of these botulinum toxins has made Clostridium botulinum one of the most widely known bacterial pathogens in medical history. This article outlines the discovery of botulinum toxins through to their present day applications in medicine.

  17. Preventing clostridium difficile infection in the intensive care unit.

    PubMed

    Zilberberg, Marya D; Shorr, Andrew F

    2013-01-01

    Clostridium difficile is a formidable problem in the twenty-first century. Because of injudicious use of antibiotics, the emergence of the hypervirulent epidemic strain of this organism has been difficult to contain. The NAP1/BI/027 strain causes more-severe disease than other widely prevalent strains and affects patients who were not traditionally thought to be at risk for Clostridium difficile infection. Critically ill patients remain at high risk for this pathogen, and preventive measures, such as meticulous contact precautions, hand hygiene, environmental disinfection, and, most importantly, antibiotic stewardship, are the cornerstones of mitigation in the intensive care unit. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Genome-Based Comparison of Clostridioides difficile: Average Amino Acid Identity Analysis of Core Genomes.

    PubMed

    Cabal, Adriana; Jun, Se-Ran; Jenjaroenpun, Piroon; Wanchai, Visanu; Nookaew, Intawat; Wongsurawat, Thidathip; Burgess, Mary J; Kothari, Atul; Wassenaar, Trudy M; Ussery, David W

    2018-02-14

    Infections due to Clostridioides difficile (previously known as Clostridium difficile) are a major problem in hospitals, where cases can be caused by community-acquired strains as well as by nosocomial spread. Whole genome sequences from clinical samples contain a lot of information but that needs to be analyzed and compared in such a way that the outcome is useful for clinicians or epidemiologists. Here, we compare 663 public available complete genome sequences of C. difficile using average amino acid identity (AAI) scores. This analysis revealed that most of these genomes (640, 96.5%) clearly belong to the same species, while the remaining 23 genomes produce four distinct clusters within the Clostridioides genus. The main C. difficile cluster can be further divided into sub-clusters, depending on the chosen cutoff. We demonstrate that MLST, either based on partial or full gene-length, results in biased estimates of genetic differences and does not capture the true degree of similarity or differences of complete genomes. Presence of genes coding for C. difficile toxins A and B (ToxA/B), as well as the binary C. difficile toxin (CDT), was deduced from their unique PfamA domain architectures. Out of the 663 C. difficile genomes, 535 (80.7%) contained at least one copy of ToxA or ToxB, while these genes were missing from 128 genomes. Although some clusters were enriched for toxin presence, these genes are variably present in a given genetic background. The CDT genes were found in 191 genomes, which were restricted to a few clusters only, and only one cluster lacked the toxin A/B genes consistently. A total of 310 genomes contained ToxA/B without CDT (47%). Further, published metagenomic data from stools were used to assess the presence of C. difficile sequences in blinded cases of C. difficile infection (CDI) and controls, to test if metagenomic analysis is sensitive enough to detect the pathogen, and to establish strain relationships between cases from the same

  19. Sequence Data for Clostridium autoethanogenum using Three Generations of Sequencing Technologies

    DOE PAGES

    Utturkar, Sagar M.; Klingeman, Dawn Marie; Bruno-Barcena, José M.; ...

    2015-04-14

    During the past decade, DNA sequencing output has been mostly dominated by the second generation sequencing platforms which are characterized by low cost, high throughput and shorter read lengths for example, Illumina. The emergence and development of so called third generation sequencing platforms such as PacBio has permitted exceptionally long reads (over 20 kb) to be generated. Due to read length increases, algorithm improvements and hybrid assembly approaches, the concept of one chromosome, one contig and automated finishing of microbial genomes is now a realistic and achievable task for many microbial laboratories. In this paper, we describe high quality sequencemore » datasets which span three generations of sequencing technologies, containing six types of data from four NGS platforms and originating from a single microorganism, Clostridium autoethanogenum. The dataset reported here will be useful for the scientific community to evaluate upcoming NGS platforms, enabling comparison of existing and novel bioinformatics approaches and will encourage interest in the development of innovative experimental and computational methods for NGS data.« less

  20. Functional analysis of an feoB mutant in Clostridium perfringens strain 13.

    PubMed

    Awad, Milena M; Cheung, Jackie K; Tan, Joanne E; McEwan, Alastair G; Lyras, Dena; Rood, Julian I

    2016-10-01

    Bacterial pathogens have adopted numerous mechanisms for acquiring iron from host proteins during an infection, including the direct acquisition of ferric iron from heme-associated proteins or from iron-scavenging siderophores. Ferric iron then is transported into the cytosol, where it can be utilized by the bacterial pathogen. Under anaerobic conditions bacteria can also transport ferrous iron using the transmembrane complex FeoAB, but little is known about iron transport systems in anaerobic bacteria such as the pathogenic clostridia. In this study we sought to characterize the iron acquisition process in Clostridium perfringens. Bioinformatic analysis of the Clostridium perfringens strain 13 genome sequence revealed that it has seven potential iron acquisition systems: three siderophore-mediated systems, one ferric citrate uptake system, two heme-associated acquisition systems and one ferrous iron uptake system (FeoAB). The relative level of expression of these systems was determined using quantitative real-time RT-PCR assays that were specific for one gene from each system. Each of these genes was expressed, with the feoAB genes generating the most abundant iron-uptake related transcripts. To further examine the role of this system in the growth of C. perfringens, insertional inactivation was used to isolate a chromosomal feoB mutant. Growth of this mutant in the presence and absence of iron revealed that it had altered growth properties and a markedly reduced total iron and manganese content compared to the wild type; effects that were reversed upon complementation with the wild-type feoB gene. These studies suggest that under anaerobic conditions FeoB is the major protein required for the uptake of iron into the cell and that it may play an important role in the pathogenesis of C. perfringens infections. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Analysis of the unexplored features of rrs (16S rDNA) of the Genus Clostridium

    PubMed Central

    2011-01-01

    Background Bacterial taxonomy and phylogeny based on rrs (16S rDNA) sequencing is being vigorously pursued. In fact, it has been stated that novel biological findings are driven by comparison and integration of massive data sets. In spite of a large reservoir of rrs sequencing data of 1,237,963 entries, this analysis invariably needs supplementation with other genes. The need is to divide the genetic variability within a taxa or genus at their rrs phylogenetic boundaries and to discover those fundamental features, which will enable the bacteria to naturally fall within them. Within the large bacterial community, Clostridium represents a large genus of around 110 species of significant biotechnological and medical importance. Certain Clostridium strains produce some of the deadliest toxins, which cause heavy economic losses. We have targeted this genus because of its high genetic diversity, which does not allow accurate typing with the available molecular methods. Results Seven hundred sixty five rrs sequences (> 1200 nucleotides, nts) belonging to 110 Clostridium species were analyzed. On the basis of 404 rrs sequences belonging to 15 Clostridium species, we have developed species specific: (i) phylogenetic framework, (ii) signatures (30 nts) and (iii) in silico restriction enzyme (14 Type II REs) digestion patterns. These tools allowed: (i) species level identification of 95 Clostridium sp. which are presently classified up to genus level, (ii) identification of 84 novel Clostridium spp. and (iii) potential reduction in the number of Clostridium species represented by small populations. Conclusions This integrated approach is quite sensitive and can be easily extended as a molecular tool for diagnostic and taxonomic identification of any microbe of importance to food industries and health services. Since rapid and correct identification allows quicker diagnosis and consequently treatment as well, it is likely to lead to reduction in economic losses and mortality

  2. The Rise and Fall of Metronidazole for Clostridium difficile Infection.

    PubMed

    Chahine, Elias B

    2018-06-01

    Clostridium difficile is posing urgent health threats. Older studies have shown that metronidazole and vancomycin are equally effective in the treatment of Clostridium difficile infection (CDI). Given its inexpensive cost and low propensity to select antimicrobial resistant organisms, metronidazole became rapidly the drug of choice despite its pharmacokinetic limitations in the treatment of CDI. However, newer studies demonstrated that metronidazole is inferior to vancomycin, prompting clinicians to change their long-standing position on using metronidazole for mild to moderate infections and on reserving vancomycin for severe infections. Moving forward, metronidazole will fall out of favor in the treatment of CDI.

  3. Clostridium acidurici electron-bifurcating formate dehydrogenase.

    PubMed

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Thauer, Rudolf K

    2013-10-01

    Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD(+) and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2.

  4. Clostridium acidurici Electron-Bifurcating Formate Dehydrogenase

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2013-01-01

    Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD+ and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2. PMID:23872566

  5. Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion.

    PubMed

    Jia, Yangyang; Ng, Siu-Kin; Lu, Hongyuan; Cai, Mingwei; Lee, Patrick K H

    2018-01-01

    Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum -related and Ruminococcus -related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum -related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the

  6. Clostridium septicum gas gangrene in a previously healthy 8-year-old female with survival.

    PubMed

    Pinzon-Guzman, Carolina; Bashir, Dalia; McSherry, George; Beck, Michael J; Rocourt, Dorothy V

    2013-04-01

    We present the only reported case of an immunocompetent pediatric patient in the literature to have fulminate gas gangrene of the lower extremity and concomitant gastrointestinal tract infection due to Clostridium septicum coinfected with Clostridium difficile colitis respectively. The patient survived with aggressive medical and surgical treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Clostridium perfringens iota toxin: synergism between two proteins.

    PubMed

    Stiles, B G; Wilkins, T D

    1986-01-01

    The iota toxin of Clostridium perfringens type E is a guinea pig dermonecrotic, mouse lethal toxin which cross-reacts with the iota-like toxin of Clostridium spiroforme. Antiserum raised against C. spiroforme or C. perfringens type E neutralizes the toxin from both species. By using C. spiroforme antiserum and crossed immunoelectrophoresis, we have found that there are two cross-reacting proteins, designated iota a (ia) and iota b (ib) in the culture filtrate of C. perfringens type E. Both proteins of C. perfringens were separated by preparative isoelectric focusing and had very little toxic activity when tested alone. However, when they were recombined there were 8- and 25-fold increases in bioactivity as determined by mouse lethal and guinea pig dermonecrotic assays, respectively. These results demonstrate that the iota toxin of C. perfringens requires two immunologically and biochemically different proteins for maximum activity.

  8. Expression of adhA from different organisms in Clostridium thermocellum.

    PubMed

    Zheng, Tianyong; Cui, Jingxuan; Bae, Hye Ri; Lynd, Lee R; Olson, Daniel G

    2017-01-01

    Clostridium thermocellum is a cellulolytic anaerobic thermophile that is a promising candidate for consolidated bioprocessing of lignocellulosic biomass into biofuels such as ethanol. It was previously shown that expressing Thermoanaerobacterium saccharolyticum adhA in C. thermocellum increases ethanol yield.In this study, we investigated expression of adhA genes from different organisms in Clostridium thermocellum . Based on sequence identity to T. saccharolyticum adhA , we chose adhA genes from 10 other organisms: Clostridium botulinum , Methanocaldococcus bathoardescens , Thermoanaerobacterium ethanolicus , Thermoanaerobacter mathranii , Thermococcus strain AN1, Thermoanaerobacterium thermosaccharolyticum , Caldicellulosiruptor saccharolyticus , Fervidobacterium nodosum , Marinitoga piezophila , and Thermotoga petrophila . All 11 adhA genes (including T. saccharolyticum adhA ) were expressed in C. thermocellum and fermentation end products were analyzed. All 11 adhA genes increased C. thermocellum ethanol yield compared to the empty-vector control. C. botulinum and T. ethanolicus adhA genes generated significantly higher ethanol yield than T. saccharolyticum adhA . Our results indicated that expressing adhA is an effective method of increasing ethanol yield in wild-type C. thermocellum , and that this appears to be a general property of adhA genes.

  9. Lactic acid bacteria as protective cultures in fermented pork meat to prevent Clostridium spp. growth.

    PubMed

    Di Gioia, Diana; Mazzola, Giuseppe; Nikodinoska, Ivana; Aloisio, Irene; Langerholc, Tomaz; Rossi, Maddalena; Raimondi, Stefano; Melero, Beatriz; Rovira, Jordi

    2016-10-17

    In meat fermented foods, Clostridium spp. growth is kept under control by the addition of nitrite. The growing request of consumers for safer products has led to consider alternative bio-based approaches, the use of protective cultures being one of them. This work is aimed at checking the possibility of using two Lactobacillus spp. strains as protective cultures against Clostridium spp. in pork ground meat for fermented salami preparation. Both Lactobacillus strains displayed anti-clostridia activity in vitro using the spot agar test and after co-culturing them in liquid medium with each Clostridium strain. Only one of them, however, namely L. plantarum PCS20, was capable of effectively surviving in ground meat and of performing anti-microbial activity in carnis in a challenge test where meat was inoculated with the Clostridium strain. Therefore, this work pointed out that protective cultures can be a feasible approach for nitrite reduction in fermented meat products. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Function of the CRISPR-Cas System of the Human Pathogen Clostridium difficile

    PubMed Central

    Boudry, Pierre; Semenova, Ekaterina; Monot, Marc; Datsenko, Kirill A.; Lopatina, Anna; Sekulovic, Ognjen; Ospina-Bedoya, Maicol; Fortier, Louis-Charles; Severinov, Konstantin; Dupuy, Bruno

    2015-01-01

    ABSTRACT Clostridium difficile is the cause of most frequently occurring nosocomial diarrhea worldwide. As an enteropathogen, C. difficile must be exposed to multiple exogenous genetic elements in bacteriophage-rich gut communities. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems allow bacteria to adapt to foreign genetic invaders. Our recent data revealed active expression and processing of CRISPR RNAs from multiple type I-B CRISPR arrays in C. difficile reference strain 630. Here, we demonstrate active expression of CRISPR arrays in strain R20291, an epidemic C. difficile strain. Through genome sequencing and host range analysis of several new C. difficile phages and plasmid conjugation experiments, we provide evidence of defensive function of the CRISPR-Cas system in both C. difficile strains. We further demonstrate that C. difficile Cas proteins are capable of interference in a heterologous host, Escherichia coli. These data set the stage for mechanistic and physiological analyses of CRISPR-Cas-mediated interactions of important global human pathogen with its genetic parasites. PMID:26330515

  11. The Novel Phages phiCD5763 and phiCD2955 Represent Two Groups of Big Plasmidial Siphoviridae Phages of Clostridium difficile.

    PubMed

    Ramírez-Vargas, Gabriel; Goh, Shan; Rodríguez, César

    2018-01-01

    Until recently, Clostridium difficile phages were limited to Myoviruses and Siphoviruses of medium genome length (32-57 kb). Here we report the finding of phiCD5763, a Siphovirus with a large extrachromosomal circular genome (132.5 kb, 172 ORFs) and a large capsid (205.6 ± 25.6 nm in diameter) infecting MLST Clade 1 strains of C. difficile . Two subgroups of big phage genomes similar to phiCD5763 were identified in 32 NAP CR1 /RT012/ST-54 C. difficile isolates from Costa Rica and in whole genome sequences (WGS) of 41 C. difficile isolates of Clades 1, 2, 3, and 4 from Canada, USA, UK, Belgium, Iraq, and China. Through comparative genomics we discovered another putative big phage genome in a non-NAP CR1 isolate from Costa Rica, phiCD2955, which represents other big phage genomes found in 130 WGS of MLST Clade 1 and 2 isolates from Canada, USA, Hungary, France, Austria, and UK. phiCD2955 (131.6 kb, 172 ORFs) is related to a previously reported C. difficile phage genome, phiCD211/phiCDIF1296T. Detailed genome analyses of phiCD5763, phiCD2955, phiCD211/phiCDIF1296T, and seven other putative C. difficile big phage genome sequences of 131-136 kb reconstructed from publicly available WGS revealed a modular gene organization and high levels of sequence heterogeneity at several hotspots, suggesting that these genomes correspond to biological entities undergoing recombination. Compared to other C. difficile phages, these big phages have unique predicted terminase, capsid, portal, neck and tail proteins, receptor binding proteins (RBPs), recombinases, resolvases, primases, helicases, ligases, and hypothetical proteins. Moreover, their predicted gene load suggests a complex regulation of both phage and host functions. Overall, our results indicate that the prevalence of C. difficile big bacteriophages is more widespread than realized and open new avenues of research aiming to decipher how these viral elements influence the biology of this emerging pathogen.

  12. Clostridium perfringens panophthalmitis and orbital cellulitis: a case report.

    PubMed

    Guedira, Ghita; Taright, Nabil; Blin, Hélène; Fattoum, Thameur; Leroy, Jordan; El Samad, Youssef; Milazzo, Solange; Hamdad, Farida

    2018-04-10

    Clostridium perfringens is an uncommon pathogen in endophthalmitis, causing rapid destruction of ocular tissues. Clostridium perfringens infection typically occurs after penetrating injury with soil-contaminated foreign bodies. Here, we describe the case of a 17-year-old male who sustained a penetrating injury with a metallic intraocular foreign body and who rapidly developed severe C. perfringens panophthalmitis with orbital cellulitis. He was managed by systemic and intravitreal antibiotics, resulting in preservation of the globe, but a poor visual outcome. Clostridial endophthalmitis secondary to penetrating injuries is a fulminant infection, almost always resulting in loss of the globe in the case of advanced infection. When feasible, early vitrectomy and intravitreal antibiotics should be considered in patients with penetrating eye injuries with contaminated foreign bodies.

  13. Evidence of codon usage in the nearest neighbor spacing distribution of bases in bacterial genomes

    NASA Astrophysics Data System (ADS)

    Higareda, M. F.; Geiger, O.; Mendoza, L.; Méndez-Sánchez, R. A.

    2012-02-01

    Statistical analysis of whole genomic sequences usually assumes a homogeneous nucleotide density throughout the genome, an assumption that has been proved incorrect for several organisms since the nucleotide density is only locally homogeneous. To avoid giving a single numerical value to this variable property, we propose the use of spectral statistics, which characterizes the density of nucleotides as a function of its position in the genome. We show that the cumulative density of bases in bacterial genomes can be separated into an average (or secular) plus a fluctuating part. Bacterial genomes can be divided into two groups according to the qualitative description of their secular part: linear and piecewise linear. These two groups of genomes show different properties when their nucleotide spacing distribution is studied. In order to analyze genomes having a variable nucleotide density, statistically, the use of unfolding is necessary, i.e., to get a separation between the secular part and the fluctuations. The unfolding allows an adequate comparison with the statistical properties of other genomes. With this methodology, four genomes were analyzed Burkholderia, Bacillus, Clostridium and Corynebacterium. Interestingly, the nearest neighbor spacing distributions or detrended distance distributions are very similar for species within the same genus but they are very different for species from different genera. This difference can be attributed to the difference in the codon usage.

  14. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species.

    PubMed

    Avila, Marta; Gómez-Torres, Natalia; Hernández, Marta; Garde, Sonia

    2014-02-17

    The butyric acid fermentation, responsible for late blowing of cheese, is caused by the outgrowth in cheese of some species of Clostridium, resulting in texture and flavor defects and economical losses. The aim of this study was to evaluate the effectiveness of different antimicrobial compounds against vegetative cells and spores of C. tyrobutyricum, C. butyricum, C. beijerinckii and C. sporogenes strains isolated from cheeses with late blowing defect. Minimal inhibitory concentration (MIC) for reuterin, nisin, lysozyme and sodium nitrite were determined against Clostridium strains in milk and modified RCM (mRCM) after 7d exposure. Although the sensitivity of Clostridium to the tested antimicrobials was strain-dependent, C. sporogenes and C. beijerinckii generally had higher MIC values than the rest of Clostridium species. The majority of Clostridium strains were more resistant to antimicrobials in milk than in mRCM, and vegetative cells exhibited higher sensitivity than spores. Reuterin (MIC values 0.51-32.5 mM) and nisin (MIC values 0.05-12.5 μg/ml) were able to inhibit the growth of vegetative cells and spores of all assayed Clostridium strains in milk and mRCM. Strains of C. tyrobutyricum exhibited the highest sensitivity to lysozyme (MIC values<0.20-400 μg/ml) and sodium nitrite (MIC values 18.75-150 μg/ml). These results suggest that reuterin and nisin, with a broad inhibitory activity spectrum against Clostridium spp. spores and vegetative cells, may be the best options to control Clostridium growth in dairy products and to prevent associated spoilage, such as late blowing defect of cheese. However, further studies in cheese would be necessary to validate this hypothesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Genomic insights into the evolution and ecology of botulinum neurotoxins.

    PubMed

    Mansfield, Michael J; Doxey, Andrew C

    2018-06-01

    Clostridial neurotoxins, which include botulinum neurotoxins (BoNTs) and tetanus neurotoxins, have evolved a remarkably sophisticated structure and molecular mechanism fine-tuned for the targeting and cleavage of vertebrate neuron substrates leading to muscular paralysis. How and why did this toxin evolve? From which ancestral proteins are BoNTs derived? And what is, or was, the primary ecological role of BoNTs in the environment? In this article, we examine these questions in light of recent studies identifying homologs of BoNTs in the genomes of non-clostridial bacteria, including Weissella, Enterococcus and Chryseobacterium. Genomic and phylogenetic analysis of these more distantly related toxins suggests that they are derived from ancient toxin lineages that predate the evolution of BoNTs and are not limited to the Clostridium genus. We propose that BoNTs have therefore evolved from a precursor family of BoNT-like toxins, and ultimately from non-neurospecific toxins that cleaved different substrates (possibly non-neuronal SNAREs). Comparison of BoNTs with these related toxins reveals several unique molecular features that underlie the evolution of BoNT's unique function, including functional shifts involving all four domains, and gain of the BoNT gene cluster associated proteins. BoNTs then diversified to produce the existing serotypes, including TeNT, and underwent repeated substrate shifts from ancestral VAMP2 specificity to SNAP25 specificity at least three times in their history. Finally, similar to previous proposals, we suggest that one ecological role of BoNTs could be to create a paralytic phase in vertebrate decomposition, which provides a competitive advantage for necrophagous scavengers that in turn facilitate the spread of Clostridium botulinum and its toxin.

  16. Clostridium difficile and Clostridium perfringens from wild carnivore species in Brazil.

    PubMed

    Silva, Rodrigo Otávio Silveira; D'Elia, Mirella Lauria; Tostes Teixeira, Erika Procópio; Pereira, Pedro Lúcio Lithg; de Magalhães Soares, Danielle Ferreira; Cavalcanti, Álvaro Roberto; Kocuvan, Aleksander; Rupnik, Maja; Santos, André Luiz Quagliatto; Junior, Carlos Augusto Oliveira; Lobato, Francisco Carlos Faria

    2014-08-01

    Despite some case reports, the importance of Clostridium perfringens and Clostridium difficile for wild carnivores remains unclear. Thus, the objective of this study was to identify C. perfringens and C. difficile strains in stool samples from wild carnivore species in Brazil. A total of 34 stool samples were collected and subjected to C. perfringens and C. difficile isolation. Suggestive colonies of C. perfringens were then analyzed for genes encoding the major C. perfringens toxins (alpha, beta, epsilon and iota) and the beta-2 toxin (cpb2), enterotoxin (cpe) and NetB (netb) genes. C. difficile strains were analyzed by multiplex-PCR for toxins A (tcdA) and B (tcdB) and a binary toxin gene (cdtB) and also submitted to a PCR ribotyping. Unthawed aliquots of samples positive for C. difficile isolation were subjected to the detection of A/B toxins by a cytotoxicity assay (CTA). C. perfringens was isolated from 26 samples (76.5%), all of which were genotyped as type A. The netb gene was not detected, whereas the cpb2 and cpe genes were found in nine and three C. perfringens strains, respectively. C. difficile was isolated from two (5.9%) samples. A non-toxigenic strain was recovered from a non-diarrheic maned wolf (Chrysocyon brachyurus). Conversely, a toxigenic strain was found in the sample of a diarrheic ocelot (Leopardus pardallis); an unthawed stool sample was also positive for A/B toxins by CTA, indicating a diagnosis of C. difficile-associated diarrhea in this animal. The present work suggests that wild carnivore species could carry C. difficile strains and that they could be susceptible to C. difficile infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Prevalence and risk factors of Clostridium difficile infection in patients hospitalized for flare of inflammatory bowel disease: a retrospective assessment.

    PubMed

    Regnault, Helene; Bourrier, Anne; Lalande, Valerie; Nion-Larmurier, Isabelle; Sokol, Harry; Seksik, Philippe; Barbut, Frederic; Cosnes, Jacques; Beaugerie, Laurent

    2014-12-01

    Recent studies have identified a high frequency of Clostridium difficile infections in patients with active inflammatory bowel disease. To retrospectively assess the determinants and results of Clostridium difficile testing upon the admission of patients hospitalized with active inflammatory bowel disease in a tertiary care centre and to determine the predicting factors of Clostridium difficile infections. We reviewed all admissions from January 2008 and December 2010 for inflammatory bowel disease flare-ups. A toxigenic culture and a stool cytotoxicity assay were performed for all patients tested for Clostridium difficile. Out of 813 consecutive stays, Clostridium difficile diagnostic assays have been performed in 59% of inpatients. The independent predictive factors for the testing were IBD (ulcerative colitis: OR 2.0, 95% CI 1.5-2.9; p<0.0001) and colonic involvement at admission (OR 2.2, 95% CI 1.5-3.1, p<0.0001). Clostridium difficile infection was present in 7.0% of the inpatients who underwent testing. In a multivariate analysis, the only independent predictor was the intake of nonsteroidal anti-inflammatory drugs within the two months before admission (OR 3.8, 95% CI 1.2-12.3; p=0.02). Clostridium difficile infection is frequently associated with active inflammatory bowel disease. Our study suggests that a recent intake of nonsteroidal anti-inflammatory drugs is a risk factor for inflammatory bowel disease -associated Clostridium difficile infection. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  18. Metabolomics of Clostridial Biofuel Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. Thesemore » changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose

  19. Clostridium difficile in the Military Population

    DTIC Science & Technology

    2016-08-05

    association between race and infection . This is similar to the Buchner and associates case- control study; which noted an increase in occurrence of C...sustained within a hospital , additional persons infected with C. difficile are needed10. Acute appendicitis ranking first among diagnoses for hospitalized ...Buchner AM, Sonnenberg A. Epidemiology of Clostridium difficile infection in a large population of hospitalized US military veterans. Dig Dis Sci

  20. Models for the study of Clostridium difficile infection

    PubMed Central

    Best, Emma L.; Freeman, Jane; Wilcox, Mark H.

    2012-01-01

    Models of Clostridium difficile infection (C. difficile) have been used extensively for Clostridium difficile (C. difficile) research. The hamster model of C. difficile infection has been most extensively employed for the study of C. difficile and this has been used in many different areas of research, including the induction of C. difficile, the testing of new treatments, population dynamics and characterization of virulence. Investigations using in vitro models for C. difficile introduced the concept of colonization resistance, evaluated the role of antibiotics in C. difficile development, explored population dynamics and have been useful in the evaluation of C. difficile treatments. Experiments using models have major advantages over clinical studies and have been indispensible in furthering C. difficile research. It is important for future study programs to carefully consider the approach to use and therefore be better placed to inform the design and interpretation of clinical studies. PMID:22555466

  1. In silico identification of molecular mimics involved in the pathogenesis of Clostridium botulinum ATCC 3502 strain.

    PubMed

    Bhardwaj, Tulika; Haque, Shafiul; Somvanshi, Pallavi

    2018-05-12

    Bacterial pathogens invade and disrupt the host defense system by means of protein sequences structurally similar at global and local level both. The sharing of homologous sequences between the host and the pathogenic bacteria mediates the infection and defines the concept of molecular mimicry. In this study, various computational approaches were employed to elucidate the pathogenicity of Clostridium botulinum ATCC 3502 at genome-wide level. Genome-wide study revealed that the pathogen mimics the host (Homo sapiens) and unraveled the complex pathogenic pathway of causing infection. The comparative 'omics' approaches helped in selective screening of 'molecular mimicry' candidates followed by the qualitative assessment of the virulence potential and functional enrichment. Overall, this study provides a deep insight into the emergence and surveillance of multidrug resistant C. botulinum ATCC 3502 caused infections. This is the very first report identifying C. botulinum ATCC 3502 proteome enriched similarities to the human host proteins and resulted in the identification of 20 potential mimicry candidates, which were further characterized qualitatively by sub-cellular organization prediction and functional annotation. This study will provide a variety of avenues for future studies related to infectious agents, host-pathogen interactions and the evolution of pathogenesis process. Copyright © 2018. Published by Elsevier Ltd.

  2. Clostridium difficile phages: still difficult?

    PubMed Central

    Hargreaves, Katherine R.; Clokie, Martha R. J.

    2014-01-01

    Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage–host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using “whole-phages” are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen. PMID:24808893

  3. Therapy for Clostridium difficile infection - any news beyond Metronidazole and Vancomycin?

    PubMed

    Manthey, C F; Eckmann, L; Fuhrmann, V

    2017-11-01

    Infections with Clostridium difficile (CDI) represent a major burden for the health care system. Treatment is generally by antibiotic therapy with metronidazole and vancomycin, but efficacy remains suboptimal. Areas covered: This review discusses established and emerging treatment options for CDI, and current therapeutic guidelines, taking into account disease severity and risk of relapse. Expert commentary: New therapeutic approaches, including antibodies and new classes of antibiotics, and new measures for preventing infection with vaccines are under development in phase II/III clinical trials. We performed a systematic literature review using the search terms 'Clostridium difficile' and 'treatment'.

  4. Bacterial cellulose hydrolysis in anaerobic environmental subsystems--Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders.

    PubMed

    Zverlov, Vladimir V; Schwarz, Wolfgang H

    2008-03-01

    Cellulose degradation is a rare trait in bacteria. However, the truly cellulolytic bacteria are extremely efficient hydrolyzers of plant cell wall polysaccharides, especially those in thermophilic anaerobic ecosystems. Clostridium stercorarium, a thermophilic ubiquitous soil dweller, has a simple cellulose hydrolyzing enzyme system of only two cellulases. However, it seems to be better suited for the hydrolysis of a wide range of hemicelluloses. Clostridium thermocellum, an ubiquitous thermophilic gram-type positive bacterium, is one of the most successful cellulose degraders known. Its extracellular enzyme complex, the cellulosome, was prepared from C. thermocellum cultures grown on cellulose, cellobiose, barley beta-1,3-1,4-glucan, or a mixture of xylan and cellulose. The single proteins were identified by peptide chromatography and MALDI-TOF-TOF. Eight cellulosomal proteins could be found in all eight preparations, 32 proteins occur in at least one preparation. A number of enzymatic components had not been identified previously. The proportion of components changes if C. thermocellum is grown on different substrates. Mutants of C. thermocellum, devoid of scaffoldin CipA, that now allow new types of experiments with in vitro cellulosome reassembly and a role in cellulose hydrolysis are described. The characteristics of these mutants provide strong evidence of the positive effect of complex (cellulosome) formation on hydrolysis of crystalline cellulose.

  5. Clostridium perfringens bacteremia caused by choledocholithiasis in the absence of gallbladder stones.

    PubMed

    Atia, Antwan; Raiyani, Tejas; Patel, Pranav; Patton, Robert; Young, Mark

    2012-10-21

    A 67-years-old male presented with periumbilical abdominal pain, fever and jaundice. His anaerobic blood culture was positive for clostridium perfringens. Computed tomogram scan of the abdomen and abdominal ultrasound showed normal gallbladder and common bile duct (CBD). Subsequently magnetic resonance cholangiopancreaticogram showed choledocholithiasis. Endoscopic retrograde cholangiopancreaticogramwith sphincterotomy and CBD stone extraction was performed. The patient progressively improved with antibiotic therapy Choledocholithiasis should be considered as a source of clostridium perfringens bacteremia especially in the setting of elevated liver enzymes with cholestatic pattern.

  6. Clostridium perfringens in retail chicken.

    PubMed

    Nowell, Victoria J; Poppe, Cornelis; Parreira, Valeria R; Jiang, Yan-Fen; Reid-Smith, Richard; Prescott, John F

    2010-06-01

    Clostridium perfringens isolates were recovered by enrichment from retail grocery chicken samples (n = 88) in Ontario, Canada, with one sample per site. The gene associated with necrotic enteritis in chickens, netB, was found in 21% of the isolates. The tpeL gene was found in 2% and the cpb2 gene in 68% (95% "atypical" genes) of isolates. This study suggests that netB-positive C. perfringens can reach people through retail chicken. 2009 Elsevier Ltd. All rights reserved.

  7. Genome-scale resources for Thermoanaerobacterium saccharolyticum.

    PubMed

    Currie, Devin H; Raman, Babu; Gowen, Christopher M; Tschaplinski, Timothy J; Land, Miriam L; Brown, Steven D; Covalla, Sean F; Klingeman, Dawn M; Yang, Zamin K; Engle, Nancy L; Johnson, Courtney M; Rodriguez, Miguel; Shaw, A Joe; Kenealy, William R; Lynd, Lee R; Fong, Stephen S; Mielenz, Jonathan R; Davison, Brian H; Hogsett, David A; Herring, Christopher D

    2015-06-26

    Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. A major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation. Here we present a set of genome-scale resources to enable the systems level investigation and development of this potentially important industrial organism. Resources include a complete genome sequence for strain JW/SL-YS485, a genome-scale reconstruction of metabolism, tiled microarray data showing transcription units, mRNA expression data from 71 different growth conditions or timepoints and GC/MS-based metabolite analysis data from 42 different conditions or timepoints. Growth conditions include hemicellulose hydrolysate, the inhibitors HMF, furfural, diamide, and ethanol, as well as high levels of cellulose, xylose, cellobiose or maltodextrin. The genome consists of a 2.7 Mbp chromosome and a 110 Kbp megaplasmid. An active prophage was also detected, and the expression levels of CRISPR genes were observed to increase in association with those of the phage. Hemicellulose hydrolysate elicited a response of carbohydrate transport and catabolism genes, as well as poorly characterized genes suggesting a redox challenge. In some conditions, a time series of combined transcription and metabolite measurements were made to allow careful study of microbial physiology under process conditions. As a demonstration of the potential utility of the metabolic reconstruction, the OptKnock algorithm was used to predict a set of gene knockouts that maximize growth-coupled ethanol production. The predictions validated intuitive strain designs and matched previous experimental results. These data will be a useful asset for efforts to develop T. saccharolyticum for efficient industrial production of biofuels. The resources presented herein may also be

  8. Characterization of the cellulosomal scaffolding protein CbpC from Clostridium cellulovorans 743B.

    PubMed

    Nakajima, Daichi; Shibata, Toshiyuki; Tanaka, Reiji; Kuroda, Kouichi; Ueda, Mitsuyoshi; Miyake, Hideo

    2017-10-01

    Clostridium cellulovorans 743B, an anaerobic and mesophilic bacterium, produces an extracellular enzyme complex called the cellulosome on the cell surface. Recently, we have reported the whole genome sequence of C. cellulovorans, which revealed that a total of 4 cellulosomal scaffolding proteins: CbpA, HbpA, CbpB, and CbpC were encoded in the C. cellulovorans genome. In particular, cbpC encoded a 429-residue polypeptide that includes a carbohydrate-binding module (CBM), an S-layer homology module, and a cohesin. CbpC was also detected in the culture supernatant of C. cellulovorans. Genomic DNA coding for CbpC was subcloned into a pET-22b+ vector in order to express and produce the recombinant protein in Escherichia coli BL21(DE3). Measurement of CbpC adsorption to crystalline cellulose indicated a dissociation constant of 0.60 μM, which is a similar to that of CBM from CbpA. We also subcloned the region encoding xylanase B (XynB) with the dockerin from C. cellulovorans and analyzed the interaction between XynB and CbpC by GST pull-down assay. It was observed that GST-CbpC assembles with XynB to form a minimal cellulosome. The activity of XynB against rice straw tended to be increased in the presence of CbpC. These results showed a synergistic effect on rice straw as a representative cellulosic biomass through the formation of a minimal cellulosome containing XynB bound to CbpC. Thus, our findings provide a foundation for the development of cellulosic biomass saccharification using a minimal cellulosome. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Secretion of clostridium cellulase by E. coli

    DOEpatents

    Yu, Ida Kuo

    1998-01-01

    A gene, encoding an endocellulase from a newly isolated mesophilic Clostridium strain IY-2 which can digest bamboo fibers, cellulose, rice straw, and sawdust, was isolated by shotgun cloning in an E. coli expression plasmid pLC2833. E. coli positive clones were selected based on their ability to hydrolyze milled bamboo fibers and cellulose present in agar plates. One clone contained a 2.8 kb DNA fragment that was responsible for cellulase activity. Western blot analyses indicated that the positive clone produced a secreted cellulase with a mass of about 58,000 daltons that was identical in size to the subunit of one of the three major Clostridium cellulases. The products of cellulose digestion by this cloned cellulase were cellotetraose and soluble higher polymers. The cloned DNA contained signal sequences capable of directing the secretion of heterologous proteins from an E. coli host. The invention describes a bioprocess for the treatment of cellulosic plant materials to produce cellular growth substrates and fermentation end products suitable for production of liquid fuels, solvents, and acids.

  10. Clostridium botulinum group I strain genotyping by 15-locus multilocus variable-number tandem-repeat analysis.

    PubMed

    Fillo, Silvia; Giordani, Francesco; Anniballi, Fabrizio; Gorgé, Olivier; Ramisse, Vincent; Vergnaud, Gilles; Riehm, Julia M; Scholz, Holger C; Splettstoesser, Wolf D; Kieboom, Jasper; Olsen, Jaran-Strand; Fenicia, Lucia; Lista, Florigio

    2011-12-01

    Clostridium botulinum is a taxonomic designation that encompasses a broad variety of spore-forming, Gram-positive bacteria producing the botulinum neurotoxin (BoNT). C. botulinum is the etiologic agent of botulism, a rare but severe neuroparalytic disease. Fine-resolution genetic characterization of C. botulinum isolates of any BoNT type is relevant for both epidemiological studies and forensic microbiology. A 10-locus multiple-locus variable-number tandem-repeat analysis (MLVA) was previously applied to isolates of C. botulinum type A. The present study includes five additional loci designed to better address proteolytic B and F serotypes. We investigated 79 C. botulinum group I strains isolated from human and food samples in several European countries, including types A (28), B (36), AB (4), and F (11) strains, and 5 nontoxic Clostridium sporogenes. Additional data were deduced from in silico analysis of 10 available fully sequenced genomes. This 15-locus MLVA (MLVA-15) scheme identified 86 distinct genotypes that clustered consistently with the results of amplified fragment length polymorphism (AFLP) and MLVA genotyping in previous reports. An MLVA-7 scheme, a subset of the MLVA-15, performed on a lab-on-a-chip device using a nonfluorescent subset of primers, is also proposed as a first-line assay. The phylogenetic grouping obtained with the MLVA-7 does not differ significantly from that generated by the MLVA-15. To our knowledge, this report is the first to analyze genetic variability among all of the C. botulinum group I serotypes by MLVA. Our data provide new insights into the genetic variability of group I C. botulinum isolates worldwide and demonstrate that this group is genetically highly diverse.

  11. Clostridium difficile

    PubMed Central

    Curry, Scott R.

    2017-01-01

    SYNOPSIS Clostridium difficile infections (CDI) have emerged as one of the principal threats to the health of hospitalized and immunocompromised patients. Nucleic acid testing for C. difficile toxin genes has eclipsed traditional clinical diagnostics for CDI in sensitivity and is now widespread in clinical use, but preliminary evidence suggests that this may have come at a cost of substantially reduced positive predictive value. The importance of C. difficile colonization is increasingly recognized not only as a source for false positive clinical testing but also as a source of new infections within hospitals and other healthcare environments. In the last five years, several new treatment strategies that capitalize on the increasing understanding of the altered microbiome and host defenses in CDI patients have completed clinical trials, including fecal microbiota transplantation (FMT). This article highlights the changing epidemiology, laboratory diagnostics, pathogenesis, and treatment of CDI. PMID:20513554

  12. Coculture Production of Butanol by Clostridium Bacteria

    NASA Technical Reports Server (NTRS)

    Bergstrom, S. L.; Foutch, G. L.

    1985-01-01

    Production of butanol by anaerobic fermentation of sugars enhanced by use of two Clostridium species, one of which feeds on metabolic product of other. Renewed interest in fermentation process for making butanol stimulated by potential use of butanol as surfactant in enhanced oil recovery. Butanol also used as fuel or as chemical feedstock and currently produced synthetically from petroleum.

  13. Prevalence of Clostridium Difficile Infection in Patients After Radical Cystectomy and Neoadjuvant Chemotherapy.

    PubMed

    Cotter, Katherine J; Fan, Yunhua; Sieger, Gretchen K; Weight, Christopher J; Konety, Badrinath R

    2017-10-27

    Clostridium Difficile is the most common cause of nosocomial infectious diarrhea. This study evaluates the prevalence and predictors of Clostridium Difficile infections in patients undergoing radical cystectomy with or without neoadjuvant chemotherapy. Retrospective chart review was performed of all patients undergoing cystectomy and urinary diversion at a single institution from 2011-2017. Infection was documented in all cases with testing for Clostridium Difficile polymerase chain reaction toxin B. Patient and disease related factors were compared for those who received neoadjuvant chemotherapy vs. those who did not in order to identify potential risk factors associated with C. Difficile infections. Chi squared test and logistic regression analysis were used to determine statistical significance. Of 350 patients who underwent cystectomy, 41 (11.7%) developed Clostridium Difficile in the 30 day post-operative period. The prevalence of C. Difficile infection was higher amongst the patients undergoing cystectomy compared to the non-cystectomy admissions at our hospital (11.7 vs. 2.9%). Incidence was not significantly different among those who underwent cystectomy for bladder cancer versus those who underwent the procedure for other reasons. Median time to diagnosis was 6 days (range 3-28 days). The prevalence of C. Diff infections was not significantly different among those who received neoadjuvant chemotherapy vs. those who did not (11% vs. 10.4% p  = 0.72). A significant association between C. Difficile infection was not seen with proton pump inhibitor use ( p  = 0.48), patient BMI ( p  = 0.67), chemotherapeutic regimen ( p  = 0.94), individual surgeon ( p  = 0.54), type of urinary diversion (0.41), or peri-operative antibiotic redosing ( p  = 0.26). Clostridium Difficile infection has a higher prevalence in patients undergoing cystectomy. No significant association between prevalence and exposure to neoadjuvant chemotherapy was seen.

  14. The Epidemiology and Clinical Features of Clostridium difficile Infection in Liver Transplant Recipients.

    PubMed

    Sullivan, Timothy; Weinberg, Alan; Rana, Meenakshi; Patel, Gopi; Huprikar, Shirish

    2016-09-01

    Clostridium difficile infection (CDI) is common after liver transplantation (LT); however, few studies have examined the risk factors, clinical manifestations, and outcomes of CDI in this population. A retrospective study of adults who underwent LT between January 1, 2011, and April 4, 2013, at The Mount Sinai Hospital was conducted. Potential risk factors were evaluated via univariate and multivariable analysis to determine predictors of CDI in this population. The clinical manifestations of CDI and patient outcomes were also reviewed. Clostridium difficile infection occurred in 27 (14%) of 192 patients after LT. In multivariable analysis, CDI was associated with having a model for end-stage liver disease score of 20 or greater (hazards ratio, 2.90; 95% confidence interval, 1.29-6.52; P = 0.010), and receiving a LT from a living donor (hazards ratio, 3.77; 95% confidence interval, 1.47-9.67; P = 0.006). Forty-one percent of CDI cases occurred within 1 week of LT. Seven percent of patients with CDI had a serum white blood cell count greater than 12 000 cells per μL, and 26% had a temperature greater than 38.0°C. After treatment 6 (22%) patients developed CDI relapse, and all were successfully treated. No patients died of CDI after a mean follow-up time of 1.8 years; however, overall survival was significantly lower among those with CDI (78% vs 92%; P = 0.033). Clostridium difficile infection after LT was associated with higher model for end-stage liver disease scores and receiving a LT from a living donor. Clostridium difficile infection often occurred soon after LT and was infrequently associated with leukocytosis or fever. Clostridium difficile infection in LT recipients was associated with lower overall survival.

  15. Genetic Diversity of the Flagellin Genes of Clostridium botulinum Groups I and II

    PubMed Central

    Woudstra, Cedric; Lambert, Dominic; Anniballi, Fabrizio; De Medici, Dario; Austin, John

    2013-01-01

    Botulinum neurotoxins (BoNTs) are produced by phenotypically and genetically different Clostridium species, including Clostridium botulinum and some strains of Clostridium baratii (serotype F) and Clostridium butyricum (serotype E). BoNT-producing clostridia responsible for human botulism encompass strains of group I (secreting proteases, producing toxin serotype A, B, or F, and growing optimally at 37°C) and group II (nonproteolytic, producing toxin serotype E, B, or F, and growing optimally at 30°C). Here we report the development of real-time PCR assays for genotyping C. botulinum strains of groups I and II based on flaVR (variable region sequence of flaA) sequences and the flaB gene. Real-time PCR typing of regions flaVR1 to flaVR10 and flaB was optimized and validated with 62 historical and Canadian C. botulinum strains that had been previously typed. Analysis of 210 isolates of European origin allowed the identification of four new C. botulinum flaVR types (flaVR11 to flaVR14) and one new flaVR type specific to C. butyricum type E (flaVR15). The genetic diversity of the flaVR among C. botulinum strains investigated in the present study reveals the clustering of flaVR types into 5 major subgroups. Subgroups 1, 3, and 4 contain proteolytic Clostridium botulinum, subgroup 2 is made up of nonproteolytic C. botulinum only, and subgroup 5 is specific to C. butyricum type E. The genetic variability of the flagellin genes carried by C. botulinum and the possible association of flaVR types with certain geographical areas make gene profiling of flaVR and flaB promising in molecular surveillance and epidemiology of C. botulinum. PMID:23603687

  16. Calcium Montmorillonite-based dietary supplement attenuates Necrotic Enteritis induced by Eimeria maxima and Clostridium perfringens in broilers

    USDA-ARS?s Scientific Manuscript database

    We provide the first description of Dietary Supplement of sorbent minerals attenuates Necrotic Enteritis Induced by Eimeria maxima and Clostridium perfringens in Broilers. Necrotic enteritis (NE) is a poultry disease caused by Clostridium perfringens and characterized by severe intestinal necrosis....

  17. A thermophilic phage endolysin fusion to a Clostridium perfringens-specific cell wall binding domain creates an anti-clostridium antimicrobial with improved thermostability

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is the third leading cause of human foodborne bacterial disease and is the presumptive etiologic agent of Necrotic enteritis among chickens. Treatment of poultry with antibiotics is becoming less acceptable. Endolysin enzymes are potential replacements for antibiotics. Man...

  18. Degradation of cellulosic biomass and its subsequent utilization for the production of chemical feedstocks. Progress report, September 1-November 30, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, D.I.; Cooney, C.L.; Demain, A.L.

    Studies on the accumulation of glucose during the fermentation of cellulose by Clostridium thermocellum are discussed. Production of ethanol and its relationship to growth rate in C. thermocellum is reported. Different biomasses were tested for ethanol yields. These included exploded poplar, sugar cane, bagasse, corn cobs, sweet gum, rice straw, and wheat straw. Thermophilic bacteria were tested to determine relationship of temperature to yield of ethanol. A preliminary report on isolating plaque forming emits derived from C. thermocellum is presented as well as the utilization of carbohydrates in nutrition. A cellulose enzyme is being purified from C. thermocellum. The productionmore » of chemical feedstocks by fermentation is reported. Acrylic acid, acetone/butanol, and acetic acid, produced by C. propionicum, C. acetobutylicum, and C. thermoaceticum, are discussed. (DC)« less

  19. Reactive oligoarthritis in a patient with Clostridium difficile pseudomembranous colitis. Review of the literature.

    PubMed

    Veillard, E; Guggenbuhl, P; Bello, S; Lamer, F; Chalès, G

    1998-12-01

    A 57-year-old man developed oligoarthritis of the right sacroiliac joint, knee and elbow in the wake of Clostridium difficile pseudomembranous colitis. He was HLA B27-positive and had a history of Reiter's syndrome. His joint manifestations resolved after a course of nonsteroidal antiinflammatory drug therapy and injection of the right knee with triamcinolone acetonide. Clostridium difficile should be recognized as a rare cause of reactive arthritis.

  20. Adaptive Strategies and Pathogenesis of Clostridium difficile from In Vivo Transcriptomics

    PubMed Central

    Janoir, Claire; Denève, Cécile; Bouttier, Sylvie; Barbut, Frédéric; Hoys, Sandra; Caleechum, Laxmee; Chapetón-Montes, Diana; Pereira, Fátima C.; Henriques, Adriano O.; Collignon, Anne; Monot, Marc

    2013-01-01

    Clostridium difficile is currently the major cause of nosocomial intestinal diseases associated with antibiotic therapy in adults. In order to improve our knowledge of C. difficile-host interactions, we analyzed the genome-wide temporal expression of C. difficile 630 genes during the first 38 h of mouse colonization to identify genes whose expression is modulated in vivo, suggesting that they may play a role in facilitating the colonization process. In the ceca of the C. difficile-monoassociated mice, 549 genes of the C. difficile genome were differentially expressed compared to their expression during in vitro growth, and they were distributed in several functional categories. Overall, our results emphasize the roles of genes involved in host adaptation. Colonization results in a metabolic shift, with genes responsible for the fermentation as well as several other metabolic pathways being regulated inversely to those involved in carbon metabolism. In addition, several genes involved in stress responses, such as ferrous iron uptake or the response to oxidative stress, were regulated in vivo. Interestingly, many genes encoding conserved hypothetical proteins (CHP) were highly and specifically upregulated in vivo. Moreover, genes for all stages of sporulation were quickly induced in vivo, highlighting the observation that sporulation is central to the persistence of C. difficile in the gut and to its ability to spread in the environment. Finally, we inactivated two genes that were differentially expressed in vivo and evaluated the relative colonization fitness of the wild-type and mutant strains in coinfection experiments. We identified a CHP as a putative colonization factor, supporting the suggestion that the in vivo transcriptomic approach can unravel new C. difficile virulence genes. PMID:23897605

  1. Novel clostridial fusants in comparison with co-cultured counterpart species for enhanced production of biobutanol using green renewable and sustainable feedstock.

    PubMed

    Syed, Kashif; Dahman, Yaser

    2015-11-01

    In this work, biobutanol was produced through simultaneous saccharification and fermentation (SSF) of wheat straw (WS) that traditionally produces acetone, butanol and ethanol solvents (ABE). Thermal stability was imparted to two mesophilic clostridial wild strains (Clostridium beijerinckii and Clostridium acetobutylicum) through protoplast fusion with that of a corresponding thermophilic clostridial species (Clostridium thermocellum). Production was pursued by the fused strains at 45 °C compared to that of the corresponding co-cultures at 35 °C. Results showed that the fused strains generally achieved higher production at 45 °C than that of the corresponding co-cultures at 35 °C. Highest butanol production of 13.82 g/L was recorded with C. beijerinckii fusant, with ABE solvents production of 23 g/L (yields of 0.17 and 0.57, respectively). Total sugar consumption of this strain was the highest among all strains and was 84%. Fused strains also showed immense level of tolerance towards butanol toxicity compared to the wild strains. Filter paper enzyme assay demonstrated that fused strains were able to produce cellulolytic enzymes in the range of 58.73-68.52 FPU/ml. Cellulosome producing C. thermocellum and its ability to ferment sugars offers a promising future in biofuels through eliminating the need to add external enzymes. Generally, productions reported in the present study were higher than literature where biobutanol stripping systems were employed to eliminate toxicity during production. This demonstrates a clear potential for improving productivity and yield at a larger-scale facility.

  2. Biobutanol production by Clostridium acetobutylicum using xylose recovered from birch Kraft black liquor.

    PubMed

    Kudahettige-Nilsson, Rasika L; Helmerius, Jonas; Nilsson, Robert T; Sjöblom, Magnus; Hodge, David B; Rova, Ulrika

    2015-01-01

    Acetone-butanol-ethanol (ABE) fermentation was studied using acid-hydrolyzed xylan recovered from hardwood Kraft black liquor by CO2 acidification as the only carbon source. Detoxification of hydrolyzate using activated carbon was conducted to evaluate the impact of inhibitor removal and fermentation. Xylose hydrolysis yields as high as 18.4% were demonstrated at the highest severity hydrolysis condition. Detoxification using active carbon was effective for removal of both phenolics (76-81%) and HMF (38-52%). Batch fermentation of the hydrolyzate and semi-defined P2 media resulted in a total solvent yield of 0.12-0.13g/g and 0.34g/g, corresponding to a butanol concentration of 1.8-2.1g/L and 7.3g/L respectively. This work is the first study of a process for the production of a biologically-derived biofuel from hemicelluloses solubilized during Kraft pulping and demonstrates the feasibility of utilizing xylan recovered directly from industrial Kraft pulping liquors as a feedstock for biological production of biofuels such as butanol. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Clostridium perfringens and C. difficile in parvovirus-positive dogs.

    PubMed

    Silva, Rodrigo Otávio Silveira; Dorella, Fernanda Alves; Figueiredo, Henrique Cesar Pereira; Costa, Érica Azevedo; Pelicia, Vanessa; Ribeiro, Bruna Letícia Devidé; Ribeiro, Marcio Garcia; Paes, Antonio Carlos; Megid, Jane; Lobato, Francisco Carlos Faria

    2017-12-01

    The aim of this study was to investigate Clostridium difficile and Clostridium perfringens in 82 diarrheic dogs positive for canine parvovirus type 2 (CPV). Enterotoxigenic C. perfringens type A was isolated from three (3.6%) dogs. One (1.2%) strain was also positive for NetE- and NetF-encoding genes, which are commonly associated with diarrhea in dogs. Toxigenic C. difficile was isolated from one animal (1.2%), which was also positive for A/B toxins. The present study identified C. difficile and C. perfringens infection in CPV-positive dogs. Further studies are necessary to clarify if clostridial infections may predispose or potentiate CPV-infection in dogs or vice versa. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Flooding and Clostridium difficile infection: a case-crossover analysis

    EPA Science Inventory

    Clostridium difficile is a bacterium that can spread by water. It often causes acute gastrointestinal illness in older adults who are hospttalized and/or receiving antibiotics; however, community­ associated infections affecting otherwise healthy individuals have become more comm...

  5. Investigation of Clostridium botulinum group III's mobilome content.

    PubMed

    Woudstra, Cédric; Le Maréchal, Caroline; Souillard, Rozenn; Anniballi, Fabrizio; Auricchio, Bruna; Bano, Luca; Bayon-Auboyer, Marie-Hélène; Koene, Miriam; Mermoud, Isabelle; Brito, Roseane B; Lobato, Francisco C F; Silva, Rodrigo O S; Dorner, Martin B; Fach, Patrick

    2018-02-01

    Clostridium botulinum group III is mainly responsible for botulism in animals. It could lead to high animal mortality rates and, therefore, represents a major environmental and economic concern. Strains of this group harbor the botulinum toxin locus on an unstable bacteriophage. Since the release of the first complete C. botulinum group III genome sequence (strain BKT015925), strains have been found to contain others mobile elements encoding for toxin components. In this study, seven assays targeting toxin genes present on the genetic mobile elements of C. botulinum group III were developed with the objective to better characterize C. botulinum group III strains. The investigation of 110 C. botulinum group III strains and 519 naturally contaminated samples collected during botulism outbreaks in Europe showed alpha-toxin and C2-I/C2-II markers to be systematically associated with type C/D bont-positive samples, which may indicate an important role of these elements in the pathogenicity mechanisms. On the contrary, bont type D/C strains and the related positive samples appeared to contain almost none of the markers tested. Interestingly, 31 bont-negative samples collected on farms after a botulism outbreak revealed to be positive for some of the genetic mobile elements tested. This suggests loss of the bont phage, either in farm environment after the outbreak or during laboratory handling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Genomics of Clostridium

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Joseph; Johnson, Eric A.

    The clostridia have a rich history and contemporary importance in industrial, environmental, and medical microbiology. Due to their ability to form endospores, clostridia are ubiquitous in nature and are found in many environments, especially in soils and the intestinal tract of animals including humans. Many clostridia cause devastating diseases of humans and animals, such as botulism, tetanus, and gas gangrene, through the production of protein toxins. The clostridia produce more protein toxins that are lethal for humans and animals than any other bacterial genus (Johnson, 2005; Van Heyningen, 1950). Other species are important in the formation of solvents and organic acids by anaerobic fermentations or as a source of unique enzymes for biocatalysis (Bradshaw and Johnson, 2010; Hatheway and Johnson, 1998).

  7. Clostridium pabulibutyricum sp. nov., a butyric-acid-producing organism isolated from high-moisture grass silage.

    PubMed

    Kobayashi, Hisami; Nakasato, Takuya; Sakamoto, Mitsuo; Ohtani, Yoshihisa; Terada, Fuminori; Sakai, Ken; Ohkuma, Moriya; Tohno, Masanori

    2017-12-01

    A Gram-stain-variable, strictly anaerobic, rod-shaped, catalase-negative and endospore-forming bacterial strain, designated MJC39 T , was isolated from grass silage preserved in Hokkaido, Japan. Growth occurred at 20-42 °C, pH 5.0-7.0 and NaCl concentrations up to 2 % (w/v). The isolated strain MJC39 T produced butyric acid in peptone yeast extract medium with glucose. The DNA G+C content of strain MJC39 T was 34.4±0.2 mol%. The major cellular fatty acids (>10 %) were C14 : 0, C16 : 0 and summed feature 3 (including C16 : 1ω7c/C16 : 1ω6c). No respiratory quinones were detected. The polar lipids of strain MJC39 T were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unidentified lipid, one unidentified aminolipid, two unidentified glycolipids, one unidentified phospholipid, one unidentified aminoglycolipid and one unidentified phosphoaminoglycolipid. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MJC39 T was a member of the genus Clostridium and is closely related to Clostridium tyrobutyricum JCM 11008 T (95.8 % similarity) and Clostridium algifaecis MB9-7 T (95.5 % similarity). Based on the genotypic, phenotypic and chemotaxonomic characteristics, strain MJC39 T represents a novel species of the genus Clostridium, for which the name Clostridium pabulibutyricum sp. nov. is proposed. The type strain is MJC39 T (=JCM 31506 T =DSM 103944 T ).

  8. Fusion of a thermophilic phage endolysin to a Clostridium perfringens-specific cell wall binding domain creates an anti-clostridium antimicrobial with improved thermostability

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is the third leading cause of human foodborne bacterial disease and is the presumptive etiologic agent of Necrotic enteritis among chickens. Treatment of poultry with antibiotics is becoming less acceptable. Endolysin enzymes are potential replacements for antibiotics. Man...

  9. The agr Locus Regulates Virulence and Colonization Genes in Clostridium difficile 027

    PubMed Central

    Martin, Melissa J.; Clare, Simon; Goulding, David; Faulds-Pain, Alexandra; Barquist, Lars; Browne, Hilary P.; Pettit, Laura; Dougan, Gordon; Lawley, Trevor D.

    2013-01-01

    The transcriptional regulator AgrA, a member of the LytTR family of proteins, plays a key role in controlling gene expression in some Gram-positive pathogens, including Staphylococcus aureus and Enterococcus faecalis. AgrA is encoded by the agrACDB global regulatory locus, and orthologues are found within the genome of most Clostridium difficile isolates, including the epidemic lineage 027/BI/NAP1. Comparative RNA sequencing of the wild type and otherwise isogenic agrA null mutant derivatives of C. difficile R20291 revealed a network of approximately 75 differentially regulated transcripts at late exponential growth phase, including many genes associated with flagellar assembly and function, such as the major structural subunit, FliC. Other differentially regulated genes include several involved in bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP) synthesis and toxin A expression. C. difficile 027 R20291 agrA mutant derivatives were poorly flagellated and exhibited reduced levels of colonization and relapses in the murine infection model. Thus, the agr locus likely plays a contributory role in the fitness and virulence potential of C. difficile strains in the 027/BI/NAP1 lineage. PMID:23772065

  10. Antibacterial activity against Clostridium genus and antiradical activity of the essential oils from different origin.

    PubMed

    Kačániová, Miroslava; Vukovič, Nenad; Horská, Elena; Salamon, Ivan; Bobková, Alica; Hleba, Lukáš; Fiskelová, Martina; Vatľák, Alexander; Petrová, Jana; Bobko, Marek

    2014-01-01

    In the present study, the antimicrobial and antiradical activities of 15 essential oils were investigated. The antimicrobial activities were determined by using agar disc diffusion and broth microdilution methods against Clostridium genus and antioxidant properties of essential oils by testing their scavenging effect on DPPH radicals activities. We determined the antibacterial activity of Clostridium butyricum, Clostridium hystoliticum, Clostridium intestinale, Clostridium perfringens and Clostridium ramosum. We obtained the original commercial essential oils samples of Lavandula angustifolia, Carum carvi, Pinus montana, Mentha piperita, Foeniculum vulgare Mill., Pinus sylvestris, Satureia montana, Origanum vulgare L. (2 samples), Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abies alba Mill., Chamomilla recutita L. Rausch and Thymus vulgaris L. produced in Slovakia (Calendula a.s., Nova Lubovna, Slovakia). The results of the disk diffusion method showed very high essential oils activity against all tested strains of microorganisms. The best antimicrobial activity against C. butyricum was found at Pimpinella anisum, against C. hystoliticum was found at Pinus sylvestris, against C. intestinale was found at Satureia hortensis L., against C. perfringens was found at Origanum vulgare L. and against C. ramosum was found at Pinus sylvestris. The results of broth microdilution assay showed that none of the essential oils was active against C. hystoliticum. The best antimicrobial activity against C. butyricum was found at Abies alba Mill., against C. intestinale was found at Abies alba Mill., against C. perfringens was found at Satureia montana and against C. ramosum was found at Abius alba and Carum carvi. Antioxidant DPPH radical scavenging activity was determined at several solutions of oil samples (50 μL.mL(-1)-0.39 μL.mL(-1)) and the best scavenging effect for the highest concentration (50 μL.mL(-1)) was observed. The antioxidant properties

  11. Genetic Characterization and Comparison of Clostridium botulinum Isolates from Botulism Cases in Japan between 2006 and 2011

    PubMed Central

    Sekizuka, Tsuyoshi; Yamamoto, Akihiko; Iwaki, Masaaki; Komiya, Takako; Hatakeyama, Takashi; Nakajima, Hiroshi; Takahashi, Motohide; Kuroda, Makoto; Shibayama, Keigo

    2014-01-01

    Genetic characterization was performed for 10 group I Clostridium botulinum strains isolated from botulism cases in Japan between 2006 and 2011. Of these, 1 was type A, 2 were type B, and 7 were type A(B) {carrying a silent bont/B [bont/(B)] gene} serotype strains, based on botulinum neurotoxin (BoNT) production. The type A strain harbored the subtype A1 BoNT gene (bont/A1), which is associated with the ha gene cluster. The type B strains carried bont/B5 or bont/B6 subtype genes. The type A(B) strains carried bont/A1 identical to that of type A(B) strain NCTC2916. However, bont/(B) genes in these strains showed single-nucleotide polymorphisms (SNPs) among strains. SNPs at 2 nucleotide positions of bont/(B) enabled classification of the type A(B) strains into 3 groups. Pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem-repeat analysis (MLVA) also provided consistent separation results. In addition, the type A(B) strains were separated into 2 lineages based on their plasmid profiles. One lineage carried a small plasmid (5.9 kb), and another harbored 21-kb plasmids. To obtain more detailed genetic information about the 10 strains, we sequenced their genomes and compared them with 13 group I C. botulinum genomes in a database using whole-genome SNP analysis. This analysis provided high-resolution strain discrimination and enabled us to generate a refined phylogenetic tree that provides effective traceability of botulism cases, as well as bioterrorism materials. In the phylogenetic tree, the subtype B6 strains, Okayama2011 and Osaka05, were distantly separated from the other strains, indicating genomic divergence of subtype B6 strains among group I strains. PMID:25192986

  12. Isolation of Clostridium spiroforme from rabbits.

    PubMed

    Holmes, H T; Sonn, R J; Patton, N M

    1988-04-01

    The isolation of Clostridium spiroforme from intestinal contents of rabbits was achieved by sampling the supernatant-pellet interphase of centrifuged specimens processed for routine toxin analysis. High-speed centrifugation at 20,000x for 15 minutes provided a rapid and effective means of separating this anaerobic pathogen from the majority of both indigenous and non-indigenous intestinal microbial flora. The unusual helically-coiled, semicircular shape of the microorganism is considered, at least in part, responsible for this phenomenon.

  13. Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance.

    PubMed

    Liu, Jun; Guo, Ting; Shen, Xiaoning; Xu, Jiahui; Wang, Junzhi; Wang, Yanyan; Liu, Dong; Niu, Huanqing; Liang, Lei; Ying, Hanjie

    2016-07-10

    A mutant strain of Clostridium beijerinckii NCIMB 8052, C. beijerinckii M11, which exhibited ferulic acid tolerance up to 0.9g/L, was generated using atmospheric pressure glow discharge and high-throughput screening. Comparative genomic analysis revealed that this strain harbored a mutation of the Cbei_4693 gene, which encodes a hypothetical protein suspected to be an NADPH-dependent FMN reductase. After disrupting the Cbei_4693 gene in C. beijerinckii NCIMB 8052 using the ClosTron group II intron-based gene inactivation system, we obtained the Cbei_4693 gene inactivated mutant strain, C. beijerinckii 4693::int. Compared with C. beijerinckii NCIMB 8052, 6.23g/L of butanol was produced in P2 medium containing 0.5g/L of ferulic acid by 4693::int, and the ferulic acid tolerance was also significantly increased up to 0.8g/L. These data showed, for the first time, that the Cbei_4693 gene plays an important role in regulating ferulic acid tolerance in ABE fermentation by C. beijerinckii. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Clostridium difficile infection in solid organ transplant recipients.

    PubMed

    Nanayakkara, Deepa; Nanda, Neha

    2017-08-01

    Clostridium difficile infection (CDI) is a major healthcare-associated infection that causes significant morbidity and an economic impact in the United States. In this review, we provide an overview of Clostridium difficile infection in solid organ transplant recipients with an emphasis on recent literature. C. difficile in solid organ transplant population has unique risk factors. Fecal microbiota transplantation has shown favorable results in treatment of recurrent C. difficile in this population. Preliminary data from animal studies suggests excellent efficacy with immunization against C. difficile toxins. Over the last decade, number of individuals receiving solid organ transplants has increased exponentially making peri-transplant complications a common occurrence.C. difficile is a frequent cause of morbidity in solid organ transplant recipients. Early and accurate diagnosis of C. difficile requires a stepwise approach. Differentiating between asymptomatic carriage and infection is a diagnostic challenge. Microbial diversity is inversely proportional to risk of C. difficile infection. Antimicrobial stewardship programs help to retain microbial diversity in individuals susceptible to CDI. Recurrent or relapsing C. difficile infection require fecal microbiota transplantation for definitive cure.

  15. Plasmid Characterization and Chromosome Analysis of Two netF+ Clostridium perfringens Isolates Associated with Foal and Canine Necrotizing Enteritis

    PubMed Central

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M.; Weese, Scott J.; Parreira, Valeria R.; Whitehead, Ashley E.; Boerlin, Patrick; Prescott, John F.

    2016-01-01

    The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and

  16. Plasmid Characterization and Chromosome Analysis of Two netF+ Clostridium perfringens Isolates Associated with Foal and Canine Necrotizing Enteritis.

    PubMed

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Parreira, Valeria R; Whitehead, Ashley E; Boerlin, Patrick; Prescott, John F

    2016-01-01

    The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and

  17. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum.

    PubMed

    Tian, Liang; Papanek, Beth; Olson, Daniel G; Rydzak, Thomas; Holwerda, Evert K; Zheng, Tianyong; Zhou, Jilai; Maloney, Marybeth; Jiang, Nannan; Giannone, Richard J; Hettich, Robert L; Guss, Adam M; Lynd, Lee R

    2016-01-01

    Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. Fuels from cellulosic biomass are particularly promising, but would benefit from lower processing costs. Clostridium thermocellum can rapidly solubilize and ferment cellulosic biomass, making it a promising candidate microorganism for consolidated bioprocessing for biofuel production, but increases in product yield and titer are still needed. Here, we started with an engineered C. thermocellum strain where the central metabolic pathways to products other than ethanol had been deleted. After two stages of adaptive evolution, an evolved strain was selected with improved yield and titer. On chemically defined medium with crystalline cellulose as substrate, the evolved strain produced 22.4 ± 1.4 g/L ethanol from 60 g/L cellulose. The resulting yield was about 0.39 gETOH/gGluc eq, which is 75 % of the maximum theoretical yield. Genome resequencing, proteomics, and biochemical analysis were used to examine differences between the original and evolved strains. A two step selection method successfully improved the ethanol yield and the titer. This evolved strain has the highest ethanol yield and titer reported to date for C. thermocellum, and is an important step in the development of this microbe for industrial applications.

  18. Phages and the Evolution of Bacterial Pathogens: from Genomic Rearrangements to Lysogenic Conversion

    PubMed Central

    Brüssow, Harald; Canchaya, Carlos; Hardt, Wolf-Dietrich

    2004-01-01

    Comparative genomics demonstrated that the chromosomes from bacteria and their viruses (bacteriophages) are coevolving. This process is most evident for bacterial pathogens where the majority contain prophages or phage remnants integrated into the bacterial DNA. Many prophages from bacterial pathogens encode virulence factors. Two situations can be distinguished: Vibrio cholerae, Shiga toxin-producing Escherichia coli, Corynebacterium diphtheriae, and Clostridium botulinum depend on a specific prophage-encoded toxin for causing a specific disease, whereas Staphylococcus aureus, Streptococcus pyogenes, and Salmonella enterica serovar Typhimurium harbor a multitude of prophages and each phage-encoded virulence or fitness factor makes an incremental contribution to the fitness of the lysogen. These prophages behave like “swarms” of related prophages. Prophage diversification seems to be fueled by the frequent transfer of phage material by recombination with superinfecting phages, resident prophages, or occasional acquisition of other mobile DNA elements or bacterial chromosomal genes. Prophages also contribute to the diversification of the bacterial genome architecture. In many cases, they actually represent a large fraction of the strain-specific DNA sequences. In addition, they can serve as anchoring points for genome inversions. The current review presents the available genomics and biological data on prophages from bacterial pathogens in an evolutionary framework. PMID:15353570

  19. Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity.

    PubMed

    Kim, Minsun; Kim, Ki-Yeon; Lee, Kyung Min; Youn, Sung Hun; Lee, Sun-Mi; Woo, Han Min; Oh, Min-Kyu; Um, Youngsoon

    2016-10-01

    The aim of this work was to study the butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1. Results showed that Clostridium sp. S1 produced butyric acid by simultaneously utilizing glucose and mannose in softwood hydrolysate and, more remarkably, it consumed acetic acid in hydrolysate. Clostridium sp. S1 utilized each of glucose, mannose, and xylose as well as mixed sugars simultaneously with partially repressed xylose utilization. When softwood (Japanese larch) hydrolysate containing glucose and mannose as the main sugars was used, Clostridium sp. S1 produced 21.17g/L butyric acid with the yield of 0.47g/g sugar and the selectivity of 1 (g butyric acid/g total acids) owing to the consumption of acetic acid in hydrolysate. The results demonstrate potential of Clostridium sp. S1 to produce butyric acid selectively and effectively from hydrolysate not only by utilizing mixed sugars simultaneously but also by converting acetic acid to butyric acid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis.

    PubMed

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Whitehead, Ashley E; Parreira, Valeria R; Boerlin, Patrick; Prescott, John F

    2017-04-01

    Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST). The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Imipenem Resistance in Clostridium difficile Ribotype 017, Portugal

    PubMed Central

    Isidro, Joana; Santos, Andrea; Nunes, Alexandra; Borges, Vítor; Silva, Catarina; Vieira, Luís; Mendes, Aristides L.; Serrano, Mónica; Henriques, Adriano O.; Gomes, João Paulo

    2018-01-01

    We describe imipenem-resistant and imipenem-susceptible clinical isolates of Clostridium difficile ribotype 017 in Portugal. All ribotype 017 isolates carried an extra penicillin-binding protein gene, pbp5, and the imipenem-resistant isolates had additional substitutions near the transpeptidase active sites of pbp1 and pbp3. These clones could disseminate and contribute to imipenem resistance. PMID:29553322

  2. Clostridium difficile in Ready-to-Eat Salads, Scotland

    PubMed Central

    Bakri, Marwah M.; Brown, Derek J.; Butcher, John P.

    2009-01-01

    Of 40 ready-to-eat salads, 3 (7.5%) were positive for Clostridium difficile by PCR. Two isolates were PCR ribotype 017 (toxin A–, B+), and 1 was PCR ribotype 001. Isolates were susceptible to vancomycin and metronidazole but variably resistant to other antimicrobial drugs. Ready-to-eat salads may be potential sources for virulent C. difficile. PMID:19402979

  3. Economic evaluation of interventions designed to reduce Clostridium difficile infection.

    PubMed

    Brain, David; Yakob, Laith; Barnett, Adrian; Riley, Thomas; Clements, Archie; Halton, Kate; Graves, Nicholas

    2018-01-01

    Healthcare decision-makers are increasingly expected to balance increasing demand for health services with a finite budget. The role of economic evaluation in healthcare is increasing and this research provides decision-makers with new information about the management of Clostridium difficile infection, from an economic perspective. A model-based economic evaluation was undertaken to identify the most cost-effective healthcare intervention relating to the reduction of Clostridium difficile transmission. Efficacy evidence was synthesised from the literature and was used to inform the effectiveness of both bundled approaches and stand-alone interventions, where appropriate intervention combinations were coupled together. Changes in health outcomes were estimated by combining information about intervention effectiveness and its subsequent impact on quality of life. A bundled approach of improving hand hygiene and environmental cleaning produces the best combination of increased health benefits and cost-savings. It has the highest mean net monetary benefit when compared to all other interventions. This intervention remains the optimal decision under different clinical circumstances, such as when mortality rate and patient length of stay are increased. Bundled interventions offered the best opportunity for health improvements. These findings provide healthcare decision-makers with novel information about the allocation of scarce resources relating to Clostridium difficile. If investments are not made in interventions that clearly yield gains in health outcomes, the allocation and use of scarce healthcare resources is inappropriate and improvements in health outcomes will be forgone.

  4. [Toxins of Clostridium perfringens as a natural and bioterroristic threats].

    PubMed

    Omernik, Andrzej; Płusa, Tadeusz

    2015-09-01

    Clostridium perfringens is absolutely anaerobic rod-shaped, sporeforming bacterium. The morbidity is connected with producing toxins. Depending on the type of toxin produced Clostridium perfringens can be divided into five serotypes:A-E. Under natural conditions, this bacterium is responsible for local outbreaks of food poisoning associated with eating contaminated food which which was improperly heat treated. Some countries with lower economic level are endemic foci of necrotizing enteritis caused by Clostridium perfringens. The bacterium is also a major cause of gas gangrene. It is a disease, associated with wound infection, with potentially fatal prognosis in the case of treatment's delays. In the absence of early radical surgery, antibiotic therapy and (if available) hyperbaric treatment leads to the spread of toxins in the body causing shock, coma and death. Due to the force of produced toxins is a pathogen that poses a substrate for the production of biological weapons. It could potentially be used to induce outbreaks of food poisoning and by missiles contamination by spore lead to increased morbidity of gas gangrene in injured soldiers. C. perfringens types B and D produce epsilon toxin considered to be the third most powerful bacterial toxin. Because of the ability to disperse the toxin as an aerosol and a lack of methods of treatment and prevention of poisoning possible factors it is a potential tool for bioterrorism It is advisable to continue research into vaccines and treatments for poisoning toxins of C. perfringens. © 2015 MEDPRESS.

  5. Economic evaluation of interventions designed to reduce Clostridium difficile infection

    PubMed Central

    Riley, Thomas; Clements, Archie; Halton, Kate

    2018-01-01

    Introduction Healthcare decision-makers are increasingly expected to balance increasing demand for health services with a finite budget. The role of economic evaluation in healthcare is increasing and this research provides decision-makers with new information about the management of Clostridium difficile infection, from an economic perspective. Methods A model-based economic evaluation was undertaken to identify the most cost-effective healthcare intervention relating to the reduction of Clostridium difficile transmission. Efficacy evidence was synthesised from the literature and was used to inform the effectiveness of both bundled approaches and stand-alone interventions, where appropriate intervention combinations were coupled together. Changes in health outcomes were estimated by combining information about intervention effectiveness and its subsequent impact on quality of life. Results A bundled approach of improving hand hygiene and environmental cleaning produces the best combination of increased health benefits and cost-savings. It has the highest mean net monetary benefit when compared to all other interventions. This intervention remains the optimal decision under different clinical circumstances, such as when mortality rate and patient length of stay are increased. Bundled interventions offered the best opportunity for health improvements. Conclusion These findings provide healthcare decision-makers with novel information about the allocation of scarce resources relating to Clostridium difficile. If investments are not made in interventions that clearly yield gains in health outcomes, the allocation and use of scarce healthcare resources is inappropriate and improvements in health outcomes will be forgone. PMID:29298322

  6. Clostridium botulinum Group I Strain Genotyping by 15-Locus Multilocus Variable-Number Tandem-Repeat Analysis ▿ †

    PubMed Central

    Fillo, Silvia; Giordani, Francesco; Anniballi, Fabrizio; Gorgé, Olivier; Ramisse, Vincent; Vergnaud, Gilles; Riehm, Julia M.; Scholz, Holger C.; Splettstoesser, Wolf D.; Kieboom, Jasper; Olsen, Jaran-Strand; Fenicia, Lucia; Lista, Florigio

    2011-01-01

    Clostridium botulinum is a taxonomic designation that encompasses a broad variety of spore-forming, Gram-positive bacteria producing the botulinum neurotoxin (BoNT). C. botulinum is the etiologic agent of botulism, a rare but severe neuroparalytic disease. Fine-resolution genetic characterization of C. botulinum isolates of any BoNT type is relevant for both epidemiological studies and forensic microbiology. A 10-locus multiple-locus variable-number tandem-repeat analysis (MLVA) was previously applied to isolates of C. botulinum type A. The present study includes five additional loci designed to better address proteolytic B and F serotypes. We investigated 79 C. botulinum group I strains isolated from human and food samples in several European countries, including types A (28), B (36), AB (4), and F (11) strains, and 5 nontoxic Clostridium sporogenes. Additional data were deduced from in silico analysis of 10 available fully sequenced genomes. This 15-locus MLVA (MLVA-15) scheme identified 86 distinct genotypes that clustered consistently with the results of amplified fragment length polymorphism (AFLP) and MLVA genotyping in previous reports. An MLVA-7 scheme, a subset of the MLVA-15, performed on a lab-on-a-chip device using a nonfluorescent subset of primers, is also proposed as a first-line assay. The phylogenetic grouping obtained with the MLVA-7 does not differ significantly from that generated by the MLVA-15. To our knowledge, this report is the first to analyze genetic variability among all of the C. botulinum group I serotypes by MLVA. Our data provide new insights into the genetic variability of group I C. botulinum isolates worldwide and demonstrate that this group is genetically highly diverse. PMID:22012011

  7. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics.

    PubMed

    Xiao, Yinghua; van Hijum, Sacha A F T; Abee, Tjakko; Wells-Bennik, Marjon H J

    2015-01-01

    The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies.

  8. Clostridium perfringens epsilon toxin: a malevolent molecule for animals and man?

    PubMed

    Stiles, Bradley G; Barth, Gillian; Barth, Holger; Popoff, Michel R

    2013-11-12

    Clostridium perfringens is a prolific, toxin-producing anaerobe causing multiple diseases in humans and animals. One of these toxins is epsilon, a 33 kDa protein produced by Clostridium perfringens (types B and D) that induces fatal enteric disease of goats, sheep and cattle. Epsilon toxin (Etx) belongs to the aerolysin-like toxin family. It contains three distinct domains, is proteolytically-activated and forms oligomeric pores on cell surfaces via a lipid raft-associated protein(s). Vaccination controls Etx-induced disease in the field. However, therapeutic measures are currently lacking. This review initially introduces C. perfringens toxins, subsequently focusing upon the Etx and its biochemistry, disease characteristics in various animals that include laboratory models (in vitro and in vivo), and finally control mechanisms (vaccines and therapeutics).

  9. 16S rRNA Gene Sequencing, Multilocus Sequence Analysis, and Mass Spectrometry Identification of the Proposed New Species “Clostridium neonatale”

    PubMed Central

    Bouvet, Philippe; Ferraris, Laurent; Dauphin, Brunhilde; Popoff, Michel-Robert; Butel, Marie Jose

    2014-01-01

    In 2002, an outbreak of necrotizing enterocolitis in a Canadian neonatal intensive care unit was associated with a proposed novel species of Clostridium, “Clostridium neonatale.” To date, there are no data about the isolation, identification, or clinical significance of this species. Additionally, C. neonatale has not been formally classified as a new species, rendering its identification challenging. Indeed, the C. neonatale 16S rRNA gene sequence shows high similarity to another Clostridium species involved in neonatal necrotizing enterocolitis, Clostridium butyricum. By performing a polyphasic study combining phylogenetic analysis (16S rRNA gene sequencing and multilocus sequence analysis) and phenotypic characterization with mass spectrometry, we demonstrated that C. neonatale is a new species within the Clostridium genus sensu stricto, for which we propose the name Clostridium neonatale sp. nov. Now that the status of C. neonatale has been clarified, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) can be used for better differential identification of C. neonatale and C. butyricum clinical isolates. This is necessary to precisely define the role and clinical significance of C. neonatale, a species that may have been misidentified and underrepresented during previous neonatal necrotizing enterocolitis studies. PMID:25232167

  10. Identification and cloning of two immunogenic Clostridium perfringens proteins, elongation factor Tu and pyruvate:ferredoxin oxidoreductase of C. perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium-related poultry diseases such as necrotic enteritis (NE) and gangrenous dermatitis (GD) cause substantial economic losses on a global scale. Two antigenic Clostridium perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO), were identified by react...

  11. Development of SYN-004, an oral beta-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection.

    PubMed

    Kaleko, Michael; Bristol, J Andrew; Hubert, Steven; Parsley, Todd; Widmer, Giovanni; Tzipori, Saul; Subramanian, Poorani; Hasan, Nur; Koski, Perrti; Kokai-Kun, John; Sliman, Joseph; Jones, Annie; Connelly, Sheila

    2016-10-01

    The gut microbiome, composed of the microflora that inhabit the gastrointestinal tract and their genomes, make up a complex ecosystem that can be disrupted by antibiotic use. The ensuing dysbiosis is conducive to the emergence of opportunistic pathogens such as Clostridium difficile. A novel approach to protect the microbiome from antibiotic-mediated dysbiosis is the use of beta-lactamase enzymes to degrade residual antibiotics in the gastrointestinal tract before the microflora are harmed. Here we present the preclinical development and early clinical studies of the beta-lactamase enzymes, P3A, currently referred to as SYN-004, and its precursor, P1A. Both P1A and SYN-004 were designed as orally-delivered, non-systemically available therapeutics for use with intravenous beta-lactam antibiotics. SYN-004 was engineered from P1A, a beta-lactamase isolated from Bacillus licheniformis, to broaden its antibiotic degradation profile. SYN-004 efficiently hydrolyses penicillins and cephalosporins, the most widely used IV beta-lactam antibiotics. In animal studies, SYN-004 degraded ceftriaxone in the GI tract of dogs and protected the microbiome of pigs from ceftriaxone-induced changes. Phase I clinical studies demonstrated SYN-004 safety and tolerability. Phase 2 studies are in progress to assess the utility of SYN-004 for the prevention of antibiotic-associated diarrhea and Clostridium difficile disease. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Detergent-Resistant Membrane Microdomains Facilitate Ib Oligomer Formation and Biological Activity of Clostridium perfringens Iota-Toxin

    DTIC Science & Technology

    2004-04-01

    spore-forming bacilli such as Clostridium spiroforme (iota-like toxin), Clostridium botulinum (C2 toxin), Bacillus anthracis (lethal and edema toxins...ously (28). Goat C. spiroforme and C. perfringens type C antisera were purchased from TechLab, Inc. (Blacksburg, Va.). Mouse monoclonal antibodies...membrane preparations was specific. Previous studies showed that the binary C. spiroforme toxin shares common epitopes with iota-toxin, and antisera

  13. Mode of action of plectasin-derived peptides against gas gangrene-associated Clostridium perfringens type A.

    PubMed

    Zheng, Xueling; Wang, Xiumin; Teng, Da; Mao, Ruoyu; Hao, Ya; Yang, Na; Zong, Lifen; Wang, Jianhua

    2017-01-01

    NZ2114 and MP1102 are novel plectasin-derived peptides with potent activity against Gram-positive bacteria. The antibacterial characteristics and mechanism of NZ2114 and MP1102 against gas gangrene-associated Clostridium perfringens were studied for the first time. The minimal inhibitory concentration and minimal bactericidal concentration of NZ2114 and MP1102 against resistant C. perfringens type A strain CVCC 46 were 0.91 μM. Based on the fractional inhibitory concentration index (FICI) result, an additive or synergic effect was observed between NZ2114 (FICI = 0.5~0.75) or MP1102 (FICI = 0.375~1.0) and antibiotics. The flow cytometry, scanning and transmission electron microscopy analysis showed that both NZ2114 and MP1102 induced obviously membrane damage, such as the leakage of cellular materials, partial disappearance of the cell membrane and membrane peeling, as well as retracting cytoplasm and ghost cell. The gel retardation and circular dichroism (CD) detection showed that NZ2114 and MP1102 could bind to C. perfringens genomic DNA and change the DNA conformation. Moreover, NZ2114 also interfered with the double helix and unwind the genomic DNA. The cell cycle analysis showed that C. perfringens CVCC 46 cells exposed to NZ2114 and MP1102 were arrested at the phase I. These data indicated that both NZ2114 and MP1102 have potential as new antimicrobial agents for gas gangrene infection resulting from resistant C. perfringens.

  14. Mode of action of plectasin-derived peptides against gas gangrene-associated Clostridium perfringens type A

    PubMed Central

    Zheng, Xueling; Wang, Xiumin; Teng, Da; Mao, Ruoyu; Hao, Ya; Yang, Na; Zong, Lifen

    2017-01-01

    NZ2114 and MP1102 are novel plectasin-derived peptides with potent activity against Gram-positive bacteria. The antibacterial characteristics and mechanism of NZ2114 and MP1102 against gas gangrene-associated Clostridium perfringens were studied for the first time. The minimal inhibitory concentration and minimal bactericidal concentration of NZ2114 and MP1102 against resistant C. perfringens type A strain CVCC 46 were 0.91 μM. Based on the fractional inhibitory concentration index (FICI) result, an additive or synergic effect was observed between NZ2114 (FICI = 0.5~0.75) or MP1102 (FICI = 0.375~1.0) and antibiotics. The flow cytometry, scanning and transmission electron microscopy analysis showed that both NZ2114 and MP1102 induced obviously membrane damage, such as the leakage of cellular materials, partial disappearance of the cell membrane and membrane peeling, as well as retracting cytoplasm and ghost cell. The gel retardation and circular dichroism (CD) detection showed that NZ2114 and MP1102 could bind to C. perfringens genomic DNA and change the DNA conformation. Moreover, NZ2114 also interfered with the double helix and unwind the genomic DNA. The cell cycle analysis showed that C. perfringens CVCC 46 cells exposed to NZ2114 and MP1102 were arrested at the phase I. These data indicated that both NZ2114 and MP1102 have potential as new antimicrobial agents for gas gangrene infection resulting from resistant C. perfringens. PMID:28934314

  15. Multihospital Outbreak of Clostridium difficile Infection, Cleveland, Ohio, USA

    PubMed Central

    Jump, Robin L.P.; Riggs, Michelle M.; Sethi, Ajay K.; Pultz, Michael J.; Ellis-Reid, Tracie; Riebel, William; Gerding, Dale N.; Salata, Robert A.

    2010-01-01

    To determine whether a multihospital Clostridium difficile outbreak was associated with epidemic strains and whether use of particular fluoroquinolones was associated with increased infection rates, we cultured feces from C. difficile–infected patients. Use of fluoroquionolones with enhanced antianaerobic activity was not associated with increased infection rates. PMID:20409374

  16. Four phage endolysins that are lytic for clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a bacterial pathogen and the cause of necrotic enteritis in poultry, and a source of food poisoning and gas gangrene in people. C. perfringens can also cause mild to severe enteritis in pigs. In the EU, the occurrence of C. perfringens-associated necrotic enteritis in pou...

  17. Conversion of food processing wastes to biofuel using clostridia.

    PubMed

    Abd-Alla, Mohamed Hemida; Zohri, Abdel-Naser Ahmed; El-Enany, Abdel-Wahab Elsadek; Ali, Shimaa Mohamed

    2017-12-01

    This study aims to demonstrate the recycling of food processing wastes as a low cost-effective substrate for acetone - butanol - ethanol (ABE) production. Potato peels and cheese whey were utilized during fermentation with eight local Clostridium strains in addition to the commercial strain, C. acetobutylicum ATCC 824 for ABE and organic acids production. From potato peels, Clostridium beijerinckii ASU10 produced the highest ABE production (17.91 g/l) representing 61.3% butanol (10.98 g/l), 33.6% acetone (6.02 g/l) and 5.1% ethanol (0.91 g/l). While, C. chauvoei ASU12 showed the highest acid production (8.15 g/l) including 5.50 and 2.61 g/l acetic and butyric acids, respectively. Use of cheese whey as fermentable substrate exhibited a substantial increase in ethanol ratio and decrease in butanol ratio compared to those produced from potato peels. Clostridium beijerinckii ASU5 produced the highest ABE concentration (7.13 g/l) representing 50.91% butanol (3.63 g/l), 35.34% acetone (2.52 g/l) and 13.74% ethanol (0.98 g/l). The highest acid production (8.00 g/l) was obtained by C. beijerinckii ASU5 representing 4.89 and 3.11 g/l for acetic and butyric acid, respectively. Supplementation of potato peels with an organic nitrogen source showed NH 4 NO 3 promoted ABE production more than yeast extract. In conclusion, this study introduced an ecofriendly and economical practice for utilization of food processing wastes (renewable substrates as potato peels and cheese whey) for biofuel production using various Clostridium strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. High prevalence of Clostridium difficile on retail root vegetables, Western Australia.

    PubMed

    Lim, S C; Foster, N F; Elliott, B; Riley, T V

    2018-02-01

    The incidence of community-associated Clostridium difficile infection (CA-CDI) in Australia has increased since mid-2011. With reports of clinically important C. difficile strains being isolated from retail foods in Europe and North America, a foodborne source of C. difficile in cases of CA-CDI is a possibility. This study represents the first to investigate the prevalence and genotypes of C. difficile in Australian retail vegetables. A total of 300 root vegetables grown in Western Australia (WA) were collected from retail stores and farmers' markets. Three vegetables of the same kind bought from the same store/market were treated as one sample. Selective enrichment culture, toxin profiling and PCR ribotyping were performed. Clostridium difficile was isolated from 30% (30/100) of pooled vegetable samples, 55·6% of organic potatoes, 50% of nonorganic potatoes, 22·2% of organic beetroots, 5·6% of organic onions and 5·3% of organic carrots. Over half (51·2%, 22/43) the isolates were toxigenic. Many of the ribotypes of C. difficile isolated were common among human and Australian animals. Clostridium difficile could be found commonly on retail root vegetables of WA. This may be potential sources for CA-CDI. This study enhances knowledge of possible sources of C. difficile in the Australian community, outside the hospital setting. © 2017 The Society for Applied Microbiology.

  19. A Quantitative Electrochemiluminescence Assay for Clostridium perfringens alpha toxin

    DTIC Science & Technology

    2006-08-10

    Doyle, L.R. Beuchat, T.J. Montville (Eds.), Food Microbiology : Fundamentals and Fron- tiers, Second ed., ASM Press, Washington, D.C., 2001, pp. 351...D.E. Lorant, A.E. Bryant, G.A. Zimmerman, T.M. McIn- tyre, D.L. Stevens, S.M. Prescott , Alpha toxin from Clostridium per- fringens induces

  20. Occurrence and prevalence of Clostridium perfringens in polar bears from Svalbard, Norway.

    PubMed

    Jores, Joerg; Derocher, Andrew E; Staubach, Christoph; Aschfalk, Ansgar

    2008-01-01

    To obtain insight into the occurrence and prevalence of Clostridium perfringens and its major toxins in polar bears (Ursus maritimus), we took fecal samples for bacteriologic analysis from live-captured bears in the Svalbard Archipelago, Norway, in 2001. Clostridium perfringens was isolated from 40 of 92 samples (44%). Thirty strains were further characterized by determining toxin type and were classified to be type A, while one was also positive for the gene encoding beta2-toxin. Despite the fact that C. perfringens type A has been associated with fatal diseases in several animal species as well as in humans, our data indicate that C. perfringens type A is an normal inhabitant of the gastrointestinal tract of polar bears.

  1. Cannabidiol restores intestinal barrier dysfunction and inhibits the apoptotic process induced by Clostridium difficile toxin A in Caco-2 cells.

    PubMed

    Gigli, Stefano; Seguella, Luisa; Pesce, Marcella; Bruzzese, Eugenia; D'Alessandro, Alessandra; Cuomo, Rosario; Steardo, Luca; Sarnelli, Giovanni; Esposito, Giuseppe

    2017-12-01

    Clostridium difficile toxin A is responsible for colonic damage observed in infected patients. Drugs able to restore Clostridium difficile toxin A-induced toxicity have the potential to improve the recovery of infected patients. Cannabidiol is a non-psychotropic component of Cannabis sativa, which has been demonstrated to protect enterocytes against chemical and/or inflammatory damage and to restore intestinal mucosa integrity. The purpose of this study was to evaluate (a) the anti-apoptotic effect and (b) the mechanisms by which cannabidiol protects mucosal integrity in Caco-2 cells exposed to Clostridium difficile toxin A. Caco-2 cells were exposed to Clostridium difficile toxin A (30 ng/ml), with or without cannabidiol (10 -7 -10 -9  M), in the presence of the specific antagonist AM251 (10 -7  M). Cytotoxicity assay, transepithelial electrical resistence measurements, immunofluorescence analysis and immunoblot analysis were performed in the different experimental conditions. Clostridium difficile toxin A significantly decreased Caco-2 cells' viability and reduced transepithelial electrical resistence values and RhoA guanosine triphosphate (GTP), bax, zonula occludens-1 and occludin protein expression, respectively. All these effects were significantly and concentration-dependently inhibited by cannabidiol, whose effects were completely abolished in the presence of the cannabinoid receptor type 1 (CB1) antagonist, AM251. Cannabidiol improved Clostridium difficile toxin A-induced damage in Caco-2 cells, by inhibiting the apoptotic process and restoring the intestinal barrier integrity, through the involvement of the CB1 receptor.

  2. Clostridium perfringens Epsilon Toxin: A Malevolent Molecule for Animals and Man?

    PubMed Central

    Stiles, Bradley G.; Barth, Gillian; Barth, Holger; Popoff, Michel R.

    2013-01-01

    Clostridium perfringens is a prolific, toxin-producing anaerobe causing multiple diseases in humans and animals. One of these toxins is epsilon, a 33 kDa protein produced by Clostridium perfringens (types B and D) that induces fatal enteric disease of goats, sheep and cattle. Epsilon toxin (Etx) belongs to the aerolysin-like toxin family. It contains three distinct domains, is proteolytically-activated and forms oligomeric pores on cell surfaces via a lipid raft-associated protein(s). Vaccination controls Etx-induced disease in the field. However, therapeutic measures are currently lacking. This review initially introduces C. perfringens toxins, subsequently focusing upon the Etx and its biochemistry, disease characteristics in various animals that include laboratory models (in vitro and in vivo), and finally control mechanisms (vaccines and therapeutics). PMID:24284826

  3. Beneficial and harmful roles of bacteria from the Clostridium genus.

    PubMed

    Samul, Dorota; Worsztynowicz, Paulina; Leja, Katarzyna; Grajek, Włodzimierz

    2013-01-01

    Bacteria of the Clostridium genus are often described only as a biological threat and a foe of mankind. However, many of them have positive properties and thanks to them they may be used in many industry branches (e.g., in solvents and alcohol production, in medicine, and also in esthetic cosmetology). During the last 10 years interest in application of C. botulinum and C. tetani in medicine significantly increased. Currently, the structure and biochemical properties of neurotoxins produced by these bacterial species, as well as possibilities of application of such toxins as botulinum as a therapeutic factor in humans, are being intensely researched. The main aim of this article is to demonstrate that bacteria from Clostridium spp. are not only pathogens and the enemy of humanity but they also have many important beneficial properties which make them usable among many chemical, medical, and cosmetic applications.

  4. Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins.

    PubMed

    Papatheodorou, Panagiotis; Barth, Holger; Minton, Nigel; Aktories, Klaus

    2018-01-01

    Research on the human gut pathogen Clostridium difficile and its toxins has gained much attention, particularly as a consequence of the increasing threat to human health presented by emerging hypervirulent strains. Toxin A (TcdA) and B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (Clostridium difficile transferase). As C. difficile toxins are the causative agents of C. difficile-associated diseases (CDAD), such as antibiotics-associated diarrhea and pseudomembranous colitis, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Notably, a high proportion of studies on C. difficile toxins were performed in European laboratories. In this chapter we will highlight important recent advances in C. difficile toxins research.

  5. The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment

    PubMed Central

    Sczesnak, Andrew; Segata, Nicola; Qin, Xiang; Gevers, Dirk; Petrosino, Joseph F.; Huttenhower, Curtis; Littman, Dan R.; Ivanov, Ivaylo I.

    2011-01-01

    Summary Perturbations of the composition of the symbiotic intestinal microbiota can have profound consequences for host metabolism and immunity. In mice, segmented filamentous bacteria (SFB) direct the accumulation of potentially pro-inflammatory Th17 cells in the intestinal lamina propria. We present the genome sequence of SFB isolated from mono-colonized mice, which classifies SFB phylogenetically as a unique member of Clostridiales with a highly reduced genome. Annotation analysis demonstrates that SFB depends on its environment for amino acids and essential nutrients and may utilize host and dietary glycans for carbon, nitrogen, and energy. Comparative analyses reveal that SFB is functionally related to members of the genus Clostridium and several pathogenic or commensal “minimal” genera, including Finegoldia, Mycoplasma, Borrelia, and Phytoplasma. However, SFB is functionally distinct from all 1,200 examined genomes, indicating a gene complement representing biology relatively unique to its role as a gut commensal closely tied to host metabolism and immunity. PMID:21925113

  6. Chronic Clostridium botulinum infections in farmers.

    PubMed

    Rodloff, Arne C; Krüger, Monika

    2012-04-01

    Although botulism is usually an acute, often lethal disease that is caused by the ingestion of botulinum neurotoxin, there are also recognized forms like infant botulism, wound botulism, or "botulism of undefined origin" that are characterized by the fact that Clostridium botulinum colonizes the host and produces its toxin in the host. Evidence is presented here that a disease in cattle and in human care takers of diseased animals that has evolved over the past two decades, may be a chronic, visceral form of C. botulinum infection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Vaginal and Rectal Clostridium sordellii and Clostridium perfringens Presence Among Women in the United States.

    PubMed

    Chong, Erica; Winikoff, Beverly; Charles, Dyanna; Agnew, Kathy; Prentice, Jennifer L; Limbago, Brandi M; Platais, Ingrida; Louie, Karmen; Jones, Heidi E; Shannon, Caitlin

    2016-02-01

    To characterize the presence of Clostridium sordellii and Clostridium perfringens in the vagina and rectum, identify correlates of presence, and describe strain diversity and presence of key toxins. We conducted an observational cohort study in which we screened a diverse cohort of reproductive-aged women in the United States up to three times using vaginal and rectal swabs analyzed by molecular and culture methods. We used multivariate regression models to explore predictors of presence. Strains were characterized by pulsed-field gel electrophoresis and tested for known virulence factors by polymerase chain reaction assays. Of 4,152 participants enrolled between 2010 and 2013, 3.4% (95% confidence interval [CI] 2.9-4.0) were positive for C sordellii and 10.4% (95% CI 9.5-11.3) were positive for C perfringens at baseline. Among the 66% with follow-up data, 94.7% (95% CI 88.0-98.3) of those positive for C sordellii and 74.4% (95% CI 69.0-79.3) of those positive for C perfringens at baseline were negative at follow-up. At baseline, recent gynecologic surgery was associated with C sordellii presence, whereas a high body mass index was associated with C perfringens presence in adjusted models. Two of 238 C sordellii isolates contained the lethal toxin gene, and none contained the hemorrhagic toxin gene. Substantial strain diversity was observed in both species with few clusters and no dominant clones identified. The relatively rare and transient nature of C sordellii and C perfringens presence in the vagina and rectum makes it inadvisable to use any screening or prophylactic approach to try to prevent clostridial infection. ClinicalTrials.gov, www.clinicaltrials.gov, NCT01283828.

  8. The Recent Emergence of Clostridium difficile Infection in Romanian Hospitals is Associated with a High Prevalence of Polymerase Chain Reaction Ribotype 027.

    PubMed

    Popescu, Gabriel Adrian; Serban, Roxana; Pistol, Adriana; Niculcea, Andreea; Preda, Andreea; Lemeni, Daniela; Macovei, Ioana Sabina; Tălăpan, Daniela; Rafila, Alexandru; Florea, Dragoş

    2018-03-15

    To investigate the epidemiology of Clostridium difficile infection in Romanian hospitals. A survey was conducted at nine hospitals throughout Romania between November 2013 and February 2014. The survey identified 393 patients with Clostridium difficile infection. The median age was 67 years (range: 2-94 years); 56% of patients were aged >65 years. The mean prevalence of Clostridium difficile infection was 5.2 cases per 10.000 patient-days. The highest prevalences were 24.9 and 20 per 10.000 patient-days in hospitals specializing in gastroenterology and infectious diseases, respectively. Clostridium difficile infections were health care-associated in 70.5% patients and community-acquired in 10.2%. The origin was not determined in 19.3%. Clostridium difficile infection was severe in 12.3% of patients, and the in-hospital all-cause mortality was 8.8%. Polymerase chain reaction ribotype 027 had the highest prevalence in all participating hospitals and represented 82.6% of the total ribotyped isolates. The minimum inhibitory concentration of moxifloxacin was >4 μg/mL for 59 of 80 tested isolates (73.8%). Of 59 isolates, 54 were highly resistant to moxifloxacin (minimum inhibitory concentration ≥32 μg/mL), and the majority were polymerase chain reaction ribotype 027 (p<0.0001). The ribotype 027 was the predominant cause of Clostridium difficile infections in Romania. In some specialized hospitals, the prevalence of Clostridium difficile infection was higher than the European mean prevalence, and this demonstrates the need for strict adherence to infection control programs.

  9. A cluster of three cases of botulism due to Clostridium baratii type F, France, August 2015.

    PubMed

    Tréhard, Hélène; Poujol, Isabelle; Mazuet, Christelle; Blanc, Quentin; Gillet, Yves; Rossignol, Frédérique; Popoff, Michel-Robert; Jourdan Da Silva, Nathalie

    2016-01-01

    A cluster of three cases of food-borne botulism due to Clostridium baratii type F occurred in France in August 2015. All cases required respiratory assistance. Consumption of a Bolognese sauce at the same restaurant was the likely source of contamination. Clostridium baratii was isolated both from stool specimens from the three patients and ground meat used to prepare the sauce. This is the second episode reported in France caused by this rare pathogen.

  10. Clostridium perfringens, necrotic enteritis and its vaccination in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens type A strains are the main etiological factors for necrotic enteritis (NE), one of the economically important gastrointestinal diseases in poultry responsible for the annual loss of 2 billion dollars in US poultry industry. NE has gained worldwide importance during the last...

  11. Abundant and Diverse Clustered Regularly Interspaced Short Palindromic Repeat Spacers in Clostridium difficile Strains and Prophages Target Multiple Phage Types within This Pathogen

    PubMed Central

    Hargreaves, Katherine R.; Flores, Cesar O.; Lawley, Trevor D.

    2014-01-01

    ABSTRACT Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. PMID:25161187

  12. 9 CFR 113.455 - Clostridium Perfringens Type D Antitoxin.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Clostridium perfringens Type D. Each serial shall be tested as provided in this section. Any serial found... following words and terms shall mean: (i) International antitoxin unit. (I.U.) That quantity of Epsilon... 0.25 gram of sodium chloride in each 100 ml of distilled water; adjusting the pH to 7.2; autoclaving...

  13. The polar lipids of Clostridium psychrophilum, an anaerobic psychrophile

    PubMed Central

    Guan, Ziqiang; Tian, Bing; Perfumo, Amedea; Goldfine, Howard

    2013-01-01

    We have examined the polar lipids of Clostridium psychrophilum, a recently characterized psychrophilic Clostridium isolated from an Antarctic microbial mat. Lipids were extracted from cells grown near the optimal growth temperature (+5 °C) and at −5 °C, and analyzed by two-dimensional thin layer chromatography and liquid chromatography coupled with mass spectrometry. The major phospholipids of this species are: cardiolipin, phosphatidylethanolamine, and phosphatidylglycerol. Phosphatidylserine and lyso-phosphatidylethanolamine were found as minor components. The most abundant glycolipids are a monoglycosyldiradylglycerol (MGDRG) and a diglycosyldiradylglycerol (DGDRG). The latter was only seen in cells grown at −5 °C. An ethanolamine-phosphate derivative of N-acetylglucosaminyldiradylglycerol was seen in cells grown at −5 °C and an ethanolamine-phosphate derivative of MGDRG was found in cells grown at +5 °C. All lipids were present in both the all acyl and plasmalogen (alk-1′-enyl acyl) forms with the exception of PS and MGDRG, which were predominantly in the diacyl form. The significance of lipid changes at the two growth temperatures is discussed. PMID:23454375

  14. TRANSFORMATION OF TNT AND RELATED NITROAROMATIC COMPOUNDS BY CLOSTRIDIUM ACETOBUTYLICUM. (R825513C006)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. Genome-Wide Transcriptional Profiling of Clostridium perfringens SM101 during Sporulation Extends the Core of Putative Sporulation Genes and Genes Determining Spore Properties and Germination Characteristics

    PubMed Central

    Xiao, Yinghua; van Hijum, Sacha A. F. T.; Abee, Tjakko; Wells-Bennik, Marjon H. J.

    2015-01-01

    The formation of bacterial spores is a highly regulated process and the ultimate properties of the spores are determined during sporulation and subsequent maturation. A wide variety of genes that are expressed during sporulation determine spore properties such as resistance to heat and other adverse environmental conditions, dormancy and germination responses. In this study we characterized the sporulation phases of C. perfringens enterotoxic strain SM101 based on morphological characteristics, biomass accumulation (OD600), the total viable counts of cells plus spores, the viable count of heat resistant spores alone, the pH of the supernatant, enterotoxin production and dipicolinic acid accumulation. Subsequently, whole-genome expression profiling during key phases of the sporulation process was performed using DNA microarrays, and genes were clustered based on their time-course expression profiles during sporulation. The majority of previously characterized C. perfringens germination genes showed upregulated expression profiles in time during sporulation and belonged to two main clusters of genes. These clusters with up-regulated genes contained a large number of C. perfringens genes which are homologs of Bacillus genes with roles in sporulation and germination; this study therefore suggests that those homologs are functional in C. perfringens. A comprehensive homology search revealed that approximately half of the upregulated genes in the two clusters are conserved within a broad range of sporeforming Firmicutes. Another 30% of upregulated genes in the two clusters were found only in Clostridium species, while the remaining 20% appeared to be specific for C. perfringens. These newly identified genes may add to the repertoire of genes with roles in sporulation and determining spore properties including germination behavior. Their exact roles remain to be elucidated in future studies. PMID:25978838

  16. Cecal Perforation Associated with Clostridium difficile Infection: A Case Report.

    PubMed

    Luthe, Sarah Kyuragi; Sato, Ryota

    2017-04-01

    Various complications are reported with Clostridium difficile infection (CDI), including fulminant CDI. Fulminant CDI is an underappreciated life-threatening condition associated with complications such as toxic megacolon and bowel perforation. A 79-year-old woman presented to the Emergency Department with altered mental status. She was admitted and conservatively treated for a left thalamic hemorrhage. While hospitalized, she developed watery diarrhea due to Clostridium difficile. Although metronidazole was initiated, she developed altered mental status and septic shock. Abdominal x-ray study and computed tomography revealed a significantly dilatated colon and a massive pneumoperitoneum. She underwent subtotal colectomy with a 14-day course of intravenous meropenem. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: This case suggests that we must be aware of the complications that CDI may present and adequately consider surgical management because early diagnosis and surgical treatment is critical to reduce the mortality of fulminant CDI. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. 9 CFR 113.454 - Clostridium Perfringens Type C Antitoxin.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Clostridium perfringens Type C. Each serial shall be tested as provided in this section. Any serial found... following words and terms shall mean: (i) International antitoxin unit. (I.U.) That quantity of Beta... chloride in each 100 ml of distilled water; adjusting the pH to 7.2; autoclaving at 250 °F. for 25 minutes...

  18. Constructing identities in the media: newspaper coverage analysis of a major UK Clostridium difficile outbreak.

    PubMed

    Burnett, Emma; Johnston, Bridget; Corlett, Joanne; Kearney, Nora

    2014-07-01

    To examine how a major Clostridium difficile outbreak in the UK was represented in the media. Clostridium difficile is a serious health care-associated infection with significant global prevalence. As major outbreaks have continued to occur worldwide over the last few decades, it has also resulted in increasing media coverage. Newspaper journalists are, however, frequently criticized for sensationalized and inaccurate reporting and alarming the public. Despite such criticisms, nothing is known about how the media frame Clostridium difficile related coverage. Qualitative interpretive descriptive study. An interpretive analysis of newspaper articles from the national press that reported about the outbreak from the first day of coverage over 3 weeks (12 June-3 July 2008). Twenty-eight newspaper articles were included in the study from tabloids, broadsheets, a regional and a Sunday newspaper. Monster and war metaphors were frequently adopted to portray the severity of Clostridium difficile and the impact it can have on patient safety. In addition, the positioning of the affected patients, their families, healthcare professionals and the Government produced representations of victims, villains and heroes. This subsequently evoked notions of vulnerability, blame and conflict. The media are and will remain critical convectors of public information and, as such, are hugely influential in risk perceptions and responses. Rather than simply dismissing media coverage, further understanding around how such stories in specific contexts are constructed and represented is needed so that it can help inform future communication and management strategies. © 2013 John Wiley & Sons Ltd.

  19. Pleiotropic roles of Clostridium difficile sin locus

    PubMed Central

    Ou, Junjun; Dupuy, Bruno

    2018-01-01

    Clostridium difficile is the primary cause of nosocomial diarrhea and pseudomembranous colitis. It produces dormant spores, which serve as an infectious vehicle responsible for transmission of the disease and persistence of the organism in the environment. In Bacillus subtilis, the sin locus coding SinR (113 aa) and SinI (57 aa) is responsible for sporulation inhibition. In B. subtilis, SinR mainly acts as a repressor of its target genes to control sporulation, biofilm formation, and autolysis. SinI is an inhibitor of SinR, so their interaction determines whether SinR can inhibit its target gene expression. The C. difficile genome carries two sinR homologs in the operon that we named sinR and sinR’, coding for SinR (112 aa) and SinR’ (105 aa), respectively. In this study, we constructed and characterized sin locus mutants in two different C. difficile strains R20291 and JIR8094, to decipher the locus’s role in C. difficile physiology. Transcriptome analysis of the sinRR’ mutants revealed their pleiotropic roles in controlling several pathways including sporulation, toxin production, and motility in C. difficile. Through various genetic and biochemical experiments, we have shown that SinR can regulate transcription of key regulators in these pathways, which includes sigD, spo0A, and codY. We have found that SinR’ acts as an antagonist to SinR by blocking its repressor activity. Using a hamster model, we have also demonstrated that the sin locus is needed for successful C. difficile infection. This study reveals the sin locus as a central link that connects the gene regulatory networks of sporulation, toxin production, and motility; three key pathways that are important for C. difficile pathogenesis. PMID:29529083

  20. Clostridium difficile the hospital plague.

    PubMed

    Czepiel, J; Kozicki, M; Panasiuk, P; Birczyńska, M; Garlicki, A; Wesełucha-Birczyńska, A

    2015-04-07

    Clostridium difficile infection (CDI) has become one of the major public health threats in the last two decades. An increase has been observed not only in the rate of CDI, but also in its severity and mortality. Symptoms caused by this pathogen are accompanied by intense local and systemic inflammation. We confirmed that Raman microspectroscopy can help us in understanding CDI pathogenesis. A single erythrocyte of patients with CDI shows a difference, approximately 10 times, in the intensity of the Raman spectra at the beginning of hospitalization and after one week of treatment. The intensity level is an indicator of the spread of the inflammation within the cell, confirmed by standard laboratory tests. Many of the observed bands with enormously enhanced intensity, e.g. 1587, 1344, 1253, 1118 and 664 cm(-1), come from the symmetric vibration of the pyrrole ring. Heme variation of recovered cells in the acute CDI state between the first and the seventh day of treatment seems to show increased levels of oxygenated hemoglobin. Intense inflammation alters the conformation of the protein which is reflected in the significant changes in the amide I, II and III bands. There is an observed shift and a significant intensity increase of 1253 and 970 cm(-1) amide III and skeletal protein backbone CC stretching vibration bands, respectively. Principal Component Analysis (PCA) was used to find the variance in the data collected on the first and seventh day. PC2 loading in the 1645-1500 cm(-1) range shows an increase of heme, Tyr, Trp, or Phe vibrations because of changes in the protein microenvironment due to their exposure. Positive maxima at 1621, 1563 and 1550 in the PC2 loading originated from the ring vibrations. These observations indicate that Clostridium difficile toxins induce cytopathogenicity by altering cellular proteins.

  1. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum

    DOE PAGES

    Tian, Liang; Papanek, Beth; Olson, Daniel G.; ...

    2016-06-02

    Background Biofuel production from plant cell walls offers the potential for sustainable and economically attractive alternatives to petroleum-based products. Fuels from cellulosic biomass are particularly promising, but would benefit from lower processing costs. Clostridium thermocellum can rapidly solubilize and ferment cellulosic biomass, making it a promising candidate microorganism for consolidated bioprocessing for biofuel production, but increases in product yield and titer are still needed. Results We started with an engineered C. thermocellum strain where the central metabolic pathways to products other than ethanol had been deleted. After two stages of adaptive evolution, an evolved strain was selected with improved yieldmore » and titer. On chemically defined medium with crystalline cellulose as substrate, the evolved strain produced 22.4 ± 1.4 g/L ethanol from 60 g/L cellulose. Moreover, the resulting yield was about 0.39 gETOH/gGluc eq, which is 75 % of the maximum theoretical yield. Genome resequencing, proteomics, and biochemical analysis were used to examine differences between the original and evolved strains. Conclusions A two step selection method successfully improved the ethanol yield and the titer. Finaly, this evolved strain has the highest ethanol yield and titer reported to date for C. thermocellum, and is an important step in the development of this microbe for industrial applications.« less

  2. Clostridium septicum infection and hemolytic uremic syndrome.

    PubMed Central

    Barnham, M.; Weightman, N.

    1998-01-01

    Five cases of Clostridium septicum infection secondary to Escherichia coli O157-induced hemolytic uremic syndrome have been reported. We report on three cases (one of which is included in the above five) of dual Cl. septicum and E. coil infection; all three patients were exposed to farm animals. A common zoonotic source for Cl. septicum and E. coli O157 infections should be considered. Patients with hemolytic uremic syndrome should be treated aggressively and monitored closely for Cl. septicum superinfection. PMID:9621207

  3. Clostridium difficile infections in patients with severe burns

    DTIC Science & Technology

    2011-01-01

    placards indicating that hand hygiene should involve soap and water. Periodic hand hygiene compliance surveys have indicated relatively consistent...care unit: epidemiology, costs, and colonization pressure. Infect Control Hosp Epidemiol 2007;28:123–30. [6] Marcon AP, Gamba MA, Vianna LA. Nosocomial ...Clostridium difficile infections in patients with severe burns§ Scott J. Crabtree a, Janelle L. Robertson a,b, Kevin K. Chung c, Evan M. Renz b,c

  4. Treating Clostridium difficile Infection with Fecal Microbiota Transplantation

    PubMed Central

    Bakken, Johan S.; Borody, Thomas; Brandt, Lawrence J.; Brill, Joel V.; Demarco, Daniel C.; Franzos, Marc Alaric; Kelly, Colleen; Khoruts, Alexander; Louie, Thomas; Martinelli, Lawrence P.; Moore, Thomas A.; Russell, George; Surawicz, Christina

    2011-01-01

    Clostridium difficile infection is increasing in incidence, severity, and mortality. Treatment options are limited and appear to be losing efficacy. Recurrent disease is especially challenging; extended treatment with oral vancomycin is becoming increasingly common but is expensive. Fecal microbiota transplantation (FMT) is safe, inexpensive, and effective; according to case and small series reports, about 90% of patients are cured. We discuss the rationale, methods, and use of FMT. PMID:21871249

  5. 9 CFR 113.110 - Clostridium Botulinum Type C Bacterin-Toxoid.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... challenged intraperitoneally with botulinum Type C toxin which has been titrated in mice to provide for a 104... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Clostridium Botulinum Type C Bacterin..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD...

  6. 9 CFR 113.110 - Clostridium Botulinum Type C Bacterin-Toxoid.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... challenged intraperitoneally with botulinum Type C toxin which has been titrated in mice to provide for a 104... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Clostridium Botulinum Type C Bacterin..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD...

  7. Clostridium Bacteria and Autism Spectrum Conditions: A Systematic Review and Hypothetical Contribution of Environmental Glyphosate Levels.

    PubMed

    Argou-Cardozo, Isadora; Zeidán-Chuliá, Fares

    2018-04-04

    Nowadays, there seems to be a consensus about the multifactorial nature of autism spectrum disorders (ASD). The literature provides hypotheses dealing with numerous environmental factors and genes accounting for the apparently higher prevalence of this condition. Researchers have shown evidence regarding the impact of gut bacteria on neurological outcomes, altering behavior and potentially affecting the onset and/or severity of psychiatric disorders. Pesticides and agrotoxics are also included among this long list of ASD-related environmental stressors. Of note, ingestion of glyphosate (GLY), a broad-spectrum systemic herbicide, can reduce beneficial bacteria in the gastrointestinal tract microbiota without exerting any effects on the Clostridium population, which is highly resistant to this herbicide. In the present study, (i) we performed a systematic review to evaluate the relationship between Clostridium bacteria and the probability of developing and/or aggravating autism among children. For that purpose, electronic searches were performed on Medline/PubMed and Scielo databases for identification of relevant studies published in English up to December 2017. Two independent researches selected the studies and analyzed the data. The results of the present systematic review demonstrate an interrelation between Clostridium bacteria colonization of the intestinal tract and autism. Finally, (ii) we also hypothesize about how environmental GLY levels may deleteriously influence the gut-brain axis by boosting the growth of Clostridium bacteria in autistic toddlers.

  8. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis.

    PubMed

    Makroczyová, Jana; Jamroškovič, Ján; Krascsenitsová, Eva; Labajová, Nad'a; Barák, Imrich

    2016-06-01

    In rod-shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well-studied gram-negative and gram-positive bacteria. While in gram-negative Escherichia coli, the Min system undergoes pole-to-pole oscillation, in gram-positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore-forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  9. Prevalence of Clostridium perfringens toxin in patients suspected of having antibiotic-associated diarrhea.

    PubMed

    Kim, Young Jin; Kim, Si Hyun; Ahn, Junggu; Cho, Soongmoon; Kim, Dongchun; Kim, Kwanghyun; Lee, Heegun; Son, Hyunwoo; Lee, Hee Joo; Yong, Dongeun; Choi, Jun Yong; Kim, Hye Ran; Shin, Jeong Hwan

    2017-12-01

    Although Clostridium perfringens has been reported as a cause of antibiotic-associated diarrhea (AAD), it is uncommon to detect this pathogen in clinical microbiology laboratories in Korea. The aim of this study was to investigate the prevalence of C. perfringens toxin in patients suspected of having AAD. A total of 135 stool specimens submitted to a clinical microbiology laboratory for C. difficile toxin assay were tested. We tried to detect both C. difficile and C. perfringens toxins using the Seeplex Diarrhea ACE Detection kit (Seegene, Seoul, Korea). We evaluated the prevalence of 10 bacteria and 5 viruses. A total of 40 Clostridium spp. were detected in 34 specimens (29.6%). The C. perfringens toxin was detected in 14 of 135 specimens (10.4%), while C. difficile toxin was detected in 26 specimens (19.3%). Other bacteria and viruses, including 8 Aeromonas spp., were detected in 15 specimens. All tests were negative in 92 of the 135 specimens (68.1%). Clostridium perfringens toxin is relatively common, and we should consider the possibility of its presence in patients suspected of having AAD, especially if C. difficile tests are negative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Clostridium difficile Lineage Endemic to Costa Rican Hospitals Is Multidrug Resistant by Acquisition of Chromosomal Mutations and Novel Mobile Genetic Elements

    PubMed Central

    Ramírez-Vargas, Gabriel; Quesada-Gómez, Carlos; Acuña-Amador, Luis; López-Ureña, Diana; Murillo, Tatiana; del Mar Gamboa-Coronado, María; Chaves-Olarte, Esteban; Thomson, Nicholas; Rodríguez-Cavallini, Evelyn

    2017-01-01

    ABSTRACT The antimicrobial resistance (AMR) rates and levels recorded for Clostridium difficile are on the rise. This study reports the nature, levels, diversity, and genomic context of the antimicrobial resistance of human C. difficile isolates of the NAPCR1/RT012/ST54 genotype, which caused an outbreak in 2009 and is endemic in Costa Rican hospitals. To this end, we determined the susceptibilities of 38 NAPCR1 isolates to 10 antibiotics from seven classes using Etests or macrodilution tests and examined 31 NAPCR1 whole-genome sequences to identify single nucleotide polymorphisms (SNPs) and genes that could explain the resistance phenotypes observed. The NAPCR1 isolates were multidrug resistant (MDR) and commonly exhibited very high resistance levels. By sequencing their genomes, we showed that they possessed resistance-associated SNPs in gyrA and rpoB and carried eight to nine acquired antimicrobial resistance (AMR) genes. Most of these genes were located on known or novel mobile genetic elements shared by isolates recovered at different hospitals and at different time points. Metronidazole and vancomycin remain the first-line treatment options for these isolates. Overall, the NAPCR1 lineage showed an enhanced ability to acquire AMR genes through lateral gene transfer. On the basis of this finding, we recommend further vigilance and the adoption of improved control measures to limit the dissemination of this lineage and the emergence of more C. difficile MDR strains. PMID:28137804

  11. MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species.

    PubMed

    Kim, Young Jin; Kim, Si Hyun; Park, Hyun-Jung; Park, Hae-Geun; Park, Dongchul; Song, Sae Am; Lee, Hee Joo; Yong, Dongeun; Choi, Jun Yong; Kook, Joong-Ki; Kim, Hye Ran; Shin, Jeong Hwan

    2016-08-01

    All 50 Clostridium difficile strains were definitely identified by Vitek2 system, Rapid ID 32A system, and MALDI-TOF. For 18 non-difficile Clostridium strains, the identification results were correct in 0, 2, and 17 strains by Vitek2, Rapid ID 32A, and MALDI-TOF, respectively. MALDI-TOF could be used as the primary tool for identification of Clostridium species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In vitro Clostridium perfringens and Escherichia coli toxin adsorption of Varium

    USDA-ARS?s Scientific Manuscript database

    Enteric disease agents, such as Clostridium perfringens and Escherichia coli, produce detrimental biotoxins that cause significant economic loss annually in the poultry industry. The objective of this study was to determine the in vitro biotoxin adsorption capability of Varium. An enzyme-linked im...

  13. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.

    PubMed

    Koike-Yusa, Hiroko; Li, Yilong; Tan, E-Pien; Velasco-Herrera, Martin Del Castillo; Yusa, Kosuke

    2014-03-01

    Identification of genes influencing a phenotype of interest is frequently achieved through genetic screening by RNA interference (RNAi) or knockouts. However, RNAi may only achieve partial depletion of gene activity, and knockout-based screens are difficult in diploid mammalian cells. Here we took advantage of the efficiency and high throughput of genome editing based on type II, clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems to introduce genome-wide targeted mutations in mouse embryonic stem cells (ESCs). We designed 87,897 guide RNAs (gRNAs) targeting 19,150 mouse protein-coding genes and used a lentiviral vector to express these gRNAs in ESCs that constitutively express Cas9. Screening the resulting ESC mutant libraries for resistance to either Clostridium septicum alpha-toxin or 6-thioguanine identified 27 known and 4 previously unknown genes implicated in these phenotypes. Our results demonstrate the potential for efficient loss-of-function screening using the CRISPR-Cas9 system.

  14. Enhancing clostridial acetone-butanol-ethanol (ABE) production and improving fuel properties of ABE-enriched biodiesel by extractive fermentation with biodiesel.

    PubMed

    Li, Qing; Cai, Hao; Hao, Bo; Zhang, Congling; Yu, Ziniu; Zhou, Shengde; Chenjuan, Liu

    2010-12-01

    The extractive acetone-butanol-ethanol (ABE) fermentations of Clostridium acetobutylicum were evaluated using biodiesel as the in situ extractant. The biodiesel preferentially extracted butanol, minimized product inhibition, and increased production of butanol (from 11.6 to 16.5 g L⁻¹) and total solvents (from 20.0 to 29.9 g L⁻¹) by 42% and 50%, respectively. The fuel properties of the ABE-enriched biodiesel obtained from the extractive fermentations were analyzed. The key quality indicators of diesel fuel, such as the cetane number (increased from 48 to 54) and the cold filter plugging point (decreased from 5.8 to 0.2 °C), were significantly improved for the ABE-enriched biodiesel. Thus, the application of biodiesel as the extractant for ABE fermentation would increase ABE production, bypass the energy intensive butanol recovery process, and result in an ABE-enriched biodiesel with improved fuel properties.

  15. Advanced bioreactors for enhanced production of chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, B.H.; Scott, C.D.

    1993-06-01

    A variety of advanced bioreactors are being developed to improve production of fuels, solvents, organic acids and other fermentation products. One key approach is immobilization of the biocatalyst leading to increased rates and yields. In addition, there are processes for simultaneous fermentation and separation to further increase production by the removal of an inhibitory product. For example, ethanol productivity in immobilized-cell fluidized-bed bioreactors (FBRs) can increase more than tenfold with 99% conversion and near stoichiometric yields. Two modified FBR configurations offer further improvements by removing the inhibitory product directly from the continuous fermentation. One involves the addition and removal ofmore » solid adsorbent particles to the FBR. This process was demonstrated with the production of lactic acid by immobilized Lactobacillus. The second uses an immiscible organic extractant in the FBR. This increased total butanol yields in the anaerobic acetone-butanol fermentation by Clostridium acetobutylicum.« less

  16. Clostridium botulinumtype D intoxication in a dairy herd in Ontario

    PubMed Central

    Martin, Sarah

    2003-01-01

    Thirty-four Holstein cows died after exposure to Clostridium botulinum type D toxin, presumably from contaminated haylage. The presence of type D toxin in ruminal contents was confirmed by mouse inoculation. This is the first confirmation by direct toxin isolation of C. botulinum type D toxin in cattle in North America. PMID:12839245

  17. The impact of hospital-onset Clostridium difficile infection on outcomes of hospitalized patients with sepsis.

    PubMed

    Lagu, Tara; Stefan, Mihaela S; Haessler, Sarah; Higgins, Thomas L; Rothberg, Michael B; Nathanson, Brian H; Hannon, Nicholas S; Steingrub, Jay S; Lindenauer, Peter K

    2014-07-01

    To examine the impact of hospital-onset Clostridium difficile infection (HOCDI) on the outcomes of patients with sepsis. Most prior studies that have addressed this issue lacked adequate matching to controls, suffered from small sample size, or failed to consider time to infection. Retrospective cohort study. We identified adults with a principal or secondary diagnosis of sepsis who received care at 1 of the institutions that participated in a large multihospital database between July 1, 2004 and December 31, 2010. Among eligible patients with sepsis, we identified patients who developed HOCDI during their hospital stay. We used propensity matching and date of diagnosis to match cases to patients without Clostridium difficile infections and compared outcomes between the 2 groups. Of 218,915 sepsis patients, 2368 (1.08%) developed HOCDI. Unadjusted in-hospital mortality was significantly higher in HOCDI patients than controls (25% vs 10%, P < 0.001). After multivariate adjustment, in-hospital mortality rate was 24% in cases vs. 15% in controls. In an analysis limited to survivors, adjusted length of stay (LOS) among cases with Clostridium difficile infections was 5.1 days longer than controls (95% confidence interval: 4.4-5.8) and the median-adjusted cost increase was $4916 (P < 0.001). After rigorous adjustment for time to diagnosis and presenting severity, hospital-acquired Clostridium difficile infection was associated with increased mortality, LOS, and cost. Our results can be used to assess the cost-effectiveness of prevention programs and suggest that efforts directed toward high-risk patient populations are needed. © 2014 Society of Hospital Medicine.

  18. Survey of Clostridium difficile in retail seafood in College Station, Texas

    USDA-ARS?s Scientific Manuscript database

    The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America with the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer t...

  19. The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens.

    PubMed

    Antonissen, Gunther; Van Immerseel, Filip; Pasmans, Frank; Ducatelle, Richard; Haesebrouck, Freddy; Timbermont, Leen; Verlinden, Marc; Janssens, Geert Paul Jules; Eeckhaut, Venessa; Eeckhout, Mia; De Saeger, Sarah; Hessenberger, Sabine; Martel, An; Croubels, Siska

    2014-01-01

    Both mycotoxin contamination of feed and Clostridium perfringens-induced necrotic enteritis have an increasing global economic impact on poultry production. Especially the Fusarium mycotoxin deoxynivalenol (DON) is a common feed contaminant. This study aimed at examining the predisposing effect of DON on the development of necrotic enteritis in broiler chickens. An experimental Clostridium perfringens infection study revealed that DON, at a contamination level of 3,000 to 4,000 µg/kg feed, increased the percentage of birds with subclinical necrotic enteritis from 20±2.6% to 47±3.0% (P<0.001). DON significantly reduced the transepithelial electrical resistance in duodenal segments (P<0.001) and decreased duodenal villus height (P = 0.014) indicating intestinal barrier disruption and intestinal epithelial damage, respectively. This may lead to an increased permeability of the intestinal epithelium and decreased absorption of dietary proteins. Protein analysis of duodenal content indeed showed that DON contamination resulted in a significant increase in total protein concentration (P = 0.023). Furthermore, DON had no effect on in vitro growth, alpha toxin production and netB toxin transcription of Clostridium perfringens. In conclusion, feed contamination with DON at concentrations below the European maximum guidance level of 5,000 µg/kg feed, is a predisposing factor for the development of necrotic enteritis in broilers. These results are associated with a negative effect of DON on the intestinal barrier function and increased intestinal protein availability, which may stimulate growth and toxin production of Clostridium perfringens.

  20. Validation of a Clostridium Endospore Viability Assay and Analysis of Greenland Ices and Atacama Desert Soils▿ †

    PubMed Central

    Yang, Wan-Wan; Ponce, Adrian

    2011-01-01

    A microscopy-based endospore viability assay (micro-EVA) capable of enumerating germinable Clostridium endospores (GCEs) in less than 30 min has been validated and employed to determine GCE concentrations in Greenland ices and Atacama Desert soils. Inoculation onto agarose doped with Tb3+ and d-alanine triggers Clostridium spore germination and the concomitant release of ∼108 molecules of dipicolinic acid (DPA) per endospore, which, under pulsed UV excitation, enables enumeration of resultant green Tb3+-DPA luminescent spots as GCEs with time-gated luminescence microscopy. The intensity time courses of the luminescent spots were characteristic of stage I Clostridium spore germination dynamics. Micro-EVA was validated against traditional CFU cultivation from 0 to 1,000 total endospores/ml (i.e., phase-bright bodies/ml), yielding 56.4% ± 1.5% GCEs and 43.0% ± 1.0% CFU. We also show that d-alanine serves as a Clostridium-specific germinant (three species tested) that inhibits Bacillus germination of spores (five species tested) in that endospore concentration regime. Finally, GCE concentrations in Greenland ice cores and Atacama Desert soils were determined with micro-EVA, yielding 1 to 2 GCEs/ml of Greenland ice (versus <1 CFU/ml after 6 months of incubation) and 66 to 157 GCEs/g of Atacama Desert soil (versus 40 CFU/g soil). PMID:21296951

  1. Probiotics and prevention of Clostridium difficile infection.

    PubMed

    Goldstein, E J C; Johnson, S J; Maziade, P-J; Evans, C T; Sniffen, J C; Millette, M; McFarland, L V

    2017-06-01

    The role of probiotics as adjunctive measures in the prevention of Clostridium difficile infection (CDI) has been controversial. However, a growing body of evidence has suggested that they have a role in primary prevention of CDI. Elements of this controversy are reviewed and the proposed mechanisms of action, the value and cost effectiveness of probiotics are addressed with a focus on three agents, Saccharomyces boulardii, Lactobacillus rhamnosus GG and the combination of Lactobacillus acidophilus CL1285, Lactobacillus casei LBC80R, Lactobacillus rhamnosus CLR2 (Bio-K+). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identification and cloning of two immunogenic Clostridium perfringens proteins, elongation factor Tu (EF-Tu) and pyruvate:ferredoxin oxidoreductase (PFO) of C. perfringens

    USDA-ARS?s Scientific Manuscript database

    Clostridium-related diseases such as gangrenous dermatitis (GD) and necrotic enteritis (NE) are increasingly emerging as major diseases in recent years with high economic loss around the world. In this report, we characterized two immunogenic Clostridium perfringens (CP) proteins (e.g., elongation f...

  3. A Novel Regulator Controls Clostridium difficile Sporulation, Motility and Toxin Production

    PubMed Central

    Edwards, Adrianne N.; Tamayo, Rita; McBride, Shonna M.

    2016-01-01

    SUMMARY Clostridium difficile, is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gene CD3668 reduces sporulation and increases toxin production and motility. This mutant was more virulent and exhibited increased toxin gene expression in the hamster model of infection. Based on these phenotypes, we have renamed this locus rstA, for regulator of sporulation and toxins. Our data demonstrate that RstA is a bifunctional protein that upregulates sporulation through an unidentified pathway and represses motility and toxin production by influencing sigD transcription. Conserved RstA orthologs are present in other pathogenic and industrial Clostridium species and may represent a key regulatory protein controlling clostridial sporulation. PMID:26915493

  4. A novel regulator controls Clostridium difficile sporulation, motility and toxin production.

    PubMed

    Edwards, Adrianne N; Tamayo, Rita; McBride, Shonna M

    2016-06-01

    Clostridium difficile is an anaerobic pathogen that forms spores which promote survival in the environment and transmission to new hosts. The regulatory pathways by which C. difficile initiates spore formation are poorly understood. We identified two factors with limited similarity to the Rap sporulation proteins of other spore-forming bacteria. In this study, we show that disruption of the gene CD3668 reduces sporulation and increases toxin production and motility. This mutant was more virulent and exhibited increased toxin gene expression in the hamster model of infection. Based on these phenotypes, we have renamed this locus rstA, for regulator of sporulation and toxins. Our data demonstrate that RstA is a bifunctional protein that upregulates sporulation through an unidentified pathway and represses motility and toxin production by influencing sigD transcription. Conserved RstA orthologs are present in other pathogenic and industrial Clostridium species and may represent a key regulatory protein controlling clostridial sporulation. © 2016 John Wiley & Sons Ltd.

  5. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture.

    PubMed

    Xu, Lei; Tschirner, Ulrike

    2014-08-01

    Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

  6. The morbidity, mortality, and costs associated with Clostridium difficile infection.

    PubMed

    Kwon, Jennie H; Olsen, Margaret A; Dubberke, Erik R

    2015-03-01

    Clostridium difficile infection (CDI) is the most common cause of infectious health care-associated diarrhea and is a major burden to patients and the health care system. The incidence and severity of CDI remain at historically high levels. This article reviews the morbidity, mortality, and costs associated with CDI. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Risk factors for Clostridium difficile infection in a hepatology ward.

    PubMed

    Vanjak, Dominique; Girault, Guillaume; Branger, Catherine; Rufat, Pierre; Valla, Dominique-Charles; Fantin, Bruno

    2007-02-01

    During 2001, Clostridium difficile infection was observed in 23 patients hospitalized in a hepatology ward (attack rate, 0.9%). Since strain typing ruled out a clonal dissemination, we performed a case-control study. In addition to antibiotic use as a risk factor, the C. difficile infection rate was higher among patients with autoimmune hepatitis (P<.01).

  8. Intravenous immunoglobulin therapy for severe Clostridium difficile colitis

    PubMed Central

    Salcedo, J; Keates, S; Pothoulakis, C; Warny, M; Castagliuolo, I; LaMont, J; Kelly, C

    1997-01-01

    Background—Many individuals have serum antibodies against Clostridium difficile toxins. Those with an impaired antitoxin response may be susceptible to recurrent, prolonged, or severe C difficile diarrhoea and colitis. 
Aims—To examine whether treatment with intravenous immunoglobulin might be effective in patients with severe pseudomembranous colitis unresponsive to standard antimicrobial therapy. 
Patients—Two patients with pseudomembranous colitis not responding to metronidazole and vancomycin were given normal pooled human immunoglobulin intravenously (200-300 mg/kg). 
Methods—Antibodies against C difficile toxins were measured in nine immunoglobulin preparations by ELISA and by cytotoxin neutralisation assay. 
Results—Both patients responded quickly as shown by resolution of diarrhoea, abdominal tenderness, and distension. All immunoglobulin preparations tested contained IgG against C difficile toxins A and B by ELISA and neutralised the cytotoxic activity of C difficile toxins in vitro at IgG concentrations of 0.4-1.6 mg/ml. 
Conclusion—Passive immunotherapy with intravenous immunoglobulin may be a useful addition to antibiotic therapy for severe, refractory C difficile colitis. IgG antitoxin is present in standard immunoglobulin preparations and C difficile toxin neutralising activity is evident at IgG concentrations which are readily achieved in the serum by intravenous immunoglobulin administration. 

 Keywords: Clostridium difficile; toxin; diarrhoea; IgG; immunotherapy; antibiotic PMID:9378393

  9. CRYSTAL STRUCTURE OF CLOSTRIDIUM BOTULINUM NEUROTOXIN SEROTYPE B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SWAMINATHAN,S.; ESWARAMOORTHY,S.

    2001-11-19

    The toxigenic strains of Clostridium botulinum produce seven serologically distinct types of neurotoxins labeled A - G (EC 3.4.24.69), while Clostridium tetani produces tetanus neurotoxin (EC 3.4.24.68). Botulinum and tetanus neurotoxins (BoNTs and TeNT) are produced as single inactive chains of molecular mass of approximately 150 kDa. Most of these neurotoxins are released after being cleaved into two chains, a heavy chain (HI) of 100 kDa and a light chain (L) of 50 kDa held together by an interchain disulfide bond, by tissue proteinases. BoNT/E is released as a single chain but cleaved by host proteinases [1]. Clostvidium botulinum neurotoxinsmore » are extremely poisonous proteins with their LD{sub 50} for humans in the range of 0.1 - 1 ng kg{sup -1} [2]. Botulinum neurotoxins are responsible for neuroparalytic syndromes of botulism characterized by serious neurological disorders and flaccid paralysis. BoNTs block the release of acetylcholine at the neuromuscular junction causing flaccid paralysis while TeNT blocks the release of neurotransmitters like glycine and {gamma}-aminobutyric acid (GABA) in the inhibitory interneurons of the spinal cord resulting in spastic paralysis. In spite of different clinical symptoms, their aetiological agents intoxicate neuronal cells in the same way and these toxins have similar structural organization [3].« less

  10. Process engineering and scale-up of autotrophic Clostridium strain P11 syngas fermentation

    NASA Astrophysics Data System (ADS)

    Kundiyana, Dimple Kumar Aiyanna

    Scope and Method of Study. Biomass gasification followed by fermentation of syngas to ethanol is a potential process to produce bioenergy. The process is currently being researched under laboratory- and pilot-scale in an effort to optimize the process conditions and make the process feasible for commercial production of ethanol and other biofuels such as butanol and propanol. The broad research objectives for the research were to improve ethanol yields during syngas fermentation and to design a economical fermentation process. The research included four statistically designed experimental studies in serum bottles, bench-scale and pilot-scale fermentors to screen alternate fermentation media components, to determine the effect of process parameters such as pH, temperature and buffer on syngas fermentation, to determine the effect of key limiting nutrients of the acetyl-CoA pathway in a continuous series reactor design, and to scale-up the syngas fermentation in a 100-L pilot scale fermentor. Findings and Conclusions. The first experimental study identified cotton seed extract (CSE) as a feasible medium for Clostridium strain P11 fermentation. The study showed that CSE at 0.5 g L-1 can potentially replace all the standard Clostridium strain P11 fermentation media components while using a media buffer did not significantly improve the ethanol production when used in fermentation with CSE. Scale-up of the CSE fermentation in 2-L and 5-L stirred tank fermentors showed 25% increase in ethanol yield. The second experimental study showed that syngas fermentation at 32°C without buffer was associated with higher ethanol concentration and reduced lag time in switching to solventogenesis. Conducting fermentation at 40°C or by lowering incubation pH to 5.0 resulted in reduced cell growth and no production of ethanol or acetic acid. The third experiment studied the effect of three limiting nutrients, calcium pantothenate, vitamin B12 and CoCl2 on syngas fermentation. Results

  11. Determination of binding affinity upon mutation for type I dockerin-cohesin complexes from Clostridium thermocellum and Clostridium cellulolyticum using deep sequencing.

    PubMed

    Kowalsky, Caitlin A; Whitehead, Timothy A

    2016-12-01

    The comprehensive sequence determinants of binding affinity for type I cohesin toward dockerin from Clostridium thermocellum and Clostridium cellulolyticum was evaluated using deep mutational scanning coupled to yeast surface display. We measured the relative binding affinity to dockerin for 2970 and 2778 single point mutants of C. thermocellum and C. cellulolyticum, respectively, representing over 96% of all possible single point mutants. The interface ΔΔG for each variant was reconstructed from sequencing counts and compared with the three independent experimental methods. This reconstruction results in a narrow dynamic range of -0.8-0.5 kcal/mol. The computational software packages FoldX and Rosetta were used to predict mutations that disrupt binding by more than 0.4 kcal/mol. The area under the curve of receiver operator curves was 0.82 for FoldX and 0.77 for Rosetta, showing reasonable agreements between predictions and experimental results. Destabilizing mutations to core and rim positions were predicted with higher accuracy than support positions. This benchmark dataset may be useful for developing new computational prediction tools for the prediction of the mutational effect on binding affinities for protein-protein interactions. Experimental considerations to improve precision and range of the reconstruction method are discussed. Proteins 2016; 84:1914-1928. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Clostridium perfringens enterotoxin and Clostridium difficile toxin A/B do not play a role in acute haemorrhagic diarrhoea syndrome in dogs.

    PubMed

    Busch, K; Suchodolski, J S; Kühner, K A; Minamoto, Y; Steiner, J M; Mueller, R S; Hartmann, K; Unterer, S

    2015-03-07

    Although an association between clostridial pathogens and canine idiopathic acute haemorrhagic diarrhoea syndrome (AHDS) has been described, the relevance of those bacteria and their toxins remains unclear. The aim of this study was to evaluate the association between severity of clinical signs and presence of Clostridium perfringens enterotoxin (CPE) and Clostridium difficile toxin A/B (CDT A/B) in faeces of dogs with AHDS. Faecal samples of 54 dogs with idiopathic AHDS were tested by qualitative CPE and CDT A/B ELISA, and PCR was performed to detect enterotoxin genes of C. perfringens (cpe) and toxin B genes of C. difficile (cdt b). Prevalence of cdt b and CDT A/B in dogs with AHDS was 10/54 and 2/54 versus 3/23 and 0/23 in control dogs. Prevalence of cpe was 35/54 in affected versus 9/23 in control dogs. Prevalence of CPE in dogs with AHDS (13/54) was higher compared with control dogs (0/23). No significant difference was detected between CPE-positive and -negative and between cpe-positive and -negative dogs in severity of clinical signs, duration of hospitalisation, mortality rate and selected laboratory parameters. This study suggests that CPE and CDT A/B do not play a role in idiopathic AHDS, are not associated with clinical parameters in affected dogs and cannot be used to predict disease outcome. British Veterinary Association.

  13. A New Type of Toxin A-Negative, Toxin B-Positive Clostridium difficile Strain Lacking a Complete tcdA Gene

    PubMed Central

    Marín, Mercedes; Martín, Adoración; Rupnik, Maja

    2014-01-01

    Toxins A and B are the main virulence factors of Clostridium difficile and are the targets for molecular diagnostic tests. Here, we describe a new toxin A-negative, toxin B-positive, binary toxin CDT (Clostridium difficile transferase)-negative (A− B+ CDT−) toxinotype (XXXII) characterized by a variant type of pathogenicity locus (PaLoc) without tcdA and with atypical organization of the PaLoc integration site. PMID:25428159

  14. The Mycotoxin Deoxynivalenol Predisposes for the Development of Clostridium perfringens-Induced Necrotic Enteritis in Broiler Chickens

    PubMed Central

    Antonissen, Gunther; Ducatelle, Richard; Haesebrouck, Freddy; Timbermont, Leen; Verlinden, Marc; Janssens, Geert Paul Jules; Eeckhaut, Venessa; Eeckhout, Mia; De Saeger, Sarah; Hessenberger, Sabine; Martel, An; Croubels, Siska

    2014-01-01

    Both mycotoxin contamination of feed and Clostridium perfringens-induced necrotic enteritis have an increasing global economic impact on poultry production. Especially the Fusarium mycotoxin deoxynivalenol (DON) is a common feed contaminant. This study aimed at examining the predisposing effect of DON on the development of necrotic enteritis in broiler chickens. An experimental Clostridium perfringens infection study revealed that DON, at a contamination level of 3,000 to 4,000 µg/kg feed, increased the percentage of birds with subclinical necrotic enteritis from 20±2.6% to 47±3.0% (P<0.001). DON significantly reduced the transepithelial electrical resistance in duodenal segments (P<0.001) and decreased duodenal villus height (P = 0.014) indicating intestinal barrier disruption and intestinal epithelial damage, respectively. This may lead to an increased permeability of the intestinal epithelium and decreased absorption of dietary proteins. Protein analysis of duodenal content indeed showed that DON contamination resulted in a significant increase in total protein concentration (P = 0.023). Furthermore, DON had no effect on in vitro growth, alpha toxin production and netB toxin transcription of Clostridium perfringens. In conclusion, feed contamination with DON at concentrations below the European maximum guidance level of 5,000 µg/kg feed, is a predisposing factor for the development of necrotic enteritis in broilers. These results are associated with a negative effect of DON on the intestinal barrier function and increased intestinal protein availability, which may stimulate growth and toxin production of Clostridium perfringens. PMID:25268498

  15. Phenotypic and genotypic characterization of tetracycline and minocycline resistance in Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to determine the incidence of tetracycline resistance and the prevalence of tetracycline-resistance genes in strains of Clostridium perfringens isolated from different sources between 1994 and 2005. Susceptibility to tetracycline and minocycline in C. perfringens isolates ...

  16. Submission of nucleotide sequence clostridium perfringens NetB toxin to genbank database

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens can cause gas gangrene and food poisoning in humans and causes several enterot-oxemic diseases in animals including avian necrotic enteritis. This disease affects all chicken producing countries worldwide and is a considerable burden on the commercial chicken production indus...

  17. Characterization of Clostridium Baratii Type F Strains Responsible for an Outbreak of Botulism Linked to Beef Meat Consumption in France.

    PubMed

    Mazuet, Christelle; Legeay, Christine; Sautereau, Jean; Bouchier, Christiane; Criscuolo, Alexis; Bouvet, Philippe; Trehard, Hélène; Jourdan Da Silva, Nathalie; Popoff, Michel

    2017-02-01

    A second botulism outbreak due to Clostridium baratii occurred in France in August 2015 and included three patients who had their meal in a restaurant the same day. We report the characterization of C. baratii isolates including whole genome sequencing (WGS). Four C. baratii isolates collected in August 2015 from the outbreak 2 were analysed for toxin production and typing as well as for genetic characterization. WGS was done using using the NEBNext Ultra DNA Library Prep kit for Illumina (New England Biolabs) and sequenced on MiSeq machine (Illumina) in paired-end reads of 250 bases. The phylogenetic tree was generated based on the UPGMA method with genetic distances computed by using the Kimura two-parameter model. Evolutionary analyses were conducted in Bionumerics (V.6.6 Applied Maths). Three C. baratii isolates for patient's stools and one isolate from meat produced botulinum neurotoxin (BoNT) type F and retained a bont/F7 gene in OrfX cluster. All isolates were identical according to the WGS. However, phylogeny of the core genome showed that the four C. baratii strains were distantly related to that of the previous C. baratii outbreak in France in 2014 and from the other C. baratii strains reported in databanks. The fact that the strains isolated from the patients and meat samples were genetically identical supports that the meat used for the Bolognese sauce was responsible for this second botulism outbreak in France. These isolates were unrelated to that from the first C. baratii outbreak in France in 2014 indicating a distinct source of contamination. WGS provided robust determination of genetic relatedness and information regarding BoNT typing and toxin gene locus genomic localization.

  18. Clostridium perfringens: insight into virulence evolution and population structure.

    PubMed

    Sawires, Youhanna S; Songer, J Glenn

    2006-02-01

    Clostridium perfringens is an important pathogen in veterinary and medical fields. Diseases caused by this organism are in many cases life threatening or fatal. At the same time, it is part of the ecological community of the intestinal tract of man and animals. Virulence in this species is not fully understood and it does seem that there is erratic distribution of the toxin/enzyme genes within C. perfringens population. We used the recently developed multiple-locus variable-number tandem repeat analysis (MLVA) scheme to investigate the evolution of virulence and population structure of this species. Analysis of the phylogenetic signal indicates that acquisition of the major toxin genes as well as other plasmid-borne toxin genes is a recent evolutionary event and their maintenance is essentially a function of the selective advantage they confer in certain niches under different conditions. In addition, it indicates the ability of virulent strains to cause disease in different host species. More interestingly, there is evidence that certain normal flora strains are virulent when they gain access to a different host species. Analysis of the population structure indicates that recombination events are the major tool that shapes the population and this panmixia is interrupted by frequent clonal expansion that mostly corresponds to disease processes. The signature of positive selection was detected in alpha toxin gene, suggesting the possibility of adaptive alleles on the other chromosomally encoded determinants. Finally, C. perfringens proved to have a dynamic population and availability of more genome sequences and use of comparative proteomics and animal modeling would provide more insight into the virulence of this organism.

  19. Investigating CRISPR-Cas systems in Clostridium botulinum via bioinformatics tools.

    PubMed

    Negahdaripour, Manica; Nezafat, Navid; Hajighahramani, Nasim; Rahmatabadi, Seyyed Soheil; Ghasemi, Younes

    2017-10-01

    The Clustered regularly interspaced short palindromic repeats (CRISPR) systems are a type of innate immunity found in some prokaryotes, which protect them against alien genetic elements by targeting foreign nucleic acids. Some other functions are also attributed to these systems. Clostridium botulinum bacteria produce botulinum neurotoxins (BoNT), one of the deadliest known toxins for humans and some animals. Food poisoning due to these bacteria is still a challenge in food industries. On the other hand, BoNT has been widely investigated for therapeutic applications including different muscle disorders. Bont genes may be located on bacterial chromosomes, plasmids, or even prophages. Generally, the genomes of Cl. botulinum show a high level of plasticity. In order to investigate the presence and characteristics of CRISPRs in these anaerobe bacteria, an in silico study on 113 CRISPR arrays identified in 38 Cl. botulinum strains was performed. A high occurrence of CRISPR arrays (80%) were found, with a remarkable frequency on plasmids. Several (CRISPR-associated) Cas proteins from different types were recognized in the studied strains, which were mostly Cas6. The CRISPR-Cas systems were identified as type I or III, but no type II. The spacers showed more homology with bacterial plasmids than phages. Active CRISPR-Cas systems can prevent the transfer of foreign genes, which may also include bont genes. This study provides the first insight into the probable roles of CRISPR-Cas systems in Cl. botulinum strains such as toxigenicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cloning and Molecular Characterization of an Immunogenic LigA Protein of Leptospira interrogans

    PubMed Central

    Palaniappan, Raghavan U. M.; Chang, Yung-Fu; Jusuf, S. S. D.; Artiushin, S.; Timoney, John F.; McDonough, Sean P.; Barr, Steve C.; Divers, Thomas J.; Simpson, Kenneth W.; McDonough, Patrick L.; Mohammed, Hussni O.

    2002-01-01

    A clone expressing a novel immunoreactive leptospiral immunoglobulin-like protein A of 130 kDa (LigA) from Leptospira interrogans serovar pomona type kennewicki was isolated by screening a genomic DNA library with serum from a mare that had recently aborted due to leptospiral infection. LigA is encoded by an open reading frame of 3,675 bp, and the deduced amino acid sequence consists of a series of 90-amino-acid tandem repeats. A search of the NCBI database found that homology of the LigA repeat region was limited to an immunoglobulin-like domain of the bacterial intimin binding protein of Escherichia coli, the cell adhesion domain of Clostridium acetobutylicum, and the invasin of Yersinia pestis. Secondary structure prediction analysis indicates that LigA consists mostly of beta sheets with a few alpha-helical regions. No LigA was detectable by immunoblot analysis of lysates of the leptospires grown in vitro at 30°C or when cultures were shifted to 37°C. Strikingly, immunohistochemistry on kidney from leptospira-infected hamsters demonstrated LigA expression. These findings suggest that LigA is specifically induced only in vivo. Sera from horses, which aborted as a result of natural Leptospira infection, strongly recognize LigA. LigA is the first leptospiral protein described to have 12 tandem repeats and is also the first to be expressed only during infection. Thus, LigA may have value in serodiagnosis or as a protective immunogen in novel vaccines. PMID:12379666

  1. Initiation of sporulation in Clostridium difficile: a twist on the classic model.

    PubMed

    Edwards, Adrianne N; McBride, Shonna M

    2014-09-01

    The formation of dormant endospores is a complex morphological process that permits long-term survival in inhospitable environments for many Gram-positive bacteria. Sporulation for the anaerobic gastrointestinal pathogen Clostridium difficile is necessary for survival outside of the gastrointestinal tract of its host. While the developmental stages of spore formation are largely conserved among endospore-forming bacteria, the genus Clostridium appears to be missing a number of conserved regulators required for efficient sporulation in other spore-forming bacteria. Several recent studies have discovered novel mechanisms and distinct regulatory pathways that control the initiation of sporulation and early-sporulation-specific gene expression. These differences in regulating the decision to undergo sporulation reflects the unique ecological niche and environmental conditions that C. difficile inhabits and encounters within the mammalian host. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications

    PubMed Central

    Akinosho, Hannah; Yee, Kelsey; Close, Dan; Ragauskas, Arthur

    2014-01-01

    First isolated in 1926, Clostridium thermocellum has recently received increased attention as a high utility candidate for use in consolidated bioprocessing (CBP) applications. These applications, which seek to process lignocellulosic biomass directly into useful products such as ethanol, are gaining traction as economically feasible routes toward the production of fuel and other high value chemical compounds as the shortcomings of fossil fuels become evident. This review evaluates C. thermocellum's role in this transitory process by highlighting recent discoveries relating to its genomic, transcriptomic, proteomic, and metabolomic responses to varying biomass sources, with a special emphasis placed on providing an overview of its unique, multivariate enzyme cellulosome complex and the role that this structure performs during biomass degradation. Both naturally evolved and genetically engineered strains are examined in light of their unique attributes and responses to various biomass treatment conditions, and the genetic tools that have been employed for their creation are presented. Several future routes for potential industrial usage are presented, and it is concluded that, although there have been many advances to significantly improve C. thermocellum's amenability to industrial use, several hurdles still remain to be overcome as this unique organism enjoys increased attention within the scientific community. PMID:25207268

  3. The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications

    NASA Astrophysics Data System (ADS)

    Ragauskas, Arthur; Akinosho, Hannah; Yee, Kelsey; Close, Dan

    2014-08-01

    First isolated in 1926, Clostridium thermocellum has recently received increased attention as a high utility candidate for use in consolidated bioprocessing applications. These applications, which seek to process lignocellulosic biomass directly into useful products such as ethanol, are gaining traction as economically feasible routes towards the production of fuel and other high value chemical compounds as the shortcomings of fossil fuels become evident. This review evaluates C. thermocellum’s role in this transitory process by highlighting recent discoveries relating to its genomic, transcriptomic, proteomic, and metabolomic responses to varying biomass sources, with a special emphasis placed on providing an overview of its unique, multivariate enzyme cellulosome complex and the role that this structure performs during biomass degradation. Both naturally evolved and genetically engineered strains are examined in light of their unique attributes and responses to various biomass treatment conditions, and the genetic tools that have been employed for their creation are presented. Several future routes for potential industrial usage are presented, and it is concluded that, although there have been many advances to significantly improve C. thermocellum’s amenability to industrial use, several hurdles still remain to be overcome as this unique organism enjoys increased attention within the scientific community.

  4. Isolation and Characterization of a Toxic Moiety of Low Molecular Weight from Clostridium botulinum Type A

    PubMed Central

    Gerwing, Julia; Dolman, Claude E.; Bains, Hardial S.

    1965-01-01

    Gerwing, Julia (The University of British Columbia, Vancouver, B.C., Canada), Claude E. Dolman, and Hardial S. Bains. Isolation and characterization of a toxic moiety of low molecular weight from Clostridium botulinum type A. J. Bacteriol. 89:1383–1386. 1965.—A toxic moiety of low molecular weight has been isolated from a type A strain of Clostridium botulinum, by a method involving ammonium sulfate precipitation and elution through diethylaminoethyl cellulose at pH 5.6. By means of electrophoresis and ultracentrifugation, the toxic substance was shown to be homogeneous; a molecular weight of 12,200 was calculated. Images PMID:14293025

  5. Microbiologic factors affecting Clostridium difficile recurrence.

    PubMed

    Chilton, C H; Pickering, D S; Freeman, J

    2018-05-01

    Recurrent Clostridium difficile infection (rCDI) places a huge economic and practical burden on healthcare facilities. Furthermore, rCDI may affect quality of life, leaving patients in an rCDI cycle and dependant on antibiotic therapy. To discuss the importance of microbiologic factors in the development of rCDI. Literature was drawn from a search of PubMed from 2000 onwards with the search term 'recurrent Clostridium difficile infection' and further references cited within these articles. Meta-analyses and systematic reviews have shown that CDI and rCDI risk factors are similar. Development of rCDI is attendant on many factors, including immune status or function, comorbidities and concomitant treatments. Studies suggest that poor bacterial diversity is correlated with clinical rCDI. Narrow-spectrum gut microflora-sparing antimicrobials (e.g. surotomycin, cadazolid, ridinilazole) are in development for CDI treatment, while microbiota therapeutics (faecal microbiota transplantation, nontoxigenic C. difficile, stool substitutes) are increasingly being explored. rCDI can only occur when viable C. difficile spores are present, either within the gut lumen after infection or when reacquired from the environment. C. difficile spore germination can be influenced by gut environmental factors resulting from dysbiosis, and spore outgrowth may be affected stage by some antimicrobials (e.g. fidaxomicin, ramoplanin, oritavancin). rCDI is a significant challenge for healthcare professionals, requiring a multifaceted approach; optimized infection control to minimize reinfection; C. difficile-targeted antibiotics to minimize dysbiosis; and gut microflora restoration to promote colonization resistance. These elements should be informed by our understanding of the microbiologic factors involved in both C. difficile itself and the gut microbiome. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria.

    PubMed

    Citron, Diane M; Tyrrell, Kerin L; Merriam, C Vreni; Goldstein, Ellie J C

    2012-05-01

    The in vitro activities of LFF571, a novel analog of GE2270A that inhibits bacterial growth by binding with high affinity for protein synthesis elongation factor Tu, fidaxomicin, and 10 other antimicrobial agents were determined against 50 strains of Clostridium difficile and 630 other anaerobic and aerobic organisms of intestinal origin. LFF571 possesses potent activity against C. difficile and most other Gram-positive anaerobes (MIC(90), ≤ 0.25 μg/ml), with the exception of bifidobacteria and lactobacilli. The MIC(90)s for aerobes, including enterococci, Staphylococcus aureus (as well as methicillin-resistant S. aureus [MRSA] isolates), Streptococcus pyogenes, and other streptococci were 0.06, 0.125, 2, and 8 μg/ml, respectively. Comparatively, fidaxomicin showed variable activity against Gram-positive organisms: MIC(90)s against C. difficile, Clostridium perfringens, and Bifidobacterium spp. were 0.5, ≤ 0.015, and 0.125 μg/ml, respectively, but >32 μg/ml against Clostridium ramosum and Clostridium innocuum. MIC(90) for S. pyogenes and other streptococci was 16 and >32 μg/ml, respectively. LFF571 and fidaxomicin were generally less active against Gram-negative anaerobes.

  7. Identification of Novel Pathogenicity Loci in Clostridium perfringens Strains That Cause Avian Necrotic Enteritis

    PubMed Central

    Parreira, Valeria R.; Marri, Pradeep R.; Rosey, Everett L.; Gong, Joshua; Songer, J. Glenn; Vedantam, Gayatri; Prescott, John F.

    2010-01-01

    Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes ∼85 and ∼70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne. PMID:20532244

  8. Identification of novel pathogenicity loci in Clostridium perfringens strains that cause avian necrotic enteritis.

    PubMed

    Lepp, Dion; Roxas, Bryan; Parreira, Valeria R; Marri, Pradeep R; Rosey, Everett L; Gong, Joshua; Songer, J Glenn; Vedantam, Gayatri; Prescott, John F

    2010-05-24

    Type A Clostridium perfringens causes poultry necrotic enteritis (NE), an enteric disease of considerable economic importance, yet can also exist as a member of the normal intestinal microbiota. A recently discovered pore-forming toxin, NetB, is associated with pathogenesis in most, but not all, NE isolates. This finding suggested that NE-causing strains may possess other virulence gene(s) not present in commensal type A isolates. We used high-throughput sequencing (HTS) technologies to generate draft genome sequences of seven unrelated C. perfringens poultry NE isolates and one isolate from a healthy bird, and identified additional novel NE-associated genes by comparison with nine publicly available reference genomes. Thirty-one open reading frames (ORFs) were unique to all NE strains and formed the basis for three highly conserved NE-associated loci that we designated NELoc-1 (42 kb), NELoc-2 (11.2 kb) and NELoc-3 (5.6 kb). The largest locus, NELoc-1, consisted of netB and 36 additional genes, including those predicted to encode two leukocidins, an internalin-like protein and a ricin-domain protein. Pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed that the NE strains each carried 2 to 5 large plasmids, and that NELoc-1 and -3 were localized on distinct plasmids of sizes approximately 85 and approximately 70 kb, respectively. Sequencing of the regions flanking these loci revealed similarity to previously characterized conjugative plasmids of C. perfringens. These results provide significant insight into the pathogenetic basis of poultry NE and are the first to demonstrate that netB resides in a large, plasmid-encoded locus. Our findings strongly suggest that poultry NE is caused by several novel virulence factors, whose genes are clustered on discrete pathogenicity loci, some of which are plasmid-borne.

  9. Fecal microbiota transplantation in children with recurrent Clostridium difficile infection.

    PubMed

    Pierog, Anne; Mencin, Ali; Reilly, Norelle Rizkalla

    2014-11-01

    Clostridium difficile eradication using fecal microbiota transplantation (FMT) has been successful in adults but little information is available in pediatrics. We report 6 pediatric patients with refractory C. difficile cured by FMT with no recurrences to date. Our results demonstrate that FMT can be an effective treatment for refractory C. difficile infection in pediatrics. Long-term safety and efficacy need to be studied.

  10. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates.

    PubMed

    Baums, Christoph G; Schotte, Ulrich; Amtsberg, Gunter; Goethe, Ralph

    2004-05-20

    In this study we provide a protocol for genotyping Clostridium perfringens with a new multiplex PCR. This PCR enables reliable and specific detection of the toxin genes cpa, cpb, etx, iap, cpe and cpb2 from heat lysed bacterial suspensions. The efficiency of the protocol was demonstrated by typing C. perfringens reference strains and isolates from veterinary bacteriological routine diagnostic specimens.

  11. First described case of prosthetic joint infection with Clostridium disporicum.

    PubMed

    McBride, Joseph A; Sterkel, Alana K; Rehrauer, William M; Smith, Jeannina A

    2017-12-01

    An orthopedic hardware infection with Clostridium disporicum is described. C. disporicum is a gram positive anaerobic bacillus which can contain two subterminal spores. C. disporicum had not previously been reported in musculoskeletal infections. Gram stains demonstrating gram positive bacilli with two subterminal spores should alert practitioners to the possibility of C. disporicum infection. Published by Elsevier Ltd.

  12. Clostridium perfringens type A–E toxin plasmids

    PubMed Central

    Freedman, John C.; Theoret, James R.; Wisniewski, Jessica A.; Uzal, Francisco A.; Rood, Julian I.; McClane, Bruce A.

    2014-01-01

    Clostridium perfringens relies upon plasmid-encoded toxin genes to cause intestinal infections. These toxin genes are associated with insertion sequences that may facilitate their mobilization and transfer, giving rise to new toxin plasmids with common backbones. Most toxin plasmids carry a transfer of clostridial plasmids locus mediating conjugation, which likely explains the presence of similar toxin plasmids in otherwise unrelated C. perfringens strains. The association of many toxin genes with insertion sequences and conjugative plasmids provides virulence flexibility when causing intestinal infections. However, incompatibility issues apparently limit the number of toxin plasmids maintained by a single cell. PMID:25283728

  13. Incidence and tracking of Clostridium perfringens through an integrated broiler chicken operation

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens has been shown to be widespread in the broiler chicken hatchery, grow-out, and processing operations. In a previous study, ribotypes of certain strains of C. perfringens isolated from processed chicken carcasses were shown to match ribotypes isolated from paper pad lining tra...

  14. Bacteriophages of the family siphoviridae contain amidase enzymes that lyse Clostridium perfringens

    USDA-ARS?s Scientific Manuscript database

    *Agtech-Danisco, current address In chickens Clostridium perfringens (Cp) is the etiologic agent of necrotic enteritis and causes gas gangrene along with being the third leading cause of bacterial food-borne gastroenteritis in humans. While the disease in poultry can be controlled by antibiotics, th...

  15. Natural Clostridium botulinum Type C Toxicosis in a Group of Cats

    PubMed Central

    Elad, D.; Yas-Natan, E.; Aroch, I.; Shamir, M. H.; Kleinbart, S.; Hadash, D.; Chaffer, M.; Greenberg, K.; Shlosberg, A.

    2004-01-01

    Clinical signs of botulism were observed in a group of eight cats, four of which died, after being fed pelican carrion. Clostridium botulinum type C was isolated from one cat. The microorganism and its toxin were found in the pelican. This is apparently the first report of natural botulism in cats. PMID:15528757

  16. Clostridium perfringens and Clostridium difficile in cooked beef sold in Côte d'Ivoire and their antimicrobial susceptibility.

    PubMed

    Kouassi, Kra Athanase; Dadie, Adjéhi Thomas; N'Guessan, Kouadio Florent; Dje, Koffi Marcellin; Loukou, Yao Guillaume

    2014-08-01

    The aim of this study was to evaluate the prevalence of Clostridium difficile and Clostridium perfringens in cooked beef sold in the streets in Côte d'Ivoire and their antimicrobial susceptibility. A total of 395 kidney and flesh samples of cooked beef were collected from vendors at Abidjan and subjected to C. difficile and C. perfringens isolation and identification by using biochemical tests, API 20A system and PCR detection. Subsequently, the antimicrobial susceptibility test was performed for confirmed isolates. Our results showed the prevalence of 12.4% for C. difficile (11.04% in kidney and 13.45% in flesh) and 5.06% for C. perfringens (2.32% in kidney and 7.17% in flesh). Metronidazole and vancomycin remained the most potent antimicrobial agents against C. difficile while metronidazole and penicillin G were the most potent agents against C. perfringens. The resistance rates to tetracycline, doxycycline, chloramphenicol and erythromycin against C. difficile and C. perfringens isolates ranged from 2.05% to 8.16% and from 20% to 50%, respectively. Among all antimicrobial agents tested against C. difficile, percentages of resistance to quinolones ciprofloxacin, norfloxacin and nalidixic acid as well as to gentamicin and cefotaxime were the highest. Eight resistant phenotypes were defined for C. difficile isolates and eleven resistant phenotypes for C. perfringens isolates. Clindamycin/gentamicin/cefotaxime/ciprofloxacin/norfloxacin/nalidixic acid resistance was the most common phenotype for C. difficile (55.10% of isolates) while norfloxacin/nalidixic acid resistance was the most common phenotype for C. perfringens (20% of isolates). Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Strategies for improved isopropanol-butanol production by a Clostridium strain from glucose and hemicellulose through consolidated bioprocessing.

    PubMed

    Xin, Fengxue; Chen, Tianpeng; Jiang, Yujiang; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-01-01

    High cost of traditional substrates and formation of by-products (such as acetone and ethanol) in acetone-butanol-ethanol (ABE) fermentation hindered the large-scale production of biobutanol. Here, we comprehensively characterized a newly isolated solventogenic and xylanolytic Clostridium species, which could produce butanol at a high ratio with elimination of ethanol and conversion of acetone to more value-added product, isopropanol. Ultimately, direct butanol production from hemicellulose was achieved with efficient expression of indigenous xylanase by the novel strain via consolidated bioprocessing. A novel wild-type Clostridium sp. strain NJP7 was isolated and characterized in this study, which was capable of fermenting monosaccharides, e.g., glucose into butanol via a fermentative acetone-isopropanol-butanol pathway. With enhancement of buffering capacity and alcohol dehydrogenase activities, butanol and isopropanol titer by Clostridium sp. strain NJP7 was improved to 12.21 and 1.92 g/L, respectively, and solvent productivity could be enhanced to 0.44 g/L/h. Furthermore, with in situ extraction with biodiesel, the amount of butanol and isopropanol was finally improved to 25.58 and 5.25 g/L in the fed-batch mode. Meanwhile, Clostridium sp. strain NJP7 shows capability of direct isopropanol-butanol production from hemicelluloses with expression of indigenous xylanase. 2.06 g/L of butanol and 0.54 g/L of isopropanol were finally achieved through the temperature-shift simultaneous saccharification and fermentation, representing the highest butanol production directly from hemicellulose. The co-production of isopropanol with butanol by the newly isolated Clostridium sp. strain NJP7 would add on the economical values for butanol fermentation. Furthermore, the high isopropanol-butanol production with in situ extraction would also greatly enhance the economic feasibility for fermentative production of butanol-isopropanol in large scale. Meanwhile, its direct

  18. Clostridium difficile infection in patients with inflammatory bowel disease

    PubMed Central

    Saidel-Odes, Lisa; Borer, Abraham; Odes, Selwyn

    2011-01-01

    Clostridium difficile infection in patients with inflammatory bowel disease has become a serious clinical problem over the past few years. This review is focused on the current changes in epidemiology, pertinent clinical aspects, standard and newer diagnostic methods, established and novel therapies, and prevention of infection. There is emphasis on the importance of clinical awareness, rapid detection by stool testing, and appropriate antibiotic therapy, while newer technologies, antibiotics and other treatments are explored. PMID:24713726

  19. Clostridium botulinum in Scottish fish farms and farmed trout.

    PubMed

    Burns, G F; Williams, H

    1975-02-01

    Rainbow trout and specimens of pond mud were collected from three fish farms and examined for the presence of Clostridium botulinum. Two of the farms were constructed with concrete channels and one was mud-bottomed. Cl. botulinum was isolated only from the mud-bottomed farm (24% of muds), and the isolates were all non-proteolytic type B. The implications of the presence of Cl. botulinum spores in the mud of fish farms is discussed.

  20. Biodegradation of trinitrotoluene (TNT) by a strain of Clostridium bifermentans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, C.Y.; Crawford, D.L.

    1995-12-31

    A Clostridium capable of degrading 2,4,6-trinitrotoluene (TNT) cometabolically was isolated from a mixed culture obtained from a bioreactor fed TNT. This bacterium, identified as a strain of Clostridium bifermentans, and designated strain CYS-1, was able to degrade TNT via 4-amino-2,6-dinitrotoluene (4-ADNT) and 2,4-diamino-6-nitrotoluene (2,4-DANT) to aliphatic polar products which are now being identified and are assumed to be organic acids. CYS 1 cells are tolerant of TNT and capable of degrading it at starting concentrations of up to {ge}100 mg/L TNT. The number of cells inoculated and the availability of cosubstrate nutrients are significant factors influencing TNT degradation, as aremore » TNT tolerance and survival of the cells at high TNT concentrations. In liquid media, at high TNT concentrations, TNT toxicity could be overcome by increasing the amount of inoculum and supplementing the culture with appropriate rich organic cosubstrates. Under these conditions, the reduction of 4-ADNT to 2,4-DANT occurred very fast, whereas the further degradation of 2,4-DANT proceeded more slowly.« less

  1. A simple electroelution method for rapid protein purification: isolation and antibody production of alpha toxin from Clostridium septicum.

    PubMed

    Vázquez-Iglesias, Lorena; Estefanell-Ucha, Borja; Barcia-Castro, Leticia; Páez de la Cadena, María; Álvarez-Chaver, Paula; Ayude-Vázquez, Daniel; Rodríguez-Berrocal, Francisco Javier

    2017-01-01

    Clostridium septicum produces a number of diseases in human and farm animals which, in most of the cases, are fatal without clinical intervention. Alpha toxin is an important agent and the unique lethal virulent factor produced by Clostridium septicum. This toxin is haemolytic, highly lethal and necrotizing activities but is being used as an antigen to develop animal vaccines. The aim of this study was to isolate the alpha toxin of Clostridium septicum and produce highly specific antibodies against it. In this work, we have developed a simple and efficient method for alpha toxin purification, based on electroelution that can be used as a time-saving method for purifying proteins. This technique avoids contamination by other proteins that could appear during other protein purification techniques such chromatography. The highly purified toxin was used to produce polyclonal antibodies. The specificity of the antibodies was tested by western blot and these antibodies can be applied to the quantitative determination of alpha toxin by slot blot.

  2. A simple electroelution method for rapid protein purification: isolation and antibody production of alpha toxin from Clostridium septicum

    PubMed Central

    Estefanell-Ucha, Borja; Barcia-Castro, Leticia; Páez de la Cadena, María; Álvarez-Chaver, Paula; Ayude-Vázquez, Daniel; Rodríguez-Berrocal, Francisco Javier

    2017-01-01

    Clostridium septicum produces a number of diseases in human and farm animals which, in most of the cases, are fatal without clinical intervention. Alpha toxin is an important agent and the unique lethal virulent factor produced by Clostridium septicum. This toxin is haemolytic, highly lethal and necrotizing activities but is being used as an antigen to develop animal vaccines. The aim of this study was to isolate the alpha toxin of Clostridium septicum and produce highly specific antibodies against it. In this work, we have developed a simple and efficient method for alpha toxin purification, based on electroelution that can be used as a time-saving method for purifying proteins. This technique avoids contamination by other proteins that could appear during other protein purification techniques such chromatography. The highly purified toxin was used to produce polyclonal antibodies. The specificity of the antibodies was tested by western blot and these antibodies can be applied to the quantitative determination of alpha toxin by slot blot. PMID:28652930

  3. Genus-wide assessment of lignocellulose utilization in the extremely thermophilic Caldicellulosiruptor by genomic, pan-genomic and metagenomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Laura L.; Blumer-Schuette, Sara E.; Izquierdo, Javier A.

    Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and thirteen genome sequences were used to re-assess genus-wide biodiversity for the extremely thermophilicCaldicellulosiruptor. The updated core-genome contains 1,401 ortholog groups (average genome size for thirteen species = 2,516 genes). The pan-genome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multi-domain glycoside hydrolases (GH). These include three cellulases with GH48 domains that are co-located in the Glucan Degradation Locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species,Caldicellulosiruptorsp. str. Rt8.B8 (re-named hereCaldicellulosiruptor morganii),Thermoanaerobacter cellulolyticusstr. NA10 (re-named hereCaldicellulosiruptor naganoensisNA10), andCaldicellulosiruptorsp. str.more » Wai35.B1 (re-named hereCaldicellulosiruptor danielii) degraded Avicel and lignocellulose (switchgrass).C. morganiiwas more efficient thanC. besciiin this regard and differed from the other twelve species examined here, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related toCaldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter,Fervidobacterium,Caloramator, andClostridium). One enrichment, containing 89.7%Caldicellulosiruptorand 9.7%Caloramator, had a capacity for switchgrass solubilization comparable toC. bescii. These results refine the known biodiversity ofCaldicellulosiruptorand indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes. The genus

  4. Genus-wide assessment of lignocellulose utilization in the extremely thermophilic Caldicellulosiruptor by genomic, pan-genomic and metagenomic analysis

    DOE PAGES

    Lee, Laura L.; Blumer-Schuette, Sara E.; Izquierdo, Javier A.; ...

    2018-02-23

    Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and thirteen genome sequences were used to re-assess genus-wide biodiversity for the extremely thermophilicCaldicellulosiruptor. The updated core-genome contains 1,401 ortholog groups (average genome size for thirteen species = 2,516 genes). The pan-genome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multi-domain glycoside hydrolases (GH). These include three cellulases with GH48 domains that are co-located in the Glucan Degradation Locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species,Caldicellulosiruptorsp. str. Rt8.B8 (re-named hereCaldicellulosiruptor morganii),Thermoanaerobacter cellulolyticusstr. NA10 (re-named hereCaldicellulosiruptor naganoensisNA10), andCaldicellulosiruptorsp. str.more » Wai35.B1 (re-named hereCaldicellulosiruptor danielii) degraded Avicel and lignocellulose (switchgrass).C. morganiiwas more efficient thanC. besciiin this regard and differed from the other twelve species examined here, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related toCaldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter,Fervidobacterium,Caloramator, andClostridium). One enrichment, containing 89.7%Caldicellulosiruptorand 9.7%Caloramator, had a capacity for switchgrass solubilization comparable toC. bescii. These results refine the known biodiversity ofCaldicellulosiruptorand indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes. The genus

  5. Energy Conservation Associated with Ethanol Formation from H2 and CO2 in Clostridium autoethanogenum Involving Electron Bifurcation

    PubMed Central

    Mock, Johanna; Zheng, Yanning; Mueller, Alexander P.; Ly, San; Tran, Loan; Segovia, Simon; Nagaraju, Shilpa; Köpke, Michael; Dürre, Peter

    2015-01-01

    ABSTRACT Most acetogens can reduce CO2 with H2 to acetic acid via the Wood-Ljungdahl pathway, in which the ATP required for formate activation is regenerated in the acetate kinase reaction. However, a few acetogens, such as Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei, also form large amounts of ethanol from CO2 and H2. How these anaerobes with a growth pH optimum near 5 conserve energy has remained elusive. We investigated this question by determining the specific activities and cofactor specificities of all relevant oxidoreductases in cell extracts of H2/CO2-grown C. autoethanogenum. The activity studies were backed up by transcriptional and mutational analyses. Most notably, despite the presence of six hydrogenase systems of various types encoded in the genome, the cells appear to contain only one active hydrogenase. The active [FeFe]-hydrogenase is electron bifurcating, with ferredoxin and NADP as the two electron acceptors. Consistently, most of the other active oxidoreductases rely on either reduced ferredoxin and/or NADPH as the electron donor. An exception is ethanol dehydrogenase, which was found to be NAD specific. Methylenetetrahydrofolate reductase activity could only be demonstrated with artificial electron donors. Key to the understanding of this energy metabolism is the presence of membrane-associated reduced ferredoxin:NAD+ oxidoreductase (Rnf), of electron-bifurcating and ferredoxin-dependent transhydrogenase (Nfn), and of acetaldehyde:ferredoxin oxidoreductase, which is present with very high specific activities in H2/CO2-grown cells. Based on these findings and on thermodynamic considerations, we propose metabolic schemes that allow, depending on the H2 partial pressure, the chemiosmotic synthesis of 0.14 to 1.5 mol ATP per mol ethanol synthesized from CO2 and H2. IMPORTANCE Ethanol formation from syngas (H2, CO, and CO2) and from H2 and CO2 that is catalyzed by bacteria is presently a much-discussed process for

  6. Clostridium difficile infection

    PubMed Central

    Smits, Wiep Klaas; Lyras, Dena; Lacy, D. Borden; Wilcox, Mark H.; Kuijper, Ed J.

    2017-01-01

    Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis — the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota. PMID:27158839

  7. Xylanase 30 A from Clostridium thermocellum functions as a glucuronoxylan xylanohydrolase

    Treesearch

    Franz J. St John; Casey Crooks; Diane Dietrich; Jason Hurlbert

    2017-01-01

    Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) have been shown to hydrolyze glucuronoxylan with dependence upon the glucuronic acid (GlcA) appendage. In a recent report, the GH30-8 xylanase from Clostridium thermocellum (CtXyn30A) was shown to hydrolyze arabinoxylan which contains no GlcA. Protein structure...

  8. BACTERIOPHAGES OF THE FAMILY SIPHOVIRIDAE CONTAIN AMIDASE ENZYMES THAT LYSE CLOSTRIDIUM PERFRINGENS

    USDA-ARS?s Scientific Manuscript database

    In chickens Clostridium perfringens (Cp) is the etiologic agent of necrotic enteritis and causes gas gangrene along with being the third leading cause of bacterial food-borne gastroenteritis in humans. While the disease in poultry can be controlled by antibiotics, there is increasing pressure to ban...

  9. Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol.

    PubMed

    Rana, N F; Gente, S; Rincé, A; Auffray, Y; Laplace, J M

    2012-09-01

    Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase (ldh) genes increased the ethanol production from 0.25 to 0.82 g/l, which was further increased to 0.96 g/l by the insertion of a pyruvate decarboxylase (pdc) gene (from Sarcina ventriculi or Clostridium acetobutylicum) in place ldh1. When grown on lactose, the pdcSv and pdcCa showed 13.6 and 17.6 U mg(-1) of pdc specific activity, respectively. Highest activity (47 U mg(-1)) and ethanol concentration (2.3 g/l) were obtained with pdcCa using an expression plasmid. Formate and acetate were also produced in high quantities. Transcriptional analysis showed that aldehyde alcohol dehydrogenase gene was upregulated up to 16-fold. Further optimizations are required for higher ethanol production.

  10. Activation Thermodynamics and H/D Kinetic Isotope Effect of the H ox to H red H + Transition in [FeFe] Hydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less

  11. Activation Thermodynamics and H/D Kinetic Isotope Effect of the Hox to HredH+ Transition in [FeFe] Hydrogenase.

    PubMed

    Ratzloff, Michael W; Wilker, Molly B; Mulder, David W; Lubner, Carolyn E; Hamby, Hayden; Brown, Katherine A; Dukovic, Gordana; King, Paul W

    2017-09-20

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox →H red H + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ∼2.5-fold kinetic isotope effect. Overall, these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox →H red H + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.

  12. Improved efficiency of butanol production by absorbed lignocellulose fermentation.

    PubMed

    He, Qin; Chen, Hongzhang

    2013-03-01

    Alkali-treated steam-exploded corn stover (SECSAT) was used as solid substrate for acetone-butanol-ethanol (ABE) production by absorbed lignocellulose fermentation (ALF) using Clostridium acetobutylicum ATCC 824. The ABE concentration in ALF culture had increased by 47% compared with that in submerged culture. More surprisingly, the acetone production was promoted and ethanol production was lower in the presence of SECSAT than that in its absence. ALF was also successfully in cofermentation of glucose and xylose, although decreased fermentability with an increase in the proportion of xylose. An invariable chemical composition and dry weight of SECSAT was found in ALF. Partial simultaneous saccharification and fermentation of SECSAT using a certain amount of cellulase could not only enhance the ABE concentration by 71%, but also significantly increase the area proportion of fiber cells in SECSAT from 53% to 90%, which would be an excellent paper making material. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Low-energy biomass pretreatment with deep eutectic solvents for bio-butanol production.

    PubMed

    Procentese, Alessandra; Raganati, Francesca; Olivieri, Giuseppe; Russo, Maria Elena; Rehmann, Lars; Marzocchella, Antonio

    2017-11-01

    Waste lettuce leaves - from the "fresh cut vegetable" industry - were pretreated with the deep eutectic solvent (DES) made of choline chloride - glycerol. Reaction time (3-16h) and the operation temperature (80-150°C) were investigated. Enzymatic glucose and xylose yields of 94.9% and 75.0%, respectively were obtained when the biomass was pretreated at 150°C for 16h. Sugars contained in the biomass hydrolysate were fermented in batch cultures of Clostridium acetobutylicum DSMZ 792. The energy consumption and the energy efficiency related to the DES pretreatment were calculated and compared to the most common lignocellulosic pretreatment processes reported in the literature. The DES pretreatment process was characterized by lower energy required (about 28% decrease and 72% decrease) than the NAOH pretreatment and steam explosion process respectively. The Net Energy Ratio (NER) value related to butanol production via DES biomass pretreatment was assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Acetone, butanol, and ethanol production from gelatinized cassava flour by a new isolates with high butanol tolerance.

    PubMed

    Li, Han-Guang; Ofosu, Fred Kwame; Li, Kun-Tai; Gu, Qiu-Ya; Wang, Qiang; Yu, Xiao-Bin

    2014-11-01

    To obtain native strains resistant to butanol toxicity, a new isolating method and serial enrichment was used in this study. With this effort, mutant strain SE36 was obtained, which could withstand 35g/L (compared to 20g/L of the wild-type strain) butanol challenge. Based on 16s rDNA comparison, the mutant strain was identified as Clostridium acetobutylicum. Under the optimized condition, the phase shift was smoothly triggered and fermentation performances were consequently enhanced. The maximum total solvent and butanol concentration were 23.6% and 24.3%, respectively higher than that of the wild-type strain. Furthermore, the correlation between butanol produced and the butanol tolerance was investigated, suggesting that enhancing butanol tolerance could improve butanol production. These results indicate that the simple but effective isolation method and acclimatization process are a promising technique for isolation and improvement of butanol tolerance and production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Activation Thermodynamics and H/D Kinetic Isotope Effect of the H ox to H red H + Transition in [FeFe] Hydrogenase

    DOE PAGES

    Ratzloff, Michael W.; Wilker, Molly B.; Mulder, David W.; ...

    2017-08-29

    Molecular complexes between CdSe nanocrystals and Clostridium acetobutylicum [FeFe] hydrogenase I (CaI) enabled light-driven control of electron transfer for spectroscopic detection of redox intermediates during catalytic proton reduction. Here in this paper we address the route of electron transfer from CdSe→CaI and activation thermodynamics of the initial step of proton reduction in CaI. The electron paramagnetic spectroscopy of illuminated CdSe:CaI showed how the CaI accessory FeS cluster chain (F-clusters) functions in electron transfer with CdSe. The H ox→H redH + reduction step measured by Fourier-transform infrared spectroscopy showed an enthalpy of activation of 19 kJ mol -1 and a ~2.5-foldmore » kinetic isotope effect. Overall these results support electron injection from CdSe into CaI involving F-clusters, and that the H ox→H redH + step of catalytic proton reduction in CaI proceeds by a proton-dependent process.« less

  16. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H 2 production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wecker, Matt S. A.; Beaton, Stephen E.; Chado, Robert A.

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H 2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H 2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system. Here we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H 2. The resulting strain photoproduces H 2 and self-reports its own H 2 production through fluorescence. Furthermore, this model system represents amore » unique method of developing hydrogenase-based H 2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H 2.« less

  17. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H 2 production

    DOE PAGES

    Wecker, Matt S. A.; Beaton, Stephen E.; Chado, Robert A.; ...

    2016-08-17

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H 2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H 2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system. Here we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H 2. The resulting strain photoproduces H 2 and self-reports its own H 2 production through fluorescence. Furthermore, this model system represents amore » unique method of developing hydrogenase-based H 2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H 2.« less

  18. Kinetic Study of Acetone-Butanol-Ethanol Fermentation in Continuous Culture

    PubMed Central

    Buehler, Edward A.; Mesbah, Ali

    2016-01-01

    Acetone-butanol-ethanol (ABE) fermentation by clostridia has shown promise for industrial-scale production of biobutanol. However, the continuous ABE fermentation suffers from low product yield, titer, and productivity. Systems analysis of the continuous ABE fermentation will offer insights into its metabolic pathway as well as into optimal fermentation design and operation. For the ABE fermentation in continuous Clostridium acetobutylicum culture, this paper presents a kinetic model that includes the effects of key metabolic intermediates and enzymes as well as culture pH, product inhibition, and glucose inhibition. The kinetic model is used for elucidating the behavior of the ABE fermentation under the conditions that are most relevant to continuous cultures. To this end, dynamic sensitivity analysis is performed to systematically investigate the effects of culture conditions, reaction kinetics, and enzymes on the dynamics of the ABE production pathway. The analysis provides guidance for future metabolic engineering and fermentation optimization studies. PMID:27486663

  19. Improving solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 proteins expressed into Esherichia coli.

    PubMed

    Kataeva, Irina; Chang, Jessie; Xu, Hao; Luan, Chi-Hao; Zhou, Jizhong; Uversky, Vladimir N; Lin, Dawei; Horanyi, Peter; Liu, Z J; Ljungdahl, Lars G; Rose, John; Luo, Ming; Wang, Bi-Cheng

    2005-01-01

    Low solubility of proteins overexpressed in E. coli is a frequent problem in high-throughput structural genomics. To improve solubility of proteins from mesophilic Shewanella oneidensis MR-1 and thermophilic Clostridium thermocellum JW20, an approach was attempted that included a fusion of the target protein to a maltose-binding protein (MBP) and a decrease of induction temperature. The MBP was selected as the most efficient solubilizing carrier when compared to a glutathione S-transferase and a Nus A protein. A tobacco etch virus (TEV) protease recognition site was introduced between fused proteins using a double polymerase-chain reaction and four primers. In this way, 79 S. oneidensis proteins have been expressed in one case with an N-terminal 30-residue tag and in another case as a fusion protein with MBP. A foreign tag might significantly affect the properties of the target polypeptide. At 37 degrees C and 18 degrees C induction temperatures, only 5 and 17 tagged proteins were soluble, respectively. In fusion with MBP 4, 34, and 38 proteins were soluble upon induction at 37 degrees, 28 degrees, and 18 degrees C, respectively. The MBP is assumed to increase stability and solubility of a target protein by changing both the mechanism and the cooperativity of folding/unfolding. The 66 C. thermocellum proteins were expressed as fusion proteins with MBP. Induction at 37 degrees, 28 degrees, and 18 degrees C produced 34, 57, and 60 soluble proteins, respectively. The higher solubility of C. thermocellum proteins in comparison with the S. oneidensis proteins under similar conditions of induction correlates with the thermophilicity of the host. The two-factor Wilkinson-Harrison statistical model was used to identify soluble and insoluble proteins. Theoretical and experimental data showed good agreement for S. oneidensis proteins; however, the model failed to identify soluble/insoluble Clostridium proteins. A suggestion has been made that the Wilkinson-Harrison model is

  20. Clostridium difficile-associated disease: impact of the updated SHEA/IDSA guidelines.

    PubMed

    Kincaid, Scott E

    2010-12-01

    Clostridium difficile-associated disease (CDAD) is an increasingly difficult condition to treat because of the emergence of antibiotic resistance and highly pathogenic strains of bacteria. These newly identified strains affect patients in every facet of health care, from individuals in the community to those in intensive care units and all points in between. Appropriate management regarding diagnosis, infection control, pharmacotherapy, and prevention is the key to good outcomes in all patient populations. Geriatric patients are particularly at risk of acquiring CDAD as a result of their gradually declining immune systems and increased exposure to health care facilities. Therefore, they merit a higher level of attention when CDAD is suspected. In an effort to identify the best practices, the Society for Healthcare Epidemiology of America in conjunction with the Infectious Diseases Society of America developed guidelines regarding the diagnosis and management of Clostridium-associated disease. By utilizing these guidelines to educate other health care practitioners and by considering the recommendations in their own practice, pharmacists can have a positive impact on every facet of CDAD prevention and management.

  1. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052

    PubMed Central

    2011-01-01

    Background Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol--an important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive microorganism for strain design to improve butanol production because it (i) naturally produces the highest recorded butanol concentrations as a byproduct of fermentation; and (ii) can co-ferment pentose and hexose sugars (the primary products from lignocellulosic hydrolysis). Interrogating C. beijerinckii metabolism from a systems viewpoint using constraint-based modeling allows for simulation of the global effect of genetic modifications. Results We present the first genome-scale metabolic model (iCM925) for C. beijerinckii, containing 925 genes, 938 reactions, and 881 metabolites. To build the model we employed a semi-automated procedure that integrated genome annotation information from KEGG, BioCyc, and The SEED, and utilized computational algorithms with manual curation to improve model completeness. Interestingly, we found only a 34% overlap in reactions collected from the three databases--highlighting the importance of evaluating the predictive accuracy of the resulting genome-scale model. To validate iCM925, we conducted fermentation experiments using the NCIMB 8052 strain, and evaluated the ability of the model to simulate measured substrate uptake and product production rates. Experimentally observed fermentation profiles were found to lie within the solution space of the model; however, under an optimal growth objective, additional constraints were needed to reproduce the observed profiles--suggesting the existence of selective pressures other than optimal growth. Notably, a significantly enriched fraction of actively utilized reactions in simulations--constrained to reflect experimental rates--originated from the set of reactions that overlapped between all three databases (P = 3.52 × 10-9, Fisher's exact test). Inhibition of the

  2. Effect of Clostridium butyricum supplementation on the development of intestinal flora and the immune system of neonatal mice.

    PubMed

    Miao, Rui-Xue; Zhu, Xin-Xin; Wan, Chao-Min; Wang, Zhi-Ling; Wen, Yang; Li, Yi-Yuan

    2018-01-01

    The objective of the present study was to examine whether Clostridium butyricum supplementation has a role in the regulation of the intestinal flora and the development of the immune system of neonatal mice. A total of 30 pregnant BALB/c mice, including their offspring, were randomly divided into three groups: In the maternal intervention group (Ba), maternal mice were treated with Clostridium butyricum from birth until weaning at postnatal day 21 (PD21) followed by administration of saline to the offspring at PD21-28; in the offspring intervention group (Ab), breast-feeding maternal mice were supplemented with saline and offspring were directly supplemented with Clostridium butyricum from PD21-28; in the both maternal and offspring intervention group (Bb), both maternal mice and offspring were supplemented with Clostridium butyricum at PD 0-21 and at PD21-28. While mice in the control group were given the same volume of normal saline. Stool samples from the offspring were collected at PD14, -21 and -28 to observe the intestinal flora by colony counts of Enterococcus spp., Enterobacter spp., Bifidobacterium spp. and Lactobacillus spp. Detection of intestinal secreted immunoglobulin A (sIgA) levels and serum cytokine (interferon-γ, and interleukin-12, -4 and -10) levels in offspring was performed to evaluate the effect on their immune system. The results revealed that compared with the control group, offspring in the Ba group displayed significantly decreased stool colony counts of Enterococcus spp. (t=3.123, P<0.01) at PD14 and significantly decreased counts of Enterobacter spp. at PD14 and -21 (t=2.563, P<0.05 and t=2.292, P<0.05, respectively). Compared with the control group, the stool colony counts of Bifidobacterium spp. and Lactobacillus spp. were significantly increased in the Ba group at PD21 (t=3.085, P<0.01 and t=2.8508, P<0.05, respectively). The Ab group had significantly higher stool colony counts of Bifidobacterium spp. and Lactobacillus spp. at PD28

  3. Flooding and Health Care Visits for Clostridium Difficile Infection: A Case-Crossover Analysis

    EPA Science Inventory

    Floods can contaminate potable water and other resources, thus increasing the potential for fecal-oral transmission of pathogens. Clostridium difficile is a bacterium that can spread by water and cause acute gastrointestinal illness. It often affects older adults who are hospital...

  4. Fulminant massive gas gangrene caused by Clostridium perfringens.

    PubMed

    Kuroda, Shoji; Okada, Yumi; Mita, Masaki; Okamoto, Yasuo; Kato, Hirotaka; Ueyama, Shigemitsu; Fujii, Ikuzo; Morita, Sumiharu; Yoshida, Yasuaki

    2005-05-01

    Clostridium perfringens (C.P) gas gangrene is one of the most fulminant infectious diseases. We encountered fulminant massive gas gangrene in a 56- year-old man with alcoholic liver cirrhosis. The patient died 14 hours after diagnosis of gas gangrene (54 hours after admission). Dramatic changes in abdominal CT imaging revealed development of a massive volume of gas in the intra-portal vein, retroperitoneum and abdominal subcutaneous tissue within 24 hours. We also proved C.P infection by immunohistological staining, leading to a diagnosis of C.P gas gangrene.

  5. Systematic review: faecal transplantation for the treatment of Clostridium difficile-associated disease.

    PubMed

    Guo, B; Harstall, C; Louie, T; Veldhuyzen van Zanten, S; Dieleman, L A

    2012-04-01

    Management of recurrent Clostridium difficile-associated disease (CDAD), particularly in elderly patients, remains clinically challenging. Faecal transplantation (FT) may restore normal microbiota and break the cycle of recurrent CDAD. To critically appraise the clinical research evidence on the safety and effectiveness of FT compared with standard care in the treatment of patients with CDAD. A comprehensive literature search was conducted by a research librarian to identify relevant studies published between 2000 and 2011. The Cochrane Library, PubMed, EMBASE, CINAHL, Biological Abstracts, BIOSIS Previews and Web of Science were searched using the following Medical Subject Headings (MeSH) terms and keywords, alone or in combination: Clostridium infections/Clostridium difficile/pseudomembranous/colitis/faeces/rectal/colon flora/gastrointestinal/nasogastric tube/enema/donor/transplant/infusion/bacteriotherapy/human probiotic infusion. Methodological quality of the included case series studies was assessed in terms of patient selection criteria, consecutive recruitment, prospective data collection, reporting of lost to follow-up, and follow-up rates. No controlled studies were found. Based on the weak evidence from seven full-text case series studies of 124 patients with recurrent/refractory CDAD, FT appears to be a safe and effective procedure. In most cases (83%) symptoms improved immediately after the first FT procedure, and some patients stayed diarrhoea free for several months or years. Although these results appear to be promising, the treatment effects of faecal transplantation cannot be determined definitively in the absence of a control group. Results from randomised controlled trials that compare faecal transplantation to oral vancomycin without or with a taper regimen will help to better define the role of faecal transplantation in the management of recurrent CDAD. © 2012 Blackwell Publishing Ltd.

  6. Ischaemic stroke and Clostridium septicum sepsis and meningitis in a patient with occult colon carcinoma - a case report and review of the literature.

    PubMed

    Macha, Kosmas; Giede-Jeppe, Antje; Lücking, Hannes; Coras, Roland; Huttner, Hagen B; Held, Jürgen

    2016-11-24

    Clostridium septicum is a rare cause of meningitis and brain abscess in children and adults. Gas production by the pathogen can lead to pneumocephalus and the overall mortality rate of Clostridium septicum CNS infection is as high as 74%. The most common entry site of the pathogen is the gastrointestinal tract. We describe a 74-year-old man who presented with a left-sided cerebral infarction in the middle cerebral artery territory. In addition the patient showed signs of Systemic Inflammatory Response Syndrome and Disseminated Intravascular Coagulation. Examination of blood cultures and cerebrospinal fluid led to the diagnosis of sepsis and meningitis caused by Clostridium septicum. Despite appropriate antibiotic therapy the condition of the patient deteriorated rapidly and he died on day 2 after admission. Autopsy revealed a previously unknown adenocarcinoma of the colon ascendens as entry site of the pathogen. Clostridium septicum should be considered as potential pathogen in patients with sepsis and meningitis. Gram stain morphology in conjunction with severe sepsis can rapidly point into the direction of this pathogen. CNS infections manifest either as meningoencephalitis/cerebritis or as brain abscess. Entry site of the pathogen is almost uniquely the gastrointestinal tract. In adults more than 50% suffer from colorectal carcinoma, therefore survivors of Clostridium septicum infections should be examined for underlying occult colorectal malignancy.

  7. Six rapid tests for direct detection of Clostridium difficile and its toxins in fecal samples compared with the fibroblast cytotoxicity assay.

    PubMed

    Turgeon, David K; Novicki, Thomas J; Quick, John; Carlson, LaDonna; Miller, Pat; Ulness, Bruce; Cent, Anne; Ashley, Rhoda; Larson, Ann; Coyle, Marie; Limaye, Ajit P; Cookson, Brad T; Fritsche, Thomas R

    2003-02-01

    Clostridium difficile is one of the most frequent causes of nosocomial gastrointestinal disease. Risk factors include prior antibiotic therapy, bowel surgery, and the immunocompromised state. Direct fecal analysis for C. difficile toxin B by tissue culture cytotoxin B assay (CBA), while only 60 to 85% sensitive overall, is a common laboratory method. We have used 1,003 consecutive, nonduplicate fecal samples to compare six commercially available immunoassays (IA) for C. difficile detection with CBA: Prima System Clostridium difficile Tox A and VIDAS Clostridium difficile Tox A II, which detect C. difficile toxin A; Premier Cytoclone A/B and Techlab Clostridium difficile Tox A/B, which detect toxins A and B; and ImmunoCard Clostridium difficile and Triage Micro C. difficile panels, which detect toxin A and a species-specific antigen. For all tests, Triage antigen was most sensitive (89.1%; negative predictive value [NPV] = 98.7%) while ImmunoCard was most specific (99.7%; positive predictive value [PPV] = 95.0%). For toxin tests only, Prima System had the highest sensitivity (82.2%; NPV = 98.0%) while ImmunoCard had the highest specificity (99.7%; PPV = 95.0%). Hematopoietic stem cell transplant (HSCT) patients contributed 44.7% of all samples tested, and no significant differences in sensitivity or specificity were noted between HSCT and non-HSCT patients. IAs, while not as sensitive as direct fecal CBA, produce reasonable predictive values, especially when both antigen and toxin are detected. They also offer significant advantages over CBA in terms of turnaround time and ease of use.

  8. Regulation of Toxin Production in Clostridium perfringens

    PubMed Central

    Ohtani, Kaori; Shimizu, Tohru

    2016-01-01

    The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here. PMID:27399773

  9. Mathematical Modeling of the Transmission Dynamics of Clostridium difficile Infection and Colonization in Healthcare Settings: A Systematic Review

    PubMed Central

    Gingras, Guillaume; Guertin, Marie-Hélène; Laprise, Jean-François; Drolet, Mélanie; Brisson, Marc

    2016-01-01

    Background We conducted a systematic review of mathematical models of transmission dynamic of Clostridium difficile infection (CDI) in healthcare settings, to provide an overview of existing models and their assessment of different CDI control strategies. Methods We searched MEDLINE, EMBASE and Web of Science up to February 3, 2016 for transmission-dynamic models of Clostridium difficile in healthcare settings. The models were compared based on their natural history representation of Clostridium difficile, which could include health states (S-E-A-I-R-D: Susceptible-Exposed-Asymptomatic-Infectious-Resistant-Deceased) and the possibility to include healthcare workers and visitors (vectors of transmission). Effectiveness of interventions was compared using the relative reduction (compared to no intervention or current practice) in outcomes such as incidence of colonization, CDI, CDI recurrence, CDI mortality, and length of stay. Results Nine studies describing six different models met the inclusion criteria. Over time, the models have generally increased in complexity in terms of natural history and transmission dynamics and number/complexity of interventions/bundles of interventions examined. The models were categorized into four groups with respect to their natural history representation: S-A-I-R, S-E-A-I, S-A-I, and S-E-A-I-R-D. Seven studies examined the impact of CDI control strategies. Interventions aimed at controlling the transmission, lowering CDI vulnerability and reducing the risk of recurrence/mortality were predicted to reduce CDI incidence by 3–49%, 5–43% and 5–29%, respectively. Bundles of interventions were predicted to reduce CDI incidence by 14–84%. Conclusions Although CDI is a major public health problem, there are very few published transmission-dynamic models of Clostridium difficile. Published models vary substantially in the interventions examined, the outcome measures used and the representation of the natural history of Clostridium

  10. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.

    PubMed

    Chen, Jin; Henson, Michael A

    2016-11-01

    Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H 2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. [Management of Clostridium difficile infections at German intensive care units - results from a survey among intensivists].

    PubMed

    Bruensing, Jan; Buendgens, Lukas; Jochum, Christoph; Herbers, Ulf; Canbay, Ali; Braun, Georg; Trautwein, Christian; Huber, Wolfgang; Koch, Alexander; Tacke, Frank

    2018-06-01

    Clostridium difficile associated colitis is a frequent cause of nosocomial diarrhea at the intensive care unit (ICU) and is associated with poor prognosis in critically ill patients. Few studies have evaluated the efficacy of treatment options or adherence to guideline recommendations of Clostridium difficile infections at the ICU.  Therefore, on behalf of the Gastroenterology Intensive Care Medicine working group of the DGVS, we have conducted an online-based survey among leading intensivists in Germany.  Out of the 351 invited, 85 (24.2 %), primarily leading executive physicians at primary to tertiary care hospitals, completed the survey. They reported standardized diagnostic algorithms of 79.3 %, in line with current guideline recommendations (i. e., toxin testing in stool, possibly GDH screening, and endoscopy). First-line therapy of Clostridium difficile infections at the ICU was reported to be oral vancomycin in 48.3 % and oral metronidazole in 34.5 %. The success of first-line therapy was estimated at 67 % for clinical cure, 15 % persisting colitis, 5 % sepsis or megacolon, 10 % recurrence, and 3 % death. Hospitals of primary/secondary care more often used metronidazole compared to university hospitals. Standard treatments for recurrent infection were vancomycin orally (40 % alone, 29.1 % combined with metronidazole) or, more rarely, fidaxomicin (25.5 %). Fidaxomicin has been used at least once at the ICU in 79 % of the respondents. Eleven percent have used fecal microbiota transplant (FMT) in selected cases at the ICU.  Our survey indicated a high awareness of German intensivists for Clostridium difficile infections, but also marked differences in local therapeutic algorithms, especially in first-line treatment. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Haemagglutination and surface structures in strains of Clostridium spiroforme.

    PubMed

    Baldassarri, L; Pantosti, A; Caprioli, A; Mastrantonio, P; Donelli, G

    1989-07-01

    Five strains of Clostridium spiroforme were examined for their surface properties. All strains were able to agglutinate human erythrocytes. Electron microscopy showed a ruthenium red-positive capsule mediating the attachment of bacteria to erythrocytes. Two strains, showing the lowest degree of haemagglutination, exhibited an additional external layer of filamentous structures, possibly interfering with the agglutinating activity. In spite of their agglutinating ability, the C. spiroforme strains did not show surface hydrophobicity, thus suggesting the possible existence of a new type of clostridial adhesin.

  13. A case of reactive arthritis due to Clostridium difficile colitis

    PubMed Central

    Essenmacher, Alex C.; Khurram, Nazish; Bismack, Gregory T.

    2016-01-01

    Reactive arthritis is an acute, aseptic, inflammatory arthropathy following an infectious process but removed from the site of primary infection. It is often attributed to genitourinary and enteric pathogens, such as Chlamydia, Salmonella, Shigella, Campylobacter, and Yersinia, in susceptible individuals. An uncommon and less recognized cause of this disease is preceding colonic infection with Clostridium difficile, an organism associated with pseudomembranous colitis and diarrhea in hospitalized patients and those recently exposed to antibiotics. Recognition of this association may be complicated by non-specific presentation of diarrhea, the interval between gastrointestinal and arthritic symptoms, and the wide differential in mono- and oligoarthritis. We present the case of a 61-year-old, hospitalized patient recently treated for C. difficile colitis who developed sudden, non-traumatic, right knee pain and swelling. Physical examination and radiographs disclosed joint effusion, and sterile aspiration produced cloudy fluid with predominant neutrophils and no growth on cultures. Diagnostic accuracy is enhanced by contemporaneous laboratory investigations excluding other entities such as gout and rheumatoid arthritis and other infections that typically precede reactive arthritis. Contribution of Clostridium infection to reactive arthritis is an obscure association frequently difficult to prove, but this organism is warranted inclusion in the differential of reactive arthritis. PMID:26908381

  14. The Binary Toxin CDT of Clostridium difficile as a Tool for Intracellular Delivery of Bacterial Glucosyltransferase Domains.

    PubMed

    Beer, Lara-Antonia; Tatge, Helma; Schneider, Carmen; Ruschig, Maximilian; Hust, Michael; Barton, Jessica; Thiemann, Stefan; Fühner, Viola; Russo, Giulio; Gerhard, Ralf

    2018-06-01

    Binary toxins are produced by several pathogenic bacteria. Examples are the C2 toxin from Clostridium botulinum , the iota toxin from Clostridium perfringens, and the CDT from Clostridium difficile . All these binary toxins have ADP-ribosyltransferases (ADPRT) as their enzymatically active component that modify monomeric actin in their target cells. The binary C2 toxin was intensively described as a tool for intracellular delivery of allogenic ADPRTs. Here, we firstly describe the binary toxin CDT from C. difficile as an effective tool for heterologous intracellular delivery. Even 60 kDa glucosyltransferase domains of large clostridial glucosyltransferases can be delivered into cells. The glucosyltransferase domains of five tested large clostridial glucosyltransferases were successfully introduced into cells as chimeric fusions to the CDTa adapter domain (CDTaN). Cell uptake was demonstrated by the analysis of cell morphology, cytoskeleton staining, and intracellular substrate glucosylation. The fusion toxins were functional only when the adapter domain of CDTa was N -terminally located, according to its native orientation. Thus, like other binary toxins, the CDTaN/b system can be used for standardized delivery systems not only for bacterial ADPRTs but also for a variety of bacterial glucosyltransferase domains.

  15. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196.

    PubMed

    Perelle, S; Gibert, M; Bourlioux, P; Corthier, G; Popoff, M R

    1997-04-01

    A Clostridium difficile isolate was found to produce an actin-specific ADP-ribosyltransferase (CDT) homologous to the enzymatic components of Clostridium perfringens iota toxin and Clostridium spiroforme toxin (M. R. Popoff, E. J. Rubin, D. M. Gill, and P. Boquet, Infect. Immun. 56:2299-2306, 1988). The CDT locus from C. difficile CD196 was cloned and sequenced. It contained two genes (cdtA and cdtB) which display organizations and sequences similar to those of the iota toxin gene. The deduced enzymatic (CDTa) and binding (CDTb) components have 81 and 84% identity, respectively, with the corresponding components of iota toxin. CDTa and CDTb induced actin cytoskeleton alterations similar to those caused by other clostridial binary toxins. The lower level of production of binary toxin by CD196 than of iota toxin by C. perfringens was related to a lower transcript level, possibly due to a promoter region different from that of iota toxin genes. The cdtA and cdtB genes have been detected in 3 of 24 clinical isolates examined, and cdtB alone was found in 2 additional strains. One strain (in addition to CD196) was shown by Western blotting to produce CDTa and CDTb. These results indicate that some C. difficile strains synthesize a binary toxin that could be an additional virulence factor.

  16. Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196.

    PubMed Central

    Perelle, S; Gibert, M; Bourlioux, P; Corthier, G; Popoff, M R

    1997-01-01

    A Clostridium difficile isolate was found to produce an actin-specific ADP-ribosyltransferase (CDT) homologous to the enzymatic components of Clostridium perfringens iota toxin and Clostridium spiroforme toxin (M. R. Popoff, E. J. Rubin, D. M. Gill, and P. Boquet, Infect. Immun. 56:2299-2306, 1988). The CDT locus from C. difficile CD196 was cloned and sequenced. It contained two genes (cdtA and cdtB) which display organizations and sequences similar to those of the iota toxin gene. The deduced enzymatic (CDTa) and binding (CDTb) components have 81 and 84% identity, respectively, with the corresponding components of iota toxin. CDTa and CDTb induced actin cytoskeleton alterations similar to those caused by other clostridial binary toxins. The lower level of production of binary toxin by CD196 than of iota toxin by C. perfringens was related to a lower transcript level, possibly due to a promoter region different from that of iota toxin genes. The cdtA and cdtB genes have been detected in 3 of 24 clinical isolates examined, and cdtB alone was found in 2 additional strains. One strain (in addition to CD196) was shown by Western blotting to produce CDTa and CDTb. These results indicate that some C. difficile strains synthesize a binary toxin that could be an additional virulence factor. PMID:9119480

  17. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously.

    PubMed

    Xiong, Wei; Reyes, Luis H; Michener, William E; Maness, Pin-Ching; Chou, Katherine J

    2018-03-15

    Cellulose and hemicellulose are the most abundant components in plant biomass. A preferred Consolidated Bioprocessing (CBP) system is one which can directly convert both cellulose and hemicellulose into target products without adding the costly hydrolytic enzyme cocktail. In this work, the thermophilic, cellulolytic, and anaerobic bacterium, Clostridium thermocellum DSM 1313, was engineered to grow on xylose in addition to cellulose. Both xylA (encoding for xylose isomerase) and xylB (encoding for xylulokinase) genes from the thermophilic anaerobic bacterium Thermoanaerobacter ethanolicus were introduced to enable xylose utilization while still retaining its inherent ability to grow on 6-carbon substrates. Targeted integration of xylAB into C. thermocellum genome realized simultaneous fermentation of xylose with glucose, with cellobiose (glucose dimer), and with cellulose, respectively, without carbon catabolite repression. We also showed that the respective H 2 and ethanol production were twice as much when both xylose and cellulose were consumed simultaneously than when consuming cellulose alone. Moreover, the engineered xylose consumer can also utilize xylo-oligomers (with degree of polymerization of 2-7) in the presence of xylose. Isotopic tracer studies also revealed that the engineered xylose catabolism contributed to the production of ethanol from xylan which is a model hemicellulose in mixed sugar fermentation, demonstrating immense potential of this enhanced CBP strain in co-utilizing both cellulose and hemicellulose for the production of fuels and chemicals. © 2018 Wiley Periodicals, Inc.

  18. SYBR Green Real-Time PCR Method To Detect Clostridium botulinum Type A▿

    PubMed Central

    Fenicia, Lucia; Anniballi, Fabrizio; De Medici, Dario; Delibato, Elisabetta; Aureli, Paolo

    2007-01-01

    Botulinum toxins (BoNTs) are classically produced by Clostridium botulinum but rarely also from neurotoxigenic strains of Clostridium baratii and Clostridium butyricum. BoNT type A (BoNT/A), BoNT/B, BoNT/E, and very rarely BoNT/F are mainly responsible for human botulism. Standard microbiological methods take into consideration only the detection of C. botulinum. The presumptive identification of the toxigenic strains together with the typing of BoNT has to be performed by mouse bioassay. The development of PCR-based methods for the detection and typing of BoNT-producing clostridia would be an ideal alternative to the mouse bioassay. The objective of this study was to develop a rapid and robust real-time PCR method for detecting C. botulinum type A. Four different techniques for the extraction and purification of DNA from cultured samples were initially compared. Of the techniques used, Chelex 100, DNeasy tissue kit, InstaGene matrix DNA, and boiling, the boiling technique was significantly less efficient than the other three. These did not give statistically different results, and Chelex 100 was chosen because it was less expensive than the others. In order to eliminate any false-negative results, an internal amplification control was synthesized and included in the amplification mixture according to ISO 22174. The specificity of the method was tested against 75 strains of C. botulinum type A, 4 strains of C. botulinum type Ab, and 101 nontarget strains. The detection limit of the reaction was less than 6 × 101 copies of C. botulinum type A DNA. The robustness of the method was confirmed using naturally contaminated stool specimens to evaluate the tolerance of inhibitor substances. SYBR green real-time PCR showed very high specificity for the detection of C. botulinum types A and Ab (inclusivity and exclusivity, 100%). PMID:17369349

  19. CLOSTRIDIUM RUBRUM SP. N. AND OTHER PECTINOLYTIC CLOSTRIDIA FROM SOIL1

    PubMed Central

    Ng, Henry; Vaughn, Reese H.

    1963-01-01

    Ng, Henry (University of California, Davis) and Reese H. Vaughn. Clostridium rubrum sp. n. and other pectinolytic clostridia from soil. J. Bacteriol. 85:1104–1113. 1963.—Reports in the literature and results of experiments described herein suggest that pectinolytic anaerobes constitute a very heterogeneous group. The cultures isolated in this study all belonged to the genus Clostridium. The following species were identified: C. butyricum, C. fallax, C. multifermentans, and C. indolis. In addition, a species believed to be previously undescribed was named C. rubrum sp. n. The ability to ferment galacturonic acid was found to be adaptive. Some cultures fermented pectin and pectic acid to the same degree, whereas others fermented pectin only partially. The partial fermentation was attributed to the lack of a pectinesterase. On the basis of fermentation balances, it was concluded that the four strains of galacturonic acid fermenters selected for study yielded identical end products in approximately the same proportions. Per mole of galacturonic acid fermented, about 2 moles of CO2, 1.5 moles of H2, 1.5 moles of acetic acid, and 0.25 mole of butyric acid were produced. PMID:14044001

  20. Clostridium difficile in faeces from healthy dogs and dogs with diarrhea

    PubMed Central

    2013-01-01

    Background This study was conducted to evaluate the faecal occurrence and characterization of Clostridium difficile in clinically healthy dogs (N = 50) and in dogs with diarrhea (N = 20) in the Stockholm-Uppsala region of Sweden. Findings Clostridium difficile was isolated from 2/50 healthy dogs and from 2/20 diarrheic dogs. Isolates from healthy dogs were negative for toxin A and B and for the tcdA and tcdB genes. Both isolates from diarrheic dogs were positive for toxin B and for the tcdA and tcdB genes. The C. difficile isolates from healthy dogs had PCR ribotype 009 (SE-type 6) and 010 (SE-type 3) whereas both isolates from dogs with diarrhoea had the toxigenic ribotype 014 (SE-type 21). One of the isolates from healthy dogs was initially resistant to metronidazole. Conclusions This study revealed presence of toxigenic C. difficile in faecal samples of diarrheic dogs and low number of non- toxigenic isolates in healthy dogs from Uppsala-Stockholm region in Sweden. However, more comprehensive studies are warranted to investigate the role of C. difficile in gastrointestinal disease in dogs. PMID:23497714

  1. Clostridium difficile in faeces from healthy dogs and dogs with diarrhea.

    PubMed

    Wetterwik, Karl-Johan; Trowald-Wigh, Gunilla; Fernström, Lise-Lotte; Krovacek, Karel

    2013-03-12

    This study was conducted to evaluate the faecal occurrence and characterization of Clostridium difficile in clinically healthy dogs (N = 50) and in dogs with diarrhea (N = 20) in the Stockholm-Uppsala region of Sweden. Clostridium difficile was isolated from 2/50 healthy dogs and from 2/20 diarrheic dogs. Isolates from healthy dogs were negative for toxin A and B and for the tcdA and tcdB genes. Both isolates from diarrheic dogs were positive for toxin B and for the tcdA and tcdB genes. The C. difficile isolates from healthy dogs had PCR ribotype 009 (SE-type 6) and 010 (SE-type 3) whereas both isolates from dogs with diarrhoea had the toxigenic ribotype 014 (SE-type 21). One of the isolates from healthy dogs was initially resistant to metronidazole. This study revealed presence of toxigenic C. difficile in faecal samples of diarrheic dogs and low number of non- toxigenic isolates in healthy dogs from Uppsala-Stockholm region in Sweden. However, more comprehensive studies are warranted to investigate the role of C. difficile in gastrointestinal disease in dogs.

  2. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface

    PubMed Central

    Ueno, Akio; Shimizu, Satoru; Tamamura, Shuji; Okuyama, Hidetoshi; Naganuma, Takeshi; Kaneko, Katsuhiko

    2016-01-01

    Decomposition of humic substances (HSs) is a slow and cryptic but non-negligible component of carbon cycling in sediments. Aerobic decomposition of HSs by microorganisms in the surface environment has been well documented; however, the mechanism of anaerobic microbial decomposition of HSs is not completely understood. Moreover, no microorganisms capable of anaerobic decomposition of HSs have been isolated. Here, we report the anaerobic decomposition of humic acids (HAs) by the anaerobic bacterium Clostridium sp. HSAI-1 isolated from the deep terrestrial subsurface. The use of 14C-labelled polycatechol as an HA analogue demonstrated that the bacterium decomposed this substance up to 7.4% over 14 days. The decomposition of commercial and natural HAs by the bacterium yielded lower molecular mass fractions, as determined using high-performance size-exclusion chromatography. Fourier transform infrared spectroscopy revealed the removal of carboxyl groups and polysaccharide-related substances, as well as the generation of aliphatic components, amide and aromatic groups. Therefore, our results suggest that Clostridium sp. HSAI-1 anaerobically decomposes and transforms HSs. This study improves our understanding of the anaerobic decomposition of HSs in the hidden carbon cycling in the Earth’s subsurface. PMID:26743007

  3. Observations on the distribution and ecology of Clostridium botulinum type E in Alaska.

    PubMed

    Miller, L G

    1975-06-01

    Environmental samples collected along the coastline and from the interior of Alaska were examined for the presence of Clostridium botulinum. Clostridium botulinum type E was detected in soils from 5 of 12 beaches; in 7 of 115 non-coastal soil samples; in sediments from six of eight locales; in gills of salmon from two fishing areas; and in the feces of 1 of 44 colonic samples from marine mammals. The basic biochemical characteristics of the isolates were determined. Tube tests for demonstrating gelatin liquefaction proved insensitive with these strains, whereas a plate test detected gelatinase in all isolates. The presence of multiple nidi and the continual discharge of organic materials into the environment may contribute to the perpetuation of botulinum spores by which foods prepared form marine animals become contaminated. An emphasis should be placed upon the need for measures to reduce environmental contamination, to reduce contamination during food preparation, and to alert continually the population of the hazard wherever botulism is endemic.

  4. Characterization of Clostridium perfringens in the feces of adult horses and foals with acute enterocolitis.

    PubMed

    Gohari, Iman Mehdizadeh; Arroyo, Luis; Macinnes, Janet I; Timoney, John F; Parreira, Valeria R; Prescott, John F

    2014-01-01

    Up to 60% of cases of equine colitis have no known cause. To improve understanding of the causes of acute colitis in horses, we hypothesized that Clostridium perfringens producing enterotoxin (CPE) and/or beta2 toxin (CPB2) are common and important causes of severe colitis in horses and/or that C. perfringens producing an as-yet-undescribed cytotoxin may also cause colitis in horses. Fecal samples from 55 horses (43 adults, 12 foals) with clinical evidence of colitis were evaluated by culture for the presence of Clostridium difficile, C. perfringens, and Salmonella. Feces were also examined by enzyme-linked immunosorbent assay (ELISA) for C. difficile A/B toxins and C. perfringens alpha toxin (CPA), beta2 toxin (CPB2), and enterotoxin (CPE). Five C. perfringens isolates per sample were genotyped for the following genes: cpa, cpb, cpb2 consensus, cpb2 atypical, cpe (enterotoxin), etx (epsilon toxin), itx (iota toxin), netB (necrotic enteritis toxin B), and tpeL (large C. perfringens cytotoxin). The supernatants of these isolates were also evaluated for toxicity for an equine cell line. All fecal samples were negative for Salmonella. Clostridium perfringens and C. difficile were isolated from 40% and 5.4% of samples, respectively. All fecal samples were negative for CPE. Clostridium perfringens CPA and CPB2 toxins were detected in 14.5% and 7.2% of fecal samples, respectively, all of which were culture-positive for C. perfringens. No isolates were cpe, etx, netB, or tpeL gene-positive. Atypical cpb2 and consensus cpb2 genes were identified in 15 (13.6%) and 4 (3.6%) of 110 isolates, respectively. All equine C. perfringens isolates showed far milder cytotoxicity effects than a CPB-producing positive control, although cpb2-positive isolates were slightly but significantly more cytotoxic than negative isolates. Based on this studied population, we were unable to confirm our hypothesis that CPE and CPB2-producing C. perfringens are common in horses with colitis in

  5. Burden of Clostridium difficile on the healthcare system.

    PubMed

    Dubberke, Erik R; Olsen, Margaret A

    2012-08-01

    There are few high-quality studies of the costs of Clostridium difficile infection (CDI), and the majority of studies focus on the costs of CDI in acute-care facilities. Analysis of the best available data, from 2008, indicates that CDI may have resulted in $4.8 billion in excess costs in US acute-care facilities. Other areas of CDI-attributable excess costs that need to be investigated are costs of increased discharges to long-term care facilities, of CDI with onset in long-term care facilities, of recurrent CDI, and of additional adverse events caused by CDI.

  6. Novel FR-900493 Analogues That Inhibit the Outgrowth of Clostridium difficile Spores

    PubMed Central

    2018-01-01

    The spectrum of antibacterial activity for the nucleoside antibiotic FR-900493 (1) can be extended by chemical modifications. We have generated a small focused library based on the structure of 1 and identified UT-17415 (9), UT-17455 (10), UT-17460 (11), and UT-17465 (12), which exhibit anti-Clostridium difficile growth inhibitory activity. These analogues also inhibit the outgrowth of C. difficile spores at 2× minimum inhibitory concentration. One of these analogues, 11, relative to 1 exhibits over 180-fold and 15-fold greater activity against the enzymes, phospho-MurNAc-pentapeptide translocase (MraY) and polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA), respectively. The phosphotransferase inhibitor 11 displays antimicrobial activity against several tested bacteria including Bacillus subtilis, Clostridium spp., and Mycobacterium smegmatis, but no growth inhibitory activity is observed against the other Gram-positive and Gram-negative bacteria. The selectivity index (Vero cell cytotoxicity/C. difficileantimicrobial activity) of 11 is approximately 17, and 11 does not induce hemolysis even at a 100 μM concentration. PMID:29503973

  7. Impact of a prevention bundle on Clostridium difficile infection rates in a hospital in the Southeastern United States.

    PubMed

    Davis, Bionca M; Yin, Jingjing; Blomberg, Doug; Fung, Isaac Chun-Hai

    2016-12-01

    We sought to assess the impact of a multicomponent prevention program on hospital-acquired Clostridium difficile infections in a hospital in the Southeastern United States. We collected retrospective data of 140 patients from years 2009-2014 and applied the Poisson regression model for analysis. We did not find any significant associations of increased risk of Clostridium difficile infections for the preintervention group. Further studies are needed to test multifaceted bundles in hospitals with high infection rates. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  8. Clostridium difficile Infection and Fecal Microbiota Transplant

    PubMed Central

    Liubakka, Alyssa; Vaughn, Byron P.

    2017-01-01

    Clostridium difficile infection (CDI) is a major source of morbidity and mortality for hospitalized patients. Although most patients have a clinical response to existing antimicrobial therapies, recurrent infection develops in up to 30% of patients. Fecal microbiota transplant is a novel approach to this complex problem, with an efficacy rate of nearly 90% in the setting of multiple recurrent CDI. This review covers the current epidemiology of CDI (including toxigenic and nontoxigenic strains, risk factors for infection, and recurrent infection), methods of diagnosis, existing first-line therapies in CDI, the role of fecal microbiota transplant for multiple recurrent CDIs, and the potential use of fecal microbial transplant for patients with severe or refractory infection. PMID:27959316

  9. Cellulosilyticum ruminicola gen. nov., sp. nov., isolated from the rumen of yak, and reclassification of Clostridium lentocellum as Cellulosilyticum lentocellum comb. nov.

    PubMed

    Cai, Shichun; Dong, Xiuzhu

    2010-04-01

    An obligate anaerobic, Gram-staining-negative, mesophilic, cellulolytic bacterium, strain H1(T), was isolated from the rumen content of yak. Cells were straight to slightly curved rods, 0.8-1.0 x 3.0-4.0 microm in size, non-motile and encapsulated with mucous materials. Elliptical and terminal spores that swelled the cells were produced occasionally. The strain grew at 25-45 degrees C (optimum, 38 degrees C) and pH 6.0-7.8 (optimum, pH 6.7). Cellulose, cellobiose, xylan, xylose and maltose were used as carbon and energy sources, but not glucose. Products from cellulose and cellobiose fermentation were formic acid, acetic acid, carbon dioxide and trace amounts of ethanol, lactic acid and succinic acid. The genomic DNA G+C content was 33.7+/-1.2 mol%. The predominant fatty acids were C(16 : 0) (27.1 %), C(14 : 0) (9.2 %) and iso-C( 16 : 0) (6.4%). Based on the 16S rRNA gene sequence analysis, strain H1(T) was affiliated to the clostridial rRNA cluster XIVb and showed the highest 16S rRNA gene sequence similarity to Clostridium lentocellum DSM 5427(T) (96.0 %). These two strains formed a distinct lineage of the family 'Lachnospiraceae '. Based on data from this polyphasic taxonomic study, a new genus, Cellulosilyticum gen. nov., is proposed. Cellulosilyticum ruminicola sp. nov. is proposed for strain H1(T). The type strain of Cellulosilyticum ruminicola sp. nov. is strain H1(T) (=CGMCC 1.5065(T)=JCM 14822(T)). Clostridium lentocellum was reclassified in the new genus as Cellulosilyticum lentocellum comb. nov. (type strain RHM5(T)=ATCC 49066( T)=DSM 5427(T)=NCIMB 11756(T)).

  10. Phospholipase C produced by Clostridium botulinum types C and D: comparison of gene, enzymatic, and biological activities with those of Clostridium perfringens alpha-toxin.

    PubMed

    Fatmawati, Ni Nengah Dwi; Sakaguchi, Yoshihiko; Suzuki, Tomonori; Oda, Masataka; Shimizu, Kenta; Yamamoto, Yumiko; Sakurai, Jun; Matsushita, Osamu; Oguma, Keiji

    2013-01-01

    Clostridium botulinum type C and D strains recently have been found to produce PLC on egg yolk agar plates. To characterize the gene, enzymatic and biological activities of C. botulinum PLCs (Cb-PLCs), the cb-plc genes from 8 strains were sequenced, and 1 representative gene was cloned and expressed as a recombinant protein. The enzymatic and hemolytic activities of the recombinant Cb-PLC were measured and compared with those of the Clostridium perfringens alpha-toxin. Each of the eight cb-plc genes encoded a 399 amino acid residue protein preceded by a 27 residue signal peptide. The protein consists of 2 domains, the N- and C-domains, and the overall amino acid sequence identity between Cb-PLC and alpha-toxin was greater than 50%, suggesting that Cb-PLC is homologous to the alpha-toxin. The key residues in the N-domain were conserved, whereas those in the C-domain which are important in membrane interaction were different than in the alpha-toxin. As expected, Cb-PLC could hydrolyze egg yolk phospholipid, p-nitrophenylphosphorylcholine, and sphingomyelin, and also exhibited hemolytic activity;however, its activities were about 4- to over 200-fold lower than those of alpha-toxin. Although Cb-PLC showed weak enzymatic and biological activities, it is speculated that Cb-PLC might play a role in the pathogenicity of botulism or for bacterial survival.

  11. Clostridium difficile binary toxin CDT

    PubMed Central

    Gerding, Dale N; Johnson, Stuart; Rupnik, Maja; Aktories, Klaus

    2014-01-01

    Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylation induces depolymerization of the actin cytoskeleton. Toxin-induced actin depolymerization also produces microtubule-based membrane protrusions which form a network on epithelial cells and increase bacterial adherence. Multiple clinical studies indicate an association between binary toxin genes in C. difficile and increased 30-d CDI mortality independent of PCR ribotype. Further studies including measures of binary toxin in stool, analyses of CDI mortality caused by CDT-producing strains, and examination of the relationship of CDT expression to TcdA and TcdB toxin variants and PCR ribotypes are needed. PMID:24253566

  12. Conserved Oligopeptide Permeases Modulate Sporulation Initiation in Clostridium difficile

    PubMed Central

    Edwards, Adrianne N.; Nawrocki, Kathryn L.

    2014-01-01

    The anaerobic gastrointestinal pathogen Clostridium difficile must form a metabolically dormant spore to survive in oxygenic environments and be transmitted from host to host. The regulatory factors by which C. difficile initiates and controls the early stages of sporulation in C. difficile are not highly conserved in other Clostridium or Bacillus species. Here, we investigated the role of two conserved oligopeptide permeases, Opp and App, in the regulation of sporulation in C. difficile. These permeases are known to positively affect sporulation in Bacillus species through the import of sporulation-specific quorum-sensing peptides. In contrast to other spore-forming bacteria, we discovered that inactivating these permeases in C. difficile resulted in the earlier expression of early sporulation genes and increased sporulation in vitro. Furthermore, disruption of opp and app resulted in greater virulence and increased the amounts of spores recovered from feces in the hamster model of C. difficile infection. Our data suggest that Opp and App indirectly inhibit sporulation, likely through the activities of the transcriptional regulator SinR and its inhibitor, SinI. Taken together, these results indicate that the Opp and App transporters serve a different function in controlling sporulation and virulence in C. difficile than in Bacillus subtilis and suggest that nutrient availability plays a significant role in pathogenesis and sporulation in vivo. This study suggests a link between the nutritional status of the environment and sporulation initiation in C. difficile. PMID:25069979

  13. Conserved oligopeptide permeases modulate sporulation initiation in Clostridium difficile.

    PubMed

    Edwards, Adrianne N; Nawrocki, Kathryn L; McBride, Shonna M

    2014-10-01

    The anaerobic gastrointestinal pathogen Clostridium difficile must form a metabolically dormant spore to survive in oxygenic environments and be transmitted from host to host. The regulatory factors by which C. difficile initiates and controls the early stages of sporulation in C. difficile are not highly conserved in other Clostridium or Bacillus species. Here, we investigated the role of two conserved oligopeptide permeases, Opp and App, in the regulation of sporulation in C. difficile. These permeases are known to positively affect sporulation in Bacillus species through the import of sporulation-specific quorum-sensing peptides. In contrast to other spore-forming bacteria, we discovered that inactivating these permeases in C. difficile resulted in the earlier expression of early sporulation genes and increased sporulation in vitro. Furthermore, disruption of opp and app resulted in greater virulence and increased the amounts of spores recovered from feces in the hamster model of C. difficile infection. Our data suggest that Opp and App indirectly inhibit sporulation, likely through the activities of the transcriptional regulator SinR and its inhibitor, SinI. Taken together, these results indicate that the Opp and App transporters serve a different function in controlling sporulation and virulence in C. difficile than in Bacillus subtilis and suggest that nutrient availability plays a significant role in pathogenesis and sporulation in vivo. This study suggests a link between the nutritional status of the environment and sporulation initiation in C. difficile. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  14. Fatal spontaneous Clostridium septicum gas gangrene: a possible association with iatrogenic gastric acid suppression.

    PubMed

    Wu, Yiru E; Baras, Alexander; Cornish, Toby; Riedel, Stefan; Burton, Elizabeth C

    2014-06-01

    The long-term use of proton pump inhibitors has been linked to an increased risk for the development of gastric polyps, hip fractures, pneumonia, and Clostridium difficile colitis. There is evidence that chronic acid suppression from long-term use of proton pump inhibitors poses some risk for the development of C difficile-associated diarrhea by decreasing the elimination of pathogenic microbes before reaching the lower gastrointestinal tract. Here we present a case of a 51-year-old woman with a recent history of abdominal pain and fever who presented to the emergency department with rapidly progressive spontaneous necrotizing fasciitis and gas gangrene and died within hours of presentation. Postmortem examination confirmed spreading tissue gas gangrene and myonecrosis. In addition, multiple intestinal ulcers containing Clostridium septicum were present at autopsy. This case illustrates a possible association between proton pump inhibitor therapy and fatal C septicum infection.

  15. Comparison between the two-step and the three-step algorithms for the detection of toxigenic Clostridium difficile.

    PubMed

    Qutub, M O; AlBaz, N; Hawken, P; Anoos, A

    2011-01-01

    To evaluate usefulness of applying either the two-step algorithm (Ag-EIAs and CCNA) or the three-step algorithm (all three assays) for better confirmation of toxigenic Clostridium difficile. The antigen enzyme immunoassays (Ag-EIAs) can accurately identify the glutamate dehydrogenase antigen of toxigenic and nontoxigenic Clostridium difficile. Therefore, it is used in combination with a toxin-detecting assay [cell line culture neutralization assay (CCNA), or the enzyme immunoassays for toxins A and B (TOX-A/BII EIA)] to provide specific evidence of Clostridium difficile-associated diarrhoea. A total of 151 nonformed stool specimens were tested by Ag-EIAs, TOX-A/BII EIA, and CCNA. All tests were performed according to the manufacturer's instructions and the results of Ag-EIAs and TOX-A/BII EIA were read using a spectrophotometer at a wavelength of 450 nm. A total of 61 (40.7%), 38 (25.3%), and 52 (34.7%) specimens tested positive with Ag-EIA, TOX-A/BII EIA, and CCNA, respectively. Overall, the sensitivity, specificity, negative predictive value, and positive predictive value for Ag-EIA were 94%, 87%, 96.6%, and 80.3%, respectively. Whereas for TOX-A/BII EIA, the sensitivity, specificity, negative predictive value, and positive predictive value were 73.1%, 100%, 87.5%, and 100%, respectively. With the two-step algorithm, all 61 Ag-EIAs-positive cases required 2 days for confirmation. With the three-step algorithm, 37 (60.7%) cases were reported immediately, and the remaining 24 (39.3%) required further testing by CCNA. By applying the two-step algorithm, the workload and cost could be reduced by 28.2% compared with the three-step algorithm. The two-step algorithm is the most practical for accurately detecting toxigenic Clostridium difficile, but it is time-consuming.

  16. Probiotics and Antibiotic-Associated Diarrhea and Clostridium difficile Infection

    NASA Astrophysics Data System (ADS)

    Surawicz, Christina M.

    Diarrhea is a common side effect of antibiotics. Antibiotics can cause diarrhea in 5-25% of individuals who take them but its occurrence is unpredictable. Diarrhea due to antibiotics is called antibiotic-associated diarrhea (AAD). Diarrhea may be mild and resolve when antibiotics are discontinued, or it may be more severe. The most severe form of AAD is caused by overgrowth of Clostridium difficile which can cause severe diarrhea, colitis, pseudomembranous colitis, or even fatal toxic megacolon. Rates of diarrhea vary with the specific antibiotic as well as with the individual susceptibility.

  17. First Report Worldwide of an Infant Botulism Case Due to Clostridium botulinum Type E▿

    PubMed Central

    Lúquez, Carolina; Dykes, Janet K.; Yu, Patricia A.; Raphael, Brian H.; Maslanka, Susan E.

    2010-01-01

    Clostridium botulinum type E has been associated with botulism in adults but never in infants. Infant botulism type E cases have been associated with neurotoxigenic strains of C. butyricum. We report the first infant botulism case due to C. botulinum type E worldwide. PMID:19906896

  18. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products

    PubMed Central

    Andersen, Stephen J.; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L−1), octanoic acid (up to 3.2 g L−1), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total

  19. Mechanisms of food processing and storage-related stress tolerance in Clostridium botulinum.

    PubMed

    Dahlsten, Elias; Lindström, Miia; Korkeala, Hannu

    2015-05-01

    Vegetative cultures of Clostridium botulinum produce the extremely potent botulinum neurotoxin, and may jeopardize the safety of foods unless sufficient measures to prevent growth are applied. Minimal food processing relies on combinations of mild treatments, primarily to avoid deterioration of the sensory qualities of the food. Tolerance of C. botulinum to minimal food processing is well characterized. However, data on effects of successive treatments on robustness towards further processing is lacking. Developments in genetic manipulation tools and the availability of annotated genomes have allowed identification of genetic mechanisms involved in stress tolerance of C. botulinum. Most studies focused on low temperature, and the importance of various regulatory mechanisms in cold tolerance of C. botulinum has been demonstrated. Furthermore, novel roles in cold tolerance were shown for metabolic pathways under the control of these regulators. A role for secondary oxidative stress in tolerance to extreme temperatures has been proposed. Additionally, genetic mechanisms related to tolerance to heat, low pH, and high salinity have been characterized. Data on genetic stress-related mechanisms of psychrotrophic Group II C. botulinum strains are scarce; these mechanisms are of interest for food safety research and should thus be investigated. This minireview encompasses the importance of C. botulinum as a food safety hazard and its central physiological characteristics related to food-processing and storage-related stress. Special attention is given to recent findings considering genetic mechanisms C. botulinum utilizes in detecting and countering these adverse conditions. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, Satyakam; Khodayari, Ali; Zhou, Jilai

    Background. Clostridium thermocellum is a Gram-positive anaerobe with the ability to hydrolyze and metabolize cellulose into biofuels such as ethanol, making it an attractive candidate for consolidated bioprocessing (CBP). At present, metabolic engineering in C. thermocellum is hindered due to the incomplete description of its metabolic repertoire and regulation within a predictive metabolic model. Genome-scale metabolic (GSM) models augmented with kinetic models of metabolism have been shown to be effective at recapitulating perturbed metabolic phenotypes. Results. In this effort, we first update a second-generation genome-scale metabolic model (iCth446) for C. thermocellum by correcting cofactor dependencies, restoring elemental and charge balances,more » and updating GAM and NGAM values to improve phenotype predictions. The iCth446 model is next used as a scaffold to develop a core kinetic model (k-ctherm118) of the C. thermocellum central metabolism using the Ensemble Modeling (EM) paradigm. Model parameterization is carried out by simultaneously imposing fermentation yield data in lactate, malate, acetate, and hydrogen production pathways for 19 measured metabolites spanning a library of 19 distinct single and multiple gene knockout mutants along with 18 intracellular metabolite concentration data for a Δgldh mutant and ten experimentally measured Michaelis–Menten kinetic parameters. Conclusions. The k-ctherm118 model captures significant metabolic changes caused by (1) nitrogen limitation leading to increased yields for lactate, pyruvate, and amino acids, and (2) ethanol stress causing an increase in intracellular sugar phosphate concentrations (~1.5-fold) due to upregulation of cofactor pools. Robustness analysis of k-ctherm118 alludes to the presence of a secondary activity of ketol-acid reductoisomerase and possible regulation by valine and/or leucine pool levels. In addition, cross-validation and robustness analysis allude to missing elements in k