Sample records for cloud albedo effect

  1. Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.

    2014-11-17

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds.more » Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.« less

  2. Occurrence of lower cloud albedo in ship tracks

    NASA Astrophysics Data System (ADS)

    Chen, Y.-C.; Christensen, M. W.; Xue, L.; Sorooshian, A.; Stephens, G. L.; Rasmussen, R. M.; Seinfeld, J. H.

    2012-09-01

    The concept of geoengineering by marine cloud brightening is based on seeding marine stratocumulus clouds with sub-micrometer sea-salt particles to enhance the cloud droplet number concentration and cloud albedo, thereby producing a climate cooling effect. The efficacy of this as a strategy for global cooling rests on the extent to which aerosol-perturbed marine clouds will respond with increased albedo. Ship tracks, quasi-linear cloud features prevalent in oceanic regions impacted by ship exhaust, are a well-known manifestation of the effect of aerosol injection on marine clouds. We present here an analysis of the albedo responses in ship tracks, based on in situ aircraft measurements and three years of satellite observations of 589 individual ship tracks. It is found that the sign (increase or decrease) and magnitude of the albedo response in ship tracks depends on the mesoscale cloud structure, the free tropospheric humidity, and cloud top height. In a closed cell structure (cloud cells ringed by a perimeter of clear air), nearly 30% of ship tracks exhibited a decreased albedo. Detailed cloud responses must be accounted for in global studies of the potential efficacy of sea-spray geoengineering as a means to counteract global warming.

  3. Aerosol cloud interactions in southeast Pacific stratocumulus: satellite observations, in situ data and regional modeling

    NASA Astrophysics Data System (ADS)

    George, Rhea

    The influence of anthropogenic aerosols on cloud radiative properties in the persistent southeast Pacific stratocumulus deck is investigated using MODIS satellite observations, in situ data from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), and WRF-Chem, a regional model with interactive chemistry and aerosols. An albedo proxy is derived based on the fractional coverage of low cloud (a macrophysical field) and the cloud albedo, with the latter broken down into contributions from microphysics (cloud droplet concentration, Nd and macrophysics (liquid water path). Albedo variability is dominated by low cloud fraction variability, except within 10-15° of the South American coast, where cloud albedo variability contributes significantly. Covariance between cloud fraction and cloud albedo also contributes significantly to the variance in albedo, which highlights how complex and inseparable the factors controlling albedo are. N d variability contributes only weakly, which emphasizes that attributing albedo variability to the indirect effects of aerosols against the backdrop of natural meteorological variability is extremely challenging. Specific cases of aerosol changes can have strong impacts on albedo. We identify a pathway for periodic anthropogenic aerosol transport to the unpolluted marine stratocumulus >1000 km offshore, which strongly enhances Nd and albedo in zonally-elongated 'hook'-shaped arc. Hook development occurs with Nd increasing to polluted levels over the remote ocean primarily due to entrainment of a large number of small aerosols from the free troposphere that contribute a relatively small amount of aerosol mass to the marine boundary layer. Strong, deep offshore flow needed to transport continental aerosols to the remote ocean is favored by a trough approaching the South American coast and a southeastward shift of the climatological subtropical high pressure system. DMS significantly influences the aerosol number and size distributions, but does not cause hooks. The Twomey effect contributes 50-80% of the total aerosol indirect effect (AIE) both near sources and offshore during hook events. Meteorological variability between simulations can swamp the signal of AIEs, particularly due to the binary model cloud fraction field and distinguishing AIE requires determination of appropriate spatial and temporal averaging scales over which AIE is significant above this noise.

  4. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.

    PubMed

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J; Morrison, Hugh; Solomon, Amy B

    2014-12-28

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  5. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic

    PubMed Central

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.

    2014-01-01

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677

  6. Measurements of the light-absorbing material inside cloud droplets and its effect on cloud albedo

    NASA Technical Reports Server (NTRS)

    Twohy, C. H.; Clarke, A. D.; Warren, Stephen G.; Radke, L. F.; Charleson, R. J.

    1990-01-01

    Most of the measurements of light-absorbing aerosol particles made previously have been in non-cloudy air and therefore provide no insight into aerosol effects on cloud properties. Here, researchers describe an experiment designed to measure light absorption exclusively due to substances inside cloud droplets, compare the results to related light absorption measurements, and evaluate possible effects on the albedo of clouds. The results of this study validate those of Twomey and Cocks and show that the measured levels of light-absorbing material are negligible for the radiative properties of realistic clouds. For the measured clouds, which appear to have been moderately polluted, the amount of elemental carbon (EC) present was insufficient to affect albedo. Much higher contaminant levels or much larger droplets than those measured would be necessary to significantly alter the radiative properties. The effect of the concentrations of EC actually measured on the albedo of snow, however, would be much more pronounced since, in contrast to clouds, snowpacks are usually optically semi-infinite and have large particle sizes.

  7. A Stabilizing Feedback Between Cloud Radiative Effects and Greenland Surface Melt: Verification From Multi-year Automatic Weather Station Measurements

    NASA Astrophysics Data System (ADS)

    Zender, C. S.; Wang, W.; van As, D.

    2017-12-01

    Clouds have strong impacts on Greenland's surface melt through the interaction with the dry atmosphere and reflective surfaces. However, their effects are uncertain due to the lack of in situ observations. To better quantify cloud radiative effects (CRE) in Greenland, we analyze and interpret multi-year radiation measurements from 30 automatic weather stations encompassing a broad range of climatological and topographical conditions. During melt season, clouds warm surface over most of Greenland, meaning the longwave greenhouse effect outweighs the shortwave shading effect; on the other hand, the spatial variability of net (longwave and shortwave) CRE is dominated by shortwave CRE and in turn by surface albedo, which controls the potential absorption of solar radiation when clouds are absent. The net warming effect decreases with shortwave CRE from high to low altitudes and from north to south (Fig. 1). The spatial correlation between albedo and net CRE is strong (r=0.93, p<<0.01). In the accumulation zone, the net CRE seasonal trend is controlled by longwave CRE associated with cloud fraction and liquid water content. It becomes stronger from May to July and stays constant in August. In the ablation zone, albedo determines the net CRE seasonal trend, which decreases from May to July and increases afterwards. On an hourly timescale, we find two distinct radiative states in Greenland (Fig. 2). The clear state is characterized by clear-sky conditions or thin clouds, when albedo and solar zenith angle (SZA) weakly correlates with CRE. The cloudy state is characterized by opaque clouds, when the combination of albedo and SZA strongly correlates with CRE (r=0.85, p<0.01). Although cloud properties intrinsically affect CRE, the large melt-season variability of these two non-cloud factors, albedo and solar zenith angle, explains the majority of the CRE variation in spatial distribution, seasonal trend in the ablation zone, and in hourly variability in the cloudy radiative state. Clouds warm the brighter and colder surfaces of Greenland, enhance snow melt, and tend to lower the albedo. Clouds cool the darker and warmer surfaces, inhibiting snow melt, which increases albedo, and thus stabilizes surface melt. This stabilizing mechanism may also occur over sea ice, helping to forestall surface melt as the Arctic becomes dimmer.

  8. Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling.

    PubMed

    Schwartz, Stephen E; Harshvardhan; Benkovitz, Carmen M

    2002-02-19

    The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo caused by anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. However, present model-based estimates of this indirect forcing are highly uncertain. Satellite-based measurements would provide global or near-global coverage of this effect, but previous efforts to identify and quantify enhancement of cloud albedo caused by anthropogenic aerosols in satellite observations have been limited, largely because of strong dependence of albedo on cloud liquid water path (LWP), which is inherently highly variable. Here we examine satellite-derived cloud radiative properties over two 1-week episodes for which a chemical transport and transformation model indicates substantial influx of sulfate aerosol from industrial regions of Europe or North America to remote areas of the North Atlantic. Despite absence of discernible dependence of optical depth or albedo on modeled sulfate loading, examination of the dependence of these quantities on LWP readily permits detection and quantification of increases correlated with sulfate loading, which are otherwise masked by variability of LWP, demonstrating brightening of clouds because of the Twomey effect on a synoptic scale. Median cloud-top spherical albedo was enhanced over these episodes, relative to the unperturbed base case for the same LWP distribution, by 0.02 to 0.15.

  9. Global Survey of the Relationship Between Cloud Droplet Size and Albedo Using ISCCP

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.

    1997-01-01

    Aerosols affect climate through direct and indirect effects. The direct effect of aerosols (e.g., sulfates) includes reflection of sunlight back toward space and for some aerosols (e.g., smoke particles), absorption in the atmosphere; both effects cool the Earth's surface. The indirect effect of aerosols refers to the modification of cloud microphysical properties, thereby affecting the radiation balance. Higher concentrations of Cloud Condensation Nuclei (CCN) generally produce higher concentrations of cloud droplets, which are also usually assumed to lead to decreased cloud droplet sizes. The result is an increase in cloud albedo, producing a net radiative cooling, opposite to the warming caused by greenhouse gases (Charlson et al. 1992). The change in clouds that is directly induced by an increase of aerosol concentration is an increase of cloud droplet number density, N; but is is usually assumed that cloud droplet size decreases as if the water mass density Liquid Water Content (LWC) were constant. There is actually no reason why this should be the case. Shifting the cloud droplet size distribution to more numerous smaller droplets can change the relative rates of condensational and coalescence growth, leading to different LWC (e.g., Rossow 1978). Moreover, the resulting change in cloud albedo is usually ascribed to more efficient scattering by smaller droplets, when in fact it is the increase in droplet number density (assuming constant LWC) that produces the most important change in cloud albedo: e.g., holding N constant and decreasing the droplet size would actually decrease the scattering cross-section and, thus, the albedo much more than it is increased by the increased scattering efficiency.

  10. CERES-MISR Info

    Atmospheric Science Data Center

    2013-05-20

    ... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  11. Development and Verification of a Physical Cloud-Moisture Model for Use in General Circulation Models

    DTIC Science & Technology

    1991-01-31

    referred as 3 the greenhouse effect . Since the grc 1’-ise and albedo effects are different in sign as well as magnitude, the existence of clouds may have...cloud amounts, is balanced by the greenhouse effect either globally or zonally. However, similar studies carried out by Ohring 3and Clapp (1980), Hartman...satellites, showed that the albedo effect is much greater than the greenhouse effect from changes in cloud amounts; i.e., the net radiation 3at TOA

  12. The determination of surface albedo from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Johnson, W. T.

    1977-01-01

    A surface albedo was determined from visible data collected by the NOAA-4 polar orbiting meteorological satellite. To filter out the major cause of atmospheric reflectivity, namely clouds, techniques were developed and applied to the data resulting in a map of global surface albedo. Neglecting spurious surface albedos for regions with persistent cloud cover, sun glint effects, insufficient reflected light and, at this time, some unresolved influences, the surface albedos retrieved from satellite data closely matched those of a global surface albedo map produced from surface and aircraft measurements and from characteristic albedos for land type and land use.

  13. CERES SSF Current Info

    Atmospheric Science Data Center

    2013-05-17

    ... Surface Albedo Cloud Area Fraction Cloud Effective Pressure Cloud Effective Temperature Cloud Effective Height Cloud Top Pressure Cloud Base Pressure Cloud Particle Phase Liquid Water Path Ice Water Path Water Particle Radius Ice Particle ...

  14. Incorporation of surface albedo-temperature feedback in a one-dimensional radiative-connective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W. C.; Stone, P. H.

    1979-01-01

    The feedback between ice snow albedo and temperature is included in a one dimensional radiative convective climate model. The effect of this feedback on sensitivity to changes in solar constant is studied for the current values of the solar constant and cloud characteristics. The ice snow albedo feedback amplifies global climate sensitivity by 33% and 50%, respectively, for assumptions of constant cloud altitude and constant cloud temperature.

  15. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    NASA Astrophysics Data System (ADS)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  16. Entrainment, Drizzle, and Stratocumulus Cloud Albedo

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Toon, O. B.

    2004-01-01

    Globally averaged cloud changes from GCMs on average show a doubling of the Twomey effect, which is the change in cloud albedo with respect to changes in droplet concentrations for fixed cloud water and droplet dispersion. In contrast, ship-track measurements show a much more modest amplification of the Twomey effect, suggesting that the GCMs are exaggerating the indirect aerosol effect. We have run large-eddy simulations with bin microphysics of marine stratocumulus from multiple field campaigns, and find that the large-eddy simulations are in much better agreement with the ship-track measurements. The inversion strength over N. Pacific stratocumulus (as measured during DYCOMS-II) is generally much stronger than over N. Atlantic stratocumulus (as measured during ASTEX), and we have found that the response of cloud water to increasing droplet concentration changes sign as the inversion strengthens. For the different environmental conditions, we will show the overall response of cloud albedo to droplet concentrations, and decompose the response into its contributing factors of changes in cloud water, droplet dispersion, and horizontal inhomogeneity.

  17. The Effect of Bond Albedo on Venus' Atmospheric and Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Bullock, M. A.; Limaye, S. S.; Grinspoon, D. H.; Way, M.

    2017-12-01

    In spite of Venus' high planetary albedo, sufficient solar energy reaches the surface to drive a powerful greenhouse effect. The surface temperature is three times higher than it would be without an atmosphere. However, the details of the energy balance within Venus' atmosphere are poorly understood. Half of the solar energy absorbed within the clouds, where most of the solar energy is absorbed, is due to an unknown agent. One of the challenges of modeling Venus' atmosphere has been to account for all the sources of opacity sufficient to generate a globally averaged surface temperature of 735 K, when only 2% of the incoming solar energy is deposited at the surface. The wavelength and spherically integrated albedo, or Bond albedo, has typically been cited as between 0.7 and 0.82 (Colin 1983). Yet, recent photometry of Venus at extended phase angles between 2 and 179° indicate a Bond albedo of 0.90 (Mallama et al., 2006). The authors note an increase in cloud top brightness at phase angles < 2°, which effectively increases the spherically integrated albedo. They suggest that forward scattering by the H2SO4/H2O aerosols of the upper cloud is responsible for Venus' high albedo at very low phase angles. The present work investigates the implications of such a high albedo for understanding and modeling the energy balance of Venus' atmosphere. Using the successful 1D radiative transfer model SimVenus that incorporates the opacity due to 9 major gases in Venus' atmosphere, as well as multiple scattering calculations of radiation within the clouds, the sensitivity of surface temperature was studied as a function of Bond albedo. Results of these model calculations are shown in Fig. 1. Figure 1a (left). Venus' atmospheric temperature profile for different values of Bond albedo. The structure and radiative effects of the clouds are fixed. Figure 1b (right). Venus surface temperature as Bond Albedo changes. Radiative-convective equilibrium models predict the correct globally averaged surface temperature at a=0.81. Calculations here show that a Bond albedo of a=0.9 would yield a surface temperature of 666.4 K, about 70 K too low, unless there is additional thermal absorption within the atmosphere that is not understood. Colin, L.,, Venus, University of Arizona Press, Tucson, 1983, pp 10-26. Mallama, A., et al., 2006. Icarus. 182, 10-22.

  18. UV/visible albedos from airborne measurements

    NASA Astrophysics Data System (ADS)

    Webb, A.; Kylling, A.; Stromberg, I.

    2003-04-01

    During the INSPECTRO campaign effective surface albedo was measured at UV and visible wavelengths from two airborne platforms, a Cessna light aircraft and a hot air balloon. On board the Cessna was a scanning spectroradiometer measuring from 300 - 500nm at 10nm intervals. The NILU cube, with 6 faces and two UV channels at 312 and 340nm, was suspended beneath the hot air balloon. Flights took place over East Anglia during September, 2002. Balloon flights were made below cloud layers, while the Cessna flew both above and below cloud. The Cessna also flew over Barton Bendish, where surface albedos have been measured for ground truthing of satellite data, and measured the effective albedo at four visible wave- lengths in the centres of the satellite bandpass functions. Results of measurements from the different platforms are compared, and model simulations used to deduce the surface albedo from the effective albedo at altitude, giving, for example, an albedo of 0.02 ± 0.01 at 340nm.

  19. Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Kim, Yongseung; Kolber, Zbigniew; Wilson, Cara; Wirick, Creighton; Cess, Robert

    1992-01-01

    Cloud albedo plays a key role in regulating earth's climate. Cloud albedo depends on column-integrated liquid water content and the density of cloud condensation nuclei, which consists primarily of submicrometer-sized aerosol sulfate particles. A comparison of two independent satellite data sets suggests that, although anthropogenic sulfate emissions may enhance cloud albedo immediately adjacent to the east coast of the United States, over the central North Atlantic Ocean the variability in albedo can be largely accounted for by natural marine and atmospheric processes that probably have remained relatively constant since the beginning of the industrial revolution.

  20. Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 1. Theoretical Analysis and Examples from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Oreopoulos, Lazaros

    2008-01-01

    Theoretical and satellite-based assessments of the sensitivity of broadband shortwave radiative fluxes in cloudy atmospheres to small perturbations in the cloud droplet number concentration (N) of liquid water clouds under constant water conditions are performed. Two approaches to study this sensitivity are adopted: absolute increases in N, for which the radiative response is referred to as absolute cloud susceptibility, and relative increases in N or relative cloud susceptibility. Estimating the former is more challenging as it requires an assumed value for either cloud liquid water content or geometrical thickness; both susceptibilities require an assumed relationship between the droplet volume and effective radius. Expanding upon previous susceptibility studies, present radiative calculations include the effect of AN perturbations on droplet asymmetry parameter and single-scattering albedo, in addition to extinction. Absolute cloud susceptibility has a strong nonlinear dependence on the droplet effective radius as expected, while relative cloud susceptibility is primarily dependent on optical thickness. Molecular absorption and reflecting surfaces both reduce the relative contribution of the cloud to the top-of-atmosphere (TOA) flux and therefore also reduce the TOA albedo susceptibility. Transmittance susceptibilities are negative with absolute values similar to albedo susceptibility, while atmospheric absorptance susceptibilities are about an order of magnitude smaller than albedo susceptibilities and can be either positive or negative. Observation-based susceptibility calculations are derived from MODIS pixel-level retrievals of liquid water cloud optical thickness, effective radius, and cloud top temperature; two data granule examples are shown. Susceptibility quantifies the aerosol indirect effect sensitivity in a way that can be easily computed from model fields. As such, susceptibilities derived from MODIS observations provide a higher-order test of model cloud properties used for indirect effect studies. MODIS-derived global distributions of cloud susceptibility and radiative forcing calculations are presented in a companion paper.

  1. Validation of Cloud Optical Parameters from Passive Remote Sensing in the Arctic by using the Aircraft Measurements

    NASA Astrophysics Data System (ADS)

    Chen, H.; Schmidt, S.; Coddington, O.; Wind, G.; Bucholtz, A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2017-12-01

    Cloud Optical Parameters (COPs: e.g., cloud optical thickness and cloud effective radius) and surface albedo are the most important inputs for determining the Cloud Radiative Effect (CRE) at the surface. In the Arctic, the COPs derived from passive remote sensing such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) are difficult to obtain with adequate accuracy owing mainly to insufficient knowledge about the snow/ice surface, but also because of the low solar zenith angle. This study aims to validate COPs derived from passive remote sensing in the Arctic by using aircraft measurements collected during two field campaigns based in Fairbanks, Alaska. During both experiments, ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARISE (Arctic Radiation-IceBridge Sea and Ice Experiment), the Solar Spectral Flux Radiometer (SSFR) measured upwelling and downwelling shortwave spectral irradiances, which can be used to derive surface and cloud albedo, as well as the irradiance transmitted by clouds. We assess the variability of the Arctic sea ice/snow surfaces albedo through these aircraft measurements and incorporate this variability into cloud retrievals for SSFR. We then compare COPs as derived from SSFR and MODIS for all suitable aircraft underpasses of the satellites. Finally, the sensitivities of the COPs to surface albedo and solar zenith angle are investigated.

  2. Quality assessment and improvement of the EUMETSAT Meteosat Surface Albedo Climate Data Record

    NASA Astrophysics Data System (ADS)

    Lattanzio, A.; Fell, F.; Bennartz, R.; Trigo, I. F.; Schulz, J.

    2015-10-01

    Surface albedo has been identified as an important parameter for understanding and quantifying the Earth's radiation budget. EUMETSAT generated the Meteosat Surface Albedo (MSA) Climate Data Record (CDR) currently comprising up to 24 years (1982-2006) of continuous surface albedo coverage for large areas of the Earth. This CDR has been created within the Sustained, Coordinated Processing of Environmental Satellite Data for Climate Monitoring (SCOPE-CM) framework. The long-term consistency of the MSA CDR is high and meets the Global Climate Observing System (GCOS) stability requirements for desert reference sites. The limitation in quality due to non-removed clouds by the embedded cloud screening procedure is the most relevant weakness in the retrieval process. A twofold strategy is applied to efficiently improve the cloud detection and removal. The first step consists of the application of a robust and reliable cloud mask, taking advantage of the information contained in the measurements of the infrared and visible bands. Due to the limited information available from old radiometers, some clouds can still remain undetected. A second step relies on a post-processing analysis of the albedo seasonal variation together with the usage of a background albedo map in order to detect and screen out such outliers. The usage of a reliable cloud mask has a double effect. It enhances the number of high-quality retrievals for tropical forest areas sensed under low view angles and removes the most frequently unrealistic retrievals on similar surfaces sensed under high view angles. As expected, the usage of a cloud mask has a negligible impact on desert areas where clear conditions dominate. The exploitation of the albedo seasonal variation for cloud removal has good potentialities but it needs to be carefully addressed. Nevertheless it is shown that the inclusion of cloud masking and removal strategy is a key point for the generation of the next MSA CDR release.

  3. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    NASA Technical Reports Server (NTRS)

    Zamora, Lauren; Kahn, R. A.; Cubison, M. C.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Wisthaler, A.; Zelenyuk, A.; hide

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300 over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were 50 smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq))/ and various biomass burning tracers (BBt/ across the multi-campaign dataset, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACI, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be 0.12 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/ cu m) and very high aerosol concentrations (2000-3000 cu m) in the most polluted clouds, the estimated ACI value was only 0.06. In this case, competition for water vapor by the high concentration of CCN strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease shortwave radiative flux by 2 and 4 W/sq or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. We lastly show evidence to suggest that numerous northern latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei. However, the influence of background particles on smoke-driven indirect effects is currently unclear.

  4. Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Stone, P. H.

    1980-01-01

    The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.

  5. Moderation of Cloud Reduction of UV in the Antarctic Due to High Surface Albedo.

    NASA Astrophysics Data System (ADS)

    Nichol, S. E.; Pfister, G.; Bodeker, G. E.; McKenzie, R. L.; Wood, S. W.; Bernhard, G.

    2003-08-01

    To gauge the impact of clouds on erythemal (sunburn causing) UV irradiances under different surface albedo conditions, UV measurements from two Antarctic sites (McMurdo and South Pole Stations) and a midlatitude site (Lauder, New Zealand) are examined. The surface albedo at South Pole remains high throughout the year, at McMurdo it has a strong annual cycle, and at Lauder it is low throughout the year. The measurements at each site are divided into clear and cloudy subsets and are compared with modeled clear-sky irradiances to assess the attenuation of UV by clouds. A radiative transfer model is also used to interpret the observations. Results show increasing attenuation of UV with increasing cloud optical depth, but a high surface albedo can moderate this attenuation as a result of multiple scattering between the surface and cloud base. This effect is of particular importance at high latitudes where snow may be present during the summer months. There is also a tendency toward greater cloud attenuation with increasing solar zenith angle.

  6. Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 2. Global analysis from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Platnick, Steven

    2008-01-01

    Global distributions of albedo susceptibility for areas covered by liquid clouds are presented for 4 months in 2005. The susceptibility estimates are based on expanded definitions presented in a companion paper and include relative cloud droplet number concentration (CDNC) changes, perturbations in cloud droplet asymmetry parameter and single-scattering albedo, atmospheric/surface effects, and incorporation of the full solar spectrum. The cloud properties (optical thickness and effective radius) used as input in the susceptibility calculations come from MODIS Terra and Aqua Collection 5 gridded data. Geographical distributions of susceptibility corresponding to absolute ( absolute cloud susceptibility ) and relative ( relative cloud susceptibility ) CDNC changes are markedly different indicating that the detailed nature of the cloud microphysical perturbation is important for determining the radiative forcing associated with the first indirect aerosol effect. However, both types of susceptibility exhibit common characteristics such as significant reductions when perturbations in single-scattering properties are omitted, significant increases when atmospheric absorption and surface albedo effects are ignored, and the tendency to decrease with latitude, to be higher over ocean than over land, and to be statistically similar between the morning and afternoon MODIS overpasses. The satellite-based susceptibility analysis helps elucidate the role of present-day cloud and land surface properties in indirect aerosol forcing responses. Our realistic yet moderate CDNC perturbations yield forcings on the order of 1-2 W/sq m for cloud optical property distributions and land surface spectral albedos observed by MODIS. Since susceptibilities can potentially be computed from model fields, these results have practical application in assessing the reasonableness of model-generated estimates of the aerosol indirect radiative forcing.

  7. Impact of Albedo Contrast Between Cirrus and Boundary-Layer Clouds on Climate Sensitivity

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, R. S.; Hou, A. Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    In assessing the iris effect suggested by Lindzen et al. (2001), Fu et al. (2001) found that the response of high-level clouds to the sea surface temperature had an effect of reducing the climate sensitivity to external radiative forcing, but the effect was not as strong as LCH found. This weaker reduction in climate sensitivity was due to the smaller contrasts in albedos and effective emitting temperatures between cirrus clouds and the neighboring regions. FBH specified the albedos and the outgoing longwave radiation (OLR) in the LCH 3.5-box radiative-convective model by requiring that the model radiation budgets at the top of the atmosphere be consistent with that inferred from the Earth Radiation Budget Experiment (ERBE). In point of fact, the constraint by radiation budgets alone is not sufficient for deriving the correct contrast in radiation properties between cirrus clouds and the neighboring regions, and the approach of FBH to specifying those properties is, we feel inappropriate for assessing the iris effect.

  8. Aircraft-Measured Indirect Cloud Effects from Biomass Burning Smoke in the Arctic and Subarctic

    NASA Technical Reports Server (NTRS)

    Zamora, L. M.; Kahn, R. A.; Cubison, M. J.; Diskin, G. S.; Jimenez, J. L.; Kondo, Y.; McFarquhar, G. M.; Nenes, A.; Thornhill, K. L.; Wisthaler, A.; hide

    2016-01-01

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200-300% over the next 50-100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were approx. 40- 60% smaller than in background clouds. Based on the relationship between cloud droplet number (N(liq)/ and various biomass burning tracers (BBt/ across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol-cloud interactions (ACIs, where ACI = (1/3) x dln(N(liq))/dln(BBt)) to be approx. 0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (0.02 gm/cu m and very high aerosol concentrations (2000- 3000/ cu cm in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 W/sq m or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic.We lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.

  9. Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic

    DOE PAGES

    Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.; ...

    2016-01-21

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number ( N liq) and various biomass burning tracers (BB t) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × d ln( N liq)/d ln(BB t)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm –3) and very high aerosol concentrations (2000–3000 cm –3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm –2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less

  10. Effect of Small-Scale Gravity Waves on Polar Mesospheric Clouds Observed From CIPS/AIM

    NASA Astrophysics Data System (ADS)

    Gao, Haiyang; Li, Licheng; Bu, Lingbing; Zhang, Qilin; Tang, Yuanhe; Wang, Zhen

    2018-05-01

    Data from the Cloud Imaging and Particle Size experiment on the Aeronomy of Ice in the Mesosphere (AIM) satellite are employed to study the impact of small-scale gravity wave (GW) on albedo, ice water content (IWC), and particle radius (PR) of polar mesospheric clouds. Overall, 23,987 eligible GW events, with a horizontal wavelength of 20-150 km are eventually extracted from Cloud Imaging and Particle Size level 2 orbit albedo maps during 2007-2011. The overall statistical results show that when small-scale GWs travel horizontally in polar mesospheric clouds, they can amplify the albedo and IWC by a rate of 10.0-22.6%, while reducing the PR by as much as -7.01%. Owing to the strong temporal and spatial dependences, the albedo and IWC variations are larger on an average during the core of the season, while they decrease during the initial and final periods of the season. The obvious zonal asymmetries are also found. The albedo variations show a positive linear relation with the GW amplitudes in albedo, as opposed to a negative linear relation with GW horizontal wavelengths. In most of the GW events, the periodic variation in the trend of albedo exhibits an anticorrelation with that of PR. Combining previous research studies with our results, we deduce that the rapid change in particle concentration and the upward movement of water vapor by GWs may be very important aspects for explaining the influence mechanism.

  11. Are ship tracks useful analogs for studying the aerosol indirect effect?

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Toll, V.; Stephens, G. L.

    2017-12-01

    Vessels transiting the ocean sometimes leave their mark on the clouds - leaving behind reflective cloud lines, known as ship tracks. Ship tracks have been looked upon by some as a possible Rosetta Stone connecting the effects of changing aerosol over the ocean and cloud albedo effects on climate (Porch et al. 1990, Atmos. Enviorn., 1051-1059). In this research, we establish whether ship tracks, and volcano tracks - a natural analog, can be used to relate these cloud-scale perturbations to the aerosol effects occurring at larger regional-scales. Two databases containing over 1,500 ship and 900 volcano tracks, all carefully hand-selected from satellite imagery, are utilized; showing that ship tracks exhibit very similar cloud albedo effect responses to that of volcano tracks. For comparison, our global dataset utilises over 7 million CloudSat profiles consisting of single-layer marine warm cloud in which the retrievals are co-located with the MODerate Imaging Spectroradiometer (MODIS) product so that statistical relationships between aerosol and cloud can be computed over 4x4 degree regions. All datasets show the same key physical processes that govern the cloud-aerosol indirect effect, namely, the strong negative responses in cloud droplet size and the bidirectional responses in liquid water path and cloud albedo depending on the meteorological conditions. Finally, this analysis is extended to a comparison against several general circulation models where it is suggested that key processes such as cloud-top entrainment and evaporation that regulates against strong liquid water path responses are likely underrepresented in most models.

  12. Clear-Sky Narrowband Albedo Datasets Derived from Modis Data

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Minnis, P.; Sun-Mack, S.; Arduini, R. F.; Hong, G.

    2013-12-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting the clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the near-infrared (NIR; 1.24, 1.6 or 2.13 μm) and visible (VIS; 0.63 μm) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometers (MODIS) to help identify clouds and retrieve their properties. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. The clear-sky albedos are derived using a radiative transfer parameterization of the impact of the atmosphere, including aerosols, on the observed reflectances. This paper presents the method of generating monthly clear-sky overhead albedo maps for both snow-free and snow-covered surfaces of these channels using one year of MODIS (Moderate Resolution Imaging Spectroradiometer) CERES products. Maps of 1.24 and 1.6 μm are being used as the background to help retrieve cloud properties (e.g., effective particle size, optical depth) in CERES cloud retrievals in both snow-free and snow-covered conditions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamora, Lauren M.; Kahn, R. A.; Cubison, M. J.

    The incidence of wildfires in the Arctic and subarctic is increasing; in boreal North America, for example, the burned area is expected to increase by 200–300% over the next 50–100 years, which previous studies suggest could have a large effect on cloud microphysics, lifetime, albedo, and precipitation. However, the interactions between smoke particles and clouds remain poorly quantified due to confounding meteorological influences and remote sensing limitations. Here, we use data from several aircraft campaigns in the Arctic and subarctic to explore cloud microphysics in liquid-phase clouds influenced by biomass burning. Median cloud droplet radii in smoky clouds were ~40–60% smallermore » than in background clouds. Based on the relationship between cloud droplet number ( N liq) and various biomass burning tracers (BB t) across the multi-campaign data set, we calculated the magnitude of subarctic and Arctic smoke aerosol–cloud interactions (ACIs, where ACI = (1/3) × d ln( N liq)/d ln(BB t)) to be ~0.16 out of a maximum possible value of 0.33 that would be obtained if all aerosols were to nucleate cloud droplets. Interestingly, in a separate subarctic case study with low liquid water content (~0.02gm –3) and very high aerosol concentrations (2000–3000 cm –3) in the most polluted clouds, the estimated ACI value was only 0.05. In this case, competition for water vapor by the high concentration of cloud condensation nuclei (CCN) strongly limited the formation of droplets and reduced the cloud albedo effect, which highlights the importance of cloud feedbacks across scales. Using our calculated ACI values, we estimate that the smoke-driven cloud albedo effect may decrease local summertime short-wave radiative flux by between 2 and 4 Wm –2 or more under some low and homogeneous cloud cover conditions in the subarctic, although the changes should be smaller in high surface albedo regions of the Arctic. Furthermore, we lastly explore evidence suggesting that numerous northern-latitude background Aitken particles can interact with combustion particles, perhaps impacting their properties as cloud condensation and ice nuclei.« less

  14. EFFECT OF LONGITUDE-DEPENDENT CLOUD COVERAGE ON EXOPLANET VISIBLE WAVELENGTH REFLECTED-LIGHT PHASE CURVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webber, Matthew W.; Lewis, Nikole K.; Cahoy, Kerri

    2015-05-10

    We use a planetary albedo model to investigate variations in visible wavelength phase curves of exoplanets. Thermal and cloud properties for these exoplanets are derived using one-dimensional radiative-convective and cloud simulations. The presence of clouds on these exoplanets significantly alters their planetary albedo spectra. We confirm that non-uniform cloud coverage on the dayside of tidally locked exoplanets will manifest as changes to the magnitude and shift of the phase curve. In this work, we first investigate a test case of our model using a Jupiter-like planet, at temperatures consistent to 2.0 AU insolation from a solar type star, to considermore » the effect of H{sub 2}O clouds. We then extend our application of the model to the exoplanet Kepler-7b and consider the effect of varying cloud species, sedimentation efficiency, particle size, and cloud altitude. We show that, depending on the observational filter, the largest possible shift of the phase curve maximum will be ∼2°–10° for a Jupiter-like planet, and up to ∼30° (∼0.08 in fractional orbital phase) for hot-Jupiter exoplanets at visible wavelengths as a function of dayside cloud distribution with a uniformly averaged thermal profile. The models presented in this work can be adapted for a variety of planetary cases at visible wavelengths to include variations in planet–star separation, gravity, metallicity, and source-observer geometry. Finally, we tailor our model for comparison with, and confirmation of, the recent optical phase-curve observations of Kepler-7b with the Kepler space telescope. The average planetary albedo can vary between 0.1 and 0.6 for the 1300 cloud scenarios that were compared to the observations. Many of these cases cannot produce a high enough albedo to match the observations. We observe that smaller particle size and increasing cloud altitude have a strong effect on increasing albedo. In particular, we show that a set of models where Kepler-7b has roughly half of its dayside covered in small-particle clouds high in the atmosphere, made of bright minerals like MgSiO{sub 3} and Mg{sub 2}SiO{sub 4,} provide the best fits to the observed offset and magnitude of the phase-curve, whereas Fe clouds are found to be too dark to fit the observations.« less

  15. Significance of multidimensional radiative transfer effects measured in surface fluxes at an Antarctic coastline

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Ricchiazzi, Paul; Payton, Allison; Gautier, Catherine

    2002-10-01

    At a coastal high-latitude site, multiple reflection of photons between the high albedo surface and an overlying cloud can enhance the downwelling shortwave flux out over the adjacent open water to a distance of several kilometers. This coastal albedo effect has been predicted by theoretical radiative transfer studies and has also been measured under ideal conditions. In this study, three multispectral solar ultraviolet radiometers were deployed in the vicinity of Palmer Station, Antarctica (64° 46'S, 64° 04'W) to determine the prevalence of the coastal albedo effect under the region's natural variability in cloud cover. One radiometer was deployed near the base of a glacier, and the other two radiometers were deployed on Janus Island and Outcast Island, islets ˜2.8 km (1.5 nautical miles) and 5.6 km (3 nautical miles) distant from Palmer Station, respectively. The radiometers were operated simultaneously for 16 days during late December 1999 and January 2000. Under all cloudy sky conditions sampled by this experiment the coastal albedo effect is seen in the data 60% of the time, in the form of a decreasing gradient in surface flux from Palmer Station through Janus and Outcast Islands. During the other 40% of the cloudy sky measurements, local cloud inhomogeneity obscured the coastal albedo effect. The effect is more apparent under overcast layers that appear spatially uniform and occurs 86% of the time under the low overcast decks sampled. The presence of stratus fractus of bad weather, under higher overcast layers, obscures the coastal albedo effect such that it occurs only 43% of the time. A wavelength dependence is noted in the data under optically thin cloud cover: the ratio of a flux measured at an islet to that measured at the station increases with wavelength. This wavelength dependence can be explained by plane-parallel radiative transfer theory.

  16. Cloud condensation nucleus-sulfate mass relationship and cloud albedo

    NASA Technical Reports Server (NTRS)

    Hegg, Dean A.

    1994-01-01

    Analysis of previously published, simultaneous measurements of cloud condensation nucleus number concentration and sulfate mass concentration suggest a nonlinear relationship between the two variables. This nonlinearity reduces the sensitivity of cloud albedo to changes in the sulfur cycle.

  17. Microphysical, Macrophysical and Radiative Signatures of Volcanic Aerosols in Trade Wind Cumulus Observed by the A-Train

    NASA Technical Reports Server (NTRS)

    Yuan, T.; Remer, L. A.; Yu, H.

    2011-01-01

    Increased aerosol concentrations can raise planetary albedo not only by reflecting sunlight and increasing cloud albedo, but also by changing cloud amount. However, detecting aerosol effect on cloud amount has been elusive to both observations and modeling due to potential buffering mechanisms and convolution of meteorology. Here through a natural experiment provided by long-tem1 degassing of a low-lying volcano and use of A-Train satellite observations, we show modifications of trade cumulus cloud fields including decreased droplet size, decreased precipitation efficiency and increased cloud amount are associated with volcanic aerosols. In addition we find significantly higher cloud tops for polluted clouds. We demonstrate that the observed microphysical and macrophysical changes cannot be explained by synoptic meteorology or the orographic effect of the Hawaiian Islands. The "total shortwave aerosol forcin", resulting from direct and indirect forcings including both cloud albedo and cloud amount. is almost an order of magnitude higher than aerosol direct forcing alone. Furthermore, the precipitation reduction associated with enhanced aerosol leads to large changes in the energetics of air-sea exchange and trade wind boundary layer. Our results represent the first observational evidence of large-scale increase of cloud amount due to aerosols in a trade cumulus regime, which can be used to constrain the representation of aerosol-cloud interactions in climate models. The findings also have implications for volcano-climate interactions and climate mitigation research.

  18. Direct Aerosol Radiative Effects and Heating Rates: Results from the 2016 and 2017 ORACLES Field Campaigns

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Chen, H.; Pilewskie, P.; Redemann, J.; LeBlanc, S. E.; Platnick, S. E.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Iwabuchi, H.

    2017-12-01

    The Southeast Atlantic contains a large, semi-permanent cloud deck often overlaid by a thick layer of biomass burning aerosols that has been advected westward from Southern Africa. We will present (a) the direct aerosol radiative effect (b) the albedo value for which the radiative effect transitions from warming to cooling, i.e., the critical albedo, and (c) aerosol and gas absorption and heating rates for this region from the 2016 and 2017 deployments of the NASA ORACLES experiment (ObseRvations of CLouds above Aerosols and their intEractionS). Observations by the Solar Spectral Flux Radiometer (SSFR), Enhanced MODIS Airborne Simulator (eMAS), High Spectral Resolution Lidar (HSRL-2,) and the Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR) are put into context by the 3D radiative transfer model Monte Carlo Atmospheric Radiative Transfer Simulator (MCARaTS), which allows us to determine the aerosol radiative effect especially when inhomogeneous clouds are present. For highly homogeneous scenes, a direct derivation from the measurements is also possible. We give an overview of spectral single scattering albedo, Ångström exponents, and heating rate profiles for the two experiments while also exploring the dependence of the critical albedo on the aerosol properties.

  19. Influence of the Surface and Cloud Nonuniformities in the Solar Energy Fluxes in the Arctic

    NASA Technical Reports Server (NTRS)

    Rozwadowska, A.; Cahalan, R. F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Solar energy fluxes reaching the surface and absorbed by it are basic components of the energy balance of the Arctic. They depend mainly on the solar zenith angle, a state of the atmosphere, especially the cloudiness, and the surface albedo. However, they can also be modified by variabilities in the surface albedo and cloud optical thickness. The surface of the Arctic can be highly nonuniform. The surface of the Arctic Ocean, which covers the huge part of the Arctic can be view as a mosaic of sea water, sea ice, snow and, in the melting period, melting ponds. In our paper, results are presented of Monte Carlo simulations of the expected influence of nonuniform cloud structure and nonuniform surface albedo on radiative fluxes at the Arctic surface. In particular, the plane parallel biases in the surface absorptance and atmospheric transmittance are studied. The bias is defined as the difference between the real absorptance or transmittance (i.e. nonuniform conditions) averaged over a given area, and the uniform or plane parallel case with the same mean cloud optical thickness and the same mean surface albedo. The dependence of the biases is analysed with respect to the following: domain averaged values of the cloud optical thickness and surface albedo, scales of their spatial variabilities, correlation between cloud optical thickness and cloud albedo variabilities, cloud height, and the solar zenith angle. Ranges of means and standard deviations of the input parameters typical of Arctic conditions are obtained from the SHEBA experiment.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less

  1. Predicting Clear-Sky Reflectance Over Snow/Ice in Polar Regions

    NASA Technical Reports Server (NTRS)

    Chen, Yan; Sun-Mack, Sunny; Arduini, Robert F.; Hong, Gang; Minnis, Patrick

    2015-01-01

    Satellite remote sensing of clouds requires an accurate estimate of the clear-sky radiances for a given scene to detect clouds and aerosols and to retrieve their microphysical properties. Knowing the spatial and angular variability of clear-sky albedo is essential for predicting clear-sky radiance at solar wavelengths. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the nearinfrared (NIR; 1.24, 1.6 or 2.13 micrometers), visible (VIS; 0.63 micrometers) and vegetation (VEG; 0.86 micrometers) channels available on the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) to help identify clouds and retrieve their properties in both snow-free and snow-covered conditions. Thus, it is critical to have reliable distributions of clear-sky albedo for all of these channels. In CERES Edition 4 (Ed4), the 1.24-micrometer channel is used to retrieve cloud optical depth over snow/ice-covered surfaces. Thus, it is especially critical to accurately predict the 1.24-micrometer clear-sky albedo alpha and reflectance rho for a given location and time. Snow albedo and reflectance patterns are very complex due to surface texture, particle shapes and sizes, melt water, and vegetation protrusions from the snow surface. To minimize those effects, this study focuses on the permanent snow cover of Antarctica where vegetation is absent and melt water is minimal. Clear-sky albedos are determined as a function of solar zenith angle (SZA) from observations over all scenes determined to be cloud-free to produce a normalized directional albedo model (DRM). The DRM is used to develop alpha(SZA=0 degrees) on 10 foot grid for each season. These values provide the basis for predicting r at any location and set of viewing & illumination conditions. This paper examines the accuracy of this approach for two theoretical snow surface reflectance models.

  2. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2% hematite content. The cloud spectral optical properties and the radiative properties for the aforesaid cases during CARDEX observations will be discussed in detail.

  3. A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    DOE PAGES

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    2016-09-13

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less

  4. Modeling of Cloud/Radiation Processes for Tropical Anvils

    DTIC Science & Technology

    1992-11-30

    absorption assumption. The band 800-980 cm-l is located in the atmospheric window, where the greenhouse effect of clouds is most pronounced. It can be...9a) is always positive, corresponding to the heating of the earth-atmosphere system due to the greenhouse effect of clouds, while the solar cloud...observed midlatitude cirrus cases, the IR greenhouse effect outweighs the solar albedo effect. The degree of the greenhouse effect involving cirrus

  5. Albedos of Jovian Trojans, Hildas and Centaurs

    NASA Astrophysics Data System (ADS)

    Romanishin, William; Tegler, Stephen C.

    2017-10-01

    We present distributions of optical V band albedos for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. We compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) The Hildas are 15-25% darker than the Trojans at a very high level of statistical significance. If the Hildas and Trojans started out with similar surfaces, the Hildas may have darkened due to the effects of gardening as they pass through zone III of the asteroid belt. (2) The median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups (3) The median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of significance. However, the modes of the L4 and L5 albedo distributions are very similar, perhaps indicating the presence of a distinct brighter component in the L4 cloud that is not found in the L5 cloud.

  6. Visible Wavelength Exoplanet Phase Curves from Global Albedo Maps

    NASA Astrophysics Data System (ADS)

    Webber, Matthew; Cahoy, Kerri Lynn

    2015-01-01

    To investigate the effect of three-dimensional global albedo maps we use an albedo model that: calculates albedo spectra for each points across grid in longitude and latitude on the planetary disk, uses the appropriate angles for the source-observer geometry for each location, and then weights and sums these spectra using the Tschebychev-Gauss integration method. This structure permits detailed 3D modeling of an illuminated planetary disk and computes disk-integrated phase curves. Different pressure-temperature profiles are used for each location based on geometry and dynamics. We directly couple high-density pressure maps from global dynamic radiative-transfer models to compute global cloud maps. Cloud formation is determined from the correlation of the species condensation curves with the temperature-pressure profiles. We use the detailed cloud patterns, of spatial-varying composition and temperature, to determine the observable albedo spectra and phase curves for exoplanets Kepler-7b and HD189733b. These albedo spectra are used to compute planet-star flux ratios using PHOENIX stellar models, exoplanet orbital parameters, and telescope transmission functions. Insight from the Earthshine spectrum and solid surface albedo functions (e.g. water, ice, snow, rocks) are used with our planetary grid to determine the phase curve and flux ratios of non-uniform Earth and Super Earth-like exoplanets with various rotation rates and stellar types. Predictions can be tailored to the visible and Near-InfraRed (NIR) spectral windows for the Kepler space telescope, Hubble space telescope, and future observatories (e.g. WFIRST, JWST, Exo-C, Exo-S). Additionally, we constrain the effect of exoplanet urban-light on the shape of the night-side phase curve for Earths and Super-Earths.

  7. In situ measurements of ship tracks

    NASA Technical Reports Server (NTRS)

    Radke, Lawrence F.; Lyons, Jamie H.; Hobbs, Peter V.; Coakley, James E.

    1990-01-01

    It has long been known that cloud droplet concentrations are strongly influenced by cloud condensation nuclei (CCN) and that anthropogenic sources of pollution can affect CCN concentrations. More recently it has been suggested that CCN may play an important role in climate through their effect on cloud albedo. A interesting example of the effect of anthropogenic CCN on cloud albedo is the so-called 'ship track' phenomenon. Ship tracks were first observed in satellite imagery when the ship's emissions were evidently needed for the formation of a visible cloud. However, they appear more frequently in satellite imagery as modifications to existing stratus and stratocumulus clouds. The tracks are seen most clearly in satellite imagery by comparing the radiance at 3.7 microns with that at 0.63 and 11 microns. To account for the observed change in radiance, droplet concentrations must be high, and the mean size of the droplets small, in ship tracks. Researchers describe what they believe to be the first in situ measurements in what appears to have been a ship track.

  8. Ten Years of Cloud Optical and Microphysical Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Galina; Hubanks, Paul; Arnold, G. Thomas; Amarasinghe, Nandana

    2010-01-01

    The MODIS cloud optical properties algorithm (MOD06/MYD06 for Terra and Aqua MODIS, respectively) has undergone extensive improvements and enhancements since the launch of Terra. These changes have included: improvements in the cloud thermodynamic phase algorithm; substantial changes in the ice cloud light scattering look up tables (LUTs); a clear-sky restoral algorithm for flagging heavy aerosol and sunglint; greatly improved spectral surface albedo maps, including the spectral albedo of snow by ecosystem; inclusion of pixel-level uncertainty estimates for cloud optical thickness, effective radius, and water path derived for three error sources that includes the sensitivity of the retrievals to solar and viewing geometries. To improve overall retrieval quality, we have also implemented cloud edge removal and partly cloudy detection (using MOD35 cloud mask 250m tests), added a supplementary cloud optical thickness and effective radius algorithm over snow and sea ice surfaces and over the ocean, which enables comparison with the "standard" 2.1 11m effective radius retrieval, and added a multi-layer cloud detection algorithm. We will discuss the status of the MOD06 algorithm and show examples of pixellevel (Level-2) cloud retrievals for selected data granules, as well as gridded (Level-3) statistics, notably monthly means and histograms (lD and 2D, with the latter giving correlations between cloud optical thickness and effective radius, and other cloud product pairs).

  9. An attempt to quantify aerosol-cloud effects in fields of precipitating trade wind cumuli

    NASA Astrophysics Data System (ADS)

    Seifert, Axel; Heus, Thijs

    2015-04-01

    Aerosol indirect effects are notoriously difficult to understand and quantify. Using large-eddy simulations (LES) we attempt to quantify the impact of aerosols on the albedo and the precipitation formation in trade wind cumulus clouds. Having performed a set of large-domain Giga-LES runs we are able to capture the mesoscale self-organization of the cloud field. Our simulations show that self-organization is intrinsically tied to precipitation formation in this cloud regime making previous studies that did not consider cloud organization questionable. We find that aerosols, here modeled just as a perturbation in cloud droplet number concentration, have a significant impact on the transient behavior, i.e., how fast rain is formed and self-organization of the cloud field takes place. Though, for longer integration times, all simulations approach the same radiative-convective equilibrium and aerosol effects become small. The sensitivity to aerosols becomes even smaller when we include explicit cloud-radiation interaction as this leads to a much faster and more vigorous response of the cloud layer. Overall we find that aerosol-cloud interactions, like cloud lifetime effects etc., are small or even negative when the cloud field is close to equilibrium. Consequently, the Twomey effect does already provide an upper bound on the albedo effects of aerosol perturbations. Our analysis also highlights that current parameterizations that predict only the grid-box mean of the cloud field and do not take into account cloud organization are not able to describe aerosol indirect effects correctly, but overestimate them due to that lack of cloud dynamical and mesoscale buffering.

  10. An Eight-Month Sample of Marine Stratocumulus Cloud Fraction, Albedo, and Integrated Liquid Water.

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Hare, J. E.; Snider, J. B.

    1990-08-01

    As part of the First International Satellite Cloud Climatology Regional Experiment (FIRE), a surface meteorology and shortwave/longwave irradiance station was operated in a marine stratocumulus regime on the northwest tip of San Nicolas island off the coast of Southern California. Measurements were taken from March through October 1987, including a FIRE Intensive Field Operation (IFO) held in July. Algorithms were developed to use the longwave irradiance data to estimate fractional cloudiness and to use the shortwave irradiance to estimate cloud albedo and integrated cloud liquid water content. Cloud base height is estimated from computations of the lifting condensation level. The algorithms are tested against direct measurements made during the IFO; a 30% adjustment was made to the liquid water parameterization. The algorithms are then applied to the entire database. The stratocumulus clouds over the island are found to have a cloud base height of about 400 m, an integrated liquid water content of 75 gm2, a fractional cloudiness of 0.95, and an albedo of 0.55. Integrated liquid water content rarely exceeds 350 g m2 and albedo rarely exceeds 0.90 for stratocumulus clouds. Over the summer months, the average cloud fraction shows a maximum at sunrise of 0.74 and a minimum at sunset of 0.41. Over the same period, the average cloud albedo shows a maximum of 0.61 at sunrise and a minimum of 0.31 a few hours after local noon (although the estimate is more uncertain because of the extreme solar zenith angle). The use of joint frequency distributions of fractional cloudiness with solar transmittance or cloud base height to classify cloud types appears to be useful.

  11. MERIS albedo climatology and its effect on the FRESCO+ O2 A-band cloud retrieval from SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Popp, Christoph; Wang, Ping; Brunner, Dominik; Stammes, Piet; Zhou, Yipin

    2010-05-01

    Accurate cloud information is an important prerequisite for the retrieval of atmospheric trace gases from spaceborne UV/VIS sensors. Errors in the estimated cloud fraction and cloud height (pressure) result in an erroneous air mass factor and thus can lead to inaccuracies in the vertical column densities of the retrieved trace gas. In ESA's TEMIS (Tropospheric Emission Monitoring Internet Service) project, the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) cloud retrieval is applied to, amongst others, SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY) data to determine these quantities. Effective cloud fraction and pressure are inverted by (i) radiative transfer simulations of top-of-atmosphere reflectance based on O2 absorption, single Rayleigh scattering, surface and cloud albedo in three spectral windows covering the O2 A-band and (ii) a subsequent fitting of the simulated to the measured spectrum. However, FRESCO+ relies on a relatively coarse resolution surface albedo climatology (1° x 1°) compiled from GOME (Global Ozone Monitoring Experiment) measurements in the 1990's which introduces several artifacts, e.g. an overestimation of cloud fraction at coastlines or over some mountainous regions. Therefore, we test the substitution of the GOME climatology with a new land surface albedo climatology compiled for every month from MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data (0.05° x 0.05°) covering the period January 2003 to October 2006. The MERIS channels at 754nm and 775nm are located spectrally close to the corresponding GOME channels (758nm and 772nm) on both sides of the O2 A-band. Further, the increased spatial resolution of the MERIS product allows to better account for SCIAMACHY's pixel size of approximately 30x60km. The aim of this study is to describe and assess (i) the compilation and quality of the MERIS climatology (ii) the differences to the GOME climatology, and (iii) possible enhancements of the SCIAMACHY cloud retrieval after integrating the MERIS climatology into FRESCO+. First results indicate that in areas where FRESCO+ is overestimating cloud fraction using the GOME climatology, MERIS generally reveals higher albedo values which in turn will lead to lower cloud fractions, e.g. at coastlines, some arid or mountainous areas. The differences between the two data sets are also higher in winter than in summer. It can therefore be expected that the new data base with increased spatial resolution improves SCIAMACHY cloud retrieval with FRESCO+. The most limiting factors for the compilation of the MERIS climatology can be assigned to inappropriate snow cover masking and occasionally unfavorable illumination conditions in high northern latitudes during winter.

  12. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects

    NASA Astrophysics Data System (ADS)

    Bird, D. N.; Kunda, M.; Mayer, A.; Schlamadinger, B.; Canella, L.; Johnston, M.

    2008-04-01

    Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation) is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal. In this paper, we develop a stand-based model that combines changes in surface albedo, solar radiation, latitude, cloud cover and carbon sequestration. As well, we develop a procedure to convert carbon stock changes to equivalent climatic forcing or climatic forcing to equivalent carbon stock changes. Using the model, we investigate the sensitivity of combined affects of changes in surface albedo and carbon stock changes to model parameters. The model is sensitive to amount of cloud, atmospheric absorption, timing of canopy closure, carbon sequestration rate among other factors. The sensitivity of the model is investigated at one Canadian site, and then the model is tested at numerous sites across Canada. In general, we find that the change in albedo reduces the carbon sequestration benefits by approximately 30% over 100 years, but this is not drastic enough to suggest that one should not use afforestation or reforestation as a climate change mitigation option. This occurs because the forests grow in places where there is significant amount of cloud in winter. As well, variations in sequestration rate seem to be counterbalanced by the amount and timing of canopy closure. We close by speculating that the effects of albedo may also be significant in locations at lower latitudes, where there are less clouds, and where there are extended dry seasons. These conditions make grasses light coloured and when irrigated crops, dark forests or other vegetation such as biofuels replace the grasses, the change in carbon stocks may not compensate for the darkening of the surface.

  13. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology

    NASA Technical Reports Server (NTRS)

    Mitchell, David L.; Arnott, W. Patrick

    1994-01-01

    This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.

  14. Independent Pixel and Two Dimensional Estimates of LANDSAT-Derived Cloud Field Albedo

    NASA Technical Reports Server (NTRS)

    Chambers, L. H.; Wielicki, Bruce A.; Evans, K. F.

    1996-01-01

    A theoretical study has been conducted on the effects of cloud horizontal inhomogeneity on cloud albedo bias. A two-dimensional (2D) version of the Spherical Harmonic Discrete Ordinate Method (SHDOM) is used to estimate the albedo bias of the plane parallel (PP-IPA) and independent pixel (IPA-2D) approximations for a wide range of 2D cloud fields obtained from LANDSAT. They include single layer trade cumulus, open and closed cell broken stratocumulus, and solid stratocumulus boundary layer cloud fields over ocean. Findings are presented on a variety of averaging scales and are summarized as a function of cloud fraction, mean cloud optical depth, cloud aspect ratio, standard deviation of optical depth, and the gamma function parameter Y (a measure of the width of the optical depth distribution). Biases are found to be small for small cloud fraction or mean optical depth, where the cloud fields under study behave linearly. They are large (up to 0.20 for PP-IPA bias, -0.12 for IPA-2D bias) for large v. On a scene average basis PP-IPA bias can reach 0.30, while IPA-2D bias reaches its largest magnitude at -0.07. Biases due to horizontal transport (IPA-2D) are much smaller than PP-IPA biases but account for 20% RMS of the bias overall. Limitations of this work include the particular cloud field set used, assumptions of conservative scattering, constant cloud droplet size, no gas absorption or surface reflectance, and restriction to 2D radiative transport. The LANDSAT data used may also be affected by radiative smoothing.

  15. Marine Cloud Brightening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham, John; Bower, Keith; Choularton, Tom

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involvesmore » (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.« less

  16. Marine cloud brightening.

    PubMed

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  17. An examination of the effects of explicit cloud water in the UCLA GCM

    NASA Technical Reports Server (NTRS)

    Ose, Tomoaki

    1993-01-01

    The effect of explicit cloud water on the climate simulation by the University of California of Los Angeles GCM is investigated by adding the mixing ratios of cloud ice and cloud liquid water to the prognostic variables of the model. The detrained cloud ice and cloud liquid water are obtained by the microphysical calculation in the Arakawa-Schubert (1974) cumulus scheme. The results are compared with the observations concerned with cloudiness, planetary albedo, OLR, and the dependence of cloud water content on temperature.

  18. Observations of the Global Characteristics and Regional Radiative Effects of Marine Cloud Liquid Water

    NASA Technical Reports Server (NTRS)

    Greenwald, Thomas J.; Stephens, Graeme L.; Christopher, Sundar A.; Vonder Harr, Thomas H.

    1995-01-01

    The large-scale spatial distribution and temporal variability of cloud liquid water path (LWP) over the world's oceans and the relationship of cloud LWP to temperature and the radiation budget are investigated using recent satellite measurements from the Special Sensor Microwave/Imager (SSM/I), the Earth Radiation Budget Experiment (ERBE), and the International Satellite Cloud Climatology Project (ISCCP). Observations of cloud liquid water on a 2.5 deg x 2.5 deg and are used over a 53-month period beginning July 1987 and ending in December 1991. The highest values of cloud liquid water (greater than 0.13 kg/sq m) occur largely along principal routes of northern midlatitude storms and in areas dominated by tropical convection. The zonally averaged structure is distinctly trimodal, where maxima appear in the midlatitudes and near the equator. The average marine cloud LWP over the globe is estimated to be about 0.113 kg/sq m. Its highest seasonal variability is typically between 15% and 25% of the annual mean but in certain locations can exceed 30%. Comparisons of cloud LWP to temperature for low clouds during JJA and DJF of 1990 show significant positive correlations at colder temperatures and negative correlations at warmer temperatures. The correlations also exhibit strong seasonal and regional variation. Coincident and collocated observations of cloud LWP from the SSM/I and albedo measurements from the Earth Radiation Budget Satellite (ERBS) and the NOAA-10 satellite are compared for low clouds in the North Pacific and North Atlantic. The observed albedo-LWP relationships correspond reasonably well with theory, where the average cloud effective radius (r(sub e)) is 11.1 microns and the standard deviation is 5.2 microns. The large variability in the inferred values of r(sub e) suggests that other factors may be important in the albedo-LWP relationships. In terms of the effect of the LWP on the net cloud forcing, the authors find that a 0.05 kg/sq m increase in LWP (for LWP less than 0.2 kg/sq m) results in a -25 W/sq m change in the net cloud forcing at a solar zenith angle of 75 deg.

  19. A method to generate surface UV radiation maps over Europe using GOME, Meteosat, and ancillary geophysical data

    NASA Astrophysics Data System (ADS)

    Verdebout, Jean

    2000-02-01

    This paper presents a method for generating surface ultraviolet (UV) radiation maps over Europe, with a spatial resolution of 0.05°, and potentially on a half-hour basis. The UV irradiance is obtained by interpolation in a look-up table (LUT), the entries of which are solar zenith angle, total column ozone amount, cloud liquid water thickness, near-surface horizontal visibility, surface elevation, and UV albedo. Both satellite (Meteosat, GOME) and nonsatellite (synoptic observations, meteorological model results, digital elevation model) data are exploited to assign values to the influencing factors. With the help of another LUT simulating the visible signal, Meteosat data are processed to retrieve the cloud liquid water thickness. The radiative transfer calculations are performed with the UVspec code. A preliminary step consists in generating an effective surface Meteosat albedo map from a series of 10 consecutive days. In this process the well-known difficulty of distinguishing clouds from snow-covered surfaces is encountered. An attempt is made to partially resolve the ambiguity by using the Meteosat infrared channel and modeled snow cover data. After additional empirical cloud filtering, the effective albedo map is used as a baseline to estimate the cloud liquid water thickness. The UV surface albedo is assigned uniform values for land and sea/ocean, except in the presence of snow. In this case it is given a value proportional to the Meteosat effective albedo. The total column ozone is extracted from the level 3 GOME products. The aerosol optical thickness is mapped by gridding the daily measurements performed by ˜1000 ground stations. The digital elevation model is the GTOPO30 data set from the U.S. Geological Survey. European wide UV dose rate maps are presented for one day in April 1997, and the influence of the various factors is illustrated. A daily integrated dose map was also generated using 27 Meteosat acquisitions at half-hour intervals on the same day. The dose map produced in this way takes into account the evolution of the cloud field and is thought to be more accurate than if it were estimated from one data take, in particular at the relatively high spatial resolution of the product. Finally, a preliminary comparison of modeled dose rate and daily dose with measurements performed with a ground instrument is discussed.

  20. A Cloud Hydrology and Albedo Synthesis Mission (CHASM)

    NASA Technical Reports Server (NTRS)

    Davies, Roger

    2004-01-01

    This slide presentation reviews the Cloud Hydrology and Albedo Synthesis Mission (CHASM). The interaction of clouds with radiation and the hydrological cycle represents a huge uncertainty in our understanding of climate science and the modeling of climate system feedbacks. Despite the recognized need for a unified treatment of cloud processes, the present global average values of remotely sensed cloud liquid water and theoretically accepted values used for cloud physics and precipitation modeling differ by an order of magnitude. This is due in part to sampling and saturation effects, as well as to threedimensional cloud structure effects. In recent work with the Multiangle Imaging SpectroRadiometer (MISR) on Terra, we have gained new insights as to how the remote sensing approach could be significantly improved using a new instrument that combines passive optical (visible and near infrared) and microwave measurements, both as pushbroom scanners with multiple viewing angles, to the degree that measurements of liquid water path over deep convective clouds over land also become possible. This instrument would also have the ability of measuring height-resolved cloud-tracked winds using a hyper stereo retrieval technique. Deployment into a precessing low earth orbit would be optimal for measuring diurnal cloud activity. We have explored an instrument design concept for this that looks promising if we can establish partnerships that provide launch and bus capabilities.

  1. Marine cloud brightening

    PubMed Central

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action. PMID:22869798

  2. Development of a satellite-based nowcasting system for surface solar radiation

    NASA Astrophysics Data System (ADS)

    Limbach, Sebastian; Hungershoefer, Katja; Müller, Richard; Trentmann, Jörg; Asmus, Jörg; Schömer, Elmar; Groß, André

    2014-05-01

    The goal of the RadNowCast project was the development of a tool-chain for a satellite-based nowcasting of the all sky global and direct surface solar radiation. One important application of such short-term forecasts is the computation of the expected energy yield of photovoltaic systems. This information is of great importance for an efficient balancing of power generation and consumption in large, decentralized power grids. Our nowcasting approach is based on an optical-flow analysis of a series of Meteosat SEVIRI satellite images. For this, we extended and combined several existing software tools and set up a series of benchmarks for determining the optimal forecasting parameters. The first step in our processing-chain is the determination of the cloud albedo from the HRV (High Resolution Visible)-satellite images using a Heliosat-type method. The actual nowcasting is then performed by a commercial software system in two steps: First, vector fields characterizing the movement of the clouds are derived from the cloud albedo data from the previous 15 min to 2 hours. Next, these vector fields are combined with the most recent cloud albedo data in order to extrapolate the cloud albedo in the near future. In the last step of the processing, the Gnu-Magic software is used to calculate the global and direct solar radiation based on the forecasted cloud albedo data. For an evaluation of the strengths and weaknesses of our nowcastig system, we analyzed four different benchmarks, each of which covered different weather conditions. We compared the forecasted data with radiation data derived from the real satellite images of the corresponding time steps. The impact of different parameters on the cloud albedo nowcasting and the surface radiation computation has been analysed. Additionally, we could show that our cloud-albedo-based forecasts outperform forecasts based on the original HRV images. Possible future extension are the incorporation of additional data sources, for example NWC-SAF high resolution wind fields, in order to improve the quality of the atmospheric motion fields, and experiments with custom, optimized software components for the optical-flow estimation and the nowcasting.

  3. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering/shipping could have substantial local radiative effects, but is unlikely to be effective as the sole means of counterbalancing warming due to climate change.

  4. Equilibrium Temperatures and Albedos of Habitable Earth-Like Planets in a Coupled Atmosphere-Ocean GCM

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony; Way, Michael; Amundsen, David; Sohl, Linda; Fujii, Yuka; Ebihara, Yuka; Kiang, Nancy; Chandler, Mark; Aleinov, Igor; Kelley, Maxwell

    2017-01-01

    The potential habitability of detected exoplanets is typically assessed using the concept of equilibrium temperature (T[subscript] e) based on cloud-free 1-D models with assumed albedo equal to Earth's (0.3) to determine whether a planet lies in the habitable zone. Incident stellar flux appears to be a better metric for stars unlike the Sun. These estimates, however, ignore the effect of clouds on planetary albedo and the fact that the climates of synchronously rotating planets are not well predicted by 1-D models. Given that most planet candidates that will be detected in the next few years will be tidally locked and orbiting M stars, how might the habitable zone e tailored to better in-form characterization with scarce observing resources?

  5. Atmospheric Polarization Imaging with Variable Aerosols and Clouds

    DTIC Science & Technology

    2010-12-10

    aerosol sensors to study the effect of variable clouds and aerosols on skylight polarization in the 450 – 780 nm spectral region. Near the end the... skylight (either below the cloud or in a cloud-free portion of the sky), but that they often do not alter the angle of polarization beneath the clouds...relationship also was developed for an initial model of how increasing surface albedo reduces the overhead skylight polarization. 15. SUBJECT

  6. Constraining the instantaneous aerosol influence on cloud albedo

    DOE PAGES

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; ...

    2017-04-26

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol–cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration ( N d), previous studies have used the sensitivity of the N d to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol andmore » cloud properties in the present-day climate may not be suitable for determining the sensitivity of the N d to anthropogenic aerosol perturbations. Using an ensemble of global aerosol–climate models, this study demonstrates how joint histograms between N d and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. Furthermore, the accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol–cloud interactions in satellite data.« less

  7. Constraining the instantaneous aerosol influence on cloud albedo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol–cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration ( N d), previous studies have used the sensitivity of the N d to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol andmore » cloud properties in the present-day climate may not be suitable for determining the sensitivity of the N d to anthropogenic aerosol perturbations. Using an ensemble of global aerosol–climate models, this study demonstrates how joint histograms between N d and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. Furthermore, the accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol–cloud interactions in satellite data.« less

  8. Constraining the instantaneous aerosol influence on cloud albedo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine

    2017-04-26

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol–cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration (Nd), previous studies have used the sensitivity of the Nd to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties inmore » the present-day climate may not be suitable for determining the sensitivity of the Nd to anthropogenic aerosol perturbations. Using an ensemble of global aerosol–climate models, this study demonstrates how joint histograms between Nd and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol–cloud interactions in satellite data.« less

  9. Constraining the instantaneous aerosol influence on cloud albedo.

    PubMed

    Gryspeerdt, Edward; Quaas, Johannes; Ferrachat, Sylvaine; Gettelman, Andrew; Ghan, Steven; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Wang, Minghuai; Zhang, Kai

    2017-05-09

    Much of the uncertainty in estimates of the anthropogenic forcing of climate change comes from uncertainties in the instantaneous effect of aerosols on cloud albedo, known as the Twomey effect or the radiative forcing from aerosol-cloud interactions (RFaci), a component of the total or effective radiative forcing. Because aerosols serving as cloud condensation nuclei can have a strong influence on the cloud droplet number concentration ( N d ), previous studies have used the sensitivity of the N d to aerosol properties as a constraint on the strength of the RFaci. However, recent studies have suggested that relationships between aerosol and cloud properties in the present-day climate may not be suitable for determining the sensitivity of the N d to anthropogenic aerosol perturbations. Using an ensemble of global aerosol-climate models, this study demonstrates how joint histograms between N d and aerosol properties can account for many of the issues raised by previous studies. It shows that if the anthropogenic contribution to the aerosol is known, the RFaci can be diagnosed to within 20% of its actual value. The accuracy of different aerosol proxies for diagnosing the RFaci is investigated, confirming that using the aerosol optical depth significantly underestimates the strength of the aerosol-cloud interactions in satellite data.

  10. Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The possible climatic effects of a drastic decrease in cloud condensation nuclei (CCN) associated with a severe reduction in the global marine phytoplankton abundance are investigated. Calculations suggest that a reduction in CCN of more than 80 percent and the resulting decrease in marine cloud albedo could have produced a rapid global warming of 6 C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.

  11. Boreal forests, aerosols and the impacts on clouds and climate.

    PubMed

    Spracklen, Dominick V; Bonn, Boris; Carslaw, Kenneth S

    2008-12-28

    Previous studies have concluded that boreal forests warm the climate because the cooling from storage of carbon in vegetation and soils is cancelled out by the warming due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored the impacts of forests on atmospheric aerosol. We use a global atmospheric model to show that, through emission of organic vapours and the resulting condensational growth of newly formed particles, boreal forests double regional cloud condensation nuclei concentrations (from approx. 100 to approx. 200 cm(-3)). Using a simple radiative model, we estimate that the resulting change in cloud albedo causes a radiative forcing of between -1.8 and -6.7 W m(-2) of forest. This forcing may be sufficiently large to result in boreal forests having an overall cooling impact on climate. We propose that the combination of climate forcings related to boreal forests may result in an important global homeostasis. In cold climatic conditions, the snow-vegetation albedo effect dominates and boreal forests warm the climate, whereas in warmer climates they may emit sufficiently large amounts of organic vapour modifying cloud albedo and acting to cool climate.

  12. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m2, with the largest contribution from the direct effect (-0.5 W/m2). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m2) and semidirect effects (-0.10 W/m2) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m2), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.

  13. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each emission sector has varying impacts by geographical region. For example, the single sector most responsible for a net positive radiative forcing is the transportation sector in the United States, agricultural burning and transportation in Europe, and the domestic emission sector in Asia. These sectors are attractive mitigation targets.

  14. The effects of cloud inhomogeneities upon radiative fluxes, and the supply of a cloud truth validation dataset

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.

    1993-01-01

    A series of cloud and sea ice retrieval algorithms are being developed in support of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Science Team objectives. These retrievals include the following: cloud fractional area, cloud optical thickness, cloud phase (water or ice), cloud particle effective radius, cloud top heights, cloud base height, cloud top temperature, cloud emissivity, cloud 3-D structure, cloud field scales of organization, sea ice fractional area, sea ice temperature, sea ice albedo, and sea surface temperature. Due to the problems of accurately retrieving cloud properties over bright surfaces, an advanced cloud classification method was developed which is based upon spectral and textural features and artificial intelligence classifiers.

  15. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

    NASA Astrophysics Data System (ADS)

    Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.

    2016-11-01

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m-2 pan-Arctic-mean cooling), exceeding -1 W m-2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  16. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect.

    PubMed

    Croft, B; Wentworth, G R; Martin, R V; Leaitch, W R; Murphy, J G; Murphy, B N; Kodros, J K; Abbatt, J P D; Pierce, J R

    2016-11-15

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m -2 pan-Arctic-mean cooling), exceeding -1 W m -2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  17. Study of the consistency of climatological products of Nimbus-7

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1988-01-01

    The study, in addition to investigating the consistency of climatological products from Nimbus-7 Earth Radiation Budget and Temperature Humidity Infrared Radiometer experiments, focussed on the climatological analysis of the specified regions of the Earth. The climatological study consisted of the effects of various types of clouds on the net radiation, albedos, and emitted radiation. In addition to a correlational study for determining consistency level of data, a population study of the regions was formulated and conducted. The regions under this study were formed by clustering the target areas using the criteria of climatological conditions such as geography, ocean, and land. Research is limited to tropics from 18 deg north to 18 deg south. A correlational study indicates that there is high positive correlation between high clouds and albedo, and a reduced negative correlation between albedo and net radiation.

  18. The variability of California summertime marine stratus: impacts on surface air temperatures

    USGS Publications Warehouse

    Iacobellis, Sam F.; Cayan, Daniel R.

    2013-01-01

    This study investigates the variability of clouds, primarily marine stratus clouds, and how they are associated with surface temperature anomalies over California, especially along the coastal margin. We focus on the summer months of June to September when marine stratus are the dominant cloud type. Data used include satellite cloud reflectivity (cloud albedo) measurements, hourly surface observations of cloud cover and air temperature at coastal airports, and observed values of daily surface temperature at stations throughout California and Nevada. Much of the anomalous variability of summer clouds is organized over regional patterns that affect considerable portions of the coast, often extend hundreds of kilometers to the west and southwest over the North Pacific, and are bounded to the east by coastal mountains. The occurrence of marine stratus is positively correlated with both the strength and height of the thermal inversion that caps the marine boundary layer, with inversion base height being a key factor in determining their inland penetration. Cloud cover is strongly associated with surface temperature variations. In general, increased presence of cloud (higher cloud albedo) produces cooler daytime temperatures and warmer nighttime temperatures. Summer daytime temperature fluctuations associated with cloud cover variations typically exceed 1°C. The inversion-cloud albedo-temperature associations that occur at daily timescales are also found at seasonal timescales.

  19. Arctic sea ice albedo - A comparison of two satellite-derived data sets

    NASA Technical Reports Server (NTRS)

    Schweiger, Axel J.; Serreze, Mark C.; Key, Jeffrey R.

    1993-01-01

    Spatial patterns of mean monthly surface albedo for May, June, and July, derived from DMSP Operational Line Scan (OLS) satellite imagery are compared with surface albedos derived from the International Satellite Cloud Climatology Program (ISCCP) monthly data set. Spatial patterns obtained by the two techniques are in general agreement, especially for June and July. Nevertheless, systematic differences in albedo of 0.05 - 0.10 are noted which are most likely related to uncertainties in the simple parameterizations used in the DMSP analyses, problems in the ISCCP cloud-clearing algorithm and other modeling simplifications. However, with respect to the eventual goal of developing a reliable automated retrieval algorithm for compiling a long-term albedo data base, these initial comparisons are very encouraging.

  20. Development of a thermal gradient cloud condensation nucleus spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Friedl, R.

    2004-01-01

    Droplet clouds are one of the most important factors controlling the albedo and hence the temperature of out planet. Anthropogenic aerosols, such as black carbon (BC) organic carbon (OC) and sulfate, have a strong influence on cloud albedo. IPCC (2001) has estimated the global mean forcing from aerosols to be potentially as large as that of green house gases but opposite in sign. However, the uncertainties associated with the indirect aerosol forcing preclude a quantitative estimate. An additional impact on the indirect aerosol forcing, not quantified by IPCC, arises from recently identified chemical factors, for examples, interactions of atmospheric soluble gases, slightly soluble solutes, and organic substance with aerosols, which may influence the formation of cloud droplets. Recent studies suggest that inclusion of chemical effects on aerosol droplets. We plan to conduct several critical laboratory experiments that will reduce the uncertainty associated with indirect radiative forcing due to chemical modification of sulfate and BC aerosols by ambient gases.

  1. Arctic energy budget in relation to sea-ice variability on monthly to annual time scales

    NASA Astrophysics Data System (ADS)

    Krikken, Folmer; Hazeleger, Wilco

    2015-04-01

    The strong decrease in Arctic sea-ice in recent years has triggered a strong interest in Arctic sea-ice predictions on seasonal to decadal time scales. Hence, it is key to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. The authors report on an analysis of natural variability of Arctic sea-ice from an energy budget perspective, using 15 CMIP5 climate models, and comparing these results to atmospheric and oceanic reanalyses data. We quantify the persistence of sea ice anomalies and the cross-correlation with the surface and top energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal sea-ice albedo feedback, in which sea-ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of ocean lies mainly in storing heat content anomalies in spring, and releasing them in autumn. Ocean heat flux variations only play a minor role. The role of clouds is further investigated. We demonstrate that there is no direct atmospheric response of clouds to spring sea-ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud-ice feedback in late spring and summer, but there is a cloud-ice feedback in autumn, which strengthens the ice-albedo feedback. Anomalies in insolation are positively correlated with sea-ice variability. This is primarily a result of reduced multiple-reflection of insolation due to an albedo decrease. This effect counteracts the sea-ice albedo effect up to 50%. ERA-Interim and ORAS4 confirm the main findings from the climate models.

  2. Sea Ice, Clouds, Sunlight, and Albedo: The Umbrella Versus the Blanket

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.

    2017-12-01

    The Arctic sea ice cover has undergone a major decline in recent years, with reductions in ice extent, ice thickness, and ice age. Understanding the feedbacks and forcing driving these changes is critical in improving predictions. The surface radiation budget plays a central role in summer ice melt and is governed by clouds and surface albedo. Clouds act as an umbrella reducing the downwelling shortwave, but also serve as a blanket increasing the downwelling longwave, with the surface albedo also determining the net balance. Using field observations from the SHEBA program, pairs of clear and cloudy days were selected for each month from May through September and the net radiation flux was calculated for different surface conditions and albedos. To explore the impact of albedo we calculated a break even albedo, where the net radiation for cloudy skies is the same as clear skies. For albedos larger than the break-even value the net radiation flux is smaller under clear skies compared to cloudy skies. Break-even albedos ranged from 0.30 in September to 0.58 in July. For snow covered or bare ice, clear skies always resulted in less radiative heat input. In contrast, leads always had, and ponds usually had, more radiative heat input under clear skies than cloudy skies. Snow covered ice had a net radiation flux that was negative or near zero under clear skies resulting in radiative cooling. We combined the albedo of individual ice types with the area of those ice types to calculate albedos averaged over a 50 km x 50 km area. The July case had the smallest areally averaged albedo of 0.50. This was less than the breakeven albedo, so cloudy skies had a smaller net radiation flux than clear skies. For the cases from the other four months, the areally averaged albedo was greater than the break-even albedo. The areally averaged net radiation flux was negative under clear skies for the May and September cases.

  3. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Daniel; Burrows, Susannah M.; Wood, R.

    2015-07-17

    Small particles called aerosols act as nucleation sites for cloud drop formation, affecting clouds and cloud properties – ultimately influencing the cloud dynamics, lifetime, water path and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations not only affect cloud properties themselves, but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. Here, it is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more thanmore » half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd over regions of high biological activity is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35-45°S) and by organic matter in sea spray aerosol at higher latitudes (45-55°S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m-2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.« less

  4. Narrowing the Gap in Quantification of Aerosol-Cloud Radiative Effects

    NASA Astrophysics Data System (ADS)

    Feingold, G.; McComiskey, A. C.; Yamaguchi, T.; Kazil, J.; Johnson, J. S.; Carslaw, K. S.

    2016-12-01

    Despite large advances in our understanding of aerosol and cloud processes over the past years, uncertainty in the aerosol-cloud radiative effect/forcing is still of major concern. In this talk we will advocate a methodology for quantifying the aerosol-cloud radiative effect that considers the primacy of fundamental cloud properties such as cloud amount and albedo alongside the need for process level understanding of aerosol-cloud interactions. We will present a framework for quantifying the aerosol-cloud radiative effect, regime-by-regime, through process-based modelling and observations at the large eddy scale. We will argue that understanding the co-variability between meteorological and aerosol drivers of the radiative properties of the cloud system may be as important an endeavour as attempting to untangle these drivers.

  5. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow

    NASA Astrophysics Data System (ADS)

    Li, J.-L. F.; Richardson, Mark; Hong, Yulan; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Fetzer, Eric; Stephens, Graeme; Liu, Yinghui

    2017-08-01

    Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation, but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we show that the radiative effects of precipitating ice (falling snow) contribute substantially to this discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave albedo and downward longwave radiation. Using two simulations with the climate model CESM1, we show that including falling-snow radiative effects improves the simulations relative to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice concentration from passive microwave sensors. From 50-70°S, the simulated sea-ice-area bias is reduced by 2.12 × 106 km2 (55%) in winter and by 1.17 × 106 km2 (39%) in summer, mainly because increased wintertime longwave heating restricts sea-ice growth and so reduces summer albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea level contributions and changes in global warming driven by long-term changes in Southern Ocean feedbacks.

  6. Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-07-01

    Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength). The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0-200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI) in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500-1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field). The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500-1000 m cloud altitude), which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30 % in retrievals of τ and effective radius reff, respectively. With the help of Δ L, an estimate of the distance to the ice edge is given, where the retrieval uncertainties due to 3-D radiative effects are negligible.

  7. Seasonal Bias of Retrieved Ice Cloud Optical Properties Based on MISR and MODIS Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Hioki, S.; Yang, P.; Di Girolamo, L.; Fu, D.

    2017-12-01

    The precise estimation of two important cloud optical and microphysical properties, cloud particle optical thickness and cloud particle effective radius, is fundamental in the study of radiative energy budget and hydrological cycle. In retrieving these two properties, an appropriate selection of ice particle surface roughness is important because it substantially affects the single-scattering properties. At present, using a predetermined ice particle shape without spatial and temporal variations is a common practice in satellite-based retrieval. This approach leads to substantial uncertainties in retrievals. The cloud radiances measured by each of the cameras of the Multi-angle Imaging SpectroRadiometer (MISR) instrument are used to estimate spherical albedo values at different scattering angles. By analyzing the directional distribution of estimated spherical albedo values, the degree of ice particle surface roughness is estimated. With an optimal degree of ice particle roughness, cloud optical thickness and effective radius are retrieved based on a bi-spectral shortwave technique in conjunction with two Moderate Resolution Imaging Spectroradiometer (MODIS) bands centered at 0.86 and 2.13 μm. The seasonal biases of retrieved cloud optical and microphysical properties, caused by the uncertainties in ice particle roughness, are investigated by using one year of MISR-MODIS fused data.

  8. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  9. Perspectives of Future Satellite Observations for Studying Aerosol-Cloud Interactions

    NASA Astrophysics Data System (ADS)

    Vane, D. G.; Stephens, G. L.

    2008-12-01

    There are many studies that examine the effects of aerosol on clouds and the consequence of these effects for climate. Much of the focus of these interactions revolve around two types of indirect effects. Using the A- Train as a resource for studying these interactions as a way of defining the requirements for future new missions, we find that the sensitivity of the cloud albedo, as observed by CERES, to aerosol varies according to these various conditions and does not simply correlate with decreased particle size as is typically assumed. It is clear that these effects require more in-depth information about cloud water path, and the occurrence and amount of precipitation and the environmental conditions in which the interactions take place. Information about the motions in clouds, the depths of clouds and more resolved microphysical details on cloud and drizzle are essential to study these effects. Perhaps more important than indirect effects on cloud albedo are the possible effects of aerosol on precipitation. There is much speculation about such influences and the A-Train observations are beginning to reveal much insight on such effects. These observations appear to suggest that the effects on shallow clouds is to delay precipitation production and reduce rainfall as has been speculated. The effects of aerosol on the precipitation falling from deep convection is less clear and more difficult to observe, although many model studies consistently suggest that the effects might be even more pronounced than on shallow convection through, among other mechanisms, the invigoration of storms via freezing of elevated water contents in updrafts. Such studies are now clearly pointing to the need to define the water contents and microphysics of hydrometeors in convective updrafts. This talk draws on these results as a way of framing the definition of the cloud-aerosol and precipitation component of the ACE mission of the decadal survey. This mission represents the follow-on to CloudSat and CALIPSO and notional measurement needs will be discussed.

  10. Entrainment, Drizzle, and Cloud Albedo

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Kirkpatrick, J. P.; Stevens, D. E.; Toon, O. B.

    2004-01-01

    Increased aerosol and hence droplet concentrations in polluted clouds are expected to inhibit precipitation and thereby increase cloud water, leading to more reflective clouds that partially offset global warming. Yet polluted clouds are not generally observed to hold more water. Much of the uncertainty regarding the indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations show that the relative humidity of air overlying stratocumulus is a leading factor determining whether cloud water increases or decreases when precipitation is suppressed. When the overlying air is dry, cloud water can decrease as droplet concentrations increase.

  11. The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds

    NASA Technical Reports Server (NTRS)

    Davies, R.

    1978-01-01

    Results are presented for a Monte Carlo model applied to a wide range of cloud widths and heights, and for an analytical model restricted in its application to cuboidally shaped clouds whose length, breadth, and depth may be varied independently; the clouds must be internally homogeneous with respect to their intrinsic radiative properties. Comparative results from the Monte Carlo method and the derived analytical model are presented for a wide range of cloud sizes, with special emphasis on the effects of varying the single scatter albedo, the solar zenith angle, and the scattering phase angle.

  12. New particle formation leads to cloud dimming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Ryan C.; Crippa, Paola; Matsui, Hitoshi

    New particle formation (NPF), nucleation of condensable vapors to the solid or liquid phase, is a significant source of atmospheric aerosol particle number concentrations. With sufficient growth, these nucleated particles may be a significant source of cloud condensation nuclei (CCN), thus altering cloud albedo, structure, and lifetimes, and insolation reaching the Earth's surface. Herein we present one of the first numerical experiments to quantify the impact of NPF on cloud radiative properties that is conducted at a convection permitting resolution and that explicitly simulates cloud droplet number concentrations. Consistent with observations, these simulations suggest that in spring over the Midwesternmore » U.S.A., NPF occurs frequently and on regional scales. However, the simulations suggest that NPF is not associated with enhancement of regional cloud albedos as would be expected from an increase of CCN. These simulations indicate that NPF reduces ambient sulfuric acid concentrations sufficiently to inhibit growth of preexisting particles to CCN sizes. This reduction in CCN-sized particles reduces cloud albedo, resulting in a domain average positive top of atmosphere cloud radiative forcing of 10 W m-2 and up to ~ 50 W m-2 in individual grid cells relative to a simulation in which NPF is excluded.« less

  13. Vertical profile of cloud optical parameters derived from airborne measurements above, inside and below clouds

    NASA Astrophysics Data System (ADS)

    Melnikova, Irina; Gatebe, Charles K.

    2018-07-01

    Past strategies for retrieving cloud optical properties from remote sensing assumed significant limits for desired parameters such as semi-infinite optical thickness, single scattering albedo equaling unity (non-absorbing scattering), absence of spectral dependence of the optical thickness, etc., and only one optical parameter could be retrieved (either optical thickness or single scattering albedo). Here, we demonstrate a new method based on asymptotic theory for thick atmospheres, and the presence of a diffusion domain within the clouds that does not put restrictions and makes it possible to get two or even three optical parameters (optical thickness, single scattering albedo and phase function asymmetry parameter) for every wavelength independently. We applied this method to measurements of angular distribution of solar radiation above, inside and below clouds, obtained with NASA's Cloud Absorption Radiometer (CAR) over two cases of marine stratocumulus clouds; first case, offshore of Namibia and the second case, offshore of California. The observational and retrieval errors are accounted for by regularization, which allows stable and smooth solutions. Results show good potential for parameterization of the shortwave radiative properties (reflection, transmission, radiative divergence and heating rate) of water clouds.

  14. Statistical Analyses of Satellite Cloud Object Data From CERES. Part 4; Boundary-layer Cloud Objects During 1998 El Nino

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce A.; Parker, Lindsay

    2006-01-01

    Three boundary-layer cloud object types, stratus, stratocumulus and cumulus, that occurred over the Pacific Ocean during January-August 1998, are identified from the CERES (Clouds and the Earth s Radiant Energy System) single scanner footprint (SSF) data from the TRMM (Tropical Rainfall Measuring Mission) satellite. This study emphasizes the differences and similarities in the characteristics of each cloud-object type between the tropical and subtropical regions and among different size categories and among small geographic areas. Both the frequencies of occurrence and statistical distributions of cloud physical properties are analyzed. In terms of frequencies of occurrence, stratocumulus clouds dominate the entire boundary layer cloud population in all regions and among all size categories. Stratus clouds are more prevalent in the subtropics and near the coastal regions, while cumulus clouds are relatively prevalent over open ocean and the equatorial regions, particularly, within the small size categories. The largest size category of stratus cloud objects occurs more frequently in the subtropics than in the tropics and has much larger average size than its cumulus and stratocumulus counterparts. Each of the three cloud object types exhibits small differences in statistical distributions of cloud optical depth, liquid water path, TOA albedo and perhaps cloud-top height, but large differences in those of cloud-top temperature and OLR between the tropics and subtropics. Differences in the sea surface temperature (SST) distributions between the tropics and subtropics influence some of the cloud macrophysical properties, but cloud microphysical properties and albedo for each cloud object type are likely determined by (local) boundary-layer dynamics and structures. Systematic variations of cloud optical depth, TOA albedo, cloud-top height, OLR and SST with cloud object sizes are pronounced for the stratocumulus and stratus types, which are related to systematic variations of the strength of inversion with cloud object sizes, produced by large-scale subsidence. The differences in cloud macrophysical properties over small regions are significantly larger than those of cloud microphysical properties and TOA albedo, suggesting a greater control of (local) large-scale dynamics and other factors on cloud object properties. When the three cloud object types are combined, the relative population among the three types is the most important factor for determining the cloud object properties in a Pacific transect where the transition of boundary-layer cloud types takes place.

  15. Influence of Venus topography on the zonal wind and UV albedo at cloud top level: The role of stationary gravity waves

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatuntsev, I. V.; Hauchecorne, A.; Markiewicz, W. J.; Marcq, E.; Lebonnois, S.; Patsaeva, M.; Turin, A.; Fedorova, A.

    2016-06-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67 ± 2 km) collected with Venus Monitoring Camera on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the uplift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there, and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen (1981) but is not reproduced in the current GCM of Venus atmosphere from LMD. (Laboratoire de Météorologie Dynamique) In the equatorial regions, the UV albedo at 365 nm varies also with longitude. We argue that this variation may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings the UV absorber at cloud top level and decreases the albedo and vice versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. This interpretation is comforted by a recent map of cloud top H2O, showing that near the equator the lower UV albedo longitude region is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  16. Analysis of albedo versus cloud fraction relationships in liquid water clouds using heuristic models and large eddy simulation

    NASA Astrophysics Data System (ADS)

    Feingold, Graham; Balsells, Joseph; Glassmeier, Franziska; Yamaguchi, Takanobu; Kazil, Jan; McComiskey, Allison

    2017-07-01

    The relationship between the albedo of a cloudy scene A and cloud fraction fc is studied with the aid of heuristic models of stratocumulus and cumulus clouds. Existing work has shown that scene albedo increases monotonically with increasing cloud fraction but that the relationship varies from linear to superlinear. The reasons for these differences in functional dependence are traced to the relationship between cloud deepening and cloud widening. When clouds deepen with no significant increase in fc (e.g., in solid stratocumulus), the relationship between A and fc is linear. When clouds widen as they deepen, as in cumulus cloud fields, the relationship is superlinear. A simple heuristic model of a cumulus cloud field with a power law size distribution shows that the superlinear A-fc behavior is traced out either through random variation in cloud size distribution parameters or as the cloud field oscillates between a relative abundance of small clouds (steep slopes on a log-log plot) and a relative abundance of large clouds (flat slopes). Oscillations of this kind manifest in large eddy simulation of trade wind cumulus where the slope and intercept of the power law fit to the cloud size distribution are highly correlated. Further analysis of the large eddy model-generated cloud fields suggests that cumulus clouds grow larger and deeper as their underlying plumes aggregate; this is followed by breakup of large plumes and a tendency to smaller clouds. The cloud and thermal size distributions oscillate back and forth approximately in unison.

  17. Atmospheric Polarization Imaging with Variable Aerosols and Clouds

    DTIC Science & Technology

    2010-12-10

    based aerosol sensors to study the effect of variable clouds and aerosols on skylight polarization in the 450 – 780 nm spectral region. Near the end the...of skylight (either below the cloud or in a cloud-free portion of the sky), but that they often do not alter the angle of polarization beneath the...polarization. A relationship also was developed for an initial model of how increasing surface albedo reduces the overhead skylight polarization. 15

  18. Limits to the Indirect Aerosol Forcing in Stratocumulus

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew; Toon, O.; Stevens, D.; Coakley, J., Jr.

    2003-01-01

    The indirect radiative forcing of aerosols is poorly constrained by the observational data underlying the simple cloud parameterizations in GCMs. signal of cloud response to increased aerosol concentrations from meteorological noise. Recent satellite observations indicate a significant decrease of cloud water in ship tracks, in contrast to an ensemble of in situ measurements showing no average change in cloud water relative to the surrounding clouds. Both results contradict the expectation of cloud water increasing in polluted clouds. We find through large-eddy simulations of stratocumulus that the trend in the satellite data is likely an artifact of sampling only overcast clouds. The simulations instead show cloud cover increasing with droplet concentrations. The simulations also show that increases in cloud water from suppressing drizzle by increased droplet concentrations are favored at night or at extremely low droplet concentrations. At typical droplet concentrations we find that the Twomey effect on cloud albedo is amplified very little by the secondary indirect effect of drizzle suppression, largely because the absorption of solar radiation by cloud water reduces boundary-layer mixing in the daytime and thereby restricts any possible increase in cloud water from drizzle suppression. The cloud and boundary layer respond to radiative heating variations on a time scale of hours, and on longer time scales respond to imbalances between large-scale horizontal advection and the entrainment of inversion air. We analyze the co-varying response of cloud water, cloud thickness, width of droplet size distributions, and dispersion of the optical depth, as well as the overall response of cloud albedo, to changes in droplet concentrations. We also dissect the underlying physical mechanisms through sensitivity studies. Ship tracks represent an ideal natural laboratory to extricate the

  19. Clouds enhance Greenland ice sheet mass loss

    NASA Astrophysics Data System (ADS)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  20. A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Noone, Kevin J.; Johnson, Doug W.; Taylor, Jonathan P.; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Durkee, Philip A.; Nielsen, Kurt; Öström, Elisabeth; O'Dowd, Colin; Smith, Michael H.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; de Bock, Lieve; van Grieken, René E.; Hudson, James G.; Brooks, Ian;  Gasparovic, Richard F.;  Pockalny, Robert A.

    2000-08-01

    A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.

  1. A regional analysis of cloudy mean spherical albedo over the marine stratocumulus region and the tropical Atlantic Ocean. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Ginger, Kathryn M.

    1993-01-01

    Since clouds are the largest variable in Earth's radiation budget, it is critical to determine both the spatial and temporal characteristics of their radiative properties. The relationships between cloud properties and cloud fraction are studied in order to supplement grid scale parameterizations. The satellite data used is from three hourly ISCCP (International Satellite Cloud Climatology Project) and monthly ERBE (Earth Radiation Budget Experiment) data on a 2.5 deg x 2.5 deg latitude-longitude grid. Mean cloud spherical albedo, the mean optical depth distribution, and cloud fraction are examined and compared off the coast of California and the mid-tropical Atlantic for July 1987 and 1988. Individual grid boxes and spatial averages over several grid boxes are correlated to Coakley's theory of reflection for uniform and broken layered cloud and to Kedem, et al.'s findings that rainfall volume and fractional area of rain in convective systems is linear. Kedem's hypothesis can be expressed in terms of cloud properties. That is, the total volume of liquid in a box is a linear function of cloud fraction. Results for the marine stratocumulus regime indicate that albedo is often invariant for cloud fractions of 20% to 80%. Coakley's satellite model of small and large clouds with cores (1 km) and edges (100 m) is consistent with this observation. The cores maintain high liquid water concentrations and large droplets while the edges contain low liquid water concentrations and small droplets. Large clouds are just a collection of cores. The mean optical depth (TAU) distributions support the above observation with TAU values of 3.55 to 9.38 favored across all cloud fractions. From these results, a method based upon Kedem, et al's theory is proposed to separate the cloud fraction and liquid water path (LWP) calculations in a general circulation model (GCM). In terms of spatial averaging, a linear relationship between albedo and cloud fraction is observed. For tropical locations outside the Intertropical Convergence Zone (ITCZ), results of cloud fraction and albedo spatial averaging followed that of the stratus boxes containing few overcast scenes. Both the ideas of Coakley and Kedem, et al. apply. Within the ITCZ, the grid boxes tended to have the same statistical properties as stratus boxes containing many overcast scenes. Because different dynamical forcing mechanisms are present, it is difficult to devise a method for determining subgrid scale variations. Neither of the theories proposed by Kedem, et al. or Coakley works well for the boxes with numerous overcast scenes.

  2. A Regional Analysis of Cloudy Mean Spherical Albedo over the Marine Stratocumulus Region and the Tropical Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Ginger, Kathryn M.

    1993-01-01

    Since clouds are the largest variable in Earth's radiation budget, it is critical to determine both the spatial and temporal characteristics of their radiative properties. This study examines the relationships between cloud properties and cloud fraction in order to supplement grid scale parameterizations. The satellite data used in this study is from three hourly ISCCP (International Satellite Cloud Climatology Project) and monthly ERBE (Earth Radiation Budget Experiment) data on a 2.50 x 2.50 latitude-longitude grid. Mean cloud spherical albedo, the mean optical depth distribution and cloud fraction are examined and compared off the coast of California and the mid-tropical Atlantic for July 1987 and 1988. Individual grid boxes and spatial averages over several grid boxes are correlated to Coakleys (1991) theory of reflection for uniform and broken layered cloud and to Kedem, et al.(1990) findings that rainfall volume and fractional area of rain in convective systems is linear. Kedem's hypothesis can be expressed in terms of cloud properties. That is, the total volume of liquid in a box is a linear function of cloud fraction. Results for the marine stratocumulus regime indicate that albedo is often invariant for cloud fractions of 20% to 80%. Coakley's satellite model of small and large clouds with cores (1 km) and edges (100 in) is consistent with this observation. The cores maintain high liquid water concentrations and large droplets while the edges contain low liquid water concentrations and small droplets. Large clouds are just a collection of cores. The mean optical depth (TAU) distributions support the above observation with TAU values of 3.55 to 9.38 favored across all cloud fractions. From these results, a method based upon Kedem, et al. theory is proposed to separate the cloud fraction and liquid water path (LWP) calculations in a general circulation model (GCM). In terms of spatial averaging, a linear relationship between albedo and cloud fraction is observed. For tropical locations outside the Intertropical Convergence Zone (ITCZ), results of cloud fraction and albedo spatial averaging followed that of the stratus boxes containing few overcast scenes. Both the ideas of Coakley and Kedem, et al. apply. Within the ITCZ, the grid boxes tended to have the same statistical properties as stratus boxes containing many overcast scenes. Because different dynamical forcing mechanisms are present, it is difficult to devise a method for determining subgrid scale variations. Neither of the theories proposed by Kedem, et al. or Coakley works well for the boxes with numerous overcast scenes.

  3. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo

    PubMed Central

    McCoy, Daniel T.; Burrows, Susannah M.; Wood, Robert; Grosvenor, Daniel P.; Elliott, Scott M.; Ma, Po-Lun; Rasch, Phillip J.; Hartmann, Dennis L.

    2015-01-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties—ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in Nd is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35o to 45oS) and by organic matter in sea spray aerosol at higher latitudes (45o to 55oS). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m–2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere. PMID:26601216

  4. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo.

    PubMed

    McCoy, Daniel T; Burrows, Susannah M; Wood, Robert; Grosvenor, Daniel P; Elliott, Scott M; Ma, Po-Lun; Rasch, Phillip J; Hartmann, Dennis L

    2015-07-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties-ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration N d of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed N d. Enhanced N d is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in N d is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35(o) to 45(o)S) and by organic matter in sea spray aerosol at higher latitudes (45(o) to 55(o)S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m(-2) over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

  5. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

    PubMed Central

    Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.

    2016-01-01

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about −0.5 W m−2 pan-Arctic-mean cooling), exceeding −1 W m−2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological–chemical processes may be susceptible to Arctic warming and industrialization. PMID:27845764

  6. Assessing the aerosol direct and first indirect effects using ACM/GCM simulation results

    NASA Astrophysics Data System (ADS)

    Huang, H.; Gu, Y.; Xue, Y.; Lu, C. H.

    2016-12-01

    Atmospheric aerosols have been found to play an important role in global climate change but there are still large uncertainty in evaluating its role in the climate system. The aerosols generally affect global and regional climate through the scattering and the absorption of solar radiation (direct effect) and through their influences on cloud particle, number and sizes (first indirect effect). The indirect effect will further affects cloud water content, cloud top albedo and surface precipitations. In this study, we investigate the global climatic effect of aerosols using a coupled NCEP Global Forecast System (GFS) and a land surface model (SSiB2) The OPAC (Optical Properties of Aerosols and Clouds) database is used for aerosol effect. The OPAC data provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions for investigating the global direct and first indirect effects of dust aerosols. For indirect forcings due to liquid water, we follow the approach presented by Jiang et al (2011), in which a parameterization of cloud effective radius was calculated to describe its variance with convective strength and aerosol concentration. Since the oceans also play an important role on aerosol climatic effect, we also design a set of simulations using a coupled atmosphere/ocean model (CFS) to evaluate the sensitivity of aerosol effect with two-way atmosphere-ocean interactions.

  7. Ship track observations of a reduced shortwave aerosol indirect effect in mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Christensen, M. W.; Suzuki, K.; Zambri, B.; Stephens, G. L.

    2014-10-01

    Aerosol influences on clouds are a major source of uncertainty to our understanding of forced climate change. Increased aerosol can enhance solar reflection from clouds countering greenhouse gas warming. Recently, this indirect effect has been extended from water droplet clouds to other types including mixed-phase clouds. Aerosol effects on mixed-phase clouds are important because of their fundamental role on sea ice loss and polar climate change, but very little is known about aerosol effects on these clouds. Here we provide the first analysis of the effects of aerosol emitted from ship stacks into mixed-phase clouds. Satellite observations of solar reflection in numerous ship tracks reveal that cloud albedo increases 5 times more in liquid clouds when polluted and persist 2 h longer than in mixed-phase clouds. These results suggest that seeding mixed-phase clouds via shipping aerosol is unlikely to provide any significant counterbalancing solar radiative cooling effects in warming polar regions.

  8. Spectral dependence on the correction factor of erythemal UV for cloud, aerosol, total ozone, and surface properties: A modeling study

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Jung, Yeonjin; Lee, Yun Gon

    2016-07-01

    Radiative transfer model simulations were used to investigate the erythemal ultraviolet (EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors (CFEUV) for UV-A [CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from -5.0% to 25.0% for aerosols, and from -9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions (i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%-4.1% per 0.1 albedo change, depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.

  9. Baring high-albedo soils by overgrazing - A hypothesized desertification mechanism

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1974-01-01

    Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed 'thermal depression' effect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.

  10. The NSA/SHEBA Cloud & Radiation Comparison Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janet M. Intrieri; Matthew D. Shupe

    2004-08-23

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from 1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and 2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cyclesmore » of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.« less

  11. Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-based Estimates of Surface Albedo

    NASA Technical Reports Server (NTRS)

    Roman, Miguel O.; Gatebe, Charles K.; Shuai, Yanmin; Wang, Zhuosen; Gao, Feng; Masek, Jeff; Schaaf, Crystal B.

    2012-01-01

    The quantification of uncertainty of global surface albedo data and products is a critical part of producing complete, physically consistent, and decadal land property data records for studying ecosystem change. A current challenge in validating satellite retrievals of surface albedo is the ability to overcome the spatial scaling errors that can contribute on the order of 20% disagreement between satellite and field-measured values. Here, we present the results from an uncertain ty analysis of MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat albedo retrievals, based on collocated comparisons with tower and airborne multi-angular measurements collected at the Atmospheric Radiation Measurement Program s (ARM) Cloud and Radiation Testbed (CART) site during the 2007 Cloud and Land Surface Interaction Campaign (CLAS33 IC 07). Using standard error propagation techniques, airborne measurements obtained by NASA s Cloud Absorption Radiometer (CAR) were used to quantify the uncertainties associated with MODIS and Landsat albedos across a broad range of mixed vegetation and structural types. Initial focus was on evaluating inter-sensor consistency through assessments of temporal stability, as well as examining the overall performance of satellite-derived albedos obtained at all diurnal solar zenith angles. In general, the accuracy of the MODIS and Landsat albedos remained under a 10% margin of error in the SW(0.3 - 5.0 m) domain. However, results reveal a high degree of variability in the RMSE (root mean square error) and bias of albedos in both the visible (0.3 - 0.7 m) and near-infrared (0.3 - 5.0 m) broadband channels; where, in some cases, retrieval uncertainties were found to be in excess of 20%. For the period of CLASIC 07, the primary factors that contributed to uncertainties in the satellite-derived albedo values include: (1) the assumption of temporal stability in the retrieval of 500 m MODIS BRDF values over extended periods of cloud-contaminated observations; and (2) the assumption of spatial 45 and structural uniformity at the Landsat (30 m) pixel scale.

  12. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset

    NASA Astrophysics Data System (ADS)

    Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.

    2017-06-01

    Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.

  13. Characterizing a New Surface-Based Shortwave Cloud Retrieval Technique, Based on Transmitted Radiance for Soil and Vegetated Surface Types

    NASA Technical Reports Server (NTRS)

    Coddington, Odele; Pilewskie, Peter; Schmidt, K. Sebastian; McBride, Patrick J.; Vukicevic, Tomislava

    2013-01-01

    This paper presents an approach using the GEneralized Nonlinear Retrieval Analysis (GENRA) tool and general inverse theory diagnostics including the maximum likelihood solution and the Shannon information content to investigate the performance of a new spectral technique for the retrieval of cloud optical properties from surface based transmittance measurements. The cumulative retrieval information over broad ranges in cloud optical thickness (tau), droplet effective radius (r(sub e)), and overhead sun angles is quantified under two conditions known to impact transmitted radiation; the variability in land surface albedo and atmospheric water vapor content. Our conclusions are: (1) the retrieved cloud properties are more sensitive to the natural variability in land surface albedo than to water vapor content; (2) the new spectral technique is more accurate (but still imprecise) than a standard approach, in particular for tau between 5 and 60 and r(sub e) less than approximately 20 nm; and (3) the retrieved cloud properties are dependent on sun angle for clouds of tau from 5 to 10 and r(sub e) less than 10 nm, with maximum sensitivity obtained for an overhead sun.

  14. Six years of surface remote sensing of stratiform warm clouds in marine and continental air over Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    Preißler, Jana; Martucci, Giovanni; Saponaro, Giulia; Ovadnevaite, Jurgita; Vaishya, Aditya; Kolmonen, Pekka; Ceburnis, Darius; Sogacheva, Larisa; de Leeuw, Gerrit; O'Dowd, Colin

    2016-12-01

    A total of 118 stratiform water clouds were observed by ground-based remote sensing instruments at the Mace Head Atmospheric Research Station on the west coast of Ireland from 2009 to 2015. Microphysical and optical characteristics of these clouds were studied as well as the impact of aerosols on these properties. Microphysical and optical cloud properties were derived using the algorithm SYRSOC (SYnergistic Remote Sensing Of Clouds). Ground-based in situ measurements of aerosol concentrations and the transport path of air masses at cloud level were investigated as well. The cloud properties were studied in dependence of the prevailing air mass at cloud level and season. We found higher cloud droplet number concentrations (CDNC) and smaller effective radii (reff) with greater pollution. Median CDNC ranged from 60 cm-3 in marine air masses to 160 cm-3 in continental air. Median reff ranged from 8 μm in polluted conditions to 10 μm in marine air. Effective droplet size distributions were broader in marine than in continental cases. Cloud optical thickness (COT) and albedo were lower in cleaner air masses and higher in more polluted conditions, with medians ranging from 2.1 to 4.9 and 0.22 to 0.39, respectively. However, calculation of COT and albedo was strongly affected by liquid water path (LWP) and departure from adiabatic conditions. A comparison of SYRSOC results with MODIS (Moderate-Resolution Imaging Spectroradiometer) observations showed large differences for LWP and COT but good agreement for reff with a linear fit with slope near 1 and offset of -1 μm.

  15. A technique for global monitoring of net solar irradiance at the ocean surface. I - Model

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Chertock, Beth

    1992-01-01

    An accurate long-term (84-month) climatology of net surface solar irradiance over the global oceans from Nimbus-7 earth radiation budget (ERB) wide-field-of-view planetary-albedo data is generated via an algorithm based on radiative transfer theory. Net surface solar irradiance is computed as the difference between the top-of-atmosphere incident solar irradiance (known) and the sum of the solar irradiance reflected back to space by the earth-atmosphere system (observed) and the solar irradiance absorbed by atmospheric constituents (modeled). It is shown that the effects of clouds and clear-atmosphere constituents can be decoupled on a monthly time scale, which makes it possible to directly apply the algorithm with monthly averages of ERB planetary-albedo data. Compared theoretically with the algorithm of Gautier et al. (1980), the present algorithm yields higher solar irradiance values in clear and thin cloud conditions and lower values in thick cloud conditions.

  16. Approaches to Observe Anthropogenic Aerosol-Cloud Interactions.

    PubMed

    Quaas, Johannes

    Anthropogenic aerosol particles exert an-quantitatively very uncertain-effective radiative forcing due to aerosol-cloud interactions via an immediate altering of cloud albedo on the one hand and via rapid adjustments by alteration of cloud processes and by changes in thermodynamic profiles on the other hand. Large variability in cloud cover and properties and the therefore low signal-to-noise ratio for aerosol-induced perturbations hamper the identification of effects in observations. Six approaches are discussed as a means to isolate the impact of anthropogenic aerosol on clouds from natural cloud variability to estimate or constrain the effective forcing. These are (i) intentional cloud modification, (ii) ship tracks, (iii) differences between the hemispheres, (iv) trace gases, (v) weekly cycles and (vi) trends. Ship track analysis is recommendable for detailed process understanding, and the analysis of weekly cycles and long-term trends is most promising to derive estimates or constraints on the effective radiative forcing.

  17. Absorption of Solar Radiation by Clouds: Interpretations of Satellite, Surface, and Aircraft Measurements

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Zhang, M. H.; Zhou, Y.; Jing, X.; Dvortsov, V.

    1996-01-01

    To investigate the absorption of shortwave radiation by clouds, we have collocated satellite and surface measurements of shortwave radiation at several locations. Considerable effort has been directed toward understanding and minimizing sampling errors caused by the satellite measurements being instantaneous and over a grid that is much larger than the field of view of an upward facing surface pyranometer. The collocated data indicate that clouds absorb considerably more shortwave radiation than is predicted by theoretical models. This is consistent with the finding from both satellite and aircraft measurements that observed clouds are darker than model clouds. In the limit of thick clouds, observed top-of-the-atmosphere albedos do not exceed a value of 0.7, whereas in models the maximum albedo can be 0.8.

  18. Properties of dust and clouds in the Mars atmosphere: Analysis of Viking IRTM emission phase function sequences

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.

    1991-01-01

    An analysis of emission-phase-function (EPF) observations from the Viking Orbiter Infrared Thermal Mapper (IRTM) yields a wide variety of results regarding dust and cloud scattering in the Mars atmosphere and atmospheric-corrected albedos for the surface of Mars. A multiple scattering radiative transfer model incorporating a bidirectional phase function for the surface and atmospheric scattering by dust and clouds is used to derive surface albedos and dust and ice optical properties and optical depths for these various conditions on Mars.

  19. STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jun; Abbot, Dorian S.; Cowan, Nicolas B., E-mail: abbot@uchicago.edu

    2013-07-10

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies.more » This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.« less

  20. FLASH_TISA_Terra+Aqua_Version3C

    Atmospheric Science Data Center

    2018-04-04

    ... Cloud Particle Phase Cloud Infrared Emissivity Cloud Base Pressure Surface (Radiative) Flux TOA Flux Surface Types Albedo LW Flux Order Data:  Earthdata Search:  Order Data Guide Documents:  ...

  1. Remote sensing of smoke, clouds, and fire using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yorman J.; Green, Robert O.

    1993-01-01

    Clouds remain the greatest element of uncertainty in predicting global climate change. During deforestation and biomass burning processes, a variety of atmospheric gases, including CO2 and SO2, and smoke particles are released into the atmosphere. The smoke particles can have important effects on the formation of clouds because of the increased concentration of cloud condensation nuclei. They can also affect cloud albedo through changes in cloud microphysical properties. Recently, great interest has arisen in understanding the interaction between smoke particles and clouds. We describe our studies of smoke, clouds, and fire using the high spatial and spectral resolution data acquired with the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

  2. Stratus Cloud Radiative Effects from Cloud Processed Bimodal CCN Distributions

    NASA Astrophysics Data System (ADS)

    Noble, S. R., Jr.; Hudson, J. G.

    2016-12-01

    Inability to understand cloud processes is a large component of climate uncertainty. Increases in cloud condensation nuclei (CCN) concentrations are known to increase cloud droplet number concentrations (Nc). This aerosol-cloud interaction (ACI) produces greater Nc at smaller sizes, which brightens clouds. A lesser understood ACI is cloud processing of CCN. This improves CCN that then more easily activate at lower cloud supersaturations (S). Bimodal CCN distributions thus ensue from these evaporated cloud droplets. Hudson et al. (2015) related CCN bimodality to Nc. In stratus clouds, bimodal CCN created greater Nc whereas in cumulus less Nc. Thus, CCN distribution shape influences cloud properties; microphysics and radiative properties. Measured uni- and bimodal CCN distributions were input into an adiabatic droplet growth model using various specified vertical wind speeds (W). Bimodal CCN produced greater Nc (Fig. 1a) and smaller mean diameters (MD; Fig. 1b) at lower W typical of stratus clouds (<70 cm/s). Improved CCN (low critical S) were more easily activated at the lower S of stratus from low W, thus, creating greater Nc. Competition for condensate thus reduced MD and drizzle. At greater W, typical of cumulus clouds (>70 cm/s), bimodal CCN made lower Nc with larger MD thus enhancing drizzle whereas unimodal CCN made greater Nc with smaller MD, thus reducing drizzle. Thus, theoretical predictions of Nc and MD for uni- and bimodal CCN agree with the sense of the observations. Radiative effects were determined using a cloud grown to a 250-meter thickness. Bimodal CCN at low W reduced cloud effective radius (re), made greater cloud optical thickness (COT), and made greater cloud albedo (Fig. 1c). At very low W changes were as much as +9% for albedo, +17% for COT, and -12% for re. Stratus clouds typically have low W and cover large areas. Thus, these changes in cloud radiative properties at low W impact climate. Stratus cloud susceptibility to CCN distribution thus requires further investigation to determine their impact on ACI. Hudson et al. (2015), JGRA, 120, 3436-3452.

  3. Observed longitude variations of zonal wind, UV albedo and H2O at Venus cloud top level: the role of stationary gravity waves generated by Venus topography

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Hauchecorne, Alain; khatuntsev, Igor; Markiewicz, Wojciech; Marcq, emmanuel; Lebonnois, Sebastien; Patsaeva, Marina; Turin, Alexander; Fedorova, Anna

    2016-10-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°S) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to the cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth but is not reproduced in the current GCM of Venus atmosphere from LMD.In the equatorial regions, the UV albedo of clouds at 365 nm and the H2O mixing ratio at cloud top varies also with longitude, with an anti-correlation: the more H2O, the darker are the clouds. We argue that these variations may be simply explained by the divergence of the horizontal wind field. In the longitude region (from 60° to -10°) where the horizontal wind speed is increasing in magnitude (stretch), it triggers air upwelling which brings both the UV absorber and H2O at cloud top level and decreases the albedo, and vice-versa when the wind is decreasing in magnitude (compression). This picture is fully consistent with the classical view of Venus meridional circulation, with upwelling at equator revealed by horizontal air motions away from equator: the longitude effect is only an additional but important modulation of this effect. We argue that H2O enhancement is the sign of upwelling because the H2O mixing ratio decreases with altitude, comforting the view that the UV absorber is also brought to cloud top by upwelling.

  4. Coupling of acoustic waves to clouds in the jovian troposphere

    NASA Astrophysics Data System (ADS)

    Gaulme, Patrick; Mosser, Benoît

    2005-11-01

    Seismology is the best tool for investigating the interior structure of stars and giant planets. This paper deals with a photometric study of jovian global oscillations. The propagation of acoustic waves in the jovian troposphere is revisited in order to estimate their effects on the planetary albedo. According to the standard model of the jovian cloud structure there are three major ice cloud layers (e.g., [Atreya et al., 1999. A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin. Planet Space Sci. 47, 1243-1262]). We consider only the highest layers, composed of ammonia ice, in the region where acoustic waves are trapped in Jupiter's atmosphere. For a vertical wave propagating in a plane parallel atmosphere with an ammonia ice cloud layer, we calculate first the relative variations of the reflected solar flux due to the smooth oscillations at about the ppm level. We then determine the phase transitions induced by the seismic waves in the clouds. These phase changes, linked to ice particle growth, are limited by kinetics. A Mie model [Mishchenko et al., 2002. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge Univ. Press, Cambridge, pp. 158-190] coupled with a simple radiation transfer model allows us to estimate that the albedo fluctuations of the cloud perturbed by a seismic wave reach relative variations of 70 ppm for a 3-mHz wave. This albedo fluctuation is amplified by a factor of ˜70 relative to the previously published estimates that exclude the effect of the wave on cloud properties. Our computed amplifications imply that jovian oscillations can be detected with very precise photometry, as proposed by the microsatellite JOVIS project, which is dedicated to photometric seismology [Mosser et al., 2004. JOVIS: A microsatellite dedicated to the seismic analysis of Jupiter. In: Combes, F., Barret, D., Contini, T., Meynadier, F., Pagani, L. (Eds.), SF2A-2004, Semaine de l'Astrophysique Francaise, Les Ulis. In: EdP-Sciences Conference Series, pp. 257-258].

  5. On the relationships among cloud cover, mixed-phase partitioning, and planetary albedo in GCMs

    DOE PAGES

    McCoy, Daniel T.; Tan, Ivy; Hartmann, Dennis L.; ...

    2016-05-06

    In this study, it is shown that CMIP5 global climate models (GCMs) that convert supercooled water to ice at relatively warm temperatures tend to have a greater mean-state cloud fraction and more negative cloud feedback in the middle and high latitude Southern Hemisphere. We investigate possible reasons for these relationships by analyzing the mixed-phase parameterizations in 26 GCMs. The atmospheric temperature where ice and liquid are equally prevalent (T5050) is used to characterize the mixed-phase parameterization in each GCM. Liquid clouds have a higher albedo than ice clouds, so, all else being equal, models with more supercooled liquid water wouldmore » also have a higher planetary albedo. The lower cloud fraction in these models compensates the higher cloud reflectivity and results in clouds that reflect shortwave radiation (SW) in reasonable agreement with observations, but gives clouds that are too bright and too few. The temperature at which supercooled liquid can remain unfrozen is strongly anti-correlated with cloud fraction in the climate mean state across the model ensemble, but we know of no robust physical mechanism to explain this behavior, especially because this anti-correlation extends through the subtropics. A set of perturbed physics simulations with the Community Atmospheric Model Version 4 (CAM4) shows that, if its temperature-dependent phase partitioning is varied and the critical relative humidity for cloud formation in each model run is also tuned to bring reflected SW into agreement with observations, then cloud fraction increases and liquid water path (LWP) decreases with T5050, as in the CMIP5 ensemble.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaitch, W.R.; Isaac, G.A.

    Comparisons are drawn between the aerosol cloud microphysical theory implicit in the modeling of Kaufman et al. and the cloud droplet and cloud water sulfate concentrations of Leaitch et al. for the purpose of helping to understand the effect of sulfate particle son climate through cloud modification. In terms of the range of possibilities and prospects for future climate given by Kaufman et al. for the effect of sulfur on cloud albedo, the data favor the possibility of stronger cooling. Scatter in the data makes it impossible to constrain model parameters; however, the comparisons suggest that there may not bemore » a universal relationship, and that the uncertainties involved in trying to model this process are large.« less

  7. Study of Tropospheric Ozone and UV Reflectivity Using TOMS Data

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    2002-01-01

    Perhaps the single most important result from the study of Chuang and Yung is that the interannual variability of the Earth's albedo (especially in Spring) on land is dominated by snow/ice, and not by clouds. This interannual variability could be the major driver of changes in the atmosphere and the biosphere. It is plausible that the interannual variability of snow/ice, through interactions with the atmosphere and biosphere, is responsible for the interannual variability of atmospheric CO2. By carefully studying the albedo variations off the Peru coast, we found evidence for indirect aerosol effect on clouds. Based on a detailed analysis of the cloud data obtained by the International Satellite Cloud Climatology Project (SCCP) in the years 1983-1991, we show that besides the reported 3 % variation in global cloudiness, the global mean cloud optical thickness (MCOT) also has significant variation which is out of phase with that of the global cloudiness. The combined effect of the two opposing variations may be a null effect on the cloud reflectivity. These results are consistent with the Total Ozone Mapping Spectrometer (TOMS) reflectively measurements. The MCOT variation is further shown to be correlated with both the solar cycle and the ENSO (El Nino Southern Oscillation) cycle. Our present analysis cannot distinguish which of the above two provides better correlation, although independent data from the High resolution Infrared Radiation Sounder (HIRS) from 1990 to 1996 favor the solar cycle. Future data are needed to identify the true cause of these changes.

  8. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janet Intrieri; Mathhew Shupe

    2005-01-01

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cyclesmore » of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.« less

  9. Using Satellites to Understand Climate and Climate Change

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric

    2007-01-01

    This viewgraph presentation reviews the measurement of climate with the use of satellites. The basic greenhouse effect, Ice-albedo feedback, climate models and observations, aerosol-cloud interactions, and the Antarctic are discussed, along with the human effect on climate change.

  10. Effect of ship-stack effluents on cloud reflectivity

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.; Bernstein, Robert L.; Durkee, Philip A.

    1987-01-01

    Under stable meteorological conditions the effect of ship-stack exhaust on overlying clouds was detected in daytime satellite images as an enhancement in cloud reflectivity at 3.7 micrometers. The exhaust is a source of cloud-condensation nuclei that increases the number of cloud droplets while reducing droplet size. This reduction in droplet size causes the reflectivity at 3.7 micrometers to be greater than the levels for nearby noncontaminated clouds of similar physical characteristics. The increase in droplet number causes the reflectivity at 0.63 micrometer to be significantly higher for the contaminated clouds despite the likelihood that the exhaust is a source of particles that absorb at visible wavelengths. The effect of aerosols on cloud reflectivity is expected to have a larger influence on the earth's albedo than that due to the direct scattering and absorption of sunlight by the aerosols alone.

  11. Global radiative effects of solid fuel cookstove aerosol emissions

    NASA Astrophysics Data System (ADS)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed to behave as a source of IN, the net global radiative impacts of the global and Indian solid fuel cookstove emissions range from -275 to +154 mW m-2 and -33 to +24 mW m-2, with globally averaged values of -59 ± 215 and 0.3 ± 29 mW m-2, respectively. Here, the uncertainty range is based on sensitivity simulations that alter the maximum freezing efficiency of BC across a plausible range: 0.01, 0.05 and 0.1. BC-ice cloud interactions lead to substantial increases in high cloud (< 500 hPa) fractions. Thus, the net sign of the impacts of carbonaceous aerosols from solid fuel cookstoves on global climate (warming or cooling) remains ambiguous until improved constraints on BC interactions with mixed-phase and ice clouds are available.

  12. Top-of-atmosphere radiative fluxes - Validation of ERBE scanner inversion algorithm using Nimbus-7 ERB data

    NASA Technical Reports Server (NTRS)

    Suttles, John T.; Wielicki, Bruce A.; Vemury, Sastri

    1992-01-01

    The ERBE algorithm is applied to the Nimbus-7 earth radiation budget (ERB) scanner data for June 1979 to analyze the performance of an inversion method in deriving top-of-atmosphere albedos and longwave radiative fluxes. The performance is assessed by comparing ERBE algorithm results with appropriate results derived using the sorting-by-angular-bins (SAB) method, the ERB MATRIX algorithm, and the 'new-cloud ERB' (NCLE) algorithm. Comparisons are made for top-of-atmosphere albedos, longwave fluxes, viewing zenith-angle dependence of derived albedos and longwave fluxes, and cloud fractional coverage. Using the SAB method as a reference, the rms accuracy of monthly average ERBE-derived results are estimated to be 0.0165 (5.6 W/sq m) for albedos (shortwave fluxes) and 3.0 W/sq m for longwave fluxes. The ERBE-derived results were found to depend systematically on the viewing zenith angle, varying from near nadir to near the limb by about 10 percent for albedos and by 6-7 percent for longwave fluxes. Analyses indicated that the ERBE angular models are the most likely source of the systematic angular dependences. Comparison of the ERBE-derived cloud fractions, based on a maximum-likelihood estimation method, with results from the NCLE showed agreement within about 10 percent.

  13. Optical Thickness and Effective Radius Retrievals of Liquid Water Clouds over Ice and Snow Surface

    NASA Technical Reports Server (NTRS)

    Platnick, S.; King, M. D.; Tsay, S.-C.; Arnold, G. T.; Gerber, H.; Hobbs, P. V.; Rangno, A.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements traditionally depend on a combination of spectral channels that are absorbing and non-absorbing for liquid water droplets. Reflectances in non-absorbing channels (e.g., 0.67, 0.86 micrometer bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2.1, and 3.7 micrometer window bands) provide cloud particle size information. Retrievals are complicated by the presence of an underlying ice/snow surface. At the shorter wavelengths, sea ice is both bright and highly variable, significantly increasing cloud retrieval uncertainty. However, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. Sea ice spectral albedos derived from Cloud Absorption Radiometer (CAR) measurements during April 1992 and June 1995 Arctic field deployments are used to illustrate these statements. A modification to the traditional retrieval technique is devised. The new algorithm uses a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, preliminary retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 during FIRE-ACE. Data from coordinated ER-2 and University of Washington CV-580 aircraft observations of liquid water stratus clouds on June 3 and June 6, 1998 have been examined. Size retrievals are compared with in situ cloud profile measurements of effective radius made with the CV-580 PMS FSSP probe, and optical thickness retrievals are compared with extinction profiles derived from the Gerber Scientific "g-meter" probe. MAS retrievals are shown to be in good agreement with the in situ measurements.

  14. Universal Power Law of the Gravity Wave Manifestation in the AIM CIPS Polar Mesospheric Cloud Images

    NASA Astrophysics Data System (ADS)

    Rong, P. P.; Yue, J.; Russell, J. M., III; Siskind, D. E.; Randall, C. E.

    2017-12-01

    A large ensemble of gravity waves (GWs) resides in the PMCs and we aim to extract the universal law that governs the wave display throughout the GW population. More specifically, we examined how wave display morphology and clarity level varies throughout the wave population manifested through the PMC albedo data. Higher clarity refers to more distinct exhibition of the features which often correspond to larger variances and better organized nature. A gravity wave tracking algorithm is designed and applied to the PMC albedo data taken by the AIM Cloud Imaging and Particle Size (CIPS) instrument to obtain the gravity wave detections throughout the two northern summers in 2007 and 2010. The horizontal wavelengths in the range of 20-60km are the focus of the study because they are the most commonly observed and readily captured in the CIPS orbital strips. A 1-dimensional continuous wavelet transform (CWT) is applied to PMC albedo along all radial directions within an elliptical region that has a radius of 400 km and an axial ratio of 0.65. The center of the elliptical region moves around the CIPS orbital strips so that waves at different locations and orientations can be captured. It shows that the CWT albedo power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution via removing the dependence of the albedo power on the background cloud brightness because we tend to examine the wave morphology beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution, and at three brightness levels, to represent the high, medium, and low albedo power categories. For these cases the albedo CWT power spectra follow exponential decay toward smaller scales. The high albedo power has the most rapid decay (i.e., exponent=-3.2) and corresponds to the most distinct wave display. Overall higher albedo power and more rapid decay both contributed to the more distinct display. The wave display becomes increasingly more blurry for the medium and low power categories that hold the exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can be collapsed irrespective of the brightness levels but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.

  15. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission

    NASA Astrophysics Data System (ADS)

    Letu, Husi; Ishimoto, Hiroshi; Riedi, Jerome; Nakajima, Takashi Y.; -Labonnote, Laurent C.; Baran, Anthony J.; Nagao, Takashi M.; Sekiguchi, Miho

    2016-09-01

    In this study, various ice particle habits are investigated in conjunction with inferring the optical properties of ice clouds for use in the Global Change Observation Mission-Climate (GCOM-C) satellite programme. We develop a database of the single-scattering properties of five ice habit models: plates, columns, droxtals, bullet rosettes, and Voronoi. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor on board the GCOM-C satellite, which is scheduled to be launched in 2017 by the Japan Aerospace Exploration Agency. A combination of the finite-difference time-domain method, the geometric optics integral equation technique, and the geometric optics method is applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible to the infrared spectral regions. This covers the SGLI channels for the size parameter, which is defined as a single-particle radius of an equivalent volume sphere, ranging between 6 and 9000 µm. The database includes the extinction efficiency, absorption efficiency, average geometrical cross section, single-scattering albedo, asymmetry factor, size parameter of a volume-equivalent sphere, maximum distance from the centre of mass, particle volume, and six nonzero elements of the scattering phase matrix. The characteristics of calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, size-integrated bulk scattering properties for the five ice particle habit models are calculated from the single-scattering database and microphysical data. Using the five ice particle habit models, the optical thickness and spherical albedo of ice clouds are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements, recorded on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite. The optimal ice particle habit for retrieving the SGLI ice cloud properties is investigated by adopting the spherical albedo difference (SAD) method. It is found that the SAD is distributed stably due to the scattering angle increases for bullet rosettes with an effective diameter (Deff) of 10 µm and Voronoi particles with Deff values of 10, 60, and 100 µm. It is confirmed that the SAD of small bullet-rosette particles and all sizes of Voronoi particles has a low angular dependence, indicating that a combination of the bullet-rosette and Voronoi models is sufficient for retrieval of the ice cloud's spherical albedo and optical thickness as effective habit models for the SGLI sensor. Finally, SAD analysis based on the Voronoi habit model with moderate particle size (Deff = 60 µm) is compared with the conventional general habit mixture model, inhomogeneous hexagonal monocrystal model, five-plate aggregate model, and ensemble ice particle model. The Voronoi habit model is found to have an effect similar to that found in some conventional models for the retrieval of ice cloud properties from space-borne radiometric observations.

  16. Sea ice-atmospheric interaction: Application of multispectral satellite data in polar surface energy flux estimates

    NASA Technical Reports Server (NTRS)

    Steffen, Konrad; Key, J.; Maslanik, J.; Schweiger, A.

    1993-01-01

    This is the third annual report on: Sea Ice-Atmosphere Interaction - Application of Multispectral Satellite Data in Polar Surface Energy Flux Estimates. The main emphasis during the past year was on: radiative flux estimates from satellite data; intercomparison of satellite and ground-based cloud amounts; radiative cloud forcing; calibration of the Advanced Very High Resolution Radiometer (AVHRR) visible channels and comparison of two satellite derived albedo data sets; and on flux modeling for leads. Major topics covered are arctic clouds and radiation; snow and ice albedo, and leads and modeling.

  17. Albedos of Centaurs, Jovian Trojans and Hildas

    NASA Astrophysics Data System (ADS)

    Romanishin, William

    2017-01-01

    I present optical V band albedo distributions for samples of outer solar system minor bodies including Centaurs, Jovian Trojans and Hildas. Diameters come almost entirely from the NEOWISE catalog (Mainzer etal 2016- Planetary Data System). Optical photometry (H values) for about 2/3 of the approximately 2700 objects studied are from PanStarrrs (Veres et al 2015 Icarus 261, 34). The PanStarrs optical photometry is supplemented by H values from JPL Horizons (corrected to be on the same photometric system as the PanStarrs data) for the objects in the NEOWISE catalog that are not in the PanStarrs catalog. I compare the albedo distributions of various pairs of subsamples using the nonparametric Wilcoxon rank sum test. Examples of potentially interesting comparisons include: (1) the median L5 Trojan cloud albedo is about 10% darker than that of the L4 cloud at a high level of statistical significance and (2) the median albedo of the gray Centaurs lies between that of the L4 and L5 Trojan groups.

  18. Methods for Discerning Cloud Reflectivity Changes due to the Indirect Effect of Aerosol: A Pilot-study for Triana

    NASA Technical Reports Server (NTRS)

    Kinne, S.; Wiscombe, Warren; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Understanding the effect of aerosol on cloud systems is one of the major challenges in atmospheric and climate research. Local studies suggest a multitude of influences on cloud properties. Yet the overall effect on cloud albedo, a critical parameter in climate simulations, remains uncertain. NASA's Triana mission will provide, from its EPIC multi-spectral imager, simultaneous data on aerosol properties and cloud reflectivity. With Triana's unique position in space these data will be available not only globally but also over the entire daytime, well suited to accommodate the often short lifetimes of aerosol and investigations around diurnal cycles. This pilot study explores the ability to detect relationships between aerosol properties and cloud reflectivity with sophisticated statistical methods. Sample results using data from the EOS Terra platform to simulate Triana are presented.

  19. Jovian cloud structure from 5-mu M images

    NASA Astrophysics Data System (ADS)

    Ortiz, J. L.; Moreno, F.; Molina, A.; Roos-Serote, M.; Orton, G. S.

    1999-09-01

    Most radiative transfer studies place the cloud clearings responsible for the 5-mu m bright areas at pressure levels greater than 1.5 bar whereas the low-albedo clouds are placed at lower pressure levels, in the so-called ammonia cloud. If this picture is correct, and assuming that the strong vertical shear of the zonal wind detected by the Galileo Entry Probe exists at all latitudes in Jupiter, the bright areas at 5 mu m should drift faster than the dark clouds, which is not observed. At the Galileo Probe Entry latitude this can be explained by a wave, but this is not a likely explanation for all regions where the anticorrelation between 5-mu m brightness and red-nIR reflectivity is observed. Therefore, either the vertical zonal wind shears are not global or cloud clearings and dark clouds are located at the same pressure level. We have developed a multiple scattering radiative transfer code to model the limb-darkening at several jovian features derived from IRTF 4.8-mu m images, in order to retrieve information on the cloud levels. The limb darkening coefficients range from 1.4 at hot spots to 0.58 at the Equatorial Region. We also find that reflected light is dominant over thermal emission in the Equatorial Region, as already pointed out by other investigators. Preliminary results from our code tend to favor the idea that the ammonia cloud is a very high-albedo cloud with little influence on the contrast seen in the red and nIR and that a deeper cloud at P >1.5 bar can be responsible for the cloud clearings and for the low-albedo features simultaneously. This research was supported by the Comision Interministerial de Ciencia y Tecnologia under contract ESP96-0623.

  20. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet.

    PubMed

    Hofer, Stefan; Tedstone, Andrew J; Fettweis, Xavier; Bamber, Jonathan L

    2017-06-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation.

  1. The diffusion approximation. An application to radiative transfer in clouds

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.; Barkstrom, B. R.

    1976-01-01

    It is shown how the radiative transfer equation reduces to the diffusion equation. To keep the mathematics as simple as possible, the approximation is applied to a cylindrical cloud of radius R and height h. The diffusion equation separates in cylindrical coordinates and, in a sample calculation, the solution is evaluated for a range of cloud radii with cloud heights of 0.5 km and 1.0 km. The simplicity of the method and the speed with which solutions are obtained give it potential as a tool with which to study the effects of finite-sized clouds on the albedo of the earth-atmosphere system.

  2. Physical Mechanism, Spectral Detection, and Potential Mitigation of 3D Cloud Effects on OCO-2 Radiances and Retrievals

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Massie, S. T.; Iwabuchi, H.; Chen, H.

    2017-12-01

    Analysis of multiple partially cloudy scenes as observed by OCO-2 in nadir and target mode (published previously and reviewed here) revealed that XCO2 retrievals are systematically biased in presence of scattered clouds. The bias can only partially be removed by applying more stringent filtering, and it depends on the degree of scene inhomogeneity as quantified with collocated MODIS/Aqua imagery. The physical reason behind this effect was so far not well understood because in contrast to cloud-mediated biases in imagery-derived aerosol retrievals, passive gas absorption spectroscopy products do not depend on the absolute radiance level and should therefore be less sensitive to 3D cloud effects and surface albedo variability. However, preliminary evidence from 3D radiative transfer calculations suggested that clouds in the vicinity of an OCO-2 footprint not only offset the reflected radiance spectrum, but introduce a spectrally dependent perturbation that affects absorbing channels disproportionately, and therefore bias the spectroscopy products. To understand the nature of this effect for a variety of scenes, we developed the OCO-2 radiance simulator, which uses the available information on a scene (e.g., MODIS-derived surface albedo, cloud distribution, and other parameters) as the basis for 3D radiative transfer calculations that can predict the radiances observed by OCO-2. We present this new tool and show examples of its utility for a few specific scenes. More importantly, we draw conclusions about the physical mechanism behind this 3D cloud effect on radiances and ultimately OCO-2 retrievals, which involves not only the clouds themselves but also the surface. Harnessed with this understanding, we can now detect cloud vicinity effects in the OCO-2 spectra directly, without actually running the 3D radiance simulator. Potentially, it is even possible to mitigate these effects and thus increase data harvest in regions with ubiquitous cloud cover such as the Amazon. We will discuss some of the hurdles one faces when using only OCO-2 spectra to accomplish this goal, but also that scene context from the other A-Train instruments and the new radiance simulator tool can help overcome some of them.

  3. Venus' Spectral Signatures and the Potential for Life in the Clouds.

    PubMed

    Limaye, Sanjay S; Mogul, Rakesh; Smith, David J; Ansari, Arif H; Słowik, Grzegorz P; Vaishampayan, Parag

    2018-03-30

    The lower cloud layer of Venus (47.5-50.5 km) is an exceptional target for exploration due to the favorable conditions for microbial life, including moderate temperatures and pressures (∼60°C and 1 atm), and the presence of micron-sized sulfuric acid aerosols. Nearly a century after the ultraviolet (UV) contrasts of Venus' cloud layer were discovered with Earth-based photographs, the substances and mechanisms responsible for the changes in Venus' contrasts and albedo are still unknown. While current models include sulfur dioxide and iron chloride as the UV absorbers, the temporal and spatial changes in contrasts, and albedo, between 330 and 500 nm, remain to be fully explained. Within this context, we present a discussion regarding the potential for microorganisms to survive in Venus' lower clouds and contribute to the observed bulk spectra. In this article, we provide an overview of relevant Venus observations, compare the spectral and physical properties of Venus' clouds to terrestrial biological materials, review the potential for an iron- and sulfur-centered metabolism in the clouds, discuss conceivable mechanisms of transport from the surface toward a more habitable zone in the clouds, and identify spectral and biological experiments that could measure the habitability of Venus' clouds and terrestrial analogues. Together, our lines of reasoning suggest that particles in Venus' lower clouds contain sufficient mass balance to harbor microorganisms, water, and solutes, and potentially sufficient biomass to be detected by optical methods. As such, the comparisons presented in this article warrant further investigations into the prospect of biosignatures in Venus' clouds. Key Words: Venus-Clouds-Life-Habitability-Microorganism-Albedo-Spectroscopy-Biosignatures-Aerosol-Sulfuric Acid. Astrobiology 18, xxx-xxx.

  4. An eight-month climatology of marine stratocumulus cloud fraction, albedo, and integrated liquid water

    NASA Technical Reports Server (NTRS)

    Fairall, C. W.; Hare, J. E.; Snider, Jack B.

    1990-01-01

    As part of the FIRE/Extended Time Observations (ETO) program, extended time observations were made at San Nicolas Island (SNI) from March to October, 1987. Hourly averages of air temperature, relative humidity, wind speed and direction, solar irradiance, and downward longwave irradiance were recorded. The radiation sensors were standard Eppley pyranometers (shortwave) and pyrgeometers (longwave). The SNI data were processed in several ways to deduce properties of the stratocumulus covered marine boundary layer (MBL). For example, from the temperature and humidity the lifting condensation level, which is an estimate of the height of the cloud bottom, can be computed. A combination of longwave irradiance statistics can be used to estimate fractional cloud cover. An analysis technique used to estimate the integrated cloud liquid water content (W) and the cloud albedo from the measured solar irradiance is also described. In this approach, the cloud transmittance is computed by dividing the irradiance measured at some time by a clear sky value obtained at the same hour on a cloudless day. From the transmittance and the zenith angle, values of cloud albedo and W are computed using the radiative transfer parameterizations of Stephens (1978). These analysis algorithms were evaluated with 17 days of simultaneous and colocated mm-wave (20.6 and 31.65 GHz) radiometer measurements of W and lidar ceilometer measurements of cloud fraction and cloudbase height made during the FIRE IFO. The algorithms are then applied to the entire data set to produce a climatology of these cloud properties for the eight month period.

  5. Investigation of the effects of the macrophysical and microphysical properties of cirrus clouds on the retrieval of optical properties: Results for FIRE 2

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Stephens, Graeme L.

    1993-01-01

    Due to the prevalence and persistence of cirrus cloudiness across the globe, cirrus clouds are believed to have an important effect on the climate. Stephens et al., (1990) among others have shown that the important factor determining how cirrus clouds modulate the climate is the balance between the albedo and emittance effect of the cloud systems. This factor was shown to depend in part upon the effective sizes of the cirrus cloud particles. Since effective sizes of cirrus cloud microphysical distributions are used as a basis of parameterizations in climate models, it is crucial that the relationships between effective sizes and radiative properties be clearly established. In this preliminary study, the retrieval of cirrus cloud effective sizes are examined using a two dimensional radiative transfer model for a cirrus cloud case sampled during FIRE Cirrus 11. The purpose of this paper is to present preliminary results from the SHSG model demonstrating the sensitivity of the bispectral relationships of reflected radiances and thus the retrieval of effective sizes to phase function and dimensionality.

  6. Clear-sky narrowband albedos derived from VIRS and MODIS

    NASA Astrophysics Data System (ADS)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Arduini, Robert F.

    2004-02-01

    The Clouds and Earth"s Radiant Energy System (CERES) project is using multispectral imagers, the Visible Infrared Scanner (VIRS) on the tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra, operating since spring 2000, and Aqua, operating since summer 2002, to provide cloud and clear-sky properties at various wavelengths. This paper presents the preliminary results of an analysis of the CERES clear-sky reflectances to derive a set top-of-atmosphere clear sky albedo for 0.65, 0.86, 1.6, 2.13 μm, for all major surface types using the combined MODIS and VIRS datasets. The variability of snow albedo with surface type is examined using MODIS data. Snow albedo was found to depend on the vertical structure of the vegetation. At visible wavelengths, it is least for forested areas and greatest for smooth desert and tundra surfaces. At 1.6 and 2.1-μm, the snow albedos are relatively insensitive to the underlying surface because snow decreases the reflectance. Additional analyses using all of the MODIS results will provide albedo models that should be valuable for many remote sensing, simulation and radiation budget studies.

  7. The Geostationary Operational Environmental Satellite (GOES) Product Generation System

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Suggs, R. J.; Jedlovec, G. J.

    2004-01-01

    The Geostationary Operational Environmental Satellite (GOES) Product Generation System (GPGS) is introduced and described. GPGS is a set of computer programs developed and maintained at the Global Hydrology and Climate Center and is designed to generate meteorological data products using visible and infrared measurements from the GOES-East Imager and Sounder instruments. The products that are produced by GPGS are skin temperature, total precipitable water, cloud top pressure, cloud albedo, surface albedo, and surface insolation. A robust cloud mask is also generated. The retrieval methodology for each product is described to include algorithm descriptions and required inputs and outputs for the programs. Validation is supplied where applicable.

  8. Statistical Analyses of Satellite Cloud Object Data from CERES. Part III; Comparison with Cloud-Resolving Model Simulations of Tropical Convective Clouds

    NASA Technical Reports Server (NTRS)

    Luo, Yali; Xu, Kuan-Man; Wielicki, Bruce A.; Wong, Takmeng; Eitzen, Zachary A.

    2007-01-01

    The present study evaluates the ability of a cloud-resolving model (CRM) to simulate the physical properties of tropical deep convective cloud objects identified from a Clouds and the Earth s Radiant Energy System (CERES) data product. The emphasis of this study is the comparisons among the small-, medium- and large-size categories of cloud objects observed during March 1998 and between the large-size categories of cloud objects observed during March 1998 (strong El Ni o) and March 2000 (weak La Ni a). Results from the CRM simulations are analyzed in a way that is consistent with the CERES retrieval algorithm and they are averaged to match the scale of the CERES satellite footprints. Cloud physical properties are analyzed in terms of their summary histograms for each category. It is found that there is a general agreement in the overall shapes of all cloud physical properties between the simulated and observed distributions. Each cloud physical property produced by the CRM also exhibits different degrees of disagreement with observations over different ranges of the property. The simulated cloud tops are generally too high and cloud top temperatures are too low except for the large-size category of March 1998. The probability densities of the simulated top-of-the-atmosphere (TOA) albedos for all four categories are underestimated for high albedos, while those of cloud optical depth are overestimated at its lowest bin. These disagreements are mainly related to uncertainties in the cloud microphysics parameterization and inputs such as cloud ice effective size to the radiation calculation. Summary histograms of cloud optical depth and TOA albedo from the CRM simulations of the large-size category of cloud objects do not differ significantly between the March 1998 and 2000 periods, consistent with the CERES observations. However, the CRM is unable to reproduce the significant differences in the observed cloud top height while it overestimates the differences in the observed outgoing longwave radiation and cloud top temperature between the two periods. Comparisons between the CRM results and the observations for most parameters in March 1998 consistently show that both the simulations and observations have larger differences between the large- and small-size categories than between the large- and medium-size, or between the medium- and small-size categories. However, the simulated cloud properties do not change as much with size as observed. These disagreements are likely related to the spatial averaging of the forcing data and the mismatch in time and in space between the numerical weather prediction model from which the forcing data are produced and the CERES observed cloud systems.

  9. Variability of Cloud Cover and Its Relation to Snowmelt and Runoff in the Mountainous Western United States

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.; Iacobellis, S.

    2014-12-01

    Obtaining accurate solar radiation input to snowmelt runoff models remains a fundamental challenge for water supply forecasters in the mountainous western U.S. The variability of cloud cover is a primary source of uncertainty in estimating surface radiation, especially given that ground-based radiometer networks in mountain terrains are sparse. Thus, remote sensed cloud properties provide a way to extend in situ observations and more importantly, to understand cloud variability in montane environment. We utilize 17 years of NASA/NOAA GOES visible albedo product with 4 km spatial and half-hour temporal resolutions to investigate daytime cloud variability in the western U.S. at elevations above 800 m. REOF/PC analysis finds that the 5 leading modes account for about two-thirds of the total daily cloud albedo variability during the whole year (ALL) and snowmelt season (AMJJ). The AMJJ PCs are significantly correlated with de-seasonalized snowmelt derived from CDWR CDEC and NRCS SNOTEL SWE data and USGS stream discharge across the western conterminous states. The sum of R2 from 7 days prior to the day of snowmelt/discharge amounts to as much as ~52% on snowmelt and ~44% on discharge variation. Spatially, the correlation patterns take on broad footprints, with strongest signals in regions of highest REOF weightings. That the response of snowmelt and streamflow to cloud variation is spread across several days indicates the cumulative effect of cloud variation on the energy budget in mountain catchments.

  10. Evaluating the Dominant Components of Warming in Pliocene Climate Simulations

    NASA Technical Reports Server (NTRS)

    Hill, D. J.; Haywood, A. M.; Lunt, D. J.; Hunter, S. J.; Bragg, F. J.; Contoux, C.; Stepanek, C.; Sohl, L.; Rosenbloom, N. A.; Chan, W.-L.; hide

    2014-01-01

    The Pliocene Model Intercomparison Project (PlioMIP) is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean-atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with the cloud component of planetary albedo enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere midlatitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo, only partially offset by the increases in the cooling impact of cloud albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with clouds in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that albedo feedbacks, particularly those of sea ice and ice sheets, provide the most significant enhancements to high latitude warming in the Pliocene.

  11. Clear-Sky Narrowband Albedo Variations Derived from VIRS and MODIS Data

    NASA Technical Reports Server (NTRS)

    Sun-Mack, Sunny; Chen, Yan; Arduini, Robert F.; Minnis, Patrick

    2004-01-01

    A critical parameter for detecting clouds and aerosols and for retrieving their microphysical properties is the clear-sky radiance. The Clouds and the Earth's Radiant Energy System (CERES) Project uses the visible (VIS; 0.63 m) and near-infrared (NIR; 1.6 or 2.13 m) channels available on same satellites as the CERES scanners. Another channel often used for cloud and aerosol, and vegetation cover retrievals is the vegetation (VEG; 0.86- m) channel that has been available on the Advanced Very High Resolution Radiometer (AVHRR) for many years. Generally, clear-sky albedo for a given surface type is determined for conditions when the vegetation is either thriving or dormant and free of snow. Snow albedo is typically estimated without considering the underlying surface type. The albedo for a surface blanketed by snow, however, should vary with surface type because the vegetation often emerges from the snow to varying degrees depending on the vertical dimensions of the vegetation. For example, a snowcovered prairie will probably be brighter than a snowcovered forest because the snow typically falls off the trees exposing the darker surfaces while the snow on a grassland at the same temperatures will likely be continuous and, therefore, more reflective. Accounting for the vegetation-induced differences should improve the capabilities for distinguishing snow and clouds over different surface types and facilitate improvements in the accuracy of radiative transfer calculations between the snow-covered surface and the atmosphere, eventually leading to improvements in models of the energy budgets over land. This paper presents a more complete analysis of the CERES spectral clear-sky reflectances to determine the variations in clear-sky top-of-atmosphere (TOA) albedos for both snow-free and snow-covered surfaces for four spectral channels using data from Terra and Aqua.. The results should be valuable for improved cloud retrievals and for modeling radiation fields.

  12. MISR Level 3 Albedo and Cloud Versioning

    Atmospheric Science Data Center

    2016-11-04

    ... Albedo Versioning statement  for changes to the Level 2 data being summarized.   Ver. # Production Start Date ... of Observation" data, which in the previous version was missing many Level 2 observations. The actual Level 3 averages contained all of ...

  13. Aerosol and cloud properties derived from hyperspectral transmitted light in the southeast Atlantic sampled during field campaign deployments in 2016 and 2017

    NASA Astrophysics Data System (ADS)

    LeBlanc, S. E.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Pistone, K.; Karol, Y.; Schmidt, S.; Cochrane, S.; Chen, H.; Meyer, K.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.

    2017-12-01

    We present aerosol and cloud properties collected from airborne remote-sensing measurements in the southeast Atlantic during the recent NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign. During the biomass burning seasons of September 2016 and August 2017, we sampled aerosol layers which overlaid marine stratocumulus clouds off the southwestern coast of Africa. We sampled these aerosol layers and the underlying clouds from the NASA P3 airborne platform with the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR). Aerosol optical depth (AOD), along with trace gas content in the atmospheric column (water vapor, NO2, and O3), is obtained from the attenuation in the sun's direct beam, measured at the altitude of the airborne platform. Using hyperspectral transmitted light measurements from 4STAR, in conjunction with hyperspectral hemispheric irradiance measurements from the Solar Spectral Flux Radiometers (SSFR), we also obtained aerosol intensive properties (asymmetry parameter, single scattering albedo), aerosol size distributions, cloud optical depth (COD), cloud particle effective radius, and cloud thermodynamic phase. Aerosol intensive properties are retrieved from measurements of angularly resolved skylight and flight level spectral albedo using the inversion used with measurements from AERONET (Aerosol Robotic Network) that has been modified for airborne use. The cloud properties are obtained from 4STAR measurements of scattered light below clouds. We show a favorable initial comparison of the above-cloud AOD measured by 4STAR to this same product retrieved from measurements by the MODIS instrument on board the TERRA and AQUA satellites. The layer AOD observed above clouds will also be compared to integrated aerosol extinction profile measurements from the High Spectral Resolution Lidar-2 (HSRL-2).

  14. Universal power law of the gravity wave manifestation in the AIM CIPS polar mesospheric cloud images

    NASA Astrophysics Data System (ADS)

    Rong, Pingping; Yue, Jia; Russell, James M., III; Siskind, David E.; Randall, Cora E.

    2018-01-01

    We aim to extract a universal law that governs the gravity wave manifestation in polar mesospheric clouds (PMCs). Gravity wave morphology and the clarity level of display vary throughout the wave population manifested by the PMC albedo data. Higher clarity refers to more distinct exhibition of the features, which often correspond to larger variances and a better-organized nature. A gravity wave tracking algorithm based on the continuous Morlet wavelet transform is applied to the PMC albedo data at 83 km altitude taken by the Aeronomy of Ice in the Mesosphere (AIM) Cloud Imaging and Particle Size (CIPS) instrument to obtain a large ensemble of the gravity wave detections. The horizontal wavelengths in the range of ˜ 20-60 km are the focus of the study. It shows that the albedo (wave) power statistically increases as the background gets brighter. We resample the wave detections to conform to a normal distribution to examine the wave morphology and display clarity beyond the cloud brightness impact. Sample cases are selected at the two tails and the peak of the normal distribution to represent the full set of wave detections. For these cases the albedo power spectra follow exponential decay toward smaller scales. The high-albedo-power category has the most rapid decay (i.e., exponent = -3.2) and corresponds to the most distinct wave display. The wave display becomes increasingly blurrier for the medium- and low-power categories, which hold the monotonically decreasing spectral exponents of -2.9 and -2.5, respectively. The majority of waves are straight waves whose clarity levels can collapse between the different brightness levels, but in the brighter background the wave signatures seem to exhibit mildly turbulent-like behavior.

  15. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.

    2005-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA's Terra and &la satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which curtails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, &mate models, and global change research projects.

  16. The Clouds of Isidore

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These views of Hurricane Isidore were acquired by the Multi-angle Imaging SpectroRadiometer (MISR) on September 20, 2002. After bringing large-scale flooding to western Cuba, Isidore was upgraded (on September 21) from a tropical storm to a category 3hurricane. Sweeping westward to Mexico's Yucatan Peninsula, the hurricane caused major destruction and left hundreds of thousands of people homeless. Although weakened after passing over the Yucatan landmass, Isidore regained strength as it moved northward over the Gulf of Mexico.

    At left is a colorful visualization of cloud extent that superimposes MISR's radiometric camera-by-camera cloud mask (RCCM) over natural-color radiance imagery, both derived from data acquired with the instrument's vertical-viewing (nadir) camera. Using brightness and statistical metrics, the RCCM is one of several techniques MISR uses to determine whether an area is clear or cloudy. In this rendition, the RCCM has been color-coded, and purple = cloudy with high confidence, blue = cloudy with low confidence, green = clear with low confidence, and red = clear with high confidence.

    In addition to providing information on meteorological events, MISR's data products are designed to help improve our understanding of the influences of clouds on climate. Cloud heights and albedos are among the variables that govern these influences. (Albedo is the amount of sunlight reflected back to space divided by the amount of incident sunlight.) The center panel is the cloud-top height field retrieved using automated stereoscopic processing of data from multiple MISR cameras. Areas where heights could not be retrieved are shown in dark gray. In some areas, such as the southern portion of the image, the stereo retrieval was able to detect thin, high clouds that were not picked up by the RCCM's nadir view. Retrieved local albedo values for Isidore are shown at right. Generation of the albedo product is dependent upon observed cloud radiances as a function of viewing angle as well as the height field. Note that over the short distances (2.2 kilometers) that the local albedo product is generated, values can be greater than 1.0 due to contributions from cloud sides. Areas where albedo could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe between 82 degrees north and 82 degrees south latitude. These data products were generated from a portion of the imagery acquired during Terra orbit 14669. The panels cover an area of about 380 kilometers x 704 kilometers, and utilize data from blocks 70 to 79within World Reference System-2 path 17.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent observations of diffuse bihemispherical (white-sky) and direct beam directional hemispherical (black-sky ) land surface albedo included in the MOD43B3 product from MODIS instruments aboard NASA's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal characteristics. Cloud and seasonal snow cover, however, curtail retrievals to approximately half the global land surfaces on an annual equal-angle basis, precluding MOD43B3 albedo products from direct inclusion in some research projects and production environments.

  18. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet

    PubMed Central

    Hofer, Stefan; Tedstone, Andrew J.; Fettweis, Xavier; Bamber, Jonathan L.

    2017-01-01

    The Greenland Ice Sheet (GrIS) has been losing mass at an accelerating rate since the mid-1990s. This has been due to both increased ice discharge into the ocean and melting at the surface, with the latter being the dominant contribution. This change in state has been attributed to rising temperatures and a decrease in surface albedo. We show, using satellite data and climate model output, that the abrupt reduction in surface mass balance since about 1995 can be attributed largely to a coincident trend of decreasing summer cloud cover enhancing the melt-albedo feedback. Satellite observations show that, from 1995 to 2009, summer cloud cover decreased by 0.9 ± 0.3% per year. Model output indicates that the GrIS summer melt increases by 27 ± 13 gigatons (Gt) per percent reduction in summer cloud cover, principally because of the impact of increased shortwave radiation over the low albedo ablation zone. The observed reduction in cloud cover is strongly correlated with a state shift in the North Atlantic Oscillation promoting anticyclonic conditions in summer and suggests that the enhanced surface mass loss from the GrIS is driven by synoptic-scale changes in Arctic-wide atmospheric circulation. PMID:28782014

  19. Parameterization of Cloud Optical Properties for a Mixture of Ice Particles for use in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Based on the single-scattering optical properties that are pre-computed using an improve geometric optics method, the bulk mass absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the mean effective particle size of a mixture of ice habits. The parameterization has been applied to compute fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. Compared to the parameterization for a single habit of hexagonal column, the solar heating of clouds computed with the parameterization for a mixture of habits is smaller due to a smaller cosingle-scattering albedo. Whereas the net downward fluxes at the TOA and surface are larger due to a larger asymmetry factor. The maximum difference in the cloud heating rate is approx. 0.2 C per day, which occurs in clouds with an optical thickness greater than 3 and the solar zenith angle less than 45 degrees. Flux difference is less than 10 W per square meters for the optical thickness ranging from 0.6 to 10 and the entire range of the solar zenith angle. The maximum flux difference is approximately 3%, which occurs around an optical thickness of 1 and at high solar zenith angles.

  20. How accurately can the instantaneous aerosol effect on cloud albedo be constrained?

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Quaas, J.; Ferrachat, S.; Gettelman, A.; Ghan, S. J.; Lohmann, U.; Neubauer, D.; Morrison, H.; Partridge, D.; Stier, P.; Takemura, T.; Wang, H.; Wang, M.; Zhang, K.

    2017-12-01

    Aerosol-cloud interactions are the most uncertain component of the anthropogenic radiative forcing, with a significant fraction of this uncertainty coming from uncertainty in the radiative forcing due to instantaneous changes in cloud albedo (the RFaci). Aerosols can have a strong influence on the cloud droplet number concentration (CDNC), so previous studies have used the sensitivity of CDNC to aerosol properties as a method of estimating the RFaci. However, recent studies have suggested that this sensitivity is unsuitable as a constraint on the RFaci, as it differs in the present day and pre-industrial atmosphere. This would place significant limits on our ability to constrain the RFaci from satellite observations. In this study, a selection of global aerosol-climate models are used to investigate the suitability of various aerosol proxies and methods for calculating the RFaci from present day data. A linear-regression based sensitivity of CDNC to aerosol perturbations can lead to large errors in the diagnosed RFaci, as can the use of the aerosol optical depth (AOD) as an aerosol proxy. However, we show that if suitable choices of aerosol proxy are made and the anthropogenic aerosol contribution is known, it is possible to diagnose the anthropogenic change in CDNC, and so the RFaci, using present day aerosol-cloud relationships.

  1. Evaluation of the SMAP model calculated snow albedo at the SIGMA-A site, northwest Greenland, during the 2012 record surface melt event

    NASA Astrophysics Data System (ADS)

    Niwano, M.; Aoki, T.; Matoba, S.; Yamaguchi, S.; Tanikawa, T.; Kuchiki, K.; Motoyama, H.

    2015-12-01

    The snow and ice on the Greenland ice sheet (GrIS) experienced the extreme surface melt around 12 July, 2012. In order to understand the snow-atmosphere interaction during the period, we applied a physical snowpack model SMAP to the GrIS snowpack. In the SMAP model, the snow albedo is calculated by the PBSAM component explicitly considering effects of snow grain size and light-absorbing snow impurities such as black carbon and dust. Temporal evolution of snow grain size is calculated internally in the SMAP model, whereas mass concentrations of snow impurities are externally given from observations. In the PBSAM, the (shortwave) snow albedo is calculated from a weighted summation of visible albedo (primarily affected by snow impurities) and near-infrared albedo (mainly controlled by snow grain size). The weights for these albedos are the visible and near-infrared fractions of the downward shortwave radiant flux. The SMAP model forced by meteorological data obtained from an automated weather station at SIGMA-A site, northwest GrIS during 30 June to 14 July, 2012 (IOP) was evaluated in terms of surface (optically equivalent) snow grain size and snow albedo. Snow grain size simulated by the model was compared against that retrieved from in-situ spectral albedo measurements. Although the RMSE and ME were reasonable (0.21 mm and 0.17 mm, respectively), the small snow grain size associated with the surface hoar could not be simulated by the SMAP model. As for snow albedo, simulation results agreed well with observations throughout the IOP (RMSE was 0.022 and ME was 0.008). Under cloudy-sky conditions, the SMAP model reproduced observed rapid increase in the snow albedo. When cloud cover is present the near-infrared fraction of the downward shortwave radiant flux is decreased, while it is increased under clear-sky conditions. Therefore, the above mentioned performance of the SMAP model can be attributed to the PBSAM component driven by the observed near-infrared and visible fractions of the downward shortwave radiant flux. This result suggests that it is necessary for snowpack models to consider changes in the visible and near-infrared fractions of the downward shortwave radiant flux caused by the presence of cloud cover to reproduce realistic temporal changes in the snow albedo and consequently the surface energy balance.

  2. Sea-going hardware for the cloud albedo method of reversing global warming.

    PubMed

    Salter, Stephen; Sortino, Graham; Latham, John

    2008-11-13

    Following the review by Latham et al. (Latham et al. 2008 Phil. Trans. R. Soc. A 366) of a strategy to reduce insolation by exploiting the Twomey effect, the present paper describes in outline the rationale and underlying engineering hardware that may bring the strategy from concept to operation. Wind-driven spray vessels will sail back and forth perpendicular to the local prevailing wind and release micron-sized drops of seawater into the turbulent boundary layer beneath marine stratocumulus clouds. The combination of wind and vessel movements will treat a large area of sky. When residues left after drop evaporation reach cloud level they will provide many new cloud condensation nuclei giving more but smaller drops and so will increase the cloud albedo to reflect solar energy back out to space. If the possible power increase of 3.7W m-2 from double pre-industrial CO2 is divided by the 24-hour solar input of 340W m-2, a global albedo increase of only 1.1 per cent will produce a sufficient offset. The method is not intended to make new clouds. It will just make existing clouds whiter. This paper describes the design of 300 tonne ships powered by Flettner rotors rather than conventional sails. The vessels will drag turbines resembling oversized propellers through the water to provide the means for generating electrical energy. Some will be used for rotor spin, but most will be used to create spray by pumping 30 kgs-1 of carefully filtered water through banks of filters and then to micro-nozzles with piezoelectric excitation to vary drop diameter. The rotors offer a convenient housing for spray nozzles with fan assistance to help initial dispersion. The ratio of solar energy reflected by a drop at the top of a cloud to the energy needed to make the surface area of the nucleus on which it has grown is many orders of magnitude and so the spray quantities needed to achieve sufficient global cooling are technically feasible.

  3. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K.-S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  4. Satellite Estimation of Spectral Surface UV Irradiance. 2; Effect of Horizontally Homogeneous Clouds

    NASA Technical Reports Server (NTRS)

    Krothov, N.; Herman, J. R.; Bhartia, P. K.; Ahmad, Z.a; Fioletov, V.

    1998-01-01

    The local variability of UV irradiance at the Earth's surface is mostly caused by clouds in addition to the seasonal variability. Parametric representations of radiative transfer RT calculations are presented for the convenient solution of the transmission T of ultraviolet radiation through plane parallel clouds over a surface with reflectivity R(sub s). The calculations are intended for use with the Total Ozone Mapping Spectrometer (TOMS) measured radiances to obtain the calculated Lambert equivalent scene reflectivity R for scenes with and without clouds. The purpose is to extend the theoretical analysis of the estimation of UV irradiance from satellite data for a cloudy atmosphere. Results are presented for a range of cloud optical depths and solar zenith angles for the cases of clouds over a low reflectivity surface R(sub s) less than 0.1, over a snow or ice surface R(sub s) greater than 0.3, and for transmission through a non-conservative scattering cloud with single scattering albedo omega(sub 0) = 0.999. The key finding for conservative scattering is that the cloud-transmission function C(sub T), the ratio of cloudy-to clear-sky transmission, is roughly C(sub T) = 1 - R(sub c) with an error of less than 20% for nearly overhead sun and snow-free surfaces. For TOMS estimates of UV irradiance in the presence of both snow and clouds, independent information about snow albedo is needed for conservative cloud scattering. For non-conservative scattering with R(sub s) greater than 0.5 (snow) the satellite measured scene reflectance cannot be used to estimate surface irradiance. The cloud transmission function has been applied to the calculation of UV irradiance at the Earth's surface and compared with ground-based measurements.

  5. Study of Aerosol - Cloud Interaction over Indo - Gangetic Basin During Normal Monsoon and Drought Years

    NASA Astrophysics Data System (ADS)

    Tiwari, S.; Ramachandran, S.

    2017-12-01

    Clouds are one of the major factors that influence the Earth's radiation budget and also change the precipitation pattern. Atmospheric aerosols play a crucial role in modifying the cloud properties acting as cloud condensation nuclei (CCN). It can change cloud droplet number concentration, cloud droplet size and hence cloud albedo. Therefore, the effects of aerosol on cloud parameters are one of the most important topics in climate change study. In the present study, we investigate the spatial variability of aerosol - cloud interactions during normal monsoon years and drought years over entire Indo - Gangetic Basin (IGB) which is one of the most polluted regions of the world. Based on aerosol loading and their major emission sources, we divided the entire IGB in to six major sub regions (R1: 66 - 71 E, 24 - 29 N; R2: 71 - 76 E, 29 - 34 N; R3: 76 - 81 E, 26 - 31 N; R4: 81 - 86 E, 23 - 28 N; R5: 86 - 91 E, 22 - 27 N and R6: 91 - 96 E, 23 - 28 N). With this objective, fifteen years (2001 - 2015), daily mean aerosol optical depth, cloud parameters and rainfall data obtained from MODerate resolution Imaging Spectroradiometer (MODIS) on board of Terra satellite and Tropical Rainfall Measuring Mission (TRMM) is analyzed over each sub regions of IGB for monsoon season (JJAS : June, July, August and September months). Preliminary results suggest that a slightly change in aerosol optical depth can affect the significant contribution of cloud fraction and other cloud properties which also show a large spatial heterogeneity. During drought years, higher cloud effective radius (i.e. CER > 20µm) decreases from western to eastern IGB suggesting the enhancement in cloud albedo. Relatively week correlation between cloud optical thickness and rainfall is found during drought years than the normal monsoon years over western IGB. The results from the present study will be helpful to reduce uncertainty in understanding of aerosol - cloud interaction over IGB. Further details will be presented during the conference.

  6. Observed and Simulated Radiative and Microphysical Properties of Tropical Convective Storms

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Increases in the ice content, albedo and cloud cover of tropical convective storms in a warmer climate produce a large negative contribution to cloud feedback in the GISS GCM. Unfortunately, the physics of convective upward water transport, detrainment, and ice sedimentation, and the relationship of microphysical to radiative properties, are all quite uncertain. We apply a clustering algorithm to TRMM satellite microwave rainfall retrievals to identify contiguous deep precipitating storms throughout the tropics. Each storm is characterized according to its size, albedo, OLR, rain rate, microphysical structure, and presence/absence of lightning. A similar analysis is applied to ISCCP data during the TOGA/COARE experiment to identify optically thick deep cloud systems and relate them to large-scale environmental conditions just before storm onset. We examine the statistics of these storms to understand the relative climatic roles of small and large storms and the factors that regulate convective storm size and albedo. The results are compared to GISS GCM simulated statistics of tropical convective storms to identify areas of agreement and disagreement.

  7. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    PubMed Central

    Sengupta, Kamalika; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim

    2016-01-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol–cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20–100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m−2 (27%) to −0.60 W m−2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes. PMID:27790989

  8. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    NASA Astrophysics Data System (ADS)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  9. Sensitivity of Stratocumulus Optical Depths to Droplet Concentrations: Satellite Observations and Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Ackerman, A. S.; Stevens, D. E.; Toon, O. B.; Coakley, J. A., Jr.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A number of observations and simulations have shown that increased droplet concentrations in ship tracks increase their total cross-sectional area, thereby enhancing cloud albedo and providing a negative (cooling) radiative forcing at the surface and the top of the atmosphere. In some cases cloud water has been found to be enhanced in ship tracks, which has been attributed to suppression of drizzle and implies an enhanced susceptibility of cloud albedo to droplet concentrations. However, observations from aircraft and satellite indicate that on average cloud water is instead reduced in daytime ship tracks. Such a reduction in liquid water may be attributable to cloud-burning caused by solar heating by soot within the ship exhaust, or by increased precipitation resulting from giant nuclei in the ship exhaust. We will summarize the observational evidence and present results from large-eddy simulations that evaluate these mechanisms. Along the way we will present our insights into the interpretation of satellite retrievals of cloud microphysical properties.

  10. Typhoon Sinlaku

    NASA Technical Reports Server (NTRS)

    2002-01-01

    One of the more destructive cyclones to emerge from the northern hemisphere 2002 summer storm season was Typhoon Sinlaku. Several attributes of this storm event are portrayed in these data products from the Multi-angle Imaging SpectroRadiometer. The images were acquired on September 5, when the western portion of the storm was situated over the Okinawan island chain. Over the next few days it moved west-northwest, sweeping over Taiwan before making landfall along China's Zhejian province on the 7th. The typhoon forced hundreds of thousands of people from their homes, caused major power outages, and at least 26 people were reported dead or missing before the storm weakened as it moved inland.

    While the nature and formation of individual storm events is relatively well understood, the influence of clouds on climate is difficult to assess due to the variable nature of cloud cover at various altitudes. MISR's data products are designed to help understand these influences. Typhoon Sinlaku is shown at left as a natural-color view observed by MISR's vertical-viewing (nadir)camera. The center panel shows the cloud-top height field derived using automated stereoscopic processing of data from multiple MISR cameras. Relative height variations, such as the clearing within the storm's eye, are well represented. Areas where heights could not be retrieved are shown in dark gray.

    Clouds have a significant influence on the global radiation balance of the Earth's atmosphere, and the improvement of climate models requires more accurate information on how different types of clouds influence Earth's energy budget. One measure of this influence is albedo, which is the amount of sunlight reflected back to space divided by amount of incident sunlight. Bright objects have high albedo. Retrieved local albedo values for Typhoon Sinlaku are shown at right. Generation of this product is dependent on observed cloud radiances as a function of viewing angle and the cloud height field. Over the short distances (2.2 kilometers) that MISR's local albedo product is generated, values can be greater than 1.0 due to the contributions from the sides of the clouds. Areas where albedo could not be retrieved are shown in dark gray.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 14442, and covers an area of about 380 kilometers x 1408 kilometers. It utilizes data from blocks 65 to 74 within World Reference System-2 path 113.

  11. Simulating Pliocene warmth and a permanent El Niño-like state: The role of cloud albedo

    DOE PAGES

    Burls, N. J.; Fedorov, A. V.

    2014-09-13

    We present that available evidence suggests that during the early Pliocene (4–5 Ma) the mean east-west sea surface temperature (SST) gradient in the equatorial Pacific Ocean was significantly smaller than today, possibly reaching only 1–2°C. The meridional SST gradients were also substantially weaker, implying an expanded ocean warm pool in low latitudes. Subsequent global cooling led to the establishment of the stronger, modern temperature gradients. Given our understanding of the physical processes that maintain the present-day cold tongue in the east, warm pool in the west and hence sharp temperature contrasts, determining the key factors that maintained early Pliocene climatemore » still presents a challenge for climate theories and models. This study demonstrates how different cloud properties could provide a solution. We show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal SST gradients, an expanded warm pool and warmer thermal stratification in the ocean, and weaker Hadley and Walker circulations in the atmosphere. Having conducted a range of hypothetical modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows good agreement with proxy SST data from major equatorial and coastal upwelling regions, the tropical warm pool, middle and high latitudes, and available subsurface temperature data. As suggested by the observations, the simulated Pliocene-like climate sustains a robust El Niño-Southern Oscillation despite the reduced mean east-west SST gradient. In conclusion, our results demonstrate that cloud albedo changes may be a critical element of Pliocene climate and that simulating the meridional SST gradient correctly is central to replicating the geographical patterns of Pliocene warmth.« less

  12. Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Bower, Keith; Choularton, Tom; Latham, John; Sahraei, Jalil; Salter, Stephen

    2006-11-01

    A simplified version of the model of marine stratocumulus clouds developed by Bower, Jones and Choularton [Bower, K.N., Jones, A., and Choularton, T.W., 1999. A modeling study of aerosol processing by stratocumulus clouds and its impact on GCM parameterisations of cloud and aerosol. Atmospheric Research, Vol. 50, Nos. 3-4, The Great Dun Fell Experiment, 1995-special issue, 317-344.] was used to examine the sensitivity of the albedo-enhancement global warming mitigation scheme proposed by Latham [Latham, J., 1990. Control of global warming? Nature 347, 339-340; Latham, J., 2002. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos. Sci. Letters (doi:10.1006/Asle.2002.0048).] to the cloud and environmental aerosol characteristics, as well as those of the seawater aerosol of salt-mass ms and number concentration Δ N, which-under the scheme-are advertently introduced into the clouds. Values of albedo-change Δ A and droplet number concentration Nd were calculated for a wide range of values of ms, Δ N, updraught speed W, cloud thickness Δ Z and cloud-base temperature TB: for three measured aerosol spectra, corresponding to ambient air of negligible, moderate and high levels of pollution. Our choices of parameter value ranges were determined by the extent of their applicability to the mitigation scheme, whose current formulation is still somewhat preliminary, thus rendering unwarranted in this study the utilisation of refinements incorporated into other stratocumulus models. In agreement with earlier studies: (1) Δ A was found to be very sensitive to Δ N and (within certain constraints) insensitive to changes in ms, W, Δ Z and TB; (2) Δ A was greatest for clouds formed in pure air and least for highly polluted air. In many situations considered to be within the ambit of the mitigation scheme, the calculated Δ A values exceeded those estimated by earlier workers as being necessary to produce a cooling sufficient to compensate, globally, for the warming resulting from a doubling of the atmospheric carbon dioxide concentration. Our calculations provide quantitative support for the physical viability of the mitigation scheme and offer new insights into its technological requirements.

  13. Sensitivity of Photolysis Frequencies and Key Tropospheric Oxidants in a Global Model to Cloud Vertical Distributions and Optical Properties

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Considine, David B.; Platnick, Steven; Norris, Peter M.; Duncan, Bryan N.; Pierce, Robert B.; Chen, Gao; Yantosca, Robert M.

    2009-01-01

    Clouds affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. As a follow-up study to our recent assessment of the radiative effects of clouds on tropospheric chemistry, this paper presents an analysis of the sensitivity of such effects to cloud vertical distributions and optical properties (cloud optical depths (CODs) and cloud single scattering albedo), in a global 3-D chemical transport model (GEOS-Chem). GEOS-Chem was driven with a series of meteorological archives (GEOS1- STRAT, GEOS-3 and GEOS-4) generated by the NASA Goddard Earth Observing System data assimilation system. Clouds in GEOS1-STRAT and GEOS-3 have more similar vertical distributions (with substantially smaller CODs in GEOS1-STRAT) while those in GEOS-4 are optically much thinner in the tropical upper troposphere. We find that the radiative impact of clouds on global photolysis frequencies and hydroxyl radical (OH) is more sensitive to the vertical distribution of clouds than to the magnitude of column CODs. With random vertical overlap for clouds, the model calculated changes in global mean OH (J(O1D), J(NO2)) due to the radiative effects of clouds in June are about 0.0% (0.4%, 0.9%), 0.8% (1.7%, 3.1%), and 7.3% (4.1%, 6.0%), for GEOS1-STRAT, GEOS-3 and GEOS-4, respectively; the geographic distributions of these quantities show much larger changes, with maximum decrease in OH concentrations of approx.15-35% near the midlatitude surface. The much larger global impact of clouds in GEOS-4 reflects the fact that more solar radiation is able to penetrate through the optically thin upper-tropospheric clouds, increasing backscattering from low-level clouds. Model simulations with each of the three cloud distributions all show that the change in the global burden of ozone due to clouds is less than 5%. Model perturbation experiments with GEOS-3, where the magnitude of 3-D CODs are progressively varied from -100% to 100%, predict only modest changes (<5%) in global mean OH concentrations. J(O1D), J(NO2) and OH3 concentrations show the strongest sensitivity for small CODs and become insensitive at large CODs due to saturation effects. Caution should be exercised not to use in photochemical models a value for cloud single scattering albedo lower than about 0.999 in order to be consistent with the current knowledge of cloud absorption at the ultraviolet wavelengths.

  14. Snow driven Radiative Forcing in High Latitude Areas of Disturbance Using Higher Resolution Albedo Products from Landsat and Sentinel-2

    NASA Astrophysics Data System (ADS)

    Erb, A.; Li, Z.; Schaaf, C.; Wang, Z.; Rogers, B. M.

    2017-12-01

    Land surface albedo plays an important role in the surface energy budget and radiative forcing by determining the proportion of absorbed incoming solar radiation available to drive photosynthesis and surface heating. In Arctic regions, albedo is particularly sensitive to land cover and land use change (LCLUC) and modeling efforts have shown it to be the primary driver of effective radiative forcing from the biogeophysical effects of LCLUC. In boreal forests, the effects of these changes are complicated during snow covered periods when newly exposed, highly reflective snow can serve as the primary driver of radiative forcing. In Arctic biomes disturbance scars from fire, pest and harvest can remain in the landscape for long periods of time. As such, understanding the magnitude and persistence of these disturbances, especially in the shoulder seasons, is critical. The Landsat and Sentinel-2 Albedo Products couple 30m and 20m surface reflectances with concurrent 500m BRDF Products from the MODerate resolution Imaging Spectroradiometer (MODIS). The 12 bit radiometric fidelity of Sentinel-2 and Landsat-8 allow for the inclusion of high-quality, unsaturated albedo calculations over snow covered surfaces at scales more compatible with fragmented landscapes. Recent work on the early spring albedo of fire scars has illustrated significant post-fire spatial heterogeneity of burn severity at the landscape scale and highlights the need for a finer spatial resolution albedo record. The increased temporal resolution provided by multiple satellite instruments also allows for a better understanding of albedo dynamics during the dynamic shoulder seasons and in historically difficult high latitude locations where persistent cloud cover limits high quality retrievals. Here we present how changes in the early spring albedo of recent boreal forest disturbance in Alaska and central Canada affects landscape-scale radiative forcing. We take advantage of the long historical Landsat record to examine pre-disturbance albedo trends and to link historical land cover and disturbance history to post-disturbance early spring albedo values. We examine the impact of landscape heterogeneity on albedo in the growing and dormant seasons and quantify the effects of snow exposure changes from over-story canopy loss.

  15. Radiative Impacts of Further Arctic Sea Ice Melt: Using past Observations to Inform Future Climate Impacts

    NASA Technical Reports Server (NTRS)

    Pistone, K.; Eisenman, I.; Ramanathan, V.

    2017-01-01

    The Arctic region has seen dramatic changes over the past several decades, from polar amplification of global temperature rise to ecosystem changes to the decline of the sea ice. While there has been much speculation as to when the world will see an ice-free Arctic, the radiative impacts of an eventual disappearance of the Arctic sea ice are likely to be significant regardless of the timing. Using CERES radiation and microwave satellite sea ice data, Pistone et al (2014) estimated the radiative forcing due to albedo changes associated with the Arctic sea ice retreat over the 30 years of the satellite data record. In this study, we found that the Arctic Ocean saw a decrease in all-sky albedo of 4% (from 52% to 48%), for an estimated increase in solar heating of 6.4 W/m(exp 2) between 1979 and 2011, or 0.21 W/m(exp 2) when averaged over the globe. This value is substantial--approximately 25% as large as the forcing due to the change in CO2 during the same period. Here we update and expand upon this previous work and use the CERES broadband shortwave observations to explore the radiative impacts of a transition to completely ice-free Arctic Ocean. We estimate the annually-averaged Arctic Ocean planetary albedo under ice-free and cloud-free conditions to be 14% over the region, or approximately 25% lower in absolute terms than the Arctic Ocean cloud-free albedo in 1979. However, the question of all-sky conditions (i.e. including the effects of clouds) introduces a new level of complexity. We explore several cloud scenarios and the resultant impact on albedo. In each of these cases, the estimated forcing is not uniformly distributed throughout the year. We describe the relative contributions of ice loss by month as well as the spatial distributions of the resulting changes in absorbed solar energy. The seasonal timing and location—in addition to magnitude—of the altered solar absorption may have significant implications for atmospheric and ocean dynamics in the Arctic and at lower latitudes; this observationally-based estimate of the large-scale characteristics of an ice-free Arctic thus provides a valuable tool to complement and validate model-based assessments of future climate.

  16. Entrainment, Drizzle, and the Indirect Effect in Stratiform Clouds

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew

    2005-01-01

    Activation of some fraction of increased concentrations of sub-micron soluble aerosol particles lead to enhanced cloud droplet concentrations and hence smaller droplets, increasing their total cross sectional area and thus reflecting solar radiation more efficiently (the Twomey, or first indirect, effect). However, because of competition during condensational growth, droplet distributions tend to broaden as numbers increase, reducing the sensitivity of cloud albedo to droplet concentration on the order of 10%. Also, smaller droplets less effectively produce drizzle through collisions and coalescence, and it is widely expected (and found in large-scale models) that decreased precipitation leads to clouds with more cloud water on average (the so-called cloud lifetime, or second indirect, effect). Much of the uncertainty regarding the overall indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations based on FIRE-I, ASTEX, and DYCOMS-II conditions show that suppression of precipitation from increased droplet concentrations leads to increased cloud water only when sufficient precipitation reaches the surface, a condition favored when the overlying air is-humid or droplet concentrations are very low. Otherwise, aerosol induced suppression of precipitation enhances entrainment of overlying dry air, thereby reducing cloud water and diminishing the indirect climate forcing.

  17. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    PubMed

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-04

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

  18. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets. 1: Method and sensitivity to input data uncertainties

    NASA Technical Reports Server (NTRS)

    Zhang, Y.-C.; Rossow, W. B.; Lacis, A. A.

    1995-01-01

    The largest uncertainty in upwelling shortwave (SW) fluxes (approximately equal 10-15 W/m(exp 2), regional daily mean) is caused by uncertainties in land surface albedo, whereas the largest uncertainty in downwelling SW at the surface (approximately equal 5-10 W/m(exp 2), regional daily mean) is related to cloud detection errors. The uncertainty of upwelling longwave (LW) fluxes (approximately 10-20 W/m(exp 2), regional daily mean) depends on the accuracy of the surface temperature for the surface LW fluxes and the atmospheric temperature for the top of atmosphere LW fluxes. The dominant source of uncertainty is downwelling LW fluxes at the surface (approximately equal 10-15 W/m(exp 2)) is uncertainty in atmospheric temperature and, secondarily, atmospheric humidity; clouds play little role except in the polar regions. The uncertainties of the individual flux components and the total net fluxes are largest over land (15-20 W/m(exp 2)) because of uncertainties in surface albedo (especially its spectral dependence) and surface temperature and emissivity (including its spectral dependence). Clouds are the most important modulator of the SW fluxes, but over land areas, uncertainties in net SW at the surface depend almost as much on uncertainties in surface albedo. Although atmospheric and surface temperature variations cause larger LW flux variations, the most notable feature of the net LW fluxes is the changing relative importance of clouds and water vapor with latitude. Uncertainty in individual flux values is dominated by sampling effects because of large natrual variations, but uncertainty in monthly mean fluxes is dominated by bias errors in the input quantities.

  19. Arctic sea ice albedo from AVHRR

    NASA Technical Reports Server (NTRS)

    Lindsay, R. W.; Rothrock, D. A.

    1994-01-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably. The poor calibration of AVHRR channels 1 and 2 is another large impediment to making accurate albedo estimates.

  20. Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission

    NASA Astrophysics Data System (ADS)

    Letu, H.; Ishimoto, H.; Riedi, J.; Nakajima, T. Y.; -Labonnote, L. C.; Baran, A. J.; Nagao, T. M.; Skiguchi, M.

    2015-11-01

    Various ice particle habits are investigated in conjunction with inferring the optical properties of ice cloud for the Global Change Observation Mission-Climate (GCOM-C) satellite program. A database of the single-scattering properties of five ice particle habits, namely, plates, columns, droxtals, bullet-rosettes, and Voronoi, is developed. The database is based on the specification of the Second Generation Global Imager (SGLI) sensor onboard the GCOM-C satellite, which is scheduled to be launched in 2017 by Japan Aerospace Exploration Agency (JAXA). A combination of the finite-difference time-domain (FDTD) method, Geometric Optics Integral Equation (GOIE) technique, and geometric optics method (GOM) are applied to compute the single-scattering properties of the selected ice particle habits at 36 wavelengths, from the visible-to-infrared spectral region, covering the SGLI channels for the size parameter, which is defined with respect to the equivalent-volume radius sphere, which ranges between 6 and 9000. The database includes the extinction efficiency, absorption efficiency, average geometrical cross-section, single-scattering albedo, asymmetry factor, size parameter of an equivalent volume sphere, maximum distance from the center of mass, particle volume, and six non-zero elements of the scattering phase matrix. The characteristics of the calculated extinction efficiency, single-scattering albedo, and asymmetry factor of the five ice particle habits are compared. Furthermore, the optical thickness and spherical albedo of ice clouds using the five ice particle habit models are retrieved from the Polarization and Directionality of the Earth's Reflectances-3 (POLDER-3) measurements on board the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL). The optimal ice particle habit for retrieving the SGLI ice cloud properties was investigated by adopting the spherical albedo difference (SAD) method. It is found that the SAD, for bullet-rosette particle, with radii of equivalent volume spheres (r~) ranging between 6 to 10 μm, and the Voronoi particle, with r~ ranging between 28 to 38 μm, and 70 to 100 μm, is distributed stably as the scattering angle increases. It is confirmed that the SAD of small bullet rosette and all sizes of voronoi particles has a low angular dependence, indicating that the combination of the bullet-rosette and Voronoi models are sufficient for retrieval of the ice cloud spherical albedo and optical thickness as an effective habit models of the SGLI sensor. Finally, SAD analysis based on the Voronoi habit model with moderate particles (r~ = 30 μm) is compared to the conventional General Habit Mixture (GHM), Inhomogeneous Hexagonal Monocrystal (IHM), 5-plate aggregate and ensemble ice particle model. It is confirmed that the Voronoi habit model has an effect similar to the counterparts of some conventional models on the retrieval of ice cloud properties from space-borne radiometric observations.

  1. EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahoy, Kerri L.; Marley, Mark S.; Fortney, Jonathan J., E-mail: kerri.l.cahoy@nasa.go

    2010-11-20

    First generation space-based optical coronagraphic telescopes will obtain images of cool gas- and ice-giant exoplanets around nearby stars. Exoplanets lying at planet-star separations larger than about 1 AU-where an exoplanet can be resolved from its parent star-have spectra that are dominated by reflected light to beyond 1 {mu}m and punctuated by molecular absorption features. Here, we consider how exoplanet albedo spectra and colors vary as a function of planet-star separation, metallicity, mass, and observed phase for Jupiter and Neptune analogs from 0.35 to 1 {mu}m. We model Jupiter analogs with 1x and 3x the solar abundance of heavy elements, andmore » Neptune analogs with 10x and 30x the solar abundance of heavy elements. Our model planets orbit a solar analog parent star at separations of 0.8 AU, 2 AU, 5 AU, and 10 AU. We use a radiative-convective model to compute temperature-pressure profiles. The giant exoplanets are found to be cloud-free at 0.8 AU, possess H{sub 2}O clouds at 2 AU, and have both NH{sub 3} and H{sub 2}O clouds at 5 AU and 10 AU. For each model planet we compute moderate resolution (R = {lambda}/{Delta}{lambda} {approx} 800) albedo spectra as a function of phase. We also consider low-resolution spectra and colors that are more consistent with the capabilities of early direct imaging capabilities. As expected, the presence and vertical structure of clouds strongly influence the albedo spectra since cloud particles not only affect optical depth but also have highly directional scattering properties. Observations at different phases also probe different volumes of atmosphere as the source-observer geometry changes. Because the images of the planets themselves will be unresolved, their phase will not necessarily be immediately obvious, and multiple observations will be needed to discriminate between the effects of planet-star separation, metallicity, and phase on the observed albedo spectra. We consider the range of these combined effects on spectra and colors. For example, we find that the spectral influence of clouds depends more on planet-star separation and hence atmospheric temperature than metallicity, and it is easier to discriminate between cloudy 1x and 3x Jupiters than between 10x and 30x Neptunes. In addition to alkalis and methane, our Jupiter models show H{sub 2}O absorption features near 0.94 {mu}m. While solar system giant planets are well separated by their broadband colors, we find that arbitrary giant exoplanets can have a large range of possible colors and that color alone cannot be relied upon to characterize planet types. We also predict that giant exoplanets receiving greater insolation than Jupiter will exhibit higher equator-to-pole temperature gradients than are found on Jupiter and thus may exhibit differing atmospheric dynamics. These results are useful for future interpretation of direct imaging exoplanet observations as well as for deriving requirements and designing filters for optical direct imaging instrumentation.« less

  2. Generating 30-m land surface albedo by integrating landsat and MODIS data for understanding the disturbance evolution

    USDA-ARS?s Scientific Manuscript database

    Land cover changes affect climate through both biogeochemical (carbon-cycle) impacts and biogeophysical processes such as changes in surface albedo, temperature, evapotranspiration, atmospheric water vapor, and cloud cover. Recent studies have examined both the greenhouse gas and biophysical consequ...

  3. Generating 30-m land surface albedo by integrating landsat and MODIS data for understanding the disturbance

    USDA-ARS?s Scientific Manuscript database

    Land cover change affects climate through both biogeochemical (carbon-cycle) impacts and biogeophysical processes such as changes in surface albedo, temperature, evapotranspiration, atmospheric water vapor, and cloud cover. Previous studies have highlighted that forest loss in high latitudes could c...

  4. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  5. Assessment of VIIRS daily BRDF/Albedo product using in situ measurement of SURFRAD sites and MODIS V006 daily BRDF/Albedo product

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, Z.; Sun, Q.; Schaaf, C.; Roman, M. O.

    2014-12-01

    Surface albedo is defined as the ratio of upwelling to downwelling radiative flux. It's important for understanding the global energy budget. Remote sensing albedo products provide global time continuous coverage to help capture global energy variability and change. The Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite, launched on October 28, 2011, is aiming to provide continues data record with the MODerate resolution Imaging Spectroradiometer (MODIS), which has been providing Bidirectional Reflectance Distribution Function (BRDF)/Albedo product since 2000. By utilizing the same approach that was used for the most recently V006 daily MODIS BRDF/Albedo product, VIIRS has the ability to keep providing products for research and operational users. Validating albedo product of VIIRS using in situmeasured albedo can assure the quality for land surface climate and biosphere models, and comparing with MODIS product can assure time continues of BRDF/albedo product. The daily BRDF/Albedo product still uses 16-day period multispectral, cloud-cleared, atmospherically-corrected surface reflectances to fit the Ross-Thick/Li-Sparse-Reciprocal semi-empirical BRDF model. But the multiday observations are also weighted based on proximity to the production date in order to emphasis on that individual day. Surface Radiation Budget Network (SURFRAD) was established in 1993 through the support of NOAA's Office of Global Programs. In situ albedo was driven from downwelling and upwelling radiative flux measured from the towers. Fraction of diffuse sky light was calculated using the direct and diffuse solar recorded in the data. It was further used to translate VIIRS, MODIS black sky and white sky albedos into actual albedo at local solar noon. Results show that VIIRS, MODIS and in situ albedo agree well at SURFARD spatially representative sites. While the VIIRS surface reflectance, snow, and cloud algorithms are still undergoing revision, the result shows that VIIRS can provide comparable albedo products with MODIS. The accuracy of both products can meet the requirement for climate and biosphere models. In situ albedo also can be gained from Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc., which will be used in future validation work.

  6. Simultaneous Retrieval of Multiple Aerosol Parameters Using a Multi-Angular Approach

    NASA Technical Reports Server (NTRS)

    Kuo, K. S.; Weger, R. C.; Welch, R. M.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance through their direct and indirect effects. They scatter the incoming solar radiation (direct effect) and modify the shortwave reflective properties of clouds by acting as cloud condensation nuclei (indirect effect). Although it has been suggested that aerosols exert a net cooling influence on climate, this effect has received less attention than the radiative forcing due to clouds and greenhouse gases. In order to understand the role that aerosols play in a changing climate, detailed and accurate observations are a prerequisite. The retrieval of aerosol optical properties by satellite remote sensing has proven to be a difficult task. The difficulty results mainly from the tenuous nature and variable composition of aerosols. To date, with single-angle satellite observations, we can only retrieve reliably against dark backgrounds, such as over oceans and dense vegetation. Even then, assumptions must be made concerning the chemical composition of aerosols. The best hope we have for aerosol retrievals over bright backgrounds are observations from multiple angles, such as those provided by the MISR and POLDER instruments. In this investigation we examine the feasibility of simultaneous retrieval of multiple aerosol optical parameters using reflectances from a typical set of twelve angles observed by the French POLDER instrument. The retrieved aerosol optical parameters consist of asymmetry factor, single scattering albedo, surface albedo, and optical thickness.

  7. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    NASA Technical Reports Server (NTRS)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  8. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.

    2010-05-01

    Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative budget. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative budget over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.

  9. Aerosol nucleation and its role for clouds and Earth's radiative forcing in the aerosol-climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Stier, P.; Zhang, K.; Quaas, J.; Kinne, S.; O'Donnell, D.; Rast, S.; Esch, M.; Ferrachat, S.; Lohmann, U.; Feichter, J.

    2010-11-01

    Nucleation from the gas phase is an important source of aerosol particles in the Earth's atmosphere, contributing to the number of cloud condensation nuclei, which form cloud droplets. We have implemented in the aerosol-climate model ECHAM5-HAM a new scheme for neutral and charged nucleation of sulfuric acid and water based on laboratory data, and nucleation of an organic compound and sulfuric acid using a parametrization of cluster activation based on field measurements. We give details of the implementation, compare results with observations, and investigate the role of the individual aerosol nucleation mechanisms for clouds and the Earth's radiative forcing. The results of our simulations are most consistent with observations when neutral and charged nucleation of sulfuric acid proceed throughout the troposphere and nucleation due to cluster activation is limited to the forested boundary layer. The globally averaged annual mean contributions of the individual nucleation processes to total absorbed solar short-wave radiation via the direct, semi-direct, indirect cloud-albedo and cloud-lifetime effects in our simulations are -1.15 W/m2 for charged H2SO4/H2O nucleation, -0.235 W/m2 for cluster activation, and -0.05 W/m2 for neutral H2SO4/H2O nucleation. The overall effect of nucleation is -2.55 W/m2, which exceeds the sum of the individual terms due to feedbacks and interactions in the model. Aerosol nucleation contributes over the oceans with -2.18 W/m2 to total absorbed solar short-wave radiation, compared to -0.37 W/m2 over land. We explain the higher effect of aerosol nucleation on Earth's radiative forcing over the oceans with the larger area covered by ocean clouds, due to the larger contrast in albedo between clouds and the ocean surface compared to continents, and the larger susceptibility of pristine clouds owing to the saturation of effects. The large effect of charged nucleation in our simulations is not in contradiction with small effects seen in local measurements: over southern Finland, where cluster activation proceeds efficiently, we find that charged nucleation of sulfuric acid and water contributes on average less than 10% to ultrafine aerosol concentrations, in good agreement with observations.

  10. Dynamic mineral clouds on HD 189733b. II. Monte Carlo radiative transfer for 3D cloudy exoplanet atmospheres: combining scattering and emission spectra

    NASA Astrophysics Data System (ADS)

    Lee, G. K. H.; Wood, K.; Dobbs-Dixon, I.; Rice, A.; Helling, Ch.

    2017-05-01

    Context. As the 3D spatial properties of exoplanet atmospheres are being observed in increasing detail by current and new generations of telescopes, the modelling of the 3D scattering effects of cloud forming atmospheres with inhomogeneous opacity structures becomes increasingly important to interpret observational data. Aims: We model the scattering and emission properties of a simulated cloud forming, inhomogeneous opacity, hot Jupiter atmosphere of HD 189733b. We compare our results to available Hubble Space Telescope (HST) and Spitzer data and quantify the effects of 3D multiple scattering on observable properties of the atmosphere. We discuss potential observational properties of HD 189733b for the upcoming Transiting Exoplanet Survey Satellite (TESS) and CHaracterising ExOPlanet Satellite (CHEOPS) missions. Methods: We developed a Monte Carlo radiative transfer code and applied it to post-process output of our 3D radiative-hydrodynamic, cloud formation simulation of HD 189733b. We employed three variance reduction techniques, I.e. next event estimation, survival biasing, and composite emission biasing, to improve signal to noise of the output. For cloud particle scattering events, we constructed a log-normal area distribution from the 3D cloud formation radiative-hydrodynamic results, which is stochastically sampled in order to model the Rayleigh and Mie scattering behaviour of a mixture of grain sizes. Results: Stellar photon packets incident on the eastern dayside hemisphere show predominantly Rayleigh, single-scattering behaviour, while multiple scattering occurs on the western hemisphere. Combined scattered and thermal emitted light predictions are consistent with published HST and Spitzer secondary transit observations. Our model predictions are also consistent with geometric albedo constraints from optical wavelength ground-based polarimetry and HST B band measurements. We predict an apparent geometric albedo for HD 189733b of 0.205 and 0.229, in the TESS and CHEOPS photometric bands respectively. Conclusions: Modelling the 3D geometric scattering effects of clouds on observables of exoplanet atmospheres provides an important contribution to the attempt to determine the cloud properties of these objects. Comparisons between TESS and CHEOPS photometry may provide qualitative information on the cloud properties of nearby hot Jupiter exoplanets.

  11. A Case Study of Ships Forming and Not Forming Tracks in Moderately Polluted Clouds.

    NASA Astrophysics Data System (ADS)

    Noone, Kevin J.; Öström, Elisabeth; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Johnson, Doug W.; Taylor, Jonathan P.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; O'Dowd, Colin D.; Smith, Michael H.; Durkee, Philip A.; Nielsen, Kurt; Hudson, James G.; Pockalny, Robert A.; de Bock, Lieve; van Grieken, René E.; Gasparovic, Richard F.; Brooks, Ian

    2000-08-01

    The effects of anthropogenic particulate emissions from ships on the radiative, microphysical, and chemical properties of moderately polluted marine stratiform clouds are examined. A case study of two ships in the same air mass is presented where one of the vessels caused a discernible ship track while the other did not. In situ measurements of cloud droplet size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to measurements of cloud radiative properties. The differences between the aerosol in the two ship plumes are discussed;these indicate that combustion-derived particles in the size range of about 0.03-0.3-m radius were those that caused the microphysical changes in the clouds that were responsible for the ship track.The authors examine the processes behind ship track formation in a moderately polluted marine boundary layer as an example of the effects that anthropogenic particulate pollution can have in the albedo of marine stratiform clouds.

  12. Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.

  13. Virtual Sensors: Using Data Mining to Efficiently Estimate Spectra

    NASA Technical Reports Server (NTRS)

    Srivastava, Ashok; Oza, Nikunj; Stroeve, Julienne

    2004-01-01

    Detecting clouds within a satellite image is essential for retrieving surface geophysical parameters, such as albedo and temperature, from optical and thermal imagery because the retrieval methods tend to be valid for clear skies only. Thus, routine satellite data processing requires reliable automated cloud detection algorithms that are applicable to many surface types. Unfortunately, cloud detection over snow and ice is difficult due to the lack of spectral contrast between clouds and snow. Snow and clouds are both highly reflective in the visible wavelen,ats and often show little contrast in the thermal Infrared. However, at 1.6 microns, the spectral signatures of snow and clouds differ enough to allow improved snow/ice/cloud discrimination. The recent Terra and Aqua Moderate Resolution Imaging Spectro-Radiometer (MODIS) sensors have a channel (channel 6) at 1.6 microns. Presently the most comprehensive, long-term information on surface albedo and temperature over snow- and ice-covered surfaces comes from the Advanced Very High Resolution Radiometer ( AVHRR) sensor that has been providing imagery since July 1981. The earlier AVHRR sensors (e.g. AVHRR/2) did not however have a channel designed for discriminating clouds from snow, such as the 1.6 micron channel available on the more recent AVHRR/3 or the MODIS sensors. In the absence of the 1.6 micron channel, the AVHRR Polar Pathfinder (APP) product performs cloud detection using a combination of time-series analysis and multispectral threshold tests based on the satellite's measuring channels to produce a cloud mask. The method has been found to work reasonably well over sea ice, but not so well over the ice sheets. Thus, improving the cloud mask in the APP dataset would be extremely helpful toward increasing the accuracy of the albedo and temperature retrievals, as well as extending the time-series of albedo and temperature retrievals from the more recent sensors to the historical ones. In this work, we use data mining methods to construct a model of MODIS channel 6 as a function of other channels that are common to both MODIS and AVHRR. The idea is to use the model to generate the equivalent of MODIS channel 6 for AVHRR as a function of the AVHRR equivalents to MODIS channels. We call this a Virtual Sensor because it predicts unmeasured spectra. The goal is to use this virtual channel 6. to yield a cloud mask superior to what is currently used in APP . Our results show that several data mining methods such as multilayer perceptrons (MLPs), ensemble methods (e.g., bagging), and kernel methods (e.g., support vector machines) generate channel 6 for unseen MODIS images with high accuracy. Because the true channel 6 is not available for AVHRR images, we qualitatively assess the virtual channel 6 for several AVHRR images.

  14. Fog and rain in the Amazon

    PubMed Central

    Anber, Usama; Gentine, Pierre; Wang, Shuguang; Sobel, Adam H.

    2015-01-01

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget. These results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents. PMID:26324902

  15. Fog and rain in the Amazon

    DOE PAGES

    Anber, Usama; Gentine, Pierre; Wang, Shuguang; ...

    2015-08-31

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget.more » Finally, these results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anber, Usama; Gentine, Pierre; Wang, Shuguang

    The diurnal and seasonal water cycles in the Amazon remain poorly simulated in general circulation models, exhibiting peak evapotranspiration in the wrong season and rain too early in the day. We show that those biases are not present in cloud-resolving simulations with parameterized large-scale circulation. The difference is attributed to the representation of the morning fog layer, and to more accurate characterization of convection and its coupling with large-scale circulation. The morning fog layer, present in the wet season but absent in the dry season, dramatically increases cloud albedo, which reduces evapotranspiration through its modulation of the surface energy budget.more » Finally, these results highlight the importance of the coupling between the energy and hydrological cycles and the key role of cloud albedo feedback for climates over tropical continents.« less

  17. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m –2 (1 σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 Wmore » m –2), while fire POM induces a small effect (–0.05 and 0.04 ± 0.01 W m –2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is –0.70 ± 0.05 W m –2, resulting mainly from the fire POM effect (–0.59 ± 0.03 W m –2). REari (0.43 ± 0.03 W m –2) and REaci (–1.38 ± 0.23 W m –2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and –0.82 ± 0.09 W m –2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to –15 W m –2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. Furthermore, the global annual mean RE due to surface-albedo changes (REsac) over land areas (0.030 ± 0.10 W m –2) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m –2) with the maximum albedo effect occurring in spring (0.12 W m –2) when snow starts to melt.« less

  18. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    DOE PAGES

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong; ...

    2016-11-29

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m –2 (1 σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 Wmore » m –2), while fire POM induces a small effect (–0.05 and 0.04 ± 0.01 W m –2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is –0.70 ± 0.05 W m –2, resulting mainly from the fire POM effect (–0.59 ± 0.03 W m –2). REari (0.43 ± 0.03 W m –2) and REaci (–1.38 ± 0.23 W m –2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and –0.82 ± 0.09 W m –2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to –15 W m –2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. Furthermore, the global annual mean RE due to surface-albedo changes (REsac) over land areas (0.030 ± 0.10 W m –2) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m –2) with the maximum albedo effect occurring in spring (0.12 W m –2) when snow starts to melt.« less

  19. Marine cloud brightening: regional applications.

    PubMed

    Latham, John; Gadian, Alan; Fournier, Jim; Parkes, Ben; Wadhams, Peter; Chen, Jack

    2014-12-28

    The general principle behind the marine cloud brightening (MCB) climate engineering technique is that seeding marine stratocumulus clouds with substantial concentrations of roughly monodisperse sub-micrometre-sized seawater particles might significantly enhance cloud albedo and longevity, thereby producing a cooling effect. This paper is concerned with preliminary studies of the possible beneficial application of MCB to three regional issues: (1) recovery of polar ice loss, (2) weakening of developing hurricanes and (3) elimination or reduction of coral bleaching. The primary focus is on Item 1. We focus discussion herein on advantages associated with engaging in limited-area seeding, regional effects rather than global; and the levels of seeding that may be required to address changing current and near-term conditions in the Arctic. We also mention the possibility that MCB might be capable of producing a localized cooling to help stabilize the West Antarctic Ice Sheet.

  20. Unveiling aerosol-cloud interactions - Part 2: Minimising the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Christensen, Matthew W.; Poulsen, Caroline A.; Lohmann, Ulrike

    2017-11-01

    Aerosol-cloud interactions (ACIs) are uncertain and the estimates of the ACI effective radiative forcing (ERFaci) magnitude show a large variability. Within the Aerosol_cci project the susceptibility of cloud properties to changes in aerosol properties is derived from the high-resolution AATSR (Advanced Along-Track Scanning Radiometer) data set using the Cloud-Aerosol Pairing Algorithm (CAPA) (as described in our companion paper) and compared to susceptibilities from the global aerosol climate model ECHAM6-HAM2 and MODIS-CERES (Moderate Resolution Imaging Spectroradiometer - Clouds and the Earth's Radiant Energy System) data. For ECHAM6-HAM2 the dry aerosol is analysed to mimic the effect of CAPA. Furthermore the analysis is done for different environmental regimes. The aerosol-liquid water path relationship in ECHAM6-HAM2 is systematically stronger than in AATSR-CAPA data and cannot be explained by an overestimation of autoconversion when using diagnostic precipitation but rather by aerosol swelling in regions where humidity is high and clouds are present. When aerosol water is removed from the analysis in ECHAM6-HAM2 the strength of the susceptibilities of liquid water path, cloud droplet number concentration and cloud albedo as well as ERFaci agree much better with those of AATSR-CAPA or MODIS-CERES. When comparing satellite-derived to model-derived susceptibilities, this study finds it more appropriate to use dry aerosol in the computation of model susceptibilities. We further find that the statistical relationships inferred from different satellite sensors (AATSR-CAPA vs. MODIS-CERES) as well as from ECHAM6-HAM2 are not always of the same sign for the tested environmental conditions. In particular the susceptibility of the liquid water path is negative in non-raining scenes for MODIS-CERES but positive for AATSR-CAPA and ECHAM6-HAM2. Feedback processes like cloud-top entrainment that are missing or not well represented in the model are therefore not well constrained by satellite observations. In addition to aerosol swelling, wet scavenging and aerosol processing have an impact on liquid water path, cloud albedo and cloud droplet number susceptibilities. Aerosol processing leads to negative liquid water path susceptibilities to changes in aerosol index (AI) in ECHAM6-HAM2, likely due to aerosol-size changes by aerosol processing. Our results indicate that for statistical analysis of aerosol-cloud interactions the unwanted effects of aerosol swelling, wet scavenging and aerosol processing need to be minimised when computing susceptibilities of cloud variables to changes in aerosol.

  1. WISE/NEOWISE OBSERVATIONS OF THE JOVIAN TROJAN POPULATION: TAXONOMY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grav, T.; Mainzer, A. K.; Bauer, J. M.

    2012-11-01

    We present updated/new thermal model fits for 478 Jovian Trojan asteroids observed with the Wide-field Infrared Survey Explorer (WISE). Using the fact that the two shortest bands used by WISE, centered on 3.4 and 4.6 {mu}m, are dominated by reflected light, we derive albedos of a significant fraction of these objects in these bands. While the visible albedos of both the C-, P-, and D-type asteroids are strikingly similar, the WISE data reveal that the albedo at 3.4 {mu}m is different between C-/P- and D-types. The albedo at 3.4 {mu}m can thus be used to classify the objects, with C-/P-typesmore » having values less than 10% and D-types have values larger than 10%. Classifying all objects larger than 50 km shows that the D-type objects dominate both the leading cloud (L {sub 4}), with a fraction of 84%, and trailing cloud (L {sub 5}), with a fraction of 71%-80%. The two clouds thus have very similar taxonomic distribution for these large objects, but the leading cloud has a larger number of these large objects, L {sub 4}/L {sub 5} = 1.34. The taxonomic distribution of the Jovian Trojans is found to be different from that of the large Hildas, which is dominated by C- and P-type objects. At smaller sizes, the fraction of D-type Hildas starts increasing, showing more similarities with the Jovian Trojans. If this similarity is confirmed through deeper surveys, it could hold important clues to the formation and evolution of the two populations. The Jovian Trojans does have similar taxonomic distribution to that of the Jovian irregular satellites, but lacks the ultra red surfaces found among the Saturnian irregular satellites and Centaur population.« less

  2. Effects of Surface Albedo on Smoke Detection Through Geostationary Satellite Imagery in the Hazard Mapping System (HMS)

    NASA Astrophysics Data System (ADS)

    Salemi, A.; Ruminski, M. G.

    2012-12-01

    The Satellite Analysis Branch (SAB) of NOAA/NESDIS uses geostationary and polar orbiting satellite imagery to identify fires and smoke throughout the continental United States. The fires and smoke are analyzed daily on the Hazard Mapping System (HMS) and made available via the internet in various formats. Analysis of smoke plumes generated from wildfires, agricultural and prescribe burns is performed with single channel visible imagery primarily from NOAA's Geostationary Operational Environmental Satellite (GOES) animations. Identification of smoke in visible imagery is complicated by the presence of clouds, the viewing angle produced by the sun, smoke, satellite geometry, and the surface albedo of the ground below the smoke among other factors. This study investigates the role of surface albedo in smoke detection. LIght Detection And Ranging (LIDAR) instruments are capable of detecting smoke and other aerosols. Through the use of ground and space based LIDAR systems in areas of varying albedo a relationship between the subjective analyst drawn smoke plumes versus those detected by LIDAR is established. The ability to detect smoke over regions of higher albedo (brighter surface, such as grassland, scrub and desert) is diminished compared to regions of lower albedo (darker surface, such as forest and water). Users of the HMS smoke product need to be aware of this limitation in smoke detection in areas of higher albedo.

  3. Which way will the circulation shift in a changing climate? Possible nonlinearity of extratropical cloud feedbacks

    NASA Astrophysics Data System (ADS)

    Tandon, Neil F.; Cane, Mark A.

    2017-06-01

    In a suite of idealized experiments with the Community Atmospheric Model version 3 coupled to a slab ocean, we show that the atmospheric circulation response to CO2 increase is sensitive to extratropical cloud feedback that is potentially nonlinear. Doubling CO2 produces a poleward shift of the Southern Hemisphere (SH) midlatitude jet that is driven primarily by cloud shortwave feedback and modulated by ice albedo feedback, in agreement with earlier studies. More surprisingly, for CO2 increases smaller than 25 %, the SH jet shifts equatorward. Nonlinearities are also apparent in the Northern Hemisphere, but with less zonal symmetry. Baroclinic instability theory and climate feedback analysis suggest that as the CO2 forcing amplitude is reduced, there is a transition from a regime in which cloud and circulation changes are largely decoupled to a regime in which they are highly coupled. In the dynamically coupled regime, there is an apparent cancellation between cloud feedback due to warming and cloud feedback due to the shifting jet, and this allows the ice albedo feedback to dominate in the high latitudes. The extent to which dynamical coupling effects exceed thermodynamic forcing effects is strongly influenced by cloud microphysics: an alternate model configuration with slightly increased cloud liquid (LIQ) produces poleward jet shifts regardless of the amplitude of CO2 forcing. Altering the cloud microphysics also produces substantial spread in the circulation response to CO2 doubling: the LIQ configuration produces a poleward SH jet shift approximately twice that produced under the default configuration. Analysis of large ensembles of the Canadian Earth System Model version 2 demonstrates that nonlinear, cloud-coupled jet shifts are also possible in comprehensive models. We still expect a poleward trend in SH jet latitude for timescales on which CO2 increases by more than 25 %. But on shorter timescales, our results give good reason to expect significant equatorward deviations. We also discuss the implications for understanding the circulation response to small external forcings from other sources, such as the solar cycle.

  4. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Stier, P.; Hoose, C.; Ferrachat, S.; Kloster, S.; Roeckner, E.; Zhang, J.

    2007-07-01

    The double-moment cloud microphysics scheme from ECHAM4 that predicts both the mass mixing ratios and number concentrations of cloud droplets and ice crystals has been coupled to the size-resolved aerosol scheme ECHAM5-HAM. ECHAM5-HAM predicts the aerosol mass, number concentrations and mixing state. The simulated liquid, ice and total water content and the cloud droplet and ice crystal number concentrations as a function of temperature in stratiform mixed-phase clouds between 0 and -35° C agree much better with aircraft observations in the ECHAM5 simulations. ECHAM5 performs better because more realistic aerosol concentrations are available for cloud droplet nucleation and because the Bergeron-Findeisen process is parameterized as being more efficient. The total anthropogenic aerosol effect includes the direct, semi-direct and indirect effects and is defined as the difference in the top-of-the-atmosphere net radiation between present-day and pre-industrial times. It amounts to -1.9 W m-2 in ECHAM5, when a relative humidity dependent cloud cover scheme and aerosol emissions representative for the years 1750 and 2000 from the AeroCom emission inventory are used. The contribution of the cloud albedo effect amounts to -0.7 W m-2. The total anthropogenic aerosol effect is larger when either a statistical cloud cover scheme or a different aerosol emission inventory are employed because the cloud lifetime effect increases.

  5. Modelling Mean Albedo of Individual Roofs in Complex Urban Areas Using Satellite Images and Airborne Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Kalantar, B.; Mansor, S.; Khuzaimah, Z.; Sameen, M. Ibrahim; Pradhan, B.

    2017-09-01

    Knowledge of surface albedo at individual roof scale is important for mitigating urban heat islands and understanding urban climate change. This study presents a method for quantifying surface albedo of individual roofs in a complex urban area using the integration of Landsat 8 and airborne LiDAR data. First, individual roofs were extracted from airborne LiDAR data and orthophotos using optimized segmentation and supervised object based image analysis (OBIA). Support vector machine (SVM) was used as a classifier in OBIA process for extracting individual roofs. The user-defined parameters required in SVM classifier were selected using v-fold cross validation method. After that, surface albedo was calculated for each individual roof from Landsat images. Finally, thematic maps of mean surface albedo of individual roofs were generated in GIS and the results were discussed. Results showed that the study area is covered by 35% of buildings varying in roofing material types and conditions. The calculated surface albedo of buildings ranged from 0.16 to 0.65 in the study area. More importantly, the results indicated that the types and conditions of roofing materials significantly effect on the mean value of surface albedo. Mean albedo of new concrete, old concrete, new steel, and old steel were found to be equal to 0.38, 0.26, 0.51, and 0.44 respectively. Replacing old roofing materials with new ones should highly prioritized.

  6. Monthly Covariability of Amazonian Convective Cloud Properties and Radiative Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Dodson, J. Brant; Taylor, Patrick C.

    2016-01-01

    The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. CloudSat and CERES data are used to further examine these connections by determining the sensitivity of monthly anomalies in the radiative diurnal cycle to monthly anomalies in multiple cloud variables. During months with positive anomalies in convective frequency, the longwave diurnal cycle is shifted and skewed earlier in the day by the increased longwave cloud forcing during the afternoon from mature deep convective cores and associated anvils. This is consistent with previous studies using reanalysis data to characterize anomalous convective instability. Contrary to this, months with positive anomalies in convective cloud top height (commonly associated with more intense convection) shifts the longwave diurnal cycle later in the day. The contrary results are likely an effect of the inverse relationships between cloud top height and frequency. The albedo diurnal cycle yields inconsistent results when using different cloud variables.

  7. Observational determination of albedo decrease caused by vanishing Arctic sea ice

    PubMed Central

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V.

    2014-01-01

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m2 of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming. PMID:24550469

  8. Aerosol midlatitude cyclone indirect effects in observations and high-resolution simulations

    NASA Astrophysics Data System (ADS)

    McCoy, Daniel T.; Field, Paul R.; Schmidt, Anja; Grosvenor, Daniel P.; Bender, Frida A.-M.; Shipway, Ben J.; Hill, Adrian A.; Wilkinson, Jonathan M.; Elsaesser, Gregory S.

    2018-04-01

    Aerosol-cloud interactions are a major source of uncertainty in inferring the climate sensitivity from the observational record of temperature. The adjustment of clouds to aerosol is a poorly constrained aspect of these aerosol-cloud interactions. Here, we examine the response of midlatitude cyclone cloud properties to a change in cloud droplet number concentration (CDNC). Idealized experiments in high-resolution, convection-permitting global aquaplanet simulations with constant CDNC are compared to 13 years of remote-sensing observations. Observations and idealized aquaplanet simulations agree that increased warm conveyor belt (WCB) moisture flux into cyclones is consistent with higher cyclone liquid water path (CLWP). When CDNC is increased a larger LWP is needed to give the same rain rate. The LWP adjusts to allow the rain rate to be equal to the moisture flux into the cyclone along the WCB. This results in an increased CLWP for higher CDNC at a fixed WCB moisture flux in both observations and simulations. If observed cyclones in the top and bottom tercile of CDNC are contrasted it is found that they have not only higher CLWP but also cloud cover and albedo. The difference in cyclone albedo between the cyclones in the top and bottom third of CDNC is observed by CERES to be between 0.018 and 0.032, which is consistent with a 4.6-8.3 Wm-2 in-cyclone enhancement in upwelling shortwave when scaled by annual-mean insolation. Based on a regression model to observed cyclone properties, roughly 60 % of the observed variability in CLWP can be explained by CDNC and WCB moisture flux.

  9. Water ice cloud property retrievals at Mars with OMEGA:Spatial distribution and column mass

    NASA Astrophysics Data System (ADS)

    Olsen, Kevin S.; Madeleine, Jean-Baptiste; Szantai, Andre; Audouard, Joachim; Geminale, Anna; Altieri, Francesca; Bellucci, Giancarlo; Montabone, Luca; Wolff, Michael J.; Forget, Francois

    2017-04-01

    Spectral images of Mars recorded by OMEGA (Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité) on Mars Express can be used to deduce the mean effective radius (r_eff) and optical depth (τ_i) of water ice particles in clouds. Using new data sets for a priori surface temperature, vertical profiles of atmospheric temperature, dust opacity, and multi-spectral surface albedo, we have analyzed over 40 OMEGA image cubes over the Tharsis, Arabia, and Syrtis Major quadrangles, and mapped the spatial distribution of r_eff, τ_i, and water ice column mass. We also explored the parameter space of r_eff and τ_i, which are inversely proportional, and the ice cloud index (ICI), which is the ratio of the reflectance at 3.4 and 3.52 μm, and indicates the thickness of water ice clouds. We found that the ICI, trivial to calculate for OMEGA image cubes, can be a proxy for column mass, which is very expensive to compute, requiring accurate retrievals of surface albedo, r_eff, and τ_i. Observing the spatial distribution, we find that within each cloud system, r_eff varies about a mean of 2.1 μm, that τi is closely related to r_eff, and that the values allowed for τ_i, given r_eff, are related to the ICI. We also observe areas where our retrieval detects very thin clouds made of very large particles (mean of 12.5 μm), which are still under investigation.

  10. The Global Radiative Impact of the Sea-Ice-Albedo Feedback in the Arctic

    NASA Astrophysics Data System (ADS)

    Hudson, S. R.

    2009-12-01

    The sea-ice-albedo feedback is known to be an important element of climatic changes over and near regions of ocean with ice cover. It is one of several feedbacks that lead to the polar enhancement of observed and projected global warming. Many studies in the past have used climate models to look at the regional and global impact of the albedo feedback on specific climate variables, most often temperature. These studies generally report a strong regional effect, but also some global effects due to the feedback. Recent changes in Arctic sea ice have led to increased reference to the importance of the sea-ice-albedo feedback, but few studies have examined the global impact of the feedback specifically associated with changes to sea ice in the Arctic; most have included changes to sea ice in both hemispheres, and in many cases, also to snow. That reduced sea ice cover will have a local warming effect is clear from modeling studies. On the other hand, given the relatively small area of the globe that is covered by Arctic sea ice, and the relatively small amounts of sunlight incident on these areas annually, it should be investigated how important reductions in sea ice are to the global solar radiation budget. In this study I present calculations of the global radiative impact of the reduction in Earth’s albedo resulting from reduced sea-ice cover in the Arctic. The intended result is a number, in W m-2, that represents the total increase in absorbed solar radiation due to the reduction in Arctic sea-ice cover, averaged over the globe and over the year. This number is relevant to assessing the long-term, global importance of the sea-ice-albedo feedback to climate change, and can help put it into context by allowing a comparison of this radiative forcing with other forcings, such as those due to CO2 increases and to aerosols, as given in Figure SPM.2 from the IPCC AR4 WG1. Rather than try to determine this forcing with a model, in which the assumptions and approximations are difficult to see and understand, I use representative datasets and calculate the effect with relatively simple math. The solar zenith angle is calculated as a function of latitude and time for an entire year, giving the top-of-atmosphere (ToA) incident flux; the ToA albedo, as a function of solar zenith angle, is taken from observations by CERES, for clear and cloudy skies over sea ice (cold and melting) and ocean; cloud cover data are taken from the cloud atlas of Warren and Hahn; monthly gridded sea ice concentrations from passive microwave data were downloaded from NSIDC and are interpolated to daily concentrations. The total energy absorbed in each grid cell is then calculated in a very straightforward way for 2.5-minute time steps throughout the year. This is done both with the mean ice concentration from 1979 to 1998, and then with various modified concentration fields, including realistic current and future fields, as well as a permanently ice-free Arctic. Clouds are left unchanged, though because of their importance, their effect is investigated. The details of the calculation, including assumptions and approximations will be presented, along with a range of results for current and future changes, as well as for an estimate on the upper bound: a global-annual mean of about 0.7 W m-2.

  11. Retrieval Algorithm for Broadband Albedo at the Top of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Ho; Lee, Kyu-Tae; Kim, Bu-Yo; Zo, ll-Sung; Jung, Hyun-Seok; Rim, Se-Hun

    2018-05-01

    The objective of this study is to develop an algorithm that retrieves the broadband albedo at the top of the atmosphere (TOA albedo) for radiation budget and climate analysis of Earth's atmosphere using Geostationary Korea Multi-Purse Satellite/Advanced Meteorological Imager (GK-2A/AMI) data. Because the GK-2A satellite will launch in 2018, we used data from the Japanese weather satellite Himawari-8 and onboard sensor Advanced Himawari Imager (AHI), which has similar sensor properties and observation area to those of GK-2A. TOA albedo was retrieved based on reflectance and regression coefficients of shortwave channels 1 to 6 of AHI. The regression coefficient was calculated using the results of the radiative transfer model (SBDART) and ridge regression. The SBDART used simulations of the correlation between TOA albedo and reflectance of each channel according to each atmospheric conditions (solar zenith angle, viewing zenith angle, relative azimuth angle, surface type, and absence/presence of clouds). The TOA albedo from Himawari-8/AHI were compared to that from the National Aeronautics and Space Administration (NASA) satellite Terra with onboard sensor Clouds and the Earth's Radiant Energy System (CERES). The correlation coefficients between the two datasets from the week containing the first day of every month between 1st August 2015 and 1st July 2016 were high, ranging between 0.934 and 0.955, with the root mean square error in the 0.053-0.068 range.

  12. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, E. G.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA s Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influenced by the phenological concept that within a certain area, a pixel s ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area s phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVl data sets.

  13. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: a regional modelling study using WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Q.; Gustafson, W. I.; Fast, J. D.

    2012-09-28

    Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the relative impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 October–16 November 2008). Two distinct regions are identified. The near-coast polluted region is characterized by low surface precipitation rates, the strong suppression of non-sea-salt particle activation due to sea-salt particles, a predominant albedo effect in aerosol indirect effects, and limited impact of aerosols associated withmore » anthropogenic emissions on clouds. Opposite sensitivities to natural marine and anthropogenic aerosol perturbations are seen in cloud properties (e.g., cloud optical depth and cloud-top and cloud-base heights), precipitation, and the top-of-atmosphere and surface shortwave fluxes over this region. The relatively clean remote region is characterized by large contributions of aerosols from non-regional sources (lateral boundaries) and much stronger drizzle at the surface. Under a scenario of five-fold increase in regional anthropogenic emissions, this relatively clean region shows large cloud responses, for example, a 13% increase in cloud-top height and a 9% increase in albedo in response to a moderate increase (25% of the reference case) in cloud condensation nuclei (CCN) concentration. The reduction of precipitation due to this increase in anthropogenic aerosols more than doubles the aerosol lifetime in the clean marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol, which ultimately alters the cloud micro- and macro-physical properties, leading to strong aerosol-cloud-precipitation interactions. The high sensitivity is also related to an increase in cloud-top entrainment rate (by 16% at night) due to the increased anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions due to the increased anthropogenic aerosols have a stronger diurnal cycle over the clean region compared to the near-coast region with stronger interactions at night. During the day, solar heating results in more frequent decoupling of the cloud and sub-cloud layers, thinner clouds, reduced precipitation, and reduced sensitivity to the increase in anthropogenic emissions. This study shows the importance of natural aerosols in accurately quantifying anthropogenic forcing within a regional modeling framework. Finally, the results of this study also imply that the energy balance perturbations from increased anthropogenic emissions are larger in the more susceptible clean environment than in already polluted environment and are larger than possible from the first indirect effect alone.« less

  14. Absorption of Solar Radiation by Clouds: An Overview

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Einaudi, Franco (Technical Monitor)

    2000-01-01

    This talk provides an overview of the subject of absorption of solar radiation by clouds in the earth's atmosphere. The paper summarizes the available evidence which points to disagreements between theoretical and observed values of cloud absorption (and reflections). The importance of these discrepancies, particularly to remote sensing of clouds as well as to studies of cloud physics and earth radiation budgets, is emphasized. Existing cloud absorption and reflection measurements are reviewed and the persistent differences that exist between calculated and measured near-infrared cloud albedos are highlighted. Various explanations for these reflection and absorption discrepancies are discussed under two separate paths: a theoretician's approach and an experimentalist's approach. Examples for the former approach include model accuracy tests, large-droplet hypothesis, excess absorbing aerosol, enhanced water vapor continuum absorption, and effects of cloud inhomogeneity. The latter approach focuses on discussions of instrumental device, calibration, operational strategy, and signal/noise separation. A recommendation for future activities on this subject will be given.

  15. Near-Global Survey of Cloud Column Susceptibilities Using ISCCP Data

    NASA Technical Reports Server (NTRS)

    Han, Qingyuan; Rossow, William B.; Chou, Joyce; Welch, Ronald M.; Hansen, James E. (Technical Monitor)

    2000-01-01

    A new parameter, cloud column susceptibility, is introduced to study the aerosol indirect effect. There are several advantages of this new parameter in comparison with the traditional cloud susceptibility. First, no assumptions about constant liquid water content and cloud layer thickness are required in calculations so that errors caused by these assumptions can be avoided. Second, no a priori knowledge of liquid water content is necessary in remote sensing, which makes global survey by satellite data possible even though liquid water content may change significantly. Third, this new parameter can deal with variations of cloud geometrical thickness during cloud-aerosol interactions, which are evidenced by Without assuming how cloud droplet size will respond to changes of number concentration, this new parameter describes the aerosol indirect effect more directly. It addresses the question of how cloud albedo changes with increasing column number concentrations of cloud droplets, which is resulted from cloud-aerosol interactions. In this study, two approaches are used to retrieve cloud column susceptibility by satellite data. The results of both approaches show a striking contrast of cloud column susceptibilities between continental and maritime. Between the two approaches, the one that uses no assumption of constant liquid water content leads to smaller, some times even negative, cloud column susceptibilities. This finding suggests that the aerosol indirect effect may be overestimated if the assumption of constant liquid water content is used in model studies.

  16. Cloud structure on Uranus as constrained by near IR 1.1-1.8 micron spectra.

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.

    2005-08-01

    Three uranian cloud layers were identified by West et al. (Uranus, Univ. Arizona Press, 1991): an optically thin stratospheric haze, an optically thicker methane haze (0.4 < τ < 1) primarily in the 1.2-1.3 bar region, and a cloud of unknown composition near 3 bars. Using improved methane band models of Irwin et al. (BAAS, this issue) we were able to test this paradigm using near-IR spectra covering 1.1-1.8 μ m, a range well suited for distinguishing the main cloud levels. We assumed a 2-cloud model in which the lower cloud is opaque and the upper cloud consists of broken opaque elements. The pressure and fractional coverage of the upper cloud and the pressure and albedo of the lower cloud were adjusted to fit the 1975 geometric albedo spectrum of Fink and Larsen (ApJ 233, 1021-40, 1979), with the following results (first two rows): Fit Range & Upper & Upper & Lower & Lower & (μ m) & P (bars) & Fraction(%) & P (bars) & Albedo (%) & χ2 1.175-1.34 & 2.2±0.15 & 2.8±0.4 & 6.6+1.2-0.7 & 6.5±0.8 & 206 1.450-1.70 & 1.8±0.10 & 2.2±0.3 & 5.2+0.8-0.4 & 3.3±0.3& 223 1.175-1.34 & 1.25 (fixed) & 0.15±0.08 & 3.1 (fixed) & 6.6±0.8 & 296 1.450-1.70 & 1.25 (fixed) & 0.66±0.05 & 3.1 (fixed) & 4.4±0.1 & 281 Fixing clouds at paradigm pressures of 1.25 bars and 3.1 bars yields a significant reduction in fit quality and a very small upper cloud contribution (last two rows). The paradigm-violating best-fit results are consistent with an analysis of seven-band Keck AO imaging observations (Sromovsky and Fry, in preparation), which concludes that the 1.2-bar cloud is at best a minor contributor to Uranus' reflectivity and that latitudinal variations in brightness are mainly controlled by deeper clouds. How prior results can be explained in the context of these new results remains to be determined. This research was supported by a grant from NASA's Planetary Astronomy Program.

  17. Production of Arctic Sea-ice Albedo by fusion of MISR and MODIS data

    NASA Astrophysics Data System (ADS)

    Kharbouche, Said; Muller, Jan-Peter

    2017-04-01

    We have combined data from the NASA MISR and MODIS spectro-radiometers to create a cloud-free albedo dataset specifically for sea-ice. The MISR (Multi-Angular Spectro-Radiometer) instrument on board Terra satellite has a unique ability to create high-quality Bidirectional Reflectance (BRF) over a 7 minute time interval per single overpass, thanks to its 9 cameras of different view angles (±70°,±60°,±45°,±26°). However, as MISR is limited to narrow spectral bands (443nm, 555nm, 670nm, 865nm), which is not sufficient to mask cloud effectively and robustly, we have used the sea-ice mask MOD09 product (Collection 6) from MODIS (Moderate resolution Imaging Spectoradiometer) instrument, which is also on board Terra satellite and acquiring data simultaneously. Only We have created a new and consistent sea-ice (for Arctic) albedo product that is daily, from 1st March to 22nd September for each and every year between 2000 to 2016 at two spatial grids, 1km x 1km and 5km x 5km in polar stereographic projection. Their analysis is described in a separate report [1]. References [1] Muller & Kharbouche, Variation of Arctic's Sea-ice Albedo between 2000 and 2016 by fusion of MISR and MODIS data. This conference. Acknowledgements This work was supported by www.QA4ECV.eu, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405. We thank our colleagues at JPL and NASA LaRC for processing these data, especially Sebastian Val and Steve Protack.

  18. The role of earth radiation budget studies in climate and general circulation research

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.

    1987-01-01

    The use of earth radiation budget (ERB) data for climate and general circulation research is studied. ERB measurements obtained in the 1960's and 1970's have provided data on planetary brightness, planetary global energy balances, the greenhouse effect, solar insolation, meridional heat transport by oceans and atmospheres, regional forcing, climate feedback processes, and the computation of albedo values in low latitudes. The role of clouds in governing climate, in influencing the general circulation, and in determining the sensitivity of climate to external perturbations needs to be researched; a procedure for analyzing the ERB data, which will address these problems, is described. The approach involves estimating the clear-sky fluxes from the high spatial resolution scanner measurement and defining a cloud radiative forcing; the global average of the sum of the solar and long-wave cloud forcing yields the net radiative effect of clouds on the climate.

  19. Model simulations of the competing climatic effects of SO2 and CO2

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Chou, Ming-Dah

    1993-01-01

    Sulfur dioxide-derived cloud condensation nuclei are expected to enhance the planetary albedo, thereby cooling the planet. This effect might counteract the global warming expected from enhanced greenhouse gases. A detailed treatment of the relationship between fossil fuel burning and the SO2 effect on cloud albedo is implemented in a two-dimensional model for assessing the climate impact. Using a conservative approach, results show that the cooling induced by the SO2 emission can presently counteract 50 percent of the CO2 greenhouse warming. Since 1980, a strong warming trend has been predicted by the model: 0.15 C during the 1980-1990 period alone. The model predicts that by the year 2060 the SO2 cooling reduces climate warming by 0.5 C or 25 percent for the Intergovernmental Panel on Climate Change (IPCC) business as usual (BAU) scenario and 0.2 C or 20 percent for scenario D (for a slow pace of fossil fuel burning). The hypothesis is examined that the different responses between the Northern Hemisphere and the Southern Hemisphere can be used to validate the presence of the SO2-induced cooling.

  20. The Influence of Thermodynamic Phase on the Retrieval of Mixed-Phase Cloud Microphysical and Optical Properties in the Visible and Near Infrared Region

    NASA Technical Reports Server (NTRS)

    Lee, Joonsuk; Yang, Ping; Dessler, Andrew E.; Baum, Bryan A.; Platnick, Steven

    2005-01-01

    Cloud microphysical and optical properties are inferred from the bidirectional reflectances simulated for a single-layered cloud consisting of an external mixture of ice particles and liquid droplets. The reflectances are calculated with a rigorous discrete ordinates radiative transfer model and are functions of the cloud effective particle size, the cloud optical thickness, and the values of the ice fraction in the cloud (i.e., the ratio of ice water content to total water content). In the present light scattering and radiative transfer simulations, the ice fraction is assumed to be vertically homogeneous; the habit (shape) percentage as a function of ice particle size is consistent with that used for the Moderate Resolution Imaging Spectroradiometer (MODIS) operational (Collection 4 and earlier) cloud products; and the surface is assumed to be Lambertian with an albedo of 0.03. Furthermore, error analyses pertaining to the inference of the effective particle sizes and optical thicknesses of mixed-phase clouds are performed. Errors are calculated with respect to the assumption of a cloud containing solely liquid or ice phase particles. The analyses suggest that the effective particle size inferred for a mixed-phase cloud can be underestimated (or overestimated) if pure liquid phase (or pure ice phase) is assumed for the cloud, whereas the corresponding cloud optical thickness can be overestimated (or underestimated).

  1. Spatio-temporal Variability of Albedo and its Impact on Glacier Melt Modelling

    NASA Astrophysics Data System (ADS)

    Kinnard, C.; Mendoza, C.; Abermann, J.; Petlicki, M.; MacDonell, S.; Urrutia, R.

    2017-12-01

    Albedo is an important variable for the surface energy balance of glaciers, yet its representation within distributed glacier mass-balance models is often greatly simplified. Here we study the spatio-temporal evolution of albedo on Glacier Universidad, central Chile (34°S, 70°W), using time-lapse terrestrial photography, and investigate its effect on the shortwave radiation balance and modelled melt rates. A 12 megapixel digital single-lens reflex camera was setup overlooking the glacier and programmed to take three daily images of the glacier during a two-year period (2012-2014). One image was chosen for each day with no cloud shading on the glacier. The RAW images were projected onto a 10m resolution digital elevation model (DEM), using the IMGRAFT software (Messerli and Grinsted, 2015). A six-parameter camera model was calibrated using a single image and a set of 17 ground control points (GCPs), yielding a georeferencing accuracy of <1 pixel in image coordinates. The camera rotation was recalibrated for new images based on a set of common tie points over stable terrain, thus accounting for possible camera movement over time. The reflectance values from the projected image were corrected for topographic and atmospheric influences using a parametric solar irradiation model, following a modified algorithm based on Corripio (2004), and then converted to albedo using reference albedo measurements from an on-glacier automatic weather station (AWS). The image-based albedo was found to compare well with independent albedo observations from a second AWS in the glacier accumulation area. Analysis of the albedo maps showed that the albedo is more spatially-variable than the incoming solar radiation, making albedo a more important factor of energy balance spatial variability. The incorporation of albedo maps within an enhanced temperature index melt model revealed that the spatio-temporal variability of albedo is an important factor for the calculation of glacier-wide meltwater fluxes.

  2. Variability in modeled cloud feedback tied to differences in the climatological spatial pattern of clouds

    NASA Astrophysics Data System (ADS)

    Siler, Nicholas; Po-Chedley, Stephen; Bretherton, Christopher S.

    2018-02-01

    Despite the increasing sophistication of climate models, the amount of surface warming expected from a doubling of atmospheric CO_2 (equilibrium climate sensitivity) remains stubbornly uncertain, in part because of differences in how models simulate the change in global albedo due to clouds (the shortwave cloud feedback). Here, model differences in the shortwave cloud feedback are found to be closely related to the spatial pattern of the cloud contribution to albedo (α) in simulations of the current climate: high-feedback models exhibit lower (higher) α in regions of warm (cool) sea-surface temperatures, and therefore predict a larger reduction in global-mean α as temperatures rise and warm regions expand. The spatial pattern of α is found to be strongly predictive (r=0.84) of a model's global cloud feedback, with satellite observations indicating a most-likely value of 0.58± 0.31 Wm^{-2} K^{-1} (90% confidence). This estimate is higher than the model-average cloud feedback of 0.43 Wm^{-2} K^{-1}, with half the range of uncertainty. The observational constraint on climate sensitivity is weaker but still significant, suggesting a likely value of 3.68 ± 1.30 K (90% confidence), which also favors the upper range of model estimates. These results suggest that uncertainty in model estimates of the global cloud feedback may be substantially reduced by ensuring a realistic distribution of clouds between regions of warm and cool SSTs in simulations of the current climate.

  3. The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Fortney, Jonathan; Marley, Mark

    2014-11-01

    Vast resources have been dedicated to characterizing the handful of planets with radii between Earth’s and Neptune’s that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition. Of the ~four small planets studied to date, all have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and bulk composition of the atmosphere. We make predictions for the observability of known planets for current and future telescopes.

  4. The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra

    NASA Astrophysics Data System (ADS)

    Morley, Caroline; Fortney, Jonathan J.; Marley, Mark

    2015-01-01

    Vast resources have been dedicated to characterizing the handful of planets with radii between Earth's and Neptune's that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition.Of the ~five small planets studied to date, four have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and bulk composition of the atmosphere. We make predictions for the observability of known planets for current and future telescopes.

  5. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Schaaf, Crystal B.; Platnick, Steven

    2006-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. , Over five years of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface s radiative characteristics. However, roughly 30% of the global land surface, on an annual equal-angle basis, is obscured due to persistent and transient cloud cover, while another 207% is obscured due to ephemeral and seasonal snow effects. This precludes the MOD43B3 albedo products from being directly used in some remote sensing and ground-based applications, climate models, and global change research projects. To provide researchers with the requisite spatially complete global snow-free land surface albedo dataset, an ecosystem-dependent temporal interpolation technique was developed to fill missing or lower quality data and snow covered values from the official MOD43B3 dataset with geophysically realistic values. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data.

  6. Effects of bubbles, cracks, and volcanic tephra on the spectral albedo of bare ice near the Transantarctic Mountains: Implications for sea glaciers on Snowball Earth

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Mullen, Peter C.; Schneebeli, Martin; Brandt, Richard E.; Warren, Stephen G.

    2013-09-01

    Spectral albedo was measured along a 6 km transect near the Allan Hills in East Antarctica. The transect traversed the sequence from new snow through old snow, firn, and white ice, to blue ice, showing a systematic progression of decreasing albedo at all wavelengths, as well as decreasing specific surface area (SSA) and increasing density. Broadband albedos under clear-sky range from 0.80 for snow to 0.57 for blue ice, and from 0.87 to 0.65 under cloud. Both air bubbles and cracks scatter sunlight; their contributions to SSA were determined by microcomputed tomography on core samples of the ice. Although albedo is governed primarily by the SSA (and secondarily by the shape) of bubbles or snow grains, albedo also correlates highly with porosity, which, as a proxy variable, would be easier for ice sheet models to predict than bubble sizes. Albedo parameterizations are therefore developed as a function of density for three broad wavelength bands commonly used in general circulation models: visible, near-infrared, and total solar. Relevance to Snowball Earth events derives from the likelihood that sublimation of equatorward-flowing sea glaciers during those events progressively exposed the same sequence of surface materials that we measured at Allan Hills, with our short 6 km transect representing a transect across many degrees of latitude on the Snowball ocean. At the equator of Snowball Earth, climate models predict thick ice, or thin ice, or open water, depending largely on their albedo parameterizations; our measured albedos appear to be within the range that favors ice hundreds of meters thick.

  7. Mars dust and cloud opacities and scattering properties

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.

    1992-01-01

    We have recently completed an analysis of the visible emission-phase function (EPF) sequences obtained with the solar-band channel of the Infrared Thermal Mapping (IRTM) instrument onboard the two Viking Orbiters. Roughly 100 of these EPF sequences were gathered during the 1977-1980 period, in which the total broadband (.3-3.0 microns) reflectances of the atmosphere/surface above specific locations on Mars were measured versus emission angle as the spacecraft passed overhead. A multiple scattering radiative transfer program was employed to model the EPF observations in terms of the optical depths of dust/clouds, their single scattering albedos and phase functions, and the Lambert albedos and phase coefficient of the underlying surfaces. Due to the predominance of atmospheric scattering at large atmospheric pathlengths and/or large dust opacities, we were able to obtain strong constraints on the scattering properties of dust/clouds and their opacities for a wide range of latitudes, longitudes, and seasons on Mars.

  8. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have even greater consequences. Presently we know that through the use of fossil fuel and land-use changes we have increased the concentration of greenhouse gases in the atmosphere. In parallel, we have seen a modest increase of global temperature in the last century. These two observations have been linked as cause and effect by climate models, but this connection is still experimentally not verified. The spatial and seasonal distribution of aerosol forcing is different from that of greenhouse gases, thus generating a different spatial fingerprint of climate change. This fingerprint was suggested as a method to identify the response of the climate system to anthropogenic forcing of greenhouse gases and aerosol. The aerosol fingerprint may be the only way to firmly establish the presence (or absence) of human impact on climate. Aerosol-cloud interaction through the indirect effect will be an important component of establishing this fingerprint.

  9. Can climate-effective land management reduce regional warming?

    NASA Astrophysics Data System (ADS)

    Hirsch, A. L.; Wilhelm, M.; Davin, E. L.; Thiery, W.; Seneviratne, S. I.

    2017-02-01

    Limiting global warming to well below 2°C is an imminent challenge for humanity. However, even if this global target can be met, some regions are still likely to experience substantial warming relative to others. Using idealized global climate simulations, we examine the potential of land management options in affecting regional climate, with a focus on crop albedo enhancement and irrigation (climate-effective land management). The implementation is performed over all crop regions globally to provide an upper bound. We find that the implementation of both crop albedo enhancement and irrigation can reduce hot temperature extremes by more than 2°C in North America, Eurasia, and India over the 21st century relative to a scenario without management application. The efficacy of crop albedo enhancement scales with the magnitude, where a cooling response exceeding 0.5°C for hot temperature extremes was achieved with a large (i.e., ≥0.08) change in crop albedo. Regional differences were attributed to the surface energy balance response with temperature changes mostly explained by latent heat flux changes for irrigation and net shortwave radiation changes for crop albedo enhancement. However, limitations do exist, where we identify warming over the winter months when climate-effective land management is temporarily suspended. This was associated with persistent cloud cover that enhances longwave warming. It cannot be confirmed if the magnitude of this feedback is reproducible in other climate models. Our results overall demonstrate that regional warming of hot extremes in our climate model can be partially mitigated when using an idealized treatment of climate-effective land management.

  10. Matrix operator theory of radiative transfer. 2: scattering from maritime haze.

    PubMed

    Kattawar, G W; Plass, G N; Catchings, F E

    1973-05-01

    Matrix operator theory is used to calculate the reflected and transmitted radiance of photons that have interacted with plane-parallel maritime haze layers. The results are presented for three solar zenith angles, three values of the surface albedo, and a range of optical thicknesses from very thin to very thick. The diffuse flux at the lower boundary and the cloud albedo are tabulated. The forward peak and other features in the single scattered phase function cause the radiance in many cases to be very different from that for Rayleigh scattering. In particular the variation of the radiance with both the zenith or nadir angle and the azimuthal angle is more marked and the relative limb darkening under very thick layers is greater for haze M than for Rayleigh scattering. The downward diffuse flux at the lower boundary for A = 0 is always greater and the cloud albedo is always less for haze M than for Rayleigh layers.

  11. The relative importance of macrophysical and cloud albedo changes for aerosol-induced radiative effects in closed-cell stratocumulus: insight from the modelling of a case study

    NASA Astrophysics Data System (ADS)

    Grosvenor, Daniel P.; Field, Paul R.; Hill, Adrian A.; Shipway, Benjamin J.

    2017-04-01

    Aerosol-cloud interactions are explored using 1 km simulations of a case study of predominantly closed-cell SE Pacific stratocumulus clouds. The simulations include realistic meteorology along with newly implemented cloud microphysics and sub-grid cloud schemes. The model was critically assessed against observations of liquid water path (LWP), broadband fluxes, cloud fraction (fc), droplet number concentrations (Nd), thermodynamic profiles, and radar reflectivities.Aerosol loading sensitivity tests showed that at low aerosol loadings, changes to aerosol affected shortwave fluxes equally through changes to cloud macrophysical characteristics (LWP, fc) and cloud albedo changes due solely to Nd changes. However, at high aerosol loadings, only the Nd albedo change was important. Evidence was also provided to show that a treatment of sub-grid clouds is as important as order of magnitude changes in aerosol loading for the accurate simulation of stratocumulus at this grid resolution.Overall, the control model demonstrated a credible ability to reproduce observations, suggesting that many of the important physical processes for accurately simulating these clouds are represented within the model and giving some confidence in the predictions of the model concerning stratocumulus and the impact of aerosol. For example, the control run was able to reproduce the shape and magnitude of the observed diurnal cycle of domain mean LWP to within ˜ 10 g m-2 for the nighttime, but with an overestimate for the daytime of up to 30 g m-2. The latter was attributed to the uniform aerosol fields imposed on the model, which meant that the model failed to include the low-Nd mode that was observed further offshore, preventing the LWP removal through precipitation that likely occurred in reality. The boundary layer was too low by around 260 m, which was attributed to the driving global model analysis. The shapes and sizes of the observed bands of clouds and open-cell-like regions of low areal cloud cover were qualitatively captured. The daytime fc frequency distribution was reproduced to within Δfc = 0.04 for fc > ˜ 0.7 as was the domain mean nighttime fc (at a single time) to within Δfc = 0.02. Frequency distributions of shortwave top-of-the-atmosphere (TOA) fluxes from the satellite were well represented by the model, with only a slight underestimate of the mean by 15 %; this was attributed to near-shore aerosol concentrations that were too low for the particular times of the satellite overpasses. TOA long-wave flux distributions were close to those from the satellite with agreement of the mean value to within 0.4 %. From comparisons of Nd distributions to those from the satellite, it was found that the Nd mode from the model agreed with the higher of the two observed modes to within ˜ 15 %.

  12. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    NASA Technical Reports Server (NTRS)

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  13. Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2011-02-01

    Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary differently with altitude in the NH and SH but add up to similar trends at mesospheric cloud heights.

  14. Influence of cloud fraction and snow cover to the variation of surface UV radiation at King Sejong station, Antarctica

    NASA Astrophysics Data System (ADS)

    Lee, Yun Gon; Koo, Ja-Ho; Kim, Jhoon

    2015-10-01

    This study investigated how cloud fraction and snow cover affect the variation of surface ultraviolet (UV) radiation by using surface Erythemal UV (EUV) and Near UV (NUV) observed at the King Sejong Station, Antarctica. First the Radiative Amplification Factor (RAF), the relative change of surface EUV according to the total-column ozone amount, is compared for different cloud fractions and solar zenith angles (SZAs). Generally, all cloudy conditions show that the increase of RAF as SZA becomes larger, showing the larger effects of vertical columnar ozone. For given SZA cases, the EUV transmission through mean cloud layer gradually decreases as cloud fraction increases, but sometimes the maximum of surface EUV appears under partly cloudy conditions. The high surface EUV transmittance under broken cloud conditions seems due to the re-radiation of scattered EUV by cloud particles. NUV transmission through mean cloud layer also decreases as cloud amount increases but the sensitivity to the cloud fraction is larger than EUV. Both EUV and NUV radiations at the surface are also enhanced by the snow cover, and their enhancement becomes higher as SZA increases implying the diurnal variation of surface albedo. This effect of snow cover seems large under the overcast sky because of the stronger interaction between snow surface and cloudy sky.

  15. Analysis of Surface Albedo to Improve Upper-Ocean Heat Budget Calculations

    NASA Astrophysics Data System (ADS)

    Hogikyan, A.; Zhang, D.; Cronin, M. F.

    2016-12-01

    Over 90% of the Earth's energy imbalance is stored in the oceans, so it is important to understand the ocean-atmosphere heat transfer. The Ocean Climate Stations group (OCS) at the Pacific Marine Environmental Laboratory maintains two moored surface buoys in the North Pacific (PAPA and KEO) as air-sea flux reference sites. The goal of the reference sites is to validate global air-sea flux products from atmospheric reanalyses and satellite products, that are critical to understand and model the variability and trend of the earth climate. As other air-sea flux reference buoys in the world ocean, PAPA and KEO only measure downward shortwave radiation (SWdown), but utilize the albedo and the directly measured SWdown to calculate the SWup. Since the open ocean albedo is small, the errors associated with this practice are thought to be comparable or smaller than the instrumentation errors in the air-sea flux measurements. In addition, it is generally accepted that ocean surface albedos can be derived with reasonable confidence from surface radiative fluxes in satellite products such as the Clouds and the Earth's Radiant Energy System (CERES) and the International Satellite Cloud Climatology Project (ISCCP). This project developed a CERES-based albedo product for derivation of SWnet at PAPA and KEO, and assessed the impact of CERES-based albedo on the net surface heat fluxes relative to the currently used ISCCP-based albedo in the OCS air-sea flux data (http://www.pmel.noaa.gov/ocs/data/fluxdisdel/). The high-resolution surface fluxes from CERES are more frequently updated, and consider more physical factors in the approximation, than those from ISCCP. There was a greater change between ISCCP and CERES albedo during wintertime than during summer. There was a greater change at Station PAPA in the northeastern sub-Arctic Pacific, than at Station KEO in the northwestern subtropical Pacific. The rate of temperature change of the mixed-layer is shown to increase based on the new source of albedo data, .08 and .5 °C/year at KEO and PAPA, respectively. The differences in the net surface heat flux due to different albedos used in this study suggest that more comprehensive investigations of the albedo in different products and radiative models, and their impacts on oceanic and atmospheric processes are needed.

  16. Dust scattering from the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Narayan, Sathya; Murthy, Jayant; Karuppath, Narayanankutty

    2017-04-01

    We present an analysis of the diffuse ultraviolet emission near the Taurus Molecular Cloud based on observations made by the Galaxy Evolution Explorer. We used a Monte Carlo dust scattering model to show that about half of the scattered flux originates in the molecular cloud with 25 per cent arising in the foreground and 25 per cent behind the cloud. The best-fitting albedo of the dust grains is 0.3, but the geometry is such that we could not constrain the phase function asymmetry factor (g).

  17. The cloud radiation impact from optics simulation and airborne observation

    NASA Astrophysics Data System (ADS)

    Melnikova, Irina; Kuznetsov, Anatoly; Gatebe, Charles

    2017-02-01

    The analytical approach of inverse asymptotic formulas of the radiative transfer theory is used for solving inverse problems of cloud optics. The method has advantages because it does not impose strict constraints, but it is tied to the desired solution. Observations are accomplished in extended stratus cloudiness, above a homogeneous ocean surface. Data from NASA`s Cloud Absorption Radiometer (CAR) during two airborne experiments (SAFARI-2000 and ARCTAS-2008) were analyzed. The analytical method of inverse asymptotic formulas was used to retrieve cloud optical parameters (optical thickness, single scattering albedo and asymmetry parameter of the phase function) and ground albedo in all 8 spectral channels independently. The method is free from a priori restrictions and there is no links to parameters, and it has been applied to data set of different origin and geometry of observations. Results obtained from different airborne, satellite and ground radiative experiments appeared consistence and showed common features of values of cloud parameters and its spectral dependence (Vasiluev, Melnikova, 2004; Gatebe et al., 2014). Optical parameters, retrieved here, are used for calculation of radiative divergence, reflected and transmitted irradiance and heating rates in cloudy atmosphere, that agree with previous observational data.

  18. Observed correlation of Venus topography with the zonal wind and albedo at cloud top level: the role of stationary gravity waves.

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojtek; Emmanuel, Marcq; Sébastien, Lebonnois; Marina, Patsaeva; Alex, Turin; Anna, Fedorova

    2016-04-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°s) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen [1981], but is not reproduced in a current GCM of Venus atmosphere. Consistent with present findings, the two VEGA mission balloons experienced a small, but significant, difference of westward velocity, at their 53 km floating altitude. The albedo at 365 nm varies also with longitude and latitude in a pattern strikingly similar in the low latitude regions to a recent map of cloud top H2O [Fedorova et al., 2015], in which a lower UV albedo is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  19. Cloud types and the tropical Earth radiation budget, revised

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1989-01-01

    Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  20. Laser Pulse Bidirectional Reflectance from CALIPSO Mission

    NASA Technical Reports Server (NTRS)

    Lu, Xiaomei; Hu, Yongxiang; Yang, Yuekui; Liu, Zhaoyan; Vaughan, Mark; Lucker, Patricia; Trepte, Charles

    2017-01-01

    In this Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) study, we present a simple way of determining laser pulse bidirectional reflectance over snow/ice surface using the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) 532 nanometer polarization channels' measurements. The saturated laser pulse returns from snow and ice surfaces are recovered based on surface tail information. The method overview and initial assessment of the method performance will be presented. The retrieved snow surface bidirectional reflectance is compared with reflectance from both CALIOP cloud cover regions and Moderate Resolution Imaging Spectroradiometer (Earth Observing System (EOS)) (MODIS) Bi-directional Reflectance Distribution Function (BRDF) / Albedo model parameters. The comparisons show that the snow surface bidirectional reflectance over Antarctica for saturation region are generally reliable with a mean value of about 0.90 plus or minus 0.10, while the mean surface reflectance from cloud cover region is about 0.84 plus or minus 0.13 and the calculated MODIS reflectance at 555 nanometers from the BRDF / Albedo model with near nadir illumination and viewing angles is about 0.96 plus or minus 0.04. The comparisons here demonstrate that the snow surface reflectance underneath the cloud with cloud optical depth of about 1 is significantly lower than that for a clear sky condition.

  1. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    NASA Astrophysics Data System (ADS)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean, respectively. This study constitutes the first attempt to use non-polarized and non-lidar reflectance observations-both of them shown to have above-cloud aerosols retrieval capability, to retrieve above-cloud AOT by a passive non-polarized sensor. The uncertainty analysis suggests that the present method should retrieve above-cloud AOT within -10% to 50% which mainly arises due to uncertainty associated with the single-scattering albedo assumption. Although, currently tested by making use of OMI and MODIS measurements, the present color ratio method can be equally applied to the other satellite measurements that carry similar or near-by channels in VIS region of the spectrum such as MISR and NPP/VIIRS. The capability of quantifying the above-cloud aerosol load will facilitate several aspects of cloud-aerosol interaction research such as estimation of the direct radiative forcing of aerosols above clouds; the sign of which can be opposite (warming) to cloud-free aerosol forcing (cooling), aerosol transport, indirect effects of aerosols on clouds, and hydrological cycle.

  2. Aerosol Radiative Forcing in Asian Continental Outflow

    NASA Technical Reports Server (NTRS)

    Pueschel, R.; Kinne, S.; Redemann, J.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Aerosols in elevated layers were sampled with FSSP-probes and wire impactors over the Pacific ocean aboard the NASA DC-8 aircraft. Analyses of particle size and morphology identifies two distinctly different aerosol types for cases when the mid-visible extinctions exceed 0.2/km. Smaller sizes (effective radii of 0.2 um) and moderate absorption (mid-visible single scattering albedo of.935) are typical for urban-industrial pollution. Larger sizes (effective radii of 0.7 um) and weak absorption (mid-visible single scattering albedo of 0.985) identify dust. This aerosol classification is in agreement with its origin as determined by airmass back trajectory analysis. Based on lidar vertical profiling, aerosol dominated by dust and urban-industrial pollution above 3km were assigned mid-visible optical depths of 0.50 and 0.27, respectively. Radiative transfer simulations, considering a 50% cloud-cover below the aerosol layers, suggest (on a daily tP C)C> basis) small reductions (-4W/m2) to the energy budget at the top of the atmosphere for both aerosol types. For c' 0 dust, more backscattering of sunlight (weaker solar absorption) is compensated by a stronger greenhouse effect due to larger sizes. Forced reductions to the energy budget at the surface are 12W/m2 for both aerosol types. In contrast, impacts on heating rates within the aerosol layers are quite different: While urban-industrial aerosol warms the layer (at +0.6K/day as solar heating dominates), dust cools (at -0.5K/day as infrared cooling dominates). Sensitivity tests show the dependence of the aerosol climatic impact on the optical depth, particle size, absorptivity, and altitude of the layers, as well as clouds and surface properties. Climatic cooling can be eliminated (1) for the urban-industrial aerosol if absorption is increased to yield a mid-visible single scattering albedo of 0.89, or if the ocean is replaced by a land surface; (2) for the dust aerosol if the effective radius is increased from 0.7 to 1.2 um. The removal of low-level clouds doubles the cooling at the top of the atmosphere to about -8W/m2.

  3. Effect of Surface Reflectivity Variations On Uv-visible Limb Scattering Measurements of The Atmosphere

    NASA Astrophysics Data System (ADS)

    Oikarinen, L.

    Solar UV and visible radiation scattered at the limb of the Earth's atmosphere is used for measuring density profiles of atmosperic trace gases. For example, the OSIRIS instrument on Odin and SCIAMACHY on Envisat use this technique. A limb-viewing instrument does not see Earth's surface or tropospheric clouds directly. However, in- direct light reflected from the surface or low altitude clouds can make up tens of per cents of the signal. Furthermore, the surface area that contributes to limb intensity ex- tends over 1000 km along the instrument line-of-sight and 200 km across it. Over this area surface reflectivity can vary from almost 0% to 100%. Inaccurate modelling of reflected intensity is a potential source of error in the trace gas retrieval. Generally, radiative transfer models used for analysing limb measure- ments have to assume that the surface has a constant albedo. We have used a three- dimensional Monte Carlo radiative transfer model to study the effects of surface vari- ation to limb radiance. Based on the simulations, we have developed an approximate method for averaging surface albedo for limb scattering measurements with the help of a simple single scattering radiative transfer model.

  4. Development of a MODIS-Derived Surface Albedo Data Set: An Improved Model Input for Processing the NSRDB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maclaurin, Galen; Sengupta, Manajit; Xie, Yu

    A significant source of bias in the transposition of global horizontal irradiance to plane-of-array (POA) irradiance arises from inaccurate estimations of surface albedo. The current physics-based model used to produce the National Solar Radiation Database (NSRDB) relies on model estimations of surface albedo from a reanalysis climatalogy produced at relatively coarse spatial resolution compared to that of the NSRDB. As an input to spectral decomposition and transposition models, more accurate surface albedo data from remotely sensed imagery at finer spatial resolutions would improve accuracy in the final product. The National Renewable Energy Laboratory (NREL) developed an improved white-sky (bi-hemispherical reflectance)more » broadband (0.3-5.0 ..mu..m) surface albedo data set for processing the NSRDB from two existing data sets: a gap-filled albedo product and a daily snow cover product. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellites have provided high-quality measurements of surface albedo at 30 arc-second spatial resolution and 8-day temporal resolution since 2001. The high spatial and temporal resolutions and the temporal coverage of the MODIS sensor will allow for improved modeling of POA irradiance in the NSRDB. However, cloud and snow cover interfere with MODIS observations of ground surface albedo, and thus they require post-processing. The MODIS production team applied a gap-filling methodology to interpolate observations obscured by clouds or ephemeral snow. This approach filled pixels with ephemeral snow cover because the 8-day temporal resolution is too coarse to accurately capture the variability of snow cover and its impact on albedo estimates. However, for this project, accurate representation of daily snow cover change is important in producing the NSRDB. Therefore, NREL also used the Integrated Multisensor Snow and Ice Mapping System data set, which provides daily snow cover observations of the Northern Hemisphere for the temporal extent of the NSRDB (1998-2015). We provide a review of validation studies conducted on these two products and describe the methodology developed by NREL to remap the data products to the NSRDB grid and integrate them into a seamless daily data set.« less

  5. Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility

    NASA Technical Reports Server (NTRS)

    McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.

    2012-01-01

    The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.

  6. On Spectral Invariance of Single Scattering Albedo for Water Droplets and Ice Crystals at Weakly Absorbing Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Chiu, J. Christine; Wiscombe, Warren J.

    2012-01-01

    The single scattering albedo omega(sub O lambda) in atmospheric radiative transfer is the ratio of the scattering coefficient to the extinction coefficient. For cloud water droplets both the scattering and absorption coefficients, thus the single scattering albedo, are functions of wavelength lambda and droplet size r. This note shows that for water droplets at weakly absorbing wavelengths, the ratio omega(sub O lambda)(r)/omega(sub O lambda)(r (sub O)) of two single scattering albedo spectra is a linear function of omega(sub O lambda)(r). The slope and intercept of the linear function are wavelength independent and sum to unity. This relationship allows for a representation of any single scattering albedo spectrum omega(sub O lambda)(r) via one known spectrum omega(sub O lambda)(r (sub O)). We provide a simple physical explanation of the discovered relationship. Similar linear relationships were found for the single scattering albedo spectra of non-spherical ice crystals.

  7. Validation of Quasi-Invariant Ice Cloud Radiative Quantities with MODIS Satellite-Based Cloud Property Retrievals

    NASA Technical Reports Server (NTRS)

    Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.

    2017-01-01

    Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If t(1v) and t(1vg) are conserved where t is optical thickness, v the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1wg)factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1w)(1(exp. 1/2)wg)]12, also tend to be similar.

  8. Influence of projected snow and sea-ice changes on future climate in heavy snowfall region

    NASA Astrophysics Data System (ADS)

    Matsumura, S.; Sato, T.

    2011-12-01

    Snow/ice albedo and cloud feedbacks are critical for climate change projection in cryosphere regions. However, future snow and sea-ice distributions are significantly different in each GCM. Thus, surface albedo in cryosphere regions is one of the causes of the uncertainty for climate change projection. Northern Japan is one of the heaviest snowfall regions in the world. In particular, Hokkaido is bounded on the north by the Okhotsk Sea, where is the southernmost ocean in the Northern Hemisphere that is covered with sea ice during winter. Wintertime climate around Hokkaido is highly sensitive to fluctuations in snow and sea-ice. The purpose of this study is to evaluate the influence of global warming on future climate around Hokkaido, using the Pseudo-Global-Warming method (PGW) by a regional climate model. The boundary conditions of the PGW run were obtained by adding the difference between the future (2090s) and past (1990s) climates simulated by coupled general circulation model (MIROC3.2 medres), which is from the CMIP3 multi-model dataset, into the 6-hourly NCEP reanalysis (R-2) and daily OISST data in the past climate (CTL) run. The PGW experiments show that snow depth significantly decreases over mountainous areas and snow cover mainly decreases over plain areas, contributing to higher surface warming due to the decreased snow albedo. Despite the snow reductions, precipitation mainly increases over the mountainous areas because of enhanced water vapor content. However, precipitation decreases over the Japan Sea and the coastal areas, indicating the weakening of a convergent cloud band, which is formed by convergence between cold northwesteries from the Eurasian continent and anticyclonic circulation over the Okhotsk Sea. These results suggest that Okhotsk sea-ice decline may change the atmospheric circulation and the resulting effect on cloud formation, resulting in changes in winter snow or precipitation. We will also examine another CMIP3 model (MRI-CGCM2.3.2), which sensitivity of surface albedo to surface air temperature is the lowest in the CMIP3 models.

  9. Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism.

    PubMed

    Otterman, J

    1974-11-08

    Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed "thermal depression" eflect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.

  10. Retrieval of Areal-averaged Spectral Surface Albedo from Transmission Data Alone: Computationally Simple and Fast Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.

    We introduce and evaluate a simple retrieval of areal-averaged surface albedo using ground-based measurements of atmospheric transmission alone at five wavelengths (415, 500, 615, 673 and 870nm), under fully overcast conditions. Our retrieval is based on a one-line semi-analytical equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties, such as cloud optical depth and asymmetry parameter, in the visible and near-infrared spectral range. To illustrate the performance of our retrieval, we use as input measurements of spectral atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR). These MFRSR data are collected at two well-established continental sitesmore » in the United States supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program and National Oceanic and Atmospheric Administration (NOAA). The areal-averaged albedos obtained from the MFRSR are compared with collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) white-sky albedo. In particular, these comparisons are made at four MFRSR wavelengths (500, 615, 673 and 870nm) and for four seasons (winter, spring, summer and fall) at the ARM site using multi-year (2008-2013) MFRSR and MODIS data. Good agreement, on average, for these wavelengths results in small values (≤0.01) of the corresponding root mean square errors (RMSEs) for these two sites. The obtained RMSEs are comparable with those obtained previously for the shortwave albedos (MODIS-derived versus tower-measured) for these sites during growing seasons. We also demonstrate good agreement between tower-based daily-averaged surface albedos measured for “nearby” overcast and non-overcast days. Thus, our retrieval originally developed for overcast conditions likely can be extended for non-overcast days by interpolating between overcast retrievals.« less

  11. Cloud Radiative Effect to Downward Longwave Radiation in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Hayasaka, T.

    2014-12-01

    Downward longwave radiation is important factor to affect climate change. In polar regions, estimation of the radiative effect of cloud on the downward longwave radiation has large uncertainty. Relatively large cloud effect to the radiation occurs there due to low temperature, small amount of water vapor, and strong inversion layer. The cloud effect is, however, not evaluated sufficiently because the long term polar night and high surface albedo make satellite retrieval difficult. The intent of the present study is to quantify cloud radiative effect for downward longwave radiation in the polar regions by in-situ observation and radiative transfer calculation. The observation sites in this study are Ny-Ålesund (NYA), Syowa (SYO), and South Pole (SPO). These stations belong to the Baseline Surface Radiation Network. The period of data analysis is from 2003 to 2012. The effect of cloud on the downward longwave radiation is evaluated by subtraction of calculated downward longwave radiation under clear-sky condition from observed value under all-sky condition. Radiative transfer model was used for the evaluation of clear sky radiation with vertical temperature and humidity profile obtained by radiosonde observations. Calculated result shows good correlation with observation under clear-sky condition. The RMSE is +0.83±5.0. The cloud effect varied from -10 - +110 W/m2 (-10 - +40 %). Cloud effect increased with increasing of cloud fraction and decreasing of cloud base height and precipitable water. In SYO negative effects were sometimes obtained. The negative cloud effect emerged under dry and temperature inversion condition lower than 2 km. One of reasons of negative effect is considered to be existence of cloud at temperature inversion altitude. When the cloud effect is smaller than -5 W/m2 (standard deviation between calculation and observation), 50 % of them have a condition with cloud base height estimated by micro pulse lidar lower than 2 km.

  12. A new look at dust and clouds in the Mars atmosphere - Analysis of emission-phase-function sequences from global Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, Steven W.

    1991-01-01

    The present analysis of emission-phase function (EPF) observations from the IR thermal mapper aboard the Viking Orbiter encompasses polar latitudes, and Viking Lander sites, and spans a wide range of solar longitudes. A multiple scattering radiative transfer model which incorporates a bidirectional phase function for the surface and atmospheric scattering by dust and clouds yields surface albedos and dust and ice optical properties and optical depths for the variety of Mars conditions. It is possible to fit all analyzed EPF sequences corresponding to dust scattering with an albedo of 0.92, rather than the 0.86 given by Pollack et al. on the bases of Viking Lander observations.

  13. Using satellites and global models to investigate aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Quaas, J.; Goren, T.; Sourdeval, O.; Mülmenstädt, J.

    2017-12-01

    Aerosols are known to impact liquid cloud properties, through both microphysical and radiative processes. Increasing the number concentration of aerosol particles can increase the cloud droplet number concentration (CDNC). Through impacts on precipitation processes, this increase in CDNC may also be able to impact the cloud fraction (CF) and the cloud liquid water path (LWP). Several studies have looked into the effect of aerosols on the CDNC, but as the albedo of a cloudy scene depends much more strongly on LWP and CF, an aerosol influence on these properties could generate a significant radiative forcing. While the impact of aerosols on cloud properties can be seen in case studies involving shiptracks and volcanoes, producing a global estimate of these effects remains challenging due to the confounding effect of local meteorology. For example, relative humidity significantly impacts the aerosol optical depth (AOD), a common satellite proxy for CCN, as well as being a strong control on cloud properties. This can generate relationships between AOD and cloud properties, even when there is no impact of aerosol-cloud interactions. In this work, we look at how aerosol-cloud interactions can be distinguished from the effect of local meteorology in satellite studies. With a combination global climate models and multiple sources of satellite data, we show that the choice of appropriate mediating variables and case studies can be used to develop constraints on the aerosol impact on CF and LWP. This will lead to improved representations of clouds in global climate models and help to reduce the uncertainty in the global impact of anthropogenic aerosols on cloud properties.

  14. The neuron net method for processing the clear pixels and method of the analytical formulas for processing the cloudy pixels of POLDER instrument images

    NASA Astrophysics Data System (ADS)

    Melnikova, I.; Mukai, S.; Vasilyev, A.

    Data of remote measurements of reflected radiance with the POLDER instrument on board of ADEOS satellite are used for retrieval of the optical thickness, single scattering albedo and phase function parameter of cloudy and clear atmosphere. The method of perceptron neural network that from input values of multiangle radiance and Solar incident angle allows to obtain surface albedo, the optical thickness, single scattering albedo and phase function parameter in case of clear sky. Two last parameters are determined as optical average for atmospheric column. The calculation of solar radiance with using the MODTRAN-3 code with taking into account multiple scattering is accomplished for neural network learning. All mentioned parameters were randomly varied on the base of statistical models of possible measured parameters variation. Results of processing one frame of remote observation that consists from 150,000 pixels are presented. The methodology elaborated allows operative determining optical characteristics as cloudy as clear atmosphere. Further interpretation of these results gives the possibility to extract the information about total contents of atmospheric aerosols and absorbing gases in the atmosphere and create models of the real cloudiness An analytical method of interpretation that based on asymptotic formulas of multiple scattering theory is applied to remote observations of reflected radiance in case of cloudy pixel. Details of the methodology and error analysis were published and discussed earlier. Here we present results of data processing of pixel size 6x6 km In many studies the optical thickness is evaluated earlier in the assumption of the conservative scattering. But in case of true absorption in clouds the large errors in parameter obtained are possible. The simultaneous retrieval of two parameters at every wavelength independently is the advantage comparing with earlier studies. The analytical methodology is based on the transfer theory asymptotic formula inversion for optically thick stratus clouds. The model of horizontally infinite layer is considered. The slight horizontal heterogeneity is approximately taken into account. Formulas containing only the measured values of two-direction radiance and functions of solar and view angles were derived earlier. The 6 azimuth harmonics of reflection function are taken into account. The simple approximation of the cloud top boarder heterogeneity is used. The clouds, projecting upper the cloud top plane causes the increase of diffuse radiation in the incident flux. It is essential for calculation of radiative characteristics, which depends on lighting conditions. Escape and reflection functions describe this dependence for reflected radiance and local albedo of semi-infinite medium - for irradiance. Thus the functions depending on solar incident angle is to replace by their modifications. Firstly optical thickness of every pixel is obtained with simple formula assuming conservative scattering for all available view directions. Deviations between obtained values may be taken as a measure of the cloud top deviation from the plane. The special parameter is obtained, which takes into account the shadowing effect. Then single scattering albedo and optical thickness (with the true absorption assuming) are obtained for pairs of view directions with equal optical thickness. After that the averaging of values obtained and relative error evaluation is accomplished for all viewing directions of every pixel. The procedure is repeated for all wavelengths and pixels independently.

  15. Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario

    DOE PAGES

    Kashimura, Hiroki; Abe, Manabu; Watanabe, Shingo; ...

    2017-03-08

    This paper evaluates the forcing, rapid adjustment, and feedback of net shortwave radiation at the surface in the G4 experiment of the Geoengineering Model Intercomparison Project by analysing outputs from six participating models. G4 involves injection of 5 Tg yr -1 of SO 2, a sulfate aerosol precursor, into the lower stratosphere from year 2020 to 2069 against a background scenario of RCP4.5. A single-layer atmospheric model for shortwave radiative transfer is used to estimate the direct forcing of solar radiation management (SRM), and rapid adjustment and feedbacks from changes in the water vapour amount, cloud amount, and surface albedo (compared with RCP4.5). The analysismore » shows that the globally and temporally averaged SRM forcing ranges from -3.6 to -1.6 W m -2, depending on the model. The sum of the rapid adjustments and feedback effects due to changes in the water vapour and cloud amounts increase the downwelling shortwave radiation at the surface by approximately 0.4 to 1.5 W m -2 and hence weaken the effect of SRM by around 50 %. The surface albedo changes decrease the net shortwave radiation at the surface; it is locally strong (~-4 W m -2) in snow and sea ice melting regions, but minor for the global average. The analyses show that the results of the G4 experiment, which simulates sulfate geoengineering, include large inter-model variability both in the direct SRM forcing and the shortwave rapid adjustment from change in the cloud amount, and imply a high uncertainty in modelled processes of sulfate aerosols and clouds.« less

  16. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A. K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C.

    2015-07-01

    In this work, we assess the ability of RegCM4 regional climate model to simulate surface solar radiation (SSR) patterns over Europe. A decadal RegCM4 run (2000-2009) was implemented and evaluated against satellite-based observations from the Satellite Application Facility on Climate Monitoring (CM SAF) showing that the model simulates adequately the SSR patterns over the region. The bias between RegCM4 and CM SAF is +1.54 % for MFG (Meteosat First Generation) and +3.34 % for MSG (Meteosat Second Generation) observations. The relative contribution of parameters that determine the transmission of solar radiation within the atmosphere to the deviation appearing between RegCM4 and CM SAF SSR is also examined. Cloud macrophysical and microphysical properties such as cloud fractional cover (CFC), cloud optical thickness (COT) and cloud effective radius (Re) from RegCM4 are evaluated against data from CM SAF. The same procedure is repeated for aerosol optical properties such as aerosol optical depth (AOD), asymmetry factor (ASY) and single scattering albedo (SSA), as well as other parameters including surface broadband albedo (ALB) and water vapor amount (WV) using data from MACv1 aerosol climatology, from CERES satellite sensors and from ERA-Interim reanalysis. It is shown here that the good agreement between RegCM4 and satellite-based SSR observations can be partially attributed to counteracting effects among the above mentioned parameters. The contribution of each parameter to the RegCM4-CM SAF SSR deviations is estimated with the combined use of the aforementioned data and a radiative transfer model (SBDART). CFC, COT and AOD are the major determinants of these deviations; however, the other parameters also play an important role for specific regions and seasons.

  17. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part II; Cloud Fraction and Surface Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Xi, B.; Minnis, P.

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0-3 km), middle (3-6 km), and high clouds (more than 6 km) using ARM SCG ground-based paired lidar-radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of approximately 10 Wm(exp -2). The annual averages of total, and single-layered low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total and low cloud amounts peak during January and February and reach a minimum during July and August, high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 Wm(exp-2), respectively) are less than those under middle and high clouds (188 and 201 Wm(exp -2), respectively), but the downwelling LW fluxes (349 and 356 Wm(exp -2)) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 Wm(exp -2)). Low clouds produce the largest LW warming (55 Wm(exp -2) and SW cooling (-91 Wm(exp -2)) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 Wm(exp -2)) and SW cooling (-37 Wm(exp -2)) effects at the surface. All-sky SW CRF decreases and LW CRF increases with increasing cloud fraction with mean slopes of -0.984 and 0.616 Wm(exp -2)%(exp -1), respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes, not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset approximately 20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.

  18. Long-term record of top-of-atmosphere albedo generated from AVHRR data

    NASA Astrophysics Data System (ADS)

    Song, Z.

    2017-12-01

    Top-of-Atmosphere (TOA) albedo is a fundamental component of Earth's energy budget. Previously, long-term accurate TOA albedo products did not exist due to the lack of stable broadband observations. With a new albedo estimation methodology based on multispectral observations, TOA albedo since 1981 has been retrieved using data from the Advanced Very High Resolution Radiometer (AVHRR), which provides the longest record of satellite observations across the globe. To develop the long-term TOA albedo record, the instantaneous TOA albedo was calculated by the direct estimation method, which was built on training data pairs from coincident AVHRR TOA reflectance and Moderate Resolution Imaging Spectroradiometer (MODIS) TOA albedo. The instantaneous TOA albedo was then converted to daily mean and monthly mean albedo based on the diurnal curves from geostationary satellites. The TOA albedo results (AVHRR-TAL) were compared with Clouds and the Earth's Radiant Energy System (CERES) flux products for 2007. The monthly mean AVHRR-TAL agreed well with the CERES products, with a root mean square difference (RMSD) of 0.032 and a bias of 0.013. In addition, AVHRR-TAL showed similar seasonal variations to those seen in the CERES products. Further analysis on long-term time series showed good consistency between the two datasets (R2 > 0.95 and relative RMSD < 4%) from 2000 to 2015. Although some calibration issues remain to be solved, our datasets show the potential ability to observe the global TOA albedo from 1981 to the present.

  19. Change in Urban Albedo in London: A Multi-scale Perspective

    NASA Astrophysics Data System (ADS)

    Susca, T.; Kotthaus, S.; Grimmond, S.

    2013-12-01

    Urbanization-induced change in land use has considerable implications for climate, air quality, resources and ecosystems. Urban-induced warming is one of the most well-known impacts. This directly and indirectly can extend beyond the city. One way to reduce the size of this is to modify the surface atmosphere exchanges through changing the urban albedo. As increased rugosity caused by the morphology of a city results in lower albedo with constant material characteristics, the impacts of changing the albedo has impacts across a range of scales. Here a multi-scale assessment of the potential effects of the increase in albedo in London is presented. This includes modeling at the global and meso-scale informed by local and micro-scale measurements. In this study the first order calculations are conducted for the impact of changing the albedo (e.g. a 0.01 increase) on the radiative exchange. For example, when incoming solar radiation and cloud cover are considered, based on data retrieved from NASA (http://power.larc.nasa.gov/) for ~1600 km2 area of London, would produce a mean decrease in the instantaneous solar radiative forcing on the same surface of 0.40 W m-2. The nature of the surface is critical in terms of considering the impact of changes in albedo. For example, in the Central Activity Zone in London pavement and building can vary from 10 to 100% of the plan area. From observations the albedo is seen to change dramatically with changes in building materials. For example, glass surfaces which are being used increasingly in the central business district results in dramatic changes in albedo. Using the documented albedo variations determined across different scales the impacts are considered. For example, the effect of the increase in urban albedo is translated into the corresponding amount of avoided emission of carbon dioxide that produces the same effect on climate. At local scale, the effect that the increase in urban albedo can potentially have on local climate is calculated using numerical modelling to mitigate the urban heat island in London. The co-benefits from decreasing the urban temperature are then considered. These include a reduction in the peak of tropospheric ozone formation, a decrease heat stress to the city dwellers as well as in energy demand. The extreme summer temperatures have most of the impact on people socially and physically vulnerable people. The decrease in summer temperatures has positive effects on human health decreasing the mortality for natural causes as well as for respiratory and cardio-vascular diseases promoting socially equality. The increase in urban albedo - with a particular reference to changes in pavements and rooftops - can be easily integrated in urban and building maintenance plans. Since the increase in urban albedo can affect both the global and local scale, the results of this extensive and multi-level study are useful to address-policy-relevant strategies for coping with the effects of climate. In particular, they can provide insights for multi-level governance strategies and for shaping mitigation and adaptation strategies.

  20. Clouds on Neptune: Motions, Evolution, and Structure

    NASA Technical Reports Server (NTRS)

    Sromovsky, Larry A.; Morgan, Thomas (Technical Monitor)

    2001-01-01

    The aims of our original proposal were these: (1) improving measurements of Neptune's circulation, (2) understanding the spatial distribution of cloud features, (3) discovery of new cloud features and understanding their evolutionary process, (4) understanding the vertical structure of zonal cloud patterns, (5) defining the structure of discrete cloud features, and (6) defining the near IR albedo and light curve of Triton. Towards these aims we proposed analysis of existing 1996 groundbased NSFCAM/IRTF observations and nearly simultaneous WFPC2 observations from the Hubble Space Telescope. We also proposed to acquire new observations from both HST and the IRTF.

  1. Cloud Coverage Enhancement and Nocturnal Drizzle Suppression in Stratocumulus by Aerosols

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Stevens, David E.; Coakley, James A., Jr.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Recent satellite observations of ship tracks surprisingly indicate that cloud water decreases with increasing droplet concentrations. However, we find by analyzing detailed simulations of stratocumulus that the reported trend is likely an artifact of sampling, only overcast clouds. The simulations instead show cloud coverage increasing with droplet concentrations, accounting for 25% of cloud albedo increase at moderate droplet concentrations. Our simulations also show that increases in cloud water from drizzle suppression (by increasing droplet concentrations) are favored only at night or at extremely low droplet concentrations, suggesting that the indirect aerosol forcing is overestimated in climate change projections by many general circulation models.

  2. Implementation of a Brown Carbon Parameterization in the Community Earth System Model (CESM): Model Validation, Estimation of Brown Carbon Radiative Effect, and Climate Impact

    NASA Astrophysics Data System (ADS)

    Brown, Hunter Y.

    A recent development in the representation of aerosols in climate models is the realization that some components of organic carbon (OC), emitted from biomass and biofuel burning, can have a significant contribution to short-wave radiation absorption in the atmosphere. The absorbing fraction of OC is referred to as brown carbon (BrC). This study introduces one of the first implementations of BrC into the Community Earth System Model (CESM), using a parameterization for BrC absorption described in Saleh et al. (2014). 9-year experiments are run (2003-2011) with prescribed emissions and sea surface temperatures to analyze the effect of BrC in the atmosphere. Model validation is conducted via model comparison to single-scatter albedo (SSA) and aerosol optical depth from the Aerosol Robotic Network (AERONET), as well as comparison with a laboratory derived parameterization for SSA dependent on the (black carbon (BC))/(BC+OC) ratio in biomass burning emissions. These comparisons reveal a model underestimation of SSA in biomass burning regions for both default and BrC model runs. Global annual average radiative effects are calculated due to aerosol-radiation interactions (REari; 0.13+/-0.021 W m -2), aerosol-cloud interactions (REaci; 0.07+/-0.056 W m -2), and surface albedo change (REsac; -0.06+/-0.035 W m -2). REari is similar to other studies' estimations of BrC direct radiative effect, while REaci indicates a global reduction in low clouds due to the BrC semi-direct effect. REsac suggests increased surface albedo with BrC implementation due to modified snowfall, but does not take into account the warming effect of BrC on snow. Lastly, comparisons of BrC implementation approaches find that this implementation may do a better job of estimating BrC radiative effect in the Arctic regions than previous studies with CESM.

  3. kepler's dark worlds: A low albedo for an ensemble of Neptunian and Terran exoplanets

    NASA Astrophysics Data System (ADS)

    Jansen, Tiffany; Kipping, David

    2018-05-01

    Photometric phase curves provide an important window onto exoplanetary atmospheres and potentially even their surfaces. With similar amplitudes to occultations but far longer baselines, they have a higher sensitivity to planetary photons at the expense of a more challenging data reduction in terms of long-term stability. In this work, we introduce a novel non-parametric algorithm dubbed phasma to produce clean, robust exoplanet phase curves and apply it to 115 Neptunian and 50 Terran exoplanets observed by kepler. We stack the signals to further improve signal-to-noise, and measure an average Neptunian albedo of Ag < 0.23 to 95% confidence, indicating a lack of bright clouds consistent with theoretical models. Our Terran sample provides the first constraint on the ensemble albedo of exoplanets which are most likely solid, constraining Ag < 0.42 to 95% confidence. In agreement with our constraint on the greenhouse effect, our work implies that kepler's solid planets are unlikely to resemble cloudy Venusian analogs, but rather dark Mercurian rocks.

  4. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    NASA Astrophysics Data System (ADS)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingsong; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Román, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-07-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  5. Monitoring land surface albedo and vegetation dynamics using high spatial and temporal resolution synthetic time series from Landsat and the MODIS BRDF/NBAR/albedo product

    USGS Publications Warehouse

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Qingson; Kim, JiHyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey; Masek, Jeffrey G.; Morisette, Jeffrey T.; Zhang, Xiaoyang; Papuga, Shirley A.

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  6. Croconic acid - An absorber in the Venus clouds?

    NASA Technical Reports Server (NTRS)

    Hartley, Karen K.; Wolff, Andrew R.; Travis, Larry D.

    1989-01-01

    The absorbing species responsible for the UV cloud features and pale yellow hue of the Venus clouds is presently suggested to be the carbon monoxide-polymer croconic acid, which strongly absorbs in the blue and near-UV. Laboratory absorption-coefficient measurements of a dilute solution of croconic acid in sulfuric acid are used as the bases of cloud-scattering models; the Venus planetary albedo's observed behavior in the blue and near-UV are noted to be qualitatively reproduced. Attention is given to a plausible croconic acid-production mechanism for the Venus cloudtop region.

  7. Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0: Climate variability of sea salt aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Li; Pierce, David W.; Russell, Lynn M.

    This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency Pacific ocean variability similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variabilitymore » may contribute to SWCF variability in the tropical Pacific, explaining up to 25-35% of the variance in that region. Elsewhere, there is only a small aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.« less

  8. Cloud Cover Increase with Increasing Aerosol Absorptivity: A Counterexample to the Conventional Semidirect Aerosol Effect

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Miller, Ron L.

    2010-01-01

    We reexamine the aerosol semidirect effect using a general circulation model and four cases of the single-scattering albedo of dust aerosols. Contrary to the expected decrease in low cloud cover due to heating by tropospheric aerosols, we find a significant increase with increasing absorptivity of soil dust particles in regions with high dust load, except during Northern Hemisphere winter. The strongest sensitivity of cloud cover to dust absorption is found over land during Northern Hemisphere summer. Here even medium and high cloud cover increase where the dust load is highest. The cloud cover change is directly linked to the change in relative humidity in the troposphere as a result of contrasting changes in specific humidity and temperature. More absorption by aerosols leads to larger diabatic heating and increased warming of the column, decreasing relative humidity. However, a corresponding increase in the specific humidity exceeds the temperature effect on relative humidity. The net effect is more low cloud cover with increasing aerosol absorption. The higher specific humidity where cloud cover strongly increases is attributed to an enhanced convergence of moisture driven by dust radiative heating. Although in some areas our model exhibits a reduction of low cloud cover due to aerosol heating consistent with the conventional description of the semidirect effect, we conclude that the link between aerosols and clouds is more varied, depending also on changes in the atmospheric circulation and the specific humidity induced by the aerosols. Other absorbing aerosols such as black carbon are expected to have a similar effect.

  9. Evapotranspiration over spatially extensive plant communities in the Big Cypress National Preserve, southern Florida, 2007-2010

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Lopez, Christian D.; Duever, Michael J.

    2011-01-01

    Net radiation and available energy explained most of the variability in ET observed at all five sites. Mean annual and monthly net radiation varied among the sites in response to cloud cover and the albedo of the land surface and plant community. Net radiation was greatest at the Cypress Swamp site, averaging about 130 W/m2 (watts per square meter) during the 3-year study. Net radiation was generally less at the Dwarf Cypress site, averaging about 115 W/m2 over 3 years. The Dwarf Cypress site apparently has the largest albedo, which likely is due to the sparse canopy and a highly reflective, calcareous, periphyton-covered land surface. Furthermore, mean annual net radiation was least in the first year of the study, which likely was due to greater cloud cover during a relatively wet year. In contrast, net radiation was greatest in the second year of the study, which likely was due to less cloud cover during a relatively dry year.

  10. Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds

    NASA Astrophysics Data System (ADS)

    Sirch, Tobias; Bugliaro, Luca

    2015-04-01

    Optimal Exploitation of the Temporal and Spatial Resolution of SEVIRI for the Nowcasting of Clouds An algorithm was developed to forecast the development of water and ice clouds for the successive 5-120 minutes separately using satellite data from SEVIRI (Spinning Enhanced Visible and Infrared Imager) aboard Meteosat Second Generation (MSG). In order to derive cloud cover, optical thickness and cloud top height of high ice clouds "The Cirrus Optical properties derived from CALIOP and SEVIRI during day and night" (COCS, Kox et al. [2014]) algorithm is applied. For the determination of the liquid water clouds the APICS ("Algorithm for the Physical Investigation of Clouds with SEVIRI", Bugliaro e al. [2011]) cloud algorithm is used, which provides cloud cover, optical thickness and effective radius. The forecast rests upon an optical flow method determining a motion vector field from two satellite images [Zinner et al., 2008.] With the aim of determining the ideal time separation of the satellite images that are used for the determination of the cloud motion vector field for every forecast horizon time the potential of the better temporal resolution of the Meteosat Rapid Scan Service (5 instead of 15 minutes repetition rate) has been investigated. Therefore for the period from March to June 2013 forecasts up to 4 hours in time steps of 5 min based on images separated by a time interval of 5 min, 10 min, 15 min, 30 min have been created. The results show that Rapid Scan data produces a small reduction of errors for a forecast horizon up to 30 minutes. For the following time steps forecasts generated with a time interval of 15 min should be used and for forecasts up to several hours computations with a time interval of 30 min provide the best results. For a better spatial resolution the HRV channel (High Resolution Visible, 1km instead of 3km maximum spatial resolution at the subsatellite point) has been integrated into the forecast. To detect clouds the difference of the measured albedo from SEVIRI and the clear-sky albedo provided by MODIS has been used and additionally the temporal development of this quantity. A pre-requisite for this work was an adjustment of the geolocation accuracy for MSG and MODIS by shifting the MODIS data and quantifying the correlation between both data sets.

  11. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  12. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  13. Investigating Gravity Waves in Polar Mesospheric Clouds Using Tomographic Reconstructions of AIM Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Hart, V. P.; Taylor, M. J.; Doyle, T. E.; Zhao, Y.; Pautet, P.-D.; Carruth, B. L.; Rusch, D. W.; Russell, J. M.

    2018-01-01

    This research presents the first application of tomographic techniques for investigating gravity wave structures in polar mesospheric clouds (PMCs) imaged by the Cloud Imaging and Particle Size instrument on the NASA AIM satellite. Albedo data comprising consecutive PMC scenes were used to tomographically reconstruct a 3-D layer using the Partially Constrained Algebraic Reconstruction Technique algorithm and a previously developed "fanning" technique. For this pilot study, a large region (760 × 148 km) of the PMC layer (altitude 83 km) was sampled with a 2 km horizontal resolution, and an intensity weighted centroid technique was developed to create novel 2-D surface maps, characterizing the individual gravity waves as well as their altitude variability. Spectral analysis of seven selected wave events observed during the Northern Hemisphere 2007 PMC season exhibited dominant horizontal wavelengths of 60-90 km, consistent with previous studies. These tomographic analyses have enabled a broad range of new investigations. For example, a clear spatial anticorrelation was observed between the PMC albedo and wave-induced altitude changes, with higher-albedo structures aligning well with wave troughs, while low-intensity regions aligned with wave crests. This result appears to be consistent with current theories of PMC development in the mesopause region. This new tomographic imaging technique also provides valuable wave amplitude information enabling further mesospheric gravity wave investigations, including quantitative analysis of their hemispheric and interannual characteristics and variations.

  14. Tilt error in cryospheric surface radiation measurements at high latitudes: a model study

    NASA Astrophysics Data System (ADS)

    Bogren, Wiley Steven; Faulkner Burkhart, John; Kylling, Arve

    2016-03-01

    We have evaluated the magnitude and makeup of error in cryospheric radiation observations due to small sensor misalignment in in situ measurements of solar irradiance. This error is examined through simulation of diffuse and direct irradiance arriving at a detector with a cosine-response fore optic. Emphasis is placed on assessing total error over the solar shortwave spectrum from 250 to 4500 nm, as well as supporting investigation over other relevant shortwave spectral ranges. The total measurement error introduced by sensor tilt is dominated by the direct component. For a typical high-latitude albedo measurement with a solar zenith angle of 60°, a sensor tilted by 1, 3, and 5° can, respectively introduce up to 2.7, 8.1, and 13.5 % error into the measured irradiance and similar errors in the derived albedo. Depending on the daily range of solar azimuth and zenith angles, significant measurement error can persist also in integrated daily irradiance and albedo. Simulations including a cloud layer demonstrate decreasing tilt error with increasing cloud optical depth.

  15. Identifying Meteorological Controls on Open and Closed Mesoscale Cellular Convection Associated with Marine Cold Air Outbreaks

    NASA Astrophysics Data System (ADS)

    McCoy, Isabel L.; Wood, Robert; Fletcher, Jennifer K.

    2017-11-01

    Mesoscale cellular convective (MCC) clouds occur in large-scale patterns over the ocean and have important radiative effects on the climate system. An examination of time-varying meteorological conditions associated with satellite-observed open and closed MCC clouds is conducted to illustrate the influence of large-scale meteorological conditions. Marine cold air outbreaks (MCAO) influence the development of open MCC clouds and the transition from closed to open MCC clouds. MCC neural network classifications on Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2008 are collocated with Clouds and the Earth's Radiant Energy System (CERES) data and ERA-Interim reanalysis to determine the radiative effects of MCC clouds and their thermodynamic environments. Closed MCC clouds are found to have much higher albedo on average than open MCC clouds for the same cloud fraction. Three meteorological control metrics are tested: sea-air temperature difference (ΔT), estimated inversion strength (EIS), and a MCAO index (M). These predictive metrics illustrate the importance of atmospheric surface forcing and static stability for open and closed MCC cloud formation. Predictive sigmoidal relations are found between M and MCC cloud frequency globally and regionally: negative for closed MCC cloud and positive for open MCC cloud. The open MCC cloud seasonal cycle is well correlated with M, while the seasonality of closed MCC clouds is well correlated with M in the midlatitudes and EIS in the tropics and subtropics. M is found to best distinguish open and closed MCC clouds on average over shorter time scales. The possibility of a MCC cloud feedback is discussed.

  16. A climatologically significant aerosol longwave indirect effect in the Arctic.

    PubMed

    Lubin, Dan; Vogelmann, Andrew M

    2006-01-26

    The warming of Arctic climate and decreases in sea ice thickness and extent observed over recent decades are believed to result from increased direct greenhouse gas forcing, changes in atmospheric dynamics having anthropogenic origin, and important positive reinforcements including ice-albedo and cloud-radiation feedbacks. The importance of cloud-radiation interactions is being investigated through advanced instrumentation deployed in the high Arctic since 1997 (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert a net warming on the Arctic climate system throughout most of the year, except briefly during the summer. The Arctic region also experiences significant periodic influxes of anthropogenic aerosols, which originate from the industrial regions in lower latitudes. Here we use multisensor radiometric data to show that enhanced aerosol concentrations alter the microphysical properties of Arctic clouds, in a process known as the 'first indirect' effect. Under frequently occurring cloud types we find that this leads to an increase of an average 3.4 watts per square metre in the surface longwave fluxes. This is comparable to a warming effect from established greenhouse gases and implies that the observed longwave enhancement is climatologically significant.

  17. Surface Variability of Short-wavelength Radiation and Temperature on Exoplanets around M Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xin; Tian, Feng; Wang, Yuwei

    2017-03-10

    It is a common practice to use 3D General Circulation Models (GCM) with spatial resolution of a few hundred kilometers to simulate the climate of Earth-like exoplanets. The enhanced albedo effect of clouds is especially important for exoplanets in the habitable zones around M dwarfs that likely have fixed substellar regions and substantial cloud coverage. Here, we carry out mesoscale model simulations with 3 km spatial resolution driven by the initial and boundary conditions in a 3D GCM and find that it could significantly underestimate the spatial variability of both the incident short-wavelength radiation and the temperature at planet surface.more » Our findings suggest that mesoscale models with cloud-resolving capability be considered for future studies of exoplanet climate.« less

  18. Parameterization of Shortwave Cloud Optical Properties for a Mixture of Ice Particle Habits for use in Atmospheric Models

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Lee, Kyu-Tae; Yang, Ping; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Based on the single-scattering optical properties pre-computed with an improved geometric optics method, the bulk absorption coefficient, single-scattering albedo, and asymmetry factor of ice particles have been parameterized as a function of the effective particle size of a mixture of ice habits, the ice water amount, and spectral band. The parameterization has been applied to computing fluxes for sample clouds with various particle size distributions and assumed mixtures of particle habits. It is found that flux calculations are not overly sensitive to the assumed particle habits if the definition of the effective particle size is consistent with the particle habits that the parameterization is based. Otherwise, the error in the flux calculations could reach a magnitude unacceptable for climate studies. Different from many previous studies, the parameterization requires only an effective particle size representing all ice habits in a cloud layer, but not the effective size of individual ice habits.

  19. A 10 Year Climatology of Arctic Cloud Fraction and Radiative Forcing at Barrow, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiquan; Xi, Baike; Crosby, Kathryn

    2010-09-15

    A 10-yr record of Arctic cloud fraction and surface radiation budget has been generated using data collected from June 1998 to May 2008 at the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) site and the nearby NOAA Barrow Observatory (BRW). The record includes the seasonal variations of cloud fraction (CF), cloud liquid water path (LWP), precipitable water vapor (PWV), surface albedo, shortwave (SW) and longwave (LW) fluxes and cloud radative forcings (CRFs), as well as their decadal variations. Values of CF derived from different instruments and methods agree well, having an annual average of ~0.74. Cloudiness increases frommore » March to May, remains high (~0.8-0.9) from May to October, and then decreases over winter. More clouds and higher LWP and PWV occurred during the warm season (May-October) than the cold season (November-April). These results are strongly associated with southerly flow which transports warm, moist air masses to Barrow from the North Pacific and over area of Alaska already free of snow during the warm season and with a dipole pattern of pressure in which a high is centered over the Beaufort Sea and low over the Aleutians during the cold season. The monthly means of estimated clear-sky and measured allsky SW-down and LW-down fluxes at the two facilities are almost identical with the annual mean differences less than 1.6 W m-2. The downwelling and upwelling LW fluxes remain almost constant from January to March, then increase from March and peak during July-August. SW-down fluxes are primarily determined by seasonal changes in the intensity and duration of insolation over Northern Alaska, and are also strongly dependent on cloud fraction and optical depth, and surface albedo. The monthly variations of NET CRF generally follow the cycle of SW CRF, modulated by LW effects. On annual average, the negative SW CRF and positive LW CRF tend to cancel, resulting in annual average NET CRF of 2-4.5 Wm-2. Arctic clouds have a 3 net warming effect on the surface throughout the year, with exception of the snow-free period from middle June to middle September when there tends to be a cooling effect. The daily average surface albedos agree well at the two sites remaining high (>0.8) until late May, dropping below 0.2 after the snow melts around June and increasing during autumn once snow begins to accumulate. On the basis of long-term regression analyses CF has decreased by about 0.048 while temperature has risen by ≈1.1 K over the 10-yr period, which can be characterized by tendencies of warming mainly during December and April. With regard to the 2007 record minimum Arctic ice extent, this study provides additional empirical evidence that decreased cloud cover and increased SW-down flux during summer contributed to anomalous ice melt in the region north of Barrow. At Barrow, average June-August CF decreased by 0.062 in 2007 from the 10-yr mean, while SW-down and NET fluxes increased by 28.4 Wm-2 and 11.3 Wm-2, respectively. The increase in the NET radiative flux during summer 2007 most likely contributed to an increase in surface air temperature of 1.6 K.« less

  20. Study of the effect of cloud inhomogeneity on the earth radiation budget experiment

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1988-01-01

    The Earth Radiation Budget Experiment (ERBE) is the most recent and probably the most intensive mission designed to gather precise measurements of the Earth's radiation components. The data obtained from ERBE is of great importance for future climatological studies. A statistical study reveals that the ERBE scanner data are highly correlated and that instantaneous measurements corresponding to neighboring pixels contain almost the same information. Analyzing only a fraction of the data set when sampling is suggested and applications of this strategy are given in the calculation of the albedo of the Earth and of the cloud-forcing over ocean.

  1. Monitoring Land Surface Albedo and Vegetation Dynamics Using High Spatial and Temporal Resolution Synthetic Time Series from Landsat and the MODIS BRDF/NBAR/Albedo Product

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Schaaf, Crystal B.; Sun, Quingsong; Kim, Jihyun; Erb, Angela M.; Gao, Feng; Roman, Miguel O.; Yang, Yun; Petroy, Shelley; Taylor, Jeffrey R.; hide

    2017-01-01

    Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warmingcooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500-meter Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF (Bidirectional Reflectance Distribution Function) / NBAR (Nadir BRDF-Adjusted Reflectance) / albedo products and 30-meter Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDFAlbedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30-meter Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30-meter albedos for the intervening daily time steps in this study. These enhanced daily 30-meter spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of 0.006. These synthetic time series provide much greater spatial detail than the 500 meter gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 kilometers by 14 kilometers) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF-Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30-meter resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.

  2. Assessing the climatic benefits of black carbon mitigation.

    PubMed

    Kopp, Robert E; Mauzerall, Denise L

    2010-06-29

    To limit mean global warming to 2 degrees C, a goal supported by more than 100 countries, it will likely be necessary to reduce emissions not only of greenhouse gases but also of air pollutants with high radiative forcing (RF), particularly black carbon (BC). Although several recent research papers have attempted to quantify the effects of BC on climate, not all these analyses have incorporated all the mechanisms that contribute to its RF (including the effects of BC on cloud albedo, cloud coverage, and snow and ice albedo, and the optical consequences of aerosol mixing) and have reported their results in different units and with different ranges of uncertainty. Here we attempt to reconcile their results and present them in uniform units that include the same forcing factors. We use the best estimate of effective RF obtained from these results to analyze the benefits of mitigating BC emissions for achieving a specific equilibrium temperature target. For a 500 ppm CO(2)e (3.1 W m(-2)) effective RF target in 2100, which would offer about a 50% chance of limiting equilibrium warming to 2.5 degrees C above preindustrial temperatures, we estimate that failing to reduce carbonaceous aerosol emissions from contained combustion would require CO(2) emission cuts about 8 years (range of 1-15 years) earlier than would be necessary with full mitigation of these emissions.

  3. Drought in the Black Hills

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Color-Coded Map

    Despite good rainfall and record-setting snowstorms in the spring of 2005, most of northeastern Wyoming, the Black Hills, and western South Dakota remain in the midst of a severe drought. This set of images and maps from NASA's Multi-angle Imaging SpectroRadiometer (MISR) contrast the appearance of the Black Hills region of northwestern South Dakota on July 12, 2000 (left column), with views acquired four years later, on July 14, 2004 (right column). The natural-color images along the top are from MISR's nadir (downward-looking) camera. The browning that appears in 2004 compared with 2000 indicates that the vigor of green vegetation was significantly diminished in 2004.

    The color-coded maps (along the bottom) provide a quantitative measurement of the sunlight reflected from these surfaces, and the loss of sunlight-absorbing vegetation between the 2000 and 2004 dates. As the vegetation faded with the drought, the albedo at the surface increased. Albedo measures the fraction of incident sunlight that is reflected by a surface, and can vary between zero (if all the incident sunlight is absorbed and none is reflected) and one (if all sunlight is reflected and none is absorbed). Dense forest has a low albedo; bright desert, snow and clouds, have a high albedo. Here, albedo is provided for the wavelengths of sunlight that plants use for photosynthesis (400 - 700 nanometers). This measurement is known as the albedo for Photosynthetically Active Radiation (PAR). Surfaces with greater absorption of PAR appear here in blue hues, whereas surfaces with lower absorption appear as green, yellow, orange or red. Black pixels indicate areas where albedo could not be derived, usually due to the presence of clouds. In July 2004, low albedo areas (blue pixels) are notably reduced in extent, and higher albedo areas (yellow, orange and red pixels) have increased.

    Because incoming sunlight is scattered by tiny particles in the atmosphere, satellite measurements of albedo and other surface properties must correct for the effects of the intervening atmosphere. These albedo retrievals make use of MISR's simultaneously derived aerosol properties to make these corrections. The multiangular nature of MISR data is also used to account for the fact that most surfaces reflect sunlight into all upward directions, with intensities that vary with angle of view.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. This image area covers about 243 kilometers by 259 kilometers. These data products were generated from a portion of the imagery acquired during Terra orbits 3020 and 24325 and utilize data from within blocks 54 to 56 within World Reference System-2 paths 33 and 34.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  4. The ortho-para H2 distribution on Uranus: Constraints from the collision-induced 3-0 dipole band and 4-0 S(0) and S(1) quadrupole line profiles

    NASA Technical Reports Server (NTRS)

    Baines, K. H.; Bergstralh, J. T.

    1986-01-01

    Recent high quality spectral observations have allowed the derivation of constraints on the atmospheric structure of Uranus. The present analysis, which is based on the detailed modeling of a broadband geometric albedo spectrum and high resolution observations of the H2 4-0 quadrupole and 6818.9-A CH4 features, yields (1) a family of models which parameterize an upper tropospheric haze layer, (2) a lower, optically infinite cloud at a given pressure level, (3) the cloud-level methane molar fraction, and (4) the mean ortho/para ratio in the visible atmosphere. The single scattering albedo of atmospheric aerosols exhibits a steep darkening between 5890 and 6040 A.

  5. Efficacy of Cloud-Radiative Perturbations in Deep Open- and Closed-Cell Stratocumulus Clouds due to Aerosol Perturbations

    NASA Astrophysics Data System (ADS)

    Possner, A.; Wang, H.; Caldeira, K.; Wood, R.; Ackerman, T. P.

    2017-12-01

    Aerosol-cloud interactions (ACIs) in marine stratocumulus remain a significant source of uncertainty in constraining the cloud-radiative effect in a changing climate. Ship tracks are undoubted manifestations of ACIs embedded within stratocumulus cloud decks and have proven to be a useful framework to study the effect of aerosol perturbations on cloud morphology, macrophysical, microphyiscal and cloud-radiative properties. However, so far most observational (Christensen et al. 2012, Chen et al. 2015) and numerical studies (Wang et al. 2011, Possner et al. 2015, Berner et al. 2015) have concentrated on ship tracks in shallow boundary layers of depths between 300 - 800 m, while most stratocumulus decks form in significantly deeper boundary layers (Muhlbauer et al. 2014). In this study we investigate the efficacy of aerosol perturbations in deep open and closed cell stratocumulus. Multi-day idealised cloud-resolving simulations are performed for the RF06 flight of the VOCALS-Rex field campaign (Wood et al. 2011). During this flight pockets of deep open and closed cells were observed in a 1410 m deep boundary layer. The efficacy of aerosol perturbations of varied concentration and spatial gradients in altering the cloud micro- and macrophysical state and cloud-radiative effect is determined in both cloud regimes. Our simulations show that a continued point source emission flux of 1.16*1011 particles m-2 s-1 applied within a 300x300 m2 gridbox induces pronounced cloud cover changes in approximately a third of the simulated 80x80 km2 domain, a weakening of the diurnal cycle in the open-cell regime and a resulting increase in domain-mean cloud albedo of 0.2. Furthermore, we contrast the efficacy of equal strength near-surface or above-cloud aerosol perturbations in altering the cloud state.

  6. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  7. West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites

    DOE PAGES

    Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.; ...

    2017-04-26

    Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less

  8. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    NASA Astrophysics Data System (ADS)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  9. Paleogeographic Controls on Climate Sensitivity and Feedback Strength and their Impacts on Snowball Earth Initiation

    NASA Astrophysics Data System (ADS)

    Fiorella, R.; Poulsen, C. J.

    2013-12-01

    The enigmatic Neoproterozoic geological record suggests the potential for a fully glaciated 'Snowball Earth.' Low-latitude continental position has been invoked as a potential Snowball Earth trigger by increasing surface albedo and decreasing atmospheric CO2 concentrations through increased silicate weathering. Herein, climate response to reduction of total solar irradiance (TSI) and CO2 concentration is tested using four different land configurations (aquaplanet, modern, Neoproterozoic, and low-latitude supercontinent) with uniform topography in the NCAR Community Atmosphere Model (CAM, version 3.1) GCM with a mixed-layer ocean. Despite a lower global mean surface albedo at 100% TSI for the aquaplanet scenario, the threshold for global glaciation decreases from 92% TSI in the aquaplanet configuration to 85% TSI with a low-latitude supercontinent. Climate sensitivity, as measured by the equilibrium temperature response to TSI and CO2 changes, varied across all four geographies at each forcing pair. The range of sensitivities observed suggests that climate feedback strengths are strongly dependent on both paleogeography and forcing. To identify the mechanisms responsible for the observed breadth in climate sensitivities, we calculate radiative kernels for four different TSI and CO2 forcing pairs in order to assess the strengths of the water vapor, albedo, lapse rate, Planck, and cloud feedbacks and how they vary with both forcing and paleogeography. Radiative kernels are calculated using an uncoupled version of the CAM3.1 radiation code and then perturbing climate fields of interest (surface albedo, specific humidity, and temperature) by a standard amount. No cloud kernels are calculated; instead, the cloud feedback is calculated by correcting the change in cloud radiative forcing to account for cloud masking. We find that paleogeography strongly controls how the water vapor and lapse rate feedbacks respond to different forcings. In particular, low latitude continents diminish the change in water vapor feedback strengths resulting from changes in forcing. Continental heating intensifies the Walker circulation, enhancing surface evaporation and moistening the marine troposphere. Additionally, dehumidification of the troposphere over large tropical continents in CAM3.1 increases direct heating by decreasing cloud cover. As a result, in the absence of potential silicate weathering feedbacks, large tropical landmasses raise the barrier to initiation of Snowball events. More generally, these simulations demonstrate the substantial influence of geography on climate sensitivity and climate feedback mechanisms, and challenge the notion that reduced continental area early in Earth history might provide a solution to the Faint Young Sun Paradox.

  10. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.« less

  11. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE PAGES

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; ...

    2017-12-06

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.« less

  12. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; Vogelmann, Andrew M.

    2018-05-01

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and rain formation, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a moving-size-grid cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, submicrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with early work. The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by numerous smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are as follows: (1) droplets form on aerosols of different sizes, and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in situ measurements and 3-D dynamic models.

  13. The analysis of polar clouds from AVHRR satellite data using pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Ebert, Elizabeth

    1990-01-01

    The cloud cover in a set of summertime and wintertime AVHRR data from the Arctic and Antarctic regions was analyzed using a pattern recognition algorithm. The data were collected by the NOAA-7 satellite on 6 to 13 Jan. and 1 to 7 Jul. 1984 between 60 deg and 90 deg north and south latitude in 5 spectral channels, at the Global Area Coverage (GAC) resolution of approximately 4 km. This data embodied a Polar Cloud Pilot Data Set which was analyzed by a number of research groups as part of a polar cloud algorithm intercomparison study. This study was intended to determine whether the additional information contained in the AVHRR channels (beyond the standard visible and infrared bands on geostationary satellites) could be effectively utilized in cloud algorithms to resolve some of the cloud detection problems caused by low visible and thermal contrasts in the polar regions. The analysis described makes use of a pattern recognition algorithm which estimates the surface and cloud classification, cloud fraction, and surface and cloudy visible (channel 1) albedo and infrared (channel 4) brightness temperatures on a 2.5 x 2.5 deg latitude-longitude grid. In each grid box several spectral and textural features were computed from the calibrated pixel values in the multispectral imagery, then used to classify the region into one of eighteen surface and/or cloud types using the maximum likelihood decision rule. A slightly different version of the algorithm was used for each season and hemisphere because of differences in categories and because of the lack of visible imagery during winter. The classification of the scene is used to specify the optimal AVHRR channel for separating clear and cloudy pixels using a hybrid histogram-spatial coherence method. This method estimates values for cloud fraction, clear and cloudy albedos and brightness temperatures in each grid box. The choice of a class-dependent AVHRR channel allows for better separation of clear and cloudy pixels than does a global choice of a visible and/or infrared threshold. The classification also prevents erroneous estimates of large fractional cloudiness in areas of cloudfree snow and sea ice. The hybrid histogram-spatial coherence technique and the advantages of first classifying a scene in the polar regions are detailed. The complete Polar Cloud Pilot Data Set was analyzed and the results are presented and discussed.

  14. The role of sea-ice albedo in the climate of slowly rotating aquaplanets

    NASA Astrophysics Data System (ADS)

    Salameh, Josiane; Popp, Max; Marotzke, Jochem

    2018-04-01

    We investigate the influence of the rotation period (P_{rot}) on the mean climate of an aquaplanet, with a focus on the role of sea-ice albedo. We perform aquaplanet simulations with the atmospheric general circulation model ECHAM6 for various rotation periods from one Earth-day to 365 Earth-days in which case the planet is synchronously rotating. The global-mean surface temperature decreases with increasing P_{rot} and sea ice expands equatorwards. The cooling of the mean climate with increasing P_{rot} is caused partly by the high surface albedo of sea ice on the dayside and partly by the high albedo of the deep convective clouds over the substellar region. The cooling caused by these deep convective clouds is weak for non-synchronous rotations compared to synchronous rotation. Sensitivity simulations with the sea-ice model switched off show that the global-mean surface temperature is up to 27 K higher than in our main simulations with sea ice and thus highlight the large influence of sea ice on the climate. We present the first estimates of the influence of the rotation period on the transition of an Earth-like climate to global glaciation. Our results suggest that global glaciation of planets with synchronous rotation occurs at substantially lower incoming solar irradiation than for planets with slow but non-synchronous rotation.

  15. Preliminary results of fluid dynamic model calculation of convective motion induced by solar heating at the Venus cloud top level.

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Maejima, Yasumitsu; Sugiyama, Ko-ichiro

    The thick cloud layer of Venus reflects solar radiation effectively, resulting in a Bond albedo of 76% (Moroz et al., 1985). Most of the incoming solar flux is absorbed in the upper cloud layer at 60-70 km altitude. An unknown UV absorber is a major sink of the solar energy at the cloud top level. It produces about 40-60% of the total solar heating near the cloud tops, depending on its vertical structure (Crisp et al., 1986; Lee et al., in preparation). UV images of Venus show a clear difference in morphology between laminar flow shaped clouds on the morning side and convective-like cells on the afternoon side of the planet in the equatorial region (Titov et al., 2012). This difference is probably related to strong solar heating at the cloud tops at the sub-solar point, rather than the influence from deeper level convection in the low and middle cloud layers (Imamura et al., 2014). Also, small difference in cloud top structures may trigger horizontal convection at this altitude, because various cloud top structures can significantly alter the solar heating and thermal cooling rates at the cloud tops (Lee et al., in preparation). Performing radiative forcing calculations for various cloud top structures using a radiative transfer model (SHDOM), we investigate the effect of solar heating at the cloud tops on atmospheric dynamics. We use CReSS (Cloud Resolving Storm Simulator), and consider the altitude range from 35 km to 90 km, covering a full cloud deck.

  16. Global Cooling the in 21 Century

    NASA Astrophysics Data System (ADS)

    Maruyama, S.; Genda, H.; Ikoma, M.

    2008-12-01

    [Objective] To predict the climate in the 21 Century [Methods employed] Evaluating the functions to control the surface temperature of the Earth in order of potentials from high to low, 1) albedo mainly by glacier and cloud, 2) Sun activity (relative Sunspot number), 3) greenhouse gas, and Millancovich effect, we estimate the climate change in 21 Century. [Result] Albedo is further controlled by a) Galactic cosmic ray radiation, b)Earth's geomagnetic intensity, c)aerosols derived from volcanic ash, aeorian dusts, and d)aircrafts. Albedo effect is the largest; 1% cloud corresponds to 0.6K on the surface temperature of the Earth (Genda, 2008). Activity of Sun has been observed as the relative change of sunspot number for the last 400 years. Moreover, the C14 of annual ring in the old tree such as Jo-mon redwood back to 6000 years has been measured. Periodical change of Sun activity in the past is extrapolated to the future, indicating the Sun activity has just passed the maximum ca. 2 years ago. Greenhouse gas is evaluated independently for each species. Predominant role is H2O which occupies about 90-95% among greenhouse gas. CO2 has increased 1-2 ppm every year for the last 100 years. 1 ppm corresponds to only 0.004K, which is negligibly small, compared to the potential of cloud effect. The Earth is in the stage of near the end of 20,000 years cycle of Millancovich. Although the 100,000 years cycle is clearly regular for the last 400,000 years, the 20,000 years cycle does not seem to be clear, and we are now hanging on the abrupt drop from inter-glacial to glacial period. Moreover, the role of volcanic eruption would force to cool the climate, if erupted as such a case of Pinatuvo in Philippine in 1992 when 0.5K dropped during 2 years. The rapidly decreasing the Earth's geomagnetism promotes the formation of cloud, to raise the amount of cloud in this Century. More active industrial activity in Asia particularly China and India would increase the amounts of aerosols to be nucleus of clouds, as well as the increased flight of aircrafts in 21 the Century. Thus, all of key functions do work to cool the Earth, except the minor role of increasing CO2 in atmosphere, though negligible. Thus, the Earth will be cooled down in this Century, and 0.5K will be down by 2020 year. The cooling will start from the top, particularly in the continental interior such as Asia and North America. On the other hand, the oceans have stored heats by the global warming for the last 140 years. About 0.1K higher at depth range of -700m than before is measured. By this reason, the oceanic islands or nearby oceans would be less cold than within continents.

  17. Discrete Angle Radiative Transfer in Uniform and Extremely Variable Clouds.

    NASA Astrophysics Data System (ADS)

    Gabriel, Philip Mitri

    The transfer of radiant energy in highly inhomogeneous media is a difficult problem that is encountered in many geophysical applications. It is the purpose of this thesis to study some problems connected with the scattering of solar radiation in natural clouds. Extreme variability in the optical density of these clouds is often believed to occur regularly. In order to facilitate study of very inhomogeneous optical media such as clouds, the difficult angular part of radiative transfer calculations is simplified by considering a series of models in which conservative scattering only occurs in discrete directions. Analytic and numerical results for the radiative properties of these Discrete Angle Radiative Transfer (DART) systems are obtained in the limits of both optically thin and thick media. Specific results include: (a) In thick homogeneous media, the albedo (reflection coefficient), unlike the transmission, cannot be obtained by a diffusion equation. (b) With the aid of an exact analogy with an early model of conductor/superconductor mixtures, it is argued that inhomogeneous media with embedded holes, neither the transmission, nor the albedo can be described by diffusive random walks. (c) Using renormalization methods, it is shown that thin cloud behaviour is sensitive to the scattering phase functions since it is associated with a repelling fixed point, whereas, the thick cloud limit is universal in that it is phase function independent, and associated with an attracting fixed point. (d) In fractal media, the optical thickness required for a given albedo or transmission can differ by large factors from that required in the corresponding plane parallel geometry. The relevant scaling exponents have been calculated in a very simple example. (e) Important global meteorological and climatological implications of the above are discussed when applied to the scattering of visible light in clouds. In the remote sensing context, an analysis of satellite data reveals that augmenting a satellite's resolution reveals increasingly detailed structures that are found to occupy a decreasing fraction of the image, while simultaneously brightening to compensate. By systematically degrading the resolution of visible and infra red satellite cloud and surface data as well as radar rain data, resolution -independent co-dimension functions were defined which were useful in describing the spatial distribution of image features as well as the resolution dependence of the intensities themselves. The scale invariant functions so obtained fit into theoretically predicted functional forms. These multifractal techniques have implications for our ability to meaningfully estimate cloud brightness fraction, total cloud amount, as well as other remotely sensed quantities.

  18. The dynamics of droplets in moist Rayleigh-Benard turbulence

    NASA Astrophysics Data System (ADS)

    Chandrakar, Kamal Kant; van der Voort, Dennis; Kinney, Greg; Cantrell, Will; Shaw, Raymond

    2017-11-01

    Clouds are an intricate part of the climate, and strongly influence atmospheric dynamics and radiative balances. While properties such as cloud albedo and precipitation rate are large scale effects, these properties are determined by dynamics on the microscale, such droplet sizes, liquid water content, etc. The growth of droplets from condensation is dependent on a multitude of parameters, such as aerosol concentration (nucleation sites) and turbulence (scalar fluctuations and coalescence). However, the precise mechanism behind droplet growth and clustering in a cloud environment is still unclear. In this investigation we use a facility called the Pi Chamber to generate a (miniature) cloud in a laboratory setting with known boundary conditions, such as aerosol concentration, temperature, and humidity. Through the use of particle imaging velocimetry (PIV) on the droplets generated in the cloud, we can investigate the dynamics of these cloud droplets in the convective (Rayleigh-Benard) turbulence generated through an induced temperature gradient. We show the influence of the temperature gradient and Froude number (gravity forces) on the changing turbulence anisotropy, large scale circulation, and small-scale dissipation rates. This work was supported by National Science Foundation Grant AGS-1623429.

  19. A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model

    NASA Astrophysics Data System (ADS)

    Dong, Xiquan; Xi, Baike; Qiu, Shaoyue; Minnis, Patrick; Sun-Mack, Sunny; Rose, Fred

    2016-09-01

    Retrievals of cloud microphysical properties based on passive satellite imagery are especially difficult over snow-covered surfaces because of the bright and cold surface. To help quantify their uncertainties, single-layered overcast liquid-phase Arctic stratus cloud microphysical properties retrieved by using the Clouds and the Earth's Radiant Energy System Edition 2 and Edition 4 (CERES Ed2 and Ed4) algorithms are compared with ground-based retrievals at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site at Barrow, AK, during the period from March 2000 to December 2006. A total of 206 and 140 snow-free cases (Rsfc ≤ 0.3), and 108 and 106 snow cases (Rsfc > 0.3), respectively, were selected from Terra and Aqua satellite passes over the ARM NSA site. The CERES Ed4 and Ed2 optical depth (τ) and liquid water path (LWP) retrievals from both Terra and Aqua are almost identical and have excellent agreement with ARM retrievals under snow-free and snow conditions. In order to reach a radiation closure study for both the surface and top of atmosphere (TOA) radiation budgets, the ARM precision spectral pyranometer-measured surface albedos were adjusted (63.6% and 80% of the ARM surface albedos for snow-free and snow cases, respectively) to account for the water and land components of the domain of 30 km × 30 km. Most of the radiative transfer model calculated SW↓sfc and SW↑TOA fluxes by using ARM and CERES cloud retrievals and the domain mean albedos as input agree with the ARM and CERES flux observations within 10 W m-2 for both snow-free and snow conditions. Sensitivity studies show that the ARM LWP and re retrievals are less dependent on solar zenith angle (SZA), but all retrieved optical depths increase with SZA.

  20. Interpreting measurements obtained with the cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The software developed for the analysis of data from the Cloud Absorption Radiometer (CAR) is discussed. The CAR is a multichannel radiometer designed to measure the radiation field in the middle of an optically thick cloud (the diffusion domain). It can also measure the surface albedo and escape function. The instrument currently flies on a C-131A aircraft operated by the University of Washington. Most of this data was collected during the First International satellite cloud climatology project Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observation program off San Diego during July 1987. Earlier flights of the CAR have also been studied.

  1. Radiative transfer model of snow for bare ice regions

    NASA Astrophysics Data System (ADS)

    Tanikawa, T.; Aoki, T.; Niwano, M.; Hosaka, M.; Shimada, R.; Hori, M.; Yamaguchi, S.

    2016-12-01

    Modeling a radiative transfer (RT) for coupled atmosphere-snow-bare ice systems is of fundamental importance for remote sensing applications to monitor snow and bare ice regions in the Greenland ice sheet and for accurate climate change predictions by regional and global climate models. Recently, the RT model for atmosphere-snow system was implemented for our regional and global climate models. However, the bare ice region where recently it has been expanded on the Greenland ice sheet due to the global warming, has not been implemented for these models, implying that this region leads miscalculations in these climate models. Thus, the RT model of snow for bare ice regions is needed for accurate climate change predictions. We developed the RT model for coupled atmosphere-snow-bare ice systems, and conducted a sensitivity analysis of the RT model to know the effect of snow, bare ice and geometry parameters on the spectral radiant quantities. The RT model considers snow and bare-ice inherent optical properties (IOPs), including snow grain size, air bubble size and its concentration and bare ice thickness. The conventional light scattering theory, Mie theory, was used for IOP calculations. Monte Carlo method was used for the multiple scattering. The sensitivity analyses showed that spectral albedo for the bare ice increased with increasing the concentration of the air bubble in the bare ice for visible wavelengths because the air bubble is scatterer with no absorption. For near infrared wavelengths, spectral albedo has no dependence on the air bubble due to the strong light absorption by ice. When increasing solar zenith angle, the spectral albedo were increased for all wavelengths. This is the similar trend with spectral snow albedo. Cloud cover influenced the bare ice spectral albedo by covering direct radiation into diffuse radiation. The purely diffuse radiation has an effective solar zenith angle near 50°. Converting direct into diffuse radiation reduces the effective solar zenith angle, resulting in reducing the spectral albedo. This is also the similar trend with spectral snow albedo. Further work should focus on the validation of the RT model using in situ measurement data through field and laboratory experiments.

  2. Satellite Data Sets in the Polar Regions

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    We have generated about two decades of consistently derived geophysical parameters in the polar regions. The key parameters are sea ice concentration, surface temperature, albedo, and cloud cover statistics. Sea ice concentrations were derived from the Scanning Multichannel Microwave Radiometer (SMMR) data and the Special Scanning Cl Microwave Imager (SSM/I) data from several platforms using the enhanced Bootstrap Algorithm for the period 1978 through 1999. The new algorithm reduces the errors associated with spatial and temporal variations in the emissivity and surface temperatures of sea ice. Also, bad data at ocean/land interfaces are identified and deleted in an unsupervised manner. Surface ice temperature, albedo and cloud cover statistics are derived simultaneously from the Advanced Very High Resolution Radiometer (AVHRR) data from 1981 through 1999 and mapped at a higher resolution but the same format as the ice concentration data. The technique makes use these co-registered ice concentration maps to enable cloud masking to be done separately for open ocean, sea ice and land areas. The effect of inversion is minimized by taking into consideration the expected changes in the effect of inversion with altitude, especially in the Antarctic. A technique for ice type regional classification has also been developed using multichannel cluster analysis and a neural network. This provide a means to identify large areas of thin ice, first year ice, and older ice types. The data sets have been shown to be coherent with each other and provide a powerful tool for in depth studies of the currently changing Arctic and Antarctic environment.

  3. Theoretical and Observational Determination of Global and Regional Radiation Budget, Forcing and Feedbacks at the Top-of-Atmosphere and Surface

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.

    2004-01-01

    Report consists of: 1. List of accomplishments 2. List of publications 3. Abstracts of published or submitted papers and 4. Subject invention disclosure. The accomplishments of the grant listed are: 1. Improved the third-order turbulence closure in cloud resolving models to remove the liquid water oscillation. 2. Used the University of California-Los Angeles (UCLA) large-eddy simulation (LES) model to provide data for radiation transfer testing. 3. Revised shortwave k-distribution models based on HITRAN 2000. 4. Developed a gamma-weighted two-stream radiative transfer model for radiation budget estimate applications. 5. Estimated the effect of spherical geometry to the earth radiation budget. 6. Estimated top-of-atmosphere irradiance over snow and sea ice surfaces. 7. Estimated the aerosol direct radiative effect at the top of the atmosphere. 8. Estimated the top-of-atmosphere reflectance of the clear-sky molecular atmosphere over ocean. 9. Developed and validated new set of Angular Distribution Models for the CERES TRMM satellite instrument (tropical) 10. Developed and validated new set of Angular Distribution Models for the CERES Terra satellite instrument (global) 11. Quantified the top-of-atmosphere direct radiative effect of aerosols over global oceans from merged CERES and MODIS observations 12 Clarified the definition of TOA flux reference level for radiation budget studies 13. Developed new algorithm for unfaltering CERES measured radiances 14. Used multiangle POLDER measurements to produce narrowband angular distribution models and examine the effect of scene identification errors on TOA albedo estimates 15. Developed and validated a novel algorithm called the Multidirectional Reflectance Matching (MRM) model for inferring TOA albedos from ice clouds using multi-angle satellite measurements. 16. Developed and validated a novel algorithm called the Multidirectional Polarized Reflectance Matching (MPRM) model for inferring particle shapes from ice clouds using multi-angle polarized satellite measurements. 17. Developed 4 advanced light scattering models including the three-dimensional (3D) uniaxial perfectly matched layer (UPML) finite-difference time-domain (FDTD) model. 18. Develop sunglint in situ measurement and study reflectance distribution in the sunglint area. 19. Lead a balloon-borne radiometer TOA albedo validation effort. 20. Developed a CERES surface UVB, UVA, and UV index product.

  4. Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.

    2018-04-01

    A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine stratocumulus regions, with substantially shorter lag times compared with the long-wave counterpart. This indicates that the short-wave radiation response to diurnal cloud development and dissipation is more rapid, which is found to be robust in the regional satellite observations. These global, diurnal radiation patterns and their coupling with other geophysical variables demonstrate the process-level understanding that can be gained using this approach and highlight a need for global, diurnal observing systems for Earth outgoing radiation in the future.

  5. Mechanism of SOA formation determines magnitude of radiative effects

    NASA Astrophysics Data System (ADS)

    Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang

    2017-11-01

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of ‑0.05 W m‑2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is ‑0.07 W m‑2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.

  6. Mechanism of SOA formation determines magnitude of radiative effects

    DOE PAGES

    Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing; ...

    2017-11-13

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface areamore » and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.« less

  7. Mechanism of SOA formation determines magnitude of radiative effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface areamore » and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.« less

  8. Mechanism of SOA Formation Determines Magnitude of Radiative Effects

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Penner, J.; Lin, G.; Zhou, C.

    2017-12-01

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.

  9. Mechanism of SOA formation determines magnitude of radiative effects

    PubMed Central

    Penner, Joyce E.; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang

    2017-01-01

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of −0.05 W m−2. When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is −0.07 W m−2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing. PMID:29133426

  10. Mechanism of SOA formation determines magnitude of radiative effects.

    PubMed

    Zhu, Jialei; Penner, Joyce E; Lin, Guangxing; Zhou, Cheng; Xu, Li; Zhuang, Bingliang

    2017-11-28

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture, and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing state based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66% of SOA is internally mixed with sulfate, while 34% is internally mixed with primary soot. Compared with using an external mixture, the direct effect of SOA is decreased due to the decrease in total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced, and this is responsible for a large decrease in the cloud albedo effect. Internal mixing decreases the radiative effect of SOA by a factor of >4 compared with treating SOA as an external mixture. The future SOA burden increases by 24% due to CO 2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m -2 When the combined effects of changes in climate, anthropogenic emissions, and land use are included, the SOA forcing is -0.07 W m -2 , even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing. Copyright © 2017 the Author(s). Published by PNAS.

  11. Can feedback analysis be used to uncover the physical origin of climate sensitivity and efficacy differences?

    NASA Astrophysics Data System (ADS)

    Rieger, Vanessa S.; Dietmüller, Simone; Ponater, Michael

    2017-10-01

    Different strengths and types of radiative forcings cause variations in the climate sensitivities and efficacies. To relate these changes to their physical origin, this study tests whether a feedback analysis is a suitable approach. For this end, we apply the partial radiative perturbation method. Combining the forward and backward calculation turns out to be indispensable to ensure the additivity of feedbacks and to yield a closed forcing-feedback-balance at top of the atmosphere. For a set of CO2-forced simulations, the climate sensitivity changes with increasing forcing. The albedo, cloud and combined water vapour and lapse rate feedback are found to be responsible for the variations in the climate sensitivity. An O3-forced simulation (induced by enhanced NOx and CO surface emissions) causes a smaller efficacy than a CO2-forced simulation with a similar magnitude of forcing. We find that the Planck, albedo and most likely the cloud feedback are responsible for this effect. Reducing the radiative forcing impedes the statistical separability of feedbacks. We additionally discuss formal inconsistencies between the common ways of comparing climate sensitivities and feedbacks. Moreover, methodical recommendations for future work are given.

  12. Coordinated 1996 HST and IRTF Imaging of Neptune and Triton. II. Implications of Disk-Integrated Photometry

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Fry, P. M.; Baines, K. H.; Dowling, T. E.

    2001-02-01

    Near-IR groundbased observations coordinated with Wide Field Planetary Camera 2 (WFPC2) HST observations (Sromovsky et al.Icarus149, 416-434, 459-488) provide new insights into the variations of Neptune and Triton over a variety of time scales. From 1996 WFPC2 imaging we find that a broad circumpolar nonaxisymmetric dark band dominates Neptune's lightcurve at 0.467 μm, while three discrete bright features dominate the lightcurve at longer wavelengths, with amplitudes of 0.5% at 0.467 μm and 22% at 0.89 μm, but of opposite phases. The 0.89-μm modulation in 1994, estimated at 39%, is close to the 50% modulation observed during the 1986 "outburst" documented by Hammel et al. (1992, Icarus99, 363-367), suggesting that the unusual 1994 cloud morphology might also have been present in 1986. Lightcurve amplitudes in J-K bands, from August 1996 IRTF observations, are comparable to those observed in 1977 (D. P. Cruikshank 1978, Astrophys. J. Lett.220, 57-59) but significantly larger than the 1981 amplitudes of M. J. S. Belton et al. (1981, Icarus45, 263-273). The 1996 disk-integrated albedos of Neptune at H-K wavelengths are 2-7 times smaller than the 1977 values of U. Fink and S. Larson (1979, Astrophys. J.233, 1021-1040), which can be explained with about 1/2-1/4 of the upper level cloud opacity being present in 1996. A simplified three-layer model of cloud structure applied to CCD wavelengths implies ˜7% reflectivity at 1.3 bars (at λ=0.55 μm, decreasing as λ -0.94) and ˜1% at 100-150 mbars. To fit the WFPC2 observations and those of E. Karkoschka (1994, Icarus111, 174-192), the putative H 2S cloud between 3.8 and 7-9 bars must have a strong decrease in reflectivity between 0.5 and 0.7 μm, as previously determined by K. H. Baines and W. H. Smith (1990, Icarus85, 65-108). To match our 1996 IRTF results, this cloud must have another substantial drop in reflectivity at near-IR wavelengths, to a level of 0-5%, corresponding to single-scattering albedos of ˜0-0.3. The model that fits our near-IR observations on 13 August 1996 can reproduce the magnitudes of the dramatic 1976 "outburst" (R. R. Joyce et al. 1977, Astrophys. J.214, 657-662) by increasing the upper cloud fraction to 6% (from ˜1%) and lowering its effective pressure to ˜90 mbars (from 151 mbars). Triton's disk-integrated albedo from HST imagery at 11 wavelengths from 0.25 to 0.9 μm are consistent with previous groundbased and Voyager measurements, thus providing no evidence for the albedo decrease suggested by Triton's recent warming (J. L. Elliot et al. 1998 Nature393, 765-767). Triton's lightcurve inferred from 1994-1996 WFPC2 observations has about twice the amplitude inferred from 1989 Voyager models for the UV to long visible range (J. Hillier et al. 1991, J. Geophys. Res.96, 19,211-19,215).

  13. MISR Level 2 TOA/Cloud Versioning

    Atmospheric Science Data Center

    2017-10-11

    ... at this level. Software has been ported over to Linux. The Broadband Albedos have been fixed. New ancillary files: ... Difference Vectors implemented. Block Center Times for AN camera added to product. New ancillary files: ...

  14. The O2 A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    NASA Astrophysics Data System (ADS)

    Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.

    2017-06-01

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A s, the optical thickness b cloud, the altitude of water clouds, and the mixing ratio of biosignature O2 on the strength of the O2 A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios (η < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O2 mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O2 or any other absorbing gas.

  15. Antarctic Ultraviolet Radiation Climatology from Total Ozone Mapping Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    2004-01-01

    This project has successfully produced a climatology of local noon spectral surface irradiance covering the Antarctic continent and the Southern Ocean, the spectral interval 290-700 nm (UV-A, UV-B, and photosynthetically active radiation, PAR), and the entire sunlit part of the year for November 1979-December 1999. Total Ozone Mapping Spectrometer (TOMS) data were used to specify column ozone abundance and UV-A (360- or 380-nm) reflectivity, and passive microwave (MW) sea ice concentrations were used to specify the surface albedo over the Southern Ocean. For this latter task, sea ice concentration retrievals from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and its successor, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) were identified with ultraviolet/visible-wavelength albedos based on an empirical TOMS/MW parameterization developed for this purpose (Lubin and Morrow, 2001). The satellite retrievals of surface albedo and UV-A reflectivity were used in a delta-Eddington radiative transfer model to estimate cloud effective optical depth. These optical depth estimates were then used along with the total ozone and surface albedo to calculate the downwelling spectral UV and PAR irradiance at the surface. These spectral irradiance maps were produced for every usable day of TOMS data between 1979-1999 (every other day early in the TOMS program, daily later on).

  16. Analysis of global land surface albedo climatology and spatial-temporal variation during 1981-2010 from multiple satellite products

    NASA Astrophysics Data System (ADS)

    He, Tao; Liang, Shunlin; Song, Dan-Xia

    2014-09-01

    For several decades, long-term time series data sets of multiple global land surface albedo products have been generated from satellite observations. These data sets have been used as one of the key variables in climate change studies. This study aims to assess the surface albedo climatology and to analyze long-term albedo changes, from nine satellite-based data sets for the period 1981-2010, on a global basis. Results show that climatological surface albedo data sets derived from satellite observations can be used to validate, calibrate, and further improve surface albedo simulations and parameterizations in current climate models. However, the albedo products derived from the International Satellite Cloud Climatology Project and the Global Energy and Water Exchanges Project have large seasonal biases. At latitudes higher than 50°, the maximal difference in winter zonal albedo ranges from 0.1 to 0.4 among the nine satellite data sets. Satellite-based albedo data sets agree relatively well during the summer at high latitudes, with a standard deviation of 0.04 for the 70°-80° zone in both hemispheres. The fine-resolution (0.05°) data sets agree well with each other for all the land cover types in middle to low latitudes; however, large spread was identified for their albedos at middle to high latitudes over land covers with mixed snow and sparse vegetation. By analyzing the time series of satellite-based albedo products over the past three decades, albedo of the Northern Hemisphere was found to be decreasing in July, likely due to the shrinking snow cover. Meanwhile, albedo in January was found to be increasing, likely because of the expansion of snow cover in northern winter. However, to improve the albedo estimation at high latitudes, and ultimately the climate models used for long-term climate change studies, a still better understanding of differences between satellite-based albedo data sets is required.

  17. STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël

    2014-05-20

    Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotationmore » rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.« less

  18. Simulated climate effects of desert irrigation geoengineering.

    PubMed

    Cheng, Wei; Moore, John C; Cao, Long; Ji, Duoying; Zhao, Liyun

    2017-04-18

    Geoengineering, the deliberate large-scale manipulation of earth's energy balance to counteract global warming, is an attractive proposition for sparsely populated deserts. We use the BNU and UVic Earth system models to simulate the effects of irrigating deserts under the RCP8.5 scenario. Previous studies focused on increasing desert albedo to reduce global warming; in contrast we examine how extending afforestation and ecological projects, that successfully improve regional environments, fair for geoengineering purposes. As expected desert irrigation allows vegetation to grow, with bare soil or grass gradually becoming shrub or tree covered, with increases in terrestrial carbon storage of 90.3 Pg C (UVic-ESCM) - 143.9 Pg C (BNU-ESM). Irrigating global deserts makes the land surface temperature decrease by 0.48 °C and land precipitation increase by 100 mm yr -1 . In the irrigated areas, BNU-ESM simulates significant cooling of up to 4.2 °C owing to the increases in low cloud and latent heat which counteract the warming effect due to decreased surface albedo. Large volumes of water would be required to maintain global desert irrigation, equivalent 10 mm/year of global sea level (BNU-ESM) compensate for evapotranspiration losses. Differences in climate responses between the deserts prompt research into tailored albedo-irrigation schemes.

  19. Simulated climate effects of desert irrigation geoengineering

    PubMed Central

    Cheng, Wei; Moore, John C.; Cao, Long; Ji, Duoying; Zhao, Liyun

    2017-01-01

    Geoengineering, the deliberate large-scale manipulation of earth’s energy balance to counteract global warming, is an attractive proposition for sparsely populated deserts. We use the BNU and UVic Earth system models to simulate the effects of irrigating deserts under the RCP8.5 scenario. Previous studies focused on increasing desert albedo to reduce global warming; in contrast we examine how extending afforestation and ecological projects, that successfully improve regional environments, fair for geoengineering purposes. As expected desert irrigation allows vegetation to grow, with bare soil or grass gradually becoming shrub or tree covered, with increases in terrestrial carbon storage of 90.3 Pg C (UVic-ESCM) – 143.9 Pg C (BNU-ESM). Irrigating global deserts makes the land surface temperature decrease by 0.48 °C and land precipitation increase by 100 mm yr−1. In the irrigated areas, BNU-ESM simulates significant cooling of up to 4.2 °C owing to the increases in low cloud and latent heat which counteract the warming effect due to decreased surface albedo. Large volumes of water would be required to maintain global desert irrigation, equivalent 10 mm/year of global sea level (BNU-ESM) compensate for evapotranspiration losses. Differences in climate responses between the deserts prompt research into tailored albedo-irrigation schemes. PMID:28418005

  20. Cloud characterization and clear-sky correction from Landsat-7

    USGS Publications Warehouse

    Cahalan, Robert F.; Oreopoulos, L.; Wen, G.; Marshak, S.; Tsay, S. -C.; DeFelice, Tom

    2001-01-01

    Landsat, with its wide swath and high resolution, fills an important mesoscale gap between atmospheric variations seen on a few kilometer scale by local surface instrumentation and the global view of coarser resolution satellites such as MODIS. In this important scale range, Landsat reveals radiative effects on the few hundred-meter scale of common photon mean-free-paths, typical of scattering in clouds at conservative (visible) wavelengths, and even shorter mean-free-paths of absorptive (near-infrared) wavelengths. Landsat also reveals shadowing effects caused by both cloud and vegetation that impact both cloudy and clear-sky radiances. As a result, Landsat has been useful in development of new cloud retrieval methods and new aerosol and surface retrievals that account for photon diffusion and shadowing effects. This paper discusses two new cloud retrieval methods: the nonlocal independent pixel approximation (NIPA) and the normalized difference nadir radiance method (NDNR). We illustrate the improvements in cloud property retrieval enabled by the new low gain settings of Landsat-7 and difficulties found at high gains. Then, we review the recently developed “path radiance” method of aerosol retrieval and clear-sky correction using data from the Department of Energy Atmospheric Radiation Measurement (ARM) site in Oklahoma. Nearby clouds change the solar radiation incident on the surface and atmosphere due to indirect illumination from cloud sides. As a result, if clouds are nearby, this extra side-illumination causes clear pixels to appear brighter, which can be mistaken for extra aerosol or higher surface albedo. Thus, cloud properties must be known in order to derive accurate aerosol and surface properties. A three-dimensional (3D) Monte Carlo (MC) radiative transfer simulation illustrates this point and suggests a method to subtract the cloud effect from aerosol and surface retrievals. The main conclusion is that cloud, aerosol, and surface retrievals are linked and must be treated as a combined system. Landsat provides the range of scales necessary to observe the 3D cloud radiative effects that influence joint surface-atmospheric retrievals.

  1. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    DOE PAGES

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; ...

    2018-02-28

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less

  2. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stationsmore » near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.« less

  3. CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Van Weverberg, K.; Morcrette, C. J.; Petch, J.; Klein, S. A.; Ma, H.-Y.; Zhang, C.; Xie, S.; Tang, Q.; Gustafson, W. I.; Qian, Y.; Berg, L. K.; Liu, Y.; Huang, M.; Ahlgrimm, M.; Forbes, R.; Bazile, E.; Roehrig, R.; Cole, J.; Merryfield, W.; Lee, W.-S.; Cheruy, F.; Mellul, L.; Wang, Y.-C.; Johnson, K.; Thieman, M. M.

    2018-04-01

    Many Numerical Weather Prediction (NWP) and climate models exhibit too warm lower tropospheres near the midlatitude continents. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. This paper presents an attribution study on the net radiation biases in nine model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, water vapor, and aerosols are quantified, using an array of radiation measurement stations near the Atmospheric Radiation Measurement Southern Great Plains site. Furthermore, an in-depth analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface shortwave radiation is overestimated in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation, although nonnegligible contributions from the surface albedo exist in most models. Missing deep cloud events and/or simulating deep clouds with too weak cloud radiative effects dominate in the cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, cloud radiative deficiencies are related to too weak convective cloud detrainment and too large precipitation efficiencies.

  4. Biogenic influence on cloud microphysics in the 'clean' oceanic atmosphere

    NASA Astrophysics Data System (ADS)

    Lana, A.; Simó, R.; Vallina, S. M.; Jurado, E.; Dachs, J.

    2009-12-01

    A 20 years old hypothesis postulates a feedback relationship between marine biota and climate through the emission of dimethylsulfide (DMS) as the principal natural source of Sulfate Secondary Aerosols (S-DMS) that are very efficient as cloud condensation nuclei (CCN). In recent years, the biological influence on cloud microphysics have been expanded to other potential biogenic cloud precursors: (i) volatile organic compounds produced by plankton and emitted to the atmosphere to form Secondary Organic Aerosols (SOA); (ii) biological particles and biogenic polymers, lifted with the seaspray by wind friction and bubble-bursting processes, that act as Primary Organic Aerosols (POA). Besides these biogenic aerosols, also seaspray-associated Sea Salt (SS) emissions, which are the dominant contribution to aerosol mass in the remote mixed boundary layer, also contribute to cloud condensation. All these aerosols affect cloud microphysics by providing new CCN, reducing the size of cloud droplets, and increasing cloud albedo. We have compared the seasonalities of the parameterized source functions of these natural cloud precursors with that of the satellite-derived cloud droplet effective radius (CLEFRA) over large regions of the ocean. Regions where big loads of continental aerosols (including anthropogenic -industrial, urban, and biomass burning) dominate during a significant part of the year were identified by use of remote sensing aerosol optical properties and excluded from our analysis. Our results show that the seasonality of cloud droplet effective radius matches those of S-DMS and SOA in the clean marine atmosphere, whereas SS and chlorophyll-associated POA on their own do not seem to play a major role in driving cloud droplet size.

  5. Two drastically different climate states on an Earth-like terra-planet

    NASA Astrophysics Data System (ADS)

    Kalidindi, Sirisha; Reick, Christian H.; Raddatz, Thomas; Claussen, Martin

    2018-06-01

    We study an Earth-like terra-planet (water-limited terrestrial planet) with an overland recycling mechanism bringing fresh water back from the high latitudes to the low latitudes. By performing model simulations for such a planet we find two drastically different climate states for the same set of boundary conditions and parameter values: a cold and wet (CW) state with dominant low-latitude precipitation and a hot and dry (HD) state with only high-latitude precipitation. We notice that for perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo while above the threshold only the CW state is stable. Starting from the HD state and increasing background soil albedo above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35 °C globally, which is of the order of the temperature difference between present day and the Snowball Earth state. When albedo starting from the CW state is reduced down to zero the terra-planet does not shift back to the HD state (no closed hysteresis). This is due to the high cloud cover in the CW state hiding the surface from solar irradiation so that surface albedo has only a minor effect on the top of the atmosphere radiation balance. Additional simulations with present-day Earth's obliquity all lead to the CW state, suggesting a similar abrupt transition from the HD state to the CW state when increasing obliquity from zero. Our study also has implications for the habitability of Earth-like terra-planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at low latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at high latitudes in frozen form. Overall, the existence of bistability in the presence of an overland recycling mechanism hints at the possibility of a wider habitable zone for Earth-like terra-planets at low obliquities.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. Duringmore » the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').« less

  7. Statistical Analyses of Satellite Cloud Object Data from CERES. Part II; Tropical Convective Cloud Objects During 1998 El Nino and Validation of the Fixed Anvil Temperature Hypothesis

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark

    2006-01-01

    Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles, statistical characteristics of cloud microphysical properties, optical depth and albedo are not sensitive to the SST, but those of cloud macrophysical properties are strongly dependent upon the SST. Frequency distributions of vertical velocity from the European Center for Medium-range Weather Forecasts model that is matched to each cloud object are used to interpret some of the findings in this study.

  8. Cloud Macro- and Microphysical Properties Derived from GOES over the ARM SGP Domain

    NASA Technical Reports Server (NTRS)

    Minnis, P.; Smith, W. L., Jr.; Young, D. F.

    2001-01-01

    Cloud macrophysical properties like fractional coverage and height Z(sub c) and microphysical parameters such as cloud liquid water path (LWP), effective droplet radius r(sub e), and cloud phase, are key factors affecting both the radiation budget and the hydrological cycle. Satellite data have been used to complement surface observations from Atmospheric Radiation Measurements (ARM) by providing additional spatial coverage and top-of-atmosphere boundary conditions of these key parameters. Since 1994, the Geostationary Operational Environmental Satellite (GOES) has been used for deriving at each half-hour over the ARM Southern Great Plains (SGP) domain: cloud amounts, altitudes, temperatures, and optical depths as well as broadband shortwave (SW) albedo and outgoing longwave radiation at the top of the atmosphere. A new operational algorithm has been implemented to increase the number of value-added products to include cloud particle phase and effective size (r(sub e) or effective ice diameter D(sub e)) as well as LWP and ice water path. Similar analyses have been performed on the data from the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission satellite as part of the Clouds and Earth's Radiant Energy System project. This larger suite of cloud properties will enhance our knowledge of cloud processes and further constrain the mesoscale and single column models using ARM data as a validation/initialization resource. This paper presents the results of applying this new algorithm to GOES-8 data taken during 1998 and 2000. The global VIRS results are compared to the GOES SGP results to provide appropriate context and to test consistency.

  9. The Dynamics of Fine Mode Aerosol Optical Properties in South Korea from AERONET and Aircraft Observations with a Focus on Cases with Large Cloud Fraction and/or Fog During KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Kim, J.; Choi, M.; Giles, D. M.; Schafer, J.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Sorokin, M. G.; Kraft, J.; Beyersdorf, A. J.; Anderson, B. E.; Thornhill, K. L., II; Crawford, J. H.

    2017-12-01

    The focus of our investigation is of major fine mode aerosol pollution events in South Korea, particularly when cloud fraction is high. This work includes the analysis of AERONET data utilizing the Spectral Deconvolution Algorithm to enable detection of fine mode aerosol optical depth (AOD) near to clouds. Additionally we analyze the newly developed AERONET V3 data sets that have significant changes to cloud screening algorithms. Comparisons of aerosol optical depth are made between AERONET Versions 2 and 3 for both long-term climatology data and for specific 2016 cases, especially in May and June 2016 during the KORUS-AQ field campaign. In general the Version 3 cloud screening allows many more fine mode AOD observations to reach Level 2 when cloud amount is high, as compared to Version 2, thereby enabling more thorough analysis of these types of cases. Particular case studies include May 25-26, 2016 when cloud fraction was very high over much of the peninsula, associated with a frontal passage and advection of pollution from China. Another interesting case is June 9, 2016 when there was fog over the West Sea, and this seems to have affected aerosol properties well downwind over the Korean peninsula. Both of these days had KORUS-AQ research aircraft flights that provided observations of aerosol absorption, particle size distributions and vertical profiles of extinction. AERONET retrievals and aircraft in situ measurements both showed high single scattering albedo (weak absorption) on these cloudy days. We also investigate the relationship between aerosol fine mode radius and AOD and the relationship between aerosol single scattering albedo and fine mode particle radius from the AERONET almucantar retrievals for the interval of April through June 2016 for 17 AERONET sites in South Korea. Strongly increasing fine mode radius (leading to greater scattering efficiency) as fine mode AOD increased is one factor contributing to a trend of increasing single scattering albedo as fine AOD increased. Additionally, the new AERONET Hybrid sky radiance scan retrievals that allow for inversions to be made at much smaller solar zenith angles are analyzed and compared to almucantar retrievals.

  10. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  11. Effects of cloud condensate vertical alignment on radiative transfer calculations in deep convective regions

    NASA Astrophysics Data System (ADS)

    Wang, Xiaocong

    2017-04-01

    Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.

  12. Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations

    NASA Technical Reports Server (NTRS)

    Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee

    2011-01-01

    The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.

  13. Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Sampa; Harshvardhan, H.; Bian, Huisheng

    Aerosols from wild-land fires could significantly perturb the global radiation balance and induce the climate change. In this study, the Community Atmospheric Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative forcings of wildfire aerosols including black carbon (BC) and particulate organic matter (POM). The global annual mean direct radiative forcing (DRF) of all fire aerosols is 0.15 W m-2, mainly due to the absorption of fire BC (0.25 W m-2), while fire POM induces a weak negative forcing (-0.05 W m-2). Strong positive DRF is found inmore » the Arctic and in the oceanic regions west of South Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean cloud radiative forcing due to all fire aerosols is -0.70 W m-2, resulting mainly from the fire POM indirect forcing (-0.59 W m-2). The large cloud liquid water path over land areas of the Arctic favors the strong fire aerosol indirect forcing (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and low-level cloud amount increase are also found in the Arctic summer as a result of the fire aerosol indirect effect. The global annual mean surface albedo forcing over land areas (0.03 W m-2) is mainly due to the fire BC-on-snow forcing (0.02 W m-2) with the maximum albedo forcing occurring in spring (0.12 W m-2) when snow starts to melt.« less

  14. Introducing the MIT Regional Climate Model (MRCM)

    NASA Astrophysics Data System (ADS)

    Eltahir, Elfatih A. B.; Winter, Jonathn M.; Marcella, Marc P.; Gianotti, Rebecca L.; Im, Eun-Soon

    2013-04-01

    During the last decade researchers at MIT have worked on improving the skill of Regional Climate Model version 3 (RegCM3) in simulating climate over different regions through the incorporation of new physical schemes or modification of original schemes. The MIT Regional Climate Model (MRCM) features several modifications over RegCM3 including coupling of Integrated Biosphere Simulator (IBIS), a new surface albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Here, we introduce the MRCM and briefly describe the major model modifications relative to RegCM3 and their impact on the model performance. The most significant difference relative to the RegCM3 original configuration is coupling the Integrated Biosphere Simulator (IBIS) land-surface scheme (Winter et al., 2009). Based on the simulations using IBIS over the North America, the Maritime Continent, Southwest Asia and West Africa, we demonstrate that the use of IBIS as the land surface scheme results in better representation of surface energy and water budgets in comparison to BATS. Furthermore, the addition of a new irrigation scheme to IBIS makes it possible to investigate the effects of irrigation over any region. Also a new surface albedo assignment method used together with IBIS brings further improvement in simulations of surface radiation (Marcella and Eltahir, 2013). Another important feature of the MRCM is the introduction of a new convective cloud and rainfall auto-conversion scheme (Gianotti and Eltahir, 2013). This modification brings more physical realism into an important component of the model, and succeeds in simulating convective-radiative feedback improving model performance across several radiation fields and rainfall characteristics. Other features of MRCM such as the modified boundary layer height and cloud scheme, and the improvements in the dust emission and transport representations will be discussed.

  15. An approach for retrieval of atmospheric trace gases CO II, CH 4 and CO from the future Canadian micro earth observation satellite (MEOS)

    NASA Astrophysics Data System (ADS)

    Trishchenko, Alexander P.; Khlopenkov, Konstantin V.; Wang, Shusen; Luo, Yi; Kruzelecky, Roman V.; Jamroz, Wes; Kroupnik, Guennadi

    2007-10-01

    Among all trace gases, the carbon dioxide and methane provide the largest contribution to the climate radiative forcing and together with carbon monoxide also to the global atmospheric carbon budget. New Micro Earth Observation Satellite (MEOS) mission is proposed to obtain information about these gases along with some other mission's objectives related to studying cloud and aerosol interactions. The miniature suit of instruments is proposed to make measurements with reduced spectral resolution (1.2nm) over wide NIR range 0.9μm to 2.45μm and with high spectral resolution (0.03nm) for three selected regions: oxygen A-band, 1.5μm-1.7μm band and 2.2μm-2.4μm band. It is also planned to supplement the spectrometer measurements with high spatial resolution imager for detailed characterization of cloud and surface albedo distribution within spectrometer field of view. The approaches for cloud/clear-sky identification and column retrievals of above trace gases are based on differential absorption technique and employ the combination of coarse and high-resolution spectral data. The combination of high and coarse resolution spectral data is beneficial for better characterization of surface spectral albedo and aerosol effects. An additional capability for retrieval of the vertical distribution amounts is obtained from the combination of nadir and limb measurements. Oxygen A-band path length will be used for normalization of trace gas retrievals.

  16. Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.

    This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less

  17. Quantifying the Sources of Intermodel Spread in Equilibrium Climate Sensitivity

    DOE PAGES

    Caldwell, Peter M.; Zelinka, Mark D.; Taylor, Karl E.; ...

    2016-01-07

    This paper clarifies the causes of intermodel differences in the global-average temperature response to doubled CO 2, commonly known as equilibrium climate sensitivity (ECS). The authors begin by noting several issues with the standard approach for decomposing ECS into a sum of forcing and feedback terms. This leads to a derivation of an alternative method based on linearizing the effect of the net feedback. Consistent with previous studies, the new method identifies shortwave cloud feedback as the dominant source of intermodel spread in ECS. This new approach also reveals that covariances between cloud feedback and forcing, between lapse rate andmore » longwave cloud feedbacks, and between albedo and shortwave cloud feedbacks play an important and previously underappreciated role in determining model differences in ECS. Finally, defining feedbacks based on fixed relative rather than specific humidity (as suggested by Held and Shell) reduces the covariances between processes and leads to more straightforward interpretations of results.« less

  18. Observed Cloud Properties Above the Northern Indian Ocean During CARDEX 2012

    NASA Astrophysics Data System (ADS)

    Gao, L.; Wilcox, E. M.

    2016-12-01

    An analysis of cloud microphysical, macrophysical and radiative properties during the dry winter monsoon season above the northern Indian Ocean is presented. The Cloud Aerosol Radiative Forcing Experiment (CARDEX), conducted from 16 February to 30 March 2012 at the Maldives Climate Observatory on Hanimaadhoo (MCOH), used autonomous unmanned aerial vehicles (UAVs) to measure the aerosol profiles, water vapor flux and cloud properties concurrent with continuous ground measurements of surface aerosol and meteorological variables as well as the total-column precipitable water vapor (PWV) and the cloud liquid water path (LWP). Here we present the cloud properties only for the cases with lower atmospheric water vapor using the criterion that the PWV less than 40 kg/m2. This criterion acts to filter the data to control for the natural meteorological variability in the region according to previous studies. The high polluted case is found to correlate with warmer temperature, higher relative humidity in boundary layer and lower lifted condensation level (LCL). Micro Pulse Lidar (MPL) retrieved cloud base height coincides with calculated LCL height which is lower for high polluted case. Meanwhile satellite retrieved cloud top height didn't show obvious variation indicating cloud deepening which is consistent with the observed greater cloud LWP in high polluted case. Those high polluted clouds are associated with more cloud droplets and smaller effective radius and are generally becoming narrower due to the stronger cloud side evaporation-entrainment effect and becoming deeper due to more moist static energy. Clouds in high polluted condition become brighter with higher albedo which can cause a net shortwave forcing over -40 W/m2 in this region.

  19. Ground based planetary research

    NASA Technical Reports Server (NTRS)

    1973-01-01

    High spatial resolution spectrophotometric observations made in the wavelength region lambda lambda 0.6 - 2.0 micrometers are used to study the Jovian and Saturnian limb darkening. Limb darkening coefficients (k) of the Minnaert function are derived for the cloud layers of both planets. A value of k = 1.0 is found for Jupiter over the entire disk while values of between 0.75 and 0.90 are found for different latitudes for Saturn. These data are used to derive geometric albedoes (G) for the various belts, zones, spots and regions observed on Jupiter and Saturn. These values of G and k are in turn used to show that an isotropic scattering model is invalid for Jupiter and that at least an asymmetric scattering function, such as the Euler function, is needed to fit the Jovian data. The Jovian scattering function is found to generally vary between 0.960 and 0.994 as a function of wavelength and the feature observed. The Saturn geometric albedoes and values of k indicate that Euler's function fails to adequately model the scattering properties of the Saturnian clouds. As a result it is suggested that simple scattering theory may not apply to the Saturn clouds or that they are better represented by a cumulus cloud model.

  20. An Intercomparison of Research Scanning Polarimeter Cloud Droplet Number Concentrations with Aerosol Properties over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; van Diedenhoven, B.; Cairns, B.; Alexandrov, M. D.; Ziemba, L. D.; Moore, R.; Crosbie, E.; Hostetler, C. A.

    2016-12-01

    Cloud droplet number concentration (CDNC) is a key parameter of of liquid clouds and is essential for the understanding of aerosol-cloud interaction. It couples surface aerosol composition and chemistry on the one hand and cloud reflectivity on the other. It impacts radiative forcing, cloud evolution, precipitation, global climate and, through observation, can be used to monitor the cloud albedo effect, or the first indirect effect. The North Atlantic and Marine Ecosystems Study (NAAMES), which is a NASA-led ship and air campaign that takes place off the east coast of Newfoundland, observed many low cloud decks and aerosols over a marine environment. This campaign has completed two of four deployments and provides an excellent opportunity for the Research Scanning Polarimeter (RSP) to cross-validate its approach of sensing CDNC with the Langley Aerosol Research Group Experiment's (LARGE's) Cloud Droplet Probe (CDP). The RSP is an airborne scanning sensor that provides high-precision measurements of polarized and full-intensity radiances at multiple angles over a wide spectral range. Each of the four NAAMES deployments are aligned to a specific annual event in the plankton cycle, along with other variations in environmental conditions. The Fall 2015 and spring 2016 deployments allow us to demonstrate and characterize the RSP's performance over a range of CDNCs and cloud types. We also assess correlations between the RSP CDNC measurements and atmospheric aerosol load. Using the LARGE Cloud Particle Counter (CPC) and Aerosol Mass Spectrometer (AMS), links between the size and type of aerosols and the RSP CDNC retrievals are explored.

  1. Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

    NASA Astrophysics Data System (ADS)

    Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide

    2017-12-01

    This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.

  2. Comparison of three ice cloud optical schemes in climate simulations with community atmospheric model version 5

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan

    2018-05-01

    A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.

  3. Variation of Arctic's Sea-ice Albedo between 2000 and 2016 by fusion of MISR and MODIS data

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter; Kharbouche, Said

    2017-04-01

    Many research studies have demonstrated that sea-ice plays a key role in climate change and global warming. Most of these studies are based either on ground in-situ data or on remotely sensed data. The latter data are provided mainly by active (SAR and LiDAR) sensors such as Cryosat2, ERS1/2, ENVISAT, Radarsat1/2, ICESat as well as passive sensors such as SSM/I. Nevertheless, the contribution of such active optical sensors data is limited to parameters such as thickness and sea-ice concentration from which albedo may be inferred. The creation of high quality albedo for sea-ice using optical satellites is confronted with two main obstacles: 1) the Arctic is a very cloudy region and, high quality albedo requires multi-angle observations over a relatively short period; 2) cloud masking over sea-ice is a very difficult task, especially for sensor with low spectral resolution. To overcome the above two obstacles, we discuss in a separate report the generation of this fused daily, weekly, fortnightly and monthly product at 1km and 5km resolution on a polar stereographic grid [1]. The limited swath (380km) of MISR means that not all of the Arctic is covered on a daily basis so composites on different time-steps were produced. The results show that sea-ice albedo has been in continuous decline since 2000 with thinner sea-ice and greater leads and open water as well as more ponding at earlier times in the year. The implications of these results are discussed in terms of the sea-ice climate feedback. Animated visualisations of the albedo patterns each year, the decline in average and the increase in standard deviation in albedo for every single day for all 17 years will be shown to demonstrate the effects of climate change over sea-ice albedo. References [1] Kharbouche & Muller, Production of Arctic sea-ice albedo by fusion of MISR and MODIS data. This conference. Acknowledgements This work was supported by www.QA4ECV.eu, a project of European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 607405.

  4. Dependence of global radiation on cloudiness and surface albedo in Tartu, Estonia

    NASA Astrophysics Data System (ADS)

    Tooming, H.

    The dependence of global and diffuse radiation on surface albedo due to multiple reflection of radiation between the surface and the atmosphere (base of clouds) is found on the basis of data obtained at the Tartu-Tõravere Actinometric Station over the period 1955-2000. It is found that the monthly totals of global radiation increase by up to 1.38-1.88 times, particularly in the winter half-year between November and March, when snow cover albedo may be high. A semi-empirical formula is derived for calculating with sufficient accuracy the monthly totals of global radiation, considering the amount of cloudiness and the surface albedo. In the time series of the monthly total by global radiation a downward trend occurs in winter months. A decrease in global radiation by up to 20% in the past 46 years can be explained primarily by a relatively high negative trend in the snow cover duration and surface albedo (up to -0.24). As a result, days are growing darker, a new phenomenon associated with climate change, which undoubtedly affects human mood to some extent.

  5. A Comprehensive Analysis about the Aerosol's Albedo Effect at SGP Site

    NASA Astrophysics Data System (ADS)

    Qiu, Y.

    2016-12-01

    Positive relationship between cloud droplet effective radius (DER) and aerosol amount has been found in early studies based on limited observation samples over the Southern Great Plain (SGP) in Oklahoma of US. Using 8-year cloud and aerosol observations by the Atmospheric Radiation Measurement (ARM) program, We here carry out a comprehensive analysis about the seasonal variation of aerosol effect on cloud DER at the SGP site. It shows that cloud DER is larger under polluted conditions than that under clean conditions in all seasons other than summer, indicating a positive aerosol first indirect effect (also called Twomey effect) only in summer. Note that the pollution conditions are classified based on the surface observation of aerosol optical depth (AOD). Different factors that influence the AOD-DER relationship have been shown in many early studies, we analyze the potential effects of various factors on the AOD-DER relationship and find that cloud types and precipitable water vapor (PWV) play more important roles.We limit our study to clouds with bases below 1 km and tops about 3 km which make sure what we study are low liquid clouds. The correlation between AOD and DER is negative in all seasons in lower one-third of PWV, and positive in other seasons except negative in summer under higher one-third of PWV. It suggests the increase of PWV could promote the relationship of AOD-Re from negative to positive. Restricting NCEP reanalysis data to limit the variation in the meteorological conditions, the correlation of AOD-Re is -0.3054 in lower PWV and -0.2327 in higher PWV( p<0.05 in two cases), which shows that the increase of PWV can weaken the Twomey effect.

  6. Quantification of Terpenes by 1DGC-MS and 2DGC-TOF-MS

    NASA Astrophysics Data System (ADS)

    Flores, R. M.; Perlinger, J. A.; Doskey, P. V.

    2009-12-01

    Biogenic emissions are the primary source of volatile organic compounds in the global troposphere. Deciduous and coniferous forests are the principal emitters of a complex mixture of isoprene (C5H8), monoterpenes (C10H16), and sesquiterpenes (C15H24). Sesquiterpenes are readily oxidized in the atmosphere producing secondary organic aerosols (SOA) with 100% yields. The SOA are hydrophilic and scatter light, and thus, increase albedo and lead to a cooling effect. In addition, both monoterpene and sesquiterpene generated SOA are effective cloud condensation nuclei leading to an increase in the particle number concentration and to the formation of clouds that also increase albedo. To quantify the complex mixture of terpenes and their oxidation products requires development of on-line extraction and comprehensive two-dimensional gas chromatographic techniques. One objective of this work was to compare one-dimensional gas chromatography-mass spectrometry (1DGC-MS) and two-dimensional gas chromatography time-of-flight mass spectrometry (2DGC-TOFMS) for quantifying eight monoterpenes (alpha- and beta-pinene, limonene, 3-carene, linalool, terpinolene, myrcene and ocimene) and eight sesquiterpenes (beta-caryophyllene, humulene, alpha-cedrene, cis-nerolidol, trans-nerolidol, cedrol, camphene and farnesene) in air samples collected in Northern Michigan. Future research involves coupling thermal desorption and supercritical fluid extraction devices to a GC×2GC for routine quantification of the complex mixture of terpenes and their oxidation products in rural and urban air.

  7. Physical and Optical/Radiative Characteristics of Aerosol and Cloud Particles in Tropical Cirrus: Importance in Radiation Balance

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Howard, S. D.; Foster, T. C.; Hallett, J.; Arnott, W. P.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the relative importance of the cloud shortwave albedo effect and the cloud thermal greenhouse effect. Both are determined by the distribution of ice condensate with cloud particle size. The microphysics instrument package flown aboard the NASA DC-8 in TOGA/COARE included an ice crystal replicator, a 2D Greyscale Cloud Particle Probe and a Forward Scattering Spectrometer Aerosol Probe. In combination, the electro-optical instruments permitted particle size measurements between 0.5 micrometer and 2.6 millimeter diameter. Ice crystal replicas were used to validate signals from the electrooptical instruments. Both optical and scanning electron microscopy were utilized to analyze aerosol and ice particle replicas between 0.1 micrometer and several 100 micrometer diameter. In first approximation, the combined aerosol-cloud particle spectrum in several clouds followed a power law N alpha D(sup -2.5). Thus, large cloud particles carried most of the condensate mass, while small cloud and aerosol particles determined the surface area. The mechanism of formation of small particles is growth of (hygroscopic, possibly ocean-derived) aerosol particles along the Kohler curves. The concentration of small particles is higher and less variable in space and time, and their tropospheric residence time is longer, than those of large cloud particles because of lower sedimentation velocities. Small particles shift effective cloud particle radii to sizes much smaller than the mean diameter of the cloud particles. This causes an increase in shortwave reflectivity and IR emissivity, and a decrease in transmissivity. Occasionally, the cloud reflectivity increased with altitude (decreasing temperature) stronger than did cloud emissivity, yielding enhanced radiative cooling at higher altitudes. Thus, cirrus produced by deep convection in the tropics may be critical in controlling processes whereby energy from warm tropical oceans is injected to different levels in the atmosphere to subsequently influence not only tropical but mid-latitude climate.

  8. The O{sub 2} A-Band in the Fluxes and Polarization of Starlight Reflected by Earth-Like Exoplanets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauchez, Thomas; Rossi, Loic; Stam, Daphne M.

    Earth-like, potentially habitable exoplanets are prime targets in the search for extraterrestrial life. Information about their atmospheres and surfaces can be derived by analyzing the light of the parent star reflected by the planet. We investigate the influence of the surface albedo A {sub s}, the optical thickness b {sub cloud}, the altitude of water clouds, and the mixing ratio of biosignature O{sub 2} on the strength of the O{sub 2} A-band (around 760 nm) in the flux and polarization spectra of starlight reflected by Earth-like exoplanets. Our computations for horizontally homogeneous planets show that small mixing ratios ( ηmore » < 0.4) will yield moderately deep bands in flux and moderate-to-small band strengths in polarization, and that clouds will usually decrease the band depth in flux and the band strength in polarization. However, cloud influence will be strongly dependent on properties such as optical thickness, top altitude, particle phase, coverage fraction, and horizontal distribution. Depending on the surface albedo and cloud properties, different O{sub 2} mixing ratios η can give similar absorption-band depths in flux and band strengths in polarization, especially if the clouds have moderate-to-high optical thicknesses. Measuring both the flux and the polarization is essential to reduce the degeneracies, although it will not solve them, especially not for horizontally inhomogeneous planets. Observations at a wide range of phase angles and with a high temporal resolution could help to derive cloud properties and, once those are known, the mixing ratio of O{sub 2} or any other absorbing gas.« less

  9. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  10. An Assessment of ECMWF Analyses and Model Forecasts over the North Slope of Alaska Using Observations from the ARM Mixed-Phase Arctic Cloud Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shaocheng; Klein, Stephen A.; Yio, J. John

    2006-03-11

    European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and model forecast data are evaluated using observations collected during the Atmospheric Radiation Measurement (ARM) October 2004 Mixed-Phase Arctic Cloud Experiment (M-PACE) at its North Slope of Alaska (NSA) site. It is shown that the ECMWF analysis reasonably represents the dynamic and thermodynamic structures of the large-scale systems that affected the NSA during M-PACE. The model-analyzed near-surface horizontal winds, temperature, and relative humidity also agree well with the M-PACE surface measurements. Given the well-represented large-scale fields, the model shows overall good skill in predicting various cloud types observed during M-PACE; however, themore » physical properties of single-layer boundary layer clouds are in substantial error. At these times, the model substantially underestimates the liquid water path in these clouds, with the concomitant result that the model largely underpredicts the downwelling longwave radiation at the surface and overpredicts the outgoing longwave radiation at the top of the atmosphere. The model also overestimates the net surface shortwave radiation, mainly because of the underestimation of the surface albedo. The problem in the surface albedo is primarily associated with errors in the surface snow prediction. Principally because of the underestimation of the surface downwelling longwave radiation at the times of single-layer boundary layer clouds, the model shows a much larger energy loss (-20.9 W m-2) than the observation (-9.6 W m-2) at the surface during the M-PACE period.« less

  11. Impact of geoengineering on cirrus clouds

    NASA Astrophysics Data System (ADS)

    Cirisan, Ana; Spichtinger, Peter; Weisenstein, Debra; Lohmann, Ulrike; Wernli, Heini; Peter, Thomas

    2010-05-01

    Inspite of the framework convention agreement, climate warming is still an actual and very important issue society has to deal with. This has motivated some scientist to start thinking about implementation of artificial methods that could change the climate and weather patterns in order to stop or reverse the global warming effects. Nowadays, there is a consortium of politicians, scientists and engineers interested in evaluating different geoengineering schemes as a way to mitigate global warming, discount rates, and risk aversion (Polborn S. and Tintelnot F., 2009). The geoengineering proposal attracting the most attention and having considerably lower expected deployment costs than conventional emissions abatement approaches (Nordhaus, 2007) is stratospheric aerosol injection. This method, proposed by Budyko (1977) and Crutzen (2006), relies on the fact that large amounts of sulphur aerosols injected into the lower stratosphere enhance the Earth's albedo and lead to cooling of the globe. This proposal is currently discussed in the climate community and possible side effects are investigated. However, the investigations concentrate almost exclusively on the impact on chemistry and stratospheric circulation, whereas the impact on cirrus clouds in the underlying tropopause and upper troposphere region was not taken into account up to now. In this contribution we investigated the impact of artificially produced sulphate aerosol concentrations, modeled with the AER 2D aerosol model (Weisenstein et al., 2007), on the formation and evolution of cirrus clouds in the mid-latitudes. For large injections of SO2 some sulphate aerosol particles grow to large sizes that they can sediment to lower altitudes and eventually reach the troposphere, where they can influence ice crystal formation. Investigations are carried out using a bulk microphysical box model (Spichtinger and Gierens, 2009, Spichtinger and Cziczo, 2009), concentrating on moderate constant updrafts with different background aerosol mass and number concentrations in response to geoengineering measures. In order to obtain qualitative and quantitative estimations of troposphere-stratosphere air mixing (intrusions, tropopause folds etc.) trajectory studies are done using ECMWF data. The results of this conceptual study suggest that an enhancement of sulphuric acid in the tropopause and upper troposphere region may impact the ice crystal number concentrations in cirrus clouds formed via homogeneous nucleation. The global impact can not be estimated, but on the local level, this could lead to change of cloud lifetime and thickness. It would further influence the albedo and radiative properties of cirrus clouds, i.e. modifying the net warming impact of cirrus clouds. Budyko, M.I. (1977), Global Ecology. Mysl, Moscow, 327 pp. (in Russian). Crutzen, P.J. (2006), Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Climate Change, 77(3-4), 211-219. Nordhaus, W.D. (2007), A Question of Balance: Economic Modeling of Global Warming, Yale University Press, 2007. Polborn, S. and Tintelnot, F. (2009), How Geoengineering May Encourage Carbon Dioxide Abatement (June 2, 2009). Available at SSRN: http://ssrn.com/abstract=1413106 Spichtinger, P. and Gierens, K. (2009), Modelling of cirrus clouds - Part 1a: Model description and validation, Atmos. Chem. Phys., 9, 685-706. Spichtinger, P. and Cziczo, D. (2009), Impact of heterogeneous ice nuclei on homogeneous freezing events, J. Geophys. Res., in revision. Weisenstein, D.K., Penner, J.E., Herzog, M., and Liu, X., (2007), Global 2-D intercomparison of sectional and modal aerosol modules, Atmos. Chem. Phys., 7(9), 2339-2355.

  12. Quantification of seasonal to annual mass balances from glacier surface albedo derived from optical satellite images, application on 30 glaciers in the French Alps for the period 2000-2015.

    NASA Astrophysics Data System (ADS)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2017-04-01

    Increasing the number of glaciers monitored for surface mass balance is very challenging, especially using laborious methods based on in situ data. Complementary methods are therefore required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, onboard of TERRA satellite. Recent studies performed on single glaciers in the French Alps, the Himalayas or the Southern Alps of New Zealand revealed substantial relationships between summer minimum glacier-wide surface albedo and annual mass balance, because this minimum surface albedo is directly related to accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. At the seasonal scale, the integrated summer surface albedo is significantly correlated with the summer mass balance of the six glaciers seasonally surveyed. For the winter season, four of the six glaciers showed a significant correlation when linking the winter surface mass balance and the integrated winter surface albedo, using glacier-dependent thresholds to filter the albedo signal. Sensitivity study on the computed cloud detection algorithm revealed high confidence in retrieved albedo maps. These results are promising to monitor both annual and seasonal glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images.

  13. Antarctic surface temperature and sea ice biases in coupled climate models linked with cloud and land surface properties

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.

    2014-12-01

    Since 2013 the Airborne Snow Observatory (ASO) has been measuring spatial and temporal distribution of both snow water equivalent and snow albedo, the two most critical properties for understanding snowmelt runoff and timing, across key basins in the Western US. It is generally understood that net solar radiation (as controlled by variations in snow albedo and irradiance) provides the energy available for melt in almost all snow-covered environments. Until now, sparse measurements have restricted the ability to utilize measured net solar radiation in energy balance models, and current process simulations and model prediction of albedo evolution rely on oversimplifications of the processes. Data from ASO offers the unprecedented opportunity to utilize weekly measurements of spatially extensive spectral snow albedo to constrain and update snow albedo in a distributed snowmelt model for the first time. Here, we first investigate the sensitivity of the snow energy balance model SNOBAL to prescribed changes in snow albedo at two instrumented alpine catchments: at the point scale across 10 years at Senator Beck Basin Study Area in the San Juan Mountains, southwestern Colorado, and at the distributed scale across 25 years at Reynolds Creek Experimental Watershed, Idaho. We then compare distributed energy balance and snowmelt results across the ASO measurement record in the Tuolumne Basin in the Sierra Nevada Mountains, California, for model runs with and without integrated snow albedo from ASO.

  14. Observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    NASA Astrophysics Data System (ADS)

    Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.

    2015-01-01

    Based on airborne spectral imaging observations three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and ice floes have been identified and quantified. A method is presented to discriminate sea ice and open water in case of clouds from imaging radiance measurements. This separation simultaneously reveals that in case of clouds the transition of radiance between open water and sea ice is not instantaneously but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of sea ice - open water boundaries, while the nadir radiance above dark surfaces is enhanced compared to situations with clouds located above horizontal homogeneous surfaces. With help of the observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge. This affected distance Δ L was found to depend on both, cloud and sea ice properties. For a ground overlaying cloud in 0-200 m altitude, increasing the cloud optical thickness from τ = 1 to τ = 10 decreases Δ L from 600 to 250 m, while increasing cloud base altitude or cloud geometrical thickness can increase Δ L; Δ L(τ = 1/10) = 2200 m/1250 m for 500-1000 m cloud altitude. To quantify the effect for different shapes and sizes of the ice floes, various albedo fields (infinite straight ice edge, circles, squares, realistic ice floe field) were modelled. Simulations show that Δ L increases by the radius of the ice floe and for sizes larger than 6 km (500-1000 m cloud altitude) asymptotically reaches maximum values, which corresponds to an infinite straight ice edge. Furthermore, the impact of these 3-D-radiative effects on retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30% in retrievals of cloud optical thickness and effective radius reff, respectively. With help of Δ L quantified here, an estimate of the distance to the ice edge for which the retrieval errors are negligible is given.

  15. The Characteristics of Ice Cloud Properties in China Derived from DARDAR data

    NASA Astrophysics Data System (ADS)

    Lin, T.; Zheng, Y.

    2017-12-01

    Ice clouds play an important role in modulating the Earth radiation budget and global hydrological cycle.Thus,study the properties of ice clouds has the vital significance on the interaction between the atmospheric models,cloud,radiation and climate .The world has explore the combination of two or several kinds of sensor data to solve the complementary strengths and error reduction to improve accuracy of ice cloud at the present , but for China ,has be lack of research on combination sensor data to analysis properties of ice cloud.To reach a wider range of ice cloud, a combination of the CloudSat radar and the CALIPSO lidar is used to derive ice cloud properties. These products include the radar/lidar product (DARDAR) developed at the University of Reading.The China probability distribution of ice cloud occurrence frequency, ice water path, ice water content and ice cloud effective radius were presented based on DARDAR data from 2012 to 2016,the distribution and vertical sturctures was discussed.The results indicate that the ice cloud occurrence frequency distribution takes on ascend trend in the last 4 years and has obvious seasonal variation, the high concentration area in the northeastern part of the Tibetan Plateau,ice cloud occurrence frequency is relatively high in northwest area.the increased of ice cloud occurrence frequency play an integral role of the climate warming in these four years; the general trend for the ice water path is southeast area bigger than northwest area, in winter the IWP is the smallest, biggest in summer; the IWC is the biggest in summer, and the vertical height distribution higher than other seasons; ice cloud effective radius and ice water content had similar trend..There were slight declines in ice cloud effective radius with increase height of China,in the summer ice effective radius is generally larger.The ice cloud impact Earth radiation via their albedo an greenhouse effects, that is, cooling the Earth by reflecting solar incident radiation and at the same time.Thus,thorough research of the characteristics of ice cloud properties can explain the complicated relationship between ice cloud and global warming,and this kind of data analysis can comprehend the climate effect of mainland China .

  16. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    PubMed

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  17. Sensitivity of thermal inertia calculations to variations in environmental factors. [in mapping of Earth's surface by remote sensing

    NASA Technical Reports Server (NTRS)

    Kahle, A. B.; Alley, R. E.; Schieldge, J. P.

    1984-01-01

    The sensitivity of thermal inertia (TI) calculations to errors in the measurement or parameterization of a number of environmental factors is considered here. The factors include effects of radiative transfer in the atmosphere, surface albedo and emissivity, variations in surface turbulent heat flux density, cloud cover, vegetative cover, and topography. The error analysis is based upon data from the Heat Capacity Mapping Mission (HCMM) satellite for July 1978 at three separate test sites in the deserts of the western United States. Results show that typical errors in atmospheric radiative transfer, cloud cover, and vegetative cover can individually cause root-mean-square (RMS) errors of about 10 percent (with atmospheric effects sometimes as large as 30-40 percent) in HCMM-derived thermal inertia images of 20,000-200,000 pixels.

  18. The role of clouds in early Pliocene warmth

    NASA Astrophysics Data System (ADS)

    Burls, N.; Fedorov, A. V.

    2013-12-01

    The climate of the early Pliocene (4-5 million years ago) presents a challenging puzzle to climate scientists - although the Earth experienced atmospheric CO2 concentrations similar to the elevated levels seen today, many climate characteristics in both low to high latitudes were very different. In particular, a salient feature of the modern climate, the pronounced cold tongues on the eastern sides of the Pacific and Atlantic equatorial basins, were much weaker. At the same time the ocean meridional (equator-to-pole) temperature gradient was also reduced. However, state-of-the-art coupled general circulation models forced with elevated CO2 concentrations and reconstructed Pliocene boundary conditions fail to capture the full extent of warming in the equatorial cold tongues and high-latitude regions relative to present-day conditions, and hence the corresponding reduction in meridional and zonal sea surface temperature gradients suggested by paleoclimatic evidence (as reviewed by Fedorov et al., 2013, Nature 496). A number of physical processes unresolved or underestimated by these models have been proposed as a contributing factor or a potential driving force resulting in these differences. Amongst the proposed hypotheses is the idea that different cloud properties might be the key to the Pliocene puzzle. In this study we demonstrate how a modified spatial distribution in cloud albedo could have been responsible for sustaining Pliocene climate. In particular, we show that a reduction in the meridional gradient in cloud albedo can sustain reduced meridional and zonal gradients in sea surface temperature, an expanded warm pool in the ocean, weaker Hadley and Walker circulations in the atmosphere, and amplified high-latitude warming. Having conducted a range of modified cloud albedo experiments, we arrive at our Pliocene simulation, which shows an excellent agreement with proxy sea surface temperature data from the major equatorial and coastal upwelling regions, the tropical warm pool, and the mid- and high- latitudes. A good agreement is also achieved with available subsurface temperature data. Within this simulated early Pliocene state, we explore the major climatic features such as ENSO and the Atlantic meridional overturning circulation (AMOC).

  19. Raman Scattering by Molecular Hydrogen and Nitrogen in Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Oklopčić, Antonija; Hirata, Christopher M.; Heng, Kevin

    2016-11-01

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process—Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected light causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H2 or N2, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres.

  20. VizieR Online Data Catalog: Raman scattering cross sections for H2 (Oklopcic+,

    NASA Astrophysics Data System (ADS)

    Oklopcic, A.; Hirata, C. M.; Heng, K.

    2017-02-01

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process-Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected light causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H2 or N2, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres. (1 data file).

  1. RAMAN SCATTERING BY MOLECULAR HYDROGEN AND NITROGEN IN EXOPLANETARY ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oklopčić, Antonija; Hirata, Christopher M.; Heng, Kevin, E-mail: oklopcic@astro.caltech.edu

    2016-11-20

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process—Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected lightmore » causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H{sub 2} or N{sub 2}, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres.« less

  2. Reduction of tropical cloudiness by soot

    PubMed

    Ackerman; Toon; Stevens; Heymsfield; Ramanathan; Welton

    2000-05-12

    Measurements and models show that enhanced aerosol concentrations can augment cloud albedo not only by increasing total droplet cross-sectional area, but also by reducing precipitation and thereby increasing cloud water content and cloud coverage. Aerosol pollution is expected to exert a net cooling influence on the global climate through these conventional mechanisms. Here, we demonstrate an opposite mechanism through which aerosols can reduce cloud cover and thus significantly offset aerosol-induced radiative cooling at the top of the atmosphere on a regional scale. In model simulations, the daytime clearing of trade cumulus is hastened and intensified by solar heating in dark haze (as found over much of the northern Indian Ocean during the northeast monsoon).

  3. Ultra-clean Layers (UCLs) and Low Albedo Clouds ("gray clouds") in the Marine Boundary Layer - CSET aircraft data, 2-D bin spectral cloud parcel model, large eddy simulation and satellite observations from CALIPSO, MODIS and COSMIC

    NASA Astrophysics Data System (ADS)

    O, K. T.; Wood, R.; Bretherton, C. S.; Eastman, R. M.; Tseng, H. H.

    2016-12-01

    During the 2015 Cloud System Evolution in the Trades (CSET) field program (CSET, Jul-Aug 2015, subtropical NE Pacific), the NSF/NCAR G-V aircraft frequently encountered ultra clean layers (hereafter UCLs) with extremely low accumulation mode aerosol (i.e. diameter da> 100nm) concentration (hereafter Na), and low albedo ( 0.2) warm clouds (termed "gray clouds" in our study) with low droplet concentration (hereafter Nd). The analysis of CSET aircraft data shows that (1) UCLs and gray clouds are mostly commonly found at a height of 1.5-2km, typically close to the top of the MBL, (2) UCLs and gray cloud coverage as high as 40-60% between 135W and 155W (i.e. Sc-Cu transition region) but occur very infrequently east of 130W (i.e. shallow, near-coastal stratocumulus region), and (3) UCLs and gray clouds exhibit remarkably low turbulence compared with non-UCL clear sky and clouds. It should be noted that most previous aircraft sampling of low clouds occurred close to the Californian coast, so the prevalence of UCLs and gray clouds has not been previously noted. Based on the analysis of aircraft data, we hypothesize that gray clouds result from detrainment of cloud close to the top of precipitating trade cumuli, and UCLs are remnants of these layers when gray clouds evaporates. The simulations in our study are performed using 2-D bin spectral cloud parcel model and version 6.9 of the System for Atmospheric Modeling (SAM). Our idealized simulations suggest that collision-coalescence plays a crucial role in reducing Nd such that gray clouds can easily form via collision-coalescence in layers detrained from the cloud top at trade cumulus regime, but can not form at stratocumulus regime. Upon evaporation of gray clouds, only few accumulation mode aerosols are returned to the clear sky, leaving horizontally-extensive UCLs (i.e. clean clear sky). Analysis of CSET flight data and idealized model simulations both suggest cloud top/PBL height may play an important role in the formation of UCLs and gray clouds. In our satellite observation study, the comparison between PBL height (from COSMIC and MODIS) and fraction of low optical depth cloud (from MODIS and CALIPSO) at NEP trade cumulus regime (20-35N, 140-155W) also suggest a strong positive correlation.

  4. A Solar Reflectance Method for Retrieving Cloud Optical Thickness and Droplet Size Over Snow and Ice Surfaces

    NASA Technical Reports Server (NTRS)

    Platnick, S.; Li, J. Y.; King, M. D.; Gerber, H.; Hobbs, P. V.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements are traditionally implemented using a combination of spectral channels that are absorbing and non-absorbing for water particles. Reflectances in non-absorbing channels (e.g., 0.67, 0.86, 1.2 micron spectral window bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2. 1, and 3.7 micron window bands) provide cloud particle size information. Cloud retrievals over ice and snow surfaces present serious difficulties. At the shorter wavelengths, ice is bright and highly variable, both characteristics acting to significantly increase cloud retrieval uncertainty. In contrast, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. A modification to the traditional cloud retrieval technique is devised. The new algorithm uses only a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 from May - June 1998 during the Arctic FIRE-ACE field deployment. Data from several coordinated ER-2 and University of Washington CV-580 in situ aircraft observations of liquid water stratus clouds are examined. MAS retrievals of optical thickness, droplet effective radius, and liquid water path are shown to be in good agreement with the in situ measurements. The initial success of the technique has implications for future operational satellite cloud retrieval algorithms in polar and wintertime regions.

  5. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saide, Pablo; Spak, S. N.; Carmichael, Gregory

    2012-03-30

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.« less

  6. Atmospheric Correction at AERONET Locations: A New Science and Validation Data Set

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei; Privette, Jeffery L.; Morisette, Jeffery T.; Holben, Brent

    2008-01-01

    This paper describes an AERONET-based Surface Reflectance Validation Network (ASRVN) and its dataset of spectral surface bidirectional reflectance and albedo based on MODIS TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50x50 square kilometer subsets of MODIS L1B data from MODAPS and AERONET aerosol and water vapor information. Then it performs an accurate atmospheric correction for about 100 AERONET sites based on accurate radiative transfer theory with high quality control of the input data. The ASRVN processing software consists of L1B data gridding algorithm, a new cloud mask algorithm based on a time series analysis, and an atmospheric correction algorithm. The atmospheric correction is achieved by fitting the MODIS top of atmosphere measurements, accumulated for 16-day interval, with theoretical reflectance parameterized in terms of coefficients of the LSRT BRF model. The ASRVN takes several steps to ensure high quality of results: 1) cloud mask algorithm filters opaque clouds; 2) an aerosol filter has been developed to filter residual semi-transparent and sub-pixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing requirement of consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of seasonal back-up spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixels. The ASRVN products include three parameters of LSRT model (k(sup L), k(sup G), k(sup V)), surface albedo, NBRF (a normalized BRF computed for a standard viewing geometry, VZA=0 deg., SZA=45 deg.), and IBRF (instantaneous, or one angle, BRF value derived from the last day of MODIS measurement for specific viewing geometry) for MODIS 500m bands 1-7. The results are produced daily at resolution of 1 km in gridded format. We also provide cloud mask, quality flag and a browse bitmap image. The new dataset can be used for a wide range of applications including validation analysis and science research.

  7. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J.

    1989-01-01

    The objectives are to develop a suitable validation data set for evaluating the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud retrieval in polar regions, to identify limitations of current procedures and to explore potential means to remedy them using textural classifiers, and to compare synoptic cloud data from model runs with observations. Toward the first goal, a polar data set consisting of visible, thermal, and passive microwave data was developed. The AVHRR and SMMR data were digitally merged to a polar stereographic projection with an effective pixel size of 5 sq km. With this data set, two unconventional methods of classifying the imagery for the analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another based on a trained neural network. An algorithm for cloud detection was developed from an early test version of the ISCCP algorithm. This algorithm includes the identification of surface types with passive microwave, then temporal tests at each pixel location in the cloud detection phase. Cloud maps and clear sky radiance composites for 5 day periods are produced. Algorithm testing and validation was done with both actural AVHRR/SMMR data, and simulated imagery. From this point in the algorithm, groups of cloud pixels are examined for their spectral and textural characteristics, and a procedure is developed for the analysis of cloud patterns utilizing albedo, IR temperature, and texture. In a completion of earlier work, empirical analyses of arctic cloud cover were explored through manual interpretations of DMSP imagery and compared to U.S. Air Force 3D-nephanalysis. Comparisons of observed cloudiness from existing climatologies to patterns computed by the GISS climate model were also made.

  8. A Comparison of Cloud Microphysical and Optical Properties during TOGA-COARE

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Pueschel, R. F.; Pilewskie, P.; Valero, F. P. J.; Gore, Warren J. (Technical Monitor)

    1996-01-01

    The impact of cirrus clouds on climate is an issue of research interest currently. Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the cloud shortwave albedo and infrared reflectance and absorptance. These in turn are determined by the size distribution, phase, and composition of particles in the clouds. The TOGA-COARE campaign presented an excellent opportunity to study cirrus clouds and their influence on climate. In this campaign, a microphysics instrument package was flown aboard the DC-8 aircraft at medium altitudes in cirrus clouds. This package included a 2D Greyscale Cloud Particle Probe, a Forward Scattering Spectrometer Aerosol Probe, and an ice crystal replicator. At the same time the ER-2 equipped with a radiation measurement system flew coordinated flight tracks above the DC-8 at very high altitude. The radiation measurement made were short and long wave fluxes, as well as narrowband fluxes, both upwelling and downwelling. In addition LIDAR data is available. The existence of these data sets allows for a the comparison of radiation measurement with microphysical measurements. For example, the optical depth and effective radius retrieved from the ER-2 radiation measurements can be compared to the microphysical data. Conversely, the optical properties and fluxes produced by the clouds can be calculated from the microphysical measurements and compared to those measured aboard the ER-2. The assumptions required to make these comparisons are discussed. Typical microphysical results show a prevalence of micron-sized particles, in addition to the cloud particles that exceed 100 mm. The large number of small particles or "haze" cause the effective cloud radii to shift to smaller sizes, leading to changes in optical parameters.

  9. MISR Science Data Validation Plan Summary Charts

    NASA Technical Reports Server (NTRS)

    Conel, J.; Ledeboer, W.; Ackerman, T.; Marchand, R.; Clothiaux, E.

    2000-01-01

    The purpose of the MISR experiment is to acquire systematic multi-angle imagery for global monitoring over a multi-year period of top-of-atmosphere and surface albedos and to measure the shortwave radiative properties of aerosols, clouds, and surface scenes.

  10. Clouds over the summertime Sahara: an evaluation of Met Office retrievals from Meteosat Second Generation using airborne remote sensing

    NASA Astrophysics Data System (ADS)

    Kealy, John C.; Marenco, Franco; Marsham, John H.; Garcia-Carreras, Luis; Francis, Pete N.; Cooke, Michael C.; Hocking, James

    2017-05-01

    Novel methods of cloud detection are applied to airborne remote sensing observations from the unique Fennec aircraft dataset, to evaluate the Met Office-derived products on cloud properties over the Sahara based on the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) satellite. Two cloud mask configurations are considered, as well as the retrievals of cloud-top height (CTH), and these products are compared to airborne cloud remote sensing products acquired during the Fennec campaign in June 2011 and June 2012. Most detected clouds (67 % of the total) have a horizontal extent that is smaller than a SEVIRI pixel (3 km × 3 km). We show that, when partially cloud-contaminated pixels are included, a match between the SEVIRI and aircraft datasets is found in 80 ± 8 % of the pixels. Moreover, under clear skies the datasets are shown to agree for more than 90 % of the pixels. The mean cloud field, derived from the satellite cloud mask acquired during the Fennec flights, shows that areas of high surface albedo and orography are preferred sites for Saharan cloud cover, consistent with published theories. Cloud-top height retrievals however show large discrepancies over the region, which are ascribed to limiting factors such as the cloud horizontal extent, the derived effective cloud amount, and the absorption by mineral dust. The results of the CTH analysis presented here may also have further-reaching implications for the techniques employed by other satellite applications facilities across the world.

  11. Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which cutails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, climate models, and global change research projects. An ecosystem-dependent temporal interpolation technique is described that has been developed to fill missing or seasonally snow-covered data in the official MOD43B3 albedo product. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data. The resulting snow-free value-added products provide the scientific community with spatially and temporally complete global white- and black-sky surface albedo maps and statistics. These products are stored on 1'(approximately 10 km) and coarser resolution equal-angle grids, and are computed for the first seven MODIS wavelengths, ranging from 0.47 through 2.1 microns, and for three broadband wavelengths, 0.3-0.7,0.3-5.0 and 0.7-5.0 microns.

  12. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David R.; McCubbin, Ian; Gao, Bo Cai

    Shortwave Infrared imaging spectroscopy enables accurate remote mapping of cloud thermodynamic phase at high spatial resolution. We describe a measurement strategy to exploit signatures of liquid and ice absorption in cloud top apparent reflectance spectra from 1.4 to 1.8 μm. This signal is generally insensitive to confounding factors such as solar angles, view angles, and surface albedo. We first evaluate the approach in simulation and then apply it to airborne data acquired in the Calwater-2/ACAPEX campaign of Winter 2015. Here NASA’s “Classic” Airborne Visible Infrared Imaging Spectrometer (AVIRIS-C) remotely observed diverse cloud formations while the U.S. Department of Energy ARMmore » Aerial Facility G-1 aircraft measured cloud integral and microphysical properties in situ. Finally, the coincident measurements demonstrate good separation of the thermodynamic phases for relatively homogeneous clouds.« less

  13. Strong impacts on aerosol indirect effects from historical oxidant changes

    NASA Astrophysics Data System (ADS)

    Hafsahl Karset, Inger Helene; Koren Berntsen, Terje; Storelvmo, Trude; Alterskjær, Kari; Grini, Alf; Olivié, Dirk; Kirkevåg, Alf; Seland, Øyvind; Iversen, Trond; Schulz, Michael

    2018-06-01

    Uncertainties in effective radiative forcings through aerosol-cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from -1.32 to -1.07 W m-2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3). The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.

  14. Atmospheric Polarization Imaging with Variable Aerosols, Clouds, and Surface Albedo

    DTIC Science & Technology

    2013-07-01

    but partly supported by AFOSR polarization funds); 6. Mr. Gavin Lommatsch – undergraduate student developing NIR polarimetry ; 7. Ms. Elizabeth...grant: 1. J. S. Tyo, D. B. Chenault, J. A. Shaw, D. H. Goldstein, “Techniques in Imaging Polarimetry ,” Chapter 18 in D. H. Goldstein, Polarized Light...A. Barta, J. Gal, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly skies and its use for polarimetric cloud detection

  15. Description of Mixed-Phase Clouds in Weather Forecast and Climate Models

    DTIC Science & Technology

    2014-09-30

    deficits, leading to freeze-up of both sea ice and the ocean surface. The surface albedo and processes impacting the energy content of the upper ocean...appear key to producing a temporal difference be- tween the freeze-up of the sea - ice surface and adjacent open water. While synoptic conditions, atmos...Leck, 2013: Cloud and boundary layer interactions over the Arctic sea - ice in late summer, Atmos. Chem. Phys. Discuss., 13, 13191-13244, doi

  16. Local Interactions of Hydrometeors by Diffusion in Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Baumgartner, Manuel; Spichtinger, Peter

    2017-04-01

    Mixed-phase clouds, containing both ice particles and liquid droplets, are important for the Earth-Atmosphere system. They modulate the radiation budget by a combination of albedo effect and greenhouse effect. In contrast to liquid water clouds, the radiative impact of clouds containing ice particles is still uncertain. Scattering and absorption highly depends in microphysical properties of ice crystals, e.g. size and shape. In addition, most precipitation on Earth forms via the ice phase. Thus, better understanding of ice processes as well as their representation in models is required. A key process for determining shape and size of ice crystals is diffusional growth. Diffusion processes in mixed-phase clouds are highly uncertain; in addition they are usually highly simplified in cloud models, especially in bulk microphysics parameterizations. The direct interaction between cloud droplets and ice particles, due to spatial inhomogeneities, is ignored; the particles can only interact via their environmental conditions. Local effects as supply of supersaturation due to clusters of droplets around ice particles are usually not represented, although they form the physical basis of the Wegener-Bergeron-Findeisen process. We present direct numerical simulations of the interaction of single ice particles and droplets, especially their local competition for the available water vapor. In addition, we show an approach to parameterize local interactions by diffusion. The suggested parameterization uses local steady-state solutions of the diffusion equations for water vapor for an ice particle as well as a droplet. The individual solutions are coupled together to obtain the desired interaction. We show some results of the scheme as implemented in a parcel model.

  17. Application of the CERES Flux-by-Cloud Type Simulator to GCM Output

    NASA Technical Reports Server (NTRS)

    Eitzen, Zachary; Su, Wenying; Xu, Kuan-Man; Loeb, Norman G.; Sun, Moguo; Doelling, David R.; Bodas-Salcedo, Alejandro

    2016-01-01

    The CERES Flux By CloudType data product produces CERES top-of-atmosphere (TOA) fluxes by region and cloud type. Here, the cloud types are defined by cloud optical depth (t) and cloud top pressure (pc), with bins similar to those used by ISCCP (International Satellite Cloud Climatology Project). This data product has the potential to be a powerful tool for the evaluation of the clouds produced by climate models by helping to identify which physical parameterizations have problems (e.g., boundary-layer parameterizations, convective clouds, processes that affect surface albedo). Also, when the flux-by-cloud type and frequency of cloud types are simultaneously used to evaluate a model, the results can determine whether an unrealistically large or small occurrence of a given cloud type has an important radiative impact for a given region. A simulator of the flux-by-cloud type product has been applied to three-hourly data from the year 2008 from the UK Met Office HadGEM2-A model using the Langley Fu-Lour radiative transfer model to obtain TOA SW and LW fluxes.

  18. Areal-averaged and Spectrally-resolved Surface Albedo from Ground-based Transmission Data Alone: Toward an Operational Retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassianov, Evgueni I.; Barnard, James C.; Flynn, Connor J.

    We present here a simple retrieval of the areal-averaged and spectrally resolved surface albedo using only ground-based measurements of atmospheric transmission under fully overcast conditions. Our retrieval is based on a one-line equation and widely accepted assumptions regarding the weak spectral dependence of cloud optical properties in the visible and near-infrared spectral range. The feasibility of our approach for the routine determinations of albedo is demonstrated for different landscapes with various degrees of heterogeneity using three sets of measurements:(1) spectrally resolved atmospheric transmission from Multi-Filter Rotating Shadowband Radiometer (MFRSR) at wavelength 415, 500, 615, 673, and 870 nm, (2) tower-basedmore » measurements of local surface albedo at the same wavelengths, and (3) areal-averaged surface albedo at four wavelengths (470, 560, 670 and 860 nm) from collocated and coincident Moderate Resolution Imaging Spectroradiometer (MODIS) observations. These integrated datasets cover both long (2008-2013) and short (April-May, 2010) periods at the ARM Southern Great Plains (SGP) site and the NOAA Table Mountain site, respectively. The calculated root mean square error (RMSE), which is defined here as the root mean squared difference between the MODIS-derived surface albedo and the retrieved area-averaged albedo, is quite small (RMSE≤0.01) and comparable with that obtained previously by other investigators for the shortwave broadband albedo. Good agreement between the tower-based daily averages of surface albedo for the completely overcast and non-overcast conditions is also demonstrated. This agreement suggests that our retrieval originally developed for the overcast conditions likely will work for non-overcast conditions as well.« less

  19. Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data

    NASA Astrophysics Data System (ADS)

    Davaze, Lucas; Rabatel, Antoine; Arnaud, Yves; Sirguey, Pascal; Six, Delphine; Letreguilly, Anne; Dumont, Marie

    2018-01-01

    Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation-area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000-2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.

  20. Light scattering by nonspherical particles: Remote sensing and climatic implications

    NASA Astrophysics Data System (ADS)

    Liou, K. N.; Takano, Y.

    Calculations of the scattering and adsorption properties of ice crystals and aerosols, which are usually nonspherical, require specific methodologies. There is no unique theoretical solution for the scattering by nonspherical particles. Practically, all the numerical solutions for the scattering of nonspherical particles, including the exact wave equation approach, integral equation method, and discrete-dipole approximation, are applicable only to size parameters less than about 20. Thus, these methods are useful for the study of radiation problems involving nonspherical aerosols and small ice crystals in the thermal infrared wavelengths. The geometric optics approximation has been used to evaluate the scattering, absorption and polarization properties of hexagonal ice crystals whose sizes are much larger than the incident wavelength. This approximation is generally valid for hexagonal ice crystals with size parameters larger than about 30. From existing laboratory data and theoretical results, we illustrate that nonspherical particles absorb less and have a smaller asymmetry factor than the equal-projected area/volume spherical counterparts. In particular, we show that hexagonal ice crystals exhibit numerous halo and arc features that cannot be obtained from spherical particles; and that ice crystals scatter more light in the 60° to 140° scattering angle regions than the spherical counterparts. Satellite remote sensing of the optical depth and height of cirrus clouds using visible and IR channels must use appropriate phase functions for ice crystals. Use of an equivalent sphere model would lead to a significant overestimation and underestimation of the cirrus optical depth and height, respectively. Interpretation of the measurements for polarization reflected from sunlight involving cirrus clouds cannot be made without an appropriate ice crystal model. Large deviations exist for the polarization patterns between spheres and hexagonal ice crystals. Interpretation of lidar backscattering and depolarization signals must also utilize the scattering characteristics of hexagonal ice crystals. Equivalent spherical models substantially underestimate the broadband solar albedos of ice crystal clouds because of stronger forward scattering and larger absorption by spherical particles than hexagonal ice crystals. We illustrate that the net cloud radiative forcing at the top of the atmosphere involving most cirrus clouds is positive, implying that the IR greenhouse effect outweighs the solar albedo effect. If the radiative properties of equivalent spheres are used, a significant increase in cloud radiative forcing occurs. Using a one-dimensional cloud and climate model, we further demonstrate that there is sufficient model sensitivity, in terms of temperature increase, to the use of ice crystal models in radiation calculations.

  1. Radiative Forcing and Temperature Response to Changes in Urban Albedos and Associated CO2 Offsets

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor; Levinson, Ronnen

    2009-01-01

    The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the response of the total outgoing (outgoing shortwave+longwave) radiation to urban albedo changes. Globally, the total outgoing radiation increased by 0.5 W/square m and temperature decreased by -0.008 K for an average 0.003 increase in albedo. For the U.S. the total outgoing total radiation increased by 2.3 W/square meter, and temperature decreased by approximately 0.03 K for an average 0.01 increase in albedo. These values are for the boreal summer (Tune-July-August). Based on these forcings, the expected emitted CO2 offset for a plausible 0.25 and 0.15 increase in albedos of roofs and pavements, respectively, for all global urban areas, was found to be approximately 57 Gt CO2 . A more meaningful evaluation of the impacts of urban albedo increases on climate and the expected CO2 offsets would require simulations which better characterizes urban surfaces and represents the full annual cycle.

  2. Evaluation of MODIS and VIIRS Albedo Products Using Ground and Airborne Measurements and Development of Ceos/Wgcv/Lpv Albedo Ecv Protocols

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Roman, M. O.; Schaaf, C.; Sun, Q.; Liu, Y.; Saenz, E. J.; Gatebe, C. K.

    2014-12-01

    Surface albedo, defined as the ratio of the hemispheric reflected solar radiation flux to the incident flux upon the surface, is one of the essential climate variables and quantifies the radiation interaction between the atmosphere and the land surface. An absolute accuracy of 0.02-0.05 for global surface albedo is required by climate models. The MODerate resolution Imaging Spectroradiometer (MODIS) standard BRDF/albedo product makes use of a linear "kernel-driven" RossThick-LiSparse Reciprocal (RTLSR) BRDF model to describe the reflectance anisotropy. The surface albedo is calculated by integrating the BRDF over the above ground hemisphere. While MODIS Terra was launched in Dec 1999 and MODIS Aqua in 2002, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi-NPP satellite was launched more recently on October 28, 2011. Thus a long term record of BRDF, albedo and Nadir BRDF-Adjusted Reflectance (NBAR) products from VIIRS can be generated through MODIS heritage algorithms. Several investigations have evaluated the MODIS albedo products during the growing season, as well as during dormant and snow covered periods. The Land Product Validation (LPV) sub-group of the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. The validation of global surface radiation/albedo products is one of the LPV subgroup activities. In this research, a reference dataset covering various land surface types and vegetation structure is assembled to assess the accuracy of satellite albedo products. This dataset includes in situ data (Baseline Surface Radiation Network (BSRN), FLUXNET and Long Term Ecological Research network (LTER) etc.) and airborne measurements (e.g. Cloud Absorption Radiometer (CAR)). Spatially representative analysis is applied to each site to establish whether the ground measurements can adequately represent moderate spatial resolution remotely sensed albedo products.

  3. Fate of products of degradation processes: consequences for climatic change.

    PubMed

    Slanina, J; ten Brink, H M; Khlystov, A

    1999-03-01

    The end products of atmospheric degradation are not only CO2 and H2O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m-2 and an indirect effect of as large as -5 watt m-2. About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions.

  4. Parsivel Disdrometer Support for MAGIC Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollias, Pavlos; Bartholomew, Mary Jane

    2016-06-01

    In the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s second Mobile Facility (AMF2) was deployed on the Horizon Lines cargo ship Spirit traversing a route between Los Angeles, California and Honolulu, Hawaii for one full year. The transect for this deployment was chosen specifically because it crosses the stratocumulus-to-cumulus transition of the North-East Pacific, a region of great climatic interest and a close approximation to the transect used for several focused model intercomparison efforts. The cloud type and cover along this transect vary from lowmore » marine stratocumulus with high areal coverage near the California coast to isolated shallow cumulus with much lower areal coverage in the trade wind regime near Hawaii. The low marine stratocumulus decks, with their high albedo, exert a major influence on the shortwave radiation budget in the ocean environment, and thus provide an extremely important forcing of Earth’s climate. The trade cumulus clouds play a large role in the global surface evaporation and also in Earth’s albedo. One of the important science drivers of the MAGIC campaign was to measure the properties of clouds and precipitation, specifically cloud type, fractional coverage, base height, physical thickness, liquid water path (LWP), optical depth, and drizzle and precipitation frequency, amount, and extent. Retrievals of cloud and precipitation properties during the MAGIC campaign relied critically on the calibration of the AMF2 radar systems. For MAGIC this included the KAZR and M-WACR, both fixed zenith-pointing systems, and the 1290 MHz beam steerable wind profiler.« less

  5. A new method for assessing surface solar irradiance: Heliosat-4

    NASA Astrophysics Data System (ADS)

    Qu, Z.; Oumbe, A.; Blanc, P.; Lefèvre, M.; Wald, L.; Schroedter-Homscheidt, M.; Gesell, G.

    2012-04-01

    Downwelling shortwave irradiance at surface (SSI) is more and more often assessed by means of satellite-derived estimates of optical properties of the atmosphere. Performances are judged satisfactory for the time being but there is an increasing need for the assessment of the direct and diffuse components of the SSI. MINES ParisTech and the German Aerospace Center (DLR) are currently developing the Heliosat-4 method to assess the SSI and its components in a more accurate way than current practices. This method is composed by two parts: a clear sky module based on the radiative transfer model libRadtran, and a cloud-ground module using two-stream and delta-Eddington approximations for clouds and a database of ground albedo. Advanced products derived from geostationary satellites and recent Earth Observation missions are the inputs of the Heliosat-4 method. Such products are: cloud optical depth, cloud phase, cloud type and cloud coverage from APOLLO of DLR, aerosol optical depth, aerosol type, water vapor in clear-sky, ozone from MACC products (FP7), and ground albedo from MODIS of NASA. In this communication, we briefly present Heliosat-4 and focus on its performances. The results of Heliosat-4 for the period 2004-2010 will be compared to the measurements made in five stations within the Baseline Surface Radiation Network. Extensive statistic analysis as well as case studies are performed in order to better understand Heliosat-4 and have an in-depth view of the performance of Heliosat-4, to understand its advantages comparing to existing methods and to identify its defaults for future improvements. The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement no. 218793 (MACC project) and no. 283576 (MACC-II project).

  6. LANDSAT-D investigations in snow hydrology

    NASA Technical Reports Server (NTRS)

    Dozier, J. (Principal Investigator)

    1984-01-01

    Thematic mapper radiometric characteristics, snow/cloud reflectance, and atmospheric correction are discussed with application to determining the spectral albedo of snow. The geometric characterics of TM and digital elevation data are examined. The geometric transformations and resampling required to coregister these data are discussed.

  7. Daytime Cirrus Cloud Top-of-Atmosphere Radiative Forcing Properties at a Midlatitude Site and their Global Consequence

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Lolli, Simone; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2016-01-01

    One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.070.67 W m(exp -2) in sample-relative terms, which reduces to 0.030.27 W m(exp -2) in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud under sampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth of less than or equal to 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.

  8. In situ observations of Arctic cloud properties across the Beaufort Sea marginal ice zone

    NASA Astrophysics Data System (ADS)

    Corr, C.; Moore, R.; Winstead, E.; Thornhill, K. L., II; Crosbie, E.; Ziemba, L. D.; Beyersdorf, A. J.; Chen, G.; Martin, R.; Shook, M.; Corbett, J.; Smith, W. L., Jr.; Anderson, B. E.

    2016-12-01

    Clouds play an important role in Arctic climate. This is particularly true over the Arctic Ocean where feedbacks between clouds and sea-ice impact the surface radiation budget through modifications of sea-ice extent, ice thickness, cloud base height, and cloud cover. This work summarizes measurements of Arctic cloud properties made aboard the NASA C-130 aircraft over the Beaufort Sea during ARISE (Arctic Radiation - IceBridge Sea&Ice Experiment) in September 2014. The influence of surface-type on cloud properties is also investigated. Specifically, liquid water content (LWC), droplet concentrations, and droplet size distributions are compared for clouds sampled over three distinct regimes in the Beaufort Sea: 1) open water, 2) the marginal ice zone, and 3) sea-ice. Regardless of surface type, nearly all clouds intercepted during ARISE were liquid-phase clouds. However, differences in droplet size distributions and concentrations were evident for the surface types; clouds over the MIZ and sea-ice generally had fewer and larger droplets compared to those over open water. The potential implication these results have for understanding cloud-surface albedo climate feedbacks in Arctic are discussed.

  9. Land Surface Albedo from MERIS Reflectances Using MODIS Directional Factors

    NASA Technical Reports Server (NTRS)

    Schaaf, Crystal L. B.; Gao, Feng; Strahler, Alan H.

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  10. Deriving Albedo from Coupled MERIS and MODIS Surface Products

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Schaaf, Crystal; Jin, Yu-Fang; Lucht, Wolfgang; Strahler, Alan

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  11. Seasonal and Vegetational Variation in Albedo Measured During CERES Ground-Validation Pilot Study

    NASA Technical Reports Server (NTRS)

    Schuster, G. L.; Whitlock, C. H.; Plant, J. V.; Wheeler, R. J.; Moats, C. D.; Larman, K. T.; Ayers, J. K.; Feldl, E. K.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) satellite is scheduled for launch in the Fall of 1997 aboard the Tropical Rainfall Measuring Mission (TRMM). A surface measurement pilot study has been initiated in a 37-km region near Richmond, VA, for comparison with the CERES surface flux retrievals. Two-minute averaged upwelling and downwelling surface fluxes over a mostly deciduous forest have been recorded daily for the past two years, and show a broadband, shortwave daily albedo increase during the summer months. Evidence is presented that indicates vegetational changes in the forest as the overriding mechanism for this change. Upwelling flux measured over the entire region by helicopter-mounted instrumentation has been processed for four solar seasons. Future plans include the installation of four more albedo surface sites over various types of vegetation throughout the region.

  12. FAR-ULTRAVIOLET DUST ALBEDO MEASUREMENTS IN THE UPPER SCORPIUS CLOUD USING THE SPINR SOUNDING ROCKET EXPERIMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, N. K.; Cook, T. A.; Wilton, K. P.

    2009-11-20

    The Spectrograph for Photometric Imaging with Numeric Reconstruction sounding rocket experiment was launched on 2000 August 4 to record far-ultraviolet (912-1450 A) spectral and spatial information for the giant reflection nebula in the Upper Scorpius region. The data were divided into three arbitrary bandpasses (912-1029 A, 1030-1200 A, and 1235-1450 A) for which stellar and nebular flux levels were derived. These flux measurements were used to constrain a radiative transfer model and to determine the dust albedo for the Upper Scorpius region. The resulting albedos were 0.28 +- 0.07 for the 912-1029 A bandpass, 0.33 +- 0.07 for the 1030-1200more » A bandpass, and 0.77 +- 0.13 for the 1235-1450 A bandpass.« less

  13. Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data

    NASA Astrophysics Data System (ADS)

    Bernhard, Germar; Booth, Charles R.; Ehramjian, James C.; Stone, Robert; Dutton, Ellsworth G.

    2007-05-01

    Spectral ultraviolet (UV) and visible irradiance has been measured near Barrow, Alaska (71°N, 157°W), between 1991 and 2005 with a SUV-100 spectroradiometer. The instrument is part of the U.S. National Science Foundation's UV Monitoring Network. Here we present results based on the recently produced "version 2" data release, which supersedes published "version 0" data. Cosine error and wavelength-shift corrections applied to the new version increased biologically effective UV dose rates by 0-10%. Corrected clear-sky measurements of different years are typically consistent to within ±3%. Measurements were complemented with radiative transfer model calculations to retrieve total ozone and surface albedo from measured spectra and for the separation of the different factors influencing UV and visible radiation. A climatology of UV and visible radiation was established, focusing on annual cycles, trends, and the effect of clouds. During several episodes in spring of abnormally low total ozone, the daily UV dose at 305 nm exceeded the climatological mean by up to a factor of 2.6. Typical noontime UV Indices during summer vary between 2 and 4; the highest UV Index measured was 5.0 and occurred when surface albedo was unusually high. Radiation levels in the UV-A and visible exhibit a strong spring-autumn asymmetry. Irradiance at 345 nm peaks on approximately 20 May, 1 month before the solstice. This asymmetry is caused by increased cloudiness in autumn and high albedo in spring, when the snow covered surface enhances downwelling UV irradiance by up to 57%. Clouds reduce UV radiation at 345 nm on average by 4% in March and by more than 40% in August. Aerosols reduce UV by typically 5%, but larger reductions were observed during Arctic haze events. Stratospheric aerosols from the Pinatubo eruption in 1991 enhanced spectral irradiance at 305 nm for large solar zenith angles. The year-to-year variations of spectral irradiance at 305 nm and of the UV Index are mostly caused by variations in total ozone and cloudiness. Changes in surface albedo that may occur in the future can have a marked impact on UV levels between May and July. No statistically significant trends in monthly mean noontime irradiance were found.

  14. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and atmospheric heating.

  15. Why Cold-Wet Makes One Feel Chilled: A Literature Review

    DTIC Science & Technology

    1988-06-01

    froid et mouill6. On examine aussi l’effet de la radiation solaire , l’interaction entre la peau at l’humidit6, entre la peau et la temp~rature de mgme...directions, including back out into space. Aerosols of water in clouds reflect incident solar energy . The upper surface of a stratus cloud cover can reflect...earth than under clear conditions. Albedo, the fraction of the incident energy which is reflected by a surface, varies considerably with the terrain

  16. Satellite-based Assessment of Global Warm Cloud Properties Associated with Aerosols, Atmospheric Stability, and Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Masunaga, Hirohiko; Kreidenweis, Sonia M.; Pielke, Roger A., Sr.; Tao, Wei-Kuo; Chin, Mian; Kaufman, Yoram J.

    2006-01-01

    This study examines variability in marine low cloud properties derived from semi-global observations by the Tropical Rainfall Measuring Mission (TRMM) satellite, as linked to the aerosol index (AI) and lower-tropospheric stability (LTS). AI is derived from the Moderate Resolution Imaging Spectroradiometer (Terra MODIS) sensor and the Goddard Chemistry Aerosol Radiation and Transportation (GOCART) model, and is used to represent column-integrated aerosol concentrations. LTS is derived from the NCEP/NCAR reanalysis, and represents the background thermodynamic environment in which the clouds form. Global statistics reveal that cloud droplet size tends to be smallest in polluted (high-AI) and strong inversion (high-LTS) environments. Statistical quantification shows that cloud droplet size is better correlated with AI than it is with LTS. Simultaneously, the cloud liquid water path (CLWP) tends to decrease as AI increases. This correlation does not support the hypothesis or assumption that constant or increased CLWP is associated with high aerosol concentrations. Global variability in corrected cloud albedo (CCA), the product of cloud optical depth and cloud fraction, is very well explained by LTS, while both AI and LTS are needed to explain local variability in CCA. Most of the local correlations between AI and cloud properties are similar to the results from the global statistics, while weak anomalous aerosol-cloud correlations appear locally in the regions where simultaneous high (low) AI and low (high) LTS compensate each other. Daytime diurnal cycles explain additional variability in cloud properties. CCA has the largest diurnal cycle in high-LTS regions. Cloud droplet size and CLWP have weak diurnal cycles that differ between clean and polluted environments. The combined results suggest that investigations of marine low cloud radiative forcing and its relationship to hypothesized aerosol indirect effects must consider the combined effects of aerosols, thermodynamics, and the diurnal cycle.

  17. Clouds, surface temperature, and the tropical and subtropical radiation budget

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1980-01-01

    Solar energy drives both the Earth's climate and biosphere, but the absorbed energy is unevenly distributed over the Earth. The tropical regions receive excess energy which is then transported by atmospheric and ocean currents to the higher latitudes. All regions at a given latitude receive the same top of the atmosphere solar irradiance (insolation). However, the net radiation received from the Sun in the tropics and subtropics varies greatly from one region to another depending on local conditions. Over land, variations in surface albedo are important. Over both land and ocean, surface temperature, cloud amount, and cloud type are also important. The Nimbus-7 cloud and Earth radiation budget (ERB) data sets are used to examine the affect of these parameters.

  18. Top-of-Atmosphere Albedo Estimation from POLDER Multi-Angle Measurements: Evaluation of Water and Ice Cloud Radiative Transfer Models

    NASA Technical Reports Server (NTRS)

    Loeb, Norman G.

    2005-01-01

    This final grant report lists accomplishments from the reporting period, and includes citations and abstracts for published or submitted papers produced under the grant in which a co-investigator is the lead author.

  19. Changes in cloud properties over East Asia deduced from the CLARA-A2 satellite data record

    NASA Astrophysics Data System (ADS)

    Benas, Nikos; Fokke Meirink, Jan; Hollmann, Rainer; Karlsson, Karl-Göran; Stengel, Martin

    2017-04-01

    Studies on cloud properties and processes, and their role in the Earth's changing climate, have advanced during the past decades. A significant part of this advance was enabled by satellite measurements, which offer global and continuous monitoring. Lately, a new satellite-based cloud data record was released: the CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data - second edition (CLARA-A2) includes high resolution cloud macro- and micro-physical properties derived from the AVHRR instruments on board NOAA and MetOp polar orbiters. Based on this data record, an analysis of cloud property changes over East Asia during the 12-year period 2004-2015 was performed. Significant changes were found in both optical and geometric cloud properties, including increases in cloud liquid water path and top height. The Cloud Droplet Number Concentration (CDNC) was specifically studied in order to gain further insight into possible connections between aerosol and cloud processes. To this end, aerosol and cloud observations from MODIS, covering the same area and period, were included in the analysis.

  20. Pattern recognition analysis of polar clouds during summer and winter

    NASA Technical Reports Server (NTRS)

    Ebert, Elizabeth E.

    1992-01-01

    A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.

  1. ARM Evaluation Product : Droplet Number Concentration Value-Added Product

    DOE Data Explorer

    Riihimaki, Laura

    2014-05-15

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration, Nd, will increase and droplet size decrease, for a given liquid water path (Twomey 1977), which will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation. However, the magnitude and variability of these processes under different environmental conditions is still uncertain. McComiskey et al. (2009) have implemented a method, based on Boers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloud interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions.

  2. Spatially Complete Global Spectral Surface Albedos: Value-Added Datasets Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng

    2004-01-01

    Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.

  3. The Plane-parallel Albedo Bias of Liquid Clouds from MODIS Observations

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cahalan, Robert F.; Platnick, Steven

    2007-01-01

    In our most advanced modeling tools for climate change prediction, namely General Circulation Models (GCMs), the schemes used to calculate the budget of solar and thermal radiation commonly assume that clouds are horizontally homogeneous at scales as large as a few hundred kilometers. However, this assumption, used for convenience, computational speed, and lack of knowledge on cloud small scale variability, leads to erroneous estimates of the radiation budget. This paper provides a global picture of the solar radiation errors at scales of approximately 100 km due to warm (liquid phase) clouds only. To achieve this, we use cloud retrievals from the instrument MODIS on the Terra and Aqua satellites, along with atmospheric and surface information, as input into a GCM-style radiative transfer algorithm. Since the MODIS product contains information on cloud variability below 100 km we can run the radiation algorithm both for the variable and the (assumed) homogeneous clouds. The difference between these calculations for reflected or transmitted solar radiation constitutes the bias that GCMs would commit if they were able to perfectly predict the properties of warm clouds, but then assumed they were homogeneous for radiation calculations. We find that the global average of this bias is approx.2-3 times larger in terms of energy than the additional amount of thermal energy that would be trapped if we were to double carbon dioxide from current concentrations. We should therefore make a greater effort to predict horizontal cloud variability in GCMs and account for its effects in radiation calculations.

  4. REFLECTED LIGHT CURVES, SPHERICAL AND BOND ALBEDOS OF JUPITER- AND SATURN-LIKE EXOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyudina, Ulyana; Kopparla, Pushkar; Ingersoll, Andrew P.

    Reflected light curves observed for exoplanets indicate that a few of them host bright clouds. We estimate how the light curve and total stellar heating of a planet depends on forward and backward scattering in the clouds based on Pioneer and Cassini spacecraft images of Jupiter and Saturn. We fit analytical functions to the local reflected brightnesses of Jupiter and Saturn depending on the planet’s phase. These observations cover broadbands at 0.59–0.72 and 0.39–0.5 μ m, and narrowbands at 0.938 (atmospheric window), 0.889 (CH4 absorption band), and 0.24–0.28 μ m. We simulate the images of the planets with a ray-tracingmore » model, and disk-integrate them to produce the full-orbit light curves. For Jupiter, we also fit the modeled light curves to the observed full-disk brightness. We derive spherical albedos for Jupiter and Saturn, and for planets with Lambertian and Rayleigh-scattering atmospheres. Jupiter-like atmospheres can produce light curves that are a factor of two fainter at half-phase than the Lambertian planet, given the same geometric albedo at transit. The spherical albedo is typically lower than for a Lambertian planet by up to a factor of ∼1.5. The Lambertian assumption will underestimate the absorption of the stellar light and the equilibrium temperature of the planetary atmosphere. We also compare our light curves with the light curves of solid bodies: the moons Enceladus and Callisto. Their strong backscattering peak within a few degrees of opposition (secondary eclipse) can lead to an even stronger underestimate of the stellar heating.« less

  5. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saide P. E.; Springston S.; Spak, S. N.

    2012-03-29

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptualmore » model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.« less

  6. An Algorithm for the Retrieval of Droplet Number Concentration and Geometrical Thickness of Stratiform Marine Boundary Layer Clouds Applied to MODIS Radiometric Observations.

    NASA Astrophysics Data System (ADS)

    Schüller, Lothar; Bennartz, Ralf; Fischer, Jürgen; Brenguier, Jean-Louis

    2005-01-01

    Algorithms are now currently used for the retrieval of cloud optical thickness and droplet effective radius from multispectral radiance measurements. This paper extends their application to the retrieval of cloud droplet number concentration, cloud geometrical thickness, and liquid water path in shallow convective clouds, using an algorithm that was previously tested with airborne measurements of cloud radiances and validated against in situ measurements of the same clouds. The retrieval is based on a stratified cloud model of liquid water content and droplet spectrum. Radiance measurements in visible and near-infrared channels of the Moderate Resolution Imaging Spectroradiometer (MODIS), which is operated from the NASA platforms Terra and Aqua, are analyzed. Because of uncertainties in the simulation of the continental surface reflectance, the algorithm is presently limited to the monitoring of the microphysical structure of boundary layer clouds over the ocean. Two MODIS scenes of extended cloud fields over the North Atlantic Ocean trade wind region are processed. A transport and dispersion model (the Hybrid Single-Particle Lagrangian Integrated Trajectory Model, HYSPLIT4) is also used to characterize the origin of the air masses and hence their aerosol regimes. One cloud field formed in an air mass that was advected from southern Europe and North Africa. It shows high values of the droplet concentration when compared with the second cloud system, which developed in a more pristine environment. The more pristine case also exhibits a higher geometrical thickness and, thus, liquid water path, which counterbalances the expected cloud albedo increase of the polluted case. Estimates of cloud liquid water path are then compared with retrievals from the Special Sensor Microwave Imager (SSM/I). SSM/I-derived liquid water paths are in good agreement with the MODIS-derived values.

  7. Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds

    DOE PAGES

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; ...

    2017-10-26

    Here, the effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration ( N c) induced by entrained aerosol. The increased N c slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets,more » such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.« less

  8. Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.

    Here, the effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration ( N c) induced by entrained aerosol. The increased N c slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets,more » such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.« less

  9. Impacts of solar-absorbing aerosol layers on the transition of stratocumulus to trade cumulus clouds

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; Wood, Robert; Kollias, Pavlos

    2017-10-01

    The effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration (Nc) induced by entrained aerosol. The increased Nc slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets, such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive shortwave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.

  10. Impacts of Solar-Absorbing Aerosol Layers on the Transition of Stratocumulus to Trade Cumulus Clouds

    NASA Technical Reports Server (NTRS)

    Zhou, Xiaoli; Ackerman, Andrew S.; Fridlind, Ann M.; Wood, Robert; Kollias, Pavlos

    2017-01-01

    The effects of an initially overlying layer of solar-absorbing aerosol on the transition of stratocumulus to trade cumulus clouds are examined using large-eddy simulations. For lightly drizzling cloud the transition is generally hastened, resulting mainly from increased cloud droplet number concentration (Nc) induced by entrained aerosol. The increased Nc slows sedimentation of cloud droplets and shortens their relaxation time for diffusional growth, both of which accelerate entrainment of overlying air and thereby stratocumulus breakup. However, the decrease in albedo from cloud breakup is more than offset by redistributing cloud water over a greater number of droplets, such that the diurnal-average shortwave forcing at the top of the atmosphere is negative. The negative radiative forcing is enhanced by sizable longwave contributions, which result from the greater cloud breakup and a reduced boundary layer height associated with aerosol heating. A perturbation of moisture instead of aerosol aloft leads to a greater liquid water path and a more gradual transition. Adding absorbing aerosol to that atmosphere results in substantial reductions in liquid water path (LWP) and cloud cover that lead to positive short-wave and negative longwave forcings on average canceling each other. Only for heavily drizzling clouds is the breakup delayed, as inhibition of precipitation overcomes cloud water loss from enhanced entrainment. Considering these simulations as an imperfect proxy for biomass burning plumes influencing Namibian stratocumulus, we expect regional indirect plus semi-direct forcings to be substantially negative to negligible at the top of the atmosphere, with its magnitude sensitive to background and perturbation properties.

  11. Improving Subtropical Boundary Layer Cloudiness in the 2011 NCEP GFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fletcher, J. K.; Bretherton, Christopher S.; Xiao, Heng

    2014-09-23

    The current operational version of National Centers for Environmental Prediction (NCEP) Global Forecasting System (GFS) shows significant low cloud bias. These biases also appear in the Coupled Forecast System (CFS), which is developed from the GFS. These low cloud biases degrade seasonal and longer climate forecasts, particularly of short-wave cloud radiative forcing, and affect predicted sea surface temperature. Reducing this bias in the GFS will aid the development of future CFS versions and contributes to NCEP's goal of unified weather and climate modelling. Changes are made to the shallow convection and planetary boundary layer parameterisations to make them more consistentmore » with current knowledge of these processes and to reduce the low cloud bias. These changes are tested in a single-column version of GFS and in global simulations with GFS coupled to a dynamical ocean model. In the single-column model, we focus on changing parameters that set the following: the strength of shallow cumulus lateral entrainment, the conversion of updraught liquid water to precipitation and grid-scale condensate, shallow cumulus cloud top, and the effect of shallow convection in stratocumulus environments. Results show that these changes improve the single-column simulations when compared to large eddy simulations, in particular through decreasing the precipitation efficiency of boundary layer clouds. These changes, combined with a few other model improvements, also reduce boundary layer cloud and albedo biases in global coupled simulations.« less

  12. Radiative Properties of Cirrus Clouds in the Infrared (8-13 microns) Spectral Region

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Gao, Bo-Cai; Baum, Bryan A.; Hu, Yong X.; Wiscombe, Warren J.; Tsay, Si-Chee; Winker, Dave M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Atmospheric radiation in the infrared (IR) 8-13 microns spectral region contains a wealth of information that is very useful for the retrieval of ice cloud properties from aircraft or space-borne measurements. To provide the scattering and absorption properties of nonspherical ice crystals that are fundamental to the IR retrieval implementation, we use the finite-difference time domain (FDTD) method to solve for the extinction efficiency, single-scattering albedo, and the asymmetry parameter of the phase function for ice crystals smaller than 40 microns. For particles larger than this size, the improved geometric optics method (IGOM) can be employed to calculate the asymmetry parameter with an acceptable accuracy, provided that we properly account for the inhomogeneity of the refracted wave due to strong absorption inside the ice particle. A combination of the results computed from the two methods provides the asymmetry parameter for the entire practical range of particle sizes between 1 micron and 10000 microns over wavelengths ranging from 8 microns to 13 microns. For the extinction and absorption efficiency calculations, several methods including the IGOM, Mie solution for equivalent spheres (MSFES), and the anomalous diffraction theory (ADT) can lead to a substantial discontinuity in comparison with the FDTD solutions for particle sizes on the order of 40 microns. To overcome this difficulty, we have developed a novel approach called the stretched scattering potential method (SSPM). For the IR 8-13 microns spectral region, we show that SSPM is a more accurate approximation than ADT, MSFES, and IGOM. The SSPM solution can be further refined numerically. Through a combination of the FDTD and SSPM, we have computed the extinction and absorption efficiency for hexagonal ice crystals with sizes ranging from 1 to 10000 microns at 12 wavelengths between 8 and 13 microns Calculations of the cirrus bulk scattering and absorption properties are performed for 30 size distributions obtained from various field campaigns for midlatitude and tropical cirrus cloud systems. Parameterization of these bulk scattering properties is carried out by using second-order polynomial functions for the extinction efficiency and the single-scattering albedo and the power law expression for the asymmetry parameter. We note that the volume-normalized extinction coefficient can be separated into two parts: one is inversely proportional to effective size and is independent of wavelength, and the other is the wavelength-dependent effective extinction efficiency. Unlike conventional parameterization efforts, the present parameterization scheme is more accurate because only the latter part of the volume-normalized extinction coefficient is approximated in terms of an analytical expression. After averaging over size distribution, the single-scattering albedo is shown to decrease with an increase in effective size for wavelengths shorter than 10.0 microns whereas the opposite behavior is observed for longer wavelengths. The variation of the asymmetry parameter as a function of effective size is substantial when the effective size is smaller than 50 microns. For effective sizes larger than 100 microns, the asymmetry parameter approaches its asymptotic value. The results derived in this study can be useful to remote sensing applications involving IR window bands under cirrus cloud conditions.

  13. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions.

    PubMed

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A; Yang, Fan

    2016-12-13

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics ([Formula: see text]) for high aerosol concentration, and slow microphysics ([Formula: see text]) for low aerosol concentration; here, [Formula: see text] is the phase-relaxation time and [Formula: see text] is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as [Formula: see text], and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation.

  14. Cloud structure of Jupiter’s troposphere from Cassini VIMS

    NASA Astrophysics Data System (ADS)

    Giles, Rohini S.; Fletcher, Leigh N.; Irwin, Patrick G.

    2014-11-01

    Cassini VIMS 4.5-5.1μm thermal emission spectra were used to study the composition and cloud structure of Jupiter’s middle troposphere during the 2000/2001 flyby. The radiance observed varies considerably across the planet (a factor of 50 between the warm North Equatorial Belt and the cool Equatorial Zone) but the spectral shape remains constant, suggesting the presence of a spectrally flat, spatially inhomogeneous cloud deck. Spectra were analysed using the NEMESIS radiative transfer code and retrieval algorithm. Both night- and day-side nadir spectra could be well reproduced using a model with a single, compact, grey cloud deck. For hotter spectra, this grey cloud could be located as deep as 3.0 bar, but the cooler spectra required the cloud deck to be at pressures of 1.2 bar or less. At these pressures, the clouds are expected to be NH4SH or NH3, but the single-scattering albedos of pure ices of NH3 or NH4SH produce spectral features that are incompatible with the VIMS data. These spectral signatures may be masked by complex rimming/coating processes, and/or by the presence of multiple cloud decks. Retrievals show that the cloud optical thickness varies significantly with latitude and longitude. The North Equatorial Belt contains discrete cloud-free “hot-spots” whose radiance is twice as bright as the coolest parts of the belt. The turbulent region in the wake of the Great Red Spot (GRS) has the thickest clouds of the South Equatorial Belt; these begin to thin out on the opposite hemisphere, 180° away from the GRS. The relatively low spectral resolution and model degeneracies mean that no variability could be detected (or ruled out) in the gaseous species (NH3, PH3 and other disequilibrium species). A limb darkening analysis was carried out using the nightside observations. Extreme inhomogeneity within latitude circles meant that simultaneous retrievals at different emission angles were not possible. However, forward modelling was used to show that highly scattering particles are required to produce results consistent with the data. Acceptable fits were obtained using cloud particles with high single-scatter albedos (ω>0.85) and low asymmetry parameters (g<0.75).

  15. Stabilization of Global Temperature and Polar Sea-ice cover via seeding of Maritime Clouds

    NASA Astrophysics Data System (ADS)

    Chen, Jack; Gadian, Alan; Latham, John; Launder, Brian; Neukermans, Armand; Rasch, Phil; Salter, Stephen

    2010-05-01

    The marine cloud albedo enhancement (cloud whitening) geoengineering technique (Latham1990, 2002, Bower et al. 2006, Latham et al. 2008, Salter et al. 2008, Rasch et al. 2009) involves seeding maritime stratocumulus clouds with seawater droplets of size (at creation) around 1 micrometer, causing the droplet number concentration to increase within the clouds, thereby enhancing their albedo and possibly longevity. GCM modeling indicates that (subject to satisfactory resolution of specified scientific and technological problems) the technique could produce a globally averaged negative forcing of up to about -4W/m2, adequate to hold the Earth's average temperature constant as the atmospheric carbon dioxide concentration increases to twice the current value. This idea is being examined using GCM modeling, LES cloud modeling, technological development (practical and theoretical), and analysis of data from the recent, extensive VOCALS field study of marine stratocumulus clouds. We are also formulating plans for a possible limited-area field test of the technique. Recent general circulation model computations using a fully coupled ocean-atmosphere model indicate that increasing cloud reflectivity by seeding maritime boundary layer clouds may compensate for some effects on climate of increasing greenhouse gas concentrations. The chosen seeding strategy (one of many possible scenarios), when employed in an atmosphere where the CO2 concentration is doubled, can restore global averages of temperature, precipitation and polar sea-ice to present day values, but not simultaneously. The response varies nonlinearly with the extent of seeding, and geoengineering generates local changes to important climatic features. Our computations suggest that for the specimen cases examined there is no appreciable reduction of rainfall over land, as a consequence of seeding. This result is in agreement with one separate study but not another. Much further work is required to explain these discrepancies and to address the crucially important issue of adverse ramifications associated with the possible deployment of this geoengineering technique. We envisage, should deployment occur, that wind-driven, unmanned Flettner spray vessels will sail back and forth perpendicular to the local prevailing wind, releasing seawater droplets into the boundary layer beneath marine stratocumulus clouds. In an effort to optimize vessel performance, computations of flow around a Flettner rotor with Thom fences are being conducted. An early result is that that the lift coefficient on the rotating cylinder undergoes very large, slow variations in time, with a frequency an order of magnitude below that of the rotation frequency of the cylinder. The vessels will drag turbines resembling oversized propellers through the water to provide the means for generating electrical energy. Some will be used for rotor spin, but most for the creation of spray droplets. One promising spray production technique involves pumping carefully filtered water through banks of filters and then micro-nozzles with piezoelectric excitation to vary drop diameter. Another involves electro-spraying from Taylor cone-jets. The rotors offer convenient housing for spray nozzles, with fan assistance to help initial dispersion of the droplets. This global cooling technique has the advantages that: (1) the only raw materials required are wind and seawater; (2) the amount of global cooling could be adjusted by switching on or off, by remote control, sea-water droplet generators mounted on the vessels; (3) if necessary, the entire system could be immediately switched off, with conditions returning to normal within a few days; (4) since not all suitable clouds need to be seeded, there exists, in principle, flexibility to choose seeding locations so as to optimise beneficial effects and subdue or eliminate adverse ones. K.Bower, T.W.Choularton, J.Latham, J.Sahraei and S.Salter., 2006. Computational Assessment of a Proposed Technique for Global Warming Mitigation Via Albedo-Enhancement of Marine Stratocumulus Clouds. Atmos. Res. 82, 328-336. Latham, J., 1990: Nature 347. 339-340. Latham, J., 2002, Atmos. Sci. Letters. (doi:10.1006/Asle.2002.0048). Latham, P.J. Rasch, C.C.Chen, L. Kettles, A. Gadian, A. Gettelman, H. Morrison, S. Salter., 2008. Phil. Trans. Roy. Soc. A, 366, 3969-3987,doi:10.1098/rsta.2008.0137. P.J.Rasch, J. Latham & C.C.Chen, 2010. Environ. Res. Lett. 4 045112 (8pp) doi:10.1088/1748-9326/4/4/045112 S. Salter, G. Sortino and J. Latham, 2008. Phil.Trans.Roy. Soc. A, 366, 2989-4006, doi:10.1098/rsta.2008.0136

  16. On the ability of RegCM4 regional climate model to simulate surface solar radiation patterns over Europe: an assessment using satellite-based observations

    NASA Astrophysics Data System (ADS)

    Alexandri, G.; Georgoulias, A. K.; Zanis, P.; Katragkou, E.; Tsikerdekis, A.; Kourtidis, K.; Meleti, C.

    2015-11-01

    In this work, we assess the ability of RegCM4 regional climate model to simulate surface solar radiation (SSR) patterns over Europe. A decadal RegCM4 run (2000-2009) was implemented and evaluated against satellite-based observations from the Satellite Application Facility on Climate Monitoring (CM SAF), showing that the model simulates adequately the SSR patterns over the region. The SSR bias between RegCM4 and CM SAF is +1.5 % for MFG (Meteosat First Generation) and +3.3 % for MSG (Meteosat Second Generation) observations. The relative contribution of parameters that determine the transmission of solar radiation within the atmosphere to the deviation appearing between RegCM4 and CM SAF SSR is also examined. Cloud macrophysical and microphysical properties such as cloud fractional cover (CFC), cloud optical thickness (COT) and cloud effective radius (Re) from RegCM4 are evaluated against data from CM SAF. Generally, RegCM4 underestimates CFC by 24.3 % and Re for liquid/ice clouds by 36.1 %/28.3 % and overestimates COT by 4.3 %. The same procedure is repeated for aerosol optical properties such as aerosol optical depth (AOD), asymmetry factor (ASY) and single-scattering albedo (SSA), as well as other parameters, including surface broadband albedo (ALB) and water vapor amount (WV), using data from MACv1 aerosol climatology, from CERES satellite sensors and from ERA-Interim reanalysis. It is shown here that the good agreement between RegCM4 and satellite-based SSR observations can be partially attributed to counteracting effects among the above mentioned parameters. The potential contribution of each parameter to the RegCM4-CM SAF SSR deviations is estimated with the combined use of the aforementioned data and a~radiative transfer model (SBDART). CFC, COT and AOD are the major determinants of these deviations on a monthly basis; however, the other parameters also play an important role for specific regions and seasons. Overall, for the European domain, CFC, COT and AOD are the most important factors, since their underestimations and overestimations by RegCM4 cause an annual RegCM4-CM SAF SSR absolute deviation of 8.4, 3.8 and 4.5 %, respectively.

  17. Hubble's Role in Studies of Venus' Clouds, Climate and Habitability

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis-Lea; Marcq, Emmanuel; Mills, Franklin; Bertaux, Jean-Loup; Lee, Yeon Joo; Limaye, Sanjay; Roman, Anthony; Yung, Yuk

    2018-06-01

    Venus’ slow rotation fosters thick cloud formation, via long solar days, low Coriolis forces and strong subsolar convection. Thus, Venus and other slow rotators may maintain an Earth-like climate at ~ 2x the stellar flux as rapid rotators – if the cloud albedo is high, buffering climate change (Yang et al. 2014). However, Venus’ dense H2SO4 clouds host an absorbing source that drives solar heating, fostering rather than buffering climate change. As such, the response of an atmosphere to the available stellar flux and its impact on habitability will be quite different for a slow rotator planet with Venus-like vs. Earth-like buffering clouds.2010/2011 HST/STIS observations of Venus have provided data relevant for studying several of the mechanisms that determine Venus’ climate. These observations showed unambiguously that SO2 photolysis is not the sole process balancing the growth and loss of the cloud top SO (and SO2). As the parent species of Venus’ H2SO4 clouds, these results indicated that additional sulfur chemistry must be considered when defining the mechanisms controlling Venus’ H2SO4 formation process (Jessup et al. 2015). The STIS observations also showed decisively that vertical transport of Venus’ key UV absorbers: SO2, SO and the unnamed absorber are sensitive to the underlying surface elevation (Jessup et al. 2018). This implies that observations made over varying terrain types can be used to parameterize a) the energy and momentum released during surface-atmosphere interactions, which is essential for understanding Venus’ slow body and fast cloud rotation; and b) the sensitivity of the vertical profiles of the species having the greatest impact on Venus’ energy balance and climate to the underlying terrain. Cross-calibration of STIS and Venus Express data also enabled definitive identification of a 6 year decline in the cloud albedo resulting in a nearly 40% increase in the solar heating rate, suggesting dramatic climate change unparalleled in the solar system (Lee et al. 2018). Studies of the links between these phenomena, the super-rotation speed and the solar cycle will be revelatory for inter-stellar habitability studies.

  18. Short wavelength abedo, contrasts and micro-organisms on Venus

    NASA Astrophysics Data System (ADS)

    Limaye, Sanjay; Słowik, Grzegorgz; Ansari, Arif; Smith, David; Mogul, Rakesh; Vaishampayan, Parag

    2017-04-01

    The decrease in the amount of sunlight reflected by Venus at wavelengths below 500 nm, and the presence of contrast features prominent at ultraviolet wavelengths (270 - 410 nm) are two properties of the Venus clouds that despite numerous attempts, remain unexplained. Additional uncertainties include why the contrasts exist at all, and why the substance responsible for the contrasts does not appear well mixed. Nearly a century after the ultraviolet contrasts were discovered using Earth-based photographs, the substance or mechanisms responsible for the lower albedo and contrast patterns are still unknown. Many physical and chemical explanations have been proposed, but none of the hypotheses explain decrease of albedo below 500 nm, the spectral dependence of contrasts, and plausible mechanisms for presence or transport of those substances - transport from surface if the absorber is a condensation nuclei or transformations if in dissolved form due to photochemistry and the observed rapid changes in the contrasts. Considering the ultraviolet absorption shown by some terrestrial microorganisms, we speculate whether airborne bacteria (indigenous or introduced through meteoritic impact debris transported from Earth) could explain the mysterious contrast or the absorption cloud features on Venus. Plumes of cloud-borne aeroplankton, analogous to phytoplankton in Earth's oceans which are in dense enough concentrations to be observed from space, may have evolved on Venus when the planet had liquid water on its early surface, eventually migrating to a habitable zone in the clouds 50-70 km above the inhospitably hot surface today.

  19. Effect of satellite formations and imaging modes on global albedo estimation

    NASA Astrophysics Data System (ADS)

    Nag, Sreeja; Gatebe, Charles K.; Miller, David W.; de Weck, Olivier L.

    2016-05-01

    We confirm the applicability of using small satellite formation flight for multi-angular earth observation to retrieve global, narrow band, narrow field-of-view albedo. The value of formation flight is assessed using a coupled systems engineering and science evaluation model, driven by Model Based Systems Engineering and Observing System Simulation Experiments. Albedo errors are calculated against bi-directional reflectance data obtained from NASA airborne campaigns made by the Cloud Absorption Radiometer for the seven major surface types, binned using MODIS' land cover map - water, forest, cropland, grassland, snow, desert and cities. A full tradespace of architectures with three to eight satellites, maintainable orbits and imaging modes (collective payload pointing strategies) are assessed. For an arbitrary 4-sat formation, changing the reference, nadir-pointing satellite dynamically reduces the average albedo error to 0.003, from 0.006 found in the static referencecase. Tracking pre-selected waypoints with all the satellites reduces the average error further to 0.001, allows better polar imaging and continued operations even with a broken formation. An albedo error of 0.001 translates to 1.36 W/m2 or 0.4% in Earth's outgoing radiation error. Estimation errors are found to be independent of the satellites' altitude and inclination, if the nadir-looking is changed dynamically. The formation satellites are restricted to differ in only right ascension of planes and mean anomalies within slotted bounds. Three satellites in some specific formations show average albedo errors of less than 2% with respect to airborne, ground data and seven satellites in any slotted formation outperform the monolithic error of 3.6%. In fact, the maximum possible albedo error, purely based on angular sampling, of 12% for monoliths is outperformed by a five-satellite formation in any slotted arrangement and an eight satellite formation can bring that error down four fold to 3%. More than 70% ground spot overlap between the satellites is possible with 0.5° of pointing accuracy, 2 Km of GPS accuracy and commands uplinked once a day. The formations can be maintained at less than 1 m/s of monthly ΔV per satellite.

  20. Snow Grain Size Retrieval over the Polar Ice Sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) Observations

    PubMed Central

    Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.

    2018-01-01

    Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nm. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (~300 μm) among the three, West Antarctica is the second (~220 μm) and East Antarctica is the smallest (~190 μm). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations. PMID:29636591

  1. Snow Grain Size Retrieval over the Polar Ice Sheets with the Ice, Cloud and Land Elevation Satellite (ICESat) Observations

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Han, Mei; Palm, Stephen P.; Harding, David J.

    2016-01-01

    Snow grain size is an important parameter for cryosphere studies. As a proof of concept, this paper presents an approach to retrieve this parameter over Greenland, East and West Antarctica ice sheets from surface reflectances observed with the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud, and land Elevation Satellite (ICESat) at 1064 nanometers. Spaceborne lidar observations overcome many of the disadvantages in passive remote sensing, including difficulties in cloud screening and low sun angle limitations; hence tend to provide more accurate and stable retrievals. Results from the GLAS L2A campaign, which began on 25 September and lasted until 19 November, 2003, show that the mode of the grain size distribution over Greenland is the largest (approximately 300 microns) among the three, West Antarctica is the second (220 microns) and East Antarctica is the smallest (190 microns). Snow grain sizes are larger over the coastal regions compared to inland the ice sheets. These results are consistent with previous studies. Applying the broadband snow surface albedo parameterization scheme developed by Garder and Sharp (2010) to the retrieved snow grain size, ice sheet surface albedo is also derived. In the future, more accurate retrievals can be achieved with multiple wavelengths lidar observations.

  2. Assessment of cirrus cloud and aerosol radiative effect in South-East Asia by ground-based NASA MPLNET lidar network data and CALIPSO satellite measurements

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Welton, Ellsworth J.; Di Girolamo, Paolo; Fatkhuroyan, Fatkhuroyan; Gu, Yu; Marquis, Jared W.

    2017-10-01

    Aerosol, together with cirrus clouds, play a fundamental role in the earth-atmosphere system radiation budget, especially at tropical latitudes, where the Earth surface coverage by cirrus cloud can easily reach 70%. In this study we evaluate the combined aerosol and cirrus cloud net radiative effects in a wild and barren region like South East Asia. This part of the world is extremely vulnerable to climate change and it is source of important anthropogenic and natural aerosol emissions. The analysis has been carried out by computing cirrus cloud and aerosol net radiative effects through the Fu-Liou-Gu atmospheric radiative transfer model, adequately adapted to input lidar measurements, at surface and top-of-the atmosphere. The aerosol radiative effects were computed respectively using the retrieved lidar extinction from Cloud-Aerosol Lidar with Orthogonal Polarization in 2011 and 2012 and the lidar on-board of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations for the South East Asia Region (27N-12S, 77E-132E) with 5° x 5° spatial resolution. To assess the cirrus cloud radiative effect, we used the ground-based Micro Pulse Lidar Network measurements at Singapore permanent observational site. Results put in evidence that strong aerosol emission areas are related on average to a net surface cooling. On the contrary, cirrus cloud radiative effect shows a net daytime positive warming of the system earth-atmosphere. This effect is weak over the ocean where the albedo is lower and never counter-balances the net cooling produced by aerosols. The net cooling is stronger in 2011, with an associated reduction in precipitations by the four of the five rain-gauges stations deployed in three regions as Sumatra, Kalimantan and Java with respect to 2012. We can speculate that aerosol emissions may be associated with lower rainfall, however some very important phenomena as El Nino Southern Oscillation , Madden-Julian Oscillation, Monsoon and Indian Dipole are not considered in the analysis.

  3. The hemispherical asymmetry of the residual polar caps on Mars

    NASA Technical Reports Server (NTRS)

    Lindner, Bernhard Lee

    1991-01-01

    A model of the polar caps of Mars was created which allows: (1) for light penetration into the cap; (2) ice albedo to vary with age, latitude, hemisphere, dust content, and solar zenith angle; and (3) for diurnal variability. The model includes the radiative effects of clouds and dust, and heat transport as represented by a thermal wind. The model reproduces polar cap regression data very well, including the survival of CO2 frost at the south pole and reproduces the general trend in the Viking Lander pressure data.

  4. Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    NASA Astrophysics Data System (ADS)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens

    2018-03-01

    An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and <0.5 km, respectively. At RSP's footprint scale ( 323 m), mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.

  5. Modelled and measured effects of clouds on UV Aerosol Indices on a local, regional, and global scale

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Wagner, T.

    2011-12-01

    The UV Aerosol Indices (UVAI) form one of very few available tools in satellite remote sensing that provide information on aerosol absorption. The UVAI are also quite insensitive to surface type and are determined in the presence of clouds - situations where most aerosol retrieval algorithms do not work. The UVAI are most sensitive to elevated layers of absorbing aerosols, such as mineral dust and smoke, but they can also be used to study non-absorbing aerosols, such as sulphate and secondary organic aerosols. Although UVAI are determined for cloud-contaminated pixels, clouds do affect the value of UVAI in several ways: (1) they shield the underlying scene (potentially containing aerosols) from view, (2) they enhance the apparent surface albedo of an elevated aerosol layer, and (3) clouds unpolluted by aerosols also yield non-zero UVAI, here referred to as "cloudUVAI". The main purpose of this paper is to demonstrate that clouds can cause significant UVAI and that this cloudUVAI can be well modelled using simple assumptions on cloud properties. To this aim, we modelled cloudUVAI by using measured cloud optical parameters - either with low spatial resolution from SCIAMACHY, or high resolution from MERIS - as input. The modelled cloudUVAI were compared with UVAI determined from SCIAMACHY reflectances on different spatial (local, regional and global) and temporal scales (single measurement, daily means and seasonal means). The general dependencies of UVAI on cloud parameters were quite well reproduced, but several issues remain unclear: compared to the modelled cloudUVAI, measured UVAI show a bias, in particular for large cloud fractions. Also, the spread in measured UVAI is larger than in modelled cloudUVAI. In addition to the original, Lambert Equivalent Reflector (LER)-based UVAI algorithm, we have also investigated the effects of clouds on UVAI determined using the so-called Modified LER (MLER) algorithm (currently applied to TOMS and OMI data). For medium-sized clouds the MLER algorithm performs better (UVAI are closer to 0), but like for LER UVAI, MLER UVAI can become as large as -1.2 for small clouds and deviate significantly from zero for cloud fractions near 1. The effects of clouds should therefore also be taken into account when MLER UVAI data are used. Because the effects of clouds and aerosols on UVAI are not independent, a simple subtraction of modelled cloudUVAI from measured UVAI does not yield a UVAI representative of a cloud-free scene when aerosols are present. We here propose a first, simple approach for the correction of cloud effects on UVAI. The method is shown to work reasonably well for small to medium-sized clouds located above aerosols.

  6. Using albedo to reform wind erosion modelling, mapping and monitoring

    USDA-ARS?s Scientific Manuscript database

    Dust emission models are used to assess the impacts of dust on radiative forcing in the atmosphere, cloud formation, nutrient fertilisation and human health. We describe a need in aeolian research to adequately represent the spatial variability and particularly the area average of the key aerodynami...

  7. Erratum: Correction to: On the relative strength of radiative feedbacks under climate variability and change

    NASA Astrophysics Data System (ADS)

    Colman, Robert; Hanson, Lawson

    2018-06-01

    Two errors were discovered in the calculation of decadal feedbacks under RCP8.5: (i) cloud short wave (SW) and total feedbacks were miscalculated; and (ii) surface albedo and SW water vapour feedbacks were swapped when calculating regressions with climate change feedbacks.

  8. Geological support for the Umbrella Effect as a link between geomagnetic field and climate

    PubMed Central

    Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L.; Sato, Hiroshi

    2017-01-01

    The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect. PMID:28091595

  9. Geological support for the Umbrella Effect as a link between geomagnetic field and climate.

    PubMed

    Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi

    2017-01-16

    The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect.

  10. 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charnay, B.; Meadows, V.; Misra, A.

    2015-11-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4–0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to themore » formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths >3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.« less

  11. VIS and NIR land surface albedo sensitivity of the Ent Terrestrial Biosphere Model to forcing leaf area index

    NASA Astrophysics Data System (ADS)

    Montes, C.; Kiang, N. Y.; Ni-Meister, W.; Yang, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.; Carrer, D.

    2016-12-01

    Land surface albedo is a major controlling factor in vegetation-atmosphere transfers, modifying the components of the energy budget, the ecosystem productivity and patterns of regional and global climate. General Circulation Models (GCMs) are coupled to Dynamic Global Vegetation Models (DGVMs) to solve vegetation albedo by using simple schemes prescribing albedo based on vegetation classification, and approximations of canopy radiation transport for multiple plant functional types (PFTs). In this work, we aim at evaluating the sensitivity of the NASA Ent Terrestrial Biosphere Model (TBM), a demographic DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM, in estimating VIS and NIR surface albedo by using variable forcing leaf area index (LAI). The Ent TBM utilizes a new Global Vegetation Structure Dataset (GVSD) to account for geographically varying vegetation tree heights and densities, as boundary conditions to the gap-probability based Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010). Land surface and vegetation characteristics for the Ent GVSD are obtained from a number of earth observation platforms and algorithms, including the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), and vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three LAI products are used as input to ACTS/Ent TBM: MODIS MOD15A2H product (Yang et al., 2006), Beijing Normal University LAI (Yuan et al., 2011), and Global Data Sets of Vegetation (LAI3g) (Zhu et al. 2013). The sensitivity of the Ent TBM VIS and NIR albedo to the three LAI products is assessed, compared against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes (Matthews, 1984), and against MODIS snow-free black-sky and white-sky albedo estimates. In addition, we test the sensitivity of the Ent/ACTS albedo to different sets of leaf spectral albedos derived from the literature.

  12. Model of the vertical structure of the optical parameters of the Neptune atmosphere.

    NASA Astrophysics Data System (ADS)

    Morozhenko, A. V.

    Analyzes the wavelength dependence of the geometric albedo of Neptune's disk and estimates some parameters of the planet's atmosphere by the method based on the determination of deviations of the vertical structure of the cloud layer from the homogeneity condition. The ratio between the methane and gas scale heights is found to be about 0.4. For the upper atmosphere, components of methane, aerosol, the mean geometric radius of particles, the turbulent mixing coefficient are determined. Two solutions were found for deeper atmospheric layers. The first one suggests a rather dense cloud; in the second solution the lower cloud layer is an extension of the upper aerosol layer.

  13. Assessment and validation of the community radiative transfer model for ice cloud conditions

    NASA Astrophysics Data System (ADS)

    Yi, Bingqi; Yang, Ping; Weng, Fuzhong; Liu, Quanhua

    2014-11-01

    The performance of the Community Radiative Transfer Model (CRTM) under ice cloud conditions is evaluated and improved with the implementation of MODIS collection 6 ice cloud optical property model based on the use of severely roughened solid column aggregates and a modified Gamma particle size distribution. New ice cloud bulk scattering properties (namely, the extinction efficiency, single-scattering albedo, asymmetry factor, and scattering phase function) suitable for application to the CRTM are calculated by using the most up-to-date ice particle optical property library. CRTM-based simulations illustrate reasonable accuracy in comparison with the counterparts derived from a combination of the Discrete Ordinate Radiative Transfer (DISORT) model and the Line-by-line Radiative Transfer Model (LBLRTM). Furthermore, simulations of the top of the atmosphere brightness temperature with CRTM for the Crosstrack Infrared Sounder (CrIS) are carried out to further evaluate the updated CRTM ice cloud optical property look-up table.

  14. Infrared spectroscopy of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Knacke, Roger F.

    1993-01-01

    Infrared spectroscopy provides unique insights into the chemistry and dynamics of the atmospheres of Jupiter, Saturn, and Titan. In 1991 we obtained data at J, H, K, and M and made repeated observations of Titan's albedo as the satellite orbited Saturn. The J albedo is 12% +/- 3% greater than the albedo measured in 1979; the H and K albedos are the same. There was no evidence for variations at any wavelength over the eastern half of Titan's orbit. We also obtained low resolution (R=50) spectra of Titan between 3.1 and 5.1 microns. The spectra contain evidence for CO and CH3D absorptions. Spectra of Callisto and Ganymede in the 4.5 micron spectral region are featureless and give albedos of 0.08 and 0.04 respectively. If Titan's atmosphere is transparent near 5 microns, its surface albedo there is similar to Callisto's. In 1992 and 1993 we obtained further spectroscopic data of Titan with the UKIRT CGS4 spectrometer. We discovered two unexpected and unexplained spectral features in the 3-4 micron spectrum of Titan. An apparent emission feature near the 3 micron (nu sub 3) band of methane indicated temperatures higher than known to be present in Titan's upper stratosphere and may be caused by unexpected non-LTE emission. An absorption feature near 3.47 microns may be caused by absorption in solid grains or aerosols in Titan's clouds. The feature is similar but not identical to organics in the interstellar matter and in comets.

  15. Improving winter leaf area index estimation in coniferous forests and its significance in estimating the land surface albedo

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Chen, Jing M.; Pavlic, Goran; Arain, Altaf

    2016-09-01

    Winter leaf area index (LAI) of evergreen coniferous forests exerts strong control on the interception of snow, snowmelt and energy balance. Simulation of winter LAI and associated winter processes in land surface models is challenging. Retrieving winter LAI from remote sensing data is difficult due to cloud contamination, poor illumination, lower solar elevation and higher radiation reflection by snow background. Underestimated winter LAI in evergreen coniferous forests is one of the major issues limiting the application of current remote sensing LAI products. It has not been fully addressed in past studies in the literature. In this study, we used needle lifespan to correct winter LAI in a remote sensing product developed by the University of Toronto. For the validation purpose, the corrected winter LAI was then used to calculate land surface albedo at five FLUXNET coniferous forests in Canada. The RMSE and bias values for estimated albedo were 0.05 and 0.011, respectively, for all sites. The albedo map over coniferous forests across Canada produced with corrected winter LAI showed much better agreement with the GLASS (Global LAnd Surface Satellites) albedo product than the one produced with uncorrected winter LAI. The results revealed that the corrected winter LAI yielded much greater accuracy in simulating land surface albedo, making the new LAI product an improvement over the original one. Our study will help to increase the usability of remote sensing LAI products in land surface energy budget modeling.

  16. Boundary-layer cumulus over land: Some observations and conceptual models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, R.B.

    1993-09-01

    Starting in 1980, the Boundary Layer Research Team at the University of Wisconsin has been systematically studying the formation and evolution of nonprecipitating boundary-layer cumulus clouds (BLCu) in regions of fair weather (anticyclones) over land (Stull, 1980). Our approach is to quantify the average statistical characteristics of the surface, thermals, boundary layer, and clouds over horizontal regions of roughly 20 km in diameter. Within such a region over land, there is typically quite a variation in land use, and associated variations in surface albedo and moisture.

  17. CIMEL Measurements of Zenith Radiances at the ARM Site

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wiscombe, Warren; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Starting from October 1, 2001, Cimel at the ARM Central Facility in Oklahoma has been switched to a new "cloud mode." This mode allows taking measurements of zenith radiance when the Sun in blocked by clouds. In this case, every 13 min. Cimel points straight up and takes 10 measurements with 9 sec. time interval. The new Cimel's mode has four filters at 440, 670, 870 and 1020 nm. For cloudy conditions, the spectral contrast in surface albedo dominates over Rayleigh and aerosol effects; this makes normalized zenith radiances at 440 and 670 as well as for 870 and 1020 almost indistinguishable. We compare Cimel measurements with other ARM cart site instruments: Multi-Filter Rotating Shadowband Radiometer (MFRSR), Narrow Field of View (NFOV) sensor, and MicroWave Radiometer(MWR). Based on Cimel and MFRSR 670 and 870 nm channels, we build a normalized difference cloud index (NDCI) for radiances and fluxes, respectively. Radiance NDCI from Cimel and flux NDCI from MFRSR are compared between themselves as well as with cloud Liquid Water Path (LWP) retrieved from MWR. Based on our theoretical calculations and preliminary data analysis,there is a good correlation between NDCIs and LWP for cloudy sky above green vegetation. Based on this correlation, an algorithm to retrieve cloud optical depth from NDCI is proposed.

  18. Climate effects of reducing black carbon emissions: Dependence on location of emission

    NASA Astrophysics Data System (ADS)

    Fuglestvedt, J.; Berntsen, T.; Myhre, G.; Rive, N. A.; Rypdal, K.; Gerland, S.; Pedersen, C.; Strøm, J.

    2006-12-01

    The role played by emissions of black carbon aerosols (BC) on the Earth's climate is diverse and the overall effect is still quite uncertain: Black carbon not only absorbs sunlight (direct effect), but it also has a semi- direct effect on clouds, and when deposited on snow and ice it changes the reflectivity (albedo) of the ground surface. These mechanisms generally have a warming effect on the climate. This poster presents a Norwegian project that focus on the net effect of current BC emissions and future possible reductions in emissions of BC aerosols, taking into account scientific, economic, and political perspectives on the inclusion of BC in climate policies. Thus, the scope of the project is interdisciplinary and includes observations in the Arctic, model simulations of dispersion of BC aerosols, its radiative forcing and climate effects. Some initial results from measurements of BC content in snow from the Norwegian Arctic and corresponding measurements for surface reflectance will be presented. The radiative forcing of BC emissions from different geographical regions differs due to differences in the removal processes (i.e. the lifetime) and the amount of solar radiation available for absorption (depends on latitude, clouds, and surface albedo). The atmospheric burdens and RF (of the direct effect) of regional BC emissions from fossil fuel sources have been calculated by the global chemical transport model Oslo-CTM2 and a radiative transfer model, and first results of time-integrated RF per unit of emission (equivalent to absolute GWPs) are presented. Future plans including i) analysis of cost effective emission reduction strategies, taking into account regional differences the forcing efficiencies, but also cost estimates for BC reductions in the different regions, and ii) an evaluation of the climate effects of the emission reductions through model simulations, including climatic, economic and political perspectives exploring obstacles and opportunities will also be presented.

  19. Reduced cooling following future volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.

    2017-11-01

    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  20. Global observations of aerosol-cloud-precipitation-climate interactions

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Daniel; Andreae, Meinrat O.; Asmi, Ari; Chin, Mian; de Leeuw, Gerrit; Donovan, David P.; Kahn, Ralph; Kinne, Stefan; Kivekäs, Niku; Kulmala, Markku; Lau, William; Schmidt, K. Sebastian; Suni, Tanja; Wagner, Thomas; Wild, Martin; Quaas, Johannes

    2014-12-01

    Cloud drop condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and, consequently, cloud albedo and the dynamic response of clouds to aerosol-induced changes to precipitation. This can modify the reflected solar radiation and the thermal radiation emitted to space. Measurements of tropospheric CCN and IN over large areas have not been possible and can be only roughly approximated from satellite-sensor-based estimates of optical properties of aerosols. Our lack of ability to measure both CCN and cloud updrafts precludes disentangling the effects of meteorology from those of aerosols and represents the largest component in our uncertainty in anthropogenic climate forcing. Ways to improve the retrieval accuracy include multiangle and multipolarimetric passive measurements of the optical signal and multispectral lidar polarimetric measurements. Indirect methods include proxies of trace gases, as retrieved by hyperspectral sensors. Perhaps the most promising emerging direction is retrieving the CCN properties by simultaneously retrieving convective cloud drop number concentrations and updraft speeds, which amounts to using clouds as natural CCN chambers. These satellite observations have to be constrained by in situ observations of aerosol-cloud-precipitation-climate (ACPC) interactions, which in turn constrain a hierarchy of model simulations of ACPC. Since the essence of a general circulation model is an accurate quantification of the energy and mass fluxes in all forms between the surface, atmosphere and outer space, a route to progress is proposed here in the form of a series of box flux closure experiments in the various climate regimes. A roadmap is provided for quantifying the ACPC interactions and thereby reducing the uncertainty in anthropogenic climate forcing.

  1. Retrieving Neptune's aerosol properties from Keck OSIRIS observations. I. Dark regions

    NASA Astrophysics Data System (ADS)

    Luszcz-Cook, S. H.; de Kleer, K.; de Pater, I.; Adamkovics, M.; Hammel, H. B.

    2016-09-01

    We present and analyze three-dimensional data cubes of Neptune from the OSIRIS integral-field spectrograph on the 10-m W.M. Keck II telescope, from 26 July 2009. These data have a spatial resolution of 0.035/pixel and spectral resolution of R ∼3800 in the H (1.47-1.80 μm) and K (1.97-2.38 μm) broad bands. We focus our analysis on regions of Neptune's atmosphere that are near-infrared dark - that is, free of discrete bright cloud features. We use a forward model coupled to a Markov chain Monte Carlo algorithm to retrieve properties of Neptune's aerosol structure and methane profile above ∼4 bar in these near-infrared dark regions. We construct a set of high signal-to-noise spectra spanning a range of viewing geometries to constrain the vertical structure of Neptune's aerosols in a cloud-free latitude band from 2-12°N. We find that Neptune's cloud opacity at these wavelengths is dominated by a compact, optically thick cloud layer with a base near 3 bar. Using the pyDISORT algorithm for the radiative transfer and assuming a Henyey-Greenstein phase function, we observe this cloud to be composed of low albedo (single scattering albedo = 0.45-0.01+0.01), forward scattering (asymmetry parameter g = 0.50-0.02+0.02) particles, with an assumed characteristic size of ∼1μm. Above this cloud, we require an aerosol layer of smaller (∼0.1μm) particles forming a vertically extended haze, which reaches from the upper troposphere (0.59-0.03+0.04 bar) into the stratosphere. The particles in this haze are brighter (single scattering albedo = 0.91-0.05+0.06) and more isotropically scattering (asymmetry parameter g = 0.24-0.03+0.02) than those in the deep cloud. When we extend our analysis to 18 cloud-free locations from 20°N to 87°S, we observe that the optical depth in aerosols above 0.5 bar decreases by a factor of 2-3 or more at mid- and high-southern latitudes relative to low latitudes. We also consider Neptune's methane (CH4) profile, and find that our retrievals indicate a strong preference for a low methane relative humidity at pressures where methane is expected to condense. When we include in our fits a parameter for methane depletion below the CH4 condensation pressure, our preferred solution at most locations is for a methane relative humidity below 10% near the tropopause in addition to methane depletion down to 2.0-2.5 bar. We tentatively identify a trend of lower CH4 columns above 2.5 bar at mid- and high-southern latitudes over low latitudes, qualitatively consistent with what is found by Karkoschka and Tomasko (2011), and similar to, but weaker than, the trend observed for Uranus.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chitra Sivaraman, PNNL

    Cloud droplet number concentration is an important factor in understanding aerosol-cloud interactions. As aerosol concentration increases, it is expected that droplet number concentration (Nd) will increase and droplet size will decrease, for a given liquid water path. This will greatly affect cloud albedo as smaller droplets reflect more shortwave radiation; however, the magnitude and variability of these processes under different environmental conditions is still uncertain.McComiskey et al. (2009) have implemented a method, based onBoers and Mitchell (1994), for calculating Nd from ground-based remote sensing measurements of optical depth and liquid water path. They show that the magnitude of the aerosol-cloudmore » interactions (ACI) varies with a range of factors, including the relative value of the cloud liquid water path (LWP), the aerosol size distribution, and the cloud updraft velocity. Estimates of Nd under a range of cloud types and conditions and at a variety of sites are needed to further quantify the impacts of aerosol cloud interactions. In order to provide data sets for studying aerosol-cloud interactions, the McComiskey et al. (2009) method was implemented as the Droplet Number Concentration (NDROP) value-added product (VAP).« less

  3. Validation of the Two-Layer Model for Correcting Clear Sky Reflectance Near Clouds

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Evans, K. Frank; Vamal, Tamas

    2014-01-01

    A two-layer model was developed in our earlier studies to estimate the clear sky reflectance enhancement near clouds. This simple model accounts for the radiative interaction between boundary layer clouds and molecular layer above, the major contribution to the reflectance enhancement near clouds for short wavelengths. We use LES/SHDOM simulated 3D radiation fields to valid the two-layer model for reflectance enhancement at 0.47 micrometer. We find: (a) The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; and (b) The magnitude of the 2-layer modeled enhancement agree reasonably well with the "truth" with some expected underestimation. We further extend our model to include cloud-surface interaction using the Poisson model for broken clouds. We found that including cloud-surface interaction improves the correction, though it can introduced some over corrections for large cloud albedo, large cloud optical depth, large cloud fraction, large cloud aspect ratio. This over correction can be reduced by excluding scenes (10 km x 10km) with large cloud fraction for which the Poisson model is not designed for. Further research is underway to account for the contribution of cloud-aerosol radiative interaction to the enhancement.

  4. High Resolution Ecosystem Structure, Biomass and Blue Carbon stocks in Mangrove Ecosystems- Methods and Applications of Lidar, radar Interferometry and High Resolution imagery

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Lee, S. K.; Feliciano, E. A.; Simard, M.; Trettin, C.

    2016-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.

  5. Decomposing Shortwave Top-of-Atmosphere Radiative Flux Variability in Terms of Surface and Atmospheric Contributions Using CERES Observations

    NASA Astrophysics Data System (ADS)

    Loeb, N. G.; Wong, T.; Wang, H.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation (ASR) fuels the climate system, providing the energy required for atmospheric and oceanic motions, while the system cools by emitting outgoing longwave (LW) radiation to space. A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget along with the associated atmospheric and surface properties that influence it. CERES data products utilize a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, polar orbiting and geostationary spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. Here we use simple diagnostic model of Earth's albedo and CERES Energy Balanced and Filled (EBAF) Ed4.0 data for March 2000-February 2016 to quantify interannual variations in SW TOA flux associated with surface albedo and atmospheric reflectance and transmittance variations. Surface albedo variations account for <0.5% of the total SW TOA flux variance over the tropics and 4% globally. Variations in atmospheric reflectance and transmittance account for virtually all of the total SW TOA flux variance over the tropics and only 81% globally. The remaining 15% of the global SW TOA flux variance is explained by the co-variance of surface albedo and atmospheric reflectance/transmittance. Equatorward of 60-degree latitude, the atmospheric contribution exceeds that of the surface by at least an order-of-magnitude. In contrast, the surface and atmospheric variations contribute equally poleward of 60S and surface variations account for twice as much as the atmosphere poleward of 60N. However, as much as 40% of the total SW TOA flux variance poleward of 60N is explained by the covariance of surface albedo and atmospheric reflectance/transmittance, highlighting the tight coupling between sea-ice concentration and cloud properties over the Arctic Ocean.

  6. Influence of Solar Wind on the Global Electric Circuit, and Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere

    NASA Astrophysics Data System (ADS)

    Tinsley, Brian A.

    2000-11-01

    There are at least three independent ways in which the solar wind modulates the flow of current density (Jz) in the global electric circuit. These are (A) changes in the galactic cosmic ray energy spectrum, (B) changes in the precipitation of relativistic electrons from the magnetosphere, and (C) changes in the ionospheric potential distribution in the polar caps due to magnetosphere-ionosphere coupling. The current density J_z flows between the ionosphere and the surface, and as it passes through conductivity gradients it generates space charge concentrations dependent on J_z and the conductivity gradient. The gradients are large at the surfaces of clouds and space charge concentrations of order 1000 to 10,000 elementary charges per cm^3 can be generated at cloud tops. The charge transfers to droplets, many of which are evaporating at the cloud-clear air interface. The charge remains on the residual evaporation nuclei with a lifetime against leakage of order 1000 sec, and for a longer period the nuclei also retain coatings of sulfate and organic compounds adsorbed by the droplet while in the cloud. The charged evaporation nuclei become well mixed with more droplets in many types of clouds with penetrative mixing. The processes of entrainment and evaporation are also efficient for these clouds. The collection of such nuclei by nearby droplets is greatly increased by the electrical attraction between the charge on the particle and the image charge that it creates on the droplet. This process is called electroscavenging. Because the charge on the evaporation nuclei is derived from the original space charge, it depends on J_z, giving a rate of electroscavenging responsive to the solar wind inputs. There may be a number of ways in which the electroscavenging has consequences for weather and climate. One possibility is enhanced production of ice. The charged evaporation nuclei have been found to be good ice forming nuclei because of their coatings, and so in supercooled clouds droplet freezing can occur by contact ice nucleation, as the evaporation nuclei are electroscavenged. Although quantitative models for the all the cloud microphysical processes that may be involved have not yet been produced, we show that for many clouds, especially those with broad droplet size distributions, relatively high droplet concentrations, and cloud top temperatures just below freezing, this process is likely to dominate over other primary ice nucleation processes. In these cases there are likely to be effects on cloud albedo and rates of sedimentation of ice, and these will depend on J_z. For an increase in ice production in thin clouds such as altocumulus or stratocumulus the main effect is a decrease in albedo to incoming solar radiation, and in opacity to outgoing longwave radiation. At low latitudes the surface and troposphere heat, and at high latitudes in winter they cool. The change in meridional temperature gradient affects the rate of cyclogenesis, and the amplitude of planetary waves. For storm clouds, as in winter cyclones, the effect of increased ice formation is mainly to increase the rate of glaciation of lower level clouds by the seeder-feeder process. The increase in precipitation efficiency increases the rate of transfer of latent heat between the air mass and the surface. In most cyclones this is likely to result in intensification, producing changes in the vorticity area index as observed. Cyclone intensification also increases the amplitude of planetary waves, and shifts storm tracks, as observed. In this paper we first describe the production of space charge and the way in which it may influence the rate of ice nucleation. Then we review theory and observations of the solar wind modulation of J_z, and the correlated changes in atmospheric temperature and dynamics in the troposphere. The correlations are present for each input, (A, B, and C), and the detailed patterns of responses provide support for the inferred electrical effects on the physics of clouds, affecting precipitation, temperature and dynamics.

  7. Combined climate and carbon-cycle effects of large-scale deforestation

    PubMed Central

    Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.

    2007-01-01

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463

  8. Combined climate and carbon-cycle effects of large-scale deforestation.

    PubMed

    Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

    2007-04-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

  9. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Caldeira, K; Wickett, M

    2006-10-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less

  10. Atlas of the Earth's radiation budget as measured by Nimbus-7: May 1979 to May 1980

    NASA Technical Reports Server (NTRS)

    Kyle, H. Lee; Hucek, Richard R.; Vallette, Brenda J.

    1991-01-01

    This atlas describes the seasonal changes in the Earth's radiation budget for the 13-month period, May 1979 to May 1980. It helps to illustrate the strong feedback mechanisms by which the Earth's climate interacts with the top-of-the-atmosphere insolation to modify the energy that various regions absorb from the Sun. Cloud type and cloud amount, which are linked to the surface temperature and the regional climate, are key elements in this interaction. Annual, seasonal, and monthly maps of the albedo, outgoing longwave and net radiation, noontime cloud cover, and mean diurnal surface temperatures are presented. Annual and seasonal net cloud forcing maps are also given. All of the quantities were derived from Nimbus-7 satellite measurements except for the temperatures, which were used in the cloud detection algorithm and came originally from the Air Force 3-dimensional nephanalysis dataset. The seasonal changes are described. The interaction of clouds and the radiation budget is briefly discussed.

  11. Airborne spectral measurements of surface-atmosphere anisotropy during the SCAR-A, Kuwait oil fire, and TARFOX experiments

    NASA Astrophysics Data System (ADS)

    Soulen, Peter F.; King, Michael D.; Tsay, Si-Chee; Arnold, G. Thomas; Li, Jason Y.

    2000-04-01

    During the SCAR-A, Kuwait Oil Fire Smoke Experiment, and TARFOX deployments, angular distributions of spectral reflectance for various surfaces were measured using the scanning Cloud Absorption Radiometer (CAR) mounted on the nose of the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.47 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track approximately 3 km in diameter within about 2 min. Spectral bidirectional reflectances of four surfaces are presented: the Great Dismal Swamp in Virginia with overlying haze layer, the Saudi Arabian Desert and the Persian Gulf in the Middle East, and the Atlantic Ocean measured east of Richmond, Virginia. Although the CAR measurements are contaminated by atmospheric effects, results show distinct spectral characteristics for various types of surface-atmosphere systems, including hot spots, limb brightening and darkening, and Sun glint. In addition, the hemispherical albedo of each surface-atmosphere system is calculated directly by integrating over all high angular-resolution CAR measurements for each spectral channel. Comparing the nadir reflectance with the overall hemispherical albedo of each surface, we find that using nadir reflectances as a surrogate for hemispherical albedo can cause albedos to be underestimated by as much as 95% and overestimated by up to 160%, depending on the type of surface and solar zenith angle.

  12. Assessing the Time Variability of Jupiter's Tropospheric Properties from 1996 to 2011

    NASA Technical Reports Server (NTRS)

    Orton, G. S.; Fletcher, L. N.; Yanamandra-Fisher, P. A.; Simon-Miller, A. A.; Greco, J.; Wakefield, L.

    2012-01-01

    We acquired and analyzed mid-infrared images of Jupiter's disk at selected wavelengths from NASA's Infrared Telescope Facility (IRTF) from 1996 to 2011, including a period of large-scale changes of cloud color and albedo. We derived the 100-300 mbar temperature structure, together with tracers of vertical motion: the thickness of a 600- mbar cloud layer, the 300-mbar abundance of the condensable gas NH3, and the 400- mbar para- vs. ortho-H2 ratio. The biggest visual change was detected in the normally dark South Equatorial Belt (SEB) that 'faded' to a light color in 2010, during which both cloud thickness and NH3 abundance rose; both returned to their pre-fade levels in 2011, as the SEB regained its normal dark color. The cloud thickness in Jupiter's North Temperate Belt (NTB) increased in 2002, coincident with its visible brightening, and its NH3 abundance spiked in 2002-2003. Jupiter's Equatorial Zone (EZ), a region marked by more subtle but widespread color and albedo change, showed high cloud thickness variability between 2007 and 2009. In Jupiter's North Equatorial Belt (NEB), the cloud thickened in 2005, then slowly decreased to a minimum value in 2010-2011. No temperature variations were associated with any of these changes, but we discovered temperature oscillations of approx.2-4 K in all regions, with 4- or 8-year periods and phasing that was dissimilar in the different regions. There was also no detectable change in the para- vs. ortho-H2 ratio over time, leading to the possibility that it is driven from much deeper atmospheric levels and may be time-invariant. Our future work will continue to survey the variability of these properties through the Juno mission, which arrives at Jupiter in 2016, and to connect these observations with those made using raster-scanned images from 1980 to 1993 (Orton et al. 1996 Science 265, 625).

  13. Satellite-based climate data records of surface solar radiation from the CM SAF

    NASA Astrophysics Data System (ADS)

    Trentmann, Jörg; Cremer, Roswitha; Kothe, Steffen; Müller, Richard; Pfeifroth, Uwe

    2017-04-01

    The incoming surface solar radiation has been defined as an essential climate variable by GCOS. Long term monitoring of this part of the earth's energy budget is required to gain insights on the state and variability of the climate system. In addition, climate data sets of surface solar radiation have received increased attention over the recent years as an important source of information for solar energy assessments, for crop modeling, and for the validation of climate and weather models. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) is deriving climate data records (CDRs) from geostationary and polar-orbiting satellite instruments. Within the CM SAF these CDRs are accompanied by operational data at a short time latency to be used for climate monitoring. All data from the CM SAF is freely available via www.cmsaf.eu. Here we present the regional and the global climate data records of surface solar radiation from the CM SAF. The regional climate data record SARAH (Surface Solar Radiation Dataset - Heliosat, doi: 10.5676/EUM_SAF_CM/SARAH/V002) is based on observations from the series of Meteosat satellites. SARAH provides 30-min, daily- and monthly-averaged data of the effective cloud albedo, the solar irradiance (incl. spectral information), the direct solar radiation (horizontal and normal), and the sunshine duration from 1983 to 2015 for the full view of the Meteosat satellite (i.e, Europe, Africa, parts of South America, and the Atlantic ocean). The data sets are generated with a high spatial resolution of 0.05° allowing for detailed regional studies. The global climate data record CLARA (CM SAF Clouds, Albedo and Radiation dataset from AVHRR data, doi: 10.5676/EUM_SAF_CM/CLARA_AVHRR/V002) is based on observations from the series of AVHRR satellite instruments. CLARA provides daily- and monthly-averaged global data of the solar irradiance (SIS) from 1982 to 2015 with a spatial resolution of 0.25°. In addition to the solar surface radiation also the longwave surface radiation as well as surface albedo and numerous cloud properties are provided in CLARA. Here we provide an overview of the climate data records of the surface solar radiation and present the results of the quality assessment of both climate data records against available surface reference observations, e.g., from the BSRN and the GEBA data archive.

  14. Combined retrieval of Arctic liquid water cloud and surface snow properties using airborne spectral solar remote sensing

    NASA Astrophysics Data System (ADS)

    Ehrlich, André; Bierwirth, Eike; Istomina, Larysa; Wendisch, Manfred

    2017-09-01

    The passive solar remote sensing of cloud properties over highly reflecting ground is challenging, mostly due to the low contrast between the cloud reflectivity and that of the underlying surfaces (sea ice and snow). Uncertainties in the retrieved cloud optical thickness τ and cloud droplet effective radius reff, C may arise from uncertainties in the assumed spectral surface albedo, which is mainly determined by the generally unknown effective snow grain size reff, S. Therefore, in a first step the effects of the assumed snow grain size are systematically quantified for the conventional bispectral retrieval technique of τ and reff, C for liquid water clouds. In general, the impact of uncertainties of reff, S is largest for small snow grain sizes. While the uncertainties of retrieved τ are independent of the cloud optical thickness and solar zenith angle, the bias of retrieved reff, C increases for optically thin clouds and high Sun. The largest deviations between the retrieved and true original values are found with 83 % for τ and 62 % for reff, C. In the second part of the paper a retrieval method is presented that simultaneously derives all three parameters (τ, reff, C, reff, S) and therefore accounts for changes in the snow grain size. Ratios of spectral cloud reflectivity measurements at the three wavelengths λ1 = 1040 nm (sensitive to reff, S), λ2 = 1650 nm (sensitive to τ), and λ3 = 2100 nm (sensitive to reff, C) are combined in a trispectral retrieval algorithm. In a feasibility study, spectral cloud reflectivity measurements collected by the Spectral Modular Airborne Radiation measurement sysTem (SMART) during the research campaign Vertical Distribution of Ice in Arctic Mixed-Phase Clouds (VERDI, April/May 2012) were used to test the retrieval procedure. Two cases of observations above the Canadian Beaufort Sea, one with dense snow-covered sea ice and another with a distinct snow-covered sea ice edge are analysed. The retrieved values of τ, reff, C, and reff, S show a continuous transition of cloud properties across snow-covered sea ice and open water and are consistent with estimates based on satellite data. It is shown that the uncertainties of the trispectral retrieval increase for high values of τ, and low reff, S but nevertheless allow the effective snow grain size in cloud-covered areas to be estimated.

  15. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  16. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  17. GEWEX SRB Shortwave Release 4

    NASA Astrophysics Data System (ADS)

    Cox, S. J.; Stackhouse, P. W., Jr.; Mikovitz, J. C.; Zhang, T.

    2017-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The new Release 4 uses the newly processed ISCCP HXS product as its primary input for cloud and radiance data. The ninefold increase in pixel number compared to the previous ISCCP DX allows finer gradations in cloud fraction in each grid box. It will also allow higher spatial resolutions (0.5 degree) in future releases. In addition to the input data improvements, several important algorithm improvements have been made since Release 3. These include recalculated atmospheric transmissivities and reflectivities yielding a less transmissive atmosphere. The calculations also include variable aerosol composition, allowing for the use of a detailed aerosol history from the Max Planck Institut Aerosol Climatology (MAC). Ocean albedo and snow/ice albedo are also improved from Release 3. Total solar irradiance is now variable, averaging 1361 Wm-2. Water vapor is taken from ISCCP's nnHIRS product. Results from GSW Release 4 are presented and analyzed. Early comparison to surface measurements show improved agreement.

  18. CLouds, and Aerosols Radiative Impacts and Forcing: Year 2016 (CLARIFY-2016)

    NASA Astrophysics Data System (ADS)

    Haywood, J. M.; Bellouin, N.; Carslaw, K. S.; Coe, H.; Field, P.; Highwood, E. J.; Redemann, J.; Stier, P.; Wood, R.; Zuidema, P.

    2013-12-01

    Strongly absorbing biomass burning aerosols (BBAs) exist above highly reflectant stratocumulus clouds in the SE Atlantic with implications on the direct (e.g. Haywood et al., 2003), semi-direct (e.g. Johnson et al., 2006), and indirect effect of aerosols, implications on the remote sensing of cloud optical properties, development of clouds and feedback processes. Here, we present an analysis of modelled estimates of the direct effect using twelve models from the AEROCOM project (Myhre et al., 2013) to show that estimates of the direct effect in SE Atlantic range from strongly negative to strongly positive. Furthermore, we evaluate the performance of the HadGEM2 model and show it cannot replicate the extreme values of positive forcing inferred from high spectral resolution satellite retrievals. By examining patterns of deposition, we infer that the indirect effect from biomass burning aerosols is very limited in the model, but without detailed measurements we are unsure of the validity of this inference. We conclude that the SE Atlantic is therefore of key importance in determining the radiative forcing of biomass burning aerosols and provides a very stringent test for global climate models as they need to accurately represent the geographic distribution of the aerosol optical depth, the wavelength dependent aerosol single scattering albedo, the vertical profile of the aerosol, the geographic distribution of the cloud, the cloud fraction, the cloud liquid water content, the cloud droplet effective radii, and the vertical profile of the cloud. These results are used as scientific rationale to justify a new measurement campaign: CLouds and Aerosol Radiative Impacts and Forcing: Year-2016 (CLARIFY-2016). Haywood, J.M., Osborne, S.R. Francis, P.N., Keil, A., Formenti, P., Andreae, M.O., and Kaye, P.H., The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000, J. Geophys. Res., 108(D13), 8473, doi:10.1029/2002JD002226, 2003. Johnson, B.T., K.P. Shine, and P.M. Forster, The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus, QJRMS, DOI: 10.1256/qj.03.61, 2006. Myhre, G. et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853-1877, doi:10.5194/acp-13-1853-2013, 2013

  19. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions

    PubMed Central

    Chandrakar, Kamal Kant; Cantrell, Will; Chang, Kelken; Ciochetto, David; Niedermeier, Dennis; Ovchinnikov, Mikhail; Shaw, Raymond A.; Yang, Fan

    2016-01-01

    The influence of aerosol concentration on the cloud-droplet size distribution is investigated in a laboratory chamber that enables turbulent cloud formation through moist convection. The experiments allow steady-state microphysics to be achieved, with aerosol input balanced by cloud-droplet growth and fallout. As aerosol concentration is increased, the cloud-droplet mean diameter decreases, as expected, but the width of the size distribution also decreases sharply. The aerosol input allows for cloud generation in the limiting regimes of fast microphysics (τc<τt) for high aerosol concentration, and slow microphysics (τc>τt) for low aerosol concentration; here, τc is the phase-relaxation time and τt is the turbulence-correlation time. The increase in the width of the droplet size distribution for the low aerosol limit is consistent with larger variability of supersaturation due to the slow microphysical response. A stochastic differential equation for supersaturation predicts that the standard deviation of the squared droplet radius should increase linearly with a system time scale defined as τs−1=τc−1+τt−1, and the measurements are in excellent agreement with this finding. The result underscores the importance of droplet size dispersion for aerosol indirect effects: increasing aerosol concentration changes the albedo and suppresses precipitation formation not only through reduction of the mean droplet diameter but also by narrowing of the droplet size distribution due to reduced supersaturation fluctuations. Supersaturation fluctuations in the low aerosol/slow microphysics limit are likely of leading importance for precipitation formation. PMID:27911802

  20. Climate in the absence of ocean heat transport

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2017-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify the absolute climatic impact of OHT using the state-of-the-art CESM simulations by comparing a realistic control climate against a slab ocean simulation in which OHT is disabled. The absence of OHT leads to a massive expansion of sea ice into the subtropics in both hemispheres, and a 24 K global cooling. Analysis of the transient simulation after setting the OHT to zero reveals a global cooling process fueled by a runaway sea ice albedo feedback. This process is eventually self-limiting in the cold climate due to a combination of subtropical cloud feedbacks and surface wind effects that are both connected to a massive spin-up of the atmospheric Hadley circulation. A parameter sensitivity study shows that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is rather uncertain. These simulations provide a graphic illustration of how the intimate coupling between sea ice and ocean circulation governs the present-day climate, and by extension, highlight the importance of modeling ocean - sea ice interaction with high fidelity.

  1. How Will Aerosol-Cloud Interactions Change in an Ice-Free Arctic Summer?

    NASA Astrophysics Data System (ADS)

    Gilgen, Anina; Katty Huang, Wan Ting; Ickes, Luisa; Lohmann, Ulrike

    2016-04-01

    Future temperatures in the Arctic are expected to increase more than the global mean temperature, which will lead to a pronounced retreat in Arctic sea ice. Before mid-century, most sea ice will likely have vanished in late Arctic summers. This will allow ships to cruise in the Arctic Ocean, e.g. to shorten their transport passage or to extract oil. Since both ships and open water emit aerosol particles and precursors, Arctic clouds and radiation may be affected via aerosol-cloud and cloud-radiation interactions. The change in radiation feeds back on temperature and sea ice retreat. In addition to aerosol particles, also the temperature and the open ocean as a humidity source should have a strong effect on clouds. The main goal of this study is to assess the impact of sea ice retreat on the Arctic climate with focus on aerosol emissions and cloud properties. To this purpose, we conducted ensemble runs with the global climate model ECHAM6-HAM2 under present-day and future (2050) conditions. ECHAM6-HAM2 was coupled with a mixed layer ocean model, which includes a sea ice model. To estimate Arctic aerosol emissions from ships, we used an elaborated ship emission inventory (Peters et al. 2011); changes in aerosol emissions from the ocean are calculated online. Preliminary results show that the sea salt aerosol and the dimethyl sulfide burdens over the Arctic Ocean significantly increase. While the ice water path decreases, the total water path increases. Due to the decrease in surface albedo, the cooling effect of the Arctic clouds becomes more important in 2050. Enhanced Arctic shipping has only a very small impact. The increase in the aersol burden due to shipping is less pronounced than the increase due to natural emissions even if the ship emissions are increased by a factor of ten. Hence, there is hardly an effect on clouds and radiation caused by shipping. References Peters et al. (2011), Atmos. Chem. Phys., 11, 5305-5320

  2. The Operational MODIS Cloud Optical and Microphysical Property Product: Overview of the Collection 6 Algorithm and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; King, Michael D.; Wind, Galina; Amarasinghe, Nandana; Marchant, Benjamin; Arnold, G. Thomas

    2012-01-01

    Operational Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cloud optical and microphysical properties (part of the archived products MOD06 and MYD06, for MODIS Terra and Aqua, respectively) are currently being reprocessed along with other MODIS Atmosphere Team products. The latest "Collection 6" processing stream, which is expected to begin production by summer 2012, includes updates to the previous cloud retrieval algorithm along with new capabilities. The 1 km retrievals, based on well-known solar reflectance techniques, include cloud optical thickness, effective particle radius, and water path, as well as thermodynamic phase derived from a combination of solar and infrared tests. Being both global and of high spatial resolution requires an algorithm that is computationally efficient and can perform over all surface types. Collection 6 additions and enhancements include: (i) absolute effective particle radius retrievals derived separately from the 1.6 and 3.7 !-lm bands (instead of differences relative to the standard 2.1 !-lm retrieval), (ii) comprehensive look-up tables for cloud reflectance and emissivity (no asymptotic theory) with a wind-speed interpolated Cox-Munk BRDF for ocean surfaces, (iii) retrievals for both liquid water and ice phases for each pixel, and a subsequent determination of the phase based, in part, on effective radius retrieval outcomes for the two phases, (iv) new ice cloud radiative models using roughened particles with a specified habit, (v) updated spatially-complete global spectral surface albedo maps derived from MODIS Collection 5, (vi) enhanced pixel-level uncertainty calculations incorporating additional radiative error sources including the MODIS L1 B uncertainty index for assessing band and scene-dependent radiometric uncertainties, (v) and use of a new 1 km cloud top pressure/temperature algorithm (also part of MOD06) for atmospheric corrections and low cloud non-unity emissivity temperature adjustments.

  3. Mesopause Horizontal wind estimates based on AIM CIPS polar mesospheric cloud pattern matching

    NASA Astrophysics Data System (ADS)

    Rong, P.; Yue, J.; Russell, J. M.; Gong, J.; Wu, D. L.; Randall, C. E.

    2013-12-01

    A cloud pattern matching approach is used to estimate horizontal winds in the mesopause region using Polar Mesospheric Cloud (PMC) albedo data measured by the Cloud Imaging and Particle Size instrument on the AIM satellite. Measurements for all 15 orbits per day throughout July 2007 are used to achieve statistical significance. For each orbit, eighteen out of the twenty-seven scenes are used for the pattern matching operation. Some scenes at the lower latitudes are not included because there is barely any cloud coverage for these scenes. The frame-size chosen is about 12 degrees in longitude and 3 degrees in latitude. There is no strict criterion in choosing the frame size since PMCs are widespread in the polar region and most local patterns do not have a clearly defined boundary. The frame moves at a step of 1/6th of the frame size in both the longitudinal and latitudinal directions to achieve as many 'snap-shots' as possible. A 70% correlation is used as a criterion to define an acceptable match between two patterns at two time frames; in this case the time difference is about 3.6 minutes that spans every 5 'bowtie' scenes. A 70% criterion appears weak if the chosen pattern is expected to act like a tracer. It is known that PMC brightness varies rapidly with a changing temperature and water vapor environment or changing nucleation conditions, especially on smaller spatial scales; therefore PMC patterns are not ideal tracers. Nevertheless, within a short time span such as 3.6 minutes a 70% correlation is sufficient to identify two cloud patterns that come from the same source region, although the two patterns may exhibit a significant difference in the actual brightness. Analysis of a large number of matched cloud patterns indicates that over the 3.6-minute time span about 70% of the patterns remain in the same locations. Given the 25-km2 horizontal resolution of CIPS data, this suggests that the overall magnitude of horizontal wind at PMC altitudes (~80-87 km) in the polar summer cannot exceed 25 m/s. In other words, the wind detection resolution is no better than 25 m/s. There are about 10% of cases in which it appears that an easterly prevails, with a peak value at about 80-100m/s. In another 5% of cases a westerly appears to prevail. The remaining 15% cases are related to either invalid cloud features with poor background correction or the situation in which the matching occurs at the corners of the bowties. The AIM CIPS cloud pattern matching results overall suggest that higher wind speed (25-200 m/s) can be reached occasionally, while in a majority of cases the wind advection caused albedo change is much smaller than the in-situ albedo change. However, we must note that this analysis was a feasibility study and the short period analyzed may not be representative of the winds over a seasonal time scale or the multiple-year average.

  4. Quantifying the impact of anthropogenic pollution on cloud properties derived from ground based remote sensors at the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Maahn, M.; Acquistapace, C.; de Boer, G.; Cox, C.; Feingold, G.; Marke, T.; Williams, C. R.

    2017-12-01

    When acting as cloud condensation nuclei (CCN) or ice nucleating particles (INPs), aerosols have a strong potential to influence cloud properties. In particular, they can impact the number, size, and phase of cloud particles and potentially cloud lifetime through aerosol indirect and semi-direct effects. In polar regions, these effects are of great importance for the radiation budget due to the shortwave albedo and longwave emissivity of mixed-phase clouds. The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program operates two super sites equipped with state of the art ground-based remote sensing instruments in northern Alaska. The sites are both coastal and are highly correlated with respect to large scale synoptic patterns. While the site at Utqiaġvik (formerly known as Barrow) generally represents a relatively pristine Arctic environment lacking significant anthropogenic sources, the site at Oliktok Point, approximately 250 km to the east, is surrounded by the Prudhoe Bay Oil Field, which is the largest oil field in North America. Based on aircraft measurement, the authors recently showed that differences in the properties of liquid clouds properties between the sites can be attributed to local emissions associated with the industrial activities in the Prudhoe Bay region (Maahn et al. 2017, ACPD). However, aircraft measurements do not provide a representative sample of cloud properties due to temporal limitations in the amount of data. In order to investigate how frequently and to what extent liquid cloud properties and processes are modified, we use ground based remote sensing observations such as e.g., cloud radar, Doppler lidar, and microwave radiometer obtained continuously at the two sites. In this way, we are able to quantify inter-site differences with respect to cloud drizzle production, liquid water path, frequency of cloud occurrence, and cloud radiative properties. Turbulence and the coupling of clouds to the boundary layer is investigated in order to infer the potential role of locally emitted aerosols in modulating the observed differences.

  5. Long-term Satellite Observations of Cloud and Aerosol Radiative Effects Using the (A)ATSR Satellite Data Record

    NASA Astrophysics Data System (ADS)

    Christensen, M.; McGarragh, G.; Thomas, G.; Povey, A.; Proud, S.; Poulsen, C. A.; Grainger, R. G.

    2016-12-01

    Radiative forcing by clouds, aerosols, and their interactions constitute some of the largest sources of uncertainties in the climate system (Chapter 7 IPCC, 2013). It is essential to understand the past through examination of long-term satellite observation records to provide insight into the uncertainty characteristics of these radiative forcers. As part of the ESA CCI (Climate Change Initiative) we have recently implemented a broadband radiative flux algorithm (known as BUGSrad) into the Optimal Retrieval for Aerosol and Cloud (ORAC) scheme. ORAC achieves radiative consistency of its aerosol and cloud products through an optimal estimation scheme and is highly versatile, enabling retrievals for numerous satellite sensors: ATSR, MODIS, VIIRS, AVHRR, SLSTR, SEVIRI, and AHI. An analysis of the 17-year well-calibrated Along Track Scanning Radiometer (ATSR) data is used to quantify trends in cloud and aerosol radiative effects over a wide range of spatiotemporal scales. The El Niño Southern Oscillation stands out as the largest contributing mode of variability to the radiative energy balance (long wave and shortwave fluxes) at the top of the atmosphere. Furthermore, trends in planetary albedo show substantial decreases across the Arctic Ocean (likely due to the melting of sea ice and snow) and modest increases in regions dominated by stratocumulus (e.g., off the coast of California) through notable increases in cloud fraction and liquid water path. Finally, changes in volcanic activity and biomass burning aerosol over this period show sizeable radiative forcing impacts at local-scales. We will demonstrate that radiative forcing from aerosols and clouds have played a significant role in the identified key climate processes using 17 years of satellite observational data.

  6. Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds

    NASA Astrophysics Data System (ADS)

    Krisna, Trismono C.; Wendisch, Manfred; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Weigel, Ralf; Borrmann, Stephan; Mahnke, Christoph; Pöschl, Ulrich; Andreae, Meinrat O.; Voigt, Christiane; Machado, Luiz A. T.

    2018-04-01

    Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German High Altitude and Long Range Research Aircraft (HALO) during the Mid-Latitude Cirrus (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interaction and Dynamic of Convective Clouds System - Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modelling and to the Global Precipitation Measurement (ACRIDICON-CHUVA) campaigns. On particular flights, HALO performed measurements closely collocated with overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite. A cirrus cloud located above liquid water clouds and a DCC topped by an anvil cirrus are analyzed in this paper. Based on the nadir spectral upward radiance measured above the two clouds, the optical thickness τ and particle effective radius reff of the cirrus and DCC are retrieved using a radiance ratio technique, which considers the cloud thermodynamic phase, the vertical profile of cloud microphysical properties, the presence of multilayer clouds, and the heterogeneity of the surface albedo. For the cirrus case, the comparison of τ and reff retrieved on the basis of SMART and MODIS measurements yields a normalized mean absolute deviation of up to 1.2 % for τ and 2.1 % for reff. For the DCC case, deviations of up to 3.6 % for τ and 6.2 % for reff are obtained. The larger deviations in the DCC case are mainly attributed to the fast cloud evolution and three-dimensional (3-D) radiative effects. Measurements of spectral upward radiance at near-infrared wavelengths are employed to investigate the vertical profile of reff in the cirrus. The retrieved values of reff are compared with corresponding in situ measurements using a vertical weighting method. Compared to the MODIS observations, measurements of SMART provide more information on the vertical distribution of particle sizes, which allow reconstructing the profile of reff close to the cloud top. The comparison between retrieved and in situ reff yields a normalized mean absolute deviation, which ranges between 1.5 and 10.3 %, and a robust correlation coefficient of 0.82.

  7. Effect of Amazon Smoke on Cloud Microphysics and Albedo-Analysis from Satellite Imagery.

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Nakajima, Teruyuki

    1993-04-01

    NOAA Advanced Very High Resolution Radiometer images taken over the Brazilian Amazon Basin during the biomass burning season of 1987 are used to study the effect of smoke aerosol particles on the properties of low cumulus and stratocumulus clouds. The reflectance at a wavelength of 0.64 µm and the drop size, derived from the cloud reflectance at 3.75 µm, are studied for tens of thousands of clouds. The opacity of the smoke layer adjacent to each cloud is also monitored simultaneously. Though from satellite data it is impossible to derive all the parameters that influence cloud properties and smoke cloud interaction (e.g., detailed aerosol particles size distribution and chemistry, liquid water content, etc.); satellite data can be used to generate large-scale statistics of the properties of clouds and surrounding aerosol (e.g., smoke optical thickness, cloud-drop size, and cloud reflection of solar radiation) from which the interaction of aerosol with clouds can be surmised. In order to minimize the effect of variations in the precipitable water vapor and in other smoke and cloud properties, biomass burning in the tropics is chosen as the study topic, and the results are averaged for numerous clouds with the same ambient smoke optical thickness.It is shown in this study that the presence of dense smoke (an increase in the optical thickness from 0.1 to 2.0) can reduce the remotely sensed drop size of continental cloud drops from 15 to 9 µm. Due to both the high initial reflectance of clouds in the visible part of the spectrum and the presence of graphitic carbon, the average cloud reflectance at 0.64 µm is reduced from 0.71 to 0.68 for an increase in smoke optical thickness from 0.1 to 2.0. The measurements are compared to results from other years, and it is found that, as predicted, high concentration of aerosol particles causes a decrease in the cloud-drop size and that smoke darkens the bright Amazonian clouds. Comparison with theoretical computations based on Twomey's model show that by using the measured reduction in the cloud-drop size due to the presence of smoke it is possible to explain the reduction in the cloud reflectance at 0.64 µm for smoke imagery index of 0.02 to 0.03.Smoke particles are hygroscopic and have a similar size distribution to maritime and anthropogenic sulfuric aerosol particles. Therefore, these results may also be representative of the interaction of sulfuric particles with clouds.

  8. The cloud-radiative processes and its modulation by sea-ice cover and stability as derived from a merged C3M Data product.

    NASA Astrophysics Data System (ADS)

    Nag, B.

    2016-12-01

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-ice and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-ice, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability cover in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.

  9. Seasonal and interannual variations in the influence of cloud cover variability on snowpack and streamflow in the western U.S.

    NASA Astrophysics Data System (ADS)

    Sumargo, E.; Cayan, D. R.

    2016-12-01

    Solar radiation (S) is a key driver of snowmelt and water fluxes, but its effect varies depending on time of year and also upon the hydrological character (e.g., dry or wet) of a given year. In this study, we use remote sensed S to quantify cloudiness variability and its effects on snowmelt and streamflow across mountain basins in the western U.S. We utilize 20 years (1996-2015) of NASA/NOAA GOES-derived cloud albedo (αcloud) at 4-km daily samples to estimate S over relatively fine spatial and temporal resolution during Feb-Jul when snowmelt is most active. Daily snow water equivalent (SWE) records from >200 CDEC and SNOTEL locations, along with daily stream discharge (Q) from USGS HCDN records are used to compute day-to-day changes (dSWE and dQ). Multivariate linear regression models of dSWE and dQ are constructed for each month, wherein αcloud from several days prior up to the concurrent day are the predictors. In Feb-May, the results show predominantly negative correlations between αcloud and dSWE, confirming the cloud-shading effect in preserving snowpack and reducing runoff. The influence of cloudiness variability on snowpack, denoted by the coefficient of determination (R2) between the measured and modeled dSWE, amounts 4%-73% over Feb-Jul, averaging 20% in the northwest and 26% in the southwest. The dQ case exhibits similar patterns, but lower explained variance. In Jun-Jul, most locations in both dSWE and dQ cases display positive correlation but with diminished R2, presumably reflecting the drying effect of summertime. In comparing dry and wet years, the R2 is somewhat higher in dry years, suggesting that the importance of cloud cover and the associated solar insolation variability is higher in cases with greater influence from other hydrological factors, including heavy precipitation events and fluctuations associated with a higher snowpack.

  10. The Influence of Sea Ice on Arctic Low Cloud Properties and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.

    2015-01-01

    The Arctic is one of the most climatically sensitive regions of the Earth. Climate models robustly project the Arctic to warm 2-3 times faster than the global mean surface temperature, termed polar warming amplification (PWA), but also display the widest range of surface temperature projections in this region. The response of the Arctic to increased CO2 modulates the response in tropical and extra-tropical regions through teleconnections in the atmospheric circulation. An increased frequency of extreme precipitation events in the northern mid-latitudes, for example, has been linked to the change in the background equator-to-pole temperature gradient implied by PWA. Understanding the Arctic climate system is therefore important for predicting global climate change. The ice albedo feedback is the primary mechanism driving PWA, however cloud and dynamical feedbacks significantly contribute. These feedback mechanisms, however, do not operate independently. How do clouds respond to variations in sea ice? This critical question is addressed by combining sea ice, cloud, and radiation observations from satellites, including CERES, CloudSAT, CALIPSO, MODIS, and microwave radiometers, to investigate sea ice-cloud interactions at the interannual timescale in the Arctic. Cloud characteristics are strongly tied to the atmospheric dynamic and thermodynamic state. Therefore, the sensitivity of Arctic cloud characteristics, vertical distribution and optical properties, to sea ice anomalies is computed within atmospheric dynamic and thermodynamic regimes. Results indicate that the cloud response to changes in sea ice concentration differs significantly between atmospheric state regimes. This suggests that (1) the atmospheric dynamic and thermodynamic characteristics and (2) the characteristics of the marginal ice zone are important for determining the seasonal forcing by cloud on sea ice variability.

  11. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    NASA Astrophysics Data System (ADS)

    Lutz, R.; Loyola, D.; Gimeno García, S.; Romahn, F.

    2015-12-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) on-board the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) and to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud top height (CTH), cloud top pressure (CTP), cloud top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than six years of GOME-2A data (February 2007-June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing angle dependent and latitude dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with co-located AVHRR geometrical cloud fractions shows a general good agreement with a mean difference of -0.15±0.20. From operational point of view, an advantage of the OCRA algorithm is its extremely fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud fraction estimation for GOME-2 can be achieved with OCRA by using the polarization measurement devices (PMDs).

  12. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    NASA Astrophysics Data System (ADS)

    Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian

    2016-05-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).

  13. A Digital Map From External Forcing to the Final Surface Warming Pattern and its Seasonal Cycle

    NASA Astrophysics Data System (ADS)

    Cai, M.

    2015-12-01

    Historically, only the thermodynamic processes (e.g., water vapor, cloud, surface albedo, and atmospheric lapse rate) that directly influence the top of the atmosphere (TOA) radiative energy flux balance are considered in climate feedback analysis. One of my recent research areas is to develop a new framework for climate feedback analysis that explicitly takes into consideration not only the thermodynamic processes that the directly influence the TOA radiative energy flux balance but also the local dynamical (e.g., evaporation, surface sensible heat flux, vertical convections etc) and non-local dynamical (large-scale horizontal energy transport) processes in aiming to explain the warming asymmetry between high and low latitudes, between ocean and land, and between the surface and atmosphere. In the last 5-6 years, we have developed a coupled atmosphere-surface climate feedback-response analysis method (CFRAM) as a new framework for estimating climate feedback and sensitivity in coupled general circulation models with a full physical parameterization package. In the CFRAM, the isolation of partial temperature changes due to an external forcing alone or an individual feedback is achieved by solving the linearized infrared radiation transfer model subject to individual energy flux perturbations (external or due to feedbacks). The partial temperature changes are addable and their sum is equal to the (total) temperature change (in the linear sense). The CFRAM is used to isolate the partial temperature changes due to the external forcing, due to water vapor feedback, clouds, surface albedo, local vertical convection, and non-local atmospheric dynamical feedbacks, as well as oceanic heat storage. It has been shown that seasonal variations in the cloud feedback, surface albedo feedback, and ocean heat storage/dynamics feedback, directly caused by the strong annual cycle of insolation, contribute primarily to the large seasonal variation of polar warming. Furthermore, the CO2 forcing, and water vapor and atmospheric dynamics feedbacks add to the maximum polar warming in fall/winter.

  14. Solar radiation measurements and their applications in climate research

    NASA Astrophysics Data System (ADS)

    Yin, Bangsheng

    Aerosols and clouds play important roles in the climate system through their radiative effects and their vital link in the hydrological cycle. Accurate measurements of aerosol and cloud optical and microphysical properties are crucial for the study of climate and climate change. This study develops/improves retrieval algorithms for aerosol single scattering albedo (SSA) and low liquid water path (LWP) cloud optical properties, evaluates a new spectrometer, and applies long-term measurements to establish climatology of aerosol and cloud optical properties. The following results were obtained. (1) The ratio of diffuse horizontal and direct normal fluxes measured from Multifilter Rotating Shadowband Radiometer (MFRSR) has been used to derive the aerosol SSA. Various issues have impacts on the accuracy of SSA retrieval, from measurements (e.g., calibration accuracy, cosine respond correction, and forward scattering correction) to input parameters and assumptions (e.g., asymmetry factor, Rayleigh scattering optical depth, and surface albedo). This study carefully analyzed these issues and extensively assessed their impacts on the retrieval accuracy. Furthermore, the retrievals of aerosol SSA from MFRSR are compared with independent measurements from co-located instruments. (2) The Thin-Cloud Rotating Shadowband Radiometer (TCRSR) has been used to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid-water path (LWP). The evaluation of the TCRSR indicates that the error of radiometric calibration has limited impact on the cloud DER retrievals. However, the retrieval accuracy of cloud DER is sensitive to the uncertainties of background setting (e.g., aerosol loading and the existence of ice cloud) and the measured solar aureole shape. (3) A new high resolution oxygen A-band spectrometer (HABS) has been developed, which has the ability to measure both direct-beam and zenith diffuse solar radiation with polarization capability. The HABS exhibits excellent performance: stable spectral response ratio, high SNR, high spectrum resolution (0.16 nm), and high Out-of-Band Rejection (10-5). The HABS measured spectra and polarization spectra are basically consistent with the related simulated spectra. The main difference between them occurs at or near the strong oxygen absorption line centers. Furthermore, our study demonstrates that it is a good method to derive the degree of polarization-oxygen absorption optical depth (DOP-k) relationship through a polynomial fitting in the DOP-k space. (4) The long-term MFRSR measurements at Darwin (Australia), Nauru (Nauru), and Manus (Papua New Guinea) sites have been processed to develop the climatology of aerosols and clouds in the Tropical Warm Pool (TWP) region at the interannual, seasonal, and diurnal temporal scales. Due to the association of these three sites with large-scale circulation patterns, aerosol and cloud properties exhibit distinctive characteristics. The cloud optical depth (COD) and cloud fraction (CF) exhibit apparent increasing trends from 1998 to 2007 and decreasing trends after 2007. The monthly anomaly values, to some extent, are bifurcately correlated with SOI, depending on the phase of ENSO. At the two oceanic sites of Manus and Nauru, aerosols, clouds, and precipitation are modulated by the meteorological changes associated with MJO events. (5) The long-term measurements at Barrow and Atqasuk sites also have been processed to develop the climatology of aerosol and cloud properties in the North Slope of Alaska (NSA) region at interannual, seasonal, and diurnal temporal scales. Due to Arctic climate warming, at these two sites, the snow melting day arrives earlier and the non-snow-cover duration increases. Aerosol optical depth (AOD) increased during the periods of 2001-2003 and 2005-2009, and decreased during 2003-2005. The LWP, COD, and CF exhibit apparently decreasing trends from 2002 to 2007 and increased significantly after 2008. (Abstract shortened by UMI.)

  15. Determination of the single scattering albedo and direct radiative forcing of biomass burning aerosol with data from the MODIS (Moderate Resolution Imaging Spectroradiometer) satellite instrument

    NASA Astrophysics Data System (ADS)

    Zhu, Li

    Biomass burning aerosols absorb and scatter solar radiation and therefore affect the energy balance of the Earth-atmosphere system. The single scattering albedo (SSA), the ratio of the scattering coefficient to the extinction coefficient, is an important parameter to describe the optical properties of aerosols and to determine the effect of aerosols on the energy balance of the planet and climate. Aerosol effects on radiation also depend strongly on surface albedo. Large uncertainties remain in current estimates of radiative impacts of biomass burning aerosols, due largely to the lack of reliable measurements of aerosol and surface properties. In this work we investigate how satellite measurements can be used to estimate the direct radiative forcing of biomass burning aerosols. We developed a method using the critical reflectance technique to retrieve SSA from the Moderate Resolution Imaging Spectroradiometer (MODIS) observed reflectance at the top of the atmosphere (TOA). We evaluated MODIS retrieved SSAs with AErosol RObotic NETwork (AERONET) retrievals and found good agreements within the published uncertainty of the AERONET retrievals. We then developed an algorithm, the MODIS Enhanced Vegetation Albedo (MEVA), to improve the representations of spectral variations of vegetation surface albedo based on MODIS observations at the discrete 0.67, 0.86, 0.47, 0.55, 1.24, 1.64, and 2.12 mu-m channels. This algorithm is validated using laboratory measurements of the different vegetation types from the Amazon region, data from the Johns Hopkins University (JHU) spectral library, and data from the U.S. Geological Survey (USGS) digital spectral library. We show that the MEVA method can improve the accuracy of flux and aerosol forcing calculations at the TOA compared to more traditional interpolated approaches. Lastly, we combine the MODIS retrieved biomass burning aerosol SSA and the surface albedo spectrum determined from the MEVA technique to calculate TOA flux and aerosol direct radiative forcing over the Amazon region and compare it with Clouds and the Earth's Radiant Energy System (CERES) satellite results. The results show that MODIS based forcing calculations present similar averaged results compared to CERES, but MODIS shows greater spatial variation of aerosol forcing than CERES. Possible reasons for these differences are explored and discussed in this work. Potential future research based on these results is discussed as well.

  16. Optics of Water Cloud Droplets Mixed with Black-Carbon Aerosols

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Liu, Li; Cairns, Brian; Mackowski, Daniel W.

    2014-01-01

    We use the recently extended superposition T-matrix method to calculate scattering and absorption properties of micrometer-sized water droplets contaminated by black carbon. Our numerically exact results reveal that, depending on the mode of soot-water mixing, the soot specific absorption can vary by a factor exceeding 6.5. The specific absorption is maximized when the soot material is quasi-uniformly distributed throughout the droplet interior in the form of numerous small monomers. The range of mixing scenarios captured by our computations implies a wide range of remote sensing and radiation budget implications of the presence of black carbon in liquid-water clouds. We show that the popular Maxwell-Garnett effective-medium approximation can be used to calculate the optical cross sections, single-scattering albedo, and asymmetry parameter for the quasi-uniform mixing scenario, but is likely to fail in application to other mixing scenarios and in computations of the elements of the scattering matrix.

  17. Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotamarthi, VR

    2013-12-01

    In general, the Indian Summer Monsoon (ISM) as well as the and the tropical monsoon climate is influenced by a wide range of factors. Under various climate change scenarios, temperatures over land and into the mid troposphere are expected to increase, intensifying the summer pressure gradient differential between land and ocean and thus strengthening the ISM. However, increasing aerosol concentration, air pollution, and deforestation result in changes to surface albedo and insolation, potentially leading to low monsoon rainfall. Clear evidence points to increasing aerosol concentrations over the Indian subcontinent with time, and several hypotheses regarding the effect on monsoons havemore » been offered. The Ganges Valley Aerosol Experiment (GVAX) field study aimed to provide critical data to address these hypotheses and contribute to developing better parameterizations for tropical clouds, convection, and aerosol-cloud interactions. The primary science questions for the mission were as follows:« less

  18. Radiative characteristics of clouds embedded in smoke derived from airborne multiangular measurements

    NASA Astrophysics Data System (ADS)

    Gautam, Ritesh; Gatebe, Charles K.; Singh, Manoj K.; Várnai, Tamás.; Poudyal, Rajesh

    2016-08-01

    Clouds in the presence of absorbing aerosols result in their apparent darkening, observed at the top of atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the large radiative effect and potential impacts on regional climate, above-cloud aerosols have recently been characterized in multiple satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, recent literature indicates large uncertainties in satellite retrievals of above-cloud aerosol optical depth (AOD) and single scattering albedo (SSA), which are among the most important parameters in the assessment of associated radiative effects. In this study, we analyze radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in Canada during the 2008 summer season. We found a strong positive reflectance (R) gradient in the UV-visible (VIS)-near infrared (NIR) spectrum for clouds embedded in dense smoke, as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. Several cases of clouds embedded in thick smoke were found, when the aircraft made circular/spiral measurements, which not only allowed the complete characterization of angular distribution of smoke scattering but also provided the vertical distribution of smoke and clouds (within 0.5-5 km). Specifically, the largest darkening by smoke was found in the UV/VIS, with R0.34μm reducing to 0.2 (or 20%), in contrast to 0.8 at NIR wavelengths (e.g., 1.27 µm). The observed darkening is associated with large AODs (0.5-3.0) and moderately low SSA (0.85-0.93 at 0.53 µm), resulting in a significantly large instantaneous aerosol forcing efficiency of 254 ± 47 W m-2 τ-1. Our observations of smoke-cloud radiative interactions were found to be physically consistent with theoretical plane-parallel 1-D and Monte Carlo 3-D radiative transfer calculations, capturing the observed gradient across UV-VIS-NIR. Results from this study offer insights into aerosol-cloud radiative interactions and may help in better constraining satellite retrieval algorithms.

  19. Radiative Characteristics of Clouds Embedded in Smoke Derived from Airborne Multiangular Measurements

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Gatebe, Charles K.; Singh, Manoj; Varnai, Tamas; Poudyal, Rajesh

    2016-01-01

    Clouds in the presence of absorbing aerosols result in their apparent darkening, observed at the top of atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the large radiative effect and potential impacts on regional climate, above-cloud aerosols have recently been characterized in multiple satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, recent literature indicates large uncertainties in satellite retrievals of above-cloud aerosol optical depth (AOD) and single scattering albedo (SSA), which are among the most important parameters in the assessment of associated radiative effects. In this study, we analyze radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer, collected during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites campaign in Canada during the 2008 summer season. We found a strong positive reflectance (R) gradient in the UV-visible (VIS)-near infrared (NIR) spectrum for clouds embedded in dense smoke, as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. Several cases of clouds embedded in thick smoke were found, when the aircraft made circular/spiral measurements, which not only allowed the complete characterization of angular distribution of smoke scattering but also provided the vertical distribution of smoke and clouds (within 0.5-5 km). Specifically, the largest darkening by smoke was found in the UV/VIS, with R(sub 0.34 microns) reducing to 0.2 (or 20%), in contrast to 0.8 at NIR wavelengths (e.g., 1.27 microns). The observed darkening is associated with large AODs (0.5-3.0) and moderately low SSA (0.85-0.93 at 0.53 microns), resulting in a significantly large instantaneous aerosol forcing efficiency of 254 +/- 47 W/sq m/t. Our observations of smoke-cloud radiative interactions were found to be physically consistent with theoretical plane-parallel 1-D and Monte Carlo 3-D radiative transfer calculations, capturing the observed gradient across UV-VIS-NIR. Results from this study offer insights into aerosol-cloud radiative interactions and may help in better constraining satellite retrieval algorithms.

  20. Radiance and polarization in the diffusion region with an arbitrary scattering phase matrix

    NASA Astrophysics Data System (ADS)

    Sun, Bingqiang; Kattawar, George W.; Yang, Ping

    2016-11-01

    Radiance and polarization patterns in an optically deep region, the so-called diffusion region or asymptotic region, of a homogeneous atmosphere or ocean, depend mainly on the scattering phase matrix and the single-scattering albedo of the medium. The radiance and polarization properties in the diffusion region for an arbitrary scattering phase matrix can be obtained in terms of a series of the generalized spherical functions. The number of terms is closely related to the single-scattering albedo of the medium. If the medium is conservative, the radiance is isotropic in conjunction with no polarization. If the single-scattering albedo is close to 1, several terms are sufficient to obtain the patterns, in which the degree of polarization feature is less than 1%. If the medium is highly absorptive, more expansion terms are required to obtain the diffusion patterns. The examples of simulated radiance and polarization patterns for Rayleigh scattering, Henyey-Greenstein-Rayleigh scattering, and haze L and cloud C1 scattering, defined by Deirmendjian, are calculated.

  1. Some characteristic differences in the earth's radiation budget over land and ocean derived from the Nimbus-7 ERB experiment

    NASA Technical Reports Server (NTRS)

    Kyle, H. L.; Vasanth, K. L.

    1986-01-01

    Broad spectral band data derived from the Nimbus-7 Earth Radiation Budget experiment are analyzed for the top-of-the-atmosphere noon vs. midnight variations in the exitant longwave flux density, spectral variations in the regional albedos, and differences in land and ocean net radiation budgets. The data were studied for a year (June 1979 to May 1980) on a global scale and for five selected study areas. The annual global total, near-UV visible, and near-IR albedo values, obtained were 30.2, 34.6, and 25.9, respectively, with marked differences in behavior between oceanic and continental regions. Over the continents, clouds and snow sharply decreased the near-IR albedo. The over-the-continent noon-emitted flux density averages were 15-25 W/sq m larger than the midnight values, with large regional and seasonal variations. Over the oceans, the average noon and midnight outgoing longwave-flux densities were nearly identical, with regional aqnd seasonal differences of several watts per square meter.

  2. A New Model of the Mean Albedo of the Earth: Estimation and Validation from the GRACE Mission and SLR Satellites.

    NASA Astrophysics Data System (ADS)

    Deleflie, F.; Sammuneh, M. A.; Coulot, D.; Pollet, A.; Biancale, R.; Marty, J. C.

    2017-12-01

    This talk provides new results of a study that we began last year, and that was the subject of a poster by the same authors presented during AGU FM 2016, entitled « Mean Effect of the Albedo of the Earth on Artificial Satellite Trajectories: an Update Over 2000-2015. »The emissivity of the Earth, split into a part in the visible domain (albedo) and the infrared domain (thermic emissivity), is at the origin of non gravitational perturbations on artificial satellite trajectories. The amplitudes and periods of these perturbations can be investigated if precise orbits can be carried out, and reveal some characteristics of the space environment where the satellite is orbiting. Analyzing the perturbations is, hence, a way to characterize how the energy from the Sun is re-emitted by the Earth. When led over a long period of time, such an approach enables to quantify the variations of the global radiation budget of the Earth.Additionally to the preliminary results presented last year, we draw an assessment of the validity of the mean model based on the orbits of the GRACE missions, and, to a certain extent, of some of the SLR satellite orbits. The accelerometric data of the GRACE satellites are used to evaluate the accuracy of the models accounting for non gravitational forces, and the ones induced by the albedo and the thermic emissivity in particular. Three data sets are used to investigate the mean effects on the orbit perturbations: Stephens tables (Stephens, 1980), ECMWF (European Centre for Medium-Range Weather Forecasts) data sets and CERES (Clouds and the Earth's Radiant Energy System) data sets (publickly available). From the trajectography point of view, based on post-fit residual analysis, we analyze what is the data set leading to the lowest residual level, to define which data set appears to be the most suitable one to derive a new « mean albedo model » from accelerometric data sets of the GRACE mission. The period of investigation covers the full GRACE period, and especially the first years.

  3. Using Observations of Deep Convective Systems to Constrain Atmospheric Column Absorption of Solar Radiation in the Optically Thick Limit

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Wielicki, Bruce A.; Xi, Baike; Hu, Yongxiang; Mace, Gerald G.; Benson, Sally; Rose, Fred; Kato, Seiji; Charlock, Thomas; Minnis, Patrick

    2008-01-01

    Atmospheric column absorption of solar radiation A(sub col) is a fundamental part of the Earth's energy cycle but is an extremely difficult quantity to measure directly. To investigate A(sub col), we have collocated satellite-surface observations for the optically thick Deep Convective Systems (DCS) at the Department of Energy Atmosphere Radiation Measurement (ARM) Tropical Western Pacific (TWP) and Southern Great Plains (SGP) sites during the period of March 2000 December 2004. The surface data were averaged over a 2-h interval centered at the time of the satellite overpass, and the satellite data were averaged within a 1 deg X 1 deg area centered on the ARM sites. In the DCS, cloud particle size is important for top-of-atmosphere (TOA) albedo and A(sub col) although the surface absorption is independent of cloud particle size. In this study, we find that the A(sub col) in the tropics is approximately 0.011 more than that in the middle latitudes. This difference, however, disappears, i.e., the A(sub col) values at both regions converge to the same value (approximately 0.27 of the total incoming solar radiation) in the optically thick limit (tau greater than 80). Comparing the observations with the NASA Langley modified Fu_Liou 2-stream radiative transfer model for optically thick cases, the difference between observed and model-calculated surface absorption, on average, is less than 0.01, but the model-calculated TOA albedo and A(sub col) differ by 0.01 to 0.04, depending primarily on the cloud particle size observation used. The model versus observation discrepancies found are smaller than many previous studies and are just within the estimated error bounds. We did not find evidence for a large cloud absorption anomaly for the optically thick limit of extensive ice cloud layers. A more modest cloud absorption difference of 0.01 to 0.04 cannot yet be ruled out. The remaining uncertainty could be reduced with additional cases, and by reducing the current uncertainty in cloud particle size.

  4. Detecting tree-like multicellular life on extrasolar planets.

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2010-11-01

    Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.

  5. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical depth gradient, with AOD(500 nm) extremes from 0.1 to 1.1. On the Pacific transit from Honolulu to Hachijo AOD(500 nm) averaged 0.2, including increases to 0.4 after several storms, suggesting the strong impact of wind-generated seasalt. The AOD maximum, found in the Sea of Japan, was influenced by dust and anthropogenic sources. (4) In Beijing, single scattering albedo retrieved from AERONET sun-sky radiometry yielded midvisible SSA=0.88 with strong wavelength dependence, suggesting a significant black carbon component. SSA retrieved during dust episodes was approx. 0.90 and variable but wavelength neutral reflecting the presence of urban haze with the dust. Downwind at Anmyon Island SSA was considerably higher, approx. 0.94, but wavelength neutral for dust episodes and spectrally dependent during non dust periods. (5) Satellite retrievals show major aerosol features moving from Asia over the Pacific; however, determining seasonal-average aerosol effects is hampered by sampling frequency and large-scale cloud systems that obscure key parts of aerosol patterns. Preliminary calculations using, satellite-retrieved AOD fields and initial ACE-Asia aerosol properties (including sulfates, soot, and dust) yield clear-sky aerosol radiative effects in the seasonal-average ACE-Asia plume exceeding those of manmade greenhouse gases. Quantifying all-sky direct aerosol radiative effects is complicated by the need to define the height of absorbing aerosols with respect to cloud decks.

  6. Physical attributes of some clouds amid a forest ecosystem's trees

    USGS Publications Warehouse

    DeFelice, Thomas P.

    2002-01-01

    Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.

  7. Photometric properties of Triton hazes

    NASA Technical Reports Server (NTRS)

    Hillier, J.; Veverka, J.

    1994-01-01

    Voyager imaging observations of Triton have been used to investigate the characteristics of the atmospheric hazes on Triton at three wavelengths: violet (0.41 micrometers), blue (0.48 micrometers), and green (0.56 micrometers). The globally averaged optical depth is wavelength dependent, varying from 0.034 in green to 0.063 in violet. These photometric results are dominated by the properties of localized discrete clouds rather than by those of the thinner, more widespread haze known to occur on Triton. The cloud particles are bright, with single-scattering albedos near unity at all three wavelengths, suggestive of a transparent icy condensate. The asymmetry parameter (+0.6) and the wavelength dependence of the optical depth both indicate cloud particles 0.2-0.4 micrometers in radius. The clouds are concentrated at 50-60 deg S latitude, where opacities up to three times the global average are observed. This is the same latitude region where most of the evidence for current surface activity is found, suggesting that the clouds may be related to the plumes or at least to some process connected with the sublimation of the south polar cap. The effects of possible temporal variations in the haze opacity are examined. Increases in the haze opacity tend to redden Triton. However, the degree of reddening is not sufficient to explain the full range of observed changed in Triton over the past decade; variations in the surface properties appear to be necessary.

  8. Response to marine cloud brightening in a multi-model ensemble

    NASA Astrophysics Data System (ADS)

    Stjern, Camilla W.; Muri, Helene; Ahlm, Lars; Boucher, Olivier; Cole, Jason N. S.; Ji, Duoying; Jones, Andy; Haywood, Jim; Kravitz, Ben; Lenton, Andrew; Moore, John C.; Niemeier, Ulrike; Phipps, Steven J.; Schmidt, Hauke; Watanabe, Shingo; Egill Kristjánsson, Jón

    2018-01-01

    Here we show results from Earth system model simulations from the marine cloud brightening experiment G4cdnc of the Geoengineering Model Intercomparison Project (GeoMIP). The nine contributing models prescribe a 50 % increase in the cloud droplet number concentration (CDNC) of low clouds over the global oceans in an experiment dubbed G4cdnc, with the purpose of counteracting the radiative forcing due to anthropogenic greenhouse gases under the RCP4.5 scenario. The model ensemble median effective radiative forcing (ERF) amounts to -1.9 W m-2, with a substantial inter-model spread of -0.6 to -2.5 W m-2. The large spread is partly related to the considerable differences in clouds and their representation between the models, with an underestimation of low clouds in several of the models. All models predict a statistically significant temperature decrease with a median of (for years 2020-2069) -0.96 [-0.17 to -1.21] K relative to the RCP4.5 scenario, with particularly strong cooling over low-latitude continents. Globally averaged there is a weak but significant precipitation decrease of -2.35 [-0.57 to -2.96] % due to a colder climate, but at low latitudes there is a 1.19 % increase over land. This increase is part of a circulation change where a strong negative top-of-atmosphere (TOA) shortwave forcing over subtropical oceans, caused by increased albedo associated with the increasing CDNC, is compensated for by rising motion and positive TOA longwave signals over adjacent land regions.

  9. The case against climate regulation via oceanic phytoplankton sulphur emissions.

    PubMed

    Quinn, P K; Bates, T S

    2011-11-30

    More than twenty years ago, a biological regulation of climate was proposed whereby emissions of dimethyl sulphide from oceanic phytoplankton resulted in the formation of aerosol particles that acted as cloud condensation nuclei in the marine boundary layer. In this hypothesis--referred to as CLAW--the increase in cloud condensation nuclei led to an increase in cloud albedo with the resulting changes in temperature and radiation initiating a climate feedback altering dimethyl sulphide emissions from phytoplankton. Over the past two decades, observations in the marine boundary layer, laboratory studies and modelling efforts have been conducted seeking evidence for the CLAW hypothesis. The results indicate that a dimethyl sulphide biological control over cloud condensation nuclei probably does not exist and that sources of these nuclei to the marine boundary layer and the response of clouds to changes in aerosol are much more complex than was recognized twenty years ago. These results indicate that it is time to retire the CLAW hypothesis.

  10. Potential climatic impact of organic haze on early Earth.

    PubMed

    Hasenkopf, Christa A; Freedman, Miriam A; Beaver, Melinda R; Toon, Owen B; Tolbert, Margaret A

    2011-03-01

    We have explored the direct and indirect radiative effects on climate of organic particles likely to have been present on early Earth by measuring their hygroscopicity and cloud nucleating ability. The early Earth analog aerosol particles were generated via ultraviolet photolysis of an early Earth analog gas mixture, which was designed to mimic possible atmospheric conditions before the rise of oxygen. An analog aerosol for the present-day atmosphere of Saturn's moon Titan was tested for comparison. We exposed the early Earth aerosol to a range of relative humidities (RHs). Water uptake onto the aerosol was observed to occur over the entire RH range tested (RH=80-87%). To translate our measurements of hygroscopicity over a specific range of RHs into their water uptake ability at any RH < 100% and into their ability to act as cloud condensation nuclei (CCN) at RH > 100%, we relied on the hygroscopicity parameter κ, developed by Petters and Kreidenweis. We retrieved κ=0.22 ±0.12 for the early Earth aerosol, which indicates that the humidified aerosol (RH < 100 %) could have contributed to a larger antigreenhouse effect on the early Earth atmosphere than previously modeled with dry aerosol. Such effects would have been of significance in regions where the humidity was larger than 50%, because such high humidities are needed for significant amounts of water to be on the aerosol. Additionally, Earth organic aerosol particles could have activated into CCN at reasonable-and even low-water-vapor supersaturations (RH > 100%). In regions where the haze was dominant, it is expected that low particle concentrations, once activated into cloud droplets, would have created short-lived, optically thin clouds. Such clouds, if predominant on early Earth, would have had a lower albedo than clouds today, thereby warming the planet relative to current-day clouds. © Mary Ann Liebert, Inc.

  11. Quantifying Above-Cloud Aerosols through Integrating Multi-Sensor Measurements from A-Train Satellites

    NASA Technical Reports Server (NTRS)

    Zhang, Yan

    2012-01-01

    Quantifying above-cloud aerosols can help improve the assessment of aerosol intercontinental transport and climate impacts. Large-scale measurements of aerosol above low-level clouds had been generally unexplored until very recently when CALIPSO lidar started to acquire aerosol and cloud profiles in June 2006. Despite CALIPSO s unique capability of measuring above-cloud aerosol optical depth (AOD), such observations are substantially limited in spatial coverage because of the lidar s near-zero swath. We developed an approach that integrates measurements from A-Train satellite sensors (including CALIPSO lidar, OMI, and MODIS) to extend CALIPSO above-cloud AOD observations to substantially larger areas. We first examine relationships between collocated CALIPSO above-cloud AOD and OMI absorbing aerosol index (AI, a qualitative measure of AOD for elevated dust and smoke aerosol) as a function of MODIS cloud optical depth (COD) by using 8-month data in the Saharan dust outflow and southwest African smoke outflow regions. The analysis shows that for a given cloud albedo, above-cloud AOD correlates positively with AI in a linear manner. We then apply the derived relationships with MODIS COD and OMI AI measurements to derive above-cloud AOD over the whole outflow regions. In this talk, we will present spatial and day-to-day variations of the above-cloud AOD and the estimated direct radiative forcing by the above-cloud aerosols.

  12. Ozone profiles retrieval from SCIAMACHY Chappuis-Wulf limb scattered spectra using MART

    NASA Astrophysics Data System (ADS)

    Wang, ZiJun; Chen, ShengBo; Jin, LiHua; Yang, ChunYan

    2011-02-01

    The Scanning Imaging Absorption spectroMeter for Atmospheric ChartographY (SCIAMACHY) instrument, launched on the Envisat satellite in March 2002, measures the earthshine radiance, simultaneously from the ultraviolet (UV) to the near infrared (NIR), in the three viewing geometries: nadir, limb, and occultation. These measurements are used to retrieve both the total amount and vertical profiles of a large number of atmospheric constituents. In this paper, stratospheric ozone profiles between 15 and 40 km altitude are retrieved on 3 km grids from SCIAMACHY limb scattered radiance in the Chappuis-Wulf band. The study employs a new multiplicative algebraic reconstruction technique (MART) coupled with the radiative transfer model SCIATRAN. This technique is outstanding in that more than one measurement vector element can be used to retrieve the ozone density at any altitude. Furthermore, it is straightforward to understand, easy to implement and likely to produce stable results. Radiance normalization and wavelength pairing is applied to radiance as an intermediate step, using the wavelengths 525 nm, 600 nm and 675 nm. The sensitivity of ozone retrieval by this method to tangent altitude pointing, surface albedo, aerosol and cloud parameters is studied, and the results show that the retrieval impact due to tangent altitude pointing bias is the biggest up to 75% with 1 km shift, and the impact of albedo is limited within 5%. The effect of boundary visibility and cloud parameters can be ignored since their impact is too small. The effectiveness of the retrieval is demonstrated using a set of coincident SCIAMACHY products at Hefei that shows a mean bias of less than 12% between 15 and 40 km, and with a better accuracy of 5% from 16 to 36 km.

  13. Measurements of solar and terrestrial heating and cooling rate profiles in Arctic and sub-tropic stratocumulus

    NASA Astrophysics Data System (ADS)

    Gottschalk, Matthias; Lauermann, Felix; Ehrlich, André; Siebert, Holger; Wendisch, Manfred

    2017-04-01

    Stratocumulus covers approximately 20 % (annually averaged) of the Earth's surface and thus strongly influences the atmospheric and surface radiative energy budget resulting in radiative cooling and heating effects. Globally, the solar cooling effect of the widespread sub-tropical stratocumulus dominates. However, in the Arctic the solar cloud albedo effect (cooling) is often smaller than the thermal-infrared greenhouse effect (warming), which is a result of the lower incoming solar radiation and the low cloud base height. Therefore, Arctic stratocumulus mostly warms the atmosphere and surface below the cloud. Additionally, different environmental conditions lead to differences between sub-tropical and Arctic stratocumulus. Broadband pyranometers and pyrgeometers will be used to measure heating and cooling rate profiles in and above stratocumulus. For this purpose two slowly moving platforms are used (helicopter and tethered balloon) in order to consider for the long response times of both broadband radiation sensors. Two new instrument packages are developed for the applied tethered balloon and helicopter platforms, which will be operated within Arctic and sub-tropical stratocumulus, respectively. In June 2017, the balloon will be launched from a sea ice floe north of 80 °N during the Arctic Balloon-borne profiling Experiment (ABEX) as part of (AC)3 (Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms) Transregional Collaborative Research Center. The helicopter will sample sub-tropical stratocumulus over the Azores in July 2017.

  14. Simulation of Optical Properties and Direct and Indirect Radiative Effects of Smoke Aerosols Over Marine Stratocumulus Clouds During Summer 2008 in California With the Regional Climate Model RegCM

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Solmon, F.; Roblou, L.; Peers, F.; Turquety, S.; Waquet, F.; Jethva, H.; Torres, O.

    2017-10-01

    The regional climate model RegCM has been modified to better account for the climatic effects of biomass-burning particles. Smoke aerosols are represented by new tracers with consistent radiative and hygroscopic properties to simulate the direct radiative forcing (DRF), and a new parameterization has been integrated for relating the droplet number concentration to the aerosol concentration for marine stratocumulus clouds (Sc). RegCM has been tested during the summer of 2008 over California, when extreme concentration of smoke, together with the presence of Sc, is observed. This work indicates that significant aerosol optical depth (AOD) ( 1-2 at 550 nm) is related to the intense 2008 fires. Compared to Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer, the regional pattern of RegCM AOD is well represented although the magnitude is lower than satellite observations. Comparisons with Polarization and Directionality of Earth Reflectances (POLDER) above-clouds aerosol optical depth (ACAOD) show the ability of RegCM to simulate realistic ACAOD during the transport of smoke above the Pacific Ocean. The simulated single scattering albedo is 0.90 (at 550 nm) near biomass-burning sources, consistent with OMI and POLDER, and smoke leads to shortwave heating rates 1.5-2°K d-1. RegCM is not able to correctly resolve the daily patterns in cloud properties notably due to its coarse horizontal resolutions. However, the changes in the sign of the DRF at top of atmosphere (TOA) (negative to positive) from clear-sky to all-sky conditions is well simulated. Finally, the "aerosol-cloud" parameterization allows simulating an increase of the cloud optical depth for significant concentrations, leading to large perturbations of radiative fluxes at TOA.

  15. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    NASA Astrophysics Data System (ADS)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  16. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    NASA Astrophysics Data System (ADS)

    Carlson, Henrik; Caballero, Rodrigo

    2017-08-01

    Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2-thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has ˜ 11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  17. Global shortwave energy budget at the earth's surface from ERBE observations

    NASA Technical Reports Server (NTRS)

    Breon, Francois-Marie; Frouin, Robert

    1994-01-01

    A method is proposed to compute the net solar (shortwave) irradiance at the earth's surface from Earth Radiation Budget Experiment (ERBE) data in the S4 format. The S4 data are monthly averaged broadband planetary albedo collected at selected times during the day. Net surface shortwave irradiance is obtained from the shortwave irradiance incident at the top of the atmosphere (known) by subtracting both the shortwave energy flux reflected by the earth-atmosphere system (measured) and the energy flux absorbed by the atmosphere (modeled). Precalculated atmospheric- and surface-dependent functions that characterize scattering and absorption in the atmosphere are used, which makes the method easily applicable and computationally efficient. Four surface types are distinguished, namely, ocean, vegetation, desert, and snow/ice. Over the tropical Pacific Ocean, the estimates based on ERBE data compare well with those obtained from International Satellite Cloud Climatology Project (ISCCP) B3 data. For the 9 months analyzed the linear correlation coefficient and the standard difference between the two datasets are 0.95 and 14 W/sq m (about 6% of the average shortwave irradiance), respectively, and the bias is 15 W/sq m (higher ERBE values). The bias, a strong function of ISCCP satellite viewing zenith angle, is mostly in the ISCCP-based estimates. Over snow/ice, vegetation, and desert no comparison is made with other satellite-based estimates, but theoretical calculations using the discrete ordinate method suggest that over highly reflective surfaces (snow/ice, desert) the model, which accounts crudely for multiple reflection between the surface and clouds, may substantially overestimate the absorbed solar energy flux at the surface, especially when clouds are optically thick. The monthly surface shortwave irradiance fields produced for 1986 exhibit the main features characteristic of the earth's climate. As found in other studies, our values are generally higher than Esbensen and Kushnir's by as much as 80 W/sq m in the tropical oceans. A cloud parameter, defined as the difference between clear-sky and actual irradiances normalized to top-of-atmosphere clear-sky irradiance, is also examined. This parameter, minimally affected by sun zenith angle, is higher in the midlatitude regions of storm tracks than in the intertropical convergence zone (ITCZ), suggesting that, on average, the higher cloud coverage in midlatitudes is more effective at reducing surface shortwave irradiance than opaque, convective, yet sparser clouds in the ITCZ. Surface albedo estimates are realistic, generally not exceeding 0.06 in the ocean, as high as 0.9 in polar regions, and reaching 0.5 in the Sahara and Arabian deserts.

  18. Influence of particle size distribution on reflected and transmitted light from clouds.

    PubMed

    Kattawar, G W; Plass, G N

    1968-05-01

    The light reflected and transmitted from clouds with various drop size distributions is calculated by a Monte Carlo technique. Six different models are used for the drop size distribution: isotropic, Rayleigh, haze continental, haze maritime, cumulus, and nimbostratus. The scattering function for each model is calculated from the Mie theory. In general, the reflected and transmitted radiances for the isotropic and Rayleigh models tend to be similar, as are those for the various haze and cloud models. The reflected radiance is less for the haze and cloud models than for the isotropic and Rayleigh models/except for an angle of incidence near the horizon when it is larger around the incident beam direction. The transmitted radiance is always much larger for the haze and cloud models near the incident direction; at distant angles it is less for small and moderate optical thicknesses and greater for large optical thicknesses (all comparisons to isotropic and Rayleigh models). The downward flux, cloud albedo, and ean optical path are discussed. The angular spread of the beam as a function of optical thickness is shown for the nimbostratus model.

  19. Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season: POLDER/AeroCom Comparison Above Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peers, F.; Bellouin, N.; Waquet, F.

    Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550nm. These results have been used to evaluate the simulation of aerosols above clouds in 5 AeroCom (Aerosol Comparisons between Observations and Models) models (GOCART, HadGEM3, ECHAM5-HAM2, OsloCTM2 and SPRINTARS). Most models do not reproduce the observed large aerosol load episodes. The comparison highlightsmore » the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, some models overestimate the ACSSA. In accordance with recent recommendations of the black carbon refractive index, a higher prescription of the imaginary part allows a better comparison with POLDER’s ACSSA.« less

  20. A critical look at spatial scale choices in satellite-based aerosol indirect effect studies

    NASA Astrophysics Data System (ADS)

    Grandey, B. S.; Stier, P.

    2010-06-01

    Analysing satellite datasets over large regions may introduce spurious relationships between aerosol and cloud properties due to spatial variations in aerosol type, cloud regime and synoptic regime climatologies. Using MODerate resolution Imaging Spectroradiometer data, we calculate relationships between aerosol optical depth τa, derived liquid cloud droplet effective number concentration Ne and liquid cloud droplet effective radius re at different spatial scales. Generally, positive values of dlnNe dlnτa are found for ocean regions, whilst negative values occur for many land regions. The spatial distribution of dlnre dlnτa shows approximately the opposite pattern, with generally postive values for land regions and negative values for ocean regions. We find that for region sizes larger than 4°×4°, spurious spatial variations in retrieved cloud and aerosol properties can introduce widespread significant errors to calculations of dlnNe dlnτa and dlnre dlnτa . For regions on the scale of 60°×60°, these methodological errors may lead to an overestimate in global cloud albedo effect radiative forcing of order 80%.

Top