Sample records for cloud chemical models

  1. The Kimball Free-Cloud Model: A Failed Innovation in Chemical Education?

    ERIC Educational Resources Information Center

    Jensen, William B.

    2014-01-01

    This historical review traces the origins of the Kimball free-cloud model of the chemical bond, otherwise known as the charge-cloud or tangent-sphere model, and the central role it played in attempts to reform the introductory chemical curriculum at both the high school and college levels in the 1960s. It also critically evaluates the limitations…

  2. A microphysical parameterization of aqSOA and sulfate formation in clouds

    NASA Astrophysics Data System (ADS)

    McVay, Renee; Ervens, Barbara

    2017-07-01

    Sulfate and secondary organic aerosol (cloud aqSOA) can be chemically formed in cloud water. Model implementation of these processes represents a computational burden due to the large number of microphysical and chemical parameters. Chemical mechanisms have been condensed by reducing the number of chemical parameters. Here an alternative is presented to reduce the number of microphysical parameters (number of cloud droplet size classes). In-cloud mass formation is surface and volume dependent due to surface-limited oxidant uptake and/or size-dependent pH. Box and parcel model simulations show that using the effective cloud droplet diameter (proportional to total volume-to-surface ratio) reproduces sulfate and aqSOA formation rates within ≤30% as compared to full droplet distributions; other single diameters lead to much greater deviations. This single-class approach reduces computing time significantly and can be included in models when total liquid water content and effective diameter are available.

  3. Chemistry in dynamically evolving clouds

    NASA Technical Reports Server (NTRS)

    Tarafdar, S. P.; Prasad, S. S.; Huntress, W. T., Jr.; Villere, K. R.; Black, D. C.

    1985-01-01

    A unified model of chemical and dynamical evolution of isolated, initially diffuse and quiescent interstellar clouds is presented. The model uses a semiempirically derived dependence of the observed cloud temperatures on the visual extinction and density. Even low-mass, low-density, diffuse clouds can collapse in this model, because the inward pressure gradient force assists gravitational contraction. In contrast, previous isothermal collapse models required the low-mass diffuse clouds to be unrealistically cold before gravitational contraction could start. Theoretically predicted dependences of the column densities of various atoms and molecules, such as C and CO, on visual extinction in diffuse clouds are in accord with observations. Similarly, the predicted dependences of the fractional abundances of various chemical species (e.g., CO, H2CO, HCN, HCO(+)) on the total hydrogen density in the core of the dense clouds also agree with observations reported to date in the literature. Compared with previous models of interstellar chemistry, the present model has the potential to explain the wide spectrum of chemical and physical properties of both diffuse and dense clouds with a common formalism employing only a few simple initial conditions.

  4. Laboratory and modeling studies of chemistry in dense molecular clouds

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Prasad, S. S.; Mitchell, G. F.

    1980-01-01

    A chemical evolutionary model with a large number of species and a large chemical library is used to examine the principal chemical processes in interstellar clouds. Simple chemical equilibrium arguments show the potential for synthesis of very complex organic species by ion-molecule radiative association reactions.

  5. On The Cloud Processing of Aerosol Particles: An Entraining Air Parcel Model With Two-dimensional Spectral Cloud Microphysics and A New Formulation of The Collection Kernel

    NASA Astrophysics Data System (ADS)

    Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine

    A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.

  6. Evaluation of modeled cloud chemistry mechanism against laboratory irradiation experiments: The HxOy/iron/carboxylic acid chemical system

    NASA Astrophysics Data System (ADS)

    Long, Yoann; Charbouillot, Tiffany; Brigante, Marcello; Mailhot, Gilles; Delort, Anne-Marie; Chaumerliac, Nadine; Deguillaume, Laurent

    2013-10-01

    Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2rad /O2rad - and HOrad ) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations.

  7. Gas-Grain Chemical Models: Inclusion of a Grain Size Distribution and a Study Of Young Stellar Objects in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler Andrew

    2017-06-01

    Computational models of interstellar gas-grain chemistry have aided in our understanding of star-forming regions. Chemical kinetics models rely on a network of chemical reactions and a set of physical conditions in which atomic and molecular species are allowed to form and react. We replace the canonical single grain-size in our chemical model MAGICKAL with a grain size distribution and analyze the effects on the chemical composition of the gas and grain surface in quiescent and collapsing dark cloud models. We find that a grain size distribution coupled with a temperature distribution across grain sizes can significantly affect the bulk ice composition when dust temperatures fall near critical values related to the surface binding energies of common interstellar chemical species. We then apply the updated model to a study of ice formation in the cold envelopes surrounding massive young stellar objects in the Magellanic Clouds. The Magellanic Clouds are local satellite galaxies of the Milky Way, and they provide nearby environments to study star formation at low metallicity. We expand the model calculation of dust temperature to include a treatment for increased interstellar radiation field intensity; we vary the radiation field to model the elevated dust temperatures observed in the Magellanic Clouds. We also adjust the initial elemental abundances used in the model, guided by observations of Magellanic Cloud HII regions. We are able to reproduce the relative ice fractions observed, indicating that metal depletion and elevated grain temperature are important drivers of the envelope ice composition. The observed shortfall in CO in Small Magellanic Cloud sources can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH 3OH abundance is found to be enhanced (relative to total carbon abundance) in low-metallicity models, providing seed material for complex organic molecule formation. We conclude with a preliminary study of the recently discovered hot core in the Large Magellanic Cloud; we create a grid of models to simulate hot core formation in Magellanic Cloud environments, comparing them to models and observations of well-characterized galactic counterparts.

  8. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    DOE PAGES

    Chen, Ying; Zhang, Yang; Fan, Jiwen; ...

    2015-08-18

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less

  9. Application of an Online-Coupled Regional Climate Model, WRF-CAM5, over East Asia for Examination of Ice Nucleation Schemes: Part I. Comprehensive Model Evaluation and Trend Analysis for 2006 and 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Zhang, Yang; Fan, Jiwen

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM2.5, and PM10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less

  10. Application of an online-coupled regional climate model, WRF-CAM5, over East Asia for examination of ice nucleation schemes: Part I. Comprehensive model evaluation and trend analysis for 2006 and 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ying; Zhang, Yang; Fan, Jiwen

    Online-coupled climate and chemistry models are necessary to realistically represent the interactions between climate variables and chemical species and accurately simulate aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a two-part paper, simulations from the Weather Research and Forecasting model coupled with the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with the default heterogeneous ice nucleation parameterization over East Asia for two full years: 2006 and 2011. A comprehensive model evaluation is performed using satellite and surface observations. The model shows an overall acceptable performance for major meteorological variables at themore » surface and in the boundary layer, as well as column variables (e.g., precipitation, cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables (e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the model treatments for cloud processes, especially cloud droplets and ice nucleation, as well as to reduce uncertainty in the satellite retrievals. The model simulates well the column abundances of chemical species except for column SO 2 but relatively poor for surface concentrations of several species such as CO, NO 2, SO 2, PM 2.5, and PM 10. Several reasons could contribute to the underestimation of major chemical species in East Asia including underestimations of anthropogenic emissions and natural dust emissions, uncertainties in the spatial and vertical distributions of the anthropogenic emissions, as well as biases in meteorological, radiative, and cloud predictions. Despite moderate to large biases in the chemical predictions, the model performance is generally consistent with or even better than that reported for East Asia with only a few exceptions. The model generally reproduces the observed seasonal variations and the difference between 2006 and 2011 for most variables or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for long-term simulations at a regional scale and suggest several areas of potential improvements.« less

  11. Modeling the partitioning of organic chemical species in cloud phases with CLEPS (1.1)

    NASA Astrophysics Data System (ADS)

    Rose, Clémence; Chaumerliac, Nadine; Deguillaume, Laurent; Perroux, Hélène; Mouchel-Vallon, Camille; Leriche, Maud; Patryl, Luc; Armand, Patrick

    2018-02-01

    The new detailed aqueous-phase mechanism Cloud Explicit Physico-chemical Scheme (CLEPS 1.0), which describes the oxidation of isoprene-derived water-soluble organic compounds, is coupled with a warm microphysical module simulating the activation of aerosol particles into cloud droplets. CLEPS 1.0 was then extended to CLEPS 1.1 to include the chemistry of the newly added dicarboxylic acids dissolved from the particulate phase. The resulting coupled model allows the prediction of the aqueous-phase concentrations of chemical compounds originating from particle scavenging, mass transfer from the gas-phase and in-cloud aqueous chemical reactivity. The aim of the present study was more particularly to investigate the effect of particle scavenging on cloud chemistry. Several simulations were performed to assess the influence of various parameters on model predictions and to interpret long-term measurements conducted at the top of Puy de Dôme (PUY, France) in marine air masses. Specific attention was paid to carboxylic acids, whose predicted concentrations are on average in the lower range of the observations, with the exception of formic acid, which is rather overestimated in the model. The different sensitivity runs highlight the fact that formic and acetic acids mainly originate from the gas phase and have highly variable aqueous-phase reactivity depending on the cloud acidity, whereas C3-C4 carboxylic acids mainly originate from the particulate phase and are supersaturated in the cloud.

  12. A framework for expanding aqueous chemistry in the ...

    EPA Pesticide Factsheets

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM − KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from bio

  13. Theoretical studies in interstellar cloud chemistry

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Prasad, S. S.

    1993-01-01

    This final report represents the completion of the three tasks under the purchase order no. SCPDE5620,1,2F. Chemical composition of gravitationally contracting, but otherwise quiescent, interstellar clouds and of interstellar clouds traversed by high velocity shocks, were modeled in a comprehensive manner that represents a significant progress in modeling these objects. The evolutionary chemical modeling, done under this NASA contract, represents a notable advance over the 'classical' fixed condition equilibrium models because the evolutionary models consider not only the chemical processes but also the dynamical processes by which the dark interstellar clouds may have assumed their present state. The shock calculations, being reported here, are important because they extend the limited chemical composition derivable from dynamical calculations for the total density and temperature structures behind the shock front. In order to be tractable, the dynamical calculations must severely simplify the chemistry. The present shock calculations take the shock profiles from the dynamical calculations and derive chemical composition in a comprehensive manner. The results of the present modeling study are still to be analyzed with reference to astronomical observational data and other contemporary model predictions. As far as humanly possible, this analysis will be continued with CRE's (Creative Research Enterprises's) IR&D resources, until a sponsor is found.

  14. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    NASA Astrophysics Data System (ADS)

    Fahey, Kathleen M.; Carlton, Annmarie G.; Pye, Havala O. T.; Baek, Jaemeen; Hutzell, William T.; Stanier, Charles O.; Baker, Kirk R.; Wyat Appel, K.; Jaoui, Mohammed; Offenberg, John H.

    2017-04-01

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM - KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM - KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from biogenic epoxides (AQCHEM - KMTI), normalized mean error and bias statistics are slightly improved for 2-methyltetrols and 2-methylglyceric acid at the Research Triangle Park measurement site in North Carolina during the Southern Oxidant and Aerosol Study (SOAS) period. The added in-cloud chemistry leads to a monthly average increase of 11-18 % in cloud SOA at the surface in the eastern United States for June 2013.

  15. The clouds of Venus. [physical and chemical properties

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1975-01-01

    The physical and chemical properties of the clouds of Venus are reviewed, with special emphasis on data that are related to cloud dynamics. None of the currently-popular interpretations of cloud phenomena on Venus is consistent with all the data. Either a considerable fraction of the observational evidence is faulty or has been misinterpreted, or the clouds of Venus are much more complex than the current simplistic models. Several lines of attack are suggested to resolve some of the contradictions. A sound understanding of the clouds appears to be several years in the future.

  16. Investigation of the Factors Influencing Volatile Chemical Fate During Steady-state Accretion on Wet-growing Hail

    NASA Astrophysics Data System (ADS)

    Michael, R. A.; Stuart, A. L.

    2007-12-01

    Phase partitioning during freezing affects the transport and distribution of volatile chemical species in convective clouds. This consequently can have impacts on tropospheric chemistry, air quality, pollutant deposition, and climate change. Here, we discuss the development, evaluation, and application of a mechanistic model for the study and prediction of volatile chemical partitioning during steady-state hailstone growth. The model estimates the fraction of a chemical species retained in a two-phase freezing hailstone. It is based upon mass rate balances over water and solute for accretion under wet-growth conditions. Expressions for the calculation of model components, including the rates of super-cooled drop collection, shedding, evaporation, and hail growth were developed and implemented based on available cloud microphysics literature. Solute fate calculations assume equilibrium partitioning at air-liquid and liquid-ice interfaces. Currently, we are testing the model by performing mass balance calculations, sensitivity analyses, and comparison to available experimental data. Application of the model will improve understanding of the effects of cloud conditions and chemical properties on the fate of dissolved chemical species during hail growth.

  17. The Impact of Cloud Correction on the Redistribution of Reactive Nitrogen Species

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Doty, K.; Cameron, R.

    2007-12-01

    Clouds are particularly important to air quality. Yet, correct prediction of clouds in time and space remains to be a great challenge for the air quality models. One aspect of cloud impact on air quality is the modification of photolysis reaction rates by clouds. Clouds can significantly alter the solar radiation in the wavelengths affecting the photolysis rates. Such modifications significantly impact atmospheric photochemistry and alter the chemical composition of the boundary layer. It also alters the partitioning of chemical compounds by creating a new equilibrium state. Since air quality models are often being used for air quality and emission reduction assessment, understanding the uncertainty caused by inaccurate cloud prediction is imperative. In this study we investigate the radiative impact of clouds in altering the partitioning of nitrogen species in the emission source regions. Such alterations affect the local nitrogen budget and thereby alter the atmospheric composition within the boundary layer. The results from two model simulations, one in which the model predicted clouds are used (control), and the other in which the satellite observed clouds have been assimilated in the model were analyzed. We use satellite retrieved cloud transmissivity, cloud top height, and observed cloud fraction to correct photolysis rates for cloud cover in the Community Multiscale Air Quality (CMAQ) modeling system. The simulations were performed at 4- and 12-km resolution domains over Texas, extending east to Mississippi, for the period of August 24 to August 31, 2000. The results clearly indicate that not using the cloud observations in the model can drastically alter the predicted atmospheric chemical composition within the boundary layer and exaggerate or under-predict the ozone concentrations. Cloud impact is acute and more pronounced over the emission source regions and can lead to drastic errors in the model predictions of ozone and its precursors. Clouds also increased the lifetime of ozone precursors leading to their transport out of the source regions and caused further ozone production downwind. The longer lifetimes for NOx and its transport over regions high in biogenic hydrocarbon emissions (in the eastern part of the domain) led to increased ozone production that was missing in the control simulation. An indirect impact of the clouds in the emission source areas is the alteration in partitioning of nitrogen oxides and the impact on nitrogen budget due to surface removal. This is caused by the disparity between the deposition velocity of NOx and the nitrates that are produced from oxidation of NOx. Under clear skies, NOx undergoes a chemical transformation and produces nitrates such as HNO3 and PAN. In the presence of thick clouds, due to the reduction in the photochemical activities, nitrogen monoxide (NO) rapidly consumes ozone (O3) and produces nitrogen dioxide (NO2) while the production of HNO3 and loss of NOx due to chemical transformation is reduced. Therefore, in one case there is more loss of nitrogen in the vicinity of emission sources. A detailed analysis of two emission source regions, Houston-Galveston and New Orleans area, will be presented. Acknowledgments. This work was accomplished under partial support from Cooperative Agreement between the University of Alabama in Huntsville and the Minerals Management Service on the Gulf of Mexico Issues.

  18. Uptake and mobilization of organic chemicals with clouds: evidence from a hail sample.

    PubMed

    Ma, Jianmin; Sverko, Ed; Su, Yushan; Zhang, Junhua; Gao, Hong

    2013-09-03

    Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) were measured in hail samples collected during a storm that occurred on a spring morning in Toronto, Canada. The presence of these organic chemicals in hail suggests that clouds likely provide an atmospheric transport pathway for these substances in the free atmosphere. Results reported here may carry significant implications for atmospheric transport, mass balance, tropospheric cold trapping, and environmental fate of organic chemicals. Backward trajectories along with measured and modeled cloud cover show that clouds causing the hail event were formed and advected from the midwestern and southeastern United States. After being emitted to the atmosphere, the organic chemicals were likely lifted by atmospheric ascending motions to a higher atmospheric elevation and partitioned onto clouds. These clouds then carry the organic chemicals to a downwind location where they are deposited to the ground surface via precipitation. We found that the organic chemicals with high solubility and vapor pressure tend to partition into clouds through sorption to cloudwater droplets and ice particles. It was found that approximately 7-30% of pyrene could be sorbed into cloudwater droplets and ice particles in this hail event at the expense of reduced gas-phase concentrations.

  19. Assessing cloud radiative effects on tropospheric photolysis rates and key oxidants during aircraft campaigns using satellite cloud observations and a global chemical transport model

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Liu, H.; Crawford, J. H.; Chen, G.; Voulgarakis, A.; Fairlie, T. D.; Duncan, B. N.; Ham, S. H.; Kato, S.; Payer Sulprizio, M.; Yantosca, R.

    2017-12-01

    Clouds affect tropospheric photochemistry through modifying solar radiation that determines photolysis rates. Observational and modeling studies have indicated that photolysis rates are enhanced above and in the upper portion of cloud layers and are reduced below optically thick clouds due to their dominant backscattering effect. However, large uncertainties exist in the representation of cloud spatiotemporal (especially vertical) distributions in global models, which makes understanding of cloud radiative effects on tropospheric chemistry challenging. Our previous study using a global 3-D chemical transport model (GEOS-Chem) driven by various meteorological data sets showed that the radiative effects of clouds on photochemistry are more sensitive to the differences in the vertical distribution of clouds than to those in the magnitude of column cloud optical depths. In this work, we evaluate monthly mean cloud optical properties and distributions in the MERRA-2 reanalysis with those in C3M, a 3-D cloud data product developed at NASA Langley Research Center and merged from multiple A-Train satellite (CERES, CloudSat, CALIPSO, and MODIS) observations. We conduct tropospheric chemistry simulations for the periods of several aircraft campaigns, including ARCTAS (April, June-July, 2008), DC3 (May-June, 2012), and SEAC4RS (August-September, 2013) with GEOS-Chem driven by MERRA-2. We compare model simulations with and without constraints of cloud optical properties and distributions from C3M, and evaluate model photolysis rates (J[O1D] and J[NO2]) and key oxidants (e.g., OH and ozone) with aircraft profile measurements. We will assess whether the constraints provided by C3M improve model simulations of photolysis rates and oxidants as well as their variabilities.

  20. Cloud draft structure and trace gas transport

    NASA Technical Reports Server (NTRS)

    Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.

    1990-01-01

    During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.

  1. Chemical Processing of Organics within Clouds: Pilot Study at Whiteface Mountain in Upstate NY

    NASA Astrophysics Data System (ADS)

    Lance, S.; Carlton, A. G.; Barth, M. C.; Schwab, J. J.; Minder, J. R.; Freedman, J. M.; Zhang, J.; Brandt, R. E.; Casson, P.; Brewer, M.; Orlowski, D.; Christiansen, A.

    2017-12-01

    Aqueous chemical processing within cloud and fog water has been identified as a key process in the formation of secondary organic aerosol (SOA) mass, which is found abundantly throughout the troposphere. Yet, significant uncertainty remains regarding the organic chemical reactions taking place within clouds and the conditions under which those reactions occur. Routine longterm measurements from the Whiteface Mountain (WFM) Research Observatory in upstate NY provide a unique and broad view of regional air quality relevant to the formation of particulate matter within clouds, largely due to the fact that the summit of WFM is within non-precipitating clouds 30-50% in summertime and the site is undisturbed by local sources. An NSF-funded Cloud Chemistry Workshop in Sept 2016 brought together key researchers at WFM to lay out the most pertinent scientific questions relevant to heterogeneous chemistry occurring within fogs and clouds and to discuss preliminary model intercomparisons. The workshop culminated in a plan to coordinate chemical analyses of cloud water samples focused on chemical constituents thought to be most relevant for SOA formation. Workshop participants also recommended that a pilot study be conducted at WFM to better characterize the meteorological conditions, airflow patterns and clouds intercepting the site, in preparation for future intensive field operations focused on the chemical processing of organics within clouds. This presentation will highlight the experimental design and preliminary observations from the pilot study taking place at WFM in August 2017. Upwind below-cloud measurements of aerosol CCN activation efficiency, size distribution and chemical composition will be compared with similar measurements made at the summit. Under certain conditions, we anticipate that aerosols measured at the summit between cloud events will be representative of cloud droplet residuals recently detrained from the frequent shallow cumulus intercepting the summit. Wind LIDAR and radiosonde observations will be used to link the below-cloud and summit observations. These pre- and post- `cloud processed' aerosols will also be compared with the chemical composition of cloud water samples to evaluate changes to the organic partitioning in the aqueous and aerosol phases.

  2. Trace gas exchanges and transports over the Amazonian rain forest

    NASA Technical Reports Server (NTRS)

    Garstang, Michael; Greco, Steve; Scala, John; Harriss, Robert; Browell, Edward; Sachse, Glenn; Simpson, Joanne; Tao, Wei-Kuo; Torres, Arnold

    1986-01-01

    Early results are presented from a program to model deep convective transport of chemical species by means of in situ data collection and numerical models. Data were acquired during the NASA GTE Amazon Boundary Layer Experiment in July-August 1985. Airborne instrumentation, including a UV-DIAL system, collected data on the O3, CO, NO, temperature and water vapor profiles from the surface to 400 mb altitude, while GOES imagery tracked convective clouds over the study area. A two-dimensional cloud model with small amplitude random temperature fluctuations at low levels, which simulated thermals, was used to describe the movements of the chemical species sensed in the convective atmosphere. The data was useful for evaluating the accuracy of the cloud model, which in turn was effective in describing the circulation of the chemical species.

  3. Ionisation in ultra-cool, cloud forming extrasolar planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane; the LEAP Team

    2015-04-01

    Transit spectroscopy provides evidence that extrasolare planets are covered in clouds, a finding that has been forecast by cloud model simulations 15 years ago. Atmospheres are strongly affected by clouds through their large opacity and their chemical activity. Cloud formation models allow to predict cloud particle sizes, their chemical composition and the composition of the remaining atmospheric gas (Woitke & Helling 2004, A&A 414; Helling & Woitke 2006, A&A 455), for example, as input for radiative transfer codes like Drift-Phoenix (Witte et al. 2009; A&A 506). These cloud particles are charged and can discharge, for example in form of lighting (Helling et al. 2013, ApJ 767; Bailey et al. 2014, ApJ 784). Earth observations demonstrate that lighting effects not only the local chemistry but also the electron budget of the atmosphere. This talk will present our work on cloud formation modelling and ionisation processes in cloud forming atmospheres. An hierarchy of ionisation processes leads to a vertically inhomogenously ionised atmosphere which has implications for planetary mass loss and global circulation pattern of planetary atmospheres. Processes involved, like Cosmic Ray ionisation, do also activate the local chemistry such that large hydrocarbon molecules form (Rimmer et al. 2014, IJAsB 13).

  4. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.

    2015-12-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24% to 48% enhancements of TS scoring for 6-h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3°C.

  5. MODELING NON-PRECIPITATING CUMULUS CLOUDS AS FLOW-THROUGH-REACTOR TRANSFORMER AND VENTING TRANSPORTER OF MIXED LAYER POLLUTANTS

    EPA Science Inventory

    A simple diagnostic model of cumulus convective clouds is developed and used in a sensitivity study to examine the extent to which the rate of change of mixed and cloud layer pollutant concentration is influenced by vertical transport and chemical transformation processes occurri...

  6. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case that the aerosol does play a role in invigorating convective clouds.

  7. Production of Lightning NO(x) and its Vertical Distribution Calculated from 3-D Cloud-scale Chemical Transport Model Simulations

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pickering, Kenneth; Stenchikov, Georgiy; Allen, Dale; DeCaria, Alex; Ridley, Brian; Lin, Ruei-Fong; Lang, Steve; Tao, Wei-Kuo

    2009-01-01

    A 3-D cloud scale chemical transport model that includes a parameterized source of lightning NO(x), based on observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (P(sub IC) and cloud-to-ground (P(sub CG)) flash is estimated by assuming various values of P(sub IC) and P(sub CG) for each storm and determining which production scenario yields NO(x) mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean P(sub CG) value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, P(sub IC) may be nearly equal to P(sub CG), which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NO(x), after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NO(x), remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a "C-shaped" profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NO(x) mass may place too much mass neat the surface and too little in the middle troposphere.

  8. Model nebulae and determination of the chemical composition of the Magellanic Clouds

    PubMed Central

    Aller, L. H.; Keyes, C. D.; Czyzak, S. J.

    1979-01-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems. PMID:16592633

  9. Atmospheric chemistry of a 33-34 hour old volcanic cloud from Hekla Volcano (Iceland): Insights from direct sampling and the application of chemical box modeling

    USGS Publications Warehouse

    Rose, William I.; Millard, G.A.; Mather, T.A.; Hunton, D.E.; Anderson, B.; Oppenheimer, C.; Thornton, B.F.; Gerlach, T.M.; Viggiano, A.A.; Kondo, Y.; Miller, T.M.; Ballenthin, J.O.

    2006-01-01

    On 28 February 2000, a volcanic cloud from Hekla volcano, Iceland, was serendipitously sampled by a DC-8 research aircraft during the SAGE III Ozone Loss and Validation Experiment (SOLVE I). It was encountered at night at 10.4 km above sea level (in the lower stratosphere) and 33-34 hours after emission. The cloud is readily identified by abundant SO2 (???1 ppmv), HCl (???70 ppbv), HF (???60 ppbv), and particles (which may have included fine silicate ash). We compare observed and modeled cloud compositions to understand its chemical evolution. Abundances of sulfur and halogen species indicate some oxidation of sulfur gases but limited scavenging and removal of halides. Chemical modeling suggests that cloud concentrations of water vapor and nitric acid promoted polar stratospheric cloud (PSC) formation at 201-203 K, yielding ice, nitric acid trihydrate (NAT), sulfuric acid tetrahydrate (SAT), and liquid ternary solution H2SO4/H2O/HNO3 (STS) particles. We show that these volcanically induced PSCs, especially the ice and NAT particles, activated volcanogenic halogens in the cloud producing >2 ppbv ClOx. This would have destroyed ozone during an earlier period of daylight, consistent with the very low levels of ozone observed. This combination of volcanogenic PSCs and chlorine destroyed ozone at much faster rates than other PSCs that Arctic winter. Elevated levels of HNO3 and NOy in the cloud can be explained by atmospheric nitrogen fixation in the eruption column due to high temperatures and/or volcanic lightning. However, observed elevated levels of HOx remain unexplained given that the cloud was sampled at night. Copyright 2006 by the American Geophysical Union.

  10. Carbon Isotope Chemistry in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  11. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.

    The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  12. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  13. Gas-grain chemical models of star-forming molecular clouds as constrained by ISO and SWAS observations

    NASA Astrophysics Data System (ADS)

    Charnley, S. B.; Rodgers, S. D.; Ehrenfreund, P.

    2001-11-01

    We have investigated the gaseous and solid state molecular composition of dense interstellar material that periodically experiences processing in the shock waves associated with ongoing star formation. Our motivation is to confront these models with the stringent abundance constraints on CO2, H2O and O2, in both gas and solid phases, that have been set by ISO and SWAS. We also compare our results with the chemical composition of dark molecular clouds as determined by ground-based telescopes. Beginning with the simplest possible model needed to study molecular cloud gas-grain chemistry, we only include additional processes where they are clearly required to satisfy one or more of the ISO-SWAS constraints. When CO, N2 and atoms of N, C and S are efficiently desorbed from grains, a chemical quasi-steady-state develops after about one million years. We find that accretion of CO2 and H2O cannot explain the [CO2/H2O]ice ISO observations; as with previous models, accretion and reaction of oxygen atoms are necessary although a high O atom abundance can still be derived from the CO that remains in the gas. The observational constraints on solid and gaseous molecular oxygen are both met in this model. However, we find that we cannot explain the lowest H2O abundances seen by SWAS or the highest atomic carbon abundances found in molecular clouds; additional chemical processes are required and possible candidates are given. One prediction of models of this type is that there should be some regions of molecular clouds which contain high gas phase abundances of H2O, O2 and NO. A further consequence, we find, is that interstellar grain mantles could be rich in NH2OH and NO2. The search for these regions, as well as NH2OH and NO2 in ices and in hot cores, is an important further test of this scenario. The model can give good agreement with observations of simple molecules in dark molecular clouds such as TMC-1 and L134N. Despite the fact that S atoms are assumed to be continously desorbed from grain surfaces, we find that the sulphur chemistry independently experiences an ``accretion catastrophe''. The S-bearing molecular abundances cease to lie within the observed range after about 3 x 106 years and this indicates that there may be at least two efficient surface desorption mechanisms operating in dark clouds - one quasi-continous and the other operating more sporadically on this time-scale. We suggest that mantle removal on short time-scales is mediated by clump dynamics, and by the effects of star formation on longer time-scales. The applicability of this type of dynamical-chemical model for molecular cloud evolution is discussed and comparison is made with other models of dark cloud chemistry.

  14. Chemical and physical characterization of the first stages of protoplanetary disk formation

    NASA Astrophysics Data System (ADS)

    Hincelin, Ugo

    2012-12-01

    Low mass stars, like our Sun, are born from the collapse of a molecular cloud. The matter falls in the center of the cloud, creating a protoplanetary disk surrounding a protostar. Planets and other Solar System bodies will be formed in the disk. The chemical composition of the interstellar matter and its evolution during the formation of the disk are important to better understand the formation process of these objects. I studied the chemical and physical evolution of this matter, from the cloud to the disk, using the chemical gas-grain code Nautilus. A sensitivity study to some parameters of the code (such as elemental abundances and parameters of grain surface chemistry) has been done. More particularly, the updates of rate coefficients and branching ratios of the reactions of our chemical network showed their importance, such as on the abundances of some chemical species, and on the code sensitivity to others parameters. Several physical models of collapsing dense core have also been considered. The more complex and solid approach has been to interface our chemical code with the radiation-magneto-hydrodynamic model of stellar formation RAMSES, in order to model in three dimensions the physical and chemical evolution of a young disk formation. Our study showed that the disk keeps imprints of the past history of the matter, and so its chemical composition is sensitive to the initial conditions.

  15. Evaluation of the Physical and Chemical Properties of Eyjafjallajökull Volcanic Plume Using a Cloud-Resolving Model

    NASA Astrophysics Data System (ADS)

    Spiridonov, Vlado; Curic, Mladjen

    2013-11-01

    The Eyjafjallajökull volcanic eruption, which occurred on April 14, 2010, caused many environmental, air traffic and health problems. An attempt has been made to demonstrate for the first time that certain improvements could be made in the quantitative prediction of the volcanic ash parameters, and in the accounting of the processes in the immediate vicinity of the volcano, using a cloud-resolving model. This type of explicit modeling by treatment of volcanic ash and sulfate chemistry parameterization, with input of a number parameters describing the volcanic source, is the way forward for understanding the complex processes in plumes and in the future plume dispersion modeling. Results imply that the most significant microphysical processes are those related to accretion of cloud water, cloud ice and rainwater by snow, and accretion of rain and snow by hail. The dominant chemical conversion rates that give a great contribution to the sulfate budget are nucleation and dynamic scavenging and oxidation processes. A three-dimensional numerical experiment has shown a very realistic simulation of volcanic ash and other chemical compounds evolution, with a sloping structure strongly influenced by the meteorological conditions. In-cloud oxidation by H2O2 is the dominant pathway for SO2 oxidation and allows sulfate to be produced within the SO2 source region. The averaged cloud water pH of about 5.8 and rainwater pH of 4.5 over simulation time show quantitatively how the oxidation may strongly influence the sulfate budget and acidity of volcanic cloud. Compared to observations, model results are close in many aspects. Information on the near field volcanic plume behavior is essential for early preparedness and evacuation. This approach demonstrates a potential improvement in quantitative predictions regarding the volcanic plume distribution at different altitudes. It could be a useful tool for modeling volcanic plumes for better emergency measures planning.

  16. Chemical Composition of Nebulosities in the Magellanic Clouds

    PubMed Central

    Aller, L. H.; Czyzak, S. J.; Keyes, C. D.; Boeshaar, G.

    1974-01-01

    From photoelectric spectrophotometric data secured at Cerro Tololo Interamerican Observatory we have attempted to derive electron densities and temperatures, ionic concentrations, and chemical abundances of He, C, N, O, Ne, S, and Ar in nebulosities in the Magellanic Clouds. Although 10 distinct nebulosities were observed in the Small Cloud and 20 such objects in the Large Cloud, the most detailed observations were secured only for the brighter objects. Results for 30 Doradus are in harmony with those published previously and recent work by Peimbert and Torres-Peimbert. Nitrogen and heavier elements appear to be less abundant in the Small Cloud than in the Large Cloud, in accordance with the conclusions of Dufour. A comparison with the Orion nebula suggests He, N, Ne, O, and S may all be less abundant in the Megellanic Clouds, although adequate evaluations will require construction of detailed models. For example, if we postulate that the [NII], [OII], and [SII] radiations originate primarily in regions with electron temperatures near 8000°K, while the [OIII], [NeIII], [ArIII], and H radiations are produced primarily in regions with Tε = 10,000° K, the derived chemical abundances in the clouds are enhanced. PMID:16592199

  17. Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling.

    PubMed

    Schwartz, Stephen E; Harshvardhan; Benkovitz, Carmen M

    2002-02-19

    The Twomey effect of enhanced cloud droplet concentration, optical depth, and albedo caused by anthropogenic aerosols is thought to contribute substantially to radiative forcing of climate change over the industrial period. However, present model-based estimates of this indirect forcing are highly uncertain. Satellite-based measurements would provide global or near-global coverage of this effect, but previous efforts to identify and quantify enhancement of cloud albedo caused by anthropogenic aerosols in satellite observations have been limited, largely because of strong dependence of albedo on cloud liquid water path (LWP), which is inherently highly variable. Here we examine satellite-derived cloud radiative properties over two 1-week episodes for which a chemical transport and transformation model indicates substantial influx of sulfate aerosol from industrial regions of Europe or North America to remote areas of the North Atlantic. Despite absence of discernible dependence of optical depth or albedo on modeled sulfate loading, examination of the dependence of these quantities on LWP readily permits detection and quantification of increases correlated with sulfate loading, which are otherwise masked by variability of LWP, demonstrating brightening of clouds because of the Twomey effect on a synoptic scale. Median cloud-top spherical albedo was enhanced over these episodes, relative to the unperturbed base case for the same LWP distribution, by 0.02 to 0.15.

  18. Time-dependent interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.

    1985-01-01

    Some current problems in interstellar chemistry are considered in the context of time-dependent calculations. The limitations of steady-state models of interstellar gas-phase chemistry are discussed, and attempts to chemically date interstellar clouds are reviewed. The importance of studying the physical and chemical properties of interstellar dust is emphasized. Finally, the results of a series of studies of collapsing clouds are described.

  19. Physical conditions in CaFe interstellar clouds

    NASA Astrophysics Data System (ADS)

    Gnaciński, P.; Krogulec, M.

    2008-01-01

    Interstellar clouds that exhibit strong Ca I and Fe I lines are called CaFe clouds. Ionisation equilibrium equations were used to model the column densities of Ca II, Ca I, K I, Na I, Fe I and Ti II in CaFe clouds. We find that the chemical composition of CaFe clouds is solar and that there is no depletion into dust grains. CaFe clouds have high electron densities, n_e≈1 cm-3, that lead to high column densities of neutral Ca and Fe.

  20. Importance of formaldehyde in cloud chemistry

    NASA Technical Reports Server (NTRS)

    Adewuyi, Y. G.; Cho, S.-Y.; Tsay, R.-P.; Carmichael, G. R.

    1984-01-01

    A physical-chemical model which is an extension of that of Hong and Carmichael (1983) is used to investigate the role of formaldehyde in cloud chemistry. This model takes into account the mass transfer of SO2, O3, NH3, HNO3, H2O2, CO2, HCl, HCHO, O2, OH and HO2 into cloud droplets and their subsequent chemical reactions. The model is used to assess the importance of S(IV)-HCHO adduct formation, the reduction of H2O2 by HCHO, HCHO-free radical interactions, and the formation of HCOOH in the presence of HCHO in cloud droplets. Illustrative calculations indicate that the presence of HCHO inhibits sulfate production rate in cloud droplets. The direct inhibition of sulfate production rate in cloudwater due to nucleophilic addition of HSO3(-) to HCHO(aq) to form hydroxymethanesulfonate is generally low for concentrations of HCHO typical of ambient air. However, inhibition of sulfate production due to formaldehyde-free radical interactions in solution can be important. These formaldehyde-free radical reactions can also generate appreciable quantities of formic acid.

  1. DESPOTIC - a new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.

    2014-01-01

    I describe DESPOTIC, a code to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds. DESPOTIC represents such clouds using a one-zone model, and can calculate line luminosities, line cooling rates, and in restricted cases line profiles using an escape probability formalism. It also includes approximate treatments of the dominant heating, cooling and chemical processes for the cold interstellar medium, including cosmic ray and X-ray heating, grain photoelectric heating, heating of the dust by infrared and ultraviolet radiation, thermal cooling of the dust, collisional energy exchange between dust and gas, and a simple network for carbon chemistry. Based on these heating, cooling and chemical rates, DESPOTIC can calculate clouds' equilibrium gas and dust temperatures, equilibrium carbon chemical state and time-dependent thermal and chemical evolution. The software is intended to allow rapid and interactive calculation of clouds' characteristic temperatures, identification of their dominant heating and cooling mechanisms and prediction of their observable spectra across a wide range of interstellar environments. DESPOTIC is implemented as a PYTHON package, and is released under the GNU General Public License.

  2. Revised models of interstellar nitrogen isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Wirström, E. S.; Charnley, S. B.

    2018-03-01

    Nitrogen-bearing molecules in cold molecular clouds exhibit a range of isotopic fractionation ratios and these molecules may be the precursors of 15N enrichments found in comets and meteorites. Chemical model calculations indicate that atom-molecular ion and ion-molecule reactions could account for most of the fractionation patterns observed. However, recent quantum-chemical computations demonstrate that several of the key processes are unlikely to occur in dense clouds. Related model calculations of dense cloud chemistry show that the revised 15N enrichments fail to match observed values. We have investigated the effects of these reaction rate modifications on the chemical model of Wirström et al. (2012) for which there are significant physical and chemical differences with respect to other models. We have included 15N fractionation of CN in neutral-neutral reactions and also updated rate coefficients for key reactions in the nitrogen chemistry. We find that the revised fractionation rates have the effect of suppressing 15N enrichment in ammonia at all times, while the depletion is even more pronounced, reaching 14N/15N ratios of >2000. Taking the updated nitrogen chemistry into account, no significant enrichment occurs in HCN or HNC, contrary to observational evidence in dark clouds and comets, although the 14N/15N ratio can still be below 100 in CN itself. However, such low CN abundances are predicted that the updated model falls short of explaining the bulk 15N enhancements observed in primitive materials. It is clear that alternative fractionating reactions are necessary to reproduce observations, so further laboratory and theoretical studies are urgently needed.

  3. ALCHEMIC: Advanced time-dependent chemical kinetics

    NASA Astrophysics Data System (ADS)

    Semenov, Dmitry A.

    2017-08-01

    ALCHEMIC solves chemical kinetics problems, including gas-grain interactions, surface reactions, deuterium fractionization, and transport phenomena and can model the time-dependent chemical evolution of molecular clouds, hot cores, corinos, and protoplanetary disks.

  4. Altitude-dependent Drift of a Chemical Release Cloud at Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Pedersen, T.; Holmes, J. M.; Sutton, E. K.

    2017-12-01

    A chemical release experiment conducted at the White Sands Missile Range in February 2015 consisted of firing of three identical canisters at different altitudes along a near-vertical trajectory, creating a large structured cloud after diffusion and expansion of the three initial dispersals. Dedicated optical observations from near the launch site and a remote site allow determination of the position and motion of the extended optical cloud as a function of time, while photographs captured and posted by members of the general public provide additional look angles to constrain the cloud shape in more detail. We compare the observed drift and evolution of the cloud with empirical and theoretical models of the neutral winds to examine the altitudinal shear in the neutral winds and their effects on the motion and shape of the extended optical cloud.

  5. Modeling the chemistry of the dense interstellar clouds. I - Observational constraints for the chemistry

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Huntress, W. T., Jr.; Prasad, S. S.

    1990-01-01

    A search for correlations arising from molecular line data is made in order to place constraints on the chemical models of interstellar clouds. At 10 to the 21st H2/sq cm, N(CO) for dark clouds is a factor of six greater than the value for diffuse clouds. This implies that the strength of the UV radiation field where CO shields itself from dissociation is about one-half the strength of the average Galactic field. The dark cloud data indicate that the abundance of CO continues to increase with A(V) for directions with A(V) of 4 mag or less, although less steeply with N(H2) than for diffuse clouds. For H2CO, a quadratic relationship is obtained in plots versus H2 column density. The data suggest a possible turnover at the highest values for A(V). NH3 shows no correlation with H2, C(O-18), HC3N, or HC5N; a strong correlation is found between HC5N and HC3N, indicating a chemical link between the cyanopolyynes.

  6. Modeling CO, CO2, and H2O Ice Abundances in the Envelopes of Young Stellar Objects in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler; Garrod, Robin T.

    2018-02-01

    Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.

  7. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust

    NASA Astrophysics Data System (ADS)

    Gaston, C.; Pratt, K.; Suski, K. J.; May, N.; Gill, T. E.; Prather, K. A.

    2016-12-01

    Saline playas (dried lake beds) emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dust for cloud formation, several models assume that dust is non-hygroscopic highlighting the need for measurements to clarify the role of dust from multiple sources in aerosol-cloud-climate interactions. Here we present water uptake measurements onto playa dust represented by the hygroscopicity parameter κ, which ranged from 0.002 ± 0.001 to 0.818 ± 0.094. Single-particle measurements made using an aircraft-aerosol time-of-flight mass spectrometer (A-ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that dust composition plays in water uptake. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values; however, several samples were poorly predicted using bulk particle composition. The lack of measurements/model agreement using this method and the strong correlations between κ and single-particle data are suggestive of chemical heterogeneities as a function of particle size and/or chemically distinct particle surfaces that dictate the water uptake properties of playa dust particles. Overall, our results highlight the ability of playa dust particles to act as cloud condensation nuclei that should be accounted for in models.

  8. Radiative Effect of Clouds on Tropospheric Chemistry in a Global Three-Dimensional Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Pierce, Robert B.; Norris, Peter; Platnick, Steven E.; Chen, Gao; Logan, Jennifer A.; Yantosca, Robert M.; Evans, Mat J.; Kittaka, Chieko; hide

    2006-01-01

    Clouds exert an important influence on tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies (J-values). We assess the radiative effect of clouds on photolysis frequencies and key oxidants in the troposphere with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations from the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA Global Modeling and Assimilation Office (GMAO). We focus on the year of 2001 with the GEOS-3 meteorological observations. Photolysis frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical depth and cloud fraction are evaluated and generally consistent with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP). Results using the linear assumption, which assumes linear scaling of cloud optical depth with cloud fraction in a grid box, show global mean OH concentrations generally increase by less than 6% because of the radiative effect of clouds. The OH distribution shows much larger changes (with maximum decrease of approx.20% near the surface), reflecting the opposite effects of enhanced (weakened) photochemistry above (below) clouds. The global mean photolysis frequencies for J[O1D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (approx.5% versus approx.20-30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions of clouds may explain part, but not the majority, of these discrepancies between models. Using an approximate random overlap or a maximum-random overlap scheme to take account of the effect of cloud overlap in the vertical reduces the impact of clouds on photochemistry but does not significantly change our results with respect to the modest global average effect.

  9. Warm neutral halos around molecular clouds. VI - Physical and chemical modeling

    NASA Technical Reports Server (NTRS)

    Andersson, B.-G.; Wannier, P. G.

    1993-01-01

    A combined physical and chemical modeling of the halos around molecular clouds is presented, with special emphasis on the H-to-H2 transition. On the basis of H I 21 cm observations, it is shown that the halos are extended. A physical model is employed in conjunction with a chemistry code to provide a self-consistent description of the gas. The radiative transfer code provides a check with H I, CO, and OH observations. It is concluded that the warm neutral halos are not gravitationally bound to the underlying molecular clouds and are isobaric. It is inferred from the observed extent of the H I envelopes and the large observed abundance of OH in them that the generally accepted rate for H2 information on grains is too large by a factor of two to three.

  10. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust.

    PubMed

    Gaston, Cassandra J; Pratt, Kerri A; Suski, Kaitlyn J; May, Nathaniel W; Gill, Thomas E; Prather, Kimberly A

    2017-02-07

    Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of A FHH = 2.20 ± 0.60 and B FHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.

  11. The Effects of Lightning NO(x) Production during the July 21 EULINOX Storm studied with a 3-D Cloud-scale Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich

    2006-01-01

    The July 21,1998 thunderstonn observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics, and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NO(x) production which uses observed flash rates as input. Estimates of lightning NO(x) production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N per yr. Chemical reactions were included in the model to evaluate the impact of lightning NO(x), on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NO(x), maximizing at approximately 5 ppbv per day at 5.5 km. Between 8 and 10.5 km, lightning NO(x) causes decreased net ozone production.

  12. Effects of lightning NOx production during the 21 July European Lightning Nitrogen Oxides Project storm studied with a three-dimensional cloud-scale chemical transport model

    NASA Astrophysics Data System (ADS)

    Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich

    2007-03-01

    The 21 July 1998 thunderstorm observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NOx production which uses observed flash rates as input. Estimates of lightning NOx production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N yr-1. Chemical reactions were included in the model to evaluate the impact of lightning NOx on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NOx, maximizing at approximately 5 ppbv day-1 at 5.5 km. Between 8 and 10.5 km, lightning NOx causes decreased net ozone production.

  13. The chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Iglesias, E.

    1977-01-01

    The nonequilibrium chemistry of dense molecular clouds (10,000 to 1 million hydrogen molecules per cu cm) is studied in the framework of a model that includes the latest published chemical data and most of the recent theoretical advances. In this model the only important external source of ionization is assumed to be high-energy cosmic-ray bombardment; standard charge-transfer reactions are taken into account as well as reactions that transfer charge from molecular ions to trace-metal atoms. Schemes are proposed for the synthesis of such species as NCO, HNCO, and CN. The role played by adsorption and condensation of molecules on the surface of dust grains is investigated, and effects on the chemical evolution of a dense molecular cloud are considered which result from varying the total density or the elemental abundances and from assuming negligible or severe condensation of gaseous species on dust grains. It is shown that the chemical-equilibrium time scale is given approximately by the depletion times of oxygen and nitrogen when the condensation efficiency is negligible; that this time scale is probably in the range from 1 to 4 million years, depending on the elemental composition and initial conditions in the cloud; and that this time scale is insensitive to variations in the total density.

  14. Rocket exhaust ground cloud/atmospheric interactions

    NASA Technical Reports Server (NTRS)

    Hwang, B.; Gould, R. K.

    1978-01-01

    An attempt to identify and minimize the uncertainties and potential inaccuracies of the NASA Multilayer Diffusion Model (MDM) is performed using data from selected Titan 3 launches. The study is based on detailed parametric calculations using the MDM code and a comparative study of several other diffusion models, the NASA measurements, and the MDM. The results are discussed and evaluated. In addition, the physical/chemical processes taking place during the rocket cloud rise are analyzed. The exhaust properties and the deluge water effects are evaluated. A time-dependent model for two aerosol coagulations is developed and documented. Calculations using this model for dry deposition during cloud rise are made. A simple model for calculating physical properties such as temperature and air mass entrainment during cloud rise is also developed and incorporated with the aerosol model.

  15. Coupled Photochemical and Condensation Model for the Venus Atmosphere

    NASA Astrophysics Data System (ADS)

    Bierson, Carver; Zhang, Xi; Mendonca, Joao; Liang, Mao-Chang

    2017-10-01

    Ground based and Venus Express observations have provided a wealth of information on the vertical and latitudinal distribution of many chemical species in the Venus atmosphere [1,2]. Previous 1D models have focused on the chemistry of either the lower [3] or middle atmosphere [4,5]. Photochemical models focusing on the sulfur gas chemistry have also been independent from models of the sulfuric acid haze and cloud formation [6,7]. In recent years sulfur-bearing particles have become important candidates for the observed SO2 inversion above 80 km [5]. To test this hypothesis it is import to create a self-consistent model that includes photochemistry, transport, and cloud condensation.In this work we extend the domain of the 1D chemistry model of Zhang et al. (2012) [5] to encompass the region between the surface to 110 km. This model includes a simple sulfuric acid condensation scheme with gravitational settling. It simultaneously solves for the chemistry and condensation allowing for self-consistent cloud formation. We compare the resulting chemical distributions to observations at all altitudes. We have also validated our model cloud mass against pioneer Venus observations [8]. This updated full atmosphere chemistry model is also being applied in our 2D solver (altitude and altitude). With this 2D model we can model how the latitudinal distribution of chemical species depends on the meridional circulation. This allows us to use the existing chemical observations to place constraints on Venus GCMs [9-11].References: [1] Arney et al., JGR:Planets, 2014 [2] Vandaele et al., Icarus 2017 (pt. 1 & 2) [3] Krasnopolsky, Icarus, 2007 [4] Krasnopolsky, Icarus, 2012 [5] Zhang et al., Icarus 2012 [6] Gao et al., Icarus, 2014 [7] Krasnopolsky, Icarus, 2015 [8] Knollenberg and Hunten, JGR:Space Physics, 1980 [9] Lee et al., JGR:Planets, 2007 [10] Lebonnois et al., Towards Understanding the Climate of Venus, 2013 [11] Mendoncca and Read, Planetary and Space Science, 2016

  16. Decadal evaluation of regional climate, air quality, and their interactions using WRF/Chem Version 3.6.1

    NASA Astrophysics Data System (ADS)

    Yahya, K.; Wang, K.; Campbell, P.; Glotfelty, T.; He, J.; Zhang, Y.

    2015-08-01

    The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 with the Carbon Bond 2005 (CB05) gas-phase mechanism is evaluated for its first decadal application during 2001-2010 using the Representative Concentration Pathway (RCP 8.5) emissions to assess its capability and appropriateness for long-term climatological simulations. The initial and boundary conditions are downscaled from the modified Community Earth System Model/Community Atmosphere Model (CESM/CAM5) v1.2.2. The meteorological initial and boundary conditions are bias-corrected using the National Center for Environmental Protection's Final (FNL) Operational Global Analysis data. Climatological evaluations are carried out for meteorological, chemical, and aerosol-cloud-radiation variables against data from surface networks and satellite retrievals. The model performs very well for the 2 m temperature (T2) for the 10 year period with only a small cold bias of -0.3 °C. Biases in other meteorological variables including relative humidity at 2 m, wind speed at 10 m, and precipitation tend to be site- and season-specific; however, with the exception of T2, consistent annual biases exist for most of the years from 2001 to 2010. Ozone mixing ratios are slightly overpredicted at both urban and rural locations but underpredicted at rural locations. PM2.5 concentrations are slightly overpredicted at rural sites, but slightly underpredicted at urban/suburban sites. In general, the model performs relatively well for chemical and meteorological variables, and not as well for aerosol-cloud-radiation variables. Cloud-aerosol variables including aerosol optical depth, cloud water path, cloud optical thickness, and cloud droplet number concentration are generally underpredicted on average across the continental US. Overpredictions of several cloud variables over eastern US result in underpredictions of radiation variables and overpredictions of shortwave and longwave cloud forcing which are important climate variables. While the current performance is deemed to be acceptable, improvements to the bias-correction method for CESM downscaling and the model parameterizations of cloud dynamics and thermodynamics, as well as aerosol-cloud interactions can potentially improve model performance for long-term climate simulations.

  17. H2D(+) observations give an age of at least one million years for a cloud core forming Sun-like stars.

    PubMed

    Brünken, Sandra; Sipilä, Olli; Chambers, Edward T; Harju, Jorma; Caselli, Paola; Asvany, Oskar; Honingh, Cornelia E; Kamiński, Tomasz; Menten, Karl M; Stutzki, Jürgen; Schlemmer, Stephan

    2014-12-11

    The age of dense interstellar cloud cores, where stars and planets form, is a crucial parameter in star formation and difficult to measure. Some models predict rapid collapse, whereas others predict timescales of more than one million years (ref. 3). One possible approach to determining the age is through chemical changes as cloud contraction occurs, in particular through indirect measurements of the ratio of the two spin isomers (ortho/para) of molecular hydrogen, H2, which decreases monotonically with age. This has been done for the dense cloud core L183, for which the deuterium fractionation of diazenylium (N2H(+)) was used as a chemical clock to infer that the core has contracted rapidly (on a timescale of less than 700,000 years). Among astronomically observable molecules, the spin isomers of the deuterated trihydrogen cation, ortho-H2D(+) and para-H2D(+), have the most direct chemical connections to H2 (refs 8, 9, 10, 11, 12) and their abundance ratio provides a chemical clock that is sensitive to greater cloud core ages. So far this ratio has not been determined because para-H2D(+) is very difficult to observe. The detection of its rotational ground-state line has only now become possible thanks to accurate measurements of its transition frequency in the laboratory, and recent progress in instrumentation technology. Here we report observations of ortho- and para-H2D(+) emission and absorption, respectively, from the dense cloud core hosting IRAS 16293-2422 A/B, a group of nascent solar-type stars (with ages of less than 100,000 years). Using the ortho/para ratio in conjunction with chemical models, we find that the dense core has been chemically processed for at least one million years. The apparent discrepancy with the earlier N2H(+) work arises because that chemical clock turns off sooner than the H2D(+) clock, but both results imply that star-forming dense cores have ages of about one million years, rather than 100,000 years.

  18. In-cloud oxalate formation in the global troposphere: a 3-D modeling study

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, S.; Tsigaridis, K.; Mihalopoulos, N.; Sciare, J.; Nenes, A.; Kawamura, K.; Segers, A.; Kanakidou, M.

    2011-06-01

    Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a state-of-the-art aqueous-phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol). Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 1.16 ± 0.14, r2 = 0.36, N = 114) and suggest that aqueous-phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-cloud and less than 5 % is produced in aerosol water. About 62 % of the oxalate is removed via wet deposition, 30 % by in-cloud reaction with hydroxyl radical, 4 % by in-cloud reaction with nitrate radical and 4 % by dry deposition. The in-cloud global oxalate net chemical production is calculated to be about 21-37 Tg yr-1 with almost 79 % originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.2-0.3 Tg, i.e. 0.05-0.1 Tg-C that is about 5-9 % of model-calculated water soluble organic carbon burden.

  19. Analysis of CCN activity of Remote and Combustion Aerosol over the South East Pacific during autumn 2008 and links to Sc cloud properties

    NASA Astrophysics Data System (ADS)

    Freitag, S.; Clarke, A. D.; Howell, S. G.; Twohy, C. H.; Snider, J. R.; Toohey, D. W.; Shank, L.; McNaughton, C. S.; Brekhovskikh, V.; Kapustin, V.

    2013-12-01

    The earth's most extensive Stratocumulus (Sc) deck, situated off the coast of Northern Chile and Southern Peru, strongly influences the radiation budget and climate over the South East Pacific (SEP) by enhancing solar reflection. This feature makes Sc clouds an important constituent for climate modeling, yet these clouds are poorly represented in models. A large uncertainty in understanding the variability in these low cloud fields arises from our deficit in understanding the role of aerosol. Hence, a major goal of the VOCALS (www.eol.ucar.edu/projects/vocals) campaign in 2008 was to further explore and assess interactions of natural and anthropogenic aerosol with Sc clouds in both the more polluted coastal environment and west of 80W where we encountered nearly pristine boundary layer clouds often exposed to cloud-top entrainment of pollution aerosol from the free troposphere. Extensive airborne measurements of size-resolved aerosol volatility and chemical composition collected aboard the NCAR C-130 were analyzed with an aerosol mass spectrometer (AMS) and a single particle soot photometer (SP2) to calculate aerosol hygroscopicity (κ) and predict cloud condensation nuclei (CCN) concentration for all observed air mass types above and below cloud utilizing estimated Sc cloud supersaturations deduced from cloud-processed aerosol size distribution information. The predicted CCN agree to within 10% to measured CCN. Results from this analysis are presented here and CCN variability observed along VOCALS flight tracks is discussed in conjunction with size-resolved cloud droplet information. This includes assessing the impact of aerosol perturbations on the shape of the cloud droplet size distribution parameterized in models and satellite algorithms such as cloud top effective radius retrievals. We will further discuss cloud droplet residual composition collected using a counterflow virtual impactor (CVI) and analyzed with the AMS and SP2. Size resolved variations in residual composition and its relation to CCN composition measured outside the cloud will be examined in terms of the influence of aerosol concentration, size, and chemical composition on Sc clouds.

  20. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of giant molecular clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ˜ 109 M⊙) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the XCO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_{H, min} = 10 {cm}^{-3}, or using an observationally motivated CO intensity threshold of 0.25 {K} {km} {s}^{-1}. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (I.e. Jeans limiters). We find cloud lifetimes up to ≈ 40 Myr, with a median of 13 Myr, in agreement with observations. At one-tenth solar metallicity, young clouds ( ≲ 10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ≈3 and one to two orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ≈ 1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, ICO, is strongly suppressed at low dust extinction, Av, and possibly saturates towards high Av, in agreement with observations. The ICO-Av relation shifts towards higher Av for higher metallicities and, to a lesser extent, for stronger UV radiation. At one-tenth solar metallicity, CO emission is weaker in young clouds ( ≲ 10-15 Myr), consistent with the underabundance of CO. Consequently, XCO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  1. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  2. Chemical evolution of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; de Freitas Pacheco, J. A.; Idiart, T.

    We have obtained integrated spectra for 14 clusters in the Magellanic Clouds, on which the spectral indices Hβ, Mg2, Fe5270, Fe5335 were measured. Selecting indices whose behaviour depends essentially on age and metallicity (Hβ and ), together with (B-V) and (V-K) colours, we were able to determine age and metallicities for these clusters, using calibrations based on single stellar population models (Borges et al. 1995). A chemical evolution model which follows a star formation history as indicated by the field population is checked with the age and metallicity data for our sample star clusters.

  3. Shocking Changes to Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Melnick, Gary J.

    1998-05-01

    Supersonic motions are commonly observed in molecular clouds as evidenced by larger-than-thermal line widths measured in most species. The shocks that ensue can profoundly effect these clouds, not only dynamically, but chemically. Because shocks compress and heat the gas, chemical reactions that are extremely slow at typical molecular cloud temperatures (T ~ 10-30 K) can proceed rapidly in the wake of a shock. In many cases, compositional changes brought on by a passing shock can endure long after the gas has cooled and returned to its pre-shock state. We have used a coupled time-dependent chemical and dynamical model to investigate the lifetime of such chemical relics in the wake of non-dissociative shocks. Using a Monte Carlo cloud simulation, we explore the effects of stochastic shock activity on molecular gas over a cloud lifetime. Particular attention is paid to the chemistry of H_2O and O_2, two molecules which are predicted to have abundances that are significantly affected by shock-heated gas. Both pure gas-phase and gas-grain chemistry are considered. In agreement with previous studies, we find that shocks with velocities in excess of 10 km s(-1) can chemically process all oxygen not locked in CO into H_2O on timescales of a shock passage time ( ~ \\:few hundred years). For pure gas-phase models, the high water abundance lingers for ~ (4-7) x 10(5) yr, independent of the gas density. A density dependence for the lifetime of H_2O is found in gas-grain models as the water molecules deplete onto grains at the depletion timescale. We demonstrate that the time-averaged abundance of H_2O and O_2 (as well as other tracers, such as SiO and CH_3OH) is a sensitive function of the frequency of shocks. As such, the abundance of H_2O, and to a lesser extent O_2, can be used to trace the shock history in molecular clouds. Equally important, we find that depletion of shock-produced water onto grains can be quite large and is comparable to that observed in molecular clouds. This offers an alternative method to create water-ice mantles without resorting to grain surface chemistry. Observationally, a combination of space-based (for H_2O and O_2) and ground-based (for SiO, CH_3OH, and others) telescopes will be needed to investigate these predictions.

  4. Chemical Transformation System: Cloud Based Cheminformatic Services to Support Integrated Environmental Modeling (proceedings)

    EPA Science Inventory

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not co...

  5. Cloud Condensation in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Anderson, Carrie M.

    2011-01-01

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability of the clouds.

  6. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    PubMed Central

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O’Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-01-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment. PMID:28291234

  7. Chemical Abundances and Physical Parameters of H II Regions in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Reyes, R. E. C.

    The chemical abundances and physical parameters of H II regions are important pa rameters to determine in order to understand how stars and galaxies evolve. The Magellanic Clouds offer us a unique oportunity to persue such studies in low metallicity galaxies. In this contribution we present the results of the photoionization modeling of 5 H II regions in each of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sys tems. Optical data were collected from the literature, complemented by our own observa tions (Carlos Reyes et al. 1998), including UV spectra from the new IUE data ban k and infrared fluxes from the IRAS satellite. The chemical abundances of He, C, N, O, Ne, S, Ar and physical parameters like the densities, the ionized masses, the luminosities, the ionization temperatures , the filling factor and optical depth are determined. A comparison of the abundances of these HII regions with those of typical planetary nebulae and supergiants stars is also presented.

  8. Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    NASA Astrophysics Data System (ADS)

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-03-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other international sites over multiple years. Here, harmonized data records from 11 observatories are summarized, spanning 98,677 instrument hours for CCN data, 157,880 for particle number size distributions, and 70,817 for chemical composition data. The observatories represent nine different environments, e.g., Arctic, Atlantic, Pacific and Mediterranean maritime, boreal forest, or high alpine atmospheric conditions. This is a unique collection of aerosol particle properties most relevant for studying aerosol-cloud interactions which constitute the largest uncertainty in anthropogenic radiative forcing of the climate. The dataset is appropriate for comprehensive aerosol characterization (e.g., closure studies of CCN), model-measurement intercomparison and satellite retrieval method evaluation, among others. Data have been acquired and processed following international recommendations for quality assurance and have undergone multiple stages of quality assessment.

  9. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    PubMed Central

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The Drift cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models. PMID:25370190

  10. Disk evolution, element abundances and cloud properties of young gas giant planets.

    PubMed

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    2014-04-14

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  11. Alterations of Cloud Microphysics Due to Cloud Processed CCN

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Tabor, S. S.; Noble, S. R., Jr.

    2015-12-01

    High-resolution CCN spectra have revealed bimodality (Hudson et al. 2015) similar to aerosol size spectra (e.g., Hoppel et al. 1985). Bimodality is caused by chemical and physical cloud processes that increase mass or hygroscopicity of only CCN that produced activated cloud droplets. Bimodality is categorized by relative CCN concentrations (NCCN) within the two modes, Nu-Np; i.e., NCCN within the higher critical supersaturation, Sc, mode that did not undergo cloud processing minus NCCN within the lower Sc mode that was cloud processed. Lower, especially negative, Nu-Np designates greater processing. The table shows regressions between Nu-Np and characteristics of clouds nearest the CCN measurements. ICE-T MASE parameter R SL R SL Nc 0.17 93.24 -0.26 98.65 MD -0.31 99.69 0.33 99.78 σ -0.27 99.04 0.48 100.00 Ld -0.31 99.61 0.38 99.96 Table. Correlation coefficients, R, and one-tailed significance levels in percent, SL, for Nu-Np with microphysics of the clouds closest to each CCN measurement, 75 ICE-T and 74 MASE cases. Nc is cloud droplet concentration, MD is cloud droplet mean diameter, σ is standard deviation of cloud droplet spectra, Ldis drizzle drop LWC. Two aircraft field campaigns, Ice in Clouds Experiment-Tropical (ICE-T) and Marine Stratus/Stratocumulus Experiment (MASE) show opposite R signs because coalescence dominated cloud processing in low altitude ICE-T cumuli whereas chemical transformations predominated in MASE low altitude polluted stratus. Coalescence reduces Nc and NCCN, which thus increases MD, and σ, which promote Ld. Chemical transformations, e.g., SO2 to SO4, increase CCN hygroscopicity, thus reducing Sc, but not affecting Nc or NCCN. Lower Sc CCN are capable of producing greater Nc in subsequent cloud cycles, which leads to lower MD and σ which reduce Ld (figure). These observations are consistent with cloud droplet growth models for the higher vertical wind (W) of cumuli and lower W of stratus. Coalescence thus reduces the indirect aerosol effect (IAE) with a positive feedback that further enhances coalescence and drizzle. Chemical cloud processing enhances both components of IAE; 1st IAE by greater droplet surface area, 2ndIAE by suppressing drizzle and thus increasing cloudiness. Hoppel, Fitzgerald and Larson: JGR 90, 2365-79 Hudson, Noble and Tabor: JGRA 120, 3436-52

  12. Constraints from Airborne (210)Pb Observations on Aerosol Scavenging and Lifetime in a Global Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Zhang, Bo; Liu, Hongyu; Crawford, James H.; Fairlie, Duncan T.; Chen, Gao; Dibb, Jack E.; Shah, Viral; Sulprizio, Melissa P.; Yantosca, Robert M.

    2016-01-01

    Lead-210 distribution and lifetime in the atmosphere are not sensitive to ice in-cloud scavenging in convective updraft. Ice in-cloud scavenging in stratiform clouds reduce tropospheric (210)Pb lifetime by approximately 1 day and results in better agreements with observed surface observations and aircraft measured profiles. However, the process results in significant underestimate of (210)Pb in UT/LS.

  13. Measurement and Modeling of Electromagnetic Scattering by Particles and Particle Groups. Chapter 3

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    2015-01-01

    Small particles forming clouds of interstellar and circumstellar dust, regolith surfaces of many solar system bodies, and cometary atmospheres have a strong and often controlling effect on many ambient physical and chemical processes. Similarly, aerosol and cloud particles exert a strong influence on the regional and global climates of the Earth, other planets of the solar system, and exoplanets. Therefore, detailed and accurate knowledge of physical and chemical characteristics of such particles has the utmost scientific importance.

  14. Evolutionary models of interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.

    1987-01-01

    The goal of evolutionary models of interstellar chemistry is to understand how interstellar clouds came to be the way they are, how they will change with time, and to place them in an evolutionary sequence with other celestial objects such as stars. An improved Mark II version of an earlier model of chemistry in dynamically evolving clouds is presented. The Mark II model suggests that the conventional elemental C/O ratio less than one can explain the observed abundances of CI and the nondetection of O2 in dense clouds. Coupled chemical-dynamical models seem to have the potential to generate many observable discriminators of the evolutionary tracks. This is exciting, because, in general, purely dynamical models do not yield enough verifiable discriminators of the predicted tracks.

  15. A physics-based model for the ionization of samarium by the MOSC chemical releases in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; Viggiano, Albert; Caton, Ronald G.; Pedersen, Todd R.; Holmes, Jeffrey M.; Ard, Shaun; Shuman, Nicholas; Groves, Keith M.

    2017-05-01

    Atomic samarium has been injected into the neutral atmosphere for production of electron clouds that modify the ionosphere. These electron clouds may be used as high-frequency radio wave reflectors or for control of the electrodynamics of the F region. A self-consistent model for the photochemical reactions of Samarium vapor cloud released into the upper atmosphere has been developed and compared with the Metal Oxide Space Cloud (MOSC) experimental observations. The release initially produces a dense plasma cloud that that is rapidly reduced by dissociative recombination and diffusive expansion. The spectral emissions from the release cover the ultraviolet to the near infrared band with contributions from solar fluorescence of the atomic, molecular, and ionized components of the artificial density cloud. Barium releases in sunlight are more efficient than Samarium releases in sunlight for production of dense ionization clouds. Samarium may be of interest for nighttime releases but the artificial electron cloud is limited by recombination with the samarium oxide ion.

  16. Chemical consequences of the initial diffusional growth of cloud droplets - A clean marine case

    NASA Technical Reports Server (NTRS)

    Twohy, C. H.; Charlson, R. J.; Austin, P. H.

    1989-01-01

    A simple microphysical cloud parcel model and a simple representation of the background marine aerosol are used to predict the concentrations and compositions of droplets of various sizes near cloud base. The aerosol consists of an externally-mixed ammonium bisulfate accumulation mode and a sea-salt coarse particle mode. The difference in diffusional growth rates between the small and large droplets as well as the differences in composition between the two aerosol modes result in substantial differences in solute concentration and composition with size of droplets in the parcel. The chemistry of individual droplets is not, in general, representative of the bulk (volume-weighted mean) cloud water sample. These differences, calculated to occur early in the parcel's lifetime, should have important consequences for chemical reactions such as aqueous phase sulfate production.

  17. Cloud chemistry on Jupiter

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Prather, Michael J.; Rossow, William B.

    1987-01-01

    Chemical equilibrium models used currently to interpret observations of Jupiter are reexamined using new data defining thermal profiles, which are substantially different from those used in the previous models. A model is developed for the chemical reactions controlling the composition of the upper troposphere on Jupiter, specifically the cloud-forming region from 10 bar to 0.1 bar, which includes, for the first time, the effects of aqueous chemistry on the composition and the vertical distribution of many measurable species in the atmosphere, identifying the factors influencing their abundances above the H2O cloud. The thermodynamic data for potential condensates on Jupiter, i.e., NH3(s), NH4SH(s), (NH4)2S(s), and H2S(s), are reexamined, recognizing the lack of data on sulfides for the temperature range of interest on Jupiter. Vertical profiles of mixing ratios for CO2, H2S, NH3, and H2, obtained for several assumed bulk abundances with respect to solar, are presented.

  18. Cosmic-ray ionisation of dense molecular clouds

    NASA Astrophysics Data System (ADS)

    Vaupre, Solenn

    2015-07-01

    Cosmic rays (CR) are of tremendous importance in the dynamical and chemical evolution of interstellar molecular clouds, where stars and planets form. CRs are likely accelerated in the shells of supernova remnants (SNR), thus molecular clouds nearby can be irradiated by intense fluxes of CRs. CR protons have two major effects on dense molecular clouds: 1) when they encounter the dense medium, high-energy protons (>280 MeV) create pions that decay into gamma-rays. This process makes SNR-molecular cloud associations intense GeV and/or TeV sources whose spectra mimic the CR spectrum. 2) at lower energies, CRs penetrate the cloud and ionise the gas, leading to the formation of molecular species characteristic of the presence of CRs, called tracers of the ionisation. Studying these tracers gives information on low-energy CRs that are unaccessible to any other observations. I studied the CR ionisation of molecular clouds next to three SNRs: W28, W51C and W44. These SNRs are known to be interacting with the nearby clouds, from the presence of shocked gas, OH masers and pion-decay induced gamma-ray emission. My work includes millimeter observations and chemical modeling of tracers of the ionisation in these dense molecular clouds. In these three regions, we determined an enhanced CR ionisation rate, supporting the hypothesis of an origin of the CRs in the SNR nearby. The evolution of the CR ionisation rate with the distance to the SNR brings valuable constraints on the propagation properties of low-energy CRs. The method used relies on observations of the molecular ions HCO+ and DCO+, which shows crucial limitations at high ionisation. Therefore, I investigated, both through modeling and observations, the chemical abundances of several other species to try and identity alternative tracers of the ionisation. In particular, in the W44 region, observations of N2H+ bring additional constraints on the physical conditions, volatile abundances in the cloud, and the ionisation state. This research brought valuable insight in to the CR induced chemistry in the interstellar medium. It also brought new perspectives of interdisciplinary research towards the understanding of CRs, from millimeter to gamma-ray observations.

  19. Addition of a Hydrological Cycle to the EPIC Jupiter Model

    NASA Astrophysics Data System (ADS)

    Dowling, T. E.; Palotai, C. J.

    2002-09-01

    We present a progress report on the development of the EPIC atmospheric model to include clouds, moist convection, and precipitation. Two major goals are: i) to study the influence that convective water clouds have on Jupiter's jets and vortices, such as those to the northwest of the Great Red Spot, and ii) to predict ammonia-cloud evolution for direct comparison to visual images (instead of relying on surrogates for clouds like potential vorticity). Data structures in the model are now set up to handle the vapor, liquid, and solid phases of the most common chemical species in planetary atmospheres. We have adapted the Prather conservation of second-order moments advection scheme to the model, which yields high accuracy for dealing with cloud edges. In collaboration with computer scientists H. Dietz and T. Mattox at the U. Kentucky, we have built a dedicated 40-node parallel computer that achieves 34 Gflops (double precision) at 74 cents per Mflop, and have updated the EPIC-model code to use cache-aware memory layouts and other modern optimizations. The latest test-case results of cloud evolution in the model will be presented. This research is funded by NASA's Planetary Atmospheres and EPSCoR programs.

  20. Observations of marine stratocumulus clouds during FIRE

    NASA Technical Reports Server (NTRS)

    Albrecht, Bruce A.; Randall, David A.; Nicholls, Stephen

    1988-01-01

    The First International Satellite Cloud Climatology Project Regional Experiment (FIRE) to study extensive fields of stratocumulus clouds off the coast of California is presented. Measurements on the regional and detailed local scales were taken, allowing for a wide interpretation of the mean, turbulent, microphysical, radiative, and chemical characteristics of stratocumulus. Multiple aircraft and ground-based remote-sensing systems were used to study the time evolution of the boundary layer structure over a three-week period, and probes from tethered balloons were used to measure turbulence and to collect cloud-microphysical and cloud-radiative data. The observations provide a base for studying the generation maintenance and dissipation of stratocumulus clouds, and could aid in developing numerical models and improved methods for retrieving cloud properties by satellite.

  1. Assessing the Suitability of the ClOud Reflection Algorithm (CORA) in Modelling the Evolution of an Artificial Plasma Cloud in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.

    2016-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the propagation environment. It can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such release can be detected through the deployment of sensors, including ground based high frequency (HF) sounders. During the Metal Oxide Space Clouds (MOSC) experiment (undertaken in April/May 2013 in the Kwajalein Atoll, part of the Marshall Islands) several oblique ionograms were recorded from a ground based HF system. These ionograms were collected over multiple geometries and allowed the effects on the HF propagation environment to be understood. These ionograms have subsequently been used in the ClOud Reflection Algorithm (CORA) to attempt to model the evolution of the cloud following release. This paper describes the latest validation results from CORA, both from testing against ionograms, but also other independent models of cloud evolution from MOSC. For all testing the various cloud models (including that generated by CORA) were incorporated into a background ionosphere through which a 3D numerical ray trace was run to produce synthetic ionograms that could be compared with the ionograms recorded during MOSC.

  2. The physics and chemistry of the L134N molecular core

    NASA Technical Reports Server (NTRS)

    Swade, Daryl A.

    1989-01-01

    The dark cloud L134N is studied in detail via millimeter- and centimeter-wavelength emission-line spectra. A high-density core of molecular gas exists in L134N which has a kinetic temperature of about 12 K, a peak molecular hydrogen density of about 10 exp 4.5/cu cm, and a mass of about 23 solar. The core may be the site of future star formation. Maps of emission from (C-18)O, CS, H(C-13)O(+), SO, NH3, and C3H2 reveal morphologically different distributions resulting in part from both varying physical conditions within the cloud and optical depth effects. Significant differences also exist which are probably due to chemical abundance variations. A consistent set of LTE chemical abundances has been estimated at as many as seven positions, which can be used to constrain chemical models of dark clouds.

  3. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  4. Insights into Aqueous-phase processing through Comparison of the Organic Chemical Composition of Atmospheric Particles and Cloud Water in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Boone, E.; Laskin, J.; Laskin, A.; Wirth, C.; Shepson, P. B.; Stirm, B. H.; Pratt, K.

    2014-12-01

    Organic compounds comprise a significant mass fraction of submicron atmospheric particles with considerable contribution from secondary organic aerosol (SOA), a large fraction of which is formed from the oxidation of biogenic volatile organic compounds. Aqueous-phase reactions in particles and cloud droplets are suggested to increase SOA mass and change the chemical composition the particles following cloud evaporation. Aqueous-phase processing may also explain discrepancies between measurements and models. To gain a better understanding of these processes, cloud water and below-cloud atmospheric particles were collected onboard a research aircraft during the Southeast Oxidants and Aerosol Study (SOAS) over Alabama in June 2013. Nanospray desorption electrospray ionization (nano-DESI) and direct electrospray ionization (ESI) coupled with high resolution mass spectrometry were utilized to compare the organic molecular composition of the particle and cloud water samples, respectively. Several hundred unique compounds have been identified in the particle and cloud water samples, allowing possible aqueous-phase reactions to be examined. Hydrolysis of organosulfate compounds, aqueous-phase formation of nitrogen-containing compounds, and possible fragmentation of oligomeric compounds will be discussed, with comparisons to previous laboratory studies. This study provides insights into aqueous-phase reactions in ambient cloud droplets.

  5. Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Kempton, Eliza M.-R.; Mbarek, Rostom

    2015-12-01

    Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At higher temperatures, clouds are formed from a variety of materials including metals, metal oxides, and aluminosilicates.

  6. Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season

    NASA Astrophysics Data System (ADS)

    Peers, F.; Bellouin, N.; Waquet, F.; Ducos, F.; Goloub, P.; Mollard, J.; Myhre, G.; Skeie, R. B.; Takemura, T.; Tanré, D.; Thieuleux, F.; Zhang, K.

    2016-04-01

    Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550 nm. These results have been used to evaluate the simulation of aerosols above clouds in five Aerosol Comparisons between Observations and Models (Goddard Chemistry Aerosol Radiation and Transport (GOCART), Hadley Centre Global Environmental Model 3 (HadGEM3), European Centre Hamburg Model 5-Hamburg Aerosol Module 2 (ECHAM5-HAM2), Oslo-Chemical Transport Model 2 (OsloCTM2), and Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS)). Most models do not reproduce the observed large aerosol load episodes. The comparison highlights the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, POLDER ACSSA is best reproduced by models with a high imaginary part of black carbon refractive index, in accordance with recent recommendations.

  7. Aerosol processing in stratiform clouds in ECHAM6-HAM

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Lohmann, Ulrike; Hoose, Corinna

    2013-04-01

    Aerosol processing in stratiform clouds by uptake into cloud particles, collision-coalescence, chemical processing inside the cloud particles and release back into the atmosphere has important effects on aerosol concentration, size distribution, chemical composition and mixing state. Aerosol particles can act as cloud condensation nuclei. Cloud droplets can take up further aerosol particles by collisions. Atmospheric gases may also be transferred into the cloud droplets and undergo chemical reactions, e.g. the production of atmospheric sulphate. Aerosol particles are also processed in ice crystals. They may be taken up by homogeneous freezing of cloud droplets below -38° C or by heterogeneous freezing above -38° C. This includes immersion freezing of already immersed aerosol particles in the droplets and contact freezing of particles colliding with a droplet. Many clouds do not form precipitation and also much of the precipitation evaporates before it reaches the ground. The water soluble part of the aerosol particles concentrates in the hydrometeors and together with the insoluble part forms a single, mixed, larger particle, which is released. We have implemented aerosol processing into the current version of the general circulation model ECHAM6 (Stevens et al., 2013) coupled to the aerosol module HAM (Stier et al., 2005). ECHAM6-HAM solves prognostic equations for the cloud droplet number and ice crystal number concentrations. In the standard version of HAM, seven modes are used to describe the total aerosol. The modes are divided into soluble/mixed and insoluble modes and the number concentrations and masses of different chemical components (sulphate, black carbon, organic carbon, sea salt and mineral dust) are prognostic variables. We extended this by an explicit representation of aerosol particles in cloud droplets and ice crystals in stratiform clouds similar to Hoose et al. (2008a,b). Aerosol particles in cloud droplets are represented by 5 tracers for the chemical components as well as 5 tracers for aerosol particles in ice crystals. This allows simulations of aerosol processing in warm, mixed-phase (e.g. through the Bergeron-Findeisen process) and ice clouds. The fixed scavenging ratios used for wet deposition in clouds in standard HAM are replaced by an explicit treatment of collision of cloud droplets/ice crystals with interstitial aerosol particles. Nucleation scavenging of aerosol particles by acting as cloud condensation nuclei or ice nuclei, freezing and evaporation of cloud droplets and melting and sublimation of ice crystals are treated explicitly. In extension to previous studies, aerosol particles from evaporating precipitation are released to modes which correspond to their size. Cloud processing of aerosol particles changes their size distribution and hence influences cloud droplet and ice crystal number concentrations as well as precipitation rate, which in turn affects aerosol concentrations. Results will be presented at the conference. Hoose et al., JGR, 2008a, doi: 10.1029/2007JD009251 Hoose et al., ACP, 2008b, doi: 10.5194/acp-8-6939-2008 Stevens et al., 2013, submitted Stier et al., ACP, 2005, doi: 10.5194/acp-5-1125-2005

  8. Decadal evaluation of regional climate, air quality, and their interactions over the continental US and their interactions using WRF/Chem version 3.6.1

    NASA Astrophysics Data System (ADS)

    Yahya, Khairunnisa; Wang, Kai; Campbell, Patrick; Glotfelty, Timothy; He, Jian; Zhang, Yang

    2016-02-01

    The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 with the Carbon Bond 2005 (CB05) gas-phase mechanism is evaluated for its first decadal application during 2001-2010 using the Representative Concentration Pathway 8.5 (RCP 8.5) emissions to assess its capability and appropriateness for long-term climatological simulations. The initial and boundary conditions are downscaled from the modified Community Earth System Model/Community Atmosphere Model (CESM/CAM5) v1.2.2. The meteorological initial and boundary conditions are bias-corrected using the National Center for Environmental Protection's Final (FNL) Operational Global Analysis data. Climatological evaluations are carried out for meteorological, chemical, and aerosol-cloud-radiation variables against data from surface networks and satellite retrievals. The model performs very well for the 2 m temperature (T2) for the 10-year period, with only a small cold bias of -0.3 °C. Biases in other meteorological variables including relative humidity at 2 m, wind speed at 10 m, and precipitation tend to be site- and season-specific; however, with the exception of T2, consistent annual biases exist for most of the years from 2001 to 2010. Ozone mixing ratios are slightly overpredicted at both urban and rural locations with a normalized mean bias (NMB) of 9.7 % but underpredicted at rural locations with an NMB of -8.8 %. PM2.5 concentrations are moderately overpredicted with an NMB of 23.3 % at rural sites but slightly underpredicted with an NMB of -10.8 % at urban/suburban sites. In general, the model performs relatively well for chemical and meteorological variables, and not as well for aerosol-cloud-radiation variables. Cloud-aerosol variables including aerosol optical depth, cloud water path, cloud optical thickness, and cloud droplet number concentration are generally underpredicted on average across the continental US. Overpredictions of several cloud variables over the eastern US result in underpredictions of radiation variables (such as net shortwave radiation - GSW - with a mean bias - MB - of -5.7 W m-2) and overpredictions of shortwave and longwave cloud forcing (MBs of ˜ 7 to 8 W m-2), which are important climate variables. While the current performance is deemed to be acceptable, improvements to the bias-correction method for CESM downscaling and the model parameterizations of cloud dynamics and thermodynamics, as well as aerosol-cloud interactions, can potentially improve model performance for long-term climate simulations.

  9. Chemical energy in cold-cloud aggregates - The origin of meteoritic chondrules

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1980-01-01

    If interstellar particles and molecules accumulate into larger particles during the collapse of a cold cloud, the resulting aggregates contain a large store of internal chemical energy. It is here proposed that subsequent warming of these accumulates leads to a thermal runaway when exothermic chemical reactions begin within the aggregate. These, after cooling, are the crystalline chondrules found so abundantly within chondritic meteorites. Chemical energy can also heat meteoritic parent bodies of any size, and both thermal metamorphism and certain molten meteorites are proposed to have occurred in this way. If this new theory is correct, (1) the model of chemical condensation in a hot gaseous solar system is eliminated, and (2) a new way of studying the chemical evolution of the interstellar medium has been found. A simple dust experiment on a comet flyby is proposed to test some features of this controversy.

  10. Interstellar clouds - From a dynamical perspective on their chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.

    1985-01-01

    The possibility is examined that in the course of its dynamical evolution, a single mass of interstellar gas would exhibit properties of diffuse clouds, dense clouds and finally also of clouds perturbed by shocks or intense UV or X-ray radiation generated by a star of its own creation. This concept provides a common thread through the bewildering diversity of physical and chemical compositional properties shown by interstellar clouds. From this perspective, instead of being static objects, interstellar clouds are possibly incessantly evolving from initially diffuse to later dense state and then to star formation which ultimately restructures or disperses the remaining cloud material to begin the whole evolutionary process once again. Based on a simplified study of interstellar chemistry from a dynamical perspective, the ideas are presented as an heuristic: to encourage thought on the future direction of molecular astrophysics and the need to consider the chemical behavior of interstellar clouds in conjunction with, rather than in isolation from, their dynamical behavior. A physical basis must be sought for the semiempirical temperature formula which has been given a critical role in the collapse of diffuse clouds. Self-shielding effects in the chemistry of CO were neglected and this drawback should be removed; the ability of the model to explain the fractional abundances of more complex molecules, such as cyanopolyynes, should be examined.

  11. Multi-year application of WRF-CAM5 over East Asia-Part II: Interannual variability, trend analysis, and aerosol indirect effects

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wang, Kai; He, Jian

    2017-09-01

    Following a comprehensive evaluation of WRF-CAM5 in Part I, Part II describes analyses of interannual variability, multi-year variation trends, and the direct, indirect, and total effects of anthropogenic aerosols. The interannual variations of chemical column and surface concentrations, and ozone (O3)/particulate matter (PM) indicators are strongly correlated to anthropogenic emission changes. Despite model biases, the model captures well the observed interannual variations of temperature at 2-m, cloud fraction, shortwave cloud forcing, downwelling shortwave radiation, cloud droplet number concentration, column O3, and column formaldehyde (HCHO) for the whole domain. While the model reproduces the volatile organic compound (VOC)-limited regimes of O3 chemistry at sites in Hong Kong, Taiwan, Japan, South Korea, and from the Acid Deposition Monitoring Network in East Asia (EANET) and the degree of sulfate neutralization at the EANET sites, it has limited capability in capturing the interannual variations of the ratio of O3 and nitrogen dioxide (O3/NO2) and PM chemical regime indicators, due to uncertainties in the emissions of precursors for O3 and secondary PM, the model assumption for ammonium bisulfate (NH4HSO4) as well as lack of gas/particle partitioning of total ammonia and total nitrate. While the variation trends in multi-year periods in aerosol optical depth and column concentrations of carbon monoxide, sulfur dioxide, and NO2 are mainly caused by anthropogenic emissions, those of major meteorological and cloud variables partly reflect feedbacks of chemistry to meteorological variables. The impacts of anthropogenic aerosol indirect effects either dominate or play an important role in the aerosol total effects for most cloud and chemical predictions, whereas anthropogenic aerosol direct effects influence most meteorological and radiation variables. The direct, indirect, and total effects of anthropogenic aerosols exhibit a strong interannual variability in 2001, 2006, and 2011.

  12. Analysis of Ozone in Cloudy Versus Clear Sky Conditions

    NASA Technical Reports Server (NTRS)

    Strode, Sarah; Douglass, Anne; Ziemke, Jerald

    2016-01-01

    Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.

  13. CLEPS 1.0: A new protocol for cloud aqueous phase oxidation of VOC mechanisms

    NASA Astrophysics Data System (ADS)

    Mouchel-Vallon, Camille; Deguillaume, Laurent; Monod, Anne; Perroux, Hélène; Rose, Clémence; Ghigo, Giovanni; Long, Yoann; Leriche, Maud; Aumont, Bernard; Patryl, Luc; Armand, Patrick; Chaumerliac, Nadine

    2017-03-01

    A new detailed aqueous phase mechanism named the Cloud Explicit Physico-chemical Scheme (CLEPS 1.0) is proposed to describe the oxidation of water soluble organic compounds resulting from isoprene oxidation. It is based on structure activity relationships (SARs) which provide global rate constants together with branching ratios for HOṡ abstraction and addition on atmospheric organic compounds. The GROMHE SAR allows the evaluation of Henry's law constants for undocumented organic compounds. This new aqueous phase mechanism is coupled with the MCM v3.3.1 gas phase mechanism through a mass transfer scheme between gas phase and aqueous phase. The resulting multiphase mechanism has then been implemented in a model based on the Dynamically Simple Model for Atmospheric Chemical Complexity (DSMACC) using the Kinetic PreProcessor (KPP) that can serve to analyze data from cloud chamber experiments and field campaigns. The simulation of permanent cloud under low-NOx conditions describes the formation of oxidized monoacids and diacids in the aqueous phase as well as a significant influence on the gas phase chemistry and composition and shows that the aqueous phase reactivity leads to an efficient fragmentation and functionalization of organic compounds.

  14. Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; hide

    2016-01-01

    The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (SEA). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to air quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud processes by advanced cloud ensemble models; and (5) implications of air quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-SEAS special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on air quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over SEA are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater stability over land than over ocean, with minimal radar surface clutter at a high vertical spatial resolution. To facilitate an improved understanding of regional aerosol-cloud effects, we envision that future BASELInE-like measurement modeling needs fall into two categories: (1) efficient yet critical in-situ profiling of the boundary layer for validating remote-sensing retrievals and for initializing regional transport chemical and cloud ensemble models; and (2) fully utilizing the high observing frequencies of geostationary satellites for resolving the diurnal cycle of the boundary layerheight as it affects the loading of biomass-burning aerosols, air quality and radiative energetics.

  15. Role of clouds, aerosols, and aerosol-cloud interaction in 20th century simulations with GISS ModelE2

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D. H.; Bauer, S.; Del Genio, A. D.

    2015-12-01

    Simulations of aerosols, clouds and their interaction contribute to the major source of uncertainty in predicting the changing Earth's energy and in estimating future climate. Anthropogenic contribution of aerosols affects the properties of clouds through aerosol indirect effects. Three different versions of NASA GISS global climate model are presented for simulation of the twentieth century climate change. All versions have fully interactive tracers of aerosols and chemistry in both the troposphere and stratosphere. All chemical species are simulated prognostically consistent with atmospheric physics in the model and the emissions of short-lived precursors [Shindell et al., 2006]. One version does not include the aerosol indirect effect on clouds. The other two versions include a parameterization of the interactive first indirect aerosol effect on clouds following Menon et al. [2010]. One of these two models has the Multiconfiguration Aerosol Tracker of Mixing state (MATRIX) that permits detailed treatment of aerosol mixing state, size, and aerosol-cloud activation. The main purpose of this study is evaluation of aerosol-clouds interactions and feedbacks, as well as cloud and aerosol radiative forcings, for the twentieth century climate under different assumptions and parameterizations for aerosol, clouds and their interactions in the climate models. The change of global surface air temperature based on linear trend ranges from +0.8°C to +1.2°C between 1850 and 2012. Water cloud optical thickness increases with increasing temperature in all versions with the largest increase in models with interactive indirect effect of aerosols on clouds, which leads to the total (shortwave and longwave) cloud radiative cooling trend at the top of the atmosphere. Menon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski (2010), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10,4559-4571, doi:10.5194/acp-10-4559-2010. Shindell, D., G. Faluvegi, N. Unger, E. Aguilar, G.A. Schmidt, D.M. Koch, S.E. Bauer, and J.R. Miller (2006), Simulations of preindustrial, present-day, and 2100 conditions in the NASA GISS composition and climate model G-PUCCINI, Atmos. Chem. Phys., 6, 4427-4459.

  16. Planetary atmospheres program

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Chemical and physical models of the Jovian subnebula are addressed. Halide cloud condensation and volatile element inventories on Venus and considered. Computation methods for isolated grain condensation behavior are examined.

  17. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

    NASA Astrophysics Data System (ADS)

    Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.

    2016-11-01

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m-2 pan-Arctic-mean cooling), exceeding -1 W m-2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  18. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect.

    PubMed

    Croft, B; Wentworth, G R; Martin, R V; Leaitch, W R; Murphy, J G; Murphy, B N; Kodros, J K; Abbatt, J P D; Pierce, J R

    2016-11-15

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m -2 pan-Arctic-mean cooling), exceeding -1 W m -2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  19. An infrared measurement of chemical desorption from interstellar ice analogues

    NASA Astrophysics Data System (ADS)

    Oba, Y.; Tomaru, T.; Lamberts, T.; Kouchi, A.; Watanabe, N.

    2018-03-01

    In molecular clouds at temperatures as low as 10 K, all species except hydrogen and helium should be locked in the heterogeneous ice on dust grain surfaces. Nevertheless, astronomical observations have detected over 150 different species in the gas phase in these clouds. The mechanism by which molecules are released from the dust surface below thermal desorption temperatures to be detectable in the gas phase is crucial for understanding the chemical evolution in such cold clouds. Chemical desorption, caused by the excess energy of an exothermic reaction, was first proposed as a key molecular release mechanism almost 50 years ago1. Chemical desorption can, in principle, take place at any temperature, even below the thermal desorption temperature. Therefore, astrochemical network models commonly include this process2,3. Although there have been a few previous experimental efforts4-6, no infrared measurement of the surface (which has a strong advantage to quantify chemical desorption) has been performed. Here, we report the first infrared in situ measurement of chemical desorption during the reactions H + H2S → HS + H2 (reaction 1) and HS + H → H2S (reaction 2), which are key to interstellar sulphur chemistry2,3. The present study clearly demonstrates that chemical desorption is a more efficient process for releasing H2S into the gas phase than was previously believed. The obtained effective cross-section for chemical desorption indicates that the chemical desorption rate exceeds the photodesorption rate in typical interstellar environments.

  20. The early stages of massive star formation: tracing the physical and chemical conditions in hot cores

    NASA Astrophysics Data System (ADS)

    Calcutt, Hannah

    2015-04-01

    Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.

  1. Chemical evolution of the gas in C-type shocks in dark clouds

    NASA Astrophysics Data System (ADS)

    Nesterenok, A. V.

    2018-07-01

    A magnetohydrodynamic model of a steady, transverse C-type shock in a dense molecular cloud is presented. A complete gas-grain chemical network is taken into account: the gas-phase chemistry, the adsorption of gas species on dust grains, various desorption mechanisms, the grain surface chemistry, the ion neutralization on dust grains, the sputtering of grain mantles. The population densities of energy levels of ions CI, CII and OI and molecules H2, CO, H2O are computed in parallel with the dynamical and chemical rate equations. The large velocity gradient approximation is used in the line radiative transfer calculations. The simulations consist of two steps: (i) modelling of the chemical and thermal evolution of a static molecular cloud and (ii) shock simulations. A comparison is made with the results of publicly available models of similar physical systems. The focus of the paper is on the chemical processing of gas material and ice mantles of dust grains by the shock. Sputtering of ice mantles takes place in the shock region close to the temperature peak of the neutral gas. At high shock speeds, molecules ejected from ice mantles are effectively destroyed in hot gas, and their survival time is low—of the order of dozens of years. After a passage of high-speed C-type shock, a zone of high abundance of atomic hydrogen appears in the cooling postshock gas that triggers formation of complex organic species such as methanol. It is shown that abundances of some complex organic molecules (COMs) in the postshock region can be much higher than in the preshock gas. These results are important for interpretation of observations of COMs in protostellar outflows.

  2. Lightning Nitrogen Oxides (LNOx) Vertical Profile Quantification and 10 Year Trend Analysis using Ozone Monitoring Instrument (OMI) Satellite Measurements, Air Quality Station (AQS) Surface Measurements, The National Lightning Detection Network (NLDN), and Simulated by Cloud Resolving Chemical Transport Model (REAM Cloud)

    NASA Astrophysics Data System (ADS)

    Smeltzer, C. D.; Wang, Y.; Koshak, W. J.

    2014-12-01

    Vertical profiles and emission lifetimes of lightning nitrogen oxides (LNOx) are derived using the Ozone Monitoring Instrument (OMI). Approximately 200 million flashes, over a 10 year climate period, from the United States National Lighting Detection Network (NLDN), are aggregated with OMI cloud top height to determine the vertical LNOx structure. LNOx lifetime is determined as function of LNOx signal in a 36 kilometer vertical column from the time of the last known flash to depletion of the LNOx signal. Environmental Protection Agency (EPA) Air Quality Station (AQS) surface data further support these results by demonstrating as much as a 200% increase in surface level NO2 during strong thunderstorm events and a lag as long as 5 to 8 hours from the lightning event to the peak surface event, indicating a evolutional process. Analysis of cloud resolving chemical transport model (REAM Cloud) demonstrates that C-shaped LNOx profiles, which agree with OMI vertical profile observations, evolve due to micro-scale convective meteorology given inverted C-shaped LNOx emission profiles as determined from lightning radio telemetry. It is shown, both in simulations and in observations, that the extent to which the LNOx vertical distribution is C-shaped and the lifetime of LNOx is proportional to the shear-strength of the thunderstorm. Micro-scale convective meteorology is not adequately parameterized in global scale and regional scale chemical transport models (CTM). Therefore, these larger scale CTMs ought to use a C-shape emissions profile to best reproduce observations until convective parameterizations are updated. These findings are used to simulate decadal LNOx and lightning ozone climatology over the Continental United States (CONUS) from 2004-2014.

  3. Measurements of nitric oxide after a nuclear burst

    NASA Technical Reports Server (NTRS)

    Mcghan, M.; Shaw, A.; Megill, L. R.; Sedlacek, W.; Guthals, P. R.; Fowler, M. M.

    1981-01-01

    Measurements of ozone and nitric oxide in a nuclear cloud 7 days after the explosion are reported. No measurable increase above ambient density of either ozone or nitric oxide was found. Results from a chemistry model of the cloud do not agree with the measurement unless 'nonstandard' assumptions are made with regard to the operating chemical processes. A number of possible explanations of the results are discussed.

  4. Aerosol physicochemical properties in relation to meteorology: Case studies in urban, marine, and arid settings

    NASA Astrophysics Data System (ADS)

    Wonaschuetz, Anna

    Atmospheric aerosols are a highly relevant component of the climate system affecting atmospheric radiative transfer and the hydrological cycle. As opposed to other key atmospheric constituents with climatic relevance, atmospheric aerosol particles are highly heterogeneous in time and space with respect to their size, concentration, chemical composition and physical properties. Many aspects of their life cycle are not understood, making them difficult to represent in climate models and hard to control as a pollutant. Aerosol-cloud interactions in particular are infamous as a major source of uncertainty in future climate predictions. Field measurements are an important source of information for the modeling community and can lead to a better understanding of chemical and microphysical processes. In this study, field data from urban, marine, and arid settings are analyzed and the impact of meteorological conditions on the evolution of aerosol particles while in the atmosphere is investigated. Particular attention is given to organic aerosols, which are a poorly understood component of atmospheric aerosols. Local wind characteristics, solar radiation, relative humidity and the presence or absence of clouds and fog are found to be crucial factors in the transport and chemical evolution of aerosol particles. Organic aerosols in particular are found to be heavily impacted by processes in the liquid phase (cloud droplets and aerosol water). The reported measurements serve to improve the process-level understanding of aerosol evolution in different environments and to inform the modeling community by providing realistic values for input parameters and validation of model calculations.

  5. The CN/C15N isotopic ratio towards dark clouds

    NASA Astrophysics Data System (ADS)

    Hily-Blant, P.; Pineau des Forêts, G.; Faure, A.; Le Gal, R.; Padovani, M.

    2013-09-01

    Understanding the origin of the composition of solar system cosmomaterials is a central question, not only in the cosmochemistry and astrochemistry fields, and requires various approaches to be combined. Measurements of isotopic ratios in cometary materials provide strong constraints on the content of the protosolar nebula. Their relation with the composition of the parental dark clouds is, however, still very elusive. In this paper, we bring new constraints based on the isotopic composition of nitrogen in dark clouds, with the aim of understanding the chemical processes that are responsible for the observed isotopic ratios. We have observed and detected the fundamental rotational transition of C15N towards two starless dark clouds, L1544 and L1498. We were able to derive the column density ratio of C15N over 13CN towards the same clouds and obtain the CN/C15N isotopic ratios, which were found to be 500 ± 75 for both L1544 and L1498. These values are therefore marginally consistent with the protosolar value of 441. Moreover, this ratio is larger than the isotopic ratio of nitrogen measured in HCN. In addition, we present model calculations of the chemical fractionation of nitrogen in dark clouds, which make it possible to understand how CN can be deprived of 15N and HCN can simultaneously be enriched in heavy nitrogen. The non-fractionation of N2H+, however, remains an open issue, and we propose some chemical way of alleviating the discrepancy between model predictions and the observed ratios. Appendices are available in electronic form at http://www.aanda.orgThe reduced spectra (in FITS format) are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/557/A65

  6. A Comparison of Parameterizations of Secondary Organic Aerosol Production: Global Budget and Spatiotemporal Variability

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, Z.; Horowitz, L. W.; Carlton, A. M. G.; Fan, S.; Cheng, Y.; Ervens, B.; Fu, T. M.; He, C.; Tao, S.

    2014-12-01

    Secondary organic aerosols (SOA) have a profound influence on air quality and climate, but large uncertainties exist in modeling SOA on the global scale. In this study, five SOA parameterization schemes, including a two-product model (TPM), volatility basis-set (VBS) and three cloud SOA schemes (Ervens et al. (2008, 2014), Fu et al. (2008) , and He et al. (2013)), are implemented into the global chemical transport model (MOZART-4). For each scheme, model simulations are conducted with identical boundary and initial conditions. The VBS scheme produces the highest global annual SOA production (close to 35 Tg·y-1), followed by three cloud schemes (26-30 Tg·y-1) and TPM (23 Tg·y-1). Though sharing a similar partitioning theory to the TPM scheme, the VBS approach simulates the chemical aging of multiple generations of VOCs oxidation products, resulting in a much larger SOA source, particularly from aromatic species, over Europe, the Middle East and Eastern America. The formation of SOA in VBS, which represents the net partitioning of semi-volatile organic compounds from vapor to condensed phase, is highly sensitivity to the aging and wet removal processes of vapor-phase organic compounds. The production of SOA from cloud processes (SOAcld) is constrained by the coincidence of liquid cloud water and water-soluble organic compounds. Therefore, all cloud schemes resolve a fairly similar spatial pattern over the tropical and the mid-latitude continents. The spatiotemporal diversity among SOA parameterizations is largely driven by differences in precursor inputs. Therefore, a deeper understanding of the evolution, wet removal, and phase partitioning of semi-volatile organic compounds, particularly above remote land and oceanic areas, is critical to better constrain the global-scale distribution and related climate forcing of secondary organic aerosols.

  7. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    PubMed

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  8. Chemical transitions for interstellar C2 and CN in cloud envelopes

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Strom, C. J.; Lambert, D. L.; Cardelli, Jason A.; Smith, V. V.; Joseph, C. L.

    1994-01-01

    Observations were made of absorption from CH, C2, and CN toward moderately reddened stars in Sco, OB2, Ceo OB3, and Taurus/Auriga. For these directions, most of the reddening is associated with a single cloud complex, for example, the rho Ophiuchus molecular cloud, and as a result, the observations probe moderately dense material. When combined with avaliable data for nearby directions, the survey provides the basis for a comprehensive analysis of the chemistry for these species. The chemical transitions affecting C2 and CN in cloud envelopes were analyzed. The depth into a cloud at which a transition takes place was characterized by tau(sub uv), the grain optical depth at 1000 A. One transition at tau(sub uv) approx. = 2, which arises from, the conversion of C(+) into CO, affects the chemistries for both molecules because of the key role this ion plays. A second one involving production terms in the CN chemistry occurs at tau(sub uv) of approx. = 3; neutral reactions which C2 and CH is more important at larger values for tau(sub uv). The transition from photodissociation to chemical destruction takes place at tau(sub uv) approx. = 4.5 for C2 and CN. The observational data for stars in Sco OB2, Cep OB3, and Taurus/Auriga were studied with chemical rate equations containing the most important production and destruction mechanisms. Because the sample of stars in Sco OB2 includes sight lines with A(sub v) ranging from 1-4 mag, sight lines dominated by photochemistry could be analyzed separately from those controlled by gas-phase destruction. The analysis yielded values for two poorly known rate constants for reactions involved in the production of CN; the reactions are C2 + N yields CN + C and C(+) + NH yields all products. The other directions were analyzed with the inferred values. The predicted column densities for C2 and CN agree with the observed values to better than 50%, and in most instances 20%. When combining the estimates for density and temperature derived from chemical modeling and molecular excitation for a specific cloud, such as the rho Ophiuchus molecular cloud, the portion of the cloud envelope probed by C2 and CN absorption was found to be in pressure equilibrium.

  9. O the Size Dependence of the Chemical Properties of Cloud Droplets: Exploratory Studies by Aircraft

    NASA Astrophysics Data System (ADS)

    Twohy, Cynthia H.

    1992-09-01

    Clouds play an important role in the climate of the earth and in the transport and transformation of chemical species, but many questions about clouds remain unanswered. In particular, the chemical properties of droplets may vary with droplet size, with potentially important consequences. The counterflow virtual impactor (CVI) separates droplets from interstitial particles and gases in a cloud and also can collect droplets in discrete size ranges. As such, the CVI is a useful tool for investigating the chemical components present in droplets of different sizes and their potential interactions with cloud processes. The purpose of this work is twofold. First, the sampling characteristics of the airborne CVI are investigated, using data from a variety of experiments. A thorough understanding of CVI properties is necessary in order to utilize the acquired data judiciously and effectively. Although the impaction characteristics of the CVI seem to be predictable by theory, the airborne instrument is subject to influences that may result in a reduced transmission efficiency for droplets, particularly if the inlet is not properly aligned. Ways to alleviate this problem are being investigated, but currently the imperfect sampling efficiency must be taken into account during data interpretation. Relationships between the physical and chemical properties of residual particles from droplets collected by the CVI and droplet size are then explored in both stratiform and cumulus clouds. The effects of various cloud processes and measurement limitations upon these relationships are discussed. In one study, chemical analysis of different -sized droplets sampled in stratiform clouds showed a dependence of chemical composition on droplet size, with larger droplets containing higher proportions of sodium than non-sea-salt sulfate and ammonium. Larger droplets were also associated with larger residual particles, as expected from simple cloud nucleation theory. In a study of marine cumulus clouds, the CVI was combined with a cloud condensation nucleus spectrometer to study the supersaturation spectra of residual particles from droplets. The median critical supersaturation of the droplet residual particles was consistently less than or equal to the median critical supersaturation of ambient particles except at cloud top, where residual particles exhibited a variety of critical supersaturations.

  10. A review of our understanding of the aerosol-cloud interaction from the perspective of a bin resolved cloud scale modelling

    NASA Astrophysics Data System (ADS)

    Flossmann, Andrea I.; Wobrock, Wolfram

    2010-09-01

    This review compiles the main results obtained using a mesoscale cloud model with bin resolved cloud micophysics and aerosol particle scavenging, as developed by our group over the years and applied to the simulation of shallow and deep convective clouds. The main features of the model are reviewed in different dynamical frameworks covering parcel model dynamics, as well as 1.5D, 2D and 3D dynamics. The main findings are summarized to yield a digested presentation which completes the general understanding of cloud-aerosol interaction, as currently available from textbook knowledge. Furthermore, it should provide support for general cloud model development, as it will suggest potentially minor processes that might be neglected with respect to more important ones and can support development of parameterizations for air quality, chemical transport and climate models. Our work has shown that in order to analyse dedicated campaign results, the supersaturation field and the complex dynamics of the specific clouds needs to be reproduced. Only 3D dynamics represents the variation of the supersaturation over the entire cloud, the continuous nucleation and deactivation of hydrometeors, and the dependence upon initial particle size distribution and solubility. However, general statements on certain processes can be obtained also by simpler dynamics. In particular, we found: Nucleation incorporates about 90% of the initial aerosol particle mass inside the cloud drops. Collision and coalescence redistributes the scavenged aerosol particle mass in such a way that the particle mass follows the main water mass. Small drops are more polluted than larger ones, as pollutant mass mixing ratio decreases with drops size. Collision and coalescence mixes the chemical composition of the generated drops. Their complete evaporation will release processed particles that are mostly larger and more hygroscopic than the initial particles. An interstitial aerosol is left unactivated between the cloud drops which is reduced in number and almost devoid of large particles. Consequently, impaction scavenging can probably be neglected inside clouds. Below clouds, impaction scavenging contributes around 30% to the particle mass reaching the ground by a rainfall event. The exact amount depends on the precise case studied. Nucleation and impaction scavenging directly by the ice phase in mixed phase clouds seems to play a minor role with respect to the particle mass that enters the ice particles via freezing of the liquid phase.The aerosol scavenging efficiency generally follows rather closely the precipitation scavenging value. The nucleation scavenging efficiency is around 90% for the liquid phase clouds and impaction scavenging generally contributed to about 30% of the particle mass in the rain. Clouds are very efficient in pumping up the boundary layer aerosol which essentially determines the cloud properties. For a marine case studied the net pumping depleted about 70% of the aerosol from the section of the boundary layer considered. The larger particles (and thus 70% of the mass vented up) got activated inside the cloud. A weak net import through cloud top and the upwind side was found, as well as a larger net export at the downwind side. The outside cloud subsidence can add to the replenishment of the boundary layer and eventually cause a recycling of the particles into the cloud. The results of the parcel model studies seem to indicate that increasing particulate pollution and decreasing solubility suppresses rain formation. In individual and short time cloud simulations this behaviour was even confirmed in our 3D model studies. However, taking into account entire cloud fields over longer periods of time yields the strong spatial and temporal variability of the results with isolated regions of inverse correlation of the effects. Even though in general initially the expected behaviour was found, after several hours of simulation, the overall precipitation amounts of the more polluted cases caught up. This suggests that a changing pollution will affect the spatial and temporal pattern of precipitation, but will probably not reduce the overall long term precipitation amount which might be entirely governed by the moisture state of the atmosphere. Our results regarding mixed phase precipitation with respect to "all liquid" cases seem to confirm this idea, as with increasing modelling time the precipitation mass of both cases also become similar.

  11. It's a Sooty Problem: Black Carbon and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.

  12. Are CO Observations of Interstellar Clouds Tracing the H2?

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.

    2010-01-01

    Interstellar clouds are commonly observed through the emission of rotational transitions from carbon monoxide (CO). However, the abundance ratio of CO to molecular hydrogen (H2), which is the most abundant molecule in molecular clouds is only about 10-4. This raises the important question of whether the observed CO emission is actually tracing the bulk of the gas in these clouds, and whether it can be used to derive quantities like the total mass of the cloud, the gas density distribution function, the fractal dimension, and the velocity dispersion--size relation. To evaluate the usability and accuracy of CO as a tracer for H2 gas, we generate synthetic observations of hydrodynamical models that include a detailed chemical network to follow the formation and photo-dissociation of H2 and CO. These three-dimensional models of turbulent interstellar cloud formation self-consistently follow the coupled thermal, dynamical and chemical evolution of 32 species, with a particular focus on H2 and CO (Glover et al. 2009). We find that CO primarily traces the dense gas in the clouds, however, with a significant scatter due to turbulent mixing and self-shielding of H2 and CO. The H2 probability distribution function (PDF) is well-described by a log-normal distribution. In contrast, the CO column density PDF has a strongly non-Gaussian low-density wing, not at all consistent with a log-normal distribution. Centroid velocity statistics show that CO is more intermittent than H2, leading to an overestimate of the velocity scaling exponent in the velocity dispersion--size relation. With our systematic comparison of H2 and CO data from the numerical models, we hope to provide a statistical formula to correct for the bias of CO observations. CF acknowledges financial support from a Kade Fellowship of the American Museum of Natural History.

  13. A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations

    NASA Astrophysics Data System (ADS)

    Charnay, B.; Bézard, B.; Baudino, J.-L.; Bonnefoy, M.; Boccaletti, A.; Galicher, R.

    2018-02-01

    We developed a simple, physical, and self-consistent cloud model for brown dwarfs and young giant exoplanets. We compared different parametrizations for the cloud particle size, by fixing either particle radii or the mixing efficiency (parameter f sed), or by estimating particle radii from simple microphysics. The cloud scheme with simple microphysics appears to be the best parametrization by successfully reproducing the observed photometry and spectra of brown dwarfs and young giant exoplanets. In particular, it reproduces the L–T transition, due to the condensation of silicate and iron clouds below the visible/near-IR photosphere. It also reproduces the reddening observed for low-gravity objects, due to an increase of cloud optical depth for low gravity. In addition, we found that the cloud greenhouse effect shifts chemical equilibrium, increasing the abundances of species stable at high temperature. This effect should significantly contribute to the strong variation of methane abundance at the L–T transition and to the methane depletion observed on young exoplanets. Finally, we predict the existence of a continuum of brown dwarfs and exoplanets for absolute J magnitude = 15–18 and J-K color = 0–3, due to the evolution of the L–T transition with gravity. This self-consistent model therefore provides a general framework to understand the effects of clouds and appears well-suited for atmospheric retrievals.

  14. Decadal simulation and comprehensive evaluation of CESM/CAM5.1 with advanced chemistry, aerosol microphysics, and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    He, Jian; Zhang, Yang; Glotfelty, Tim; He, Ruoying; Bennartz, Ralf; Rausch, John; Sartelet, Karine

    2015-03-01

    Earth system models have been used for climate predictions in recent years due to their capabilities to include biogeochemical cycles, human impacts, as well as coupled and interactive representations of Earth system components (e.g., atmosphere, ocean, land, and sea ice). In this work, the Community Earth System Model (CESM) with advanced chemistry and aerosol treatments, referred to as CESM-NCSU, is applied for decadal (2001-2010) global climate predictions. A comprehensive evaluation is performed focusing on the atmospheric component—the Community Atmosphere Model version 5.1 (CAM5.1) by comparing simulation results with observations/reanalysis data and CESM ensemble simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5). The improved model can predict most meteorological and radiative variables relatively well with normalized mean biases (NMBs) of -14.1 to -9.7% and 0.7-10.8%, respectively, although temperature at 2 m (T2) is slightly underpredicted. Cloud variables such as cloud fraction (CF) and precipitating water vapor (PWV) are well predicted, with NMBs of -10.5 to 0.4%, whereas cloud condensation nuclei (CCN), cloud liquid water path (LWP), and cloud optical thickness (COT) are moderately-to-largely underpredicted, with NMBs of -82.2 to -31.2%, and cloud droplet number concentration (CDNC) is overpredictd by 26.7%. These biases indicate the limitations and uncertainties associated with cloud microphysics (e.g., resolved clouds and subgrid-scale cumulus clouds). Chemical concentrations over the continental U.S. (CONUS) (e.g., SO42-, Cl-, OC, and PM2.5) are reasonably well predicted with NMBs of -12.8 to -1.18%. Concentrations of SO2, SO42-, and PM10 are also reasonably well predicted over Europe with NMBs of -20.8 to -5.2%, so are predictions of SO2 concentrations over the East Asia with an NMB of -18.2%, and the tropospheric ozone residual (TOR) over the globe with an NMB of -3.5%. Most meteorological and radiative variables predicted by CESM-NCSU agree well overall with those predicted by CESM-CMIP5. The performance of LWP and AOD predicted by CESM-NCSU is better than that of CESM-CMIP5 in terms of model bias and correlation coefficients. Large biases for some chemical predictions can be attributed to uncertainties in the emissions of precursor gases (e.g., SO2, NH3, and NOx) and primary aerosols (black carbon and primary organic matter) as well as uncertainties in formulations of some model components (e.g., online dust and sea-salt emissions, secondary organic aerosol formation, and cloud microphysics). Comparisons of CESM simulation with baseline emissions and 20% of anthropogenic emissions from the baseline emissions indicate that anthropogenic gas and aerosol species can decrease downwelling shortwave radiation (FSDS) by 4.7 W m-2 (or by 2.9%) and increase SWCF by 3.2 W m-2 (or by 3.1%) in the global mean.

  15. Modeling and observational constraints on the sulfur cycle in the marine troposphere: a focus on reactive halogens and multiphase chemistry

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Breider, T.; Schmidt, J.; Sherwen, T.; Evans, M. J.; Xie, Z.; Quinn, P.; Bates, T. S.; Alexander, B.

    2017-12-01

    The radiative forcing from marine boundary layer clouds is still highly uncertain, which partly stems from our poor understanding of cloud condensation nuclei (CCN) formation. The oxidation of dimethyl sulfide (DMS) and subsequent chemical evolution of its products (e.g. DMSO) are key processes in CCN formation, but are generally very simplified in large-scale models. Recent research has pointed out the importance of reactive halogens (e.g. BrO and Cl) and multiphase chemistry in the tropospheric sulfur cycle. In this study, we implement a series of sulfur oxidation mechanisms into the GEOS-Chem global chemical transport model, involving both gas-phase and multiphase oxidation of DMS, DMSO, MSIA and MSA, to improve our understanding of the sulfur cycle in the marine troposphere. DMS observations from six locations around the globe and MSA/nssSO42- ratio observations from two ship cruises covering a wide range of latitudes and longitudes are used to assess the model. Preliminary results reveal the important role of BrO for DMS oxidation at high latitudes (up to 50% over Southern Ocean). Oxidation of DMS by Cl radicals is small in the model (within 10% in the marine troposphere), probably due to an underrepresentation of Cl sources. Multiphase chemistry (e.g. oxidation by OH and O3 in cloud droplets) is not important for DMS oxidation but is critical for DMSO oxidation and MSA production and removal. In our model, about half of the DMSO is oxidized in clouds, leading to the formation of MSIA, which is further oxidized to form MSA. Overall, with the addition of reactive halogens and multiphase chemistry, the model is able to better reproduce observations of seasonal variations of DMS and MSA/nssSO42- ratios.

  16. On the Effect of Dust Particles on Global Cloud Condensation Nuclei and Cloud Droplet Number

    NASA Technical Reports Server (NTRS)

    Karydis, V. A.; Kumar, P.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-01-01

    Aerosol-cloud interaction studies to date consider aerosol with a substantial fraction of soluble material as the sole source of cloud condensation nuclei (CCN). Emerging evidence suggests that mineral dust can act as good CCN through water adsorption onto the surface of particles. This study provides a first assessment of the contribution of insoluble dust to global CCN and cloud droplet number concentration (CDNC). Simulations are carried out with the NASA Global Modeling Initiative chemical transport model with an online aerosol simulation, considering emissions from fossil fuel, biomass burning, marine, and dust sources. CDNC is calculated online and explicitly considers the competition of soluble and insoluble CCN for water vapor. The predicted annual average contribution of insoluble mineral dust to CCN and CDNC in cloud-forming areas is up to 40 and 23.8%, respectively. Sensitivity tests suggest that uncertainties in dust size distribution and water adsorption parameters modulate the contribution of mineral dust to CDNC by 23 and 56%, respectively. Coating of dust by hygroscopic salts during the atmospheric aging causes a twofold enhancement of the dust contribution to CCN; the aged dust, however, can substantially deplete in-cloud supersaturation during the initial stages of cloud formation and can eventually reduce CDNC. Considering the hydrophilicity from adsorption and hygroscopicity from solute is required to comprehensively capture the dust-warm cloud interactions. The framework presented here addresses this need and can be easily integrated in atmospheric models.

  17. The Most Metal-poor Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Schlaufman, Kevin C.

    2018-06-01

    The chemical abundances of the most metal-poor stars in a galaxy can be used to investigate the earliest stages of its formation and chemical evolution. Differences between the abundances of the most metal-poor stars in the Milky Way and in its satellite dwarf galaxies have been noted and provide the strongest available constraints on the earliest stages of general galactic chemical evolution models. However, the masses of the Milky Way and its satellite dwarf galaxies differ by four orders of magnitude, leaving a gap in our knowledge of the early chemical evolution of intermediate mass galaxies like the Magellanic Clouds. To close that gap, we have initiated a survey of the metal-poor stellar populations of the Magellanic Clouds using the mid-infrared metal-poor star selection of Schlaufman & Casey (2014). We have discovered the three most metal-poor giant stars known in the Large Magellanic Cloud (LMC) and reobserved the previous record holder. The stars have metallicities in the range -2.70 < [Fe/H] < -2.00 and three show r-process enhancement: one has [Eu II/Fe] = +1.65 and two others have [Eu II/Fe] = +0.65. The probability that four randomly selected very metal-poor stars in the halo of the Milky Way are as r-process enhanced is 0.0002. For that reason, the early chemical enrichment of the heaviest elements in the LMC and Milky Way were qualitatively different. It is also suggestive of a possible chemical link between the LMC and the ultra-faint dwarf galaxies nearby with evidence of r-process enhancement (e.g., Reticulum II and Tucana III). Like Reticulum II, the most metal-poor star in our LMC sample is the only one not enhanced in r-process elements.

  18. Chemical Transformation System: Cloud Based ...

    EPA Pesticide Factsheets

    Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not contain the proprietary chemicals that environmental regulators must consider. We are building the Chemical Transformation System (CTS) to facilitate model parameterization and analysis. CTS integrates a number of physicochemical property calculators into the system including EPI Suite, SPARC, TEST and ChemAxon. The calculators are heterogeneous in their scientific methodologies, technology implementations and deployment stacks. CTS also includes a chemical transformation processing engine that has been loaded with reaction libraries for human biotransformation, abiotic reduction and abiotic hydrolysis. CTS implements a common interface for the disparate calculators accepting molecular identifiers (SMILES, IUPAC, CAS#, user-drawn molecule) before submission for processing. To make the system as accessible as possible and provide a consistent programmatic interface, we wrapped the calculators in a standardized RESTful Application Programming Interface (API) which makes it capable of servicing a much broader spectrum of clients without constraints to interoperability such as operating system or programming language. CTS is hosted in a shared cloud environment, the Quantitative Environmental

  19. Can Condensing Organic Aerosols Lead to Less Cloud Particles?

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S.

    2017-12-01

    We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.

  20. Cyanide and isocyanide abundances in the cold, dark cloud TMC-1

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1984-01-01

    Cold, dark molecular clouds are particularly useful for the study of interstellar chemistry because their physical parameters are better understood than those of heterogeneous, complex giant molecular clouds. Another advantage is their relatively small distance from the solar system. The present investigaation has the objective to provide accurate abundance ratios for several cyanides and isocyanides in order to constrain models of dark cloud chemistry. The relative abundances of such related species can be particularly useful for the study of chemical processes. The cloud TMC-1 considered in the current study has a remarkably high abundance of acetylene and polyacetylene derivatives. Data at 3 mm, corresponding to the J = 1 to 0 transitions of HCN, H(C-13)N, HN(C-13), HC(N-15), and H(N-15)C were obtained.

  1. Characterizing the Retrieval of Cloud Optical Thickness and Droplet Effective Radius to Overlying Aerosols Using a General Inverse Theory Approach

    NASA Astrophysics Data System (ADS)

    Coddington, O.; Pilewskie, P.; Schmidt, S.

    2013-12-01

    The upwelling shortwave irradiance measured by the airborne Solar Spectral Flux Radiometer (SSFR) flying above a cloud and aerosol layer is influenced by the properties of the cloud and aerosol particles below, just as would the radiance measured from satellite. Unlike satellite measurements, those from aircraft provide the unique capability to fly a lower-level leg above the cloud, yet below the aerosol layer, to characterize the extinction of the aerosol layer and account for its impact on the measured cloud albedo. Previous work [Coddington et al., 2010] capitalized on this opportunity to test the effects of aerosol particles (or more appropriately, the effects of neglecting aerosols in forward modeling calculations) on cloud retrievals using data obtained during the Intercontinental Chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution (INTEX-A/ITCT) study. This work showed aerosols can cause a systematic bias in the cloud retrieval and that such a bias would need to be distinguished from a true aerosol indirect effect (i.e. the brightening of a cloud due to aerosol effects on cloud microphysics) as theorized by Haywood et al., [2004]. The effects of aerosols on clouds are typically neglected in forward modeling calculations because their pervasiveness, variable microphysical properties, loading, and lifetimes makes forward modeling calculations under all possible combinations completely impractical. Using a general inverse theory technique, which propagates separate contributions from measurement and forward modeling errors into probability distributions of retrieved cloud optical thickness and droplet effective radius, we have demonstrated how the aerosol presence can be introduced as a spectral systematic error in the distributions of the forward modeling solutions. The resultant uncertainty and bias in cloud properties induced by the aerosols is identified by the shape and peak of the posteriori retrieval distributions. In this work, we apply this general inverse theory approach to extend our analysis of the spectrally-dependent impacts of overlying aerosols on cloud properties over a broad range in cloud optical thickness and droplet effective radius. We investigate the relative impacts of this error source and compare and contrast results to biases and uncertainties in cloud properties induced by varying surface conditions (ocean, land, snow). We perform the analysis for two different measurement accuracies (3% and 0.3%) that are typical of current passive imagers, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) [Platnick et al., 2003], and that are expected for future passive imagers, such as the HyperSpectral Imager for Climate Science (HySICS) [Kopp et al., 2010]. Coddington, O., P. Pilewskie, et al., 2010, J. Geophys. Res., 115, doi: 10.1029/2009JD012829. Haywood, J. M., S. R. Osborne, and S. J. Abel, 2004, Q. J. R. Meteorol. Soc., 130, 779-800. Kopp, G., et al., 2010, Hyperspectral Imagery Radiometry Improvements for Visible and Near-Infrared Climate Studies, paper presented at 2010 Earth Science Technology Forum, Arlington, VA, USA. Platnick, S., et al., 2003, IEEE Trans. Geosci. Remote Sens., 41(2), 459- 473.

  2. CHEMICAL ANALYSIS OF A DIFFUSE CLOUD ALONG A LINE OF SIGHT TOWARD W51: MOLECULAR FRACTION AND COSMIC-RAY IONIZATION RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.

    2012-10-20

    Absorption lines from the molecules OH{sup +}, H{sub 2}O{sup +}, and H{sup +} {sub 3} have been observed in a diffuse molecular cloud along a line of sight near W51 IRS2. We present the first chemical analysis that combines the information provided by all three of these species. Together, OH{sup +} and H{sub 2}O{sup +} are used to determine the molecular hydrogen fraction in the outskirts of the observed cloud, as well as the cosmic-ray ionization rate of atomic hydrogen. H{sup +} {sub 3} is used to infer the cosmic-ray ionization rate of H{sub 2} in the molecular interior ofmore » the cloud, which we find to be {zeta}{sub 2} = (4.8 {+-} 3.4) Multiplication-Sign 10{sup -16} s{sup -1}. Combining the results from all three species we find an efficiency factor-defined as the ratio of the formation rate of OH{sup +} to the cosmic-ray ionization rate of H-of {epsilon} = 0.07 {+-} 0.04, much lower than predicted by chemical models. This is an important step in the future use of OH{sup +} and H{sub 2}O{sup +} on their own as tracers of the cosmic-ray ionization rate.« less

  3. Production of NOx by Lightning and its Effects on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2009-01-01

    Production of NO(x) by lightning remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the lightning source in global or regional chemical transport models requires three types of information: the distribution of lightning flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the lightning-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in developing algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per lightning flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in developing vertical profiles of lightning NO(x) for use in global models. Effects of lightning NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.

  4. Satellite Observations of the Effect of Natural and Anthropogenic Aerosols on Clouds

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2006-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is critical to quantifying anthropogenic climate change, to determine climate sensitivity from observations and to understand the hydrological cycle. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate.

  5. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications.

    PubMed

    Ben-David, Avishai; Embury, Janon F; Davidson, Charles E

    2006-09-10

    A comprehensive analytical radiative transfer model for isothermal aerosols and vapors for passive infrared remote sensing applications (ground-based and airborne sensors) has been developed. The theoretical model illustrates the qualitative difference between an aerosol cloud and a chemical vapor cloud. The model is based on two and two/four stream approximations and includes thermal emission-absorption by the aerosols; scattering of diffused sky radiances incident from all sides on the aerosols (downwelling, upwelling, left, and right); and scattering of aerosol thermal emission. The model uses moderate resolution transmittance ambient atmospheric radiances as boundary conditions and provides analytical expressions for the information on the aerosol cloud that is contained in remote sensing measurements by using thermal contrasts between the aerosols and diffused sky radiances. Simulated measurements of a ground-based sensor viewing Bacillus subtilis var. niger bioaerosols and kaolin aerosols are given and discussed to illustrate the differences between a vapor-only model (i.e., only emission-absorption effects) and a complete model that adds aerosol scattering effects.

  6. Is there an aerosol signature of aqueous processing?

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Sorooshian, A.

    2017-12-01

    The formation of aerosol mass in cloud water has been recognized as a substantial source of atmospheric aerosol mass. While sulfate formation can be relatively well constrained, the formation of secondary organic aerosol mass in the aqueous phase (aqSOA) is much more complex due to the multitude of precursors and variety in chemical processes. Aqueous phase processing adds aerosol mass to the droplet mode, which is formed due to mass addition to activated particles in clouds. In addition, it has been shown that aqSOA mass has specific characteristics in terms of oxidation state and hygroscopicity that might help to distinguish it from other SOA sources. Many models do not include detailed chemical mechanisms of sulfate and aqSOA formation and also lack details on the mass distribution of newly formed mass. Mass addition inside and outside clouds modifies different parts of an aerosol population and consequently affects predictions of properties and lifetime of particles. Using a combination of field data analysis and model studies for a variety of air masses, we will show which chemical and physical aerosol properties can be used, in order to identify an `aqueous phase signature' in processed aerosol populations. We will discuss differences in this signature in clean (e.g., background), moderately polluted (e.g., urban) and highly polluted (e.g., biomass burning) air masses and suggest air-mass-specific chemical and/or physical properties that will help to quantify the aqueous-phase derived aerosol mass.

  7. SO 2 oxidation in an entraining cloud model with explicit microphysics

    NASA Astrophysics Data System (ADS)

    Bower, K. N.; Hill, T. A.; Coe, H.; Choularton, T. W.

    A model of the chemical evolution of the droplets in a hill-cap cloud is presented. The chemistry of individual droplets forming on cloud condensation nuclei of differing size and chemical composition is considered, and the take-up of species from the gas phase by the droplets is treated explicity for the droplet population. Oxidation of S(IV) dissolved in cloud droplets is assumed to be dominated by hydrogen peroxide and ozone. Hydrogen peroxide is normally found to be the dominant oxidant for the oxidation of sulphur dioxide (except in the presence of substantial concentrations of ammonia gas, which increases droplet pH and the contribution made by the oxidant ozone). The entrainment of hydrogen peroxide from above the cloud top increases the amount of sulphate produced in conditions where the reaction is otherwise oxidant limited by the availability hydrogen peroxide. These conditions occur when there are high concentrations of sulphur dioxide accompanied by low cloudwater pH values. Within droplets formed on sodium chloride aerosol, reduced levels of acidity lead to an increase in sulphate production as a result of an enhanced reaction between SO 2 and the oxidant ozone. This results in an overall higher increase in cloudwater sulphate than would be expected assuming an even distribution of all reactants amongst the droplets. In addition, concentrations of the hydrogen sulphite ion predicted to occur in the cloudwater can be substantially in excess of those predicted from the bulk cloudwater pH. This is consistent with recent observations.

  8. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  9. Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate

    NASA Technical Reports Server (NTRS)

    Jacob, D. J.

    1986-01-01

    The chemistry of OH in nonprecipitating tropospheric clouds was studied using a coupled gas phase/aqueous phase chemical model. The simulation takes into account the radial dependence of the concentrations of short lived aqueous phase species, in particular, O3(aq) OH(aq). Formic acid is shown to be rapidly produced by the aqueous phase reaction between H2C(OH)2 and OH, but HCOO(-) and OH, but HCOO(-) is in turn rapidly oxidized by OH(aq). The HCOOH concentration in cloud is shown to be strongly dependent on the pH of the cloud water; clouds with pH greater than 5 are not efficient HCOOH sources. A novel mechanism is proposed for the oxidation of S(IV) by OH(aq), with the main product predicted to be peroxymonosulfate, HSO5(-). The latter could contribute significantly to total cloud water sulfur.

  10. Sensitivity of Photolysis Frequencies and Key Tropospheric Oxidants in a Global Model to Cloud Vertical Distributions and Optical Properties

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Considine, David B.; Platnick, Steven; Norris, Peter M.; Duncan, Bryan N.; Pierce, Robert B.; Chen, Gao; Yantosca, Robert M.

    2009-01-01

    Clouds affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. As a follow-up study to our recent assessment of the radiative effects of clouds on tropospheric chemistry, this paper presents an analysis of the sensitivity of such effects to cloud vertical distributions and optical properties (cloud optical depths (CODs) and cloud single scattering albedo), in a global 3-D chemical transport model (GEOS-Chem). GEOS-Chem was driven with a series of meteorological archives (GEOS1- STRAT, GEOS-3 and GEOS-4) generated by the NASA Goddard Earth Observing System data assimilation system. Clouds in GEOS1-STRAT and GEOS-3 have more similar vertical distributions (with substantially smaller CODs in GEOS1-STRAT) while those in GEOS-4 are optically much thinner in the tropical upper troposphere. We find that the radiative impact of clouds on global photolysis frequencies and hydroxyl radical (OH) is more sensitive to the vertical distribution of clouds than to the magnitude of column CODs. With random vertical overlap for clouds, the model calculated changes in global mean OH (J(O1D), J(NO2)) due to the radiative effects of clouds in June are about 0.0% (0.4%, 0.9%), 0.8% (1.7%, 3.1%), and 7.3% (4.1%, 6.0%), for GEOS1-STRAT, GEOS-3 and GEOS-4, respectively; the geographic distributions of these quantities show much larger changes, with maximum decrease in OH concentrations of approx.15-35% near the midlatitude surface. The much larger global impact of clouds in GEOS-4 reflects the fact that more solar radiation is able to penetrate through the optically thin upper-tropospheric clouds, increasing backscattering from low-level clouds. Model simulations with each of the three cloud distributions all show that the change in the global burden of ozone due to clouds is less than 5%. Model perturbation experiments with GEOS-3, where the magnitude of 3-D CODs are progressively varied from -100% to 100%, predict only modest changes (<5%) in global mean OH concentrations. J(O1D), J(NO2) and OH3 concentrations show the strongest sensitivity for small CODs and become insensitive at large CODs due to saturation effects. Caution should be exercised not to use in photochemical models a value for cloud single scattering albedo lower than about 0.999 in order to be consistent with the current knowledge of cloud absorption at the ultraviolet wavelengths.

  11. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.

    2015-11-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  12. Physical properties of CO-dark molecular gas traced by C+

    NASA Astrophysics Data System (ADS)

    Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie

    2016-09-01

    Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by fDMG = 1.0-3.7 × 1020/NH. We divided the clouds into a high extinction group and low extinction group with the dividing threshold being total hydrogen column density NH of 5.0 × 1021 cm-2 (AV = 2.7 mag). The values of fDMG in the low extinction group (AV ≤ 2.7 mag) are consistent with the results of the time-dependent, chemical evolutionary model at the age of ~10 Myr. Our empirical relation cannot be explained by the chemical evolutionary model for clouds in the high extinction group (AV > 2.7 mag). Compared to clouds in the low extinction group (AV ≤ 2.7 mag), clouds in the high extinction group (AV > 2.7 mag) have comparable volume densities but excitation temperatures that are 1.5 times lower. Moreover, CO abundances in clouds of the high extinction group (AV > 2.7 mag) are 6.6 × 102 times smaller than the canonical value in the Milky Way. Conclusions: The molecular gas seems to be the dominate component in these clouds. The high percentage of DMG in clouds of the high extinction group (AV > 2.7 mag) may support the idea that molecular clouds are forming from pre-existing molecular gas, I.e., a cold gas with a high H2 content but that contains a little or no CO content.

  13. Investigating fire emissions and smoke transport during the Summer of 2013 using an operational smoke modeling system and chemical transport model

    NASA Astrophysics Data System (ADS)

    ONeill, S. M.; Chung, S. H.; Wiedinmyer, C.; Larkin, N. K.; Martinez, M. E.; Solomon, R. C.; Rorig, M.

    2014-12-01

    Emissions from fires in the Western US are substantial and can impact air quality and regional climate. Many methods exist that estimate the particulate and gaseous emissions from fires, including those run operationally for use with chemical forecast models. The US Forest Service Smartfire2/BlueSky modeling framework uses satellite data and reported information about fire perimeters to estimate emissions of pollutants to the atmosphere. The emission estimates are used as inputs to dispersion models, such as HYSPLIT, and chemical transport models, such as CMAQ and WRF-Chem, to assess the chemical and physical impacts of fires on the atmosphere. Here we investigate the use of Smartfire2/BlueSky and WRF-Chem to simulate emissions from the 2013 fire summer fire season, with special focus on the Rim Fire in northern California. The 2013 Rim Fire ignited on August 17 and eventually burned more than 250,000 total acres before being contained on October 24. Large smoke plumes and pyro-convection events were observed. In this study, the Smartfire2/BlueSky operational emission estimates are compared to other estimation methods, such as the Fire INventory from NCAR (FINN) and other global databases to quantify variations in emission estimation methods for this wildfire event. The impact of the emissions on downwind chemical composition is investigated with the coupled meteorology-chemistry WRF-Chem model. The inclusion of aerosol-cloud and aerosol-radiation interactions in the model framework enables the evaluation of the downwind impacts of the fire plume. The emissions and modeled chemistry can also be evaluated with data collected from the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft field campaign, which intersected the fire plume.

  14. Boundary conditions for the paleoenvironment: Chemical and physical processes in the pre-solar nebula. [molecular clouds, interstellar matter, and abundance

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.

    1985-01-01

    Two additional hyperfine components of the interstellar radical C3H were detected. In addition, methanol was discovered in interstellar clouds. The abundance of HCCN and various chemical isomers in molecular clouds was investigated.

  15. Parameterization of cloud glaciation by atmospheric dust

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan; Cvetkovic, Bojan; Madonna, Fabio; Pejanovic, Goran; Petkovic, Slavko

    2016-04-01

    The exponential growth of research interest on ice nucleation (IN) is motivated, inter alias, by needs to improve generally unsatisfactory representation of cold cloud formation in atmospheric models, and therefore to increase the accuracy of weather and climate predictions, including better forecasting of precipitation. Research shows that mineral dust significantly contributes to cloud ice nucleation. Samples of residual particles in cloud ice crystals collected by aircraft measurements performed in the upper tropopause of regions distant from desert sources indicate that dust particles dominate over other known ice nuclei such as soot and biological particles. In the nucleation process, dust chemical aging had minor effects. The observational evidence on IN processes has substantially improved over the last decade and clearly shows that there is a significant correlation between IN concentrations and the concentrations of coarser aerosol at a given temperature and moisture. Most recently, due to recognition of the dominant role of dust as ice nuclei, parameterizations for immersion and deposition icing specifically due to dust have been developed. Based on these achievements, we have developed a real-time forecasting coupled atmosphere-dust modelling system capable to operationally predict occurrence of cold clouds generated by dust. We have been thoroughly validated model simulations against available remote sensing observations. We have used the CNR-IMAA Potenza lidar and cloud radar observations to explore the model capability to represent vertical features of the cloud and aerosol vertical profiles. We also utilized the MSG-SEVIRI and MODIS satellite data to examine the accuracy of the simulated horizontal distribution of cold clouds. Based on the obtained encouraging verification scores, operational experimental prediction of ice clouds nucleated by dust has been introduced in the Serbian Hydrometeorological Service as a public available product.

  16. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

    PubMed Central

    Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.

    2016-01-01

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about −0.5 W m−2 pan-Arctic-mean cooling), exceeding −1 W m−2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological–chemical processes may be susceptible to Arctic warming and industrialization. PMID:27845764

  17. In-cloud oxalate formation in the global troposphere: a 3-D modeling study

    NASA Astrophysics Data System (ADS)

    Myriokefalitakis, S.; Tsigaridis, K.; Mihalopoulos, N.; Sciare, J.; Nenes, A.; Segers, A.; Kanakidou, M.

    2011-01-01

    Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a state-of-the-art aqueous phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol). Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 0.83 ± 0.06, r2 = 0.67, N = 106) and suggest that aqueous phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-clouds and less than 10% is produced in aerosol water. About 61% of the oxalate is removed via wet deposition, 35% by in-cloud reaction with hydroxyl radical and 4% by dry deposition. The global oxalate net chemical production is calculated to be about 17-27 Tg yr-1 with almost 91% originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.24-0.39 Tg that is about 13-19% of calculated total organic aerosol burden.

  18. In situ chemical composition measurement of individual cloud residue particles at a mountain site, southern China

    NASA Astrophysics Data System (ADS)

    Lin, Qinhao; Zhang, Guohua; Peng, Long; Bi, Xinhui; Wang, Xinming; Brechtel, Fred J.; Li, Mei; Chen, Duohong; Peng, Ping'an; Sheng, Guoying; Zhou, Zhen

    2017-07-01

    To investigate how atmospheric aerosol particles interact with chemical composition of cloud droplets, a ground-based counterflow virtual impactor (GCVI) coupled with a real-time single-particle aerosol mass spectrometer (SPAMS) was used to assess the chemical composition and mixing state of individual cloud residue particles in the Nanling Mountains (1690 m a. s. l. ), southern China, in January 2016. The cloud residues were classified into nine particle types: aged elemental carbon (EC), potassium-rich (K-rich), amine, dust, Pb, Fe, organic carbon (OC), sodium-rich (Na-rich) and Other. The largest fraction of the total cloud residues was the aged EC type (49.3 %), followed by the K-rich type (33.9 %). Abundant aged EC cloud residues that mixed internally with inorganic salts were found in air masses from northerly polluted areas. The number fraction (NF) of the K-rich cloud residues increased within southwesterly air masses from fire activities in Southeast Asia. When air masses changed from northerly polluted areas to southwesterly ocean and livestock areas, the amine particles increased from 0.2 to 15.1 % of the total cloud residues. The dust, Fe, Pb, Na-rich and OC particle types had a low contribution (0.5-4.1 %) to the total cloud residues. Higher fraction of nitrate (88-89 %) was found in the dust and Na-rich cloud residues relative to sulfate (41-42 %) and ammonium (15-23 %). Higher intensity of nitrate was found in the cloud residues relative to the ambient particles. Compared with nonactivated particles, nitrate intensity decreased in all cloud residues except for dust type. To our knowledge, this study is the first report on in situ observation of the chemical composition and mixing state of individual cloud residue particles in China.

  19. Evaluating Lightning-generated NOx (LNOx) Parameterization based on Cloud Top Height at Resolutions with Partially-resolved Convection for Upper Tropospheric Chemistry Studies

    NASA Astrophysics Data System (ADS)

    Wong, J.; Barth, M. C.; Noone, D. C.

    2012-12-01

    Lightning-generated nitrogen oxides (LNOx) is an important precursor to tropospheric ozone production. With a meteorological time-scale variability similar to that of the ozone chemical lifetime, it can nonlinearly perturb tropospheric ozone concentration. Coupled with upper-air circulation patterns, LNOx can accumulate in significant amount in the upper troposphere with other precursors, thus enhancing ozone production (see attached figure). While LNOx emission has been included and tuned extensively in global climate models, its inclusions in regional chemistry models are seldom tested. Here we present a study that evaluates the frequently used Price and Rind parameterization based on cloud-top height at resolutions that partially resolve deep convection using the Weather Research and Forecasting model with Chemistry (WRF-Chem) over the contiguous United States. With minor modifications, the parameterization is shown to generate integrated flash counts close to those observed. However, the modeled frequency distribution of cloud-to-ground flashes do not represent well for storms with high flash rates, bringing into question the applicability of the intra-cloud/ground partitioning (IC:CG) formulation of Price and Rind in some studies. Resolution dependency also requires attention when sub-grid cloud-tops are used instead of the originally intended grid-averaged cloud-top. LNOx passive tracers being gathered by monsoonal upper tropospheric anticyclone.

  20. Physical and chemical properties of ice residuals during the 2013 and 2014 CLACE campaigns

    NASA Astrophysics Data System (ADS)

    Kupiszewski, Piotr; Weingartner, Ernest; Vochezer, Paul; Hammer, Emanuel; Gysel, Martin; Färber, Raphael; Fuchs, Claudia; Schnaiter, Martin; Baltensperger, Urs; Schmidt, Susan; Schneider, Johannes; Bigi, Alessandro; Toprak, Emre; Linke, Claudia; Klimach, Thomas

    2014-05-01

    The shortcomings in our understanding and, thus, representation of aerosol-cloud interactions are one of the major sources of uncertainty in climate model projections. Among the poorly understood processes is mixed-phase cloud formation via heterogeneous nucleation, and the subsequent spatial and temporal evolution of such clouds. Cloud glaciation augments precipitation formation, resulting in decreased cloud cover and lifetime, and affects cloud radiative properties. Meanwhile, the physical and chemical properties of atmospherically relevant ice nuclei (IN), the sub-population of aerosol particles which enable heterogeneous nucleation, are not well known. Extraction of ice residuals (IR) in mixed-phase clouds is a difficult task, requiring separation of the few small, freshly formed ice crystals (the IR within such crystals can be deemed representative of the original IN) not only from interstitial particles, but also from the numerous supercooled droplets which have aerodynamic diameters similar to those of the ice crystals. In order to address the difficulties with ice crystal sampling and IR extraction in mixed-phase clouds, the new Ice Selective Inlet (ISI) has been designed and deployed at the Jungfraujoch field site. Small ice crystals are selectively sampled via the inlet with simultaneous counting, sizing and imaging of hydrometeors contained in the cloud by a set of optical particle spectrometers, namely Welas optical particle counters (OPC) and a Particle Phase Discriminator (PPD). The heart of the ISI is a droplet evaporation unit with ice-covered inner walls, resulting in removal of droplets using the Wegener-Bergeron-Findeisen process, while transmitting a relatively high fraction of small ice crystals. The ISI was deployed in the winters of 2013 and 2014 at the high alpine Jungfraujoch site (3580 m.a.s.l) during the intensive CLACE field campaigns. The measurements focused on analysis of the physical and chemical characteristics of IR and the microphysical properties of mixed-phase clouds. A host of aerosol instrumentation was deployed downstream of the ISI, including a Grimm OPC and a scanning mobility particle sizer (SMPS) for number size distribution measurements, as well as a single particle mass spectrometer (ALABAMA; 2013 only), single particle soot photometers (SP2) and a Wideband Integrated Bioaerosol Sensor (WIBS-4) for analysis of the chemical composition, with particular focus on the content of black carbon (BC) and biological particles in IR. Corresponding instrumentation sampled through a total aerosol inlet. By comparing observations from the ISI with those from the total inlet the characteristics of ice residuals relative to the total aerosol could be established. First results from these analyses will be presented.

  1. SILCC-Zoom: the dynamic and chemical evolution of molecular clouds

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Walch, S.; Girichidis, P.; Naab, T.; Wünsch, R.; Klessen, R. S.; Glover, S. C. O.; Peters, T.; Clark, P.

    2017-12-01

    We present 3D 'zoom-in' simulations of the formation of two molecular clouds out of the galactic interstellar medium. We model the clouds - identified from the SILCC simulations - with a resolution of up to 0.06 pc using adaptive mesh refinement in combination with a chemical network to follow heating, cooling and the formation of H2 and CO including (self-) shielding. The two clouds are assembled within a few million years with mass growth rates of up to ∼10-2 M⊙ yr-1 and final masses of ∼50 000 M⊙. A spatial resolution of ≲0.1 pc is required for convergence with respect to the mass, velocity dispersion and chemical abundances of the clouds, although these properties also depend on the cloud definition such as based on density thresholds, H2 or CO mass fraction. To avoid grid artefacts, the progressive increase of resolution has to occur within the free-fall time of the densest structures (1-1.5 Myr) and ≳200 time-steps should be spent on each refinement level before the resolution is progressively increased further. This avoids the formation of spurious, large-scale, rotating clumps from unresolved turbulent flows. While CO is a good tracer for the evolution of dense gas with number densities n ≥ 300 cm-3, H2 is also found for n ≲ 30 cm-3 due to turbulent mixing and becomes dominant at column densities around 30-50 M⊙ pc-2. The CO-to-H2 ratio steadily increases within the first 2 Myr, whereas XCO ≃ 1-4 × 1020 cm-2 (K km s-1)-1 is approximately constant since the CO(1-0) line quickly becomes optically thick.

  2. Lidar Measurements of Ozone, Aerosols, and Clouds Observed in the Tropics Near Central America During TC4-Costa Rica

    NASA Astrophysics Data System (ADS)

    Hair, J. W.; Browell, E.; Butler, C.; Fenn, M.; Notari, A.; Simpson, S.; Ismail, S.; Avery, M.

    2007-12-01

    Large-scale measurements of ozone and aerosol distributions were made from the NASA DC-8 aircraft during the TC4 (Tropical Composition, Cloud, and Climate Coupling) field experiment conducted from June 28 - August 10, 2007 based in San Jose, Costa Rica. Remote measurements were made with an airborne lidar to provide ozone and multiple-wavelength aerosol and cloud backscatter profiles from near the surface to above the tropopause along the flight track. Aerosol depolarization measurements were also made for the detection of nonspherical aerosols, such as mineral dust, biomass burning, and recent emissions from South American volcanoes. Long-range transport of Saharan dust with depolarizing aerosols was frequently observed in the lower troposphere both over the Caribbean Sea and Pacific Ocean and within the marine boundary layer. In addition, visible and sub-visible cirrus clouds were observed with the multi-wavelength backscatter and depolarization measurements. Initial distributions of ozone, aerosol, and cloud are presented which will be used to interpret large-scale atmospheric processes. In situ measurements of ozone and aerosols made onboard the DC-8 will be compared to the remote lidar measurements. This paper provides a first look at the characteristics of ozone, aerosol, and cloud distributions that were encountered during this field experiment and provide a unique dataset that will be further related through satellite data, backward trajectories, and chemical transport models (CTM) to sources and sinks of ozone, aerosols, and clouds and to dynamical, chemical, and radiative processes.

  3. Determination of the chemical properties of residues retained in individual cloud droplets by XRF microprobe at SPring-8

    NASA Astrophysics Data System (ADS)

    Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.

    2004-06-01

    To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++) and Zn (Zn +) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed.

  4. Optical observations related to the molecular chemistry in diffuse interstellar clouds

    NASA Technical Reports Server (NTRS)

    Federman, S. R.

    1987-01-01

    Observations, which have been published since 1979, of molecular species in diffuse clouds are discussed. Particular attention is given to the ultraviolet measurements of CO with the Copernicus and IUE satellites and to ground-based optical measurements of CH, CH(+), CN, and 02. These data encompass large enough samples to test the chemical schemes expected to occur in diffuse clouds. Upper limits for other species (e.g., H2O, H2O(+), and C3) place restrictions on the pathways for molecular production. Moreover, analysis of the rotational distribution of the C2 molecule results in the determination of the physical conditions of the cloud. These parameters, including density, temperature, and the intensity of the radiation field, are necessary for modeling the chemistry.

  5. Dimethylsulfide oxidation over the tropical South Atlantic: OH and other oxidants

    NASA Technical Reports Server (NTRS)

    Hemming, Brooke L.; Vastano, John A.; Chatfield, Robert B.; Andreae, Meinrat O.; Hildemann, Lynn M.

    1994-01-01

    The general course of events in the formation of a marine cloud begins with the emission of species which can eventually serve as nuclei around which water can condense to form a cloud droplet. In remote marine regions, cloud condensation nuclei (CCN) are primarily composed of sulfate, in either its acid or ammonium salt form. Most sulfate in these regions is the product of atmospheric oxidation of dimethyl sulfide (DMS), a reduced sulfur gas that is released by phytoplankton at the ocean surface. Therefore, in order to effectively quantify the links in the cloud-formation cycle, one must begin with a well-defined description of the atmospheric chemistry of DMS. The intent of this project has been to initiate development of a comprehensive model of the chemistry and dynamics responsible for the formation of clouds in the remote marine boundary layer. The primary tool in this work has been the Global/Regional Atmospheric Chemistry Event Simulator (GRACES), a global atmospheric chemistry model, which is under development within the Atmospheric Chemistry and Dynamics Branch of NASA-Ames Research Center. In this effort, GRACES was used to explore the first chemical link between DMS and sulfate by modeling the diurnal variation of DMS.

  6. The 1980 eruptions of Mount St. Helens - Physical and chemical processes in the stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Whitten, R. C.; Hamill, P.; Keesee, R. G.

    1983-01-01

    The large and diverse set of observational data collected in the high-altitude plumes of the May 18, May 25, and June 13, 1980 eruptions is organized and analyzed with a view to discerning the processes at work. The data serve to guide and constrain detailed model simulations of the volcanic clouds. For this purpose, use is made of a comprehensive one-dimensional model of stratospheric sulfate aerosols, sulfur precursor gases, and volcanic ash and dust. The model takes into account gas-phase and condensed-phase (heterogeneous) chemistry in the clouds, aerosol nucleation and growth, and cloud expansion. Computational results are presented for the time histories of the gaseous species concentrations, aerosol size distributions, and ash burdens of the eruption clouds. Also investigated are the long-term buildup of stratospheric aerosols in the Northern Hemisphere and the persistent effects of injected chlorine and water vapor on stratospheric ozone. It is concluded that SO2, water vapor, and ash were probably the most important substances injected into the stratosphere by the Mount St. Helens volcano, both with respect to their widespread effects on composition and their effect on climate.

  7. The sensitivity of tropospheric chemistry to cloud interactions

    NASA Technical Reports Server (NTRS)

    Jonson, Jan E.; Isaksen, Ivar S. A.

    1994-01-01

    Clouds, although only occupying a relatively small fraction of the troposphere volume, can have a substantial impact on the chemistry of the troposphere. In newly formed clouds, or in clouds with air rapidly flowing through, the chemistry is expected to be far more active than in aged clouds with stagnant air. Thus, frequent cycling of air through shortlived clouds, i.e. cumulus clouds, is likely to be a much more efficient media for altering the composition of the atmosphere than an extensive cloud cover i.e. frontal cloud systems. The impact of clouds is tested out in a 2-D channel model encircling the globe in a latitudinal belt from 30 to 60 deg N. The model contains a detailed gas phase chemistry. In addition physiochemical interactions between the gas and aqueous phases are included. For species as H2O2, CH2O, O3, and SO2, Henry's law equilibria are assumed, whereas HNO3 and H2SO4 are regarded as completed dissolved in the aqueous phase. Absorption of HO2 and OH is assumed to be mass-transport limited. The chemistry of the aqueous phase is characterized by rapid cycling of odd hydrogen, (H2O2, HO2, and OH). O2(-) (produced through dissociation of HO2) reacting with dissolved O3 is a major source of OH in the aqueous phase. This reaction can be a significant sink for O3 in the troposphere. In the interstitial cloud air, odd hydrogen is depleted, whereas NO(x) remains in the gas phase, thus reducing ozone production due to the reaction between NO and HO2. Our calculations give markedly lower ozone levels when cloud interactions are included. This may in part explain the overpredictions of ozone levels often experienced in models neglecting cloud chemical interactions. In the present study, the existence of clouds, cloud types, and their lifetimes are modeled as pseudo random variables. Such pseudo random sequences are in reality deterministic and may, given the same starting values, be reproduced. The effects of cloud interactions on the overall chemistry of the troposphere are discussed. In particular, tests are performed to determine the sensitivity of cloud frequencies and cloud types.

  8. Dust in brown dwarfs and extrasolar planets. V. Cloud formation in carbon- and oxygen-rich environments

    NASA Astrophysics Data System (ADS)

    Helling, Ch.; Tootill, D.; Woitke, P.; Lee, G.

    2017-07-01

    Context. Recent observations indicate potentially carbon-rich (C/O > 1) exoplanet atmospheres. Spectral fitting methods for brown dwarfs and exoplanets have invoked the C/O ratio as additional parameter but carbon-rich cloud formation modeling is a challenge for the models applied. The determination of the habitable zone for exoplanets requires the treatment of cloud formation in chemically different regimes. Aims: We aim to model cloud formation processes for carbon-rich exoplanetary atmospheres. Disk models show that carbon-rich or near-carbon-rich niches may emerge and cool carbon planets may trace these particular stages of planetary evolution. Methods: We extended our kinetic cloud formation model by including carbon seed formation and the formation of C[s], TiC[s], SiC[s], KCl[s], and MgS[s] by gas-surface reactions. We solved a system of dust moment equations and element conservation for a prescribed Drift-Phoenixatmosphere structure to study how a cloud structure would change with changing initial C/O0 = 0.43...10.0. Results: The seed formation efficiency is lower in carbon-rich atmospheres than in oxygen-rich gases because carbon is a very effective growth species. The consequence is that fewer particles make up a cloud if C/O0 > 1. The cloud particles are smaller in size than in an oxygen-rich atmosphere. An increasing initial C/O ratio does not revert this trend because a much greater abundance of condensible gas species exists in a carbon-rich environment. Cloud particles are generally made of a mix of materials: carbon dominates if C/O0 > 1 and silicates dominate if C/O0 < 1. A carbon content of 80-90% carbon is reached only in extreme cases where C/O0 = 3.0 or 10.0. Conclusions: Carbon-rich atmospheres form clouds that are made of particles of height-dependent mixed compositions, sizes and numbers. The remaining gas phase is far less depleted than in an oxygen-rich atmosphere. Typical tracer molecules are HCN and C2H2 in combination with a featureless, smooth continuum due to a carbonaceous cloud cover, unless the cloud particles become crystalline.

  9. A physically-based approach of treating dust-water cloud interactions in climate models

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Karydis, V.; Barahona, D.; Sokolik, I. N.; Nenes, A.

    2011-12-01

    All aerosol-cloud-climate assessment studies to date assume that the ability of dust (and other insoluble species) to act as a Cloud Condensation Nuclei (CCN) is determined solely by their dry size and amount of soluble material. Recent evidence however clearly shows that dust can act as efficient CCN (even if lacking appreciable amounts of soluble material) through adsorption of water vapor onto the surface of the particle. This "inherent" CCN activity is augmented as the dust accumulates soluble material through atmospheric aging. A comprehensive treatment of dust-cloud interactions therefore requires including both of these sources of CCN activity in atmospheric models. This study presents a "unified" theory of CCN activity that considers both effects of adsorption and solute. The theory is corroborated and constrained with experiments of CCN activity of mineral aerosols generated from clays, calcite, quartz, dry lake beds and desert soil samples from Northern Africa, East Asia/China, and Northern America. The unified activation theory then is included within the mechanistic droplet activation parameterization of Kumar et al. (2009) (including the giant CCN correction of Barahona et al., 2010), for a comprehensive treatment of dust impacts on global CCN and cloud droplet number. The parameterization is demonstrated with the NASA Global Modeling Initiative (GMI) Chemical Transport Model using wind fields computed with the Goddard Institute for Space Studies (GISS) general circulation model. References Barahona, D. et al. (2010) Comprehensively Accounting for the Effect of Giant CCN in Cloud Activation Parameterizations, Atmos.Chem.Phys., 10, 2467-2473 Kumar, P., I.N. Sokolik, and A. Nenes (2009), Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN, Atmos.Chem.Phys., 9, 2517- 2532

  10. Martin Karplus and Computer Modeling for Chemical Systems

    Science.gov Websites

    &D Nuggets Database dropdown arrow Search Tag Cloud Browse Reports Database Help Finding Aids with two-time Nobel laureate Linus Pauling, whom Karplus described as an important early influence. He

  11. Unraveling the Chemical Evolution of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Nidever, David L.; Hasselquist, Sten; Rochford Hayes, Christian; Majewski, Steven R.; Anguiano, Borja; Stringfellow, Guy S.; APOGEE Team

    2018-06-01

    How galaxies form and evolve remains one of the cornerstone questions in our understanding of the universe on grand scales. While much progress has been made in understanding the formation and chemical evolution of larger galaxies by studying the Milky Way and other nearby galaxies, our knowledge of the evolution of dwarf galaxies, especially the chemical component, is far more limited because these small galaxies and their constituent stars are quite faint. The SDSS-IV/APOGEE survey will dramatically improve the situation by conducting a large spectroscopic survey of 5,000 giant stars, sampling a large range of radius and position angle, in the nearby Magellanic Clouds (MCs). The main scientific goals of the project are to map out the chemical abundance patterns across the MCs, search for chemical and kinematical substructures, and unravel the chemical evolution of the MCs by comparing the APOGEE abundances to chemical evolution models and sophisticated chemo-hydrodynamical simulations. The observational campaign has just begun but we have already obtained high-quality data for several thousand stars. I will present some initial results of the APOGEE MC campaign including chemical abundance gradients, the metal-poor knee, and the origion of the retrograde metal-poor "Olsen" stellar stream in the LMC disk.

  12. Applying super-droplets as a compact representation of warm-rain microphysics for aerosol-cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Arabas, S.; Jaruga, A.; Pawlowska, H.; Grabowski, W. W.

    2012-12-01

    Clouds may influence aerosol characteristics of their environment. The relevant processes include wet deposition (rainout or washout) and cloud condensation nuclei (CCN) recycling through evaporation of cloud droplets and drizzle drops. Recycled CCN physicochemical properties may be altered if the evaporated droplets go through collisional growth or irreversible chemical reactions (e.g. SO2 oxidation). The key challenge of representing these processes in a numerical cloud model stems from the need to track properties of activated CCN throughout the cloud lifecycle. Lack of such "memory" characterises the so-called bulk, multi-moment as well as bin representations of cloud microphysics. In this study we apply the particle-based scheme of Shima et al. 2009. Each modelled particle (aka super-droplet) is a numerical proxy for a multiplicity of real-world CCN, cloud, drizzle or rain particles of the same size, nucleus type,and position. Tracking cloud nucleus properties is an inherent feature of the particle-based frameworks, making them suitable for studying aerosol-cloud-aerosol interactions. The super-droplet scheme is furthermore characterized by linear scalability in the number of computational particles, and no numerical diffusion in the condensational and in the Monte-Carlo type collisional growth schemes. The presentation will focus on processing of aerosol by a drizzling stratocumulus deck. The simulations are carried out using a 2D kinematic framework and a VOCALS experiment inspired set-up (see http://www.rap.ucar.edu/~gthompsn/workshop2012/case1/).

  13. The Cloud Ice Mountain Experiment (CIME) 1998: experiment overview and modelling of the microphysical processes during the seeding by isentropic gas expansion

    NASA Astrophysics Data System (ADS)

    Wobrock, Wolfram; Flossmann, Andrea I.; Monier, Marie; Pichon, Jean-Marc; Cortez, Laurent; Fournol, Jean-François; Schwarzenböck, Alfons; Mertes, Stephan; Heintzenberg, Jost; Laj, Paolo; Orsi, Giordano; Ricci, Loretta; Fuzzi, Sandro; Brink, Harry Ten; Jongejan, Piet; Otjes, René

    The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H 2O 2 and NH 3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud. In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron-Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron-Findeisen process when acting also in natural clouds.

  14. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    NASA Astrophysics Data System (ADS)

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; Veidenbaum, Alex; Nicolau, Alex

    2017-07-01

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18-0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20-40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components - wavelength integration, scattering, and averaging over cloud fields - all have comparably small errors. More accurate solutions with Solar-J come with increased computational costs, about 5 times that of RRTMG-SW for a single atmosphere. There are options for reduced costs or computational acceleration that would bring costs down while maintaining improved fidelity and balanced errors.

  15. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. Themore » spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere. Furthermore, the Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. Here, we compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere. Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength integration, scattering, and averaging over cloud fields – all have comparably small errors. More accurate solutions with Solar-J come with increased computational costs, about 5 times that of RRTMG-SW for a single atmosphere. There are options for reduced costs or computational acceleration that would bring costs down while maintaining improved fidelity and balanced errors.« less

  16. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    DOE PAGES

    Hsu, Juno; Prather, Michael J.; Cameron-Smith, Philip; ...

    2017-01-01

    Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. Themore » spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere. Furthermore, the Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM) applications (RRTMG-SW). Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. Here, we compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere. Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength integration, scattering, and averaging over cloud fields – all have comparably small errors. More accurate solutions with Solar-J come with increased computational costs, about 5 times that of RRTMG-SW for a single atmosphere. There are options for reduced costs or computational acceleration that would bring costs down while maintaining improved fidelity and balanced errors.« less

  17. Implementation of warm-cloud processes in a source-oriented WRF/Chem model to study the effect of aerosol mixing state on fog formation in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Chen, Shu-Hua; Kleeman, Michael J.; Zhang, Hongliang; DeNero, Steven P.; Joe, David K.

    2016-07-01

    The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and was applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-D chemical variable (X, Z, Y, size bins, source types, species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and long-wave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into cloud condensation nuclei (CCN) at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.

  18. Chemical abundances in cold, dark interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, William M.; Kaifu, Norio; Ohishi, Masatoshi

    1991-01-01

    Current tabulations are presented of the entire range of known interstellar molecules, giving attention to that subset which has been identified in the cold, dark interstellar clouds out of which the sun has been suggested to have formed. The molecular abundances of two such clouds, Taurus Molecular Cloud 1 and Lynd's 134N, exhibit prepossessing chemical differences despite considerable physical similarities. This discrepancy may be accounted for by the two clouds' differing evolutionary stages. Two novel classes of interstellar molecules are noted: sulfur-terminated carbon chains and silicon-terminated ones.

  19. The simulation of molecular clouds formation in the Milky Way

    NASA Astrophysics Data System (ADS)

    Khoperskov, S. A.; Vasiliev, E. O.; Sobolev, A. M.; Khoperskov, A. V.

    2013-01-01

    Using 3D hydrodynamic calculations we simulate formation of molecular clouds in the Galaxy. The simulations take into account molecular hydrogen chemical kinetics, cooling and heating processes. Comprehensive gravitational potential accounts for contributions from the stellar bulge, two- and four-armed spiral structure, stellar disc, dark halo and takes into account self-gravitation of the gaseous component. Gas clouds in our model form in the spiral arms due to shear and wiggle instabilities and turn into molecular clouds after t ≳ 100 Myr. At the times t ˜ 100-300 Myr the clouds form hierarchical structures and agglomerations with the sizes of 100 pc and greater. We analyse physical properties of the simulated clouds and find that synthetic statistical distributions like mass spectrum, `mass-size' relation and velocity dispersion are close to those observed in the Galaxy. The synthetic l-v (galactic longitude-radial velocity) diagram of the simulated molecular gas distribution resembles observed one and displays a structure with appearance similar to molecular ring of the Galaxy. Existence of this structure in our modelling can be explained by superposition of emission from the galactic bar and the spiral arms at ˜3-4 kpc.

  20. The Postshock Chemical Lifetimes of Outflow Tracers and a Possible New Mechanism to Produce Water Ice Mantles

    NASA Technical Reports Server (NTRS)

    Bergin, Edwin A.; Melnick, Gary J.; Neufeld, David A.

    1998-01-01

    We have used a coupled time-dependent chemical and dynamical model to investigate the lifetime of the chemical legacy in the wake of C-type shocks. We concentrate this study on the chemistry of H2O and O2, two molecules which are predicted to have abundances that are significantly affected in shock-heated gas. Two models are presented: (1) a three-stage model of preshock, shocked, and postshock gas; and (2) a Monte Carlo cloud simulation where we explore the effects of stochastic shock activity on molecular gas over a cloud lifetime. For both models we separately examine the pure gas-phase chemistry as well as the chemistry including the interactions of molecules with grain surfaces. In agreement with previous studies, we find that shock velocities in excess of 10 km/s are required to convert all of the oxygen not locked in CO into H2O before the gas has an opportunity to cool. For pure gas phase models the lifetime of the high water abundances, or "H2O legacy," in the postshock gas is approximately (4-7) x 10(exp 5) yr, independent of the gas density. A density dependence for the lifetime of H2O is found in gas-grain models as the water molecules deplete onto grains at the depletion timescale. Through the Monte Carlo cloud simulation we demonstrate that the time-average abundance of H2O, the weighted average of the amount of time gas spends in preshock, shock, and postshock stages, is a sensitive function of the frequency of shocks. Thus we predict that the abundance of H2O, and to a lesser extent O2, can be used to trace the history of shock activity in molecular gas. We use previous large-scale surveys of molecular outflows to constrain the frequency of 10 km/s shocks in regions with varying star formation properties and discuss the observations required to test these results. We discuss the postshock lifetimes for other possible outflow tracers (e.g., SiO and CH3OH) and show that the differences between the lifetimes for various tracers can produce potentially observable chemical variations between younger and older outflows. For gas-grain models we find that the abundance of water-ice on grain surfaces can be quite large and is comparable to that observed in molecular clouds. This offers a possible alternative method to create water mantles without resorting to grain surface chemistry: gas heating and chemical modification due to a C-type shock and subsequent depletion of the gas-phase species onto grain mantles.

  1. Chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  2. 74 MHz nonthermal emission from molecular clouds: evidence for a cosmic ray dominated region at the galactic center.

    PubMed

    Yusef-Zadeh, F; Wardle, M; Lis, D; Viti, S; Brogan, C; Chambers, E; Pound, M; Rickert, M

    2013-10-03

    We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free–free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α(327MHz)(74MHz) = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate 10(–1)3 s(–1) H(–1) is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities 10(4–5) cm(–3) and high temperatures. The lower limit to the temperature of G0.13-0.13 is 100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.

  3. The sensitivity of gas-phase models of dense interstellar clouds to changes in dissociative recombination branching ratios

    NASA Technical Reports Server (NTRS)

    Millar, T. J.; Defrees, D. J.; Mclean, A. D.; Herbst, E.

    1988-01-01

    The approach of Bates to the determination of neutral product branching ratios in ion-electron dissociative recombination reactions has been utilized in conjunction with quantum chemical techniques to redetermine branching ratios for a wide variety of important reactions of this class in dense interstellar clouds. The branching ratios have then been used in a pseudo time-dependent model calculation of the gas phase chemistry of a dark cloud resembling TMC-1 and the results compared with an analogous model containing previously used branching ratios. In general, the changes in branching ratios lead to stronger effects on calculated molecular abundances at steady state than at earlier times and often lead to reductions in the calculated abundances of complex molecules. However, at the so-called 'early time' when complex molecule synthesis is most efficient, the abundances of complex molecules are hardly affected by the newly used branching ratios.

  4. The use of marine cloud water samples as a diagnostic tool for aqueous chemistry, cloud microphysical processes and dynamics

    NASA Astrophysics Data System (ADS)

    Crosbie, E.; Ziemba, L. D.; Moore, R.; Shook, M.; Jordan, C.; Thornhill, K. L., II; Winstead, E.; Shingler, T.; Brown, M.; MacDonald, A. B.; Dadashazar, H.; Sorooshian, A.; Weiss-Penzias, P. S.; Anderson, B.

    2017-12-01

    Clouds play several roles in the Earth's climate system. In addition to their clear significance to the hydrological cycle, they strongly modulate the shortwave and longwave radiative balance of the atmosphere, with subsequent feedback on the atmospheric circulation. Furthermore, clouds act as a conduit for the fate and emergence of important trace chemical species and are the predominant removal mechanism for atmospheric aerosols. Marine boundary layer clouds cover large swaths of the global oceans. Because of their global significance, they have attracted significant attention into understanding how changes in aerosols are translated into changes in cloud macro- and microphysical properties. The circular nature of the influence of clouds-on-aerosols and aerosols-on-clouds has been used to explain the chaotic patterns often seen in marine clouds, however, this feedback also presents a substantial hurdle in resolving the uncertain role of anthropogenic aerosols on climate. Here we discuss ways in which the chemical constituents found in cloud water can offer insight into the physical and chemical processes inherent in marine clouds, through the use of aircraft measurements. We focus on observational data from cloud water samples collected during flights conducted over the remote North Atlantic and along coastal California across multiple campaigns. We explore topics related to aqueous processing, wet scavenging and source apportionment.

  5. Observational and modeling studies of chemical species concentrations as a function of raindrop size

    NASA Astrophysics Data System (ADS)

    Wai, K. M.; Tam, C. W. F.; Tanner, P. A.

    The Guttalgor method has been used to determine the chemical species concentrations in size-selected raindrops in nine rain events at Hong Kong from 1999 to 2001. The curve (concentration against raindrop radius) patterns for all the species are similar but depend on the starting time of sampling within a rain event. In these plots, the maximum concentration occurs at the same range of droplet radius, irrespective of the species, and this indicates the importance of coalescence and breakup processes. The maximum is located at a smaller droplet radius than was found in previous studies in Germany. All results show almost constant concentrations with size for large raindrops, and these indicate the in-cloud contributions. The pH of raindrops of similar size is linearly correlated with a function of the sulfate, nitrate, acetate, formate, calcium and ammonium ion species concentrations. Within a single raindrop, chloride depletion is not significant, and sulfate, ammonium and hydrogen ions are found in ratios compatible with the precursor solid-phase mixture of ammonium sulfate and ammonium bisulphate. When simulated by a below-cloud model, good agreement between the modeled and measured sodium and sulfate concentrations has been found. Below-cloud sulfur dioxide scavenging contributes at most 60% of the sulfate concentration in a single raindrop.

  6. Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model

    NASA Astrophysics Data System (ADS)

    Samland, M.; Hensler, G.; Theis, Ch.

    1997-02-01

    Here we present our two-dimensional chemodynamical code CoDEx, which we developed for the purpose of modeling the evolution of galaxies in a self-consistent manner. The code solves the hydrodynamical and momentum equations for three stellar components and the multiphase interstellar medium (clouds and intercloud medium), including star formation, Type I and Type II supernovae, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are treated simultaneously, coupling a large range in temporal and spatial scales, to account for feedback and self-regulation processes, which play an extraordinarily important role in the galactic evolution. The evolution of galaxies of different masses and angular momenta is followed through all stages from the initial protogalactic clouds until now. In this first paper we present a representative model of the Milky Way and compare it with observations. The capability of chemodynamical models is convincingly proved by the excellent agreement with various observations. In addition, well-known problems (the G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are also solved in the global scenario. Starting from a rotating protogalactic gas cloud in virial equilibrium, which collapses owing to dissipative cloud-cloud collisions, we can follow the galactic evolution in detail. Owing to the collapse, the gas density increases, stars are forming, and the first Type II supernovae explode. The collapse time is 1 order of magnitude longer than the dynamical free-fall time because of the energy release by Type II supernovae. The supernovae also drive hot metal-rich gas ejected from massive stars into the halo, and as a consequence, the clouds in the star-forming regions have lower metallicities than the clouds in the halo. The observed negative metallicity gradients do not form before t = 6 × 109 yr. These outward gas flows prevent any clear correlation between local star formation rate and enrichment and also prevent a unique age-metallicity relation. The situation, however, is even more complicated, because the mass return of intermediate-mass stars (Type I supernovae and planetary nebulae) is delayed depending on the type of precursor. Since our chemodynamical model includes all these processes, we can calculate, e.g., the [O/H] distribution of stars and find good agreement everywhere in bulge, disk, and halo. From the galactic oxygen to iron ratio, we can determine the supernovae ([II + Ib]/Ia) ratio for different types of Type Ia supernovae (such as carbon deflagration or sub-Chandrasekhar models) and find that the ratio should be in the range 1.0-3.8. The chemodynamical model also traces other chemical elements (e.g., N + C), density distributions, gas flows, velocity dispersions of the stars and clouds, star formation, planetary nebula rates, cloud collision, condensation and evaporation rates, and the cooling due to radiation. The chemodynamical treatment of galaxy evolution should be envisaged as a necessary development, which takes those processes into account that affect the dynamical, energetical, and chemical evolution.

  7. Formation of Polar Stratospheric Clouds in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Aloyan, Artash; Yermakov, Alex; Arutyunyan, Vardan; Larin, Igor

    2014-05-01

    A new mathematical model of the global transport of gaseous species and aerosols in the atmosphere and the formation of polar stratospheric clouds (PSCs) in both hemispheres was constructed. PSCs play a significant role in ozone chemistry since heterogeneous reactions proceed on their particle surfaces and in the bulk, affecting the gas composition of the atmosphere, specifically, the content of chlorine and nitrogen compounds, which are actively involved in the destruction of ozone. Stratospheric clouds are generated by co-condensation of water vapor and nitric acid on sulfate particles and in some cases during the freezing of supercooled water as well as when nitric acid vapors are dissolved in sulfate aerosol particles [1]. These clouds differ in their chemical composition and microphysics [2]. In this study, we propose new kinetic equations describing the variability of species in the gas and condensed phases to simulate the formation of PSCs. Most models for the formation of PSCs use constant background values of sulfate aerosols in the lower stratosphere. This approach is too simplistic since sulfate aerosols in the stratosphere are characterized by considerably nonuniform spatial and temporal variations. Two PSC types are considered: Type 1 refers to the formation of nitric acid trihydrate (NAT) and Type 2 refers to the formation of particles composed of different proportions of H2SO4/HNO3/H2O. Their formation is coupled with the spatial problem of sulfate aerosol generation in the upper troposphere and lower stratosphere incorporating the chemical and kinetic transformation processes (photochemistry, nucleation, condensation/evaporation, and coagulation) and using a non-equilibrium particle-size distribution [3]. In this formulation, the system of equations is closed and allows an adequate description of the PSC dynamics in the stratosphere. Using the model developed, numerical experiments were performed to reproduce the spatial and temporal variability of polar clouds in both hemispheres for the winter time period. The numerical experiments were performed in the following sequence. In the first stage, we address the transport of multicomponent gaseous species, the formation of sulfate aerosols in the troposphere and lower stratosphere (spherical atmosphere), the chemical and kinetic transformations, and the biogenic and anthropogenic emissions of related chemical components [3]. This model makes it possible to reproduce the distribution of sulfate particles in the size range from 3 nm to 1 mcm. Next, the base model was improved by using a new module describing the dynamics of phase transition of substances in gaseous and condensed phases that are typical for different types of PSCs. Here, we used the methods of thermodynamics. Conclusions •The model developed allow us to reproduce the size distribution of sulfate particles generated from precursor gases in the troposphere and stratosphere; •The numerical experiments show that the model adequately reproduces the spatial characteristics of the PSC formation in the atmosphere. References 1.Carslaw K.S., Peter T., Clegg S.L. Modeling the composition of liquid stratospheric clouds. Rev. Geophys. 35, 125, 1997 2.Drdla, K., Shoeberl, M.R., and Browell, E.V., Microphysical modeling of the 1999-2000 Arctic winter. J. Geophys. Res., 2003, vol. 108, No. D5, p. 8312. 3.Aloyan, A.E., Yermakov, A.N., Arutyunyan, V.O., Sulfate aerosol formation in the troposphere and lower stratosphere, in Possibilities of Climate Stabilization by Using Novel Technologies, Moscow: Rosgidromet, 2012, pp. 75-98.

  8. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.; Martin, S. T.; Kleinman, L.

    2016-03-01

    Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical andmore » microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.« less

  9. Exploring Contextual Models in Chemical Patent Search

    NASA Astrophysics Data System (ADS)

    Urbain, Jay; Frieder, Ophir

    We explore the development of probabilistic retrieval models for integrating term statistics with entity search using multiple levels of document context to improve the performance of chemical patent search. A distributed indexing model was developed to enable efficient named entity search and aggregation of term statistics at multiple levels of patent structure including individual words, sentences, claims, descriptions, abstracts, and titles. The system can be scaled to an arbitrary number of compute instances in a cloud computing environment to support concurrent indexing and query processing operations on large patent collections.

  10. Session on coupled atmospheric/chemistry coupled models

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1993-01-01

    The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.

  11. Simulation of the initial stage of the Mt. Pinatubo eruption using the coupled meteorology-chemistry WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy; Ukhov, Alexander; Ahmadov, Ravan

    2017-04-01

    Big explosive volcanic eruptions emit in the atmosphere, among other species, millions of tons of SO2, water vapor, and solid particles, volcanic ash. SO2 is oxidized to produce sulfate aerosols that are transported globally and cause widespread long-term climate effects. Ash particles deposit within a few months, as they are relatively large, and, it is believed, do not produce long-term climate effects. However, at the initial stage of the evolution of a volcanic cloud SO2, volcanic water, sulfate, and ash coexist and their chemical, microphysical, and radiation interaction might be important to precondition the long-term formation and transport of a volcanic aerosol cloud. To better understand this initial stage of a volcanic impact we simulate the aerosol plume from the largest 20th-century eruption of Mt. Pinatubo in the Philippines in June 1991 using the specifically modified Weather Research and Forecasting model coupled with chemistry (WRF-Chem). Ash, SO2, and sulfate emission, transport, dispersion, chemical transformation and deposition are calculated using the GOCART aerosol and chemistry scheme. Effect of volcanic aerosol interaction with radiation (short and long wave) is assessed using RRTMG radiative transfer model. The simulations are conducted for two months in the equatorial belt (45S, 45N) with the periodic boundary conditions in longitude and imposing aerosols and chemicals from the MERRA2, and meteorology from the ERA-Interim along the belt's borders in latitude. The simulations reveal the vertical separation of the aerosol plume due to aerosol (both ash and sulfate) gravitational settling and a complex dynamic evolution of the multi-layer cloud with sharp gradients of radiative heating within the plume that affects the cloud dispersion and the equilibrium altitude that are crucially important for the further large-scale plume evolution.

  12. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry.

    PubMed

    Hao, Liqing; Romakkaniemi, Sami; Kortelainen, Aki; Jaatinen, Antti; Portin, Harri; Miettinen, Pasi; Komppula, Mika; Leskinen, Ari; Virtanen, Annele; Smith, James N; Sueper, Donna; Worsnop, Douglas R; Lehtinen, Kari E J; Laaksonen, Ari

    2013-03-19

    This study presents results of direct observations of aerosol chemical composition in clouds. A high-resolution time-of-flight aerosol mass spectrometer was used to make measurements of cloud interstitial particles (INT) and mixed cloud interstitial and droplet residual particles (TOT). The differences between these two are the cloud droplet residuals (RES). Positive matrix factorization analysis of high-resolution mass spectral data sets and theoretical calculations were performed to yield distributions of chemical composition of the INT and RES particles. We observed that less oxidized hydrocarbon-like organic aerosols (HOA) were mainly distributed into the INT particles, whereas more oxidized low-volatile oxygenated OA (LVOOA) mainly in the RES particles. Nitrates existed as organic nitrate and in chemical form of NH(4)NO(3). Organic nitrates accounted for 45% of total nitrates in the INT particles, in clear contrast to 26% in the RES particles. Meanwhile, sulfates coexist in forms of acidic NH(4)HSO(4) and neutralized (NH(4))(2)SO(4). Acidic sulfate made up 64.8% of total sulfates in the INT particles, much higher than 10.7% in the RES particles. The results indicate a possible joint effect of activation ability of aerosol particles, cloud processing, and particle size effects on cloud formation.

  13. Simulation of the Upper Clouds and Hazes of Venus Using a Microphysical Cloud Model

    NASA Astrophysics Data System (ADS)

    McGouldrick, K.

    2012-12-01

    Several different microphysical and chemical models of the clouds of Venus have been developed in attempts to reproduce the in situ observations of the Venus clouds made by Pioneer Venus, Venera, and Vega descent probes (Turco et al., 1983 (Icarus 53:18-25), James et al, 1997 (Icarus 129:147-171), Imamura and Hashimoto, 2001 (J. Atm. Sci. 58:3597-3612), and McGouldrick and Toon, 2007 (Icarus 191:1-24)). The model of McGouldrick and Toon has successfully reproduced observations within the condensational middle and lower cloud decks of Venus (between about 48 and 57 km altitude, experiencing conditions similar to Earth's troposphere) and it now being extended to also simulate the microphysics occurring in the upper cloud deck (between altitudes of about 57 km and 70 km, experiencing conditions similar to Earth's stratosphere). In the upper clouds, aerosols composed of a solution of sulfuric acid in water are generated from the reservoir of available water vapor and sulfuric acid vapor that is photochemically produced. The manner of particle creation (e.g., activation of cloud condensation nuclei, or homogeneous or heterogeneous nucleation) is still incompletely understood, and the atmospheric environment has been measured to be not inconsistent with frozen aerosol particles (either sulfuric acid monohydrate or water ice). The material phase, viscosity, and surface tension of the aerosols (which are strongly dependent up on the local temperature and water vapor concentration) can affect the coagulation efficiencies of the aerosol, leading to variations in the size distributions, and other microphysical and radiative properties. Here, I present recent work exploring the effects of nucleation rates and coalescence efficiencies on the simulated Venus upper clouds.

  14. Ionospheric chemical releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.; Scales, W. A.

    1990-01-01

    Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.

  15. Composition and Chemistry of the Neutral Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Marcq, Emmanuel; Mills, Franklin P.; Parkinson, Christopher D.; Vandaele, Ann Carine

    2018-02-01

    This paper deals with the composition and chemical processes occurring in the neutral atmosphere of Venus. Since the last synthesis, observers as well as modellers have emphasised the spatial and temporal variability of minor species, going beyond a static and uniform picture that may have prevailed in the past. The outline of this paper acknowledges this situation and follows closely the different dimensions along which variability in composition can be observed: vertical, latitudinal, longitudinal, temporal. The strong differences between the atmosphere below and above the cloud layers also dictate the structure of this paper. Observational constraints, obtained from both Earth and Venus Express, as well as 1D, 2D and 3D models results obtained since 1997 are also extensively referred and commented by the authors. An non-exhaustive list of topics included follows: modelled and observed latitudinal and vertical profiles of CO and OCS below the clouds of Venus; vertical profiles of CO and SO2 above the clouds as observed by solar occultation and modelled; temporal and spatial variability of sulphur oxides above the clouds. As a conclusion, open questions and topics of interest for further studies are discussed.

  16. The NASA Airborne Tropical TRopopause EXperiment (ATTREX):High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Pfister, L.; Jordan, D. E.; Bui, T. V.; Ueyama, R.; Singh, H. B.; Lawson, P.; Thornberry, T.; Diskin, G.; McGill, M.; hide

    2016-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes.

  17. Upper limits for the ethyl-cyanide abundances in TMC-1 and L134N - Chemical implications

    NASA Technical Reports Server (NTRS)

    Minh, Y. C.; Irvine, W. M.

    1991-01-01

    Interstellar ethyl-cyanide has been sought via its 2(02)-1(01) transition towards two cold, dark clouds, and upper limits of the total column densities of 3 x 10 to the 12th/sq cm and 2 x 10 to the 12th/sq cm for TMC-1 and L134N, respectively. The 2(02)-1(01) transition of vynil cyanide, previously identified in TMC-1 by Matthews and Sears (1983b), was also observed. The detection of vinyl cyanide and the nondetection of ethyl cyanide in TMC-1 are consistent with gas phase ion-molecule chemical models, and there is thus no necessity of invoking grain surface synthesis for vinyl cyanide in cold clouds.

  18. The molecular composition of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Allen, M.; Robinson, G. W.

    1977-01-01

    Presented in this paper is an ab initio chemical model for dense interstellar clouds that incorporates 598 grain surface reactions, with small grains providing the reaction area. Gas-phase molecules are depleted through collisions with grains. The abundances of 372 chemical species are calculated as a function of time and are found to be of sufficient magnitude to explain most observations. Peak abundances are achieved on time scales of the order of 100,000 to 1 million years, depending on cloud density and kinetic temperature. The reaction rates for ion-molecule chemistry are approximately the same, indicating that surface and gas-phase chemistry may be coupled in certain regions. The composition of grain mantles is shown to be a function of grain radius. In certain grain-size ranges, large molecules containing two or more heavy atoms are more predominant than lighter 'ices' - H2O, NH3, and CH4. It is possible that absorption due to these large molecules in the mantle may contribute to the observed 3-micron band in astronomical spectra.

  19. Prebiotic chemistry in clouds

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Marshall, John; Shen, Thomas

    1991-01-01

    The chemical evolution hypothesis of Woese (1979), according to which prebiotic reactions occurred rapidly in droplets in giant atmospheric reflux columns was criticized by Scherer (1985). This paper proposes a mechanism for prebiotic chemistry in clouds that answers Scherer's concerns and supports Woese's hypothesis. According to this mechanism, rapid prebiotic chemical evolution was facilitated on the primordial earth by cycles of condensation and evaporation of cloud drops containing clay condensation nuclei and nonvolatile monomers. For example, amino acids supplied by, or synthesized during entry of meteorites, comets, and interplanetary dust, would have been scavenged by cloud drops containing clay condensation nuclei and would be polymerized within cloud systems during cycles of condensation, freezing, melting, and evaporation of cloud drops.

  20. Enhanced toxic cloud knockdown spray system for decontamination applications

    DOEpatents

    Betty, Rita G [Rio Rancho, NM; Tucker, Mark D [Albuquerque, NM; Brockmann, John E [Albuquerque, NM; Lucero, Daniel A [Albuquerque, NM; Levin, Bruce L [Tijeras, NM; Leonard, Jonathan [Albuquerque, NM

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  1. Using Star Clusters as Tracers of Star Formation and Chemical Evolution: The Chemical Enrichment History of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Chilingarian, Igor V.; Asa’d, Randa

    2018-05-01

    The star formation (SFH) and chemical enrichment (CEH) histories of Local Group galaxies are traditionally studied by analyzing their resolved stellar populations in a form of color–magnitude diagrams obtained with the Hubble Space Telescope. Star clusters can be studied in integrated light using ground-based telescopes to much larger distances. They represent snapshots of the chemical evolution of their host galaxy at different ages. Here we present a simple theoretical framework for the chemical evolution based on the instantaneous recycling approximation (IRA) model. We infer a CEH from an SFH and vice versa using observational data. We also present a more advanced model for the evolution of individual chemical elements that takes into account the contribution of supernovae type Ia. We demonstrate that ages, iron, and α-element abundances of 15 star clusters derived from the fitting of their integrated optical spectra reliably trace the CEH of the Large Magellanic Cloud obtained from resolved stellar populations in the age range 40 Myr < t < 3.5 Gyr. The CEH predicted by our model from the global SFH of the LMC agrees remarkably well with the observed cluster age–metallicity relation. Moreover, the present-day total gas mass of the LMC estimated by the IRA model (6.2× {10}8 {M}ȯ ) matches within uncertainties the observed H I mass corrected for the presence of molecular gas (5.8+/- 0.5× {10}8 {M}ȯ ). We briefly discuss how our approach can be used to study SFHs of galaxies as distant as 10 Mpc at the level of detail that is currently available only in a handful of nearby Milky Way satellites. .

  2. CALIPSO Satellite Lidar Identification Of Elevated Dust Over Australia Compared With Air Quality Model PM60 Forecasts

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Vaughan, Mark; Omar, Ali; Liu, Zhaoyan; Lee, Sunhee; Hu, Youngxiang; Cope, Martin

    2008-01-01

    Global measurements of the vertical distribution of clouds and aerosols have been recorded by the lidar on board the CALIPSO (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) satellite since June 2006. Such extensive, height-resolved measurements provide a rare and valuable opportunity for developing, testing and validating various atmospheric models, including global climate, numerical weather prediction, chemical transport and air quality models. Here we report on the initial results of an investigation into the performance of the Australian Air Quality Forecast System (AAQFS) model in forecasting the distribution of elevated dust over the Australian region. The model forecasts of PM60 dust distribution are compared with the CALIPSO lidar Vertical Feature Mask (VFM) data product. The VFM classifies contiguous atmospheric regions of enhanced backscatter as either cloud or aerosols. Aerosols are further classified into six subtypes. By comparing forecast PM60 concentration profiles to the spatial distribution of dust reported in the CALIPSO VFM, we can assess the model s ability to predict the occurrence and the vertical and horizontal extents of dust events within the study area.

  3. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (<0.7%) with the exception of the cargo ship plume and smoke plume which increased absolute cloud reflectivity fraction by 0.02 and 0.20 respectively. In addition, the ACP model simulations are compared to those from a numerical parameterization of cloud droplet activation that is suitable for GCMs and show droplet concentrations are comparable between the two methods.

  4. The global impact of mineral dust on cloud droplet number concentration

    NASA Astrophysics Data System (ADS)

    Karydis, V.; Tsimpidi, A.; Bacer, S.; Pozzer, A.; Nenes, A.; Lelieveld, J.

    2016-12-01

    This study assesses the importance of mineral dust for cloud droplet formation by taking into account i) the adsorption of water on the surface of insoluble dust particles, ii) the coating of soluble material on the surface of mineral particles which augments their cloud condensation nuclei activity, and iii) the effect of dust on the inorganic aerosol concentrations through thermodynamic interactions with mineral cations. Simulations are carried out with the EMAC chemistry climate model that calculates the global atmospheric aerosol composition using the ISORROPIA-II thermodynamic equilibrium model and considers the gas phase interactions with K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3-Cl-H2O particle components. Emissions of the inert mineral dust and the reactive dust aerosol components are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide (Karydis et al., 2016). We have implemented the "unified dust activation parameterization" (Kumar et al., 2011; Karydis et al., 2011) to calculate the droplet number concentration by taking into account the inherent hydrophilicity from adsorption and the acquired hygroscopicity from soluble salts by dust particles. Our simulations suggest that mineral dust significantly increases the cloud droplet number concentration (CDNC) over the main deserts and the adjacent oceans. However, over polluted areas the CDNC decreases significantly in the presence of dust. Furthermore, we investigate the role of adsorption activation of insoluble aerosols and the mineral dust thermodynamic interactions with inorganic anions on the cloud droplet formation. The CDNC sensitivity to the emission load, chemical composition, and inherent hydrophilicity of mineral dust is also tested. ReferencesKarydis, et al. (2011). "On the effect of dust particles on global cloud condensation nuclei and cloud droplet number." J. Geophys. Res. Atmos. 116. Karydis, et al. (2016). "Effects of mineral dust on global atmospheric nitrate concentrations." Atmos. Chem. Phys. 16(3): 1491-1509. Kumar, et al. (2011). "Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals." Atmos. Chem. Phys. Discuss. 11(4): 12561-12605.

  5. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al. [6]. Our investigation regarding the influence of aerosol processing will focus on the regional scale using a cloud-system resolving model with a much higher resolution. Emphasis will be placed on orographic mixed-phase precipitation. Different two-dimensional simulations of idealized orographic clouds will be conducted to estimate the effect of aerosol processing on orographic cloud formation and precipitation. Here, cloud lifetime, location and extent as well as the cloud type will be of particular interest. In a supplementary study, the new parameterization will be compared to observations of total and interstitial aerosol concentrations and size distribution at the remote high alpine research station Jungfraujoch in Switzerland. In addition, our simulations will be compared to recent simulations of aerosol processing in warm, mixed-phase and cold clouds, which have been carried out at the location of Jungfraujoch station [5]. References: [1] Pruppacher & Jaenicke (1995), The processing of water vapor and aerosols by atmospheric clouds, a global estimate, Atmos. Res., 38, 283295. [2] Seifert & Beheng (2006), A two-moment microphysics parameterization for mixed-phase clouds. Part 1: Model description, Meteorol. Atmos. Phys., 92, 4566. [3] Vignati et al. (2004), An efficient size-resolved aerosol microphysics module for large-scale transport models, J. Geophys. Res., 109, D22202 [4] Muhlbauer & Lohmann (2008), Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different flow regimes, J. Atmos. Sci., 65, 25222542. [5] Hoose et al. (2008), Aerosol processing in mixed-phase clouds in ECHAM5HAM: Model description and comparison to observations, J. Geophys. Res., 113, D071210. [6] Hoose et al. (2008), Global simulations of aerosol processing in clouds, Atmos. Chem. Phys., 8, 69396963.

  6. The influence of aerosol particle number and hygroscopicity on the evolution of convective cloud systems and their precipitation

    NASA Astrophysics Data System (ADS)

    Planche, C.; Flossmann, A. I.; Wobrock, W.

    2009-04-01

    A 3D cloud model with detailed microphysics for ice, water and aerosol particles (AP) is used to study the role of AP on the evolution of summertime convective mixed phase clouds and the subsequent precipitation. The model couples the dynamics of the NCAR Clark-Hall cloud scale model (Clark et al., 1996) with the detailed scavenging model (DESCAM) of Flossmann and Pruppacher (1988) and the ice phase module of Leroy et al. (2007). The microphysics follows the evolution of AP, drop, and ice crystal spectra each with 39 bins. Aerosol mass in drops and ice crystals is also predicted by two distribution functions to close the aerosol budget. The simulated cases are compared with radar observations over the northern Vosges mountains and the Rhine valley which were performed on 12 and 13 August 2007 during the COPS field campaign. Using a 3D grid resolution of 250m, our model, called DESCAM-3D, is able to simulate very well the dynamical, cloud and precipitation features observed for the two different cloud systems. The high horizontal grid resolution provides new elements for the understanding of the formation of orographic convection. In addition the fine numerical scale compares well with the high resolved radar observation given by the LaMP X-band radar and Poldirad. The prediction of the liquid and ice hydrometeor spectra allows a detailed calculation of the cloud radar reflectivity. Sensitivity studies realized by the use of different mass-diameter relationships for ice crystals demonstrate the role of the crystal habits on the simulated reflectivities. In order to better understand the role of AP on cloud evolution and precipitation formation several sensitivity studies were performed by modifying not only aerosol number concentration but also their physico-chemical properties. The numerical results show a strong influence of the aerosol number concentration on the precipitation intensity but no effect of the aerosol particle solubility on the rain formation can be found.

  7. Imaging sensor constellation for tomographic chemical cloud mapping.

    PubMed

    Cosofret, Bogdan R; Konno, Daisei; Faghfouri, Aram; Kindle, Harry S; Gittins, Christopher M; Finson, Michael L; Janov, Tracy E; Levreault, Mark J; Miyashiro, Rex K; Marinelli, William J

    2009-04-01

    A sensor constellation capable of determining the location and detailed concentration distribution of chemical warfare agent simulant clouds has been developed and demonstrated on government test ranges. The constellation is based on the use of standoff passive multispectral infrared imaging sensors to make column density measurements through the chemical cloud from two or more locations around its periphery. A computed tomography inversion method is employed to produce a 3D concentration profile of the cloud from the 2D line density measurements. We discuss the theoretical basis of the approach and present results of recent field experiments where controlled releases of chemical warfare agent simulants were simultaneously viewed by three chemical imaging sensors. Systematic investigations of the algorithm using synthetic data indicate that for complex functions, 3D reconstruction errors are less than 20% even in the case of a limited three-sensor measurement network. Field data results demonstrate the capability of the constellation to determine 3D concentration profiles that account for ~?86%? of the total known mass of material released.

  8. Accounting for Heterogeneous-Phase Chemistry in Air Quality Models - Research Needs and Applications

    EPA Science Inventory

    Understanding the extent to which heterogeneous chemical reactions affect the burden and distribution of atmospheric pollutants is important because heterogeneous surfaces are ubiquitous throughout our environment. They include materials such as aerosol particles, clouds and fog,...

  9. A search with Copernicus for interstellar N2 in diffuse clouds

    NASA Technical Reports Server (NTRS)

    Lutz, B. L.; Snow, T. P., Jr.; Owen, T.

    1979-01-01

    Multiple Copernicus scans of two N2 band regions (near 958.5 and 960.2A) of Delta Sco and Epsilon Per are reported. The observations indicate upper limits for the number of N2 molecules equal to 1.0-3.8 times 10 to the -12th/sq cm and 1.2-4.4 times 10 to the -12th/sq cm, respectively; the limits depend on the cloud temperature. It is suggested that the limits are consistent with the column densities predicted by chemical models for diffuse interstellar clouds, and the predicted relative abundances are presented in terms of the ratio of N(N2)/(2N(H2) + N(Hl)).

  10. Pre-cometary ice composition from hot core chemistry.

    PubMed

    Tornow, Carmen; Kührt, Ekkehard; Motschmann, Uwe

    2005-10-01

    Pre-cometary ice located around star-forming regions contains molecules that are pre-biotic compounds or pre-biotic precursors. Molecular line surveys of hot cores provide information on the composition of the ice since it sublimates near these sites. We have combined a hydrostatic hot core model with a complex network of chemical reactions to calculate the time-dependent abundances of molecules, ions, and radicals. The model considers the interaction between the ice and gas phase. It is applied to the Orion hot core where high-mass star formation occurs, and to the solar-mass binary protostar system IRAS 16293-2422. Our calculations show that at the end of the hot core phase both star-forming sites produce the same prebiotic CN-bearing molecules. However, in the Orion hot core these molecules are formed in larger abundances. A comparison of the calculated values with the abundances derived from the observed line data requires a chemically unprocessed molecular cloud as the initial state of hot core evolution. Thus, it appears that these objects are formed at a much younger cloud stage than previously thought. This implies that the ice phase of the young clouds does not contain CN-bearing molecules in large abundances before the hot core has been formed. The pre-biotic molecules synthesized in hot cores cause a chemical enrichment in the gas phase and in the pre-cometary ice. This enrichment is thought to be an important extraterrestrial aspect of the formation of life on Earth and elsewhere.

  11. Chemical Abundances of Metal-poor RR Lyrae Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Haschke, Raoul; Grebel, Eva K.; Frebel, Anna; Duffau, Sonia; Hansen, Camilla J.; Koch, Andreas

    2012-09-01

    We present for the first time a detailed spectroscopic study of chemical element abundances of metal-poor RR Lyrae stars in the Large and Small Magellanic Cloud (LMC and SMC). Using the MagE echelle spectrograph at the 6.5 m Magellan telescopes, we obtain medium resolution (R ~ 2000-6000) spectra of six RR Lyrae stars in the LMC and three RR Lyrae stars in the SMC. These stars were chosen because their previously determined photometric metallicities were among the lowest metallicities found for stars belonging to the old populations in the Magellanic Clouds. We find the spectroscopic metallicities of these stars to be as low as [Fe/H]spec = -2.7 dex, the lowest metallicity yet measured for any star in the Magellanic Clouds. We confirm that for metal-poor stars, the photometric metallicities from the Fourier decomposition of the light curves are systematically too high compared to their spectroscopic counterparts. However, for even more metal-poor stars below [Fe/H]phot < -2.8 dex this trend is reversed and the spectroscopic metallicities are systematically higher than the photometric estimates. We are able to determine abundance ratios for 10 chemical elements (Fe, Na, Mg, Al, Ca, Sc, Ti, Cr, Sr, and Ba), which extend the abundance measurements of chemical elements for RR Lyrae stars in the Clouds beyond [Fe/H] for the first time. For the overall [α/Fe] ratio, we obtain an overabundance of 0.36 dex, which is in very good agreement with results from metal-poor stars in the Milky Way halo as well as from the metal-poor tail in dwarf spheroidal galaxies. Comparing the abundances with those of the stars in the Milky Way halo we find that the abundance ratios of stars of both populations are consistent with another. Therefore, we conclude that from a chemical point of view early contributions from Magellanic-type galaxies to the formation of the Galactic halo as claimed in cosmological models are plausible. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.

  12. CHEMICAL EVOLUTION OF THE UNIVERSE AT 0.7 < z < 1.6 DERIVED FROM ABUNDANCE DIAGNOSTICS OF THE BROAD-LINE REGION OF QUASARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sameshima, H.; Yoshii, Y.; Kawara, K., E-mail: sameshima@cc.kyoto-su.ac.jp

    2017-01-10

    We present an analysis of Mg ii λ 2798 and Fe ii UV emission lines for archival Sloan Digital Sky Survey (SDSS) quasars to explore the diagnostics of the magnesium-to-iron abundance ratio in a broad-line region cloud. Our sample consists of 17,432 quasars selected from the SDSS Data Release 7 with a redshift range of 0.72 <  z  < 1.63. A strong anticorrelation between the Mg ii equivalent width (EW) and the Eddington ratio is found, while only a weak positive correlation is found between the Fe ii EW and the Eddington ratio. To investigate the origin of these differing behaviors ofmore » Mg ii and Fe ii emission lines, we perform photoionization calculations using the Cloudy code, where constraints from recent reverberation mapping studies are considered. We find from calculations that (1) Mg ii and Fe ii emission lines are created at different regions in a photoionized cloud, and (2) their EW correlations with the Eddington ratio can be explained by just changing the cloud gas density. These results indicate that the Mg ii/Fe ii flux ratio, which has been used as a first-order proxy for the Mg/Fe abundance ratio in chemical evolution studies with quasar emission lines, depends largely on the cloud gas density. By correcting this density dependence, we propose new diagnostics of the Mg/Fe abundance ratio for a broad-line region cloud. In comparing the derived Mg/Fe abundance ratios with chemical evolution models, we suggest that α -enrichment by mass loss from metal-poor intermediate-mass stars occurred at z  ∼ 2 or earlier.« less

  13. Spectroscopic Observation of Chemical Interaction Between Impact-induced Vapor Clouds and the Ambient Atmosphere

    NASA Technical Reports Server (NTRS)

    Sugita, S.; Heineck, J. T.; Schultz, P. H.

    2000-01-01

    Chemical reactions within impact-induced vapor clouds were observed in laboratory experiments using a spectroscopic method. The results indicate that projectile-derived carbon-rich vapor reacts intensively with atmospheric nitrogen.

  14. Probing and monitoring aerosol and atmospheric clouds with an electro-optic oscillator.

    PubMed

    Arnon, S; Kopeika, N S

    1996-09-20

    Monitoring, probing, and sensing characteristics of aerosol clouds is difficult and complicated. Probing the characteristics of aerosols is most useful in the chemical and microelectronic industry for processing control of aerosols and emulsion, decreasing bit error rate in adaptive optical communication systems, and in acquiring data for atmospheric science and environment quality. We present a new mathematical and optical engineering model for monitoring characteristics of aerosol clouds. The model includes the temporal transfer function of aerosol clouds as a variable parameter in an electro-optic oscillator. The frequency of the oscillator changes according to changes in the characteristics of the clouds (density, size distribution, physical thickness, the medium and the particulate refractive indices, and spatial distribution). It is possible to measure only one free characteristic at a given time. An example of a practical system for monitoring the density of aerosol clouds is given. The frequency of the oscillator changes from 1.25 to 0.43 MHz for changes in aerosol density from 2000 to 3000 particulates cm(-3). The advantages of this new method compared with the transmissometer methods are (a) no necessity for line-of-sight measurement geometry, (b) accurate measurement of high optical thickness media is possible, (c) under certain conditions measurements can include characteristics of aerosol clouds related to light scatter that cannot be or are difficult to measure with a transmissometer, and (d) the cloud bandwidth for free space optical communication is directly measurable.

  15. Sensitivity of aerosol loading and properties to cloudiness

    NASA Astrophysics Data System (ADS)

    Iversen, T.; Seland, O.; Kirkevag, A.; Kristjansson, J. E.

    2005-12-01

    Clouds influence aerosols in various ways. Sulfate is swiftly produced in liquid phase provided there is both sulfur dioxide and oxidants available. Nucleation and Aitken mode aerosol particles efficiently grow in size by collision and coagulation with cloud droplets. When precipitation is formed, aerosol and precursor gases may be quickly removed bay rainout. The dynamics associated with clouds in some cases may swiftly mix aerosols deeply into the troposphere. In some cases Aitken-mode particles may be formed in cloud droplets by splitting agglomerates of particulate matter such as black carbon In this presentation we will discuss how global cloudiness may influence the burden, residence time, and spatial distribution of sulfate, black carbon and particulate organic matter. A similar physico-chemical scheme for there compounds has been implemented in three generations of the NCAR community climate model (CCM3, CAM2 and CAM3). The scheme is documented in the literature and is a part of the Aerocom-intercomparison. There are many differences between these models. With respect to aerosols, a major difference is that CAM3 has a considerably higher global cloud volume and more then twice the amount of cloud water than CAM2 and CCM3. Atmospheric simulations have been made with prescribed ocean temperatures. It is slightly surprising to discover that certain aspects of the aerosols are not particularly sensitive to these differences in cloud availability. This sensitivity will be compared to sensitivities with respect to processing in deep convective clouds.

  16. Atmospheric chemical transport based on high-resolution model-derived winds: A case study

    NASA Astrophysics Data System (ADS)

    Hannan, John R.; Fuelberg, Henry E.; Thompson, Anne M.; Bieberbach, George; Knabb, Richard D.; Kondo, Yutaka; Anderson, Bruce E.; Browell, Edward V.; Gregory, Gerald L.; Sachse, Glen W.; Singh, Hanwant B.

    2000-02-01

    Flight 10 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) extended southwest of Lajes, Azores. A variety of chemical signatures was encountered. These signatures are examined in detail, relating them to meteorological data from a high-resolution numerical model having a horizontal grid spacing of 30 and 90 km with 26 vertical levels. The meteorological output at hourly intervals is used to create backward trajectories from the locations of the chemical signatures. Four major categories of chemical signatures are discussed: stratospheric, lightning, continental pollution, and a mixed chemical layer. The strong stratospheric signal is encountered just south of the Azores in a region of depressed tropopause height. Three chemical signatures at different altitudes in the upper troposphere are attributed to lightning. Backward trajectories from these signatures extend to locations of cloud-to-ground lightning. Specifically, results show that the trajectories pass over regions of lightning 1-2 days earlier over the eastern Gulf of Mexico and off the southeast coast of the United States. The lowest leg of the flight exhibits a chemical signature consistent with continental pollution. Trajectories from this signature are found to pass over the highly populated Northeast Corridor of the United States. Surface-based pollution apparently is lofted to the altitudes of the trajectories by convective clouds along the East Coast that did not contain lightning. Finally, a mixed layer is described. Its chemical signature is intermediate to those of lightning and continental pollution. Backward trajectories from this layer pass between the trajectories of the lightning and pollution signatures. Thus they likely are impacted by both sources.

  17. Chemical Speciation of Water Soluble Ions and Metals of Cloud and Rain Water During the Puerto Rico African Dust and Clouds Study (PRADACS) Campaigns

    NASA Astrophysics Data System (ADS)

    Torres, E.; Valle Diaz, C. J.; Lee, T.; Collett, J. L.; Fitzgerald, E.; Cuadra-Rodriguez, L. A.; Prather, K. A.; Sánchez, M.; McDowell, W. H.; Mayol-Bracero, O. L.

    2013-05-01

    The underlying physico-chemical processes of dust particles interactions are poorly understood; even less understood is how aging impacts cloud properties and climate as the particles travel from Africa to the Caribbean region. Caribbean landmasses have tropical montane cloud forests (TMCFs) that are tightly coupled to the atmospheric hydrologic cycle. TMCFs are ecosystems to study the effects African Dust (AD) on cloud formation and precipitation as these are very sensitive ecosystems that respond to small changes in climate. As part of the Puerto Rico African Dust and Clouds Study (PRADACS), chemical analyses were performed on cloud and rain water samples collected at Pico del Este (PE) station in Luquillo, PR (1051 masl) during campaigns held from 2010 to 2012. At PE, two cloud collectors (i.e., single stage (Aluminum version), a 2-stage (Teflon version) Caltech Active Strand Cloudwater Collector (CASCC)), a rainwater collector, and anAerosol Time-Of-Flight Mass Spectrometer (ATOFMS) were operated. Chemical analyses performed on collected samples include pH, conductivity, ion chromatography (IC), and inductive coupled plasma (ICP). Results from these campaigns showed that on days that had air masses with the influence of AD, cloud water samples had higher conductivity and pH values on average (up to 5.7 and 180μS/cm, respectively) than those with air masses without AD influence. An increase in the concentrations of water-soluble ions like non-sea salt calcium and magnesium, and metals like magnesium, calcium and aluminum was observed and the appearance of iron was seen on ICP analyses. The ATOFMS, showed an increase on the amount of particles during AD influence with composition of aluminum, silicates, potassium, iron and titanium aerosols. The increase on the aforementioned species was constant in the three years of sampling, which give us confidence in the identification of the chemical species that are present during the influence of AD.

  18. Effects of Wildfire Pollution on the Microphysical and Electrical Properties of Pyrocumulus

    NASA Astrophysics Data System (ADS)

    Duff, R.; Grant, L. D.; van den Heever, S. C.

    2014-12-01

    Pyrocumulus clouds form over wildfires when hot, smoke-filled air rises, cools and condenses. These clouds have higher cloud condensation nuclei (CCN) concentrations, which affect their microphysical and electrical properties. It is important to better understand pyrocumulus cloud microphysical characteristics and lightning formation, which have implications for the prediction of wildfire growth as well as the radiative and chemical characteristics of the upper troposphere. A recent observational study documented an electrified pyrocumulus over the May 2012 Hewlett Gulch fire located to the west of Fort Collins, Colorado. This cloud produced approximately 20 intracloud lightning flashes, and its electrical activity differed from surrounding convection that was not directly impacted by the fire and associated smoke. The goal of this research is to investigate aerosol-induced cloud-scale microphysical differences between clean clouds and polluted pyrocumulus to better characterize the mechanisms that cause pyrocumulus electrification. In order to address this goal, idealized cloud-resolving model simulations were performed using the Regional Atmospheric Modeling System (RAMS). The model environment was initialized with an average of the 12Z 16 May and 00Z 17 May 2012 observed Denver soundings to represent the conditions when the Hewlett Gulch pyrocumulus occurred. Five simulations were performed using surface aerosol concentrations from 100 to 5000 #/mg. The results demonstrate that in moderately polluted pyrocumulus, rain processes are suppressed while graupel production increases. Extremely polluted pyrocumulus, however, experience a complete shut-down of graupel production, which favors the production of large amounts of liquid water and smaller ice species such as ice crystals and snowflakes. The processes responsible for these microphysical changes, as well as inferred pyrocumulus electrification mechanisms, will be compared with those discussed in previous observational studies of this case.

  19. Three-dimensional modelling of trace species in the Arctic lower stratosphere

    NASA Technical Reports Server (NTRS)

    Chipperfield, Martyn; Cariolle, Daniel; Simon, Pascal; Ramaroson, Richard

    1994-01-01

    A three-dimensional radiative-dynamical-chemical model has been developed and used to study some aspects of modeling the polar lower stratosphere. The model includes a comprehensive gas-phase chemistry scheme as well as a treatment of heterogeneous reactions occurring on the surface of polar stratospheric clouds. Tracer transport is treated by an accurate, nondispersive scheme with little diffusion suited to the representation of strong gradients. Results from a model simulation of early February 1990 are presented and used to illustrate the importance of the model transport scheme. The model simulation is also used to examine the potential for Arctic ozone destruction and the relative contributions of the chemical cycles responsible.

  20. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation results of the TICs-2 observed on April 15th and 25th (polluted or acidic cases) and TICs-1 observed on April 5th (non-polluted cases) will be presented.

  1. Retrieval of atmospheric properties of cloudy L dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burningham, Ben; Marley, Mark S.; Line, Michael R.

    Here, we present the first results from applying the spectral inversion technique in the cloudy L dwarf regime. This new framework provides a flexible approach to modelling cloud opacity which can be built incrementally as the data require and improves upon previous retrieval experiments in the brown dwarf regime by allowing for scattering in two-stream radiative transfer. Our first application of the tool to two mid-L dwarfs is able to reproduce their near-infrared spectra far more closely than grid models. Our retrieved thermal, chemical and cloud profiles allow us to estimate Teff = 1796more » $$+23\\atop{-25}$$ K and logg = 5.21$$+0.05\\atop{-0.08}$$ for 2MASS J05002100+0330501, and for 2MASSW J2224438-015852 we find Teff = 1723 $$+18\\atop{-19}$$ K and log g = 5.31 $$+0.04\\atop{-0.08}$$, in close agreement with previous empirical estimates. Our best model for both objects includes an optically thick cloud deck which passes τcloud ≥ 1 (looking down) at a pressure of around 5 bar. The temperature at this pressure is too high for silicate species to condense, and we argue that corundum and/or iron clouds are responsible for this cloud opacity. Our retrieved profiles are cooler at depth and warmer at altitude than the forward grid models that we compare, and we argue that some form of heating mechanism may be at work in the upper atmospheres of these L dwarfs. We also identify anomalously high CO abundance in both targets, which does not correlate with the warmth of our upper atmospheres or our choice of cloud model, and find similarly anomalous alkali abundance for one of our targets. For these anomalies they may reflect unrecognized shortcomings in our retrieval model or inaccuracies in our gas phase opacities.« less

  2. Retrieval of atmospheric properties of cloudy L dwarfs

    DOE PAGES

    Burningham, Ben; Marley, Mark S.; Line, Michael R.; ...

    2017-05-20

    Here, we present the first results from applying the spectral inversion technique in the cloudy L dwarf regime. This new framework provides a flexible approach to modelling cloud opacity which can be built incrementally as the data require and improves upon previous retrieval experiments in the brown dwarf regime by allowing for scattering in two-stream radiative transfer. Our first application of the tool to two mid-L dwarfs is able to reproduce their near-infrared spectra far more closely than grid models. Our retrieved thermal, chemical and cloud profiles allow us to estimate Teff = 1796more » $$+23\\atop{-25}$$ K and logg = 5.21$$+0.05\\atop{-0.08}$$ for 2MASS J05002100+0330501, and for 2MASSW J2224438-015852 we find Teff = 1723 $$+18\\atop{-19}$$ K and log g = 5.31 $$+0.04\\atop{-0.08}$$, in close agreement with previous empirical estimates. Our best model for both objects includes an optically thick cloud deck which passes τcloud ≥ 1 (looking down) at a pressure of around 5 bar. The temperature at this pressure is too high for silicate species to condense, and we argue that corundum and/or iron clouds are responsible for this cloud opacity. Our retrieved profiles are cooler at depth and warmer at altitude than the forward grid models that we compare, and we argue that some form of heating mechanism may be at work in the upper atmospheres of these L dwarfs. We also identify anomalously high CO abundance in both targets, which does not correlate with the warmth of our upper atmospheres or our choice of cloud model, and find similarly anomalous alkali abundance for one of our targets. For these anomalies they may reflect unrecognized shortcomings in our retrieval model or inaccuracies in our gas phase opacities.« less

  3. A mechanism for hydrochloric acid production in cloud

    Treesearch

    Glenn K. Yue; Volkar A. Mohnen; C. S. Kiang

    1976-01-01

    A theoretical model describing the general interaction between atmospheric trace gases, such as SO2, NH3, CO2 and O2, chemical reactant gaseous product H2SO4 and hydrometeors containing NaCl is proposed to study a possible mechanism...

  4. Marine CCN Activation: A Battle Between Primary and Secondary Sources

    NASA Astrophysics Data System (ADS)

    Fossum, K. N.; Ovadnevaite, J.; Ceburnis, D.; Preissler, J.; O'Dowd, C. D. D.

    2017-12-01

    Low-altitude marine clouds are cooling components of the Earth's radiative budget, and the direct measurements of the properties of these cloud forming particles, called cloud condensation nuclei (CCN), helps modellers reconstruct aerosol-to-cloud droplet processes, improving climate predictions. In this study, CCN are directly measured (CCNC commercially available from Droplet Measurement Technologies, Inc.), resolving activation efficiency at varying supersaturated conditions. Previous studies show that sub-micron sea salt particulates activate competitively, reducing the cloud peak supersaturation and inhibiting the activation of sulphate particulates into cloud droplets, making chemical composition an important component in determining cloud droplet number concentration (CDNC). This effect and the sea salt numbers needed to induce it have not been previously studied long-term in the natural environment. As part of this work, data was analysed from a two month marine research ship campaign during the Antarctic Austral summer, in 2015. Ambient aerosol in the Scotia Sea region was sampled continuously, and through the use of multiple aerosol in-situ instruments, this study shows that CCN number in both the open ocean and ice-pack influenced air masses are largely proportionate to secondary aerosol. However, open ocean air masses show a significant primary aerosol influence which changes the aerosol characteristics. Higher sea salt mass concentrations in the open ocean lead to better CCN activation efficiencies. Coupled with high wind speeds and sea surface turbulence, open ocean air masses show a repression of the CDNC number compared with the theoretical values that should be expected with the sub-cloud aerosol number concentration. This is not seen in the ice-pack air masses. Work is ongoing, looking into a long-term North Atlantic marine aerosol data set, but it would appear that chemical composition plays a large role in aerosol to cloud droplet processes, and can initially restrict CDNC when sea salt is abundant and updraft velocities are relatively low.

  5. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    DOE PAGES

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; ...

    2015-07-14

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. Our paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated bymore » the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical, and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. But, there still is considerable need for reducing observational uncertainties and providing better observations especially for relative humidity and for the size distribution and chemical composition of aerosols in the upper troposphere.« less

  6. Size-resolved Chemical Composition of Cloud and Rain Water Collected during the Puerto Rico African Dust and Clouds Study (PRADACS) Campaign

    NASA Astrophysics Data System (ADS)

    Torres, E.; Valle Diaz, C. J.; Zurcher, F.; Lee, T.; Collett, J. L.; Fitzgerald, E.; Cuadra, L.; Prather, K. A.; Mayol-Bracero, O. L.

    2011-12-01

    The underlying physico-chemical processes of dust-aerosol interactions are poorly understood; even less understood is how aging impacts cloud properties and climate as the particles travel from Africa to the Caribbean region. Caribbean landmasses have tropical montane cloud forests (TMCFs) that are tightly coupled to the atmospheric hydrologic cycle. Small-scale shifts in temperature and precipitation could have serious ecological consequences. Therefore, this makes TMCFs an interesting ecosystem to see the effects African Dust (AD) might have on cloud formation and precipitation. As part of the Puerto Rico African Dust and Clouds Study (PRADACS) cloud and rain water samples for subsequent chemical analysis were collected at Pico del Este (PE) station in Luquillo, PR (1051 masl) during summer 2011. At PE, two cloud collectors (i.e., single stage (Aluminum version) and 2-stage (Teflon version) Caltech Active Strand Cloudwater Collector (CASCC)), and a rainwater collector were operated. Measurements such as the liquid water content (LWC), pH, conductivity., and composition of single particles using an aerosol time of flight mass spectrometer (ATOFMS) were performed. Preliminary results showed that days with the influence of African dust (AD), had LWC values that ranged from 300 to 500 mg/m3, pH values up to 5.7,, and conductivity up to 180 μS/cm. The ATOFMS showed titanium and iron ions, suggesting the presence of AD as well as, occasionally, sulfate and nitrate ions suggesting the influence of anthropogenic pollution. Results on the chemical composition and the physical properties of cloud, rainwater, and aerosol for the inorganic as well as the organic fraction and how these properties change for the different air masses observed will also be presented.

  7. A detailed study of ice nucleation by feldspar minerals

    NASA Astrophysics Data System (ADS)

    Whale, T. F.; Murray, B. J.; Wilson, T. W.; Carpenter, M. A.; Harrison, A.; Holden, M. A.; Vergara Temprado, J.; Morris, J.; O'Sullivan, D.

    2015-12-01

    Immersion mode heterogeneous ice nucleation plays a crucial role in controlling the composition of mixed phase clouds, which contain both supercooled liquid water and ice particles. The amount of ice in mixed phase clouds can affect cloud particle size, lifetime and extent and so affects radiative properties and precipitation. Feldspar minerals are probably the most important minerals for ice nucleation in mixed phase clouds because they nucleate ice more efficiently than other components of atmospheric mineral dust (Atkinson et al. 2013). The feldspar class of minerals is complex, containing numerous chemical compositions, several crystal polymorphs and wide variations in microscopic structure. Here we present the results of a study into ice nucleation by a wide range of different feldspars. We found that, in general, alkali feldspars nucleate ice more efficiently than plagioclase feldspars. However, we also found that particular alkali feldspars nucleate ice relatively inefficiently, suggesting that chemical composition is not the only important factor that dictates the ice nucleation efficiency of feldspar minerals. Ice nucleation by feldspar is described well by the singular model and is probably site specific in nature. The alkali feldspars that do not nucleate ice efficiently possess relatively homogenous structure on the micrometre scale suggesting that the important sites for nucleation are related to surface topography. Ice nucleation active site densities for the majority of tested alkali feldspars are similar to those found by Atkinson et al (2013), meaning that the validity of global aerosol modelling conducted in that study is not affected. Additionally, we have found that ice nucleation by feldspars is strongly influenced, both positively and negatively, by the solute content of droplets. Most other nucleants we have tested are unaffected by solutes. This provides insight into the mechanism of ice nucleation by feldspars and could be of importance when modelling ice nucleation in mixed phase clouds. Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Carslaw, K. S., Whale, T. F., Baustian, K. J., Dobbie, S., O'Sullivan, D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds, Nature, 10.1038/nature12278, (2013).

  8. Contrasting cloud composition between coupled and decoupled marine boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2016-10-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.

  9. Coagulation of grains in static and collapsing protostellar clouds

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Ruzmaikina, T. V.

    1993-01-01

    The wavelength dependence of extinction in the diffuse interstellar medium implies that it is produced by particles of dominant size of approximately 10(exp -5) cm. There is some indication that in the cores of dense molecular clouds, sub-micron grains can coagulate to form larger particles; this process is probably driven by turbulence. The most primitive meteorites (carbonaceous chondrites) are composed of particles with a bimodal size distribution with peaks near 1 micron (matrix) and 1 mm (chondrules). Models for chondrule formation that involve processing of presolar material by chemical reactions or through an accretion shock during infall assume that aggregates of the requisite mass could form before or during collapse. The effectiveness of coagulation during collapse has been disputed; it appears to depend on specific assumptions. The first results of detailed numerical modeling of spatial and temporal variations of particle sizes in presolar clouds, both static and collapsing, is reported in this article.

  10. Analysis of the Metal Oxide Space Clouds (MOSC) HF Propagation Environment

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.; Selzer, L.

    2015-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the high frequency (HF) propagation environment. It can be achieved through injections of aerosols, chemicals or radio (RF) signals into the ionosphere. The Metal Oxide Space Clouds (MOSC) experiment was undertaken in April/May 2013 to investigate chemical AIM. Two sounding rockets were launched from the Kwajalein Atoll (part of the Marshall Islands) and each released a cloud of vaporized samarium (Sm). The samarium created a localized plasma cloud, with increased electron density, which formed an additional ionospheric layer. The ionospheric effects were measured by a wide range of ground based instrumentation which included a network of high frequency (HF) sounders. Chirp transmissions were made from three atolls and received at five sites within the Marshall Islands. One of the receive sites consisted of an 18 antenna phased array, which was used for direction finding. The ionograms have shown that as well as generating a new layer the clouds created anomalous RF propagation paths, which interact with both the cloud and the F-layer, resulting in 'ghost traces'. To fully understand the propagation environment a 3D numerical ray trace has been undertaken, using a variety of background ionospheric and cloud models, to find the paths through the electron density grid for a given fan of elevation and azimuth firing angles. Synthetic ionograms were then produced using the ratio of ray path length to speed of light as an estimation of the delay between transmission and observation for a given frequency of radio wave. This paper reports on the latest analysis of the MOSC propagation environment, comparing theory with observations, to further understanding of AIM.

  11. The Physics and Chemistry of Small Translucent Molecular Clouds. VIII. HCN and HNC

    NASA Astrophysics Data System (ADS)

    Turner, B. E.; Pirogov, L.; Minh, Y. C.

    1997-07-01

    We have conducted a survey of HCN and HNC (two rotational transitions each) in our standard sample of 11 cirrus cores and 27 Clemens-Barvainis translucent cores whose structures and chemistry have been studied earlier in this series. Both species are seen in all 38 objects. HCNH+ has been searched in three objects. These results are modeled in terms of our previous hydrostatic equilibrium and n ~ r-α structures together with other chemical and physical properties derived earlier. A detailed program has been written to handle the complex radiative transfer of the hyperfine splitting (hfs) of HCN. It is shown that serious errors are made in deriving HCN abundances by methods that ignore the hfs. Both HCN and HNC abundances are high, typically 1(-8) in most sources. The chemically important ratio HCN/HNC is found to be ~2.5 if these species are spatially centrally peaked and ~6 if not. Both species abundances increase monotonically with increasing extinction in the 1.2-2.7 mag range (edge to center), thus displaying the same characteristic transition between diffuse and dense cloud chemistry as do most other species we have studied. HCN/HNC decreases with increasing extinction to a value of 1.3 at Av0 ~ 10, approaching the expected value of 1.0 for dense clouds. Two types of ion-molecule chemistry models have been carried out: a full model using the Standard Model rate file and comprising 409 species (by Lee and Herbst), and a simplified model comprising 21 nitrogen-bearing species for conditions relevant to translucent clouds. Good agreement between observations and chemistry models is achieved throughout the translucent extinction range. Important conclusions are that (1) neutral-neutral reactions such as N + CH2 dominate the chemistry of HCN; (2) low ion-polar reaction rates are strongly favored over high ones; (3) the reaction C+ + NH3 --> H2NC+ --> HNC is unimportant, thus largely uncoupling the CN and NH chemistries; (4) the ratio HCN/HNC is not a particularly important diagnostic of the CN chemistry; (5) model NH3 abundances are at least a factor 100 lower than observed in translucent clouds, even if the reaction N+H+3-->NH+2 is permitted at Langevin rate.

  12. Lightning NOx Production and Its Consequences for Tropospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2005-01-01

    Cloud-resolving case-study simulations of convective transport and lightning NO production have yielded results which are directly applicable to the design of lightning parameterizations for global chemical transport models. In this work we have used cloud-resolving models (the Goddard Cumulus Ensemble Model (GCE) and MMS) to drive an off-line cloud-scale chemical transport model (CSCTM). The CSCTM, in conjunction with aircraft measurements of NO x in thunderstorms and ground-l;>ased lightning observations, has been used to constrain the amount of NO produced per flash. Cloud and chemistry simulations for several case studies of storms in different environments will be presented. Observed lightning flash rates have been incorporated into the CSCTM, and several scenarios of NO production per intracloud (IC) and per cloud-to-ground (CG) flash have been tested for each storm. The resulting NOx mixing ratios are compared with aircraft measurements taken within the storm (typically the anvil region) to determine the most likely NO production scenario. The range of values of NO production per flash (or per meter of lightning channel length) that have been deduced from the model will be shown and compared with values of production in the literature that have been deduced from observed NO spikes and from anvil flux calculations. Results show that on a per flash basis, IC flashes are nearly as productive of NO as CG flashes. This result simplifies the lightning parameterization for global models (ie., an algorithm for estimating the IC/CG ratio is not necessary). Vertical profiles of lightning NOx mass at the end of the 3-D storm simulations have been summarized to yield suggested profiles for use in global models. Estimates of mean NO production per flash vary by a factor of three from one simulated storm to another. When combined with the global flash rate of 44 flashes per second from NASA's Optical Transient Detector (OTD) measurements, these estimates and the results from other techniques yield global NO production rates of2-9 TgN/year. Simulations of the photochemistry over the 24 hours following a storm has been performed to determine the additional ozone production which can be attributed to lightning NO. Convective transport of HOx precursors leads to the generation of a HOx plume which substantially aids the downstream ozone production.

  13. The chemical composition of fogs and intercepted clouds in the United States

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L.; Bator, Aaron; Sherman, D. Eli; Moore, Katharine F.; Hoag, Katherine J.; Demoz, Belay B.; Rao, Xin; Reilly, Jill E.

    Over the past decade, the chemical compositions of fogs and intercepted clouds have been investigated at more than a dozen locations across the United States. Sampling sites have been located in the northeast, southeast, Rocky Mountain, and west coast regions of the US. They include both pristine and heavily polluted locations. Frontal/orographic clouds (warm and supercooled), intercepted coastal stratiform clouds, and radiation fogs have all been examined. Sample pH values range from below 3 to above 7. Major ions also exhibit a wide concentration range, with clouds at some locations exhibiting high sea salt concentrations, while composition at other locations is dominated by ammonium and sulfate or nitrate.

  14. Ion Cloud Modeling

    DTIC Science & Technology

    1977-11-11

    neutral collision time is discussed in Section 4.4. The chemical formulation for the barium thermite is based on the reaction of 2.5 moles of barium...per mole of cupric oxide according to the formula 2.5Ba + CuO - BaO + Cu + 1.5Ba. 23 In addition, 1.8% of the thermite weight was barium azide. 5 As a...constant value, tf . Generally at? 1 but if VD1 >> U 2 ,the value of atf * can be much less than 1 . In this case of rapid descent of the ion cloud, its

  15. Sensor-Web Operations Explorer

    NASA Technical Reports Server (NTRS)

    Meemong, Lee; Miller, Charles; Bowman, Kevin; Weidner, Richard

    2008-01-01

    Understanding the atmospheric state and its impact on air quality requires observations of trace gases, aerosols, clouds, and physical parameters across temporal and spatial scales that range from minutes to days and from meters to more than 10,000 kilometers. Observations include continuous local monitoring for particle formation; field campaigns for emissions, local transport, and chemistry; and periodic global measurements for continental transport and chemistry. Understanding includes global data assimilation framework capable of hierarchical coupling, dynamic integration of chemical data and atmospheric models, and feedback loops between models and observations. The objective of the sensor-web system is to observe trace gases, aerosols, clouds, and physical parameters, an integrated observation infrastructure composed of space-borne, air-borne, and in-situ sensors will be simulated based on their measurement physics properties. The objective of the sensor-web operation is to optimally plan for heterogeneous multiple sensors, the sampling strategies will be explored and science impact will be analyzed based on comprehensive modeling of atmospheric phenomena including convection, transport, and chemical process. Topics include system architecture, software architecture, hardware architecture, process flow, technology infusion, challenges, and future direction.

  16. Counter Nuclear, Biological, and Chemical Operations, This document compliments JCS Pub 3-11

    DTIC Science & Technology

    2000-08-16

    Successful German Chemical Attack The concept of creating a toxic gas cloud from chemical cylinders was credited to Fritz Haber of the Kaiser Wilhelm Physical...of considerations: The high caliber of German theoretical and experimental physicists like Otto Hahn, Paul Harteck, Werner Heisenberg, Fritz ...Institute of Berlin in late 1914. Owing to a shortage of artillery shells, Haber thought a chemical gas cloud would negate the enemy’s earthworks

  17. New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei

    NASA Astrophysics Data System (ADS)

    Hennigan, Christopher J.; Westervelt, Daniel M.; Riipinen, Ilona; Engelhart, Gabriella J.; Lee, Taehyoung; Collett, Jeffrey L., Jr.; Pandis, Spyros N.; Adams, Peter J.; Robinson, Allen L.

    2012-05-01

    Experiments were performed in an environmental chamber to characterize the effects of photo-chemical aging on biomass burning emissions. Photo-oxidation of dilute exhaust from combustion of 12 different North American fuels induced significant new particle formation that increased the particle number concentration by a factor of four (median value). The production of secondary organic aerosol caused these new particles to grow rapidly, significantly enhancing cloud condensation nuclei (CCN) concentrations. Using inputs derived from these new data, global model simulations predict that nucleation in photo-chemically aging fire plumes produces dramatically higher CCN concentrations over widespread areas of the southern hemisphere during the dry, burning season (Sept.-Oct.), improving model predictions of surface CCN concentrations. The annual indirect forcing from CCN resulting from nucleation and growth in biomass burning plumes is predicted to be -0.2 W m-2, demonstrating that this effect has a significant impact on climate that has not been previously considered.

  18. High Temperature Planetary Nebulae in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Maran, Stephen P.

    Following up on our recent discovery that a very hot planetary in the Small Magellanic Cloud has an extraordinary underabundance of carbon, we propose to observe two similar hot planetaries in the Clouds with IUE as part of an optical/UV investigation. The objectives are (1) to test the suggestion that high nebular electron temperatures can result from a strong deficiency of carbon that deprives the nebula of an important cooling channel; and (2) to determine accurate chemical abundances to constrain limits on the efficiency of "hot bottom burning" in massive progenitors of planetary nebulae. The targets are SMC 25 (Te = 34,000 K) and LMC 88 (= 25,500 K). These UV observations of targets not previously observed with IUE will be combined, for analysis, with visible wavelength spectra of both targets from the Anglo-Australian Telescope and the 2-3-m Siding Spring reflector. The objects will also be compared in the analysis stage with previous IUE observations (and consequent modeling) of type I planetaries in the Clouds. Model nebulae will be calculated, and physical parameters of the central stars will be inferred.

  19. Heterogeneous chemistry on Antarctic polar stratospheric clouds - A microphysical estimate of the extent of chemical processing

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Turco, R. P.; Elliott, S.

    1993-01-01

    A detailed model of polar stratospheric clouds (PSCs), which includes nucleation, condensational growth. and sedimentation processes, has been applied to the study of heterogeneous chemical reactions. For the first time, the extent of chemical processing during a polar winter has been estimated for an idealized air parcel in the Antarctic vortex by calculating in detail the rates of heterogeneous reactions on PSC particles. The resulting active chlorine and NO(x) concentrations at first sunrise are analyzed with respect to their influence upon the Antarctic ozone hole using a photochemical model. It is found that the species present at sunrise are primarily influenced by the relative values of the heterogeneous reaction rate constants and the initial gas concentrations. However, the extent of chlorine activation is also influenced by whether N2O5 is removed by reaction with HCl or H2O. The reaction of N2O5 with HCl, which occurs rapidly on type 1 PSCs, activates the chlorine contained in the reservoir species HCl. Hence the presence and surface area of type 1 PSCs early in the winter are crucial in determining ozone depletion.

  20. Water and complex organic chemistry in the cold dark cloud Barnard 5: Observations and Models

    NASA Astrophysics Data System (ADS)

    Wirström, Eva; Charnley, Steven B.; Taquet, Vianney; Persson, Carina M.

    2015-08-01

    Studies of complex organic molecule (COM) formation have traditionally been focused on hot cores in regions of massive star formation, where chemistry is driven by the elevated temperatures - evaporating ices and allowing for endothermic reactions in the gas-phase. As more sensitive instruments have become available, the types of objects known to harbour COMs like acetaldehyde (CH3CHO), dimethyl ether (CH3OCH3), methyl formate (CH3OCHO), and ketene (CH2CO) have expanded to include low mass protostars and, recently, even pre-stellar cores. We here report on the first in a new category of objects harbouring COMs: the cold dark cloud Barnard 5 where non-thermal ice desorption induce complex organic chemistry entirely unrelated to local star-formation.Methanol, which only forms efficiently on the surfaces of dust grains, provide evidence of efficient non-thermal desorption of ices in the form of prominent emission peaks offset from protostellar activity and high density tracers in cold molecular clouds. A study with Herschel targeting such methanol emission peaks resulted in the first ever detection of gas-phase water offset from protostellar activity in a dark cloud, at the so called methanol hotspot in Barnard 5.To model the effect a transient injection of ices into the gas-phase has on the chemistry of a cold, dark cloud we have included gas-grain interactions in an existing gas-phase chemical model and connected it to a chemical reaction network updated and expanded to include the formation and destruction paths of the most common COMs. Results from this model will be presented.Ground-based follow-up studies toward the methanol hotspot in B5 have resulted in the detection of a number of COMs, including CH2CO, CH3CHO, CH3OCH3, and CH3OCHO, as well as deuterated methanol (CH2DOH). Observations have also confirmed that COM emission is extended and not localised to a core structure. The implications of these observational and theoretical studies of B5 will be discussed in the context of the gas-grain interaction in dark clouds and its relation to the chemistry of the earliest phases of low-mass star formation.

  1. HD 209458b in new light: evidence of nitrogen chemistry, patchy clouds and sub-solar water

    NASA Astrophysics Data System (ADS)

    MacDonald, Ryan J.; Madhusudhan, Nikku

    2017-08-01

    Interpretations of exoplanetary transmission spectra have been undermined by apparent obscuration due to clouds/hazes. Debate rages on whether weak H2O features seen in exoplanet spectra are due to clouds or inherently depleted oxygen. Assertions of solar H2O abundances have relied on making a priori model assumptions, for example, chemical/radiative equilibrium. In this work, we attempt to address this problem with a new retrieval paradigm for transmission spectra. We introduce poseidon, a two-dimensional atmospheric retrieval algorithm including generalized inhomogeneous clouds. We demonstrate that this prescription allows one to break vital degeneracies between clouds and prominent molecular abundances. We apply poseidon to the best transmission spectrum presently available, for the hot Jupiter HD 209458b, uncovering new insights into its atmosphere at the day-night terminator. We extensively explore the parameter space with an unprecedented 108 models, spanning the continuum from fully cloudy to cloud-free atmospheres, in a fully Bayesian retrieval framework. We report the first detection of nitrogen chemistry (NH3 and/or HCN) in an exoplanet atmosphere at 3.7-7.7σ confidence, non-uniform cloud coverage at 4.5-5.4σ, high-altitude hazes at >3σ and sub-solar H2O at ≳3-5σ, depending on the assumed cloud distribution. We detect NH3 at 3.3σ, and 4.9σ for fully cloudy and cloud-free scenarios, respectively. For the model with the highest Bayesian evidence, we constrain H2O at 5-15 ppm (0.01-0.03) × solar and NH3 at 0.01-2.7 ppm, strongly suggesting disequilibrium chemistry and cautioning against equilibrium assumptions. Our results herald a new promise for retrieving cloudy atmospheres using high-precision Hubble Space Telescope and James Webb Space Telescope spectra.

  2. Atmospheric Chemical Transport Based on High Resolution Model- Derived Winds: A Case Study

    NASA Technical Reports Server (NTRS)

    Hannan, John R.; Fuelberg, Henry E.; Thompson, Anne M.; Bieberbach, George, Jr.; Knabb, Richard D.; Kondo, Yutaka; Anderson, Bruce E.; Browell, Edward V.; Gregory, Gerald L.; Sachse, Glen; hide

    1999-01-01

    Flight 10 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) extended southwest of Lajes, Azores. A variety of chemical signatures were encountered. These signatures are examined in detail, relating them to meteorological data from a high resolution numerical model having horizontal grid spacing of 30 and 90 km and 26 vertical levels. The meteorological output at hourly intervals is used to create backward trajectories from the locations of the chemical signatures. Four major categories of chemical signatures are discussed-stratospheric, lightning, continental pollution, and a transition layer. The strong stratospheric signal is encountered just south of the Azores in a region of depressed tropopause height. Three chemical signatures at different altitudes in the upper troposphere are attributed to lightning. Backward trajectories arriving at locations of these signatures are related to locations of cloud-to-ground lightning. Results show that the trajectories pass through regions of lightning 1-2 days earlier over the eastern Gulf of Mexico and off the southeast coast of the United States. The lowest leg of the flight exhibits a chemical signature consistent with continental pollution. Trajectories arriving at this signature are found to pass over the highly populated Northeast Corridor of the United States. Surface based pollution apparently is lofted to the altitudes of the trajectories by convective clouds along the East Coast that did not contain lightning. Finally, a chemical transition layer is described. Its chemical signature is intermediate to those of lightning and continental pollution. Trajectories arriving in this layer pass between the trajectories of the lightning and pollution signatures. Thus, they probably are impacted by both sources.

  3. 15N fractionation in star-forming regions and Solar System objects

    NASA Astrophysics Data System (ADS)

    Wirström, Eva; Milam, Stefanie; Adande, Gilles; Charnley, Steven B.; Cordiner, Martin A.

    2015-08-01

    A central issue for understanding the formation and evolution of matter in the early Solar System is the relationship between the chemical composition of star-forming interstellar clouds and that of primitive Solar System materials. The pristine molecular content of comets, interplanetary dust particles and carbonaceous chondrites show significant bulk nitrogen isotopic fractionation relative to the solar value, 14N/15N ~ 440. In addition, high spatial resolution measurements in primitive materials locally show even more extreme enhancements of 14N/15N < 100.The coherent 15N enrichment in comets from different formation zones suggests that these isotopic enhancements are remnants of the interstellar chemistry in the natal molecular cloud core and the outer protosolar nebula. Indeed, early chemical models of gas-phase ion-molecule nitrogen fractionation showed that HCN and HNC (nitriles) can hold significant 15N enrichments in cold dark clouds where CO is depleted onto dust grains. In addition, 15N fractionation in nitriles and amines (NH2, NH3) follow different chemical pathways. More recently we have shown that once the spin-state dependence in rates of reactions with H2 is included in the models, amines can either be enhanced or depleted in 15N, depending on the core’s evolutionary stage. Observed 15N fractionation in amines and nitriles therefore cannot be expected to be the same, instead their ratio is a potential chemical clock.Observations of molecular isotope ratios in dark cores are challenging. Limited published results in general show higher 15N/14N ratios in HCN and HNC than ammonia, but more measurements are necessary to confirm these trends. We will present recent results from our ongoing observing campaign of 14N/15N isotopic ratios in HCN, HNC and NH3 in dense cores and protostars which seem consistent with significant fractionation in nitriles as compared to other molecules in each object. The few 14N/15N ratios observed in N2H+ are similar to those in NH3, contrary to our model results which predict a significant 15N enhancement in N2 and N2H+. Model upgrades which may address this discrepancy will be presented and discussed.

  4. Development of an integrated chemical weather prediction system for environmental applications at meso to global scales: NMMB/BSC-CHEM

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Pérez, C.; Karsten, K.; Janjic, Z.; Dabdub, D.; Baldasano, J. M.

    2009-09-01

    This contribution presents the ongoing developments of a new fully on-line chemical weather prediction system for meso to global scale applications. The modeling system consists of a mineral dust module and a gas-phase chemistry module coupled on-line to a unified global-regional atmospheric driver. This approach allows solving small scale processes and their interactions at local to global scales. Its unified environment maintains the consistency of all the physico-chemical processes involved. The atmospheric driver is the NCEP/NMMB numerical weather prediction model (Janjic and Black, 2007) developed at National Centers for Environmental Prediction (NCEP). It represents an evolution of the operational WRF-NMME model extending from meso to global scales. Its unified non-hydrostatic dynamical core supports regional and global simulations. The Barcelona Supercomputing Center is currently designing and implementing a chemistry transport model coupled online with the new global/regional NMMB. The new modeling system is intended to be a powerful tool for research and to provide efficient global and regional chemical weather forecasts at sub-synoptic and mesoscale resolutions. The online coupling of the chemistry follows the approach similar to that of the mineral dust module already coupled to the atmospheric driver, NMMB/BSC-DUST (Pérez et al., 2008). Chemical species are advected and mixed at the corresponding time steps of the meteorological tracers using the same numerical scheme. Advection is eulerian, positive definite and monotone. The chemical mechanism and chemistry solver is based on the Kinetic PreProcessor KPP (Damian et al., 2002) package with the main purpose of maintaining a wide flexibility when configuring the model. Such approach will allow using a simplified chemical mechanism for global applications or a more complete mechanism for high-resolution local or regional studies. Moreover, it will permit the implementation of a specific configuration for forecasting applications in regional or global domains. An emission process allows the coupling of different emission inventories sources such as RETRO, EDGAR and GEIA for the global domain, EMEP for Europe and HERMES for Spain. The photolysis scheme is based on the Fast-J scheme, coupled with physics of each model layer (e.g., aerosols, clouds, absorbers as ozone) and it considers grid-scale clouds from the atmospheric driver. The dry deposition scheme follows the deposition velocity analogy for gases, enabling the calculation of deposition fluxes from airborne concentrations. No cloud-chemistry processes are included in the system yet (no wet deposition, scavenging and aqueous chemistry). The modeling system developments will be presented and first results of the gas-phase chemistry at global scale will be discussed. REFERENCES Janjic, Z.I., and Black, T.L., 2007. An ESMF unified model for a broad range of spatial and temporal scales, Geophysical Research Abstracts, 9, 05025. Pérez, C., Haustein, K., Janjic, Z.I., Jorba, O., Baldasano, J.M., Black, T.L., and Nickovic, S., 2008. An online dust model within the meso to global NMMB: current progress and plans. AGU Fall Meeting, San Francisco, A41K-03, 2008. Damian, V., Sandu, A., Damian, M., Potra, F., and Carmichael, G.R., 2002. The kinetic preprocessor KPP - A software environment for solving chemical kinetics. Comp. Chem. Eng., 26, 1567-1579. Sandu, A., and Sander, R., 2006. Technical note:Simulating chemical systems in Fortran90 and Matlab with the Kinetic PreProcessor KPP-2.1. Atmos. Chem. and Phys., 6, 187-195.

  5. The Chemistry and Excitation of Water in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2003-01-01

    We model the chemistry and thermal balance of opaque molecular clouds exposed to an external flux of ultraviolet photons. We include the processes of gas phase and grain surface chemical reactions; in particular we examine closely the freezing of atoms and molecules onto grain surfaces and the desorption of molecules from grain surfaces as a function of depth into a molecular cloud. We find that on the surface of a molecular cloud the gas phase water abundances are low because of photodissociation, and the grain phase water (ice) abundance is low because of photodesorption of water from the grain surfaces. Deeper into the cloud, at A(sub v) less than or approximately 2-8 depending on the strength of the external ultraviolet flux, the gas phase water abundance increases with depth as the photodissociation rates decline due to dust attenuation of the ultraviolet field. However, beyond A(sub v) less than or approximately 2-8 the gas phase water abundance declines because the water freezes as water ice on the grains, and photodesorption is no longer effective in clearing the ice. A peak water abundance of about 10(exp -6) to 10(exp -7) occurs at about A(sub v) approximately 2-8, relatively independent of the gas density and the ultraviolet field. We show that such a model matches very closely the observations of the Submillimeter Wave Astronomical Satellite (SWAS), a NASA Small Explorer Mission. The model elucidates several mechanisms that have been recently invoked to understand gas phase chemistry in clouds, including-the freeze-out of molecules onto grain surface, the desorption of these molecules from the surfaces, and the abundance gradients of molecules as functions of depth into molecular clouds.

  6. A hybrid formalism of aerosol gas phase interaction for 3-D global models

    NASA Astrophysics Data System (ADS)

    Benduhn, F.

    2009-04-01

    Aerosol chemical composition is a relevant factor to the global climate system with respect to both atmospheric chemistry and the aerosol direct and indirect effects. Aerosol chemical composition determines the capacity of aerosol particles to act as cloud condensation nuclei both explicitly via particle size and implicitly via the aerosol hygroscopic property. Due to the primary role of clouds in the climate system and the sensitivity of cloud formation and radiative properties to the cloud droplet number it is necessary to determine with accuracy the chemical composition of the aerosol. Dissolution, although a formally fairly well known process, may be subject to numerically prohibitive properties that result from the chemical interaction of the species engaged. So-far approaches to model the dissolution of inorganics into the aerosol liquid phase in the framework of a 3-D global model were based on an equilibrium, transient or hybrid equilibrium-transient approach. All of these methods present the disadvantage of a priori assumptions with respect to the mechanism and/or are numerically not manageable in the context of a global climate system model. In this paper a new hybrid formalism to aerosol gas phase interaction is presented within the framework of the H2SO4/HNO3/HCl/NH3 system and a modal approach of aerosol size discretisation. The formalism is distinct from prior hybrid approaches in as much as no a priori assumption on the nature of the regime a particular aerosol mode is in is made. Whether a particular mode is set to be in the equilibrium or the transitory regime is continuously determined during each time increment against relevant criteria considering the estimated equilibration time interval and the interdependence of the aerosol modes relative to the partitioning of the dissolving species. Doing this the aerosol composition range of numerical stiffness due to species interaction during transient dissolution is effectively eluded, and the numerical expense of dissolution in the transient regime is reduced through the minimisation of the number of modes in this regime and a larger time step. Containment of the numerical expense of the modes in the equilibrium regime is ensured through the usage of either an analytical equilibrium solver that requires iteration among the equilibrium modes, or a simple numerical solver based on a differential approach that requires iteration among the chemical species. Both equilibrium solvers require iteration over the water content and the activity coefficients. Decision for using either one or the other solver is made upon the consideration of the actual equilibrating mechanism, either chemical interaction or gas phase partial pressure variation, respectively. The formalism should thus ally appropriate process simplification resulting in reasonable computation time to a high degree of real process conformity as it is ensured by a transitory representation of dissolution. The resulting effectiveness and limits of the formalism are illustrated with numerical examples.

  7. Insights on Chemistry of Mercury Species in Clouds over Northern China: Complexation and Adsorption.

    PubMed

    Li, Tao; Wang, Yan; Mao, Huiting; Wang, Shuxiao; Talbot, Robert W; Zhou, Ying; Wang, Zhe; Nie, Xiaoling; Qie, Guanghao

    2018-05-01

    Cloud effects on heterogeneous reactions of atmospheric mercury (Hg) are poorly understood due to limited knowledge of cloudwater Hg chemistry. Here we quantified Hg species in cloudwater at the summit of Mt. Tai in northern China. Total mercury (THg) and methylmercury (MeHg) in cloudwater were on average 70.5 and 0.15 ng L -1 , respectively, and particulate Hg (PHg) contributed two-thirds of THg. Chemical equilibrium modeling simulations suggested that Hg complexes by dissolved organic matter (DOM) dominated dissolved Hg (DHg) speciation, which was highly pH dependent. Hg concentrations and speciation were altered by cloud processing, during which significant positive correlations of PHg and MeHg with cloud droplet number concentration ( N d ) were observed. Unlike direct contribution to PHg from cloud scavenging of aerosol particles, abiotic DHg methylation was the most likely source of MeHg. Hg adsorption coefficients K ad (5.9-362.7 L g -1 ) exhibited an inverse-power relationship with cloud residues content. Morphology analyses indicated that compared to mineral particles, fly ash particles could enhance Hg adsorption due to more abundant carbon binding sites on the surface. Severe particulate air pollution in northern China may bring substantial Hg into cloud droplets and impact atmospheric Hg geochemical cycling by aerosol-cloud interactions.

  8. Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties

    NASA Astrophysics Data System (ADS)

    Deguillaume, L.; Charbouillot, T.; Joly, M.; Vaïtilingom, M.; Parazols, M.; Marinoni, A.; Amato, P.; Delort, A.-M.; Vinatier, V.; Flossmann, A.; Chaumerliac, N.; Pichon, J. M.; Houdier, S.; Laj, P.; Sellegri, K.; Colomb, A.; Brigante, M.; Mailhot, G.

    2014-02-01

    Long-term monitoring of the chemical composition of clouds (73 cloud events representing 199 individual samples) sampled at the puy de Dôme (pdD) station (France) was performed between 2001 and 2011. Physicochemical parameters, as well as the concentrations of the major organic and inorganic constituents, were measured and analyzed by multicomponent statistical analysis. Along with the corresponding back-trajectory plots, this allowed for distinguishing four different categories of air masses reaching the summit of the pdD: polluted, continental, marine and highly marine. The statistical analysis led to the determination of criteria (concentrations of inorganic compounds, pH) that differentiate each category of air masses. Highly marine clouds exhibited high concentrations of Na+ and Cl-; the marine category presented lower concentration of ions but more elevated pH. Finally, the two remaining clusters were classified as "continental" and "polluted"; these clusters had the second-highest and highest levels of NH4+, NO3-, and SO24-, respectively. This unique data set of cloud chemical composition is then discussed as a function of this classification. Total organic carbon (TOC) is significantly higher in polluted air masses than in the other categories, which suggests additional anthropogenic sources. Concentrations of carboxylic acids and carbonyls represent around 10% of the organic matter in all categories of air masses and are studied for their relative importance. Iron concentrations are significantly higher for polluted air masses and iron is mainly present in its oxidation state (+II) in all categories of air masses. Finally, H2O2 concentrations are much more varied in marine and highly marine clouds than in polluted clouds, which are characterized by the lowest average concentration of H2O2. This data set provides concentration ranges of main inorganic and organic compounds for modeling purposes on multiphase cloud chemistry.

  9. Global and Regional Impacts of HONO on the Chemical Composition of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-01-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO / NOx ratio of 0.02 was found to have a significant impact on the global budgets of HOx (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation

  10. Examining the Impact of Overlying Aerosols on the Retrieval of Cloud Optical Properties from Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-01-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  11. The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-Altitude Aircraft Measurements in the Tropical Western Pacific

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Pfister, Leonhard; Jordan, David E.; Bui, Thaopaul V.; Ueyama, Rei; Singh, Hanwant B.; Thornberry, Troy; Rollins, Andrew W.; Gao, Ru-Shan; Fahey, David W.; hide

    2017-01-01

    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data is openly available at https:espoarchive.nasa.gov.

  12. High resolution simulations of aerosol microphysics in a global and regionally nested chemical transport model

    NASA Astrophysics Data System (ADS)

    Adams, P. J.; Marks, M.

    2015-12-01

    The aerosol indirect effect is the largest source of forcing uncertainty in current climate models. This effect arises from the influence of aerosols on the reflective properties and lifetimes of clouds, and its magnitude depends on how many particles can serve as cloud droplet formation sites. Assessing levels of this subset of particles (cloud condensation nuclei, or CCN) requires knowledge of aerosol levels and their global distribution, size distributions, and composition. A key tool necessary to advance our understanding of CCN is the use of global aerosol microphysical models, which simulate the processes that control aerosol size distributions: nucleation, condensation/evaporation, and coagulation. Previous studies have found important differences in CO (Chen, D. et al., 2009) and ozone (Jang, J., 1995) modeled at different spatial resolutions, and it is reasonable to believe that short-lived, spatially-variable aerosol species will be similarly - or more - susceptible to model resolution effects. The goal of this study is to determine how CCN levels and spatial distributions change as simulations are run at higher spatial resolution - specifically, to evaluate how sensitive the model is to grid size, and how this affects comparisons against observations. Higher resolution simulations are necessary supports for model/measurement synergy. Simulations were performed using the global chemical transport model GEOS-Chem (v9-02). The years 2008 and 2009 were simulated at 4ox5o and 2ox2.5o globally and at 0.5ox0.667o over Europe and North America. Results were evaluated against surface-based particle size distribution measurements from the European Supersites for Atmospheric Aerosol Research project. The fine-resolution model simulates more spatial and temporal variability in ultrafine levels, and better resolves topography. Results suggest that the coarse model predicts systematically lower ultrafine levels than does the fine-resolution model. Significant differences are also evident with respect to model-measurement comparisons, and will be discussed.

  13. Clustering the Orion B giant molecular cloud based on its molecular emission.

    PubMed

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO + (1 - 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers.

  14. Superposition and alignment of labeled point clouds.

    PubMed

    Fober, Thomas; Glinca, Serghei; Klebe, Gerhard; Hüllermeier, Eyke

    2011-01-01

    Geometric objects are often represented approximately in terms of a finite set of points in three-dimensional euclidean space. In this paper, we extend this representation to what we call labeled point clouds. A labeled point cloud is a finite set of points, where each point is not only associated with a position in three-dimensional space, but also with a discrete class label that represents a specific property. This type of model is especially suitable for modeling biomolecules such as proteins and protein binding sites, where a label may represent an atom type or a physico-chemical property. Proceeding from this representation, we address the question of how to compare two labeled points clouds in terms of their similarity. Using fuzzy modeling techniques, we develop a suitable similarity measure as well as an efficient evolutionary algorithm to compute it. Moreover, we consider the problem of establishing an alignment of the structures in the sense of a one-to-one correspondence between their basic constituents. From a biological point of view, alignments of this kind are of great interest, since mutually corresponding molecular constituents offer important information about evolution and heredity, and can also serve as a means to explain a degree of similarity. In this paper, we therefore develop a method for computing pairwise or multiple alignments of labeled point clouds. To this end, we proceed from an optimal superposition of the corresponding point clouds and construct an alignment which is as much as possible in agreement with the neighborhood structure established by this superposition. We apply our methods to the structural analysis of protein binding sites.

  15. Occult chemical deposition to a Maritime forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vong, R.J.; Kowalski, A.S.

    1996-12-31

    Studies of chemical fluxes from the atmosphere to vegetated surfaces have suggested that, along with conventional wet and dry processes, an additional chemical input occurs when wind-blown cloud droplets are directly intercepted by vegetation. This cloud water deposition process has been sometimes termed {open_quote}occult deposition{close_quote} because the water fluxes cannot ordinarily be observed using rain gauges. Such occult deposition of cloud water has rarely been measured directly, in part because of the complexity of the governing turbulent transfer process. However, reviews by the National Acidic Precipitation Assessment Program (NAPAP SoS/T-2,6) have suggested that the chemical flux to be forest declinemore » in the eastern USA. This paper presents direct field measurements occult chemical fluxes to a silver fir forest located in complex terrain on the Olympic Peninsula near the coast of Washington State, USA.« less

  16. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-08-01

    The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10-10-10-11 M s-1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10-12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10-14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.

  17. The chemistry of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1991-01-01

    The basic theme of this program is the study of molecular complexity and evolution in interstellar and circumstellar clouds incorporating the biogenic elements. Recent results include the identification of a new astronomical carbon-chain molecule, C4Si. This species was detected in the envelope expelled from the evolved star IRC+10216 in observations at the Nobeyama Radio Observatory in Japan. C4Si is the carrier of six unidentified lines which had previously been observed. This detection reveals the existence of a new series of carbon-chain molecules, C sub n Si (n equals 1, 2, 4). Such molecules may well be formed from the reaction of Si(+) with acetylene and acetylene derivatives. Other recent research has concentrated on the chemical composition of the cold, dark interstellar clouds, the nearest dense molecular clouds to the solar system. Such regions have very low kinetic temperatures, on the order of 10 K, and are known to be formation sites for solar-type stars. We have recently identified for the first time in such regions the species of H2S, NO, HCOOH (formic acid). The H2S abundance appears to exceed that predicted by gas-phase models of ion-molecule chemistry, perhaps suggesting the importance of synthesis on grain surfaces. Additional observations in dark clouds have studied the ratio of ortho- to para-thioformaldehyde. Since this ratio is expected to be unaffected by both radiative and ordinary collisional processes in the cloud, it may well reflect the formation conditions for this molecule. The ratio is observed to depart from that expected under conditions of chemical equilibrium at formation, perhaps reflecting efficient interchange between cold dust grains in the gas phase.

  18. A 3D Microphysical Model of Titan's Methane Cloud

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Newman, C.; Inada, A.; Richardson, M.

    2006-12-01

    A time-dependent idealized 3D microphysical model for Titan's methane cloud is described. This new high resolution microphysical model nests in a Titan WRF GCM model. It assumes the vapor-liquid equilibria of methane-nitrogen mixtures which are based on the recent chemical experiments and thermodynamics models. In particular, the methane is condensed at a given temperature and pressure. Meanwhile nitrogen is dissolved in the methane liquid. The new model first uses the data from the thermodynamic model (Kouvaris et al. 1991), which involves saturation criteria, composition of condensate, and latent heat for a given pressure-temperature profile. For altitudes lower than 14 km, methane is saturated and condensed into liquid phase. However for altitudes from 14 km above to tropopause, methane is changed into supercooled liquid state. Then, we do some testing experiments with 1D model by varying the initial methane vapor mass mixing ratio profile and the initial mole fraction of methane in liquid phase. Based on the steady state results from 1D model, an idealized 3D microphysics model is developed to investigate the convection cloud in Titan's troposphere. Due to lower relative humidity at titan's surface (Samuelson et al. 1997) and the current estimated moist adiabatic lapse rate, convection is hardly to happen without lifting. For this reason, we apply a symmetry cosine ridge in a 100*100 grids box to force the air flow lifted at certain levels, which in turn drives the condensation of methane vapor. In addition to the abundance of methane clouds and its duration provided by the 3D model, our study demonstrates that vertical motion might be likely the major cause of convection clouds in Titan's troposphere. As the future work, we will further investigate size-resolved microphysical scheme to insight into the nature of methane cycle in Titan's atmosphere.

  19. Fading of Jupiter's South Equatorial Belt

    NASA Technical Reports Server (NTRS)

    Sola, Michael A.; Orton, Glenn; Baines, Kevin; Yanamandra-Fisher, Padma

    2011-01-01

    One of Jupiter's most dominant features, the South Equatorial Belt, has historically gone through a "fading" cycle. The usual dark, brownish clouds turn white, and after a period of time, the region returns to its normal color. Understanding this phenomenon, the latest occurring in 2010, will increase our knowledge of planetary atmospheres. Using the near infrared camera, NSFCAM2, at NASA's Infrared Telescope Facility in Hawaii, images were taken of Jupiter accompanied by data describing the circumstances of each observation. These images are then processed and reduced through an IDL program. By scanning the central meridian of the planet, graphs were produced plotting the average values across the central meridian, which are used to find variations in the region of interest. Calculations using Albert4, a FORTRAN program that calculates the upwelling reflected sunlight from a designated cloud model, can be used to determine the effects of a model atmosphere due to various absorption, scattering, and emission processes. Spectra that were produced show ammonia bands in the South Equatorial Belt. So far, we can deduce from this information that an upwelling of ammonia particles caused a cloud layer to cover up the region. Further investigations using Albert4 and other models will help us to constrain better the chemical make up of the cloud and its location in the atmosphere.

  20. Sensitivity of aerosol indirect forcing and autoconversion to cloud droplet parameterization: an assessment with the NASA Global Modeling Initiative.

    NASA Astrophysics Data System (ADS)

    Sotiropoulou, R. P.; Meshkhidze, N.; Nenes, A.

    2006-12-01

    The aerosol indirect forcing is one of the largest sources of uncertainty in assessments of anthropogenic climate change [IPCC, 2001]. Much of this uncertainty arises from the approach used for linking cloud droplet number concentration (CDNC) to precursor aerosol. Global Climate Models (GCM) use a wide range of cloud droplet activation mechanisms ranging from empirical [Boucher and Lohmann, 1995] to detailed physically- based formulations [e.g., Abdul-Razzak and Ghan, 2000; Fountoukis and Nenes, 2005]. The objective of this study is to assess the uncertainties in indirect forcing and autoconversion of cloud water to rain caused by the application of different cloud droplet parameterization mechanisms; this is an important step towards constraining the aerosol indirect effects (AIE). Here we estimate the uncertainty in indirect forcing and autoconversion rate using the NASA Global Model Initiative (GMI). The GMI allows easy interchange of meteorological fields, chemical mechanisms and the aerosol microphysical packages. Therefore, it is an ideal tool for assessing the effect of different parameters on aerosol indirect forcing. The aerosol module includes primary emissions, chemical production of sulfate in clear air and in-cloud aqueous phase, gravitational sedimentation, dry deposition, wet scavenging in and below clouds, and hygroscopic growth. Model inputs include SO2 (fossil fuel and natural), black carbon (BC), organic carbon (OC), mineral dust and sea salt. The meteorological data used in this work were taken from the NASA Data Assimilation Office (DAO) and two different GCMs: the NASA GEOS4 finite volume GCM (FVGCM) and the Goddard Institute for Space Studies version II' (GISS II') GCM. Simulations were carried out for "present day" and "preindustrial" emissions using different meteorological fields (i.e. DAO, FVGCM, GISS II'); cloud droplet number concentration is computed from the correlations of Boucher and Lohmann [1995], Abdul-Razzak and Ghan [2000], Feingold and Heymsfield [1992], Fountoukis and Nenes [2005] and Segal and Khain [2006]. Computed CDNC is used to calculate the cloud optical depth, the autoconversion rate and the mean top-of-the-atmosphere (TOA) short-wave radiative forcing using modified FAST-J algorithm [Meshkhidze et al., 2006]. Autoconversion of cloud water to precipitation is parameterized following the formulation of Khairoutdinov and Kogan [2000]. References Abdul-Razzak, H., and S. J. Ghan (2000), J. Geophys. Res., 105, 6837-6844. Boucher, O., and U. Lohmann (1995), Tellus, Ser. B, 47, 281- 300. Feingold, G. and A. Heymsfield (1992), J. Atmos. Sci., 49, 2325-2342. Fountoukis, C., and A. Nenes (2005), J. Geophys. Res., 110, D11212, doi:10.1029/ 2004JD005591. Intergovernmental Panel on Climate Change - IPCC (2001), Climate Change, The Scientific Basis, Cambridge University Press, UK. Khairoutdinov, M. and Y. Kogan (2000), Mon. Weather Rev., 128 (1), 229-243. Meshkhidze, N., A Nenes, J. Kouatchou, B. Das and J. Rodriguez, 7th International Aerosol Conference, American Association for Aerosol Research (IAC 2006), St. Paul, Minnesota, October 2006 Nenes, A., and J. H. Seinfeld (2003), J. Geophys. Res., 108, 4415, doi:10.1029/ 2002JD002911. Segal, Y., and A. Khain (2006), J. Geophys. Res., 111, D15204, doi:10.1029/2005JD006561.

  1. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute volume fraction, showing that measurable aging of the aerosol population occurs during the day, on the timescale of a few hours. The mixing state of the aerosol, also showing a consistent diurnal pattern, clearly correlates with a chemical tracer for local combustion sources. Chapter 4 describes results from the GoMACCS field study, in which the CCNc was subsequently deployed on an airborne field campaign in Houston, Texas during August-September, 2006. GoMACCS tested our ability to predict CCN for highly polluted conditions with limited chemical information. Assuming the particles were composed purely of ammonium sulfate, CCN closure was obtained with a 10% overprediction bias on average for CCN concentrations ranging from less than 100 cm-3 to over 10,000 cm-3, but with on average 50% variability. Assuming measured concentrations of organics to be internally mixed and insoluble tended to reduce the overprediction bias for less polluted conditions, but led to underprediction bias in the most polluted conditions. A likely explanation is that the high organic concentrations in the polluted environments depress the surface tension of the droplets, thereby enabling activation at lower soluble fractions.

  2. Millimeter and submillimeter spectra of hot cores and diffuse clouds: comparing IRAM and Herschel spectra with CASSIS simulations.

    NASA Astrophysics Data System (ADS)

    de Luca, Massimo

    The primary goal of the PRISMAS Herschel key program is the spectroscopic study of key molecular lines towards bright Galactic star-forming regions and the diffuse interstellar clouds distributed along the lines of sight. Models of the source emission and absorption spectra have been constructed with CASSIS, based on 1) observational evidence in comparable environments, 2) warm-up chemical models with gas-grain networks, and 3) ground-based spectra of various molecules in the target sources obtained at the IRAM 30m telescope. These models include contributions from the hot core, its parental molecular cloud and the foreground diffuse inter-stellar matter. The considerable complexity of the hot core chemistry, together with the huge amount of information buried in the spectra, often prevents a straightforward interpretation of the data without the help simulations. This is particularly true for the largely unexplored wavelength range of HIFI. In this contribution, we compare HIFI and IRAM observations to our models, in order to either consolidate present day assumptions and knowledge of these environments, or to highlight the model limitations, poorly understood physical and chemical conditions or unexpected abundances. We pay particular attention to the ground state tran-sitions of the most important hydrides, which the PRISMAS program has been designed for, though the HIFI spectra are expected to be rich in other molecules as well. List of Authors De Luca, M., Observatoire de Paris, Ecole Normale Supérieure and CNRS, FRANCE; Bell, T., CalTech, UNITED STATES; Coutens, A., CESR, FRANCE; Godard, B., IAS, FRANCE; Gupta, H., JPL, UNITED STATES; Mook-erjea, B., Tata Institute for Fundamental Research, INDIA; and the PRISMAS consortium, PRISMAS, FRANCE

  3. Development of a thermal gradient cloud condensation nucleus spectrometer

    NASA Technical Reports Server (NTRS)

    Leu, Ming-Taun; Friedl, R.

    2004-01-01

    Droplet clouds are one of the most important factors controlling the albedo and hence the temperature of out planet. Anthropogenic aerosols, such as black carbon (BC) organic carbon (OC) and sulfate, have a strong influence on cloud albedo. IPCC (2001) has estimated the global mean forcing from aerosols to be potentially as large as that of green house gases but opposite in sign. However, the uncertainties associated with the indirect aerosol forcing preclude a quantitative estimate. An additional impact on the indirect aerosol forcing, not quantified by IPCC, arises from recently identified chemical factors, for examples, interactions of atmospheric soluble gases, slightly soluble solutes, and organic substance with aerosols, which may influence the formation of cloud droplets. Recent studies suggest that inclusion of chemical effects on aerosol droplets. We plan to conduct several critical laboratory experiments that will reduce the uncertainty associated with indirect radiative forcing due to chemical modification of sulfate and BC aerosols by ambient gases.

  4. The numerical modelling of MHD astrophysical flows with chemistry

    NASA Astrophysics Data System (ADS)

    Kulikov, I.; Chernykh, I.; Protasov, V.

    2017-10-01

    The new code for numerical simulation of magnetic hydrodynamical astrophysical flows with consideration of chemical reactions is given in the paper. At the heart of the code - the new original low-dissipation numerical method based on a combination of operator splitting approach and piecewise-parabolic method on the local stencil. The chemodynamics of the hydrogen while the turbulent formation of molecular clouds is modeled.

  5. Microphysical and macrophysical characteristics of ice and mixed-phase clouds compared between in-situ observations from the NSF ORCAS campaign and the NCAR Community Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Diao, M.; D'Alessandro, J.; Wu, C.; Liu, X.; Jensen, J. B.

    2016-12-01

    Large spatial coverage of ice and mixed-phase clouds is frequently observed in the higher latitudinal regions, especially over the Arctic and Antarctica. However, because the microphysical properties in the ice and mixed-phase clouds are highly variable in space, major challenges still remain in understanding the characteristics of ice and mixed-phase clouds on the microscale, as well as representing the sub-grid scale variabilities of relative humidity in the General Circulation Models. In this work, we use the in-situ, airborne observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study (January - February 2016) to analyze the microphysical and macrophysical characteristics of ice and mixed-phase clouds over the Southern Ocean. A total of 18 flights onboard the NSF Gulfstream-V research aircraft are used to quantify the cloud properties and relative humidity distributions at various temperatures, pressures and aerosol background. New QC/QA water vapor data of the Vertical Cavity Surface Emitting Laser based on the laboratory calibration in summer 2016 will be presented. The statistical distributions of cloud microphysical properties and relative humidity with respect to ice (RHi) derived from in-situ observations will be compared with the NCAR Community Atmospheric Model Version 5 (CAM5). The horizontal extent of ice and mixed-phase clouds, and their formation and evolution will be derived based on the method of Diao et al. (2013). The occurrence frequency of ice supersaturation (i.e., RHi > 100%) will be examined in relation to various chemical tracers (i.e., O3 and CO) and total aerosol number concentrations (e.g., aerosols > 0.1 μm and > 0.5 μm) at clear-sky and in-cloud conditions. We will quantify whether these characteristics of ISS are scale-dependent from the microscale to the mesoscale. Overall, our work will evaluate the spatial variabilities of RHi inside/outside of ice and mixed-phase clouds, the frequency and magnitude of ice supersaturation, as well as the correlations between ice water content and liquid water content in the CAM5 simulations.

  6. A Study of the Relationship Between Anthropogenic Sulfate and Cloud Drop Nucleation

    NASA Technical Reports Server (NTRS)

    Chuang, Catherine C.; Penner, Joyce E.

    1994-01-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by the aerosol particles that serve as CCN and by the local updraft velocity. Chemical reactions of the emitted gaseous sulfur compounds due to human activities will alter, through gas-to-particle conversion, the aerosol size distribution, total number, and its chemical composition. Recently, Boucher and Rodhe and Jones et.al have each developed parameterizations relating cloud drop concentration to sulfate mass or aerosol number concentration, respectively, and used them to develop estimates of the indirect forcing by anthropogenic sulfate aerosols. THese parameterizations made use of measure relationships in continental and maritime clouds. However, these relationships are inherently noisy, yielding more than a factor of 2 variation in cloud drop concentration for a given aerosol number (or for a given sulfate mass) concentration. The large spatial and temporal variabilities in the concentration, chemical characteristics, and size distribution of aerosols have made it difficult to develop such a parameterization from data. In this paper, our focus is to develop a means for relating the predicted anthropogenic sulfate mass to cloud drop number concentration over the range of expected conditions associated with continental and marine aerosol. We start with an assumed pre-existing particle size distribution and develop an approximation of the altered distribution after addition of anthropogenic sulfate. We thereby develop a conservative estimate of the possible change in cloud drop number concentration due to anthropogenic sulfate.

  7. Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.

    2013-06-01

    Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.

  8. Impact of two chemistry mechanisms fully coupled with mesoscale model on the atmospheric pollutants distribution

    NASA Astrophysics Data System (ADS)

    Arteta, J.; Cautenet, S.; Taghavi, M.; Audiffren, N.

    Air quality models (AQM) consist of many modules (meteorology, emission, chemistry, deposition), and in some conditions such as: vicinity of clouds or aerosols plumes, complex local circulations (mountains, sea breezes), fully coupled models (online method) are necessary. In order to study the impact of lumped chemical mechanisms in AQM simulations, we examine the ability of both different chemical mechanisms: (i) simplified: Condensed Version of the MOdèle de Chimie Atmosphérique 2.2 (CV-MOCA2.2), and (ii) reference: Regional Atmospheric Chemistry Model (RACM), which are coupled online with the Regional Atmospheric Modeling Systems (RAMS) model, on the distribution of pollutants. During the ESCOMPTE experiment (Expérience sur Site pour COntraindre les Modèles de Pollution et de Transport d'Emissions) conducted over Southern France (including urban and industrial zones), Intensive observation periods (IOP) characterized by various meteorological and mixed chemical conditions are simulated. For both configurations of modeling, numerical results are compared with surface measurements (75 stations) for primary (NO x) and secondary (O 3) species. We point out the impact of the two different chemical mechanisms on the production of species involved in the oxidizing capacity such as ozone and radicals within urban and industrial areas. We highlight that both chemical mechanisms produce very similar results for the main pollutants (NO x and O 3) in three-dimensional (3D) distribution, despite large discrepancies in 0D modeling. For ozone concentration, we found sometimes small differences (5-10 ppb) between the mechanisms under study according to the cases (polluted or not). The relative difference between the two mechanisms over the whole domain is only -7% for ozone from CV-MOCA 2.2 versus RACM. When the order of magnitude is needed rather than an accurate estimate, a reduced mechanism is satisfactory. It has the advantage of running faster (four times less than CPU time on SGI 3800 with 30 processors). Simplified mechanisms are really important to study cases for which an online coupling is necessary between meso-scale and chemistry models (clouds or aerosols plumes impacts, highly variable meteorology).

  9. A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Haenel, G.; Pruppacher, H. R.

    1980-01-01

    The time variation in size of aerosol particles growing by condensation is studied numerically by means of an air parcel model which allows entrainment of air and aerosol particles. Particles of four types of aerosols typically occurring in atmospheric air masses were considered. The present model circumvents any assumption about the size distribution and chemical composition of the aerosol particles by basing the aerosol particle growth on actually observed size distributions and on observed amounts of water taken up under equilibrium by a deposit of the aerosol particles. Characteristic differences in the drop size distribution, liquid water content and supersaturation were found for the clouds which evolved from the four aerosol types considered.

  10. Transport of pollution to a remote coastal site during gap flow from California's interior: impacts on aerosol composition, clouds, and radiative balance

    NASA Astrophysics Data System (ADS)

    Martin, Andrew C.; Cornwell, Gavin C.; Atwood, Samuel A.; Moore, Kathryn A.; Rothfuss, Nicholas E.; Taylor, Hans; DeMott, Paul J.; Kreidenweis, Sonia M.; Petters, Markus D.; Prather, Kimberly A.

    2017-01-01

    During the CalWater 2015 field campaign, ground-level observations of aerosol size, concentration, chemical composition, and cloud activity were made at Bodega Bay, CA, on the remote California coast. A strong anthropogenic influence on air quality, aerosol physicochemical properties, and cloud activity was observed at Bodega Bay during periods with special weather conditions, known as Petaluma Gap flow, in which air from California's interior is transported to the coast. This study applies a diverse set of chemical, cloud microphysical, and meteorological measurements to the Petaluma Gap flow phenomenon for the first time. It is demonstrated that the sudden and often dramatic change in aerosol properties is strongly related to regional meteorology and anthropogenically influenced chemical processes in California's Central Valley. In addition, it is demonstrated that the change in air mass properties from those typical of a remote marine environment to properties of a continental regime has the potential to impact atmospheric radiative balance and cloud formation in ways that must be accounted for in regional climate simulations.

  11. On the Chemistry of Hydrides of N Atoms and O+ Ions

    NASA Astrophysics Data System (ADS)

    Awad, Zainab; Viti, Serena; Williams, David A.

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H2 formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O+ ions detected by Herschel/HIFI that are present along many sight lines in the Galaxy. The O+ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  12. New evidence for chemical depletion of ammonia in the 1 to 2 bar region of Jupiter's atmosphere

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Atreya, S. K.; Romani, P. N.; De Pater, I.; Kuhn, W. R.; Kalogerakis, K. S.

    2014-12-01

    It has long been known that the vertical profile of ammonia within Jupiter's cloud layers is not well-described by a simple equilibrium profile, with saturated vapor above the cloud base and the well-mixed deep abundance below the cloud base. An additional depletion of ammonia by a factor of 4-10 is required by global microwave spectra at p < 6 bar [e.g., 1]. Dynamical effects, ranging from cloud layer circulation between belts and zones [2] to molecular differentiation following convective activity [3] might be sufficient to explain the global microwave data. However, in situ cloud density measurements by the Galileo Probe [4] suggest a large gap in our understanding of cloud chemistry in Jupiter, especially when combined with other tracers such as volatile mixing ratios [5] and static stability [6]. Using the "fresh clouds" method of modeling cloud density [7], and assuming that cloud-forming advection was weak at all levels in the probe site, we find that NH4SH formation cannot explain cloud densities between 1 and 1.4 bar in situ. The composition of additional chemical species, or adsorption of ammonia on other ices, are candidate processes that strongly require further laboratory study of the H2O-NH3-H2S volatile system at temperatures of 150 to 300 K [1]. Spectral features near 3 microns suggest widespread NH4SH in the visible cloud decks of Jupiter [8], but additional species may also contribute to absorption at these wavelengths. Infrared spectroscopy at high angular resolution in the future---performed by Juno, JWST, or 30-m class ground-based telescopes---may be able to observe ammonia depletion mechanisms in action. References:[1] de Pater et al. (2001), Icarus 149, 66-78.[2] Showman and de Pater (2005), Icarus 174, 192-204.[3] Sugiyama et al. (2011), GRL 38, L13201.[4] Ragent et al. (1998), JGR 103, 22891-22909.[5] Wong et al. (2004), Icarus 171, 153-170.[6] Magalhães, Seiff, and Young (2002), Icarus 158, 410-433.[7] Wong et al. (2014), Icarus, submitted.[8] Sromovsky et al. (2010), Icarus 210, 211-229 and 230-257. [This material is supported by the NASA Juno Project through a SWRI subcontract (SKA), and by NASA Grant No. NNX11AM55G issued through the Outer Planets Research Program (MHW).

  13. Measurement Comparisons Towards Improving the Understanding of Aerosol-Cloud Processing

    NASA Astrophysics Data System (ADS)

    Noble, Stephen R.

    Cloud processing of aerosol is an aerosol-cloud interaction that is not heavily researched but could have implications on climate. The three types of cloud processing are chemical processing, collision and coalescence processing, and Brownian capture of interstitial particles. All types improve cloud condensation nuclei (CCN) in size or hygroscopicity (kappa). These improved CCN affect subsequent clouds. This dissertation focuses on measurement comparisons to improve our observations and understanding of aerosol-cloud processing. Particle size distributions measured at the continental Southern Great Plains (SGP) site were compared with ground based measurements of cloud fraction (CF) and cloud base altitude (CBA). Particle size distributions were described by a new objective shape parameter to define bimodality rather than an old subjective one. Cloudy conditions at SGP were found to be correlated with lagged shape parameter. Horizontal wind speed and regional CF explained 42%+ of this lag time. Many of these surface particle size distributions were influenced by aerosol-cloud processing. Thus, cloud processing may be more widespread with more implications than previously thought. Particle size distributions measured during two aircraft field campaigns (MArine Stratus/stratocumulus Experiment; MASE; and Ice in Cloud Experiment-Tropical; ICE-T) were compared to CCN distributions. Tuning particle size to critical supersaturation revealed hygroscopicity expressed as ? when the distributions were overlain. Distributions near cumulus clouds (ICE-T) had a higher frequency of the same ?s (48% in ICE-T to 42% in MASE) between the accumulation (processed) and Aitken (unprocessed) modes. This suggested physical processing domination in ICE-T. More MASE (stratus cloud) kappa differences between modes pointed to chemical cloud processing. Chemistry measurements made in MASE showed increases in sulfates and nitrates with distributions that were more processed. This supported chemical cloud processing in MASE. This new method to determine kappa provides the needed information without interrupting ambient measurements. MODIS derived cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (re) were compared to the same in situ derived variables from cloud probe measurements of two stratus/stratocumulus cloud campaigns (MASE and Physics Of Stratocumulus Tops; POST). In situ data were from complete vertical cloud penetrations, while MODIS data were from pixels along the aircraft penetration path. Comparisons were well correlated except that MODIS LWP (14-36%) and re (20-30%) were biased high. The LWP bias was from re bias and was not improved by using the vertically stratified assumption. MODIS re bias was almost removed when compared to cloud top maximum in situ re, but, that does not describe re for the full depth of the cloud. COT is validated by in situ COT. High correlations suggest that MODIS variables are useful in self-comparisons such as gradient changes in stratus cloud re during aerosol-cloud processing.

  14. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF–CMAQ: model description, development, evaluation and regional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S.; Mathur, R.; Pleim, J.

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF–CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF–CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN,more » and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM 2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF–CMAQ/CAM (WRF–CMAQ/RRTMG), respectively. The evaluation of PM 2.5 chemical composition reveals that in August, WRF–CMAQ/CAM (WRF–CMAQ/RRTMG) consistently underestimated the observed SO 4 2- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF–CMAQ/CAM, WRF–CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model simulations were run at the 12 km resolution. This is in agreement with the fact that both configurations captured SWCF and longwave cloud forcing (LWCF) very well for the 4 km simulation over eastern Texas, when all clouds were resolved by the finer resolution domain. The simulations of WRF–CMAQ/CAM and WRF–CMAQ/RRTMG show dramatic improvements for SWCF, LWCF, cloud optical depth (COD), cloud fractions and precipitation over the ocean relative to those of WRF default cases in August. The model performance in September is similar to that in August, except for a greater overestimation of PM 2.5 due to the overestimations of SO 4 2-, NH 4 +, NO 3 -, and TC over the EUS, less underestimation of clouds (SWCF) over the land areas due to the lower SWCF values, and fewer convective clouds in September. Finally, this work shows that inclusion of indirect aerosol effect treatments in WRF–CMAQ represents a significant advancement and milestone in air quality modeling and the development of integrated emissions control strategies for air quality management and climate change mitigation.« less

  15. Evidence of Chemical Cloud Processing from In Situ Measurements in the Polluted Marine Environment

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Chemical cloud processing alters activated cloud condensation nuclei (CCN). Aqueous oxidation of trace gases dissolved within cloud droplets adds soluble material. As most cloud droplets evaporate, the residual material produces CCN that are larger and with a different hygroscopicity (κ). This improves the CCN, lowering the critical supersaturation (Sc), making it more easily activated. This process separates the processed (accumulation) and unprocessed (Aitken) modes creating bimodal CCN distributions (Hudson et al., 2015). Various measurements made during the MArine Stratus/stratocumulus Experiment (MASE), including CCN, exhibited aqueous processing signals. Particle size distributions; measured by a differential mobility analyzer; were compared with CCN distributions; measured by the Desert Research Institute CCN spectrometer; by converting size to Sc using κ to overlay concurrent distributions. By tuning each mode to the best agreement, κ for each mode is determined; processed κ (κp), unprocessed κ (κu). In MASE, 59% of bimodal distributions had different κ for the two modes indicating dominance of chemical processing via aqueous oxidation. This is consistent with Hudson et al. (2015). Figure 1A also indicates chemical processing with larger κp between 0.35-0.75. Processed CCN had an influx of soluble material from aqueous oxidation which increased κp versus κu. Above 0.75 κp is lower than κu (Fig. 1A). When κu is high and sulfate material is added, κp tends towards κ of the added material. Thus, κp is reduced by additional material that is less soluble than the original material. Chemistry measurements in MASE also indicate in-cloud aqueous oxidation (Fig. 1B and 1C). Higher fraction of CCN concentrations in the processed mode are also associated with larger amounts of sulfates (Fig. 1B, red) and nitrates (Fig. 1C, orange) while SO2 (Fig. 1B, black) and O3 (Fig. 1C, blue) have lower amounts. This larger amount of sulfate is at the expense of SO2, indicating aqueous oxidation within cloud as associated with larger concentrations in the processed mode. Thus, in situ measurements indicate that chemical cloud processing alters size, Sc and κ of activated CCN. Hudson et al. (2015), JGRA, 120, 3436-3452.

  16. Chemical diversity of organic volatiles among comets: An emerging taxonomy and implications for processes in the proto-planetary disk

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.

    2008-10-01

    As messengers from the early Solar System, comets contain key information from the time of planet formation and even earlier some may contain material formed in our natal interstellar cloud. Along with water, the cometary nucleus contains ices of natural gases (CH4, C2H6), alcohols (CH3OH), acids (HCOOH), embalming fluid (H2CO), and even anti-freeze (ethylene glycol). Comets today contain some ices that vaporize at temperatures near absolute zero (CO, CH4), demonstrating that their compositions remain largely unchanged after 4.5 billion years. By comparing their chemical diversity, several distinct cometary classes have been identified but their specific relation to chemical gradients in the proto-planetary disk remains murky. How does the compositional diversity of comets relate to nebular processes such as chemical processing, radial migration, and dynamical scattering? No current reservoir holds a unique class, but their fractional abundance can test emerging dynamical models for origins of the scattered Kuiper disk, the Oort cloud, and the (proposed) main-belt comets. I will provide a simplified overview emphasizing what we are learning, current issues, and their relevance to the subject of this Symposium.

  17. Diffuse interstellar clouds as a chemical laboratory - The chemistry of diatomic carbon species

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Huntress, W. T., Jr.

    1989-01-01

    The chemistry of C2, CH, and CO in diffuse interstellar clouds is analyzed and compared to absorption line measurements toward background stars. Analytical expressions in terms of column densities are derived for the rate equations. The results indicate that in clouds with 4 mag of visual extinction, the abundance of C+ has to decrease by a factor of about 15 from the value traditionally used for clouds with 1 mag of extinction. The rate coefficients for the reactions C+ + CH - C2+ + H and C+ + H2 - CH2+ + h-nu need to be reduced from previous estimates. Chemical arguments are presented for the revised rate coefficients.

  18. High Fidelity Modeling of Turbulent Mixing and Chemical Kinetics Interactions in a Post-Detonation Flow Field

    NASA Astrophysics Data System (ADS)

    Sinha, Neeraj; Zambon, Andrea; Ott, James; Demagistris, Michael

    2015-06-01

    Driven by the continuing rapid advances in high-performance computing, multi-dimensional high-fidelity modeling is an increasingly reliable predictive tool capable of providing valuable physical insight into complex post-detonation reacting flow fields. Utilizing a series of test cases featuring blast waves interacting with combustible dispersed clouds in a small-scale test setup under well-controlled conditions, the predictive capabilities of a state-of-the-art code are demonstrated and validated. Leveraging physics-based, first principle models and solving large system of equations on highly-resolved grids, the combined effects of finite-rate/multi-phase chemical processes (including thermal ignition), turbulent mixing and shock interactions are captured across the spectrum of relevant time-scales and length scales. Since many scales of motion are generated in a post-detonation environment, even if the initial ambient conditions are quiescent, turbulent mixing plays a major role in the fireball afterburning as well as in dispersion, mixing, ignition and burn-out of combustible clouds in its vicinity. Validating these capabilities at the small scale is critical to establish a reliable predictive tool applicable to more complex and large-scale geometries of practical interest.

  19. Overview of Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate. I shall discuss these topics and application of the data to air quality monitoring.

  20. A Chain of Modeling Tools For Gas and Aqueous Phase Chemstry

    NASA Astrophysics Data System (ADS)

    Audiffren, N.; Djouad, R.; Sportisse, B.

    Atmospheric chemistry is characterized by the use of large set of chemical species and reactions. Handling with the set of data required for the definition of the model is a quite difficult task. We prsent in this short article a preprocessor for diphasic models (gas phase and aqueous phase in cloud droplets) named SPACK. The main interest of SPACK is the automatic generation of lumped species related to fast equilibria. We also developped a linear tangent model using the automatic differentiation tool named ODYSSEE in order to perform a sensitivity analysis of an atmospheric multi- phase mechanism based on RADM2 kinetic scheme.Local sensitivity coefficients are computed for two different scenarii. We focus in this study on the sensitivity of the ozone,NOx,HOx, system with respect to some aqueous phase reactions and we inves- tigate the influence of the reduction in the photolysis rates in the area below the cloud region.

  1. GRAMS: A Grid of RSG and AGB Models

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Sargent, B. A.; Meixner, M.

    2011-09-01

    We present a grid of oxygen- and carbon-rich circumstellar dust radiative transfer models for asymptotic giant branch (AGB) and red supergiant (RSG) stars. The grid samples a large region of the relevant parameter space, and it allows for a quick calculation of bolometric fluxes and dust mass-loss rates from multi-wavelength photometry. This method of fitting observed spectral energy distributions (SEDs) is preferred over detailed radiative transfer calculations, especially for large data sets such as the SAGE (Surveying the Agents of a Galaxy's Evolution) survey of the Magellanic Clouds. The mass-loss rates calculated for SAGE data will allow us to quantify the dust returned to the interstellar medium (ISM) by the entire AGB population. The total injection rate provides an important constraint for models of galactic chemical evolution. Here, we discuss our carbon star models and compare the results to SAGE observations in the Large Magellanic Cloud (LMC).

  2. Retrieval of Venus' cloud parameters from VIRTIS nightside spectra in the latitude band 25°-55°N

    NASA Astrophysics Data System (ADS)

    Magurno, Davide; Maestri, Tiziano; Grassi, Davide; Piccioni, Giuseppe; Sindoni, Giuseppe

    2017-09-01

    Two years of data from the M-channel of the Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS), on board the European Space Agency mission Venus Express operating around the planet Venus, are analysed. Nocturnal data from a nadir viewpoint in the latitude band 25°N-55°N are selected for their configuration advantages and maximisation of the scene homogeneity. A reference model, and radiance spectrum, is defined based on average accepted values of the Venus main atmospheric and cloud parameters found in the literature. Extensive radiative transfer simulations are performed to provide a synthetic database of more than 10 000 VIRTIS radiances representing the natural variability of the system parameters (atmospheric temperature profile, cloud H2Osbnd H2SO4 solution concentration and vertical distribution, particle size distribution density and modal radius). A simulated-observed fitting algorithm of spectral radiances in window channels, based on a weighting procedure accounting for the latitudinal observed radiance variations, is used to derive the best atmosphere-cloud configuration for each observation. Results show that the reference Venus model does not adequately reproduce the observed VIRTIS spectra. In particular, the model accounting for a constant sulphuric acid concentration along the vertical extent of the clouds is never selected as a best fit. The 75%/96% and 84%/96% concentrations (the first values refer to the upper cloud layers and the second values to the lower ones) are the most commonly retrieved models representing more than 85% of the retrieved cases for any latitudinal band considered. It is shown that the assumption of stratified concentration of aqueous sulphuric acid allows to adequately fit the observed radiance, in particular the peak at 1.74 μm and around 4 μm. The analysis of the results concerning the microphysics suggests larger radii for the upper cloud layers in conjunction with a large reduction of their number density with respect to the reference standard. Considerable variation of the particle concentration in the Venus' atmosphere is retrieved for altitudes between 60 and 70 km. The retrieved models also suggest that lower cloud layers have smaller particle radii and larger number density than expected from the reference model. Latitudinal variations of microphysical and chemical parameters are also analysed.

  3. Characterization of ice nucleating particles during continuous springtime measurements in Prudhoe Bay: an Arctic oilfield location

    NASA Astrophysics Data System (ADS)

    Creamean, J.; Spada, N. J.; Kirpes, R.; Pratt, K.

    2017-12-01

    Aerosols that serve as ice nucleating particles (INPs) have the potential to modulate cloud microphysical properties. INPs can thus subsequently impact cloud radiative forcing in addition to modification of precipitation formation processes. In regions such as the Arctic, aerosol-cloud interactions are severely understudied yet have significant implications for surface radiation reaching the sea ice and snow surfaces. Further, uncertainties in model representations of heterogeneous ice nucleation are a significant hindrance to simulating Arctic mixed-phase cloud processes. Characterizing a combination of aerosol chemical, physical, and ice nucleating properties is pertinent to evaluating of the role of aerosols in altering Arctic cloud microphysics. We present preliminary results from an aerosol sampling campaign called INPOP (Ice Nucleating Particles at Oliktok Point), which took place at a U.S. Department of Energy's Atmospheric Radiation Measurement (DOE ARM) facility on the North Slope of Alaska. Three time- and size-resolved aerosol samplers were deployed from 1 Mar to 31 May 2017 and were co-located with routine measurements of aerosol number, size, chemical, and radiative property measurements conducted by DOE ARM at their Aerosol Observing System (AOS). Offline analysis of samples collected at a daily time resolution included composition and morphology via single-particle analysis and drop freezing measurements for INP concentrations, while analysis of 12-hourly samples included mass, optical, and elemental composition. We deliberate the possible influences on the aerosol and INP population from the Prudhoe Bay oilfield resource extraction and daily operations in addition to what may be local background or long-range transported aerosol. To our knowledge our results represent some of the first INP characterization measurements in an Arctic oilfield location and can be used as a benchmark for future INP characterization studies in Arctic locations impacted by local resource extraction pollution. Ultimately, these results can be used to evaluate the impacts of oil exploration activities on Arctic cloud aerosol composition and possible linkages to Arctic cloud ice formation.

  4. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  5. Turbulent Mixing Chemistry in Disks

    NASA Astrophysics Data System (ADS)

    Semenov, D.; Wiebe, D.

    2006-11-01

    A gas-grain chemical model with surface reaction and 1D/2D turbulent mixing is available for protoplanetary disks and molecular clouds. Current version is based on the updated UMIST'95 database with gas-grain interactions (accretion, desorption, photoevaporation, etc.) and modified rate equation approach to surface chemistry (see also abstract for the static chemistry code).

  6. Star Clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Gallagher, J. S., III

    2014-09-01

    The Magellanic Clouds (MC) are prime locations for studies of star clusters covering a full range in age and mass. This contribution briefly reviews selected properties of Magellanic star clusters, by focusing first on young systems that show evidence for hierarchical star formation. The structures and chemical abundance patterns of older intermediate age star clusters in the Small Magellanic Cloud (SMC) are a second topic. These suggest a complex history has affected the chemical enrichment in the SMC and that low tidal stresses in the SMC foster star cluster survival.

  7. Global and Regional Impacts of HONO on the Chemical Composition of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-01-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO/NO(sub x) ratio of 0.02 was found to have a significant impact on the global budgets of HO(sub x) (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation.

  8. Potential Impact of Microbial Activity on the Oxidant Capacity and the Organic Carbon Budget in Clouds (Invited)

    NASA Astrophysics Data System (ADS)

    Delort, A.

    2013-12-01

    Within cloud water, microorganisms are metabolically active; so they are suspected to contribute to atmospheric chemistry. This paper is focused on the interactions between microorganisms and Reactive Oxygenated Species present in cloud water since these chemical compounds are driving the oxidant capacity of the cloud system. For this, real cloud waters with contrasting features (marine, continental, urban) were sampled at the puy de Dôme mountain (France). They exhibit high microbial biodiversity and complex chemical composition. These media were incubated in the dark and subjected to UV-light radiation in specifically designed photo-bio-reactors. The concentrations of hydrogen peroxide (H2O2), organic compounds and the ATP/ADP ratio were monitored during the incubation period. Microorganisms remained metabolically active in the presence of hydroxyl radicals photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry: first, they could directly metabolize organic carbon species; second they could reduce the available source of radicals due to their oxidative metabolism. Consequently, molecules such as H2O2 would be no longer available for photochemical or other chemical reactions, decreasing the cloud oxidant capacity.

  9. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie

    2013-01-01

    Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H2O2, organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ●OH radicals that were photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H2O2 would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity.

  10. A New Method Using Single-Particle Mass Spectrometry Data to Distinguish Mineral Dust and Biological Aerosols

    NASA Astrophysics Data System (ADS)

    Al-Mashat, H.; Kristensen, L.; Sultana, C. M.; Prather, K. A.

    2016-12-01

    The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds. The ability to distinguish types of particles present within a cloud is important for determining accurate inputs to climate models. The chemical composition of particles within cloud liquid droplets and ice crystals can have a significant impact on the timing, location, and amount of precipitation that falls. Precipitation efficiency is increased by the presence of ice crystals in clouds, and both mineral dust and biological aerosols have been shown to be effective ice nucleating particles (INPs) in the atmosphere. A current challenge in aerosol science is distinguishing mineral dust and biological material in the analysis of real-time, ambient, single-particle mass spectral data. Single-particle mass spectrometers are capable of measuring the size-resolved chemical composition of individual atmospheric particles. However, there is no consistent analytical method for distinguishing dust and biological aerosols. Sampling and characterization of control samples (i.e. of known identity) of mineral dust and bacteria were performed by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) as part of the Fifth Ice Nucleation (FIN01) Workshop at the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) facility in Karlsruhe, Germany. Using data collected by the ATOFMS of control samples, a new metric has been developed to classify single particles as dust or biological independent of spectral cluster analysis. This method, involving the use of a ratio of mass spectral peak areas for organic nitrogen and silicates, is easily reproducible and does not rely on extensive knowledge of particle chemistry or the ionization characteristics of mass spectrometers. This represents a step toward rapidly distinguishing particle types responsible for ice nucleation activity during real-time sampling in clouds.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadle, R.D.

    A previously published 2-D numerical model of the global dispersion of an eruption cloud in the stratosphere as a function of time assumed an instantaneous injection of the eruption cloud (the source function). New calculations show that the dispersion rate is quite insensitive to the manner of introducing the source function into the model, including spreading the eruption time over 10 days. Results obtained by flying through the eruption clouds from explosive volcanoes in Guatemala indicated that most of the sulfur in such clouds is SO/sub 2/. If, as is generally believed, SO/sub 2/ reacts with OH in the stratosphere,more » leading to the production of H/sub 2/SO/sub 4/ droplets, high explosive eruptions can deplete the stratosphere of OH for long time periods. The OH is thus controlled by the rate of O(/sup 1/D) formation from ozone. By using the results from the 2-D dispersion model referred to above applied to the eruption cloud from the 1953 Agung eruption, and chemical kinetic rate constants, the 'e folding' residence time for sulfur dioxide conversion to sulfuric acid was estimated to be about 300 days. The Guatemala studies showed that the eruption clouds from explosive volcanoes contain large amounts of HCl. Unless much of this HCl is removed by rain accompanying the eruption, this HCl might be expected to have a marked influence on stratospheric chemistry as a result of the reaction OH+HCl..-->..H/sub 2/O+Cl. The volcanic HCl will probably remove OH much less rapidly than will SO/sub 2/, and if the OH concentration is greatly decreased by the SO/sub 2/, the above reaction may be too slow to be important.« less

  12. Chemical Modeling of the Reactivity of Short-Lived Greenhouse Gases: A Model Inter-Comparison Prescribing a Well-Measured, Remote Troposphere

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-01-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating over the data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14,880 parcels along 180W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10% of parcels control 25-30% of the total reactivities), but do not fully agree on which parcels comprise the top 10%. Distinct differences in specific features occur, including the regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the 6 models tested here, 3 are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify 4, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in model simulations of past and future atmospheres may be a cause of the different evolution of tropospheric O3 and CH4, and lead to different chemistry-climate feedbacks across the models.

  13. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated that they will be included in a future public release of WRF-Chem.« less

  14. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE PAGES

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; ...

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated that they will be included in a future public release of WRF-Chem.« less

  15. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  16. Rain chemistry and cloud composition and microphysics in a Caribbean tropical montane cloud forest under the influence of African dust

    NASA Astrophysics Data System (ADS)

    Torres-Delgado, Elvis; Valle-Diaz, Carlos J.; Baumgardner, Darrel; McDowell, William H.; González, Grizelle; Mayol-Bracero, Olga L.

    2015-04-01

    It is known that huge amounts of mineral dust travels thousands of kilometers from the Sahara and Sahel regions in Africa over the Atlantic Ocean reaching the Caribbean, northern South America and southern North America; however, not much is understood about how the aging process that takes place during transport changes dust properties, and how the presence of this dust affects cloud's composition and microphysics. This African dust reaches the Caribbean region mostly in the summer time. In order to improve our understanding of the role of long-range transported African dust (LRTAD) in cloud formation processes in a tropical montane cloud forest (TMCF) in the Caribbean region we had field campaigns measuring dust physical and chemical properties in summer 2013, as part of the Puerto Rico African Dust and Cloud Study (PRADACS), and in summer 2014, as a part of the Luquillo Critical Zone Observatory (LCZO) and in collaboration with the Saharan Aerosol Long-Range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE). Measurements were performed at the TMCF of Pico del Este (PE, 1051 masl) and at the nature reserve of Cabezas de San Juan (CSJ, 60 masl). In both stations we monitored meteorological parameters (e.g., temperature, wind speed, wind direction). At CSJ, we measured light absorption and scattering at three wavelengths (467, 528 and 652 nm). At PE we collected cloud and rainwater and monitored cloud microphysical properties (e.g., liquid water content, droplet size distribution, droplet number concentration, effective diameter and median volume diameter). Data from aerosol models, satellites, and back-trajectories were used together with CSJ measurements to classify air masses and samples collected at PE in the presence or absence of dust. Soluble ions, insoluble trace metals, pH and conductivity were measured for cloud and rainwater. Preliminary results for summer 2013 showed that in the presence of LRTAD (1) the average conductivity of cloud water was almost twice (81.1 μS/cm) as that in the absence of LRTAD (47.7 μS/cm), (2) the average conductivity in rainwater was slightly higher (15.0 μS/cm vs 12.8 μS/cm), and (3) the average pH was slightly higher for both cloud and rainwater samples (average of 6.41 for cloud water and 6.37 for rainwater). Detailed results on the chemical composition (water-soluble ions, trace metals, total organic carbon and total nitrogen) of cloud and rainwater, cloud microphysics, and on how these properties are affected in the presence of dust events will be presented at the meeting.

  17. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    NASA Astrophysics Data System (ADS)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-05-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25-30 % of the total reactivities), but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this work, we suggest that water vapor differences in model simulations of past and future atmospheres may be a cause of the different evolution of tropospheric O3 and CH4, and lead to different chemistry-climate feedbacks across the models.

  18. Molecules in interstellar clouds. [physical and chemical conditions of star formation and biological evolution

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Hjalmarson, A.; Rydbeck, O. E. H.

    1981-01-01

    The physical conditions and chemical compositions of the gas in interstellar clouds are reviewed in light of the importance of interstellar clouds for star formation and the origin of life. The Orion A region is discussed as an example of a giant molecular cloud where massive stars are being formed, and it is pointed out that conditions in the core of the cloud, with a kinetic temperature of about 75 K and a density of 100,000-1,000,000 molecules/cu cm, may support gas phase ion-molecule chemistry. The Taurus Molecular Clouds are then considered as examples of cold, dark, relatively dense interstellar clouds which may be the birthplaces of solar-type stars and which have been found to contain the heaviest interstellar molecules yet discovered. The molecular species identified in each of these regions are tabulated, including such building blocks of biological monomers as H2O, NH3, H2CO, CO, H2S, CH3CN and H2, and more complex species such as HCOOCH3 and CH3CH2CN.

  19. Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"

    NASA Astrophysics Data System (ADS)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2015-01-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified simulated cloud solutions and model estimates of generated aqSOA mass should take into account possible generation of, or competition for, oxidant molecules by organic components found in the complex matrices typically associated with real atmospheric water droplets. Additionally, it is likely that some components of real atmospheric waters have not yet been identified as aqSOA precursors, but could be distinguished through further simplified bulk oxidations of known atmospheric water components.

  20. Global hot-star wind models for stars from Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Krtička, J.; Kubát, J.

    2018-04-01

    We provide mass-loss rate predictions for O stars from Large and Small Magellanic Clouds. We calculate global (unified, hydrodynamic) model atmospheres of main sequence, giant, and supergiant stars for chemical composition corresponding to Magellanic Clouds. The models solve radiative transfer equation in comoving frame, kinetic equilibrium equations (also known as NLTE equations), and hydrodynamical equations from (quasi-)hydrostatic atmosphere to expanding stellar wind. The models allow us to predict wind density, velocity, and temperature (consequently also the terminal wind velocity and the mass-loss rate) just from basic global stellar parameters. As a result of their lower metallicity, the line radiative driving is weaker leading to lower wind mass-loss rates with respect to the Galactic stars. We provide a formula that fits the mass-loss rate predicted by our models as a function of stellar luminosity and metallicity. On average, the mass-loss rate scales with metallicity as Ṁ Z0.59. The predicted mass-loss rates are lower than mass-loss rates derived from Hα diagnostics and can be reconciled with observational results assuming clumping factor Cc = 9. On the other hand, the predicted mass-loss rates either agree or are slightly higher than the mass-loss rates derived from ultraviolet wind line profiles. The calculated P V ionization fractions also agree with values derived from observations for LMC stars with Teff ≤ 40 000 K. Taken together, our theoretical predictions provide reasonable models with consistent mass-loss rate determination, which can be used for quantitative study of stars from Magellanic Clouds.

  1. Gas- and particle-phase chemical composition measurements onboard the G-1 research aircraft during the GoAmazon campaign.

    NASA Astrophysics Data System (ADS)

    Shilling, J.; Pekour, M. S.; Fortner, E.; Hubbe, J. M.; Longo, K.; Martin, S. T.; Mei, F.; Springston, S. R.; Tomlinson, J. M.; Wang, J.

    2014-12-01

    The Green Ocean Amazon (GoAmazon) campaign conducted from January 2014 - December 2015 in the vicinity of Manaus, Brazil, was designed to study the aerosol lifecycle and aerosol-cloud interactions in both pristine and anthropogenically influenced conditions. As part of this campaign, the DOE G-1 research aircraft was deployed from February 17th - March 25th 2014 and September 6th - October 5th 2014 to investigate aerosol and cloud properties aloft. An Aerodyne High Resolution Aerosol Mass Spectrometer (AMS) and an Ionicon Proton Transfer Reaction Mass Spectrometer (PTRMS) were part of the G-1 research aircraft payload and were used to investigate aerosol gas- and particle-phase chemical composition. Here we present preliminary analysis of the aerosol and gas phase chemical composition. PTR-MS measurements show that isoprene and its oxidation products are the dominant VOCs during research flights. HR-AMS measurements reveal that the particle phase is dominated by organic material with smaller concentrations of sulfate and nitrate observed. Organic particle concentrations are enhanced when encountering the urban plume from Manaus. During the wet season, we observe increased concentrations of organic particle when passing through low-altitude clouds. PMF analysis of the organic mass spectra shows that the chemical composition of the particles observed in-cloud is distinctly different from particles observed outside clouds. We will also compare measurements made during the wet and dry seasons.

  2. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    PubMed Central

    Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations. PMID:29057838

  3. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition

    NASA Technical Reports Server (NTRS)

    Belle, Jessica H.; Chang, Howard H.; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-01-01

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM2.5) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, approximately 70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM2.5 concentrations.

  4. The Potential Impact of Satellite-Retrieved Cloud Parameters on Ground-Level PM2.5 Mass and Composition.

    PubMed

    Belle, Jessica H; Chang, Howard H; Wang, Yujie; Hu, Xuefei; Lyapustin, Alexei; Liu, Yang

    2017-10-18

    Satellite-retrieved aerosol optical properties have been extensively used to estimate ground-level fine particulate matter (PM 2.5 ) concentrations in support of air pollution health effects research and air quality assessment at the urban to global scales. However, a large proportion, ~70%, of satellite observations of aerosols are missing as a result of cloud-cover, surface brightness, and snow-cover. The resulting PM 2.5 estimates could therefore be biased due to this non-random data missingness. Cloud-cover in particular has the potential to impact ground-level PM 2.5 concentrations through complex chemical and physical processes. We developed a series of statistical models using the Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol product at 1 km resolution with information from the MODIS cloud product and meteorological information to investigate the extent to which cloud parameters and associated meteorological conditions impact ground-level aerosols at two urban sites in the US: Atlanta and San Francisco. We find that changes in temperature, wind speed, relative humidity, planetary boundary layer height, convective available potential energy, precipitation, cloud effective radius, cloud optical depth, and cloud emissivity are associated with changes in PM 2.5 concentration and composition, and the changes differ by overpass time and cloud phase as well as between the San Francisco and Atlanta sites. A case-study at the San Francisco site confirmed that accounting for cloud-cover and associated meteorological conditions could substantially alter the spatial distribution of monthly ground-level PM 2.5 concentrations.

  5. Spectroscopy and reactions of molecules important in chemical evolution

    NASA Technical Reports Server (NTRS)

    Becker, R. S.

    1974-01-01

    The research includes: (1) hot hydrogen atom reactions in terms of the nature of products produced, mechanism of the reactions and the implication and application of such reactions for molecules existing in interstellar clouds, in planetary atmospheres, and in chemical evolution; (2) photochemical reactions that can lead to molecules important in chemical evolution, interstellar clouds and as constituents in planetary atmospheres; and (3) spectroscopic and theoretical properties of biomolecules and their precursors and where possible, use these to understand their photochemical behavior.

  6. A Model for Protostellar Cluster Luminosities and the Impact on the CO–H2 Conversion Factor

    NASA Astrophysics Data System (ADS)

    Gaches, Brandt A. L.; Offner, Stella S. R.

    2018-02-01

    We construct a semianalytic model to study the effect of far-ultraviolet (FUV) radiation on gas chemistry from embedded protostars. We use the protostellar luminosity function (PLF) formalism of Offner & McKee to calculate the total, FUV, and ionizing cluster luminosity for various protostellar accretion histories and cluster sizes. We2 compare the model predictions with surveys of Gould Belt star-forming regions and find that the tapered turbulent core model matches best the mean luminosities and the spread in the data. We combine the cluster model with the photodissociation region astrochemistry code, 3D-PDR, to compute the impact of the FUV luminosity from embedded protostars on the CO-to-H2 conversion factor, X CO, as a function of cluster size, gas mass, and star formation efficiency. We find that X CO has a weak dependence on the FUV radiation from embedded sources for large clusters owing to high cloud optical depths. In smaller and more efficient clusters the embedded FUV increases X CO to levels consistent with the average Milky Way values. The internal physical and chemical structures of the cloud are significantly altered, and X CO depends strongly on the protostellar cluster mass for small efficient clouds.

  7. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; Amorim Holanda, Bruna; Artaxo, Paulo; Barbosa, Henrique M. J.; Borrmann, Stephan; Cecchini, Micael A.; Costa, Anja; Dollner, Maximilian; Fütterer, Daniel; Järvinen, Emma; Jurkat, Tina; Klimach, Thomas; Konemann, Tobias; Knote, Christoph; Krämer, Martina; Krisna, Trismono; Machado, Luiz A. T.; Mertes, Stephan; Minikin, Andreas; Pöhlker, Christopher; Pöhlker, Mira L.; Pöschl, Ulrich; Rosenfeld, Daniel; Sauer, Daniel; Schlager, Hans; Schnaiter, Martin; Schneider, Johannes; Schulz, Christiane; Spanu, Antonio; Sperling, Vinicius B.; Voigt, Christiane; Walser, Adrian; Wang, Jian; Weinzierl, Bernadett; Wendisch, Manfred; Ziereis, Helmut

    2018-01-01

    Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German-Brazilian cooperative aircraft campaign ACRIDICON-CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (global precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September-October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5-72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.

  8. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

    DOE PAGES

    Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel; ...

    2018-01-25

    Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (globalmore » precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.« less

  9. Aerosol characteristics and particle production in the upper troposphere over the Amazon Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreae, Meinrat O.; Afchine, Armin; Albrecht, Rachel

    Airborne observations over the Amazon Basin showed high aerosol particle concentrations in the upper troposphere (UT) between 8 and 15 km altitude, with number densities (normalized to standard temperature and pressure) often exceeding those in the planetary boundary layer (PBL) by 1 or 2 orders of magnitude. The measurements were made during the German–Brazilian cooperative aircraft campaign ACRIDICON–CHUVA, where ACRIDICON stands for Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems and CHUVA is the acronym for Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (globalmore » precipitation measurement), on the German High Altitude and Long Range Research Aircraft (HALO). The campaign took place in September–October 2014, with the objective of studying tropical deep convective clouds over the Amazon rainforest and their interactions with atmospheric trace gases, aerosol particles, and atmospheric radiation. Aerosol enhancements were observed consistently on all flights during which the UT was probed, using several aerosol metrics, including condensation nuclei (CN) and cloud condensation nuclei (CCN) number concentrations and chemical species mass concentrations. The UT particles differed sharply in their chemical composition and size distribution from those in the PBL, ruling out convective transport of combustion-derived particles from the boundary layer (BL) as a source. The air in the immediate outflow of deep convective clouds was depleted of aerosol particles, whereas strongly enhanced number concentrations of small particles (< 90 nm diameter) were found in UT regions that had experienced outflow from deep convection in the preceding 5–72 h. We also found elevated concentrations of larger (> 90 nm) particles in the UT, which consisted mostly of organic matter and nitrate and were very effective CCN. Our findings suggest a conceptual model, where production of new aerosol particles takes place in the continental UT from biogenic volatile organic material brought up by deep convection and converted to condensable species in the UT. Subsequently, downward mixing and transport of upper tropospheric aerosol can be a source of particles to the PBL, where they increase in size by the condensation of biogenic volatile organic compound (BVOC) oxidation products. This may be an important source of aerosol particles for the Amazonian PBL, where aerosol nucleation and new particle formation have not been observed. We propose that this may have been the dominant process supplying secondary aerosol particles in the pristine atmosphere, making clouds the dominant control of both removal and production of atmospheric particles.« less

  10. Sources of cosmic dust in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.; Plane, J. M. C.

    2016-12-01

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d-1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  11. Source Characterization of Heavy Gas Dispersion Models for Reactive Chemicals. Volume 1

    DTIC Science & Technology

    1987-12-21

    Temperatura TC10263,3 K (K) f Liquid aerosol TAIRw30 0 K mass fraction in fl " 75% MO unmixed sulfur dioxide cloud 1nil 0.1 it 100 1o0 Mass Air / Mass Sulfur...Modified Sigma Theta Method for Determining Atmospheric Stability a.* Daytime Wind speed Nighttime** ( de ;6ees) stability (m s" at 10 m) stability -U>22.5 A...rate of air mass entrainment into the cloud can be represented by the equations: dE dMT d- PaUE 2 WR H and -- PaUT ’ R2 (5.2.7)dt dt where uE and u are

  12. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.

    2010-10-01

    A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment pseudo-modal aerosol dynamics approach rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulfate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulfuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulfate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.

  13. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.

    2010-05-01

    A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment modal aerosol scheme rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulphate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulphuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulphate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.

  14. Clustering the Orion B giant molecular cloud based on its molecular emission

    PubMed Central

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2017-01-01

    Context Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results A clustering analysis based only on the J = 1 – 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes (nH ~ 100 cm−3, ~ 500 cm−3, and > 1000 cm−3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 − 0 line of HCO+ and the N = 1 − 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH ~ 7 × 103 cm−3 ~ 4 × 104 cm−3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1 – 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. PMID:29456256

  15. Impacts of New Particle Formation on Midwestern Climate and Air Quality as Determined by the NPF-explicit WRF-Chem

    NASA Astrophysics Data System (ADS)

    Dong, C.; Stanier, C. O.; Bullard, R.; Singh, A.

    2016-12-01

    A one month simulation has been performed using the New particle formation (NPF)-explicit WRF-Chem (Matsui et al, Journal of Geophysical Research, 116(D19208), 2011). The simulation was run for a domain of the continental United States, with analysis focused on the Midwestern and eastern portions of the U.S. Analysis focused on quantification and explanation of planetary boundary layer (PBL) NPF in the model on variables beyond condensation nuclei (CN), cloud condensation nuclei (CCN), and cloud droplet size distributions. The model was evaluated against meteorology, chemical species and aerosol physical property observations. Comparison shows the model performance was comparable to that of other studies. Nucleation enhanced the concentration of condensation nuclei (CN). Cloud condensation nuclei (CCN) concentrations were enhanced and suppressed at high and low supersaturations, respectively. For air pollutants, the most pronounced influence of PBL nucleation was PM2.5 reduction, which was mainly caused by SO4 decreases (62.7%). For shortwave radiation, changes due to indirect effects of NPF were larger than direct effects. Shortwave radiation and cloud droplet concentration typically changed in the same way. Similar change patterns were found for T2 and PBL height. PBL nucleation led to a net increase of precipitation during the simulation period. Sensitivity tests showed that the combination of PBL NPF together with aqueous chemistry was the predominant cause of SO4 reduction.

  16. Prospects for Chemically Tagging Stars in the Galaxy

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Goodman, Alyssa

    2015-07-01

    It is now well-established that the elemental abundance patterns of stars hold key clues not only to their formation, but also to the assembly histories of galaxies. One of the most exciting possibilities is the use of stellar abundance patterns as “chemical tags” to identify stars that were born in the same molecular cloud. In this paper, we assess the prospects of chemical tagging as a function of several key underlying parameters. We show that in the fiducial case of 104 distinct cells in chemical space and {10}5-{10}6 stars in the survey, one can expect to detect ∼ {10}2-{10}3 groups that are ≥slant 5σ overdensities in the chemical space. However, we find that even very large overdensities in chemical space do not guarantee that the overdensity is due to a single set of stars from a common birth cloud. In fact, for our fiducial model parameters, the typical 5σ overdensity is comprised of stars from a wide range of clusters with the most dominant cluster contributing only 25% of the stars. The most important factors limiting the identification of disrupted clusters via chemical tagging are the number of chemical cells in the chemical space and the survey sampling rate of the underlying stellar population. Both of these factors can be improved through strategic observational plans. While recovering individual clusters through chemical tagging may prove challenging, we show, in agreement with previous work, that different CMFs imprint different degrees of clumpiness in chemical space. These differences provide the opportunity to statistically reconstruct the slope and high-mass cutoff of CMF and its evolution through cosmic time.

  17. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora); the rates of biodegradation were determined and compared to the photodegradation rates involving •OH radicals. The biodegradation rates in "natural" and "artificial" cloud water were in the same order of magnitude; this confirms the significant role of the active biomass in the aqueous reactivity of clouds.

  18. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  19. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  20. Characterization of residuals from ice particles and droplets sampled in mid-latitude natural and aviation-influenced cirrus and in tropical deep convective cloud systems during ML-CIRRUS and ACRIDICON

    NASA Astrophysics Data System (ADS)

    Mertes, Stephan; Kästner, Udo; Schulz, Christiane; Klimach, Thomas; Krüger, Mira; Schneider, Johannes

    2015-04-01

    Airborne sampling of cloud particles inside different cirrus cloud types and inside deep convective clouds was conducted during the HALO missions ML-CIRRUS over Europe in March/April 2014 and ACRIDICON over Amazonia in September 2014. ML-CIRRUS aims at the investigation of the for-mation, evolution, microphysical state and radiative effects of different natural and aviation-induced cirrus clouds in the mid-latitudes. The main objectives of ACRIDICON are the microphysical vertical profiling, vertical aerosol transport and the cloud processing of aerosol particles (compari-son in- and outflow) of tropical deep convective cloud systems in clean and polluted air masses and over forested and deforested regions. The hydrometeors (drops and ice particles) are sampled by a counterflow virtual impactor (CVI) which has to be installed in the front part of the upper fuselage of the HALO aircraft. Such an intake position implies a size dependent abundance of cloud particles with respect to ambient conditions that was studied by particle trajectory simulations (Katrin Witte, HALO Technical Note 2008-003-A). On the other hand, this sampling location avoids that large ice crystals which could potentially bias the cloud particle sampling by shattering and break-up at the inlet shroud and tip enter the inlet. Both aspects as well as the flight conditions of HALO were taken into account for an optimized CVI design for HALO (HALO-CVI). Interstitial particles are pre-segregated and the condensed phase is evaporated/sublimated by the CVI, such that the residuals from cloud droplets and ice particles (CDR and IPR) can be microphysically and chemically analyzed by respective aerosol sensors located in the cabin. Although an even more comprehensive characterization of CDR and IPR was carried out, we like to report on the following measurements of certain aerosol properties. Particle number concentra-tion and size distribution are measured by a condensation particle counter (CPC) and an ultra-high sensitivity aerosol spectrometer (UHSAS). The absorption coefficient and thus a measure for the black carbon mass concentration is derived from the particle soot absorption photometer (PSAP). In the lower warm parts of the probed convective clouds during the ACRIDICON mission the mean charge of droplets was inferred by means of electrometer measurements. For the determination of the chemical properties of CDR and IPR, the Aircraft-based Laser Ablation Aerosol Mass Spec-trometer (ALABAMA) and a Compact-Time-of-Flight-Aerosol-Mass-Spectrometer (C-ToF-AMS) was operated during ML-CIRRUS and ACRIDICON, respectively, to obtain the mixing state and chemical composition of the cloud particle residues. During ML-CIRRUS, differences in IPR concentration, size distribution, and chemical composition between natural and aviation influenced cirrus clouds could be observed as well as between dif-ferent natural cirrus types and between young and aged contrail cirrus. During ACRIDICON, CDR concentration, size distribution, and chemical composition are found to be different for convective cloud systems evolving from more clean air masses compared to systems evolving from more polluted air masses. Droplet charges change from negative to positive values with height in all vertical cloud profiles. The measured IPR concentration strongly vary in the anvil outflow regions.

  1. Uncertainty in aerosol hygroscopicity resulting from semi-volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Goulden, Olivia; Crooks, Matthew; Connolly, Paul

    2018-01-01

    We present a novel method of exploring the effect of uncertainties in aerosol properties on cloud droplet number using existing cloud droplet activation parameterisations. Aerosol properties of a single involatile particle mode are randomly sampled within an uncertainty range and resulting maximum supersaturations and critical diameters calculated using the cloud droplet activation scheme. Hygroscopicity parameters are subsequently derived and the values of the mean and uncertainty are found to be comparable to experimental observations. A recently proposed cloud droplet activation scheme that includes the effects of co-condensation of semi-volatile organic compounds (SVOCs) onto a single lognormal mode of involatile particles is also considered. In addition to the uncertainties associated with the involatile particles, concentrations, volatility distributions and chemical composition of the SVOCs are randomly sampled and hygroscopicity parameters are derived using the cloud droplet activation scheme. The inclusion of SVOCs is found to have a significant effect on the hygroscopicity and contributes a large uncertainty. For non-volatile particles that are effective cloud condensation nuclei, the co-condensation of SVOCs reduces their actual hygroscopicity by approximately 25 %. A new concept of an effective hygroscopicity parameter is introduced that can computationally efficiently simulate the effect of SVOCs on cloud droplet number concentration without direct modelling of the organic compounds. These effective hygroscopicities can be as much as a factor of 2 higher than those of the non-volatile particles onto which the volatile organic compounds condense.

  2. VizieR Online Data Catalog: Evolution of rotating very massive LC stars (Kohler, 2015)

    NASA Astrophysics Data System (ADS)

    Kohler, K.; Langer, N.; de Koter, A.; de Mink, S. E.; Crowther, P. A.; Evans, C. J.; Grafener, G.; Sana, H.; Sanyal, D.; Schneider, F. R. N.; Vink, J. S.

    2014-11-01

    A dense model grid with chemical composition appropriate for the Large Magellanic Cloud is presented. A one-dimensional hydrodynamic stellar evolution code was used to compute our models on the main sequence, taking into account rotation, transport of angular momentum by magnetic fields and stellar wind mass loss. We present stellar evolution models with initial masses of 70-500M⊙ and with initial surface rotational velocities of 0-550km/s. (2 data files).

  3. Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014.

    PubMed

    Xu, Danhui; Ge, Baozhu; Wang, Zifa; Sun, Yele; Chen, Yong; Ji, Dongshen; Yang, Ting; Ma, Zhiqiang; Cheng, Nianliang; Hao, Jianqi; Yao, Xuefeng

    2017-11-01

    Wet deposition is one of the most important and efficient removal mechanisms in the reduction of air pollution. As a key parameter determining wet deposition, the wet scavenging coefficient (WSC) is widely used in chemical transport models (CTMs) and reported values have large uncertainties. In this study, a high-resolution observational dataset of the soluble inorganic aerosols (SO 4 2- , NO 3 - and NH 4 + , hereafter SNA) in the air and in rainwater during multiple precipitation events was collected using sequential sampling and used to estimate the below-cloud WSC in Beijing during the summer of 2014. The average concentrations of SNA in precipitation during the observational period were 7.9 mg/L, 6.2 mg/L and 4.6 mg/L, with the contributions from below-cloud scavenging constituting 56%, 61% and 47% of this, respectively. The scavenging ratios of SNA (i.e., the ratio of the concentrations in rain to concentrations in the air) were used with the height of the cloud base and the precipitation intensity to estimate the WSC. The estimated WSC of SO 4 2- is comparable to that reported elsewhere. The relationship between the below-cloud WSC and the precipitation intensity followed an exponential power distribution (K=aP b ) for SNA. In contrast to previous studies, this study considers the differences between the chemical compositions of the SNA, with the highest WSC for NO 3 - , followed by those of SO 4 2- and NH 4 + . Therefore, we recommend that CTMs include ion specific WSCs in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Impact of meteorology on air quality modeling over the Po valley in northern Italy

    NASA Astrophysics Data System (ADS)

    Pernigotti, D.; Georgieva, E.; Thunis, P.; Bessagnet, B.

    2012-05-01

    A series of sensitivity tests has been performed using both a mesoscale meteorological model (MM5) and a chemical transport model (CHIMERE) to better understand the reasons why all models underestimate particulate matter concentrations in the Po valley in winter. Different options are explored to nudge meteorological observations from regulatory networks into MM5 in order to improve model performances, especially during the low wind speed regimes frequently present in this area. The sensitivity of the CHIMERE modeled particulate matter concentrations to these different meteorological inputs are then evaluated for the January 2005 time period. A further analysis of the CHIMERE model results revealed the need of improving the parametrization of the in-cloud scavenging and vertical diffusivity schemes; such modifications are relevant especially when the model is applied under mist, fog and low stratus conditions, which frequently occur in the Po valley during winter. The sensitivity of modeled particulate matter concentrations to turbulence parameters, wind, temperature and cloud liquid water content in one of the most polluted and complex areas in Europe is finally discussed.

  5. Chemistry in Magnetohydrodynamic Shock Waves in Diffuse Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Peimbert, Antonio

    1998-09-01

    Absorption observations of the CH+ molecule with column densities of up to 1014 cm-2 in diffuse molecular clouds in many lines of sight are reviewed, and compared to the reddening and to abundances and velocity shifts of molecules like CH. Special attention is placed on the observations of the line of sight towards ς Ophiuchi where high quality observations of many chemical species are available. The problem of the required CH+ is described, and many formation mechanisms from the literature are reviewed, finding that none of them is particularly apt at describing the observations towards ς-Oph. Two fluid J-type shock models are studied as an alternative. The necessary conditions for their formation are discussed, and it is shown how they are expected to be present widely in the interstellar medium. Plane parallel numerical integrations, for the particular case in which the magnetic field is perpendicular to the shock velocity, are employed to study the region of phase-space of initial conditions that will produce 2 fluid shocks. A chemical network is developed and formation of key molecules like CH+, CH and OH, along with the excited roto-vibrational levels of H2, are studied under the shock dynamics. These models are then compared to the observations of the different lines of sight, showing they are capable of reproducing the features of the observations towards most of those clouds. An attempt to model the line of sight towards ς-Oph is done, finding that a shock with a shock speed vs = 9.0km/s going through a cloud with a density of nH = 14cm-3 with a magnetic field of B = 4.7μG does a reasonable job at satisfying most of the observations with the exception of the highest rotational excited states of molecular hydrogen for which observations are available. There is a small family of solutions capable of explaining the observed results which make specific predictions for the velocity profiles of the H2 lines of various excited levels. New observations with the Interstellar Medium Absorption Profile Spectrograph (IMAPS) camera would be useful in confirming or rejecting these models.

  6. A Test of the Fundamental Physics Underlying Exoplanet Climate Models

    NASA Astrophysics Data System (ADS)

    Beatty, Thomas; Keating, Dylan; Cowan, Nick; Gaudi, Scott; Kataria, Tiffany; Fortney, Jonathan; Stassun, Keivan; Collins, Karen; Deming, Drake; Bell, Taylor; Dang, Lisa; Rogers, Tamara; Colon, Knicole

    2018-05-01

    A fundamental issue in how we understand exoplanet atmospheres is the assumed physical behavior underlying 3D global circulation models (GCMs). Modeling an entire 3D atmosphere is a Herculean task, and so in exoplanet GCMs we generally assume that there are no clouds, no magnetic effects, and chemical equilibrium (e.g., Kataria et al 2016). These simplifying assumptions are computationally necessary, but at the same time their exclusion allows for a large theoretical lee-way when comparing to data. Thus, though significant discrepancies exist between almost all a priori GCM predictions and their corresponding observations, these are assumed to be due to the lack of clouds, or atmospheric drag, or chemical disequilibrium, in the models (e.g., Wong et al. 2016, Stevenson et al. 2017, Lewis et al. 2017, Zhang et al. 2018). Since these effects compete with one another and have large uncertainties, this makes tests of the fundamental physics in GCMs extremely difficult. To rectify this, we propose to use 88.4 hours of Spitzer time to observe 3.6um and 4.5um phase curves of the transiting giant planet KELT-9b. KELT-9b has an observed dayside temperature of 4600K (Gaudi et al. 2017), which means that there will very likely be no clouds on the day- or nightside, and is hot enough that the atmosphere should be close to local chemical equilibrium. Additionally, we plan to leverage KELT-9b's high temperature to make the first measurement of global wind speed on an exoplanet (Bell & Cowan 2018), giving a constraint on atmospheric drag and magnetic effects. Combined, this means KELT-9b is close to a real-world GCM, without most of the effects present on lower temperature planets. Additionally, since KELT-9b orbits an extremely bright host star these will be the highest signal-to-noise ratio phase curves taken with Spitzer by more than a factor of two. This gives us a unique opportunity to make the first precise and direct investigation into the fundamental physics that are the foundation of all exoplanet GCMs.

  7. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have beenmore » implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they will be included in a future public release of WRF-Chem.« less

  8. Insights into aerosols, chemistry, and clouds from NETCARE: Observations from the Canadian Arctic in summer 2014

    NASA Astrophysics Data System (ADS)

    Abbatt, J.

    2015-12-01

    The Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (or NETCARE) was established in 2013 to study the interactions between aerosols, chemistry, clouds and climate. The network brings together Canadian academic and government researchers, along with key international collaborators. Attention is being given to observations and modeling of Arctic aerosol, with the goal to understand underlying processes and so improve predictions of aerosol climate forcing. Motivation to understand the summer Arctic atmosphere comes from the retreat of summer sea ice and associated increase in marine influence. To address these goals, a suite of measurements was conducted from two platforms in summer 2014 in the Canadian Arctic, i.e. an aircraft-based campaign on the Alfred Wegener Institute POLAR 6 and an ocean-based campaign from the CGCS Amundsen icebreaker. NETCARE-POLAR was based out of Resolute Bay, Nunavut during an initial period of little transport and cloud-free conditions and a later period characterized by more transport with potentially biomass burning influence. Measurements included particle and cloud droplet numbers and size distributions, aerosol composition, cloud nuclei, and levels of gaseous tracers. Ultrafine particle events were more frequently observed in the marine boundary layer than above, with particle growth observed in some cases to cloud condensation nucleus sizes. The influence of biological processes on atmospheric constituents was also assessed from the ship during NETCARE-AMUNDSEN, as indicated by high measured levels of gaseous ammonia, DMS and oxygenated VOCs, as well as isolated particle formation and growth episodes. The cruise took place in Baffin Bay and through the Canadian archipelago. Interpretation of the observations from both campaigns is enhanced through the use of chemical transport and particle dispersion models. This talk will provide an overview of NETCARE Arctic observational and related modeling activities, focusing on 2014 Arctic activities and highlighting upcoming presentations within the session and the work of individual research teams. An attempt will be made to synthesize the observations and model results, drawing connections of aerosol sources through to cloud formation and deposition processes.

  9. Aerosols and Aerosol-related haze forecasting in China Meteorological Adminstration

    NASA Astrophysics Data System (ADS)

    Zhou, Chunhong; Zhang, Xiaoye; Gong, Sunling; Liu, Hongli; Xue, Min

    2017-04-01

    CMA Unified Atmospheric Chemistry Environmental Forecasting System (CUACE) is a unified numerical chemical weather forecasting system with BC, OC, Sulfate, Nitrate, Ammonia, Dust and Sea-Salt aerosols and their sources, gas to particle processes, SOA, microphysics and transformation. With an open interface, CUACE has been online coupled to mesoscale model MM5 and the new NWP system GRAPES (Global/Regional Assimilation and Prediction Enhanced System)min CMA. With Chinese Emissions from Cao and Zhang(2012 and 2013), a forecasting system called CUACE/Haze-fog has been running in real time in CMA and issue 5-days PM10, O3 and Visibility forecasts. A comprehensive ACI scheme has also been developed in CUACE Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The results show that interactive aerosols with the WDM6 in CUACE obviously improve the clouds properties and the precipitation, showing 24% to 48% enhancements of TS scoring for 6-h precipitation .

  10. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    NASA Technical Reports Server (NTRS)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0.2 to -0.5K for most parts of France, Germany, and Italy during the dust event. The maximum difference in surface temperature was found in the East of France, the Benelux, and Western Germany with up to -1 K. This magnitude of temperature change was sufficient to explain a systematic bias in numerical weather forecasts during the period of the dust event.

  11. The role of aqueous chemistry in determining the composition and cloud structure of the upper troposphere on Uranus

    NASA Technical Reports Server (NTRS)

    Carlson, Barbara E.; Prather, Michael J.; Rossow, William B.

    1987-01-01

    Aqueous chemistry on Uranus affects the atmospheric abundances of NH3 and H2S below the methane cloud base. Here a complete thermochemical equilibrium model for the H2O-NH3-H2S system is presented. Inclusion of H2S increases the aqueous removal of NH3 to 20-30 percent, but aqueous chemistry alone cannot account for the depletion of NH3 in the 150-200-K region of the atmosphere required to fit microwave observations. Formation of NH4SH clouds can account for the observed depletion provided the H2S/NH3 ratio is enhanced by a factor of 4 relative to solar. Perturbations to the chemical balance between N and S, for example by the general circulation on Uranus, would then produce regions with either NH3 or H2S aloft.

  12. Gas release and conductivity modification studies

    NASA Technical Reports Server (NTRS)

    Linson, L. M.; Baxter, D. C.

    1979-01-01

    The behavior of gas clouds produced by releases from orbital velocity in either a point release or venting mode is described by the modification of snowplow equations valid in an intermediate altitude regime. Quantitative estimates are produced for the time dependence of the radius of the cloud, the average internal energy, the translational velocity, and the distance traveled. The dependence of these quantities on the assumed density profile, the internal energy of the gas, and the ratio of specific heats is examined. The new feature is the inclusion of the effect of the large orbital velocity. The resulting gas cloud models are used to calculate the characteristics of the field line integrated Pedersen conductivity enhancements that would be produced by the release of barium thermite at orbital velocity in either the point release or venting modes as a function of release altitude and chemical payload weight.

  13. H2O2 modulates the energetic metabolism of the cloud microbiome

    NASA Astrophysics Data System (ADS)

    Wirgot, Nolwenn; Vinatier, Virginie; Deguillaume, Laurent; Sancelme, Martine; Delort, Anne-Marie

    2017-12-01

    Chemical reactions in clouds lead to oxidation processes driven by radicals (mainly HO⚫, NO3⚫, or HO2⚫) or strong oxidants such as H2O2, O3, nitrate, and nitrite. Among those species, hydrogen peroxide plays a central role in the cloud chemistry by driving its oxidant capacity. In cloud droplets, H2O2 is transformed by microorganisms which are metabolically active. Biological activity can therefore impact the cloud oxidant capacity. The present article aims at highlighting the interactions between H2O2 and microorganisms within the cloud system. First, experiments were performed with selected strains studied as a reference isolated from clouds in microcosms designed to mimic the cloud chemical composition, including the presence of light and iron. Biotic and abiotic degradation rates of H2O2 were measured and results showed that biodegradation was the most efficient process together with the photo-Fenton process. H2O2 strongly impacted the microbial energetic state as shown by adenosine triphosphate (ATP) measurements in the presence and absence of H2O2. This ATP depletion was not due to the loss of cell viability. Secondly, correlation studies were performed based on real cloud measurements from 37 cloud samples collected at the PUY station (1465 m a.s.l., France). The results support a strong correlation between ATP and H2O2 concentrations and confirm that H2O2 modulates the energetic metabolism of the cloud microbiome. The modulation of microbial metabolism by H2O2 concentration could thus impact cloud chemistry, in particular the biotransformation rates of carbon compounds, and consequently can perturb the way the cloud system is modifying the global atmospheric chemistry.

  14. Chemical evolution in spiral and irregular galaxies

    NASA Technical Reports Server (NTRS)

    Torres-Peimbert, S.

    1986-01-01

    A brief review of models of chemical evolution of the interstellar medium in our galaxy and other galaxies is presented. These models predict the time variation and radial dependence of chemical composition in the gas as function of the input parameters; initial mass function, stellar birth rate, chemical composition of mass lost by stars during their evolution (yields), and the existence of large scale mass flows, like infall from the halo, outflow to the intergalactic medium or radial flows within a galaxy. At present there is a considerable wealth of observational data on the composition of HII regions in spiral and irregular galaxies to constrain the models. Comparisons are made between theory and the observed physical conditions. In particular, studies of helium, carbon, nitrogen and oxygen abundances are reviewed. In many molecular clouds the information we have on the amount of H2 is derived from the observed CO column density, and a standard CO/H2 ratio derived for the solar neighborhood. Chemical evolution models and the observed variations in O/H and N/O values, point out the need to include these results in a CO/H2 relation that should be, at least, a function of the O/H ratio. This aspect is also discussed.

  15. Direct Observations of Isoprene Secondary Organic Aerosol Formation in Ambient Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Bell, D.; Thornton, J. A.; Fast, J. D.; Shrivastava, M. B.; Berg, L. K.; Imre, D. G.; Mei, F.; Shilling, J.; Suski, K. J.; Liu, J.; Tomlinson, J. M.; Wang, J.

    2017-12-01

    Multiphase chemistry of isoprene photooxidation products has been shown to be one of the major sources of secondary organic aerosol (SOA) in the atmosphere. A number of recent studies indicate that aqueous aerosol phase provides a medium for reactive uptake of isoprene photooxidation products, and in particular, isomeric isoprene epoxydiols (IEPOX), with reaction rates and yields being dependent on aerosol acidity, water content, sulfate concentration, and organic coatings. However, very few studies focused on chemistry occurring within actual cloud droplets. We will present data acquired during recent Holistic Interactions of Shallow Clouds, Aerosols, and Land Ecosystems (HI-SCALE) Campaign, which provide direct evidence for IEPOX-SOA formation in cloud droplets. Single particle mass spectrometer, miniSPLAT, and a high-resolution, time-of-flight aerosol mass spectrometer were used to characterize the composition of aerosol particles and cloud droplet residuals, while a high-resolution, time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) was used to characterize gas-phase compounds. We find that the composition of cloud droplet residuals was markedly different than that of aerosol particles sampled outside the cloud. Cloud droplet residuals were comprised of individual particles with high relative fractions of sulfate and nitrate and significant fraction of particles with mass spectra that are nearly identical to those of laboratory-generated IEPOX-SOA particles. The observed cloud-induced formation of IEPOX-SOA was accompanied by simultaneous decrease in measured concentrations of IEPOX and other gas-phase isoprene photooxidation products. Ultimately, the combined cloud, aerosol, and gas-phase measurements conducted during HI-SCALE will be used to develop and evaluate model treatments of aqueous-phase isoprene SOA formation.

  16. [CII] observations of H2 molecular layers in transition clouds

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    We present the first results on the diffuse transition clouds observed in [CII] line emission at 158 μm (1.9 THz) towards Galactic longitudes near 340° (5 LOSs) & 20° (11 LOSs) as part of the HIFI tests and GOT C+ survey. Out of the total 146 [CII] velocity components detected by profile fitting we identify 53 as diffuse molecular clouds with associated 12CO emission but without 13CO emission and characterized by AV < 5 mag. We estimate the fraction of the [CII] emission in the diffuse HI layer in each cloud and then determine the [CII] emitted from the molecular layers in the cloud. We show that the excess [CII] intensities detected in a few clouds is indicative of a thick H2 layer around the CO core. The wide range of clouds in our sample with thin to thick H2 layers suggests that these are at various evolutionary states characterized by the formation of H2 and CO layers from HI and C+, respectively. In about 30% of the clouds the H2 column densities (“dark gas”) traced by the [CII] is 50% or more than that traced by 12CO emission. On the average ~25% of the total H2 in these clouds is in an H2 layer which is not traced by CO. We use the HI, [CII], and 12CO intensities in each cloud along with simple chemical models to obtain constraints on the FUV fields and cosmic ray ionization rates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  17. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Liu, X.; Ma, P.-L.; Wang, H.; Tilmes, S.; Singh, B.; Easter, R. C.; Ghan, S. J.; Rasch, P. J.

    2016-02-01

    Atmospheric carbonaceous aerosols play an important role in the climate system by influencing the Earth's radiation budgets and modifying the cloud properties. Despite the importance, their representations in large-scale atmospheric models are still crude, which can influence model simulated burden, lifetime, physical, chemical and optical properties, and the climate forcing of carbonaceous aerosols. In this study, we improve the current three-mode version of the Modal Aerosol Module (MAM3) in the Community Atmosphere Model version 5 (CAM5) by introducing an additional primary carbon mode to explicitly account for the microphysical ageing of primary carbonaceous aerosols in the atmosphere. Compared to MAM3, the four-mode version of MAM (MAM4) significantly increases the column burdens of primary particulate organic matter (POM) and black carbon (BC) by up to 40 % in many remote regions, where in-cloud scavenging plays an important role in determining the aerosol concentrations. Differences in the column burdens for other types of aerosol (e.g., sulfate, secondary organic aerosols, mineral dust, sea salt) are less than 1 %. Evaluating the MAM4 simulation against in situ surface and aircraft observations, we find that MAM4 significantly improves the simulation of seasonal variation of near-surface BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons. However, it exacerbates the overestimation of modeled BC concentrations in the upper troposphere in the Pacific regions. The comparisons suggest that, to address the remaining model POM and BC biases, future improvements are required related to (1) in-cloud scavenging and vertical transport in convective clouds and (2) emissions of anthropogenic and biomass burning aerosols.

  18. Application of Stochastic and Deterministic Approaches to Modeling Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Pei, Yezhe

    This work is about simulations of interstellar chemistry using the deterministic rate equation (RE) method and the stochastic moment equation (ME) method. Primordial metal-poor interstellar medium (ISM) is of our interest and the socalled “Population-II” stars could have been formed in this environment during the “Epoch of Reionization” in the baby universe. We build a gas phase model using the RE scheme to describe the ionization-powered interstellar chemistry. We demonstrate that OH replaces CO as the most abundant metal-bearing molecule in such interstellar clouds of the early universe. Grain surface reactions play an important role in the studies of astrochemistry. But the lack of an accurate yet effective simulation method still presents a challenge, especially for large, practical gas-grain system. We develop a hybrid scheme of moment equations and rate equations (HMR) for large gas-grain network to model astrochemical reactions in the interstellar clouds. Specifically, we have used a large chemical gas-grain model, with stochastic moment equations to treat the surface chemistry and deterministic rate equations to treat the gas phase chemistry, to simulate astrochemical systems as of the ISM in the Milky Way, the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). We compare the results to those of pure rate equations and modified rate equations and present a discussion about how moment equations improve our theoretical modeling and how the abundances of the assorted species are changed by varied metallicity. We also model the observed composition of H2O, CO and CO2 ices toward Young Stellar Objects in the LMC and show that the HMR method gives a better match to the observation than the pure RE method.

  19. Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model

    DOE PAGES

    Liu, X.; Ma, P. -L.; Wang, H.; ...

    2016-02-08

    Atmospheric carbonaceous aerosols play an important role in the climate system by influencing the Earth's radiation budgets and modifying the cloud properties. Despite the importance, their representations in large-scale atmospheric models are still crude, which can influence model simulated burden, lifetime, physical, chemical and optical properties, and the climate forcing of carbonaceous aerosols. In this study, we improve the current three-mode version of the Modal Aerosol Module (MAM3) in the Community Atmosphere Model version 5 (CAM5) by introducing an additional primary carbon mode to explicitly account for the microphysical ageing of primary carbonaceous aerosols in the atmosphere. Compared to MAM3,more » the four-mode version of MAM (MAM4) significantly increases the column burdens of primary particulate organic matter (POM) and black carbon (BC) by up to 40 % in many remote regions, where in-cloud scavenging plays an important role in determining the aerosol concentrations. Differences in the column burdens for other types of aerosol (e.g., sulfate, secondary organic aerosols, mineral dust, sea salt) are less than 1 %. Evaluating the MAM4 simulation against in situ surface and aircraft observations, we find that MAM4 significantly improves the simulation of seasonal variation of near-surface BC concentrations in the polar regions, by increasing the BC concentrations in all seasons and particularly in cold seasons. However, it exacerbates the overestimation of modeled BC concentrations in the upper troposphere in the Pacific regions. As a result, the comparisons suggest that, to address the remaining model POM and BC biases, future improvements are required related to (1) in-cloud scavenging and vertical transport in convective clouds and (2) emissions of anthropogenic and biomass burning aerosols.« less

  20. On water in volcanic clouds

    NASA Astrophysics Data System (ADS)

    Durant, Adam J.

    2007-12-01

    Volcanic clouds and tephra fallout present a hazard to aviation, human and animal health (direct inhalation or ingestion, contamination of water supplies), and infrastructure (building collapse, burial of roads and railways, agriculture, abrasive and chemical effects on machinery). Understanding sedimentation processes is a fundamental component in the prediction of volcanic cloud lifetime and fallout at the ground, essential in the mitigation of these hazards. The majority of classical volcanic ash transport and dispersion models (VATDM) are based solely on fluid dynamics. The non-agreement between VATDM and observed regional-scale tephra deposit characteristics is especially obvious at large distances from the source volcano. In meteorology, the processes of hydrometeor nucleation, growth and collection have been long-established as playing a central role in sedimentation and precipitation. Taking this as motivation, the hypothesis that hydrometeor formation drives sedimentation from volcanic clouds was tested. The research objectives of this dissertation are: (1) To determine the effectiveness of tephra particles in the catalysis of the liquid water to ice phase transformation, with application to ice hydrometeor formation in volcanic clouds. (2) To determine the sedimentological characteristics of distal (100s km) tephra fallout from recent volcanic clouds. (3) To assess particle fallout rates from recent volcanic clouds in the context of observed deposit characteristics. (4) To assess the implications of hydrometeor formation on the enhancement of volcanic sedimentation and the potential for cloud destabilization from volcanic hydrometeor sublimation. Dissertation Overview. The following chapters present the analysis, results and conclusions of heterogeneous ice nucleation experiments and sedimentological characterization of several recent tephra deposits. The dissertation is organized in three chapters, each prepared in journal article format. In Chapter 1, single ash particle freezing experiments were carried out to investigate the effect of ash particle composition and surface area on water drop freezing temperature. In Chapter 2, the tephra deposit from the 18 May 1980 eruption of Mount St. Helens, USA, was reanalyzed using laser diffraction particle size analysis and hydrometeor-induced sedimentation mechanisms are considered. In Chapter 3, fallout from the 18 August 1992 and 16--17 September 1992 eruptions of Mount Spurr, USA, was analyzed and particle sedimentation and cloud microphysics were modeled to assess the potential for cloud destabilization from hydrometeor sublimation.

  1. Dynamic consideration of smog chamber experiments

    NASA Astrophysics Data System (ADS)

    Chuang, Wayne K.; Donahue, Neil M.

    2017-08-01

    Recent studies of the α-pinene + ozone reaction that address particle nucleation show relatively high molar yields of highly oxidized multifunctional organic molecules with very low saturation concentrations that can form and grow new particles on their own. However, numerous smog-chamber experiments addressing secondary organic aerosol (SOA) mass yields, interpreted via equilibrium partitioning theory, suggest that the vast majority of SOA from α-pinene is semivolatile. We explore this paradox by employing a dynamic volatility basis set (VBS) model that reproduces the new-particle growth rates observed in the CLOUD experiment at CERN and then modeling SOA mass yield experiments conducted at Carnegie Mellon University (CMU). We find that the base-case simulations do overpredict observed SOA mass but by much less than an equilibrium analysis would suggest; this is because delayed condensation of vapors suppresses the apparent mass yields early in the chamber experiments. We further find that a second VBS model featuring substantial oligomerization of semivolatile monomers can match the CLOUD growth rates with substantially lower SOA mass yields; this is because the lighter monomers have a higher velocity and thus a higher condensation rate for a given mass concentration. The oligomerization simulations are a closer match to the CMU experiments than the base-case simulations, though they overpredict the observations somewhat. However, we also find that if the chemical conditions in CLOUD and the CMU chamber were identical, substantial nucleation would have occurred in the CMU experiments when in fact none occurred. This suggests that the chemical mechanisms differed in the two experiments, perhaps because the high oxidation rates in the SOA formation experiments led to rapid termination of peroxy radical chemistry.

  2. Physical attributes of some clouds amid a forest ecosystem's trees

    USGS Publications Warehouse

    DeFelice, Thomas P.

    2002-01-01

    Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.

  3. The chemistry of planet-forming regions is not interstellar.

    PubMed

    Pontoppidan, Klaus M; Blevins, Sandra M

    2014-01-01

    Advances in infrared and submillimeter technology have allowed for detailed observations of the molecular content of the planet-forming regions of protoplanetary disks. In particular, disks around solar-type stars now have growing molecular inventories that can be directly compared with both prestellar chemistry and that inferred for the early solar nebula. The data directly address the old question of whether the chemistry of planet-forming matter is similar or different and unique relative to the chemistry of dense clouds and protostellar envelopes. The answer to this question may have profound consequences for the structure and composition of planetary systems. The practical challenge is that observations of emission lines from disks do not easily translate into chemical concentrations. Here, we present a two-dimensional radiative transfer model of RNO 90, a classical protoplanetary disk around a solar-mass star, and retrieve the concentrations of dominant molecular carriers of carbon, oxygen and nitrogen in the terrestrial region around 1 AU. We compare our results to the chemical inventory of dense clouds and protostellar envelopes, and argue that inner disk chemistry is, as expected, fundamentally different from prestellar chemistry. We find that the clearest discriminant may be the concentration of CO2, which is extremely low in disks, but one of the most abundant constituents of dense clouds and protostellar envelopes.

  4. Aerosols and Clouds: In Cahoots to Change Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," saidmore » Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."« less

  5. Sources of cosmic dust in the Earth's atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Nesvorný, D; Pokorný, P; Janches, D; Plane, J M C

    2016-12-16

    There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d -1 ), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud.

  6. Sources of cosmic dust in the Earth's atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Nesvorný, D.; Pokorný, P.; Janches, D.

    2016-01-01

    Abstract There are four known sources of dust in the inner solar system: Jupiter Family comets, asteroids, Halley Type comets, and Oort Cloud comets. Here we combine the mass, velocity, and radiant distributions of these cosmic dust populations from an astronomical model with a chemical ablation model to estimate the injection rates of Na and Fe into the Earth's upper atmosphere, as well as the flux of cosmic spherules to the surface. Comparing these parameters to lidar observations of the vertical Na and Fe fluxes above 87.5 km, and the measured cosmic spherule accretion rate at South Pole, shows that Jupiter Family Comets contribute (80 ± 17)% of the total input mass (43 ± 14 t d−1), in good accord with Cosmic Background Explorer and Planck observations of the zodiacal cloud. PMID:28275286

  7. Aerosols and Clouds: In Cahoots to Change Climate

    ScienceCinema

    Berg, Larry

    2018-01-16

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  8. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  9. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  10. Arctic “ozone hole” in a cold volcanic stratosphere

    PubMed Central

    Tabazadeh, A.; Drdla, K.; Schoeberl, M. R.; Hamill, P.; Toon, O. B.

    2002-01-01

    Optical depth records indicate that volcanic aerosols from major eruptions often produce clouds that have greater surface area than typical Arctic polar stratospheric clouds (PSCs). A trajectory cloud–chemistry model is used to study how volcanic aerosols could affect springtime Arctic ozone loss processes, such as chlorine activation and denitrification, in a cold winter within the current range of natural variability. Several studies indicate that severe denitrification can increase Arctic ozone loss by up to 30%. We show large PSC particles that cause denitrification in a nonvolcanic stratosphere cannot efficiently form in a volcanic environment. However, volcanic aerosols, when present at low altitudes, where Arctic PSCs cannot form, can extend the vertical range of chemical ozone loss in the lower stratosphere. Chemical processing on volcanic aerosols over a 10-km altitude range could increase the current levels of springtime column ozone loss by up to 70% independent of denitrification. Climate models predict that the lower stratosphere is cooling as a result of greenhouse gas built-up in the troposphere. The magnitude of column ozone loss calculated here for the 1999–2000 Arctic winter, in an assumed volcanic state, is similar to that projected for a colder future nonvolcanic stratosphere in the 2010 decade. PMID:11854461

  11. The ENSO Effects on Tropical Clouds and Top-of-Atmosphere Cloud Radiative Effects in CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Wang, Hailan

    2015-01-01

    The El Nino-Southern Oscillation (ENSO) effects on tropical clouds and top-of-atmosphere (TOA) cloud radiative effects (CREs) in Coupled Model Intercomparison Project Phase5 (CMIP5) models are evaluated using satellite-based observations and International Satellite Cloud Climatology Project satellite simulator output. Climatologically, most CMIP5 models produce considerably less total cloud amount with higher cloud top and notably larger reflectivity than observations in tropical Indo-Pacific (60 degrees East - 200 degrees East; 10 degrees South - 10 degrees North). During ENSO, most CMIP5 models considerably underestimate TOA CRE and cloud changes over western tropical Pacific. Over central tropical Pacific, while the multi-model mean resembles observations in TOA CRE and cloud amount anomalies, it notably overestimates cloud top pressure (CTP) decreases; there are also substantial inter-model variations. The relative effects of changes in cloud properties, temperature and humidity on TOA CRE anomalies during ENSO in the CMIP5 models are assessed using cloud radiative kernels. The CMIP5 models agree with observations in that their TOA shortwave CRE anomalies are primarily contributed by total cloud amount changes, and their TOA longwave CRE anomalies are mostly contributed by changes in both total cloud amount and CTP. The model biases in TOA CRE anomalies particularly the strong underestimations over western tropical Pacific are, however, mainly explained by model biases in CTP and cloud optical thickness (tau) changes. Despite the distinct model cloud biases particularly in tau regime, the TOA CRE anomalies from cloud amount changes are comparable between the CMIP5 models and observations, because of the strong compensations between model underestimation of TOA CRE anomalies from thin clouds and overestimation from medium and thick clouds.

  12. ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina

    2018-04-01

    The Aerosols, Clouds and Trace gases Research Infrastructure (ACTRIS) is a distributed infrastructure dedicated to high-quality observation of aerosols, clouds, trace gases and exploration of their interactions. It will deliver precision data, services and procedures regarding the 4D variability of clouds, short-lived atmospheric species and the physical, optical and chemical properties of aerosols to improve the current capacity to analyse, understand and predict past, current and future evolution of the atmospheric environment.

  13. The free radical chemistry of cloud droplets and its impact upon the composition of rain

    NASA Technical Reports Server (NTRS)

    Chameides, W. L.; Davis, D. D.

    1982-01-01

    Calculations are presented that simulate the free radical chemistries of the gas phase and aqueous phase within a warm cloud during midday. It is demonstrated that in the presence of midday solar fluxes, the heterogeneous scavenging of OH and HO2 from the gas phase by cloud droplets can represent a major source of free radicals to cloud water, provided the accommodation or sticking coefficient for these species impinging upon water droplets is not less than 0.0001. The aqueous-phase of HO2 radicals are found to be converted to H2O2 by aqueous-phase chemical reactions at a rate that suggests that this mechanism could produce a significant fraction of the H2O2 found in cloud droplets. The rapid oxidation of sulfur species dissolved in cloudwater by this free-radical-produced H2O2 as well as by aqueous-phase OH radicals could conceivably have a significant impact upon the chemical composition of rain.

  14. Desert dust suppressing precipitation: A possible desertification feedback loop

    PubMed Central

    Rosenfeld, Daniel; Rudich, Yinon; Lahav, Ronen

    2001-01-01

    The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process. PMID:11353821

  15. Global impact of mineral dust on cloud droplet number concentration

    NASA Astrophysics Data System (ADS)

    Karydis, Vlassis A.; Tsimpidi, Alexandra P.; Bacer, Sara; Pozzer, Andrea; Nenes, Athanasios; Lelieveld, Jos

    2017-05-01

    The importance of wind-blown mineral dust for cloud droplet formation is studied by considering (i) the adsorption of water on the surface of insoluble particles, (ii) particle coating by soluble material (atmospheric aging) which augments cloud condensation nuclei (CCN) activity, and (iii) the effect of dust on inorganic aerosol concentrations through thermodynamic interactions with mineral cations. The ECHAM5/MESSy Atmospheric Chemistry (EMAC) model is used to simulate the composition of global atmospheric aerosol, while the ISORROPIA-II thermodynamic equilibrium model treats the interactions of K+-Ca2+-Mg2+-NH4+-Na+-SO42--NO3--Cl--H2O aerosol with gas-phase inorganic constituents. Dust is considered a mixture of inert material with reactive minerals and its emissions are calculated online by taking into account the soil particle size distribution and chemical composition of different deserts worldwide. The impact of dust on droplet formation is treated through the unified dust activation parameterization that considers the inherent hydrophilicity from adsorption and acquired hygroscopicity from soluble salts during aging. Our simulations suggest that the presence of dust increases cloud droplet number concentration (CDNC) over major deserts (e.g., up to 20 % over the Sahara and the Taklimakan desert) and decreases CDNC over polluted areas (e.g., up to 10 % over southern Europe and 20 % over northeastern Asia). This leads to a global net decrease in CDNC by 11 %. The adsorption activation of insoluble aerosols and the mineral dust chemistry are shown to be equally important for the cloud droplet formation over the main deserts; for example, these effects increase CDNC by 20 % over the Sahara. Remote from deserts the application of adsorption theory is critically important since the increased water uptake by the large aged dust particles (i.e., due to the added hydrophilicity by the soluble coating) reduce the maximum supersaturation and thus cloud droplet formation from the relatively smaller anthropogenic particles (e.g., CDNC decreases by 10 % over southern Europe and 20 % over northeastern Asia by applying adsorption theory). The global average CDNC decreases by 10 % by considering adsorption activation, while changes are negligible when accounting for the mineral dust chemistry. Sensitivity simulations indicate that CDNC is also sensitive to the mineral dust mass and inherent hydrophilicity, and not to the chemical composition of the emitted dust.

  16. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-09-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska. Simulation results of the TICs-2 observed on April 15th and 25th (acidic cases) and TICs-1 observed on April 5th (non-acidic cases) are presented. Our results show that the stochastic approach based on the classical nucleation theory with the appropriate contact angle is better. Parameterizations of ice nucleation based on the singular approach tend to overestimate the ice crystal concentration in TICs-1 and TICs-2. The classical nucleation theory using the appropriate contact angle is the best approach to use to simulate the ice clouds investigated in this research.

  17. Simulations of Early Structure Formation: Primordial Gas Clouds

    NASA Astrophysics Data System (ADS)

    Yoshida, Naoki; Abel, Tom; Hernquist, Lars; Sugiyama, Naoshi

    2003-08-01

    We use cosmological simulations to study the origin of primordial star-forming clouds in a ΛCDM universe, by following the formation of dark matter halos and the cooling of gas within them. To model the physics of chemically pristine gas, we employ a nonequilibrium treatment of the chemistry of nine species (e-, H, H+, He, He+, He++, H2, H+2, H-) and include cooling by molecular hydrogen. By considering cosmological volumes, we are able to study the statistical properties of primordial halos, and the high resolution of our simulations enables us to examine these objects in detail. In particular, we explore the hierarchical growth of bound structures forming at redshifts z~25-30 with total masses in the range ~105-106Msolar. We find that when the amount of molecular hydrogen in these objects reaches a critical level, cooling by rotational line emission is efficient, and dense clumps of cold gas form. We identify these ``gas clouds'' as sites for primordial star formation. In our simulations, the threshold for gas cloud formation by molecular cooling corresponds to a critical halo mass of ~5×105h-1Msolar, in agreement with earlier estimates, but with a weak dependence on redshift in the range z>16. The complex interplay between the gravitational formation of dark halos and the thermodynamic and chemical evolution of the gas clouds compromises analytic estimates of the critical H2 fraction. Dynamical heating from mass accretion and mergers opposes relatively inefficient cooling by molecular hydrogen, delaying the production of star-forming clouds in rapidly growing halos. We also investigate the effect of photodissociating ultraviolet radiation on the formation of primordial gas clouds. We consider two extreme cases, first by including a uniform radiation field in the optically thin limit and second by accounting for the maximum effect of gas self-shielding in virialized regions. For radiation with Lyman-Werner band flux J>10-23 ergs s-1 cm-2 Hz-1 sr-1, hydrogen molecules are rapidly dissociated, rendering gas cooling inefficient. In both the cases we consider, the overall effect can be described by computing an equilibrium H2 abundance for the radiation flux and defining an effective shielding factor. Based on our numerical results, we develop a semianalytic model of the formation of the first stars and demonstrate how it can be coupled with large N-body simulations to predict the star formation rate in the early universe.

  18. The Saturn PRobe Interior and aTmosphere Explorer (SPRITE) Mission Concept

    NASA Astrophysics Data System (ADS)

    Atkinson, David H.; Simon, Amy; Banfield, Don

    2017-04-01

    The proposed NASA New Frontiers Saturn PRobe Interior and aTmosphere Explorer (SPRITE) mission would measure the abundance of helium and the other noble gases, elemental and isotopic abundances, the clouds, dynamics, and processes within Saturn's troposphere. In situ measurements of Saturn's atmosphere by SPRITE would provide a significantly improved context for understanding the results from the Galileo Jupiter probe, and the formation and evolution of the gas giant planets, resulting in a paradigm shift in our understanding of the formation, evolution, and ultimately the present day structure of the solar system. The proposed SPRITE concept carries an instrument payload to measure Saturn's atmospheric structure, dynamics, composition, chemistry, and clouds to at least 10 bars. A Quadrupole Mass Spectrometer measures noble gases and noble gas isotopes to accuracies that exceed the Galileo probe measurements at Jupiter and allows for discrimination between competing theories of giant planet formation, evolution, and possible migration. Of particular importance are measurements of helium, key to understanding Saturn's thermal evolution. A Tunable Laser Spectrometer measures molecular abundances and isotope ratios to determine the chemical structure of Saturn's atmosphere, and disequilibrium species such as PH3 and CO which can be used to predict Saturn's deep water abundance. An Atmospheric Structure Instrument provides the pressure/temperature profile of Saturn's atmosphere to determine the altitude profile of static stability, and when combined with cloud measurements from the SPRITE Nephelometer, would elucidate processes that determine the location and structure of Saturn's multiple cloud layers. Coupled with the measurement of atmospheric vertical velocities from the Atmospheric Structure Instrument, a Doppler Wind Experiment provides a measure of the 3-dimensional dynamics of the Saturn atmosphere, including the profile of zonal winds with depth and vertical motions from atmospheric waves. The proposed Science Objectives of the SPRITE mission are to: 1. Constrain competing models of habitable system formation and extent of migration in the early solar system by obtaining a chemical inventory of Saturn's troposphere, 2. Determine if Saturn's in situ atmosphere chemistry agrees with condensation models and remotely observed composition, 3. Constrain Saturn's helium depletion to reconcile observed temperatures with thermal evolution models. 4. Perform in situ characterization of Saturn's tropospheric cloud structure to provide the ground truth basis for cloud retrieval models, and 5. Determine Saturn's in situ 3-dimensional atmospheric dynamics along the probe descent path to inform global circulation and analytical models of the time-variable cloud top motions. To develop an improved understanding of the formation, evolution, and structure of the solar system, it is essential that the role played by the giant planets be well understood, and this cannot be accomplished without in situ measurements of the composition, structure, dynamics, and processes of Saturn's atmosphere. The proposed SPRITE mission would carry a suite of instruments specifically tailored to achieve the science objectives, to provide fundamental ground truth measurements for improved understanding of remote sensing measurements including from Cassini, and to understand the formation, evolution, and structure of the solar system as well as represent key ground truth for understanding exoplanets.

  19. A Case Study of Ship Track Formation in a Polluted Marine Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Noone, Kevin J.; Johnson, Doug W.; Taylor, Jonathan P.; Ferek, Ronald J.; Garrett, Tim; Hobbs, Peter V.; Durkee, Philip A.; Nielsen, Kurt; Öström, Elisabeth; O'Dowd, Colin; Smith, Michael H.; Russell, Lynn M.; Flagan, Richard C.; Seinfeld, John H.; de Bock, Lieve; van Grieken, René E.; Hudson, James G.; Brooks, Ian;  Gasparovic, Richard F.;  Pockalny, Robert A.

    2000-08-01

    A case study of the effects of ship emissions on the microphysical, radiative, and chemical properties of polluted marine boundary layer clouds is presented. Two ship tracks are discussed in detail. In situ measurements of cloud drop size distributions, liquid water content, and cloud radiative properties, as well as aerosol size distributions (outside-cloud, interstitial, and cloud droplet residual particles) and aerosol chemistry, are presented. These are related to remotely sensed measurements of cloud radiative properties.The authors examine the processes behind ship track formation in a polluted marine boundary layer as an example of the effects of anthropogenic particulate pollution on the albedo of marine stratiform clouds.

  20. Modeling and parameterization of horizontally inhomogeneous cloud radiative properties

    NASA Technical Reports Server (NTRS)

    Welch, R. M.

    1995-01-01

    One of the fundamental difficulties in modeling cloud fields is the large variability of cloud optical properties (liquid water content, reflectance, emissivity). The stratocumulus and cirrus clouds, under special consideration for FIRE, exhibit spatial variability on scales of 1 km or less. While it is impractical to model individual cloud elements, the research direction is to model a statistical ensembles of cloud elements with mean-cloud properties specified. The major areas of this investigation are: (1) analysis of cloud field properties; (2) intercomparison of cloud radiative model results with satellite observations; (3) radiative parameterization of cloud fields; and (4) development of improved cloud classification algorithms.

  1. Organic chemical evolution

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1981-01-01

    The course of organic chemical evolution preceding the emergence of life on earth is discussed based on evidence of processes occurring in interstellar space, the solar system and the primitive earth. Following a brief review of the equilibrium condensation model for the origin and evolution of the solar system, consideration is given to the nature and organic chemistry of interstellar clouds, comets, Jupiter, meteorites, Venus and Mars, and the prebiotic earth. Major issues to be resolved in the study of organic chemical evolution on earth are identified regarding condensation and accretion in the solar nebula, early geological evolution, the origin and evolution of the atmosphere, organic production rates, organic-inorganic interactions, environmental fluctuations, phase separation and molecular selectivity.

  2. Modeling the Dynamic Change of Air Quality and its Response to Emission Trends

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    This thesis focuses on evaluating atmospheric chemistry and transport models' capability in simulating the chemistry and dynamics of power plant plumes, evaluating their strengths and weaknesses in predicting air quality trends at regional scales, and exploring air quality trends in an urban area. First, the Community Mutlti-scale Air Quality (CMAQ) model is applied to simulate the physical and chemical evolution of power plant plumes (PPPs) during the second Texas Air Quality Study (TexAQS) in 2006. SO2 and NOy were observed to be rapidly removed from PPPs on cloudy days but not on cloud-free days, indicating efficient aqueous processing of these compounds in clouds, while the model fails to capture the rapid loss of SO2 and NOy in some plumes on the cloudy day. Adjustments to cloud liquid water content (QC) and the default metal concentrations in the cloud module could explain some of the SO 2 loss while NOy in the model was insensitive to QC. Second, CMAQ is applied to simulate the ozone (O3) change after the NO x SIP Call and mobile emission controls in the eastern U.S. from 2002 to 2006. Observed downward changes in 8-hour O3 concentrations in the NOx SIP Call region were under-predicted by 26%--66%. The under-prediction in O3 improvements could be alleviated by 5%--31% by constraining NOx emissions in each year based on observed NOx concentrations while temperature biases or uncertainties in chemical reactions had minor impact on simulated O3 trends. Third, changes in ozone production in the Houston area is assessed with airborne measurements from TexAQS 2000 and 2006. Simultaneous declines in nitrogen oxides (NOx=NO+NO2) and highly reactive Volatile Organic Compounds (HRVOCs) were observed in the Houston Ship Channel (HSC). The reduction in HRVOCs led to the decline in total radical concentration by 20-50%. Rapid ozone production rates in the Houston area declined by 40-50% from 2000 to 2006, to which the reduction in NOx and HRVOCs had the similar contribution. Houston petrochemical and urban plumes largely remained in a strong VOC-sensitive regime of ozone formation and maintained high Ozone Production Efficiency (OPE: 5-15).

  3. Large-scale simulations and in-situ observations of mid-latitude and Arctic cirrus clouds

    NASA Astrophysics Data System (ADS)

    Rolf, Christian; Grooß, Jens-Uwe; Spichtinger, Peter; Costa, Anja; Krämer, Martina

    2017-04-01

    Cirrus clouds play an important role by influencing the Earth's radiation budget and the global climate (Heintzenberg and Charlson, 2009). The formation and further evolution of cirrus clouds is determined by the interplay of temperature, ice nuclei (IN) properties, relative humidity, cooling rates and ice crystal sedimentation. Thus, for a realistic simulation of cirrus clouds, a Lagrangian approach using meteorological wind fields is the best way to represent complete cirrus systems as e.g. frontal cirrus. To this end, we coupled the two moment microphysical ice model of Spichtinger and Gierens (2009) with the 3D Lagrangian model CLaMS (McKenna et al., 2002). The new CLaMS-Ice module simulates cirrus formation by including heterogeneous and homogeneous freezing as well as ice crystal sedimentation. The boxmodel is operated along CLaMS trajectories and individually initialized with the ECMWF meteorological fields. From the CLaMS-Ice three dimensional large scale cirrus simulations, we are able to assign the formation mechanism - either heterogeneous or homogeneous freezing - to specific combinations of temperatures and ice water contents. First, we compare a large mid-latitude dataset of in-situ measured cirrus microphysical properties compiled from the ML-Cirrus aircraft campaign in 2014 to ClaMS-Ice model simulations. We investigate the number of ice crystals and the ice water content with respect to temperature in a climatological way and found a good and consistent agreement between measurement and simulations. We also found that most (67 %) of the cirrus cloud cover in mid-latitude is dominated by heterogeneously formed ice crystals. Second, CLaMS-Ice model simulations in the Arctic/Polar region are performed during the POLSTRACC aircraft campaign in 2016. Higher ice crystal number concentrations are found more frequently in the Arctic region in comparison to the mid-latitude dataset. This is caused by enhanced gravity wave activity over the mountainous terrain. References: Heintzenberg, J. and Charlson, R. J.: Clouds in the perturbed climate system - Their relationship to energy balance, atmospheric dynamics, and precipitation, MIT Press, Cambridge, UK, 58-72, 2009. McKenna, D. S., Konopka, P., Grooss, J. U., Günther, G., Müller, R., Spang, R., Offermann, D.,and Orsolini, Y.: A new Chemical Lagrangian Model of the Stratosphere (CLaMS) - 1. Formulation of advection and mixing, J. Geophys. Res., 107, 4309, doi:10.1029/2000JD000114, 2002. Spichtinger, P. and Gierens, K. M.: Modelling of cirrus clouds - Part 1a: Model description and validation, Atmospheric Chemistry and Physics, 9, 685-706, 2009.

  4. A combined spectroscopic and plasma chemical kinetic analysis of ionospheric samarium releases

    NASA Astrophysics Data System (ADS)

    Holmes, Jeffrey M.; Dressler, Rainer A.; Pedersen, Todd R.; Caton, Ronald G.; Miller, Daniel

    2017-05-01

    Two rocket-borne releases of samarium vapor in the upper atmosphere occurred in May 2013, as part of the Metal Oxide Space Clouds experiment. The releases were characterized by a combination of optical and RF diagnostic instruments located at the Roi-Namur launch site and surrounding islands and atolls. The evolution of the optical spectrum of the solar-illuminated cloud was recorded with a spectrograph covering a 400-800 nm spectral range. The spectra exhibit two distinct spectral regions centered at 496 and 636 nm within which the relative intensities change insignificantly. The ratio between the integrated intensities within these regions, however, changes with time, suggesting that they are associated with different species. With the help of an equilibrium plasma spectral model we attribute the region centered at 496 nm to neutral samarium atoms (Sm I radiance) and features peaking at 649 nm to a molecular species. No evidence for structure due to Sm+ (Sm II) is identified. The persistence of the Sm I radiance suggests a high dissociative recombination rate for the chemi-ionization product, SmO+. A one-dimensional plasma chemical kinetic model of the evolution of the density ratio NSmO/NSm(t) demonstrates that the molecular feature peaking at 649 nm can be attributed to SmO radiance. SmO+ radiance is not identified. By adjusting the Sm vapor mass of the chemical kinetic model input to match the evolution of the total electron density determined by ionosonde data, we conclude that less than 5% of the payload samarium was vaporized.

  5. Chemistry-Climate Interactions in the Goddard Institute for Space Studies General Circulation Model. 2; New Insights into Modeling the Pre-Industrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Grenfell, J. Lee; Shindell, D. T.; Koch, D.; Rind, D.; Hansen, James E. (Technical Monitor)

    2002-01-01

    We investigate the chemical (hydroxyl and ozone) and dynamical response to changing from present day to pre-industrial conditions in the Goddard Institute for Space Studies General Circulation Model (GISS GMC). We identify three main improvements not included by many other works. Firstly, our model includes interactive cloud calculations. Secondly we reduce sulfate aerosol which impacts NOx partitioning hence Ox distributions. Thirdly we reduce sea surface temperatures and increase ocean ice coverage which impact water vapor and ground albedo respectively. Changing the ocean data (hence water vapor and ozone) produces a potentially important feedback between the Hadley circulation and convective cloud cover. Our present day run (run 1, control run) global mean OH value was 9.8 x 10(exp 5) molecules/cc. For our best estimate of pre-industrial conditions run (run 2) which featured modified chemical emissions, sulfate aerosol and sea surface temperatures/ocean ice, this value changed to 10.2 x 10(exp 5) molecules/cc. Reducing only the chemical emissions to pre-industrial levels in run 1 (run 3) resulted in this value increasing to 10.6 x 10(exp 5) molecules/cc. Reducing the sulfate in run 3 to pre-industrial levels (run 4) resulted in a small increase in global mean OH (10.7 x 10(exp 5) molecules/cc). Changing the ocean data in run 4 to pre-industrial levels (run 5) led to a reduction in this value to 10.3 x 10(exp 5) molecules/cc. Mean tropospheric ozone burdens were 262, 181, 180, 180, and 182 Tg for runs 1-5 respectively.

  6. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes

    NASA Astrophysics Data System (ADS)

    Delort, Anne-Marie; Vaïtilingom, Mickael; Amato, Pierre; Sancelme, Martine; Parazols, Marius; Mailhot, Gilles; Laj, Paolo; Deguillaume, Laurent

    2010-11-01

    Recent studies showed that living microorganisms, including bacteria, fungi and yeasts, are present in the atmospheric water phase (fog and clouds) and their role in chemical processes may have been underestimated. At the interface between atmospheric science and microbiology, information about this field of science suffers from the fact that not all recent findings are efficiently conveyed to both scientific communities. The purpose of this paper is therefore to provide a short overview of recent work linked to living organisms in the atmospheric water phase, from their activation to cloud droplets and ice crystal, to their potential impact on atmospheric chemical processes. This paper is focused on the microorganisms present in clouds and on the role they could play in atmospheric chemistry and nucleation processes. First, the life cycle of microorganisms via the atmosphere is examined, including their aerosolization from sources, their integration into clouds and their wet deposition on the ground. Second, special attention is paid to the possible impacts of microorganisms on liquid and ice nucleation processes. Third, a short description of the microorganisms that have been found in clouds and their variability in numbers and diversity is presented, emphasizing some specific characteristics that could favour their occurrence in cloud droplets. In the last section, the potential role of microbial activity as an alternative route to photochemical reaction pathways in cloud chemistry is discussed.

  7. Radical-driven carbonyl-to-acid conversion and acid degradation in tropospheric aqueous systems studied by CAPRAM

    NASA Astrophysics Data System (ADS)

    Tilgner, A.; Herrmann, H.

    2010-12-01

    Model studies on the aqueous phase radical-driven processing of carbonyl compounds and acids in clouds and deliquescent particles were performed. The model exposed that aqueous radical conversions of carbonyl compounds and its oxidation products can contribute potentially to the formation of functionalised organic acids. The main identified C 2-C 4 organic gas phase precursors are ethylene glycol, glycolaldehyde, glyoxal, methylglyoxal and 1,4-butenedial. The aqueous phase is shown to contribute significantly with about 93%/63%, 47%/8%, 31%/4%, 7%/4%, 36%/8% to the multiphase oxidative fate of these compounds under remote/urban conditions. Interestingly, the studies revealed that aqueous chemical processing is not only limited to in-cloud conditions but also proceeds in deliquescent particle phase with significant fluxes. Oxalic acid is shown to be formed preferably in deliquescent particles subsequent to the in-cloud oxidations. Mean aqueous phase oxalate formation fluxes of about 12, 42 and 0.4 ng m -3 h -1 in the remote, urban and maritime scenario, respectively. Additionally, the turnovers of the oxidation of organics such as methylglyoxal by NO 3 radical reactions are identified to be competitive to their OH pendants. At the current state of CAPRAM, mean C 2-C 4 in-cloud oxidation fluxes of about 0.12 and 0.5 μg m -3 h -1 are modelled under the idealised remote and urban cloud conditions. Finally, turnovers from radical oxidations were compared with those of thermal reactions. It is demonstrated that, based on the sparse kinetic data available organic accretion reaction might be of interest in just a few cases for cloud droplets and aqueous particles but generally do not reach the oxidative conversion rates of the main radical oxidants OH and NO 3. Interestingly, oxidation reactions of H 2O 2 are shown to be competitive to the OH radical conversions in cases when H 2O 2 is not readily used up by the S(IV) oxidation.

  8. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  9. Evaluation of the behavior of clouds in a region of severe acid rain pollution in southern China: species, complexes, and variations.

    PubMed

    Sun, Lei; Wang, Yan; Yue, Taixing; Yang, Xueqiao; Xue, Likun; Wang, Wenxing

    2015-09-01

    Cloud samples were collected during the summer of 2011 and the spring of 2012 at a high-elevation site in southern China in an effort to examine the chemical characteristics of acid clouds. In total, 141 cloud samples were collected during 44 cloud events over the observation period. The dominant ionic species were SO4(2-), NH4(+), and NO3(-), contributing approximately 75% of the total inorganic ion concentration. The primary acidifying factors were sulfate and nitrate, and the primary neutralizing factors were ammonium and calcium. The volume-weighted mean (VWM) pH of the cloud water was 3.79, indicating an acidic nature. In these cloud samples, Zn and Al exhibited the highest trace metal concentrations, contributing approximately 60% of the total trace element concentration. Toxic metals, such as Pb, Ba, As, and Cr, were detected at high concentrations, indicating potential hazards for human health, vegetation, and waters in this region. Visual MINTEQ 3.0 results revealed that the majority of Zn(II) and Pb(II) existed in the form of free ions. The behavior of Al, however, differed from the behaviors of zinc and lead. The temporal variation in cloud chemistry indicated that temperature, sandstorms, and long-range transport could affect the concentrations of species. During the lifetime of a cloud event, the concentrations of the chemical species were controlled by the transfer of gases or particles to liquid droplets.

  10. CH 4/NH 3/H 2O spark tholin: Chemical analysis and interaction with Jovian aqueous clouds

    NASA Astrophysics Data System (ADS)

    McDonald, Gene D.; Khare, Bishun N.; Reid Thompson, W.; Sagan, Carl

    1991-12-01

    The organic solid (tholin) produced by spark discharge in a CH 4 + NH 3 + H 2O atmosphere is investigated, along with the separable components of its water-soluble fraction. The chemistry of this material serves as a provisional model for the interaction of Jovian organic heteropolymers with the deep aqueous clouds of Jupiter. Intact (unhydrolyzed) tholin is resolved into four chemically distinct fractions by high-pressure liquid chromatography (HPLC). Gel filtration chromatography reveals abundant components at molecular weights ⋍600-700 and 200-300 Da. Gas chromatography/mass spectrometry of derivatized hydrolysis products of unfractionated tholin shows about 10% by mass protein and nonprotein amino acids, chiefly glycine, alanine, aspartic acid, β-alanine, and β-aminobutyric acid, and 12% by mass other organic acids and hydroxy acids. The stereospecificity of alanine is investigated and shown to be racemic. The four principal HPLC fractions yield distinctly different proportions of amino acids. Chemical tests show that small peptides or organic molecules containing multiple amino acid precursors are a possibility in the intact tholins, but substantial quantities of large peptides are not indicated. Candidate 700-Da molecules have a central unsaturated, hydrocarbon- and nitrile-rich core, linked by acid-labile (ester or amide) bonds to amino acid and carboxylic acid side groups. The core is probably not HCN "polymer." The concentration of amino acids from tholin hydrolysis in the lower aqueous clouds of Jupiter, about 0.1 μ M, is enough to maintain small populations of terrestrial microorganisms even if the amino acids must serve as the sole carbon source.

  11. Clustering the Orion B giant molecular cloud based on its molecular emission

    NASA Astrophysics Data System (ADS)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Context. Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims: We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods: We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional probability density function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results: A clustering analysis based only on the J = 1-0 lines of three isotopologues of CO proves sufficient to reveal distinct density/column density regimes (nH 100 cm-3, 500 cm-3, and >1000 cm-3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1-0 line of HCO+ and the N = 1-0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH 7 × 103 cm-3, 4 × 104 cm-3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1-0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions: Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. Data products associated with this paper are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A12 and at http://www.iram.fr/ pety/ORION-B

  12. Modelling the CO emission in southern Bok globules

    NASA Astrophysics Data System (ADS)

    Cecchi-Pestellini, Cesare; Casu, Silvia; Scappini, Flavio

    2001-10-01

    The analysis of the sample of southern globules investigated by Scappini et al. in the CO (4-3) transition has been extended using a statistical equilibrium-radiative transfer model and making use of the results of Bourke et al. and Henning & Launardt for those globules which are in common among these samples. CO column densities and excitation temperatures have been calculated and the results compared with a chemical model representative of the chemistry of a spherical dark cloud. In a number of cases the gas kinetic temperatures have been constrained.

  13. Determination of Ice Cloud Models Using MODIS and MISR Data

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Yang, Ping; Kattawar, George W.; Minnis, Patrick; Hu, Yongxiang; Wu, Dong L.

    2012-01-01

    Representation of ice clouds in radiative transfer simulations is subject to uncertainties associated with the shapes and sizes of ice crystals within cirrus clouds. In this study, we examined several ice cloud models consisting of smooth, roughened, homogeneous and inhomogeneous hexagonal ice crystals with various aspect ratios. The sensitivity of the bulk scattering properties and solar reflectances of cirrus clouds to specific ice cloud models is investigated using the improved geometric optics method (IGOM) and the discrete ordinates radiative transfer (DISORT) model. The ice crystal habit fractions in the ice cloud model may significantly affect the simulations of cloud reflectances. A new algorithm was developed to help determine an appropriate ice cloud model for application to the satellite-based retrieval of ice cloud properties. The ice cloud particle size retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data, collocated with Multi-angle Imaging Spectroradiometer (MISR) observations, is used to infer the optical thicknesses of ice clouds for nine MISR viewing angles. The relative differences between view-dependent cloud optical thickness and the averaged value over the nine MISR viewing angles can vary from -0.5 to 0.5 and are used to evaluate the ice cloud models. In the case for 2 July 2009, the ice cloud model with mixed ice crystal habits is the best fit to the observations (the root mean square (RMS) error of cloud optical thickness reaches 0.365). This ice cloud model also produces consistent cloud property retrievals for the nine MISR viewing configurations within the measurement uncertainties.

  14. Operational implications of a cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud would grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. Results are discussed with operational weather forecasters in mind. The model successfully produced clouds with dimensions, rise, decay, liquid water contents, and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. An empirical forecast technique for Shuttle cloud rise is presented and differences between natural atmospheric convection and exhaust clouds are discussed.

  15. Understanding the Impact of Model Surfactants on Cloud Condensation Nuclei Activity of Sea Spray Aerosols

    NASA Astrophysics Data System (ADS)

    Forestieri, S.; Cappa, C. D.; Ruehl, C. R.; Bertram, T. H.; Staudt, S.; Kuborn, T.

    2017-12-01

    Aerosol impacts on cloud properties, also known as indirect effects, remain a major source of uncertainty in modeling global radiative forcing. Reducing this uncertainty necessitates better understanding of how aerosol chemical composition impacts the cloud-forming ability of aerosols. The presence of surfactants in aerosols can decrease the surface tension of activating droplets relative to water and lead to more efficient activation. The importance of this effect has been debated, but recent surface tension measurements of microscopic droplets indicate that surface tension is substantially depressed relative to water for lab-generated particles consisting of salt and a single organic species and for complex mixtures of organic matter. However, little work has been done on understanding how chemical complexity (i.e. interaction between different surfactant species) impacts surface tension for particles containing mixtures of surfactants. In this work, we quantified the surface tension of lab-generated aerosols containing surfactants that are commonly found in nascent sea spray aerosol (SSA) at humidities close to activation using a continuous flow stream-wise thermal gradient chamber (CFSTGC). Surface tension was quantified for particles containing single surfactant species and mixtures of these surfactants to investigate the role of chemical complexity on surface tension and molecular packing at the air-water interface. For all surfactants tested in this study, substantial surface tension depression (20-40 mN/m) relative to water was observed for particles containing large fractions of organic matter at humidities just below activation. However, the presence of these surfactants only weakly depressed surface tension at activation. Kinetic limitations were observed for particles coated with just palmitic acid, since palmitic acid molecules inhibit water uptake through their ability to pack tightly at the surface. However, these kinetic limitations disappeared when palmitic acid was mixed with oleic acid, indicating a disruption in packing. The impact of oxidation on droplet surface tension will also be discussed.

  16. Is the gas-phase OH+H2CO reaction a source of HCO in interstellar cold dark clouds? A kinetic, dynamic and modelling study

    PubMed Central

    Ocaña, A. J.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejo, J.; Agúndez, M.; Cernicharo, J.; Zanchet, A.; del Mazo, P.; Roncero, O.; Aguado, A.

    2018-01-01

    Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. k values greatly increase from 2.1×10-11 cm3 s-1 at 107 K to 1.2×10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented. PMID:29880977

  17. Is the Gas-phase OH+H2CO Reaction a Source of HCO in Interstellar Cold Dark Clouds? A Kinetic, Dynamic, and Modeling Study

    NASA Astrophysics Data System (ADS)

    Ocaña, A. J.; Jiménez, E.; Ballesteros, B.; Canosa, A.; Antiñolo, M.; Albaladejo, J.; Agúndez, M.; Cernicharo, J.; Zanchet, A.; del Mazo, P.; Roncero, O.; Aguado, A.

    2017-11-01

    The chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T ˜ 10-100 K). Scarce kinetic information is currently available for these kinds of reactions at T < 200 K. In this work, we use the Cinétique de Réaction en Ecoulement Supersonique Uniforme (CRESU; Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients (k) of the gas-phase OH+H2CO reaction between 22 and 107 K. The k values greatly increase from 2.1 × 10-11 cm3 s-1 at 107 K to 1.2 × 10-10 cm3 s-1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface that generates highly accurate potential and includes long-range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H2CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10 K (2.6 × 10-10 cm3 s-1). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 105-106 yr. The different sources of production of HCO are presented and the uncertainties in the chemical networks are discussed. The present reaction is shown to account for a few percent of the total HCO production rate. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. Extensions to photodissociation regions and diffuse cloud environments are also addressed.

  18. Is the gas-phase OH+H2CO reaction a source of HCO in interstellar cold dark clouds? A kinetic, dynamic and modelling study.

    PubMed

    Ocaña, A J; Jiménez, E; Ballesteros, B; Canosa, A; Antiñolo, M; Albaladejo, J; Agúndez, M; Cernicharo, J; Zanchet, A; Del Mazo, P; Roncero, O; Aguado, A

    2017-11-20

    Chemical kinetics of neutral-neutral gas-phase reactions at ultralow temperatures is a fascinating research subject with important implications on the chemistry of complex organic molecules in the interstellar medium (T∼10-100K). Scarce kinetic information is currently available for this kind of reactions at T<200 K. In this work we use the CRESU ( Cinétique de Réaction en Ecoulement Supersonique Uniforme , which means Reaction Kinetics in a Uniform Supersonic Flow) technique to measure for the first time the rate coefficients ( k ) of the gas-phase OH+H 2 CO reaction between 22 and 107 K. k values greatly increase from 2.1×10 -11 cm 3 s -1 at 107 K to 1.2×10 -10 cm 3 s -1 at 22 K. This is also confirmed by quasi-classical trajectories (QCT) at collision energies down to 0.1 meV performed using a new full dimension and ab initio potential energy surface, recently developed which generates highly accurate potential and includes long range dipole-dipole interactions. QCT calculations indicate that at low temperatures HCO is the exclusive product for the OH+H 2 CO reaction. In order to revisit the chemistry of HCO in cold dense clouds, k is reasonably extrapolated from the experimental results at 10K (2.6×10 -10 cm 3 s -1 ). The modeled abundances of HCO are in agreement with the observations in cold dark clouds for an evolving time of 10 5 -10 6 yrs. The different sources of production of HCO are presented and the uncertainties in the chemical networks discussed. This reaction can be expected to be a competitive process in the chemistry of prestellar cores. The present reaction is shown to account for a few percent of the total HCO production rate. Extensions to photodissociation regions and diffuse clouds environments are also commented.

  19. Spatial characteristics of the tropical cloud systems: comparison between model simulation and satellite observations

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Zurovac-Jevtic, Dance; Boer, Erwin R.

    1999-10-01

    A Lagrangian cloud classification algorithm is applied to the cloud fields in the tropical Pacific simulated by a high-resolution regional atmospheric model. The purpose of this work is to assess the model's ability to reproduce the observed spatial characteristics of the tropical cloud systems. The cloud systems are broadly grouped into three categories: deep clouds, mid-level clouds and low clouds. The deep clouds are further divided into mesoscale convective systems and non-mesoscale convective systems. It is shown that the model is able to simulate the total cloud cover for each category reasonably well. However, when the cloud cover is broken down into contributions from cloud systems of different sizes, it is shown that the simulated cloud size distribution is biased toward large cloud systems, with contribution from relatively small cloud systems significantly under-represented in the model for both deep and mid-level clouds. The number distribution and area contribution to the cloud cover from mesoscale convective systems are very well simulated compared to the satellite observations, so are low clouds as well. The dependence of the cloud physical properties on cloud scale is examined. It is found that cloud liquid water path, rainfall, and ocean surface sensible and latent heat fluxes have a clear dependence on cloud types and scale. This is of particular interest to studies of the cloud effects on surface energy budget and hydrological cycle. The diurnal variation of the cloud population and area is also examined. The model exhibits a varying degree of success in simulating the diurnal variation of the cloud number and area. The observed early morning maximum cloud cover in deep convective cloud systems is qualitatively simulated. However, the afternoon secondary maximum is missing in the model simulation. The diurnal variation of the tropospheric temperature is well reproduced by the model while simulation of the diurnal variation of the moisture field is poor. The implication of this comparison between model simulation and observations on cloud parameterization is discussed.

  20. Validation of the Two-Layer Model for Correcting Clear Sky Reflectance Near Clouds

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Evans, K. Frank; Vamal, Tamas

    2014-01-01

    A two-layer model was developed in our earlier studies to estimate the clear sky reflectance enhancement near clouds. This simple model accounts for the radiative interaction between boundary layer clouds and molecular layer above, the major contribution to the reflectance enhancement near clouds for short wavelengths. We use LES/SHDOM simulated 3D radiation fields to valid the two-layer model for reflectance enhancement at 0.47 micrometer. We find: (a) The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; and (b) The magnitude of the 2-layer modeled enhancement agree reasonably well with the "truth" with some expected underestimation. We further extend our model to include cloud-surface interaction using the Poisson model for broken clouds. We found that including cloud-surface interaction improves the correction, though it can introduced some over corrections for large cloud albedo, large cloud optical depth, large cloud fraction, large cloud aspect ratio. This over correction can be reduced by excluding scenes (10 km x 10km) with large cloud fraction for which the Poisson model is not designed for. Further research is underway to account for the contribution of cloud-aerosol radiative interaction to the enhancement.

  1. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; hide

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  2. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry

    PubMed Central

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-01-01

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42−) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42− aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions. PMID:27688763

  3. Processes Controlling the Seasonal Cycle of Arctic Aerosol Number and Size Distributions

    NASA Astrophysics Data System (ADS)

    Wentworth, G.; Croft, B.; Martin, R.; Leaitch, W. R.; Tunved, P.; Breider, T. J.; D'Andrea, S.; Pierce, J. R.; Murphy, J. G.; Kodros, J.; Abbatt, J.

    2015-12-01

    Measurements at high-Arctic sites show a strong seasonal cycle in aerosol number and size. The number of aerosols with diameters larger than 20 nm exhibits a maximum in late spring associated with a dominant accumulation mode, and a second maximum in the summer associated with a dominant Aitken mode. Seasonal-mean aerosol effective diameter ranges from about 160 nm in summer to 250 nm in winter. This study interprets these seasonal cycles with the GEOS-Chem-TOMAS global aerosol microphysics model. We find improved agreement with in situ measurements (SMPS) of aerosol size at both Alert, Nunavut, and Mt. Zeppelin, Svalbard following model developments: 1) increase the efficiency of wet scavenging in the Arctic summer and 2) represent coagulation between interstitial aerosols and aerosols activated to form cloud droplets. Our simulations indicate that the dominant summer-time Aitken mode is associated with increased efficiency of wet removal, which limits the number of larger aerosols and promotes local new-aerosol formation. We also find an important role of interstitial coagulation in clouds in the Arctic, which limits the number of Aitken-mode aerosols in the non-summer seasons when direct wet removal of these aerosols is inefficient. The summertime Arctic atmosphere is particularly pristine and strongly influenced by natural regional emissions which have poorly understood climate impacts. Especially influenced are the climatic roles of atmospheric particles and clouds. Here we present evidence that ammonia (NH3) emissions from migratory-seabird guano (dung) are the primary contributor to summertime free ammonia levels recently measured in the Canadian Arctic atmosphere. These findings suggest that ammonia from seabird guano is a key factor contributing to bursts of new-particle formation, which are observed every summer in the near-surface atmosphere at Alert, Canada. Chemical transport model simulations show that these newly formed particles can grow by vapour condensation to diameters sufficiently large to influence Arctic cloud properties and lead to a pan-Arctic cooling over -0.1 W m-2 with local cooling exceeding -1 W m-2 near some bird colonies. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  4. Helmet-Mounted Display Of Clouds Of Harmful Gases

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Barengoltz, Jack B.; Schober, Wayne R.

    1995-01-01

    Proposed helmet-mounted opto-electronic instrument provides real-time stereoscopic views of clouds of otherwise invisible toxic, explosive, and/or corrosive gas. Display semitransparent: images of clouds superimposed on scene ordinarily visible to wearer. Images give indications on sizes and concentrations of gas clouds and their locations in relation to other objects in scene. Instruments serve as safety devices for astronauts, emergency response crews, fire fighters, people cleaning up chemical spills, or anyone working near invisible hazardous gases. Similar instruments used as sensors in automated emergency response systems that activate safety equipment and emergency procedures. Both helmet-mounted and automated-sensor versions used at industrial sites, chemical plants, or anywhere dangerous and invisible or difficult-to-see gases present. In addition to helmet-mounted and automated-sensor versions, there could be hand-held version. In some industrial applications, desirable to mount instruments and use them similarly to parking-lot surveillance cameras.

  5. Strong impacts on aerosol indirect effects from historical oxidant changes

    NASA Astrophysics Data System (ADS)

    Hafsahl Karset, Inger Helene; Koren Berntsen, Terje; Storelvmo, Trude; Alterskjær, Kari; Grini, Alf; Olivié, Dirk; Kirkevåg, Alf; Seland, Øyvind; Iversen, Trond; Schulz, Michael

    2018-06-01

    Uncertainties in effective radiative forcings through aerosol-cloud interactions (ERFaci, also called aerosol indirect effects) contribute strongly to the uncertainty in the total preindustrial-to-present-day anthropogenic forcing. Some forcing estimates of the total aerosol indirect effect are so negative that they even offset the greenhouse gas forcing. This study highlights the role of oxidants in modeling of preindustrial-to-present-day aerosol indirect effects. We argue that the aerosol precursor gases should be exposed to oxidants of its era to get a more correct representation of secondary aerosol formation. Our model simulations show that the total aerosol indirect effect changes from -1.32 to -1.07 W m-2 when the precursor gases in the preindustrial simulation are exposed to preindustrial instead of present-day oxidants. This happens because of a brightening of the clouds in the preindustrial simulation, mainly due to large changes in the nitrate radical (NO3). The weaker oxidative power of the preindustrial atmosphere extends the lifetime of the precursor gases, enabling them to be transported higher up in the atmosphere and towards more remote areas where the susceptibility of the cloud albedo to aerosol changes is high. The oxidation changes also shift the importance of different chemical reactions and produce more condensate, thus increasing the size of the aerosols and making it easier for them to activate as cloud condensation nuclei.

  6. The effect of catastrophic collisional fragmentation and diffuse medium accretion on a computational interstellar dust system

    NASA Technical Reports Server (NTRS)

    Liffman, Kurt

    1990-01-01

    The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.

  7. More rapid polar ozone depletion through the reaction of HOCl with HCl on polar stratospheric clouds

    NASA Technical Reports Server (NTRS)

    Prather, Michael J.

    1992-01-01

    The direct reaction of HOCl with HCl is shown here to play a critical part in polar ozone loss. Observations of high levels of OClO and ClO in the springtime Antarctic stratosphere confirm that most of the available chlorine is in the form of ClO(x). But current photochemical models have difficulty converting HCl to ClO(x) rapidly enough in early spring to account fully for the observations. Here, a chemical model is used to show that the direct reaction of HOCl with HCl provides the missing mechanism. As alternative sources of nitrogen-containing oxidants have been converted in the late autumn to inactive HNO3 by known reactions on the sulfate layer aerosols, the reaction of HOCl with HCl on polar stratospheric clouds becomes the most important pathway for releasing that stratospheric chlorine which goes into polar night as HCl.

  8. Chemistry and Microphysics of Lower Stratospheric Aerosols Determined by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zasetsky, A. Y.; Khalizov, A.; Sloan, J.

    2003-12-01

    Observations of broadband Infrared satellites such as ILAS-II (Ministry of the Environment, Japan, launched 14 December 2002) and SciSat-1 (Canadian Space Agency, launched 12 August 2003) can provide details of the chemical composition and particle size of atmospheric aerosols by direct inversion without recourse to models. During the past decade, we have developed mathematical methods to achieve this inversion by working with FTIR observations of model atmospheric aerosols in cryogenic flowtubes. More recently, we have converted these to operational algorithms for use in the above missions. In this presentation, we will briefly outline these procedures and illustrate their capabilities using laboratory data. These laboratory results show that the chemical compositions, phases and sizes of ensembles of particles can be obtained simultaneously using these procedures. We will also report chemical and microphysical properties of lower stratospheric clouds and aerosols derived by applying these procedures to observations from space.

  9. POLECAT: Preparatory and modelling studies

    NASA Astrophysics Data System (ADS)

    Peter, T.; Müller, R.; Pawson, S.; Volkert, H.

    1995-02-01

    “POLECAT” is the acronym for a mission to polar stratospheric clouds, lee waves, chemistry, aerosols and transport. It constitutes a lead project of the German ozone research program sponsored by the Federal Ministry of Education and Research (BMBF). It focusses on the investigation of polar stratospheric clouds (PSCs) in the northern hemisphere with special emphasis on mesoscale effects, in particular lee waves, and their effects on polar stratospheric chemistry. The project comprises two phases. Phase 1 will support laboratory studies on PSC microphysics and heterogeneous chemistry, modelling studies on all scales, and selected field experiments concerning particle measurements as well as characterization of the direct chemical products of heterogeneous reactions. Phase 2 will cover a mission of the high-altitude aircraft Strato-2C, used for flights along streamlines across orographically perturbed regions for direct investigation of PSC effects. This paper presents some preparatory work for the upcoming project and, hence, concentrates on modelling studies including the planning strategies for the future aircraft missions.

  10. Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces

    NASA Astrophysics Data System (ADS)

    Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.

    2014-10-01

    A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.

  11. Partitioning the LIS/OTD Lightning Climatological Dataset into Separate Ground and Cloud Flash Distributions

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solarkiewicz, R. J.

    2009-01-01

    Presently, it is not well understood how to best model nitrogen oxides (NOx) emissions from lightning because lightning is highly variable. Peak current, channel length, channel altitude, stroke multiplicity, and the number of flashes that occur in a particular region (i.e., flash density) all influence the amount of lightning NOx produced. Moreover, these 5 variables are not the same for ground and cloud flashes; e.g., cloud flashes normally have lower peak currents, higher altitudes, and higher flash densities than ground flashes [see (Koshak, 2009) for additional details]. Because the existing satellite observations of lightning (Fig. 1) from the Lightning Imaging Sensor/Optical Transient Detector (LIS/OTD) do not distinguish between ground and cloud fashes, which produce different amounts of NOx, it is very difficult to accurately account for the regional/global production of lightning NOx. Hence, the ability to partition the LIS/OTD lightning climatology into separate ground and cloud flash distributions would substantially benefit the atmospheric chemistry modeling community. NOx indirectly influences climate because it controls the concentration of ozone and hydroxyl radicals in the atmosphere. The importance of lightning-produced NOx is empasized throughout the scientific literature (see for example, Huntrieser et al. 1998). In fact, lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2 and 20 Tg (N)yr(sup -1) (Lee et al., 1997), with more recent estimates of about 6 Tg(N)yr(sup -1) (Martin et al., 2007). In order to make accurate predictions, global chemistry/climate models (as well as regional air quality modells) must more accurately account for the effects of lightning NOx. In particular, the NASA Goddard Institute for Space Studies (GISS) Model E (Schmidt et al., 2005) and the GEOS-CHEM global chemical transport model (Bey et al., 2001) would each benefit from a partitioning of the LIS/OTD lightning climatology. In this study, we introduce a new technique for retrieving the ground flash fraction in a set of N lightning observed from space and that occur within a specific latitude/longitude bin. The method is briefly described and applied to CONUS lightning that have already been partitioned into ground and cloud flashes using independent ground-based observations, in order to assess the accuracy of the retrieval method. The retrieval errors are encouragingly small.

  12. The "Mushroom Cloud" Demonstration Revisited

    ERIC Educational Resources Information Center

    Panzarasa, Guido; Sparnacci, Katia

    2013-01-01

    A revisitation of the classical "mushroom cloud" demonstration is described. Instead of aniline and benzoyl peroxide, the proposed reaction involves household chemicals such as alpha-pinene (turpentine oil) and trichloroisocyanuric acid ("Trichlor") giving an impressive demonstration of oxidation and combustion reactions that…

  13. A Condensation-coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds

    NASA Astrophysics Data System (ADS)

    Ohno, Kazumasa; Okuzumi, Satoshi

    2017-02-01

    A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our model by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation-coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.

  14. Hot electrons and radial transport in Saturn's inner magetosphere: Modeling the effects on ion chemistry

    NASA Astrophysics Data System (ADS)

    Fleshman, Bobby L.

    The E-ring of Saturn, located just beyond the main rings at four Saturn radii, was known to be made mostly of water and its by-products before the Cassini spacecraft arrived at Saturn in 2005. Since then, Cassini has observed water geysers on the tiny moon of Enceladus ejecting ≈ 100 kg of water per second into orbit around Saturn, which most agree is the chief contributor to neutrals in the E-ring. Following several key reactions, many of these neutrals go on to populate large, tenuous structures, known as neutral clouds, extending 10s of Saturn radii. The other side of the story are the ions, which are largely created by the ionization of same neutrals sourced from Enceladus. A key distinction between the neutrals and ions is that ions are carried along by Saturn's magnetic field, and revolve around Saturn at the rotation rate of the planet, while neutrals generally have much slower Keplerian speeds. It is the study of the chemical interaction of these separate, but related populations that is the subject of this thesis. We have developed a series of models to study how the coupling of these systems affect details of the other, such as composition. The first step (Chapter 2) was the development of a water-group physical chemistry model, which includes suprathermal electrons and the effect of radial ion transport. With this "one-box" model, we are able to reproduce observed water and hydrogen ion densities in Enceladus's orbit, but only when the hot electron density is ≈ 0.5% of the total plasma density. Radial transport is found to be slow, requiring 26 days to remove ions from the orbit of Enceladus. Moving toward the development of a radial model of ion chemistry, in Chapter 4 we present a model of Saturn's neutral clouds, which are made of material outgassing from Enceladus. The effects of dissociation and charge exchange are considered, where the details of the latter prove to be of great consequence on neutral cloud morphology. The oxygen cloud is found to the most extended, followed by H2O, and finally OH. The above efforts are combined in Chapter 5, where a neutral cloud model is used to construct a radial model of ion chemistry. It is shown that neutral H2O requires more spreading than yet modeled in order to recover observed water and hydrogen ion abundances near Enceladus. The relative abundance of water-group ion species presented will be useful for analyses of CAPS-IMS data, while loss rates derived from the model can be used to improve neutral cloud models. The case is made that ion chemistry models and neutral cloud models must be developed alongside one another in order to improve understanding of these interrelated populations at Saturn.

  15. Evaluating rainfall errors in global climate models through cloud regimes

    NASA Astrophysics Data System (ADS)

    Tan, Jackson; Oreopoulos, Lazaros; Jakob, Christian; Jin, Daeho

    2017-07-01

    Global climate models suffer from a persistent shortcoming in their simulation of rainfall by producing too much drizzle and too little intense rain. This erroneous distribution of rainfall is a result of deficiencies in the representation of underlying processes of rainfall formation. In the real world, clouds are precursors to rainfall and the distribution of clouds is intimately linked to the rainfall over the area. This study examines the model representation of tropical rainfall using the cloud regime concept. In observations, these cloud regimes are derived from cluster analysis of joint-histograms of cloud properties retrieved from passive satellite measurements. With the implementation of satellite simulators, comparable cloud regimes can be defined in models. This enables us to contrast the rainfall distributions of cloud regimes in 11 CMIP5 models to observations and decompose the rainfall errors by cloud regimes. Many models underestimate the rainfall from the organized convective cloud regime, which in observation provides half of the total rain in the tropics. Furthermore, these rainfall errors are relatively independent of the model's accuracy in representing this cloud regime. Error decomposition reveals that the biases are compensated in some models by a more frequent occurrence of the cloud regime and most models exhibit substantial cancellation of rainfall errors from different regimes and regions. Therefore, underlying relatively accurate total rainfall in models are significant cancellation of rainfall errors from different cloud types and regions. The fact that a good representation of clouds does not lead to appreciable improvement in rainfall suggests a certain disconnect in the cloud-precipitation processes of global climate models.

  16. Final Technical Report for "High-resolution global modeling of the effects of subgrid-scale clouds and turbulence on precipitating cloud systems"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Vincent

    2016-11-25

    The Multiscale Modeling Framework (MMF) embeds a cloud-resolving model in each grid column of a General Circulation Model (GCM). A MMF model does not need to use a deep convective parameterization, and thereby dispenses with the uncertainties in such parameterizations. However, MMF models grossly under-resolve shallow boundary-layer clouds, and hence those clouds may still benefit from parameterization. In this grant, we successfully created a climate model that embeds a cloud parameterization (“CLUBB”) within a MMF model. This involved interfacing CLUBB’s clouds with microphysics and reducing computational cost. We have evaluated the resulting simulated clouds and precipitation with satellite observations. Themore » chief benefit of the project is to provide a MMF model that has an improved representation of clouds and that provides improved simulations of precipitation.« less

  17. Trust Model to Enhance Security and Interoperability of Cloud Environment

    NASA Astrophysics Data System (ADS)

    Li, Wenjuan; Ping, Lingdi

    Trust is one of the most important means to improve security and enable interoperability of current heterogeneous independent cloud platforms. This paper first analyzed several trust models used in large and distributed environment and then introduced a novel cloud trust model to solve security issues in cross-clouds environment in which cloud customer can choose different providers' services and resources in heterogeneous domains can cooperate. The model is domain-based. It divides one cloud provider's resource nodes into the same domain and sets trust agent. It distinguishes two different roles cloud customer and cloud server and designs different strategies for them. In our model, trust recommendation is treated as one type of cloud services just like computation or storage. The model achieves both identity authentication and behavior authentication. The results of emulation experiments show that the proposed model can efficiently and safely construct trust relationship in cross-clouds environment.

  18. Sensitivity of single column model simulations of Arctic springtime clouds to different cloud cover and mixed phase cloud parameterizations

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Lohmann, Ulrike

    2003-08-01

    The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.

  19. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  20. Multiyear applications of WRF/Chem over continental U.S.: Model evaluation, variation trend, and impacts of boundary conditions

    NASA Astrophysics Data System (ADS)

    Yahya, Khairunnisa; He, Jian; Zhang, Yang

    2015-12-01

    Multiyear applications of an online-coupled meteorology-chemistry model allow an assessment of the variation trends in simulated meteorology, air quality, and their interactions to changes in emissions and meteorology, as well as the impacts of initial and boundary conditions (ICONs/BCONs) on simulated aerosol-cloud-radiation interactions over a period of time. In this work, the Weather Research and Forecasting model with Chemistry version 3.4.1 (WRF/Chem v. 3.4.1) with the 2005 Carbon Bond mechanism coupled with the Volatility Basis Set module for secondary organic aerosol formation (WRF/Chem-CB05-VBS) is applied for multiple years (2001, 2006, and 2010) over continental U.S. This work also examines the changes in simulated air quality and meteorology due to changes in emissions and meteorology and the model's capability in reproducing the observed variation trends in species concentrations from 2001 to 2010. In addition, the impacts of the chemical ICONs/BCONs on model predictions are analyzed. ICONs/BCONs are downscaled from two global models, the modified Community Earth System Model/Community Atmosphere model version 5.1 (CESM/CAM v5.1) and the Monitoring Atmospheric Composition and Climate model (MACC). The evaluation of WRF/Chem-CB05-VBS simulations with the CESM ICONs/BCONs for 2001, 2006, and 2010 shows that temperature at 2 m (T2) is underpredicted for all three years likely due to inaccuracies in soil moisture and soil temperature, resulting in biases in surface relative humidity, wind speed, and precipitation. With the exception of cloud fraction, other aerosol-cloud variables including aerosol optical depth, cloud droplet number concentration, and cloud optical thickness are underpredicted for all three years, resulting in overpredictions of radiation variables. The model performs well for O3 and particulate matter with diameter less than or equal to 2.5 (PM2.5) for all three years comparable to other studies from literature. The model is able to reproduce observed annual average trends in O3 and PM2.5 concentrations from 2001 to 2006 and from 2006 to 2010 but is less skillful in simulating their observed seasonal trends. The 2006 and 2010 results using CESM and MACC ICONs/BCONs are compared to analyze the impact of ICONs/BCONs on model performance and their feedbacks to aerosol, clouds, and radiation. Comparing to the simulations with MACC ICONs/BCONs, the simulations with the CESM ICONs/BCONs improve the performance of O3 mixing ratios (e.g., the normalized mean bias for maximum 8 h O3 is reduced from -17% to -1% in 2010), PM2.5 in 2010, and sulfate in 2006 (despite a slightly larger normalized mean bias for PM2.5 in 2006). The impacts of different ICONs/BCONs on simulated aerosol-cloud-radiation variables are not negligible, with larger impacts in 2006 compared to 2010.

  1. The VMC survey - XXIII. Model fitting of light and radial velocity curves of Small Magellanic Cloud classical Cepheids

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Molinaro, R.; Ripepi, V.; Cioni, M.-R. L.; Clementini, G.; Moretti, M. I.; Ragosta, F.; de Grijs, R.; Groenewegen, M. A. T.; Ivanov, V. D.

    2017-04-01

    We present the results of the χ2 minimization model fitting technique applied to optical and near-infrared photometric and radial velocity data for a sample of nine fundamental and three first overtone classical Cepheids in the Small Magellanic Cloud (SMC). The near-infrared photometry (JK filters) was obtained by the European Southern Observatory (ESO) public survey 'VISTA near-infrared Y, J, Ks survey of the Magellanic Clouds system' (VMC). For each pulsator, isoperiodic model sequences have been computed by adopting a non-linear convective hydrodynamical code in order to reproduce the multifilter light and (when available) radial velocity curve amplitudes and morphological details. The inferred individual distances provide an intrinsic mean value for the SMC distance modulus of 19.01 mag and a standard deviation of 0.08 mag, in agreement with the literature. Moreover, the intrinsic masses and luminosities of the best-fitting model show that all these pulsators are brighter than the canonical evolutionary mass-luminosity relation (MLR), suggesting a significant efficiency of core overshooting and/or mass-loss. Assuming that the inferred deviation from the canonical MLR is only due to mass-loss, we derive the expected distribution of percentage mass-loss as a function of both the pulsation period and the canonical stellar mass. Finally, a good agreement is found between the predicted mean radii and current period-radius (PR) relations in the SMC available in the literature. The results of this investigation support the predictive capabilities of the adopted theoretical scenario and pave the way for the application to other extensive data bases at various chemical compositions, including the VMC Large Magellanic Cloud pulsators and Galactic Cepheids with Gaia parallaxes.

  2. GPI Spectroscopy of the Mass, Age, and Metallicity Benchmark Brown Dwarf HD 4747 B

    NASA Astrophysics Data System (ADS)

    Crepp, Justin R.; Principe, David A.; Wolff, Schuyler; Giorla Godfrey, Paige A.; Rice, Emily L.; Cieza, Lucas; Pueyo, Laurent; Bechter, Eric B.; Gonzales, Erica J.

    2018-02-01

    The physical properties of brown dwarf companions found to orbit nearby, solar-type stars can be benchmarked against independent measures of their mass, age, chemical composition, and other parameters, offering insights into the evolution of substellar objects. The TRENDS high-contrast imaging survey has recently discovered a (mass/age/metallicity) benchmark brown dwarf orbiting the nearby (d = 18.69 ± 0.19 pc), G8V/K0V star HD 4747. We have acquired follow-up spectroscopic measurements of HD 4747 B using the Gemini Planet Imager to study its spectral type, effective temperature, surface gravity, and cloud properties. Observations obtained in the H-band and K 1-band recover the companion and reveal that it is near the L/T transition (T1 ± 2). Fitting atmospheric models to the companion spectrum, we find strong evidence for the presence of clouds. However, spectral models cannot satisfactorily fit the complete data set: while the shape of the spectrum can be well-matched in individual filters, a joint fit across the full passband results in discrepancies that are a consequence of the inherent color of the brown dwarf. We also find a 2σ tension in the companion mass, age, and surface gravity when comparing to evolutionary models. These results highlight the importance of using benchmark objects to study “secondary effects” such as metallicity, non-equilibrium chemistry, cloud parameters, electron conduction, non-adiabatic cooling, and other subtleties affecting emergent spectra. As a new L/T transition benchmark, HD 4747 B warrants further investigation into the modeling of cloud physics using higher resolution spectroscopy across a broader range of wavelengths, polarimetric observations, and continued Doppler radial velocity and astrometric monitoring.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Zhichen; Li, Di; Qian, Lei

    We present 2.5-square-degree C{sub 2}H N = 1–0 and N{sub 2}H{sup +} J = 1–0 maps of the ρ Ophiuchi molecular cloud complex. These are the first large-scale maps of the ρ Ophiuchi molecular cloud complex with these two tracers. The C{sub 2}H emission is spatially more extended than the N{sub 2}H{sup +} emission. One faint N{sub 2}H{sup +} clump, Oph-M, and one C{sub 2}H ring, Oph-RingSW, are identified for the first time. The observed C{sub 2}H-to-N{sub 2}H{sup +} abundance ratio ([C{sub 2}H]/[N{sub 2}H{sup +}]) varies between 5 and 110. We modeled the C{sub 2}H and N{sub 2}H{sup +} abundancesmore » with 1D chemical models, which show a clear decline of [C{sub 2}H]/[N{sub 2}H{sup +}] with chemical age. Such an evolutionary trend is little affected by temperatures when they are below 40 K. At high density ( n {sub H} > 10{sup 5} cm{sup −3}), however, the time it takes for the abundance ratio to drop at least one order of magnitude becomes less than the dynamical time (e.g., turbulence crossing time of ∼10{sup 5} yr). The observed [C{sub 2}H]/[N{sub 2}H{sup +}] difference between L1688 and L1689 can be explained by L1688 having chemically younger gas in relatively less dense regions. The observed [C{sub 2}H]/[N{sub 2}H{sup +}] values are the results of time evolution, accelerated at higher densities. For the relatively low density regions in L1688 where only C{sub 2}H emission was detected, the gas should be chemically younger.« less

  4. Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models.

    PubMed

    Medeiros, Brian; Nuijens, Louise

    2016-05-31

    Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection.

  5. Clouds at Barbados are representative of clouds across the trade wind regions in observations and climate models

    PubMed Central

    Nuijens, Louise

    2016-01-01

    Trade wind regions cover most of the tropical oceans, and the prevailing cloud type is shallow cumulus. These small clouds are parameterized by climate models, and changes in their radiative effects strongly and directly contribute to the spread in estimates of climate sensitivity. This study investigates the structure and variability of these clouds in observations and climate models. The study builds upon recent detailed model evaluations using observations from the island of Barbados. Using a dynamical regimes framework, satellite and reanalysis products are used to compare the Barbados region and the broader tropics. It is shown that clouds in the Barbados region are similar to those across the trade wind regions, implying that observational findings from the Barbados Cloud Observatory are relevant to clouds across the tropics. The same methods are applied to climate models to evaluate the simulated clouds. The models generally capture the cloud radiative effect, but underestimate cloud cover and show an array of cloud vertical structures. Some models show strong biases in the environment of the Barbados region in summer, weakening the connection between the regional biases and those across the tropics. Even bearing that limitation in mind, it is shown that covariations of cloud and environmental properties in the models are inconsistent with observations. The models tend to misrepresent sensitivity to moisture variations and inversion characteristics. These model errors are likely connected to cloud feedback in climate projections, and highlight the importance of the representation of shallow cumulus convection. PMID:27185925

  6. Assessing the Dynamics of Organic Aerosols over the North Atlantic Ocean

    PubMed Central

    Kasparian, Jérôme; Hassler, Christel; Ibelings, Bas; Berti, Nicolas; Bigorre, Sébastien; Djambazova, Violeta; Gascon-Diez, Elena; Giuliani, Grégory; Houlmann, Raphaël; Kiselev, Denis; de Laborie, Pierric; Le, Anh-Dao; Magouroux, Thibaud; Neri, Tristan; Palomino, Daniel; Pfändler, Stéfanie; Ray, Nicolas; Sousa, Gustavo; Staedler, Davide; Tettamanti, Federico; Wolf, Jean-Pierre; Beniston, Martin

    2017-01-01

    The influence of aerosols on climate is highly dependent on the particle size distribution, concentration, and composition. In particular, the latter influences their ability to act as cloud condensation nuclei, whereby they impact cloud coverage and precipitation. Here, we simultaneously measured the concentration of aerosols from sea spray over the North Atlantic on board the exhaust-free solar-powered vessel “PlanetSolar”, and the sea surface physico-chemical parameters. We identified organic-bearing particles based on individual particle fluorescence spectra. Organic-bearing aerosols display specific spatio-temporal distributions as compared to total aerosols. We propose an empirical parameterization of the organic-bearing particle concentration, with a dependence on water salinity and sea-surface temperature only. We also show that a very rich mixture of organic aerosols is emitted from the sea surface. Such data will certainly contribute to providing further insight into the influence of aerosols on cloud formation, and be used as input for the improved modeling of aerosols and their role in global climate processes. PMID:28361985

  7. Search with COPERNICUS for interstellar N/sub 2/ in diffuse clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, B.L.; Owen, T.; Snow, T.P. Jr.

    1979-01-01

    Multiple Copernicus scans of the rho'/sup 1/..sigma../sub u//sup +/--X/sup 1/..sigma../sub g//sup +/(0--0) and l/sup 1/Pi/sub u/--X/sup 1/..sigma../sub g//sup +/(0--0) band regions of N/sub 2/ in the spectra of delta Sco and epsilon Per result in upper limits of N (N/sub 2/) < or =1.0--3.8 x 10/sup 12/ cm/sup -2/ and N (N/sub 2/) < or =1.2--4.4 x 10/sup 12/ cm/sup -2/, respectively, depending upon the cloud temperature. These limits are consistent with the column densities expected from current chemical models for diffuse interstellar clouds, representing relative abundances with respect to hydrogen nuclei of N (N/sub 2/)/2N (H/sub 2/)+N (H I)more » < or =0.69--2.6 x 10/sup -9/ for delta Sco and < or =0.31--1.1 x 10/sup -8/ for epsilon Per.« less

  8. Spectral pattern classification in lidar data for rock identification in outcrops.

    PubMed

    Campos Inocencio, Leonardo; Veronez, Mauricio Roberto; Wohnrath Tognoli, Francisco Manoel; de Souza, Marcelo Kehl; da Silva, Reginaldo Macedônio; Gonzaga, Luiz; Blum Silveira, César Leonardo

    2014-01-01

    The present study aimed to develop and implement a method for detection and classification of spectral signatures in point clouds obtained from terrestrial laser scanner in order to identify the presence of different rocks in outcrops and to generate a digital outcrop model. To achieve this objective, a software based on cluster analysis was created, named K-Clouds. This software was developed through a partnership between UNISINOS and the company V3D. This tool was designed to begin with an analysis and interpretation of a histogram from a point cloud of the outcrop and subsequently indication of a number of classes provided by the user, to process the intensity return values. This classified information can then be interpreted by geologists, to provide a better understanding and identification from the existing rocks in the outcrop. Beyond the detection of different rocks, this work was able to detect small changes in the physical-chemical characteristics of the rocks, as they were caused by weathering or compositional changes.

  9. Characterization of Arctic ice cloud properties observed during ISDAC

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Girard, Eric; Pelon, Jacques; Gultepe, Ismail; Delanoë, Julien; Blanchet, Jean-Pierre

    2012-12-01

    Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-2A), being topped by a cover of nonprecipitating very small (radar unseen) ice crystals (TIC-1), is found more frequently in pristine environment, whereas the second type (TIC-2B), detected by both sensors, is associated preferentially with a high concentration of aerosols. To further investigate the microphysical properties of TIC-1/2A and TIC-2B, airborne in situ and satellite measurements of specific cases observed during Indirect and Semi-Direct Aerosol Campaign (ISDAC) have been analyzed. For the first time, Arctic TIC-1/2A and TIC-2B microstructures are compared using in situ cloud observations. Results show that the differences between them are confined in the upper part of the clouds where ice nucleation occurs. TIC-2B clouds are characterized by fewer (by more than 1 order of magnitude) and larger (by a factor of 2 to 3) ice crystals and a larger ice supersaturation (of 15-20%) compared to TIC-1/2A. Ice crystal growth in TIC-2B clouds seems explosive, whereas it seems more gradual in TIC-1/2A. It is hypothesized that these differences are linked to the number concentration and the chemical composition of aerosols. The ice crystal growth rate in very cold conditions impinges on the precipitation efficiency, dehydration and radiation balance. These results represent an essential and important first step to relate previous modeling, remote sensing and laboratory studies with TICs cloud in situ observations.

  10. Contributions of Nimbus 7 TOMS Data to Volcanic Study and Hazard Mitigation

    NASA Technical Reports Server (NTRS)

    Krueger, Arlin J.; Bluth, G. J. S.; Schaefer, S. A.

    1998-01-01

    Nimbus TOMS data have led to advancements among many volcano-related scientific disciplines, from the initial ability to quantify SO2 clouds leading to derivations of eruptive S budgets and fluxes, to tracking of individual clouds, assessing global volcanism and atmospheric impacts. Some of the major aspects of TOMS-related research, listed below, will be reviewed and updated: (1) Measurement of volcanic SO2 clouds: Nimbus TOMS observed over 100 individual SO2 clouds during its mission lifetime; large explosive eruptions are now routinely and reliably measured by satellite. (2) Eruption processes: quantification of SO2 emissions have allowed assessments of eruption sulfur budgets, the evaluation of "excess" sulfur, and inferences of H2S emissions. (3) Detection of ash: TOMS data are now used to detect volcanic particulates in the atmosphere, providing complementary analyses to infrared methods of detection. Paired TOMS and AVHRR studies have provided invaluable information on volcanic cloud compositions and processes. (4) Cloud tracking and hazard mitigation: volcanic clouds can be considered gigantic tracers in the atmosphere, and studies of the fates of these clouds have led to new knowledge of their physical and chemical dispersion in the atmosphere for predictive models. (5) Global trends: the long term data set has provided researchers an unparalleled record of explosive volcanism, and forms a key component in assessing annual to decadal trends in global S emissions. (6) Atmospheric impacts: TOMS data have been linked to independent records of atmospheric change, in order to compare cause and effect processes following a massive injection of SO2 into the atmosphere. (7) Future TOMS instruments and applications: Nimbus TOMS has given way to new satellite platforms, with several wavelength and resolution modifications. New efforts to launch a geostationary TOMS could provide unprecedented observations of volcanic activity.

  11. The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuying; Xie, Shaocheng; Klein, Stephen A.

    Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have had difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the conceptmore » of instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to improve and to facilitate the comparison of modeled clouds with observations. Many simulators have (and continue to be developed) for a variety of instruments and purposes. A community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Klein et al. 2013; Zhang et al. 2010). This article introduces a ground-based cloud radar simulator developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for comparing climate model clouds with ARM observations from its vertically pointing 35-GHz radars. As compared to CloudSat radar observations, ARM radar measurements occur with higher temporal resolution and finer vertical resolution. This enables users to investigate more fully the detailed vertical structures within clouds, resolve thin clouds, and quantify the diurnal variability of clouds. Particularly, ARM radars are sensitive to low-level clouds, which are difficult for the CloudSat radar to detect due to surface contamination (Mace et al. 2007; Marchand et al. 2008). Therefore, the ARM ground-based cloud observations can provide important observations of clouds that complement measurements from space.« less

  12. Unusual chemical compositions of noctilucent-cloud particle nuclei

    NASA Technical Reports Server (NTRS)

    Hemenway, C. L.

    1973-01-01

    Two sounding rocket payloads were launched from the ESRO range in Sweden during a noctilucent cloud display. Large numbers of submicron particles were collected, most of which appear to be made up of a high density material coated with a low density material. Typical electron micrographs are shown. Particle chemical compositions have been measured by use of dispersive X-ray analysis equipment attached to an electron microscope and have revealed that most of the high density particle nuclei have atomic weights greater than iron.

  13. Comprehensive evaluation of multi-year real-time air quality forecasting using an online-coupled meteorology-chemistry model over southeastern United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Hong, Chaopeng; Yahya, Khairunnisa; Li, Qi; Zhang, Qiang; He, Kebin

    2016-08-01

    An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009. A comprehensive evaluation of multi-year RT-AQF shows overall good performance for temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation (SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozone (O3) and fine particles (PM2.5) at surface, tropospheric ozone residuals (TOR) in O3 seasons (May-September), and column NO2 in winters (December-February). Moderate-to-large biases exist in wind speed at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammonium (NH4+), sulfate (SO42-), and nitrate (NO3-) from the IMPROVE and SEARCH networks, organic carbon (OC) at IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and column carbon monoxide (CO), sulfur dioxide (SO2), and formaldehyde (HCHO) in both O3 and winter seasons, column nitrogen dioxide (NO2) in O3 seasons, and TOR in winters. These biases indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface roughness, microphysics cumulus parameterization), emissions (e.g., O3 and PM precursors, biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and PM2.5 species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol thermodynamics). The model shows overall good skills in reproducing the observed multi-year trends and inter-seasonal variability in meteorological and radiative variables such as T2, WS10, Precip, SWDOWN, and LWDOWN, and relatively well in reproducing the observed trends in surface O3 and PM2.5, but relatively poor in reproducing the observed column abundances of CO, NO2, SO2, HCHO, TOR, and AOD. The sensitivity simulations using satellite-constrained boundary conditions for O3 and CO show substantial improvement for both spatial distribution and domain-mean performance statistics. The model's forecasting skills for air quality can be further enhanced through improving model inputs (e.g., anthropogenic emissions for urban areas and upper boundary conditions of chemical species), meteorological forecasts (e.g., WS10, Precip) and meteorologically-dependent emissions (e.g., biogenic and wildfire emissions), and model physics and chemical treatments (e.g., gas-phase chemistry in winter conditions, cloud processes and their interactions with radiation and aerosol).

  14. Three Dimensional Modeling Analysis of the Transpacific Transport of Aerosols During PACDEX

    NASA Astrophysics Data System (ADS)

    Carmichael, G. R.; Adhikary, B.; Hatch, C.; Kulkarni, S.; Moen, J.; Mena, M.

    2007-12-01

    Mineral dust and aerosols emitted from Asia are known to traverse long distances across the Pacific Ocean and can reach North America within a few days. A pilot field study, the PACific Dust Experiment (PACDEX), was carried out in April and May of 2007, during the peak East Asian dust emission season. The NSF/NCAR-HIAPER (High Performance Instrumented Airborne Platform for Environmental Research) platform allowed for sampling the evolution of mineral aerosol/pollution plumes and their physical and chemical characteristics as they traverse the Pacific Ocean and interact with the Pacific cloud systems en route to North America in both the upper and lower troposphere. A comprehensive 3-dimensional regional-scale model developed at The University of Iowa (Sulfur Transport dEposition Model, STEM) has been used for the analysis of aerosol interactions to help define key measurement strategies during the mission and to help interpret observations from the HIAPER platform. In this study we will present model aerosol distribution inter-comparison with cloud fields and aircraft observations. Model analysis provides further insight into cloud/pollution/dust interactions as East Asian emissions transit the Pacific Ocean en route to North America. Trajectory analysis and emission markers are used to help understand the air mass history and aerosol aging processes of the aerosols sampled by the HIAPER platform. Estimates of the fluxes of aerosol dust, BC and sulfate due to transpacific transport will also be presented.

  15. The impact of parametrized convection on cloud feedback.

    PubMed

    Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming

    2015-11-13

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. © 2015 The Authors.

  16. The impact of parametrized convection on cloud feedback

    PubMed Central

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback is discussed. PMID:26438278

  17. “Towards building better linkages between aqueous phase ...

    EPA Pesticide Factsheets

    Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and employing a bisection method to calculate H+ concentrations. With potentially hundreds of reactions that may be important in cloud water and only seven reactions in the current model, expansion of the existing mechanism is an important area of investigation. However, with the current mechanism hardwired into the solver code, the module is difficult to expand with additional chemistry. It also ignores the impacts of mass transfer limitations on cloud chemistry which may be significant. Here, the Kinetic PreProcessor has been applied to generate a Rosenbrock solver for the CMAQ v5.0.1 aqueous phase chemistry mechanism. The module has been updated to simultaneously solve kinetic mass transfer between the phases, dissociation/association, chemical kinetics, Aitken scavenging, and wet deposition. This will allow for easier expansion of the chemical mechanism in the future and a better link between aqueous phase chemistry and droplet microphysics. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating pre

  18. Implications of SWAS Observations for Interstellar Chemistry and Star Formation

    NASA Technical Reports Server (NTRS)

    Bergin, Edwin A.; Melnick, Gary J.; Stauffer, John R.; Ashby, Matthew L. N.; Chin, Gordon; Erickson, Neal R.; Goldsmith, Paul F.; Harwit, Martin; Howe, John E.; Kleiner, Steven C.

    2000-01-01

    A long standing prediction of steady state gas-phase chemical theory is that H2O and O2 are important reservoirs of elemental oxygen and major coolants of the interstellar medium. Analysis of SWAS observations has set sensitive upper limits on the abundance Of O2 and has provided H2O abundances toward a variety of star forming regions. Based on these results, we show that gaseous H2O and O2 are not dominant carriers of elemental oxygen in molecular clouds. Instead the available oxygen is presumably frozen on dust grains in the form of molecular ices, with a significant portion potentially remaining in atomic form, along with CO, in the gas phase. H2O and O2 are also not significant coolants for quiescent molecular gas. In the case of H2O, a number of known chemical processes can locally elevate its abundance in regions with enhanced temperatures, such as warm regions surrounding young stars or in hot shocked gas. Thus, water can be a locally important coolant. The new information provided by SWAS, when combined with recent results from the Infrared Space Observatory, also provide several hard observational constraints for theoretical models of the chemistry in molecular clouds and we discuss various models that satisfy these conditions.

  19. Implementation of aerosol-cloud interactions in the regional atmosphere-aerosol model COSMO-MUSCAT(5.0) and evaluation using satellite data

    NASA Astrophysics Data System (ADS)

    Dipu, Sudhakar; Quaas, Johannes; Wolke, Ralf; Stoll, Jens; Mühlbauer, Andreas; Sourdeval, Odran; Salzmann, Marc; Heinold, Bernd; Tegen, Ina

    2017-06-01

    The regional atmospheric model Consortium for Small-scale Modeling (COSMO) coupled to the Multi-Scale Chemistry Aerosol Transport model (MUSCAT) is extended in this work to represent aerosol-cloud interactions. Previously, only one-way interactions (scavenging of aerosol and in-cloud chemistry) and aerosol-radiation interactions were included in this model. The new version allows for a microphysical aerosol effect on clouds. For this, we use the optional two-moment cloud microphysical scheme in COSMO and the online-computed aerosol information for cloud condensation nuclei concentrations (Cccn), replacing the constant Cccn profile. In the radiation scheme, we have implemented a droplet-size-dependent cloud optical depth, allowing now for aerosol-cloud-radiation interactions. To evaluate the models with satellite data, the Cloud Feedback Model Intercomparison Project Observation Simulator Package (COSP) has been implemented. A case study has been carried out to understand the effects of the modifications, where the modified modeling system is applied over the European domain with a horizontal resolution of 0.25° × 0.25°. To reduce the complexity in aerosol-cloud interactions, only warm-phase clouds are considered. We found that the online-coupled aerosol introduces significant changes for some cloud microphysical properties. The cloud effective radius shows an increase of 9.5 %, and the cloud droplet number concentration is reduced by 21.5 %.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Center’s High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by thesemore » observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.« less

  1. An absolute sodium abundance for a cloud-free 'hot Saturn' exoplanet.

    PubMed

    Nikolov, N; Sing, D K; Fortney, J J; Goyal, J M; Drummond, B; Evans, T M; Gibson, N P; De Mooij, E J W; Rustamkulov, Z; Wakeford, H R; Smalley, B; Burgasser, A J; Hellier, C; Helling, Ch; Mayne, N J; Madhusudhan, N; Kataria, T; Baines, J; Carter, A L; Ballester, G E; Barstow, J K; McCleery, J; Spake, J J

    2018-05-01

    Broad absorption signatures from alkali metals, such as the sodium (Na I) and potassium (K I) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets 1-3 . However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles 4-6 . Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances 7-9 . Here we report an optical transmission spectrum for the 'hot Saturn' exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of logε Na  = [Formula: see text], and use it as a proxy for the planet's atmospheric metallicity relative to the solar value (Z p /Z ʘ  = [Formula: see text]). This result is consistent with the mass-metallicity trend observed for Solar System planets and exoplanets 10-12 .

  2. An absolute sodium abundance for a cloud-free `hot Saturn' exoplanet

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Sing, D. K.; Fortney, J. J.; Goyal, J. M.; Drummond, B.; Evans, T. M.; Gibson, N. P.; De Mooij, E. J. W.; Rustamkulov, Z.; Wakeford, H. R.; Smalley, B.; Burgasser, A. J.; Hellier, C.; Helling, Ch.; Mayne, N. J.; Madhusudhan, N.; Kataria, T.; Baines, J.; Carter, A. L.; Ballester, G. E.; Barstow, J. K.; McCleery, J.; Spake, J. J.

    2018-05-01

    Broad absorption signatures from alkali metals, such as the sodium (Na i) and potassium (K i) resonance doublets, have long been predicted in the optical atmospheric spectra of cloud-free irradiated gas giant exoplanets1-3. However, observations have revealed only the narrow cores of these features rather than the full pressure-broadened profiles4-6. Cloud and haze opacity at the day-night planetary terminator are considered to be responsible for obscuring the absorption-line wings, which hinders constraints on absolute atmospheric abundances7-9. Here we report an optical transmission spectrum for the `hot Saturn' exoplanet WASP-96b obtained with the Very Large Telescope, which exhibits the complete pressure-broadened profile of the sodium absorption feature. The spectrum is in excellent agreement with cloud-free, solar-abundance models assuming chemical equilibrium. We are able to measure a precise, absolute sodium abundance of logɛNa = 6.9-0.4+0.6, and use it as a proxy for the planet's atmospheric metallicity relative to the solar value (Zp/Zʘ = 2.3-1.7+8.9). This result is consistent with the mass-metallicity trend observed for Solar System planets and exoplanets10-12.

  3. Global Free-tropospheric NO2 Abundances Derived Using a Cloud Slicing Technique from AURA OMI

    NASA Technical Reports Server (NTRS)

    Choi, S.; Joiner, J.; Choi, Y.; Duncan, B.N.; Vasilkov, A.; Krotkov, N.; Bucsela, E.J.

    2014-01-01

    We derive free-tropospheric NO2 volume mixing ratios (VMRs) by applying a cloud-slicing technique to data from the Ozone Monitoring Instrument (OMI) on the Aura satellite. In the cloud-slicing approach, the slope of the above-cloud NO2 column versus the cloud scene pressure is proportional to the NO2 VMR. In this work, we use a sample of nearby OMI pixel data from a single orbit for the linear fit. The OMI data include cloud scene pressures from the rotational-Raman algorithm and above-cloud NO2 vertical column density (VCD) (defined as the NO2 column from the cloud scene pressure to the top of the atmosphere) from a differential optical absorption spectroscopy (DOAS) algorithm. We compare OMI-derived NO2 VMRs with in situ aircraft profiles measured during the NASA Intercontinental Chemical Transport Experiment Phase B (INTEX-B) campaign in 2006. The agreement is generally within the estimated uncertainties when appropriate data screening is applied. We then derive a global seasonal climatology of free-tropospheric NO2 VMR in cloudy conditions. Enhanced NO2 in the free troposphere commonly appears near polluted urban locations where NO2 produced in the boundary layer may be transported vertically out of the boundary layer and then horizontally away from the source. Signatures of lightning NO2 are also shown throughout low and middle latitude regions in summer months. A profile analysis of our cloud-slicing data indicates signatures of lightning-generated NO2 in the upper troposphere. Comparison of the climatology with simulations from the global modeling initiative (GMI) for cloudy conditions (cloud optical depth less than10) shows similarities in the spatial patterns of continental pollution outflow. However, there are also some differences in the seasonal variation of free-tropospheric NO2 VMRs near highly populated regions and in areas affected by lightning-generated NOx.

  4. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  5. Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.

    2013-12-01

    Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary biological aerosol particles in the coarse mode (Pöhlker et al. 2012). We applied STXM-NEXAFS analysis, SEM-EDX analysis and NanoSIMS analysis to investigate the morphology, chemical composition and isotopic composition of aerosol samples. Biogenic salt particles emitted from active biota in the rainforest were found to be enriched in the heavier sulphur isotope, whereas particles with a high organic mass fraction modified by condensation of VOC oxidation products and/or cloud processing were significantly depleted in the heavier sulphur isotope compared to the seed particles. This indicates either a depleted gas phase source of sulphur dioxide contributed to the sulphate formation via the H2O2, O3 or OH oxidation pathway or an unaccounted reaction pathway which depletes the heavier isotope in the product sulphate contributes to the secondary sulphate formation in the pristine Amazon rainforest. Harris, E., et al., Science 340, 727-730, 2013 Pöhlker, C., Science 337, 1075-1078, 2012

  6. Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin

    2017-01-01

    We take advantage of ISCCP simulator data available for many models that participated in CMIP5, in order to introduce a framework for comparing model cloud output with corresponding ISCCP observations based on the cloud regime (CR) concept. Simplified global CRs are employed derived from the co-variations of three variables, namely cloud optical thickness, cloud top pressure and cloud fraction ( τ, p c , CF). Following evaluation criteria established in a companion paper of ours (Jin et al. 2016), we assess model cloud simulation performance based on how well the simplified CRs are simulated in terms of similarity of centroids, global values and map correlations of relative-frequency-of-occurrence, and long-term total cloud amounts. Mirroring prior results, modeled clouds tend to be too optically thick and not as extensive as in observations. CRs with high-altitude clouds from storm activity are not as well simulated here compared to the previous study, but other regimes containing near-overcast low clouds show improvement. Models that have performed well in the companion paper against CRs defined by joint τ- p c histograms distinguish themselves again here, but improvements for previously underperforming models are also seen. Averaging across models does not yield a drastically better picture, except for cloud geographical locations. Cloud evaluation with simplified regimes seems thus more forgiving than that using histogram-based CRs while still strict enough to reveal model weaknesses.

  7. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Bezantakos, Spiros; Stavroulas, Iasonas; Kalivitis, Nikos; Kokkalis, Panagiotis; Biskos, George; Mihalopoulos, Nikolaos; Papayannis, Alexandros; Nenes, Athanasios

    2016-06-01

    This study investigates the concentration, cloud condensation nuclei (CCN) activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of ˜ 100 nm at dry conditions) sampled. Based on positive matrix factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA) component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 %) with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA) and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a 2-fold increase of the inferred organic hygroscopicity; about 10 % of the total aerosol hygroscopicity is related to the two biomass-burning components (BBOA and OOA-BB), which in turn contribute almost 35 % to the fine-particle organic water of the aerosol. Observation-derived calculations of the cloud droplet concentrations that develop for typical boundary layer cloud conditions suggest that biomass burning increases droplet number, on average by 8.5 %. The strongly sublinear response of clouds to biomass-burning (BB) influences is a result of strong competition of CCN for water vapor, which results in very low maximum supersaturation (0.08 % on average). Attributing droplet number variations to the total aerosol number and the chemical composition variations shows that the importance of chemical composition increases with distance, contributing up to 25 % of the total droplet variability. Therefore, although BB may strongly elevate CCN numbers, the impact on droplet number is limited by water vapor availability and depends on the aerosol particle concentration levels associated with the background.

  8. Nitric Acid Uptake on Subtropical Cirrus Cloud Particles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during CRYSTAL-FACE were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward- and downward-facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197 K - 224 K and pressures of 122 hPa - 224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4- 10(exp 14) molecules/sq cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 pm and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

  9. Chemical and Hydrodynamical Models of Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2012-01-01

    Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.

  10. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  11. A New Direct Coupled Regional-scale Meteorology and Chemistry Model

    NASA Astrophysics Data System (ADS)

    Li, J.; Hsu, S.; Liu, T.; Chiang, C.; Chang, J.

    2007-12-01

    WRF/Chem was first developed in the US and generously made available to the international research community a short time ago. Starting from this, many groups have contributed new components and subroutines to this model. Based on WRF/Chem, a new online integrated model system named WRF/ChemT was established in Taiwan. It is significantly different from WRF/Chem in the following important aspects. For an online model, all chemical species emission must be direct coupled to WRF meteorology. All publicly available versions of WRF/Chem do not have this fundamental coupling. For these WRF/Chem models all emission data must first be preprocessed by SMOKE or other emission models driven by MM5 or WRF meteorologies in offline manner. WRF/ChemT has a self-consistent online emission process. We replaced the old emission driver with NCU driver, the plume rise of point sources and biogenic VOCs emission are calculated online. So that meteorology model, emission model and chemistry transport model are coupled directly in WRF/ChemT. Cloud impact on actinic flux should be consistent with WRF cloud-aerosol submodel used, not just moisture parameterization. Photolysis rates in WRF/ChemT are self consistent in every sub modules. New dry deposition routines were developed including addition of a vertical mixing scheme named the Asymmetrical Convective Model (ACM) which is used in CMAQ. The advantage of using ACM submodel had been demonstrated in earlier studies. Computational inefficiency has been a lingering problem for WRF/Chem. We have worked on this aspect of WRF/Chem development and by using a new chemical solver and also reorganizing the operator splitting computational algorithm we have made significant computational speed gain. WRF/chemT is about a factor of 4 faster in the chemistry solver and a factor of 2 faster in chemical species transport. When added together it is about a factor of 2 faster than WRF/Chem(version 2.1.2), i. e. gas-phase chemistry and meteorology are now equally fast. WRF/ChemT was evaluated and applied in regional air quality research in Taiwan. The comparison with WRF/Chem and selected current applications will be discussed in this report.

  12. Low-cloud characteristics over the tropical western Pacific from ARM observations and CAM5 simulations

    DOE PAGES

    Chandra, Arunchandra S.; Zhang, Chidong; Klein, Stephen A.; ...

    2015-09-10

    Here, this study evaluates the ability of the Community Atmospheric Model version 5 (CAM5) to reproduce low clouds observed by the Atmospheric Radiation Measurement (ARM) cloud radar at Manus Island of the tropical western Pacific during the Years of Tropical Convection. Here low clouds are defined as clouds with their tops below the freezing level and bases within the boundary layer. Low-cloud statistics in CAM5 simulations and ARM observations are compared in terms of their general occurrence, mean vertical profiles, fraction of precipitating versus nonprecipitating events, diurnal cycle, and monthly time series. Other types of clouds are included to putmore » the comparison in a broader context. The comparison shows that the model overproduces total clouds and their precipitation fraction but underestimates low clouds in general. The model, however, produces excessive low clouds in a thin layer between 954 and 930 hPa, which coincides with excessive humidity near the top of the mixed layer. This suggests that the erroneously excessive low clouds stem from parameterization of both cloud and turbulence mixing. The model also fails to produce the observed diurnal cycle in low clouds, not exclusively due to the model coarse grid spacing that does not resolve Manus Island. Lastly, this study demonstrates the utility of ARM long-term cloud observations in the tropical western Pacific in verifying low clouds simulated by global climate models, illustrates issues of using ARM observations in model validation, and provides an example of severe model biases in producing observed low clouds in the tropical western Pacific.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast,Jerome; Mei,Fan; Hubbe,John

    Most of the instruments were deployed on the ARM Aerial Facility (AAF) Gulfstream-159 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Aerosol microphysical property measurements supplemented routine ARM aerosol measurements made at the surface. The G-1 completed transects over the SGP Central Facility at multiple altitudes within the boundary layer, and within and above clouds.

  14. Aerosol properties and their influences on surface cloud condensation nuclei during CAP-MBL and MC3E

    NASA Astrophysics Data System (ADS)

    Logan, T.; Dong, X.; Xi, B.

    2016-12-01

    Aerosol particles are of particular importance because of their influences on cloud development and precipitation processes over land and ocean. Aerosol physical and chemical properties and their ability to activate as cloud condensation nuclei (CCN) as well as influence CCN number concentration (NCCN) during the 2011 Midlatitude Continental Convective Clouds Experiment (MC3E) over the Southern Great Plains (SGP) region and the 2009-2010 Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) over the Azores are presented in this study. Both regions periodically observe increases in NCCN when sulfate pollution and biomass burning smoke are present but over ocean, mineral dust diminishes NCCN. During clean conditions over the ocean, sea salt is the main contributor to CCN production, and strong (weak) surface winds and turbulent conditions can enhance (diminish) NCCN. Over the SGP, there were moderate to high correlations (R > 0.5) between increased magnitudes of aerosol loading (ssp), NCCN, chemical species, and PWV suggesting a shared common transport mechanism via the Gulf of Mexico further indicating the strong dependence on air mass type (e.g., marine vs. continental). Further investigations will greatly help to understand the seasonal influences of air masses on aerosol, NCCN, and cloud properties.

  15. Assimilation of Satellite to Improve Cloud Simulation in Wrf Model

    NASA Astrophysics Data System (ADS)

    Park, Y. H.; Pour Biazar, A.; McNider, R. T.

    2012-12-01

    A simple approach has been introduced to improve cloud simulation spatially and temporally in a meteorological model. The first step for this approach is to use Geostationary Operational Environmental Satellite (GOES) observations to identify clouds and estimate the clouds structure. Then by comparing GOES observations to model cloud field, we identify areas in which model has under-predicted or over-predicted clouds. Next, by introducing subsidence in areas with over-prediction and lifting in areas with under-prediction, erroneous clouds are removed and new clouds are formed. The technique estimates a vertical velocity needed for the cloud correction and then uses a one dimensional variation schemes (1D_Var) to calculate the horizontal divergence components and the consequent horizontal wind components needed to sustain such vertical velocity. Finally, the new horizontal winds are provided as a nudging field to the model. This nudging provides the dynamical support needed to create/clear clouds in a sustainable manner. The technique was implemented and tested in the Weather Research and Forecast (WRF) Model and resulted in substantial improvement in model simulated clouds. Some of the results are presented here.

  16. Advancing cloud lifecycle representation in numerical models using innovative analysis methods that bridge arm observations over a breadth of scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tselioudis, George

    2016-03-04

    From its location on the subtropics-midlatitude boundary, the Azores is influenced by both the subtropical high pressure and the midlatitude baroclinic storm regimes, and therefore experiences a wide range of cloud structures, from fair-weather scenes to stratocumulus sheets to deep convective systems. This project combined three types of data sets to study cloud variability in the Azores: a satellite analysis of cloud regimes, a reanalysis characterization of storminess, and a 19-month field campaign that occurred on Graciosa Island. Combined analysis of the three data sets provides a detailed picture of cloud variability and the respective dynamic influences, with emphasis onmore » low clouds that constitute a major uncertainty source in climate model simulations. The satellite cloud regime analysis shows that the Azores cloud distribution is similar to the mean global distribution and can therefore be used to evaluate cloud simulation in global models. Regime analysis of low clouds shows that stratocumulus decks occur under the influence of the Azores high-pressure system, while shallow cumulus clouds are sustained by cold-air outbreaks, as revealed by their preference for post-frontal environments and northwesterly flows. An evaluation of CMIP5 climate model cloud regimes over the Azores shows that all models severely underpredict shallow cumulus clouds, while most models also underpredict the occurrence of stratocumulus cloud decks. It is demonstrated that carefully selected case studies can be related through regime analysis to climatological cloud distributions, and a methodology is suggested utilizing process-resolving model simulations of individual cases to better understand cloud-dynamics interactions and attempt to explain and correct climate model cloud deficiencies.« less

  17. A Condensation–coalescence Cloud Model for Exoplanetary Atmospheres: Formulation and Test Applications to Terrestrial and Jovian Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Kazumasa; Okuzumi, Satoshi

    A number of transiting exoplanets have featureless transmission spectra that might suggest the presence of clouds at high altitudes. A realistic cloud model is necessary to understand the atmospheric conditions under which such high-altitude clouds can form. In this study, we present a new cloud model that takes into account the microphysics of both condensation and coalescence. Our model provides the vertical profiles of the size and density of cloud and rain particles in an updraft for a given set of physical parameters, including the updraft velocity and the number density of cloud condensation nuclei (CCNs). We test our modelmore » by comparing with observations of trade-wind cumuli on Earth and ammonia ice clouds in Jupiter. For trade-wind cumuli, the model including both condensation and coalescence gives predictions that are consistent with observations, while the model including only condensation overestimates the mass density of cloud droplets by up to an order of magnitude. For Jovian ammonia clouds, the condensation–coalescence model simultaneously reproduces the effective particle radius, cloud optical thickness, and cloud geometric thickness inferred from Voyager observations if the updraft velocity and CCN number density are taken to be consistent with the results of moist convection simulations and Galileo probe measurements, respectively. These results suggest that the coalescence of condensate particles is important not only in terrestrial water clouds but also in Jovian ice clouds. Our model will be useful to understand how the dynamics, compositions, and nucleation processes in exoplanetary atmospheres affect the vertical extent and optical thickness of exoplanetary clouds via cloud microphysics.« less

  18. Scientific goals of the Cooperative Multiscale Experiment (CME)

    NASA Technical Reports Server (NTRS)

    Cotton, William

    1993-01-01

    Mesoscale Convective Systems (MCS) form the focus of CME. Recent developments in global climate models, the urgent need to improve the representation of the physics of convection, radiation, the boundary layer, and orography, and the surge of interest in coupling hydrologic, chemistry, and atmospheric models of various scales, have emphasized the need for a broad interdisciplinary and multi-scale approach to understanding and predicting MCS's and their interactions with processes at other scales. The role of mesoscale systems in the large-scale atmospheric circulation, the representation of organized convection and other mesoscale flux sources in terms of bulk properties, and the mutually consistent treatment of water vapor, clouds, radiation, and precipitation, are all key scientific issues concerning which CME will seek to increase understanding. The manner in which convective, mesoscale, and larger scale processes interact to produce and organize MCS's, the moisture cycling properties of MCS's, and the use of coupled cloud/mesoscale models to better understand these processes, are also major objectives of CME. Particular emphasis will be placed on the multi-scale role of MCS's in the hydrological cycle and in the production and transport of chemical trace constituents. The scientific goals of the CME consist of the following: understand how the large and small scales of motion influence the location, structure, intensity, and life cycles of MCS's; understand processes and conditions that determine the relative roles of balanced (slow manifold) and unbalanced (fast manifold) circulations in the dynamics of MCS's throughout their life cycles; assess the predictability of MCS's and improve the quantitative forecasting of precipitation and severe weather events; quantify the upscale feedback of MCS's to the large-scale environment and determine interrelationships between MCS occurrence and variations in the large-scale flow and surface forcing; provide a data base for initialization and verification of coupled regional, mesoscale/hydrologic, mesoscale/chemistry, and prototype mesoscale/cloud-resolving models for prediction of severe weather, ceilings, and visibility; provide a data base for initialization and validation of cloud-resolving models, and for assisting in the fabrication, calibration, and testing of cloud and MCS parameterization schemes; and provide a data base for validation of four dimensional data assimilation schemes and algorithms for retrieving cloud and state parameters from remote sensing instrumentation.

  19. Femtosecond laser filament induced condensation and precipitation in a cloud chamber

    PubMed Central

    Ju, Jingjing; Liu, Jiansheng; Liang, Hong; Chen, Yu; Sun, Haiyi; Liu, Yonghong; Wang, Jingwei; Wang, Cheng; Wang, Tiejun; Li, Ruxin; Xu, Zhizhan; Chin, See Leang

    2016-01-01

    A unified picture of femtosecond laser induced precipitation in a cloud chamber is proposed. Among the three principal consequences of filamentation from the point of view of thermodynamics, namely, generation of chemicals, shock waves and thermal air flow motion (due to convection), the last one turns out to be the principal cause. Much of the filament induced chemicals would stick onto the existing background CCN’s (Cloud Condensation Nuclei) through collision making the latter more active. Strong mixing of air having a large temperature gradient would result in supersaturation in which the background CCN’s would grow efficiently into water/ice/snow. This conclusion was supported by two independent experiments using pure heating or a fan to imitate the laser-induced thermal effect or the strong air flow motion, respectively. Without the assistance of any shock wave and chemical CCN’s arising from laser filament, condensation and precipitation occurred. Meanwhile we believe that latent heat release during condensation /precipitation would enhance the air flow for mixing. PMID:27143227

  20. Application of the NASA A-Train to Evaluate Clouds Simulated by the Weather Research and Forecast Model

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Jedlovec, Gary J.; Lapenta, William M.

    2008-01-01

    The CloudSat Mission, part of the NASA A-Train, is providing the first global survey of cloud profiles and cloud physical properties, observing seasonal and geographical variations that are pertinent to evaluating the way clouds are parameterized in weather and climate forecast models. CloudSat measures the vertical structure of clouds and precipitation from space through the Cloud Profiling Radar (CPR), a 94 GHz nadir-looking radar measuring the power backscattered by clouds as a function of distance from the radar. One of the goals of the CloudSat mission is to evaluate the representation of clouds in forecast models, thereby contributing to improved predictions of weather, climate and the cloud-climate feedback problem. This paper highlights potential limitations in cloud microphysical schemes currently employed in the Weather Research and Forecast (WRF) modeling system. The horizontal and vertical structure of explicitly simulated cloud fields produced by the WRF model at 4-km resolution are being evaluated using CloudSat observations in concert with products derived from MODIS and AIRS. A radiative transfer model is used to produce simulated profiles of radar reflectivity given WRF input profiles of hydrometeor mixing ratios and ambient atmospheric conditions. The preliminary results presented in the paper will compare simulated and observed reflectivity fields corresponding to horizontal and vertical cloud structures associated with midlatitude cyclone events.

  1. TEMPERATURE SPECTRA OF INTERSTELLAR DUST GRAINS HEATED BY COSMIC RAYS. I. TRANSLUCENT CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvāns, Juris, E-mail: juris.kalvans@venta.lv

    Heating of whole interstellar dust grains by cosmic-ray (CR) particles affects the gas–grain chemistry in molecular clouds by promoting molecule desorption, diffusion, and chemical reactions on grain surfaces. The frequency of such heating, f{sub T}, s{sup −1}, determines how often a certain temperature T{sub CR}, K, is reached for grains hit by CR particles. This study aims to provide astrochemists with a comprehensive and updated data set on CR-induced whole-grain heating. We present calculations of f{sub T} and T{sub CR} spectra for bare olivine grains with radius a of 0.05, 0.1, and 0.2 μ m and such grains covered withmore » ice mantles of thickness 0.1 a and 0.3 a . Grain shape and structure effects are considered, as well as 30 CR elemental constituents with an updated energy spectrum corresponding to a translucent cloud with A{sub V} = 2 mag. Energy deposition by CRs in grain material was calculated with the srim program. We report full T{sub CR} spectra for all nine grain types and consider initial grain temperatures of 10 K and 20 K. We also provide frequencies for a range of minimum T{sub CR} values. The calculated data set can be simply and flexibly implemented in astrochemical models. The results show that, in the case of translucent clouds, the currently adopted rate for heating of whole grains to temperatures in excess of 70 K is underestimated by approximately two orders of magnitude in astrochemical numerical simulations. Additionally, grains are heated by CRs to modest temperatures (20–30 K) with intervals of a few years, which reduces the possibility of ice chemical explosions.« less

  2. Goddard Cumulus Ensemble (GCE) Model: Application for Understanding Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2002-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and incoming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a cloud-resolving model, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. Dr. Joanne Simpson played a central role in GCE modeling developments and applications. She was the lead author or co-author on more than forty GCE modeling papers. In this paper, a brief discussion and review of the application of the GCE model to (1) cloud interactions and mergers, (2) convective and stratiform interaction, (3) mechanisms of cloud-radiation interaction, (4) latent heating profiles and TRMM, and (5) responses of cloud systems to large-scale processes are provided. Comparisons between the GCE model's results, other cloud-resolving model results and observations are also examined.

  3. Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon

    DOE PAGES

    Campbell, Patrick; Zhang, Yang; Wang, Kai; ...

    2017-09-08

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improvemore » performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32°N and 42°N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. In conclusion, results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.« less

  4. Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Patrick; Zhang, Yang; Wang, Kai

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improvemore » performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32N and 42N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. Results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.« less

  5. Evaluation of a multi-scale WRF-CAM5 simulation during the 2010 East Asian Summer Monsoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Patrick; Zhang, Yang; Wang, Kai

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) with the physics package of the Community Atmosphere Model Version 5 (CAM5) has been applied at multiple scales over Eastern China (EC) and the Yangtze River Delta (YRD) to evaluate how increased horizontal resolution with physics designed for a coarser resolution climate model impacts aerosols and clouds, and the resulting precipitation characteristics and performance during the 2010 East Asian Summer Monsoon (EASM). Despite large underpredictions in surface aerosol concentrations and aerosol optical depth, there is good spatial agreement with surface observations of chemical predictions, and increasing spatial resolution tends to improvemore » performance. Model bias and normalized root mean square values for precipitation predictions are relatively small, but there are significant differences when comparing modeled and observed probability density functions for precipitation in EC and YRD. Increasing model horizontal resolution tends to reduce model bias and error for precipitation predictions. The surface and column aerosol loading is maximized between about 32°N and 42°N in early to mid-May during the 2010 EASM, and then shifts north while decreasing in magnitude during July and August. Changing model resolution moderately changes the spatiotemporal relationships between aerosols, cloud properties, and precipitation during the EASM, thus demonstrating the importance of model grid resolution in simulating EASM circulation and rainfall patterns over EC and the YRD. In conclusion, results from this work demonstrate the capability and limitations in the aerosol, cloud, and precipitation representation of WRF-CAM5 for regional-scale applications down to relatively fine horizontal resolutions. Further WRF-CAM5 model development and application in this area is needed.« less

  6. A cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Chen, C.; Zak, J. A.

    1989-01-01

    A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud could grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. The model successfully produced clouds with dimensions, rise, decay, liquid water contents and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. In moist, unstable atmospheres simulated clouds rose to about 3.5 km in the first 4 to 8 minutes then decayed. Liquid water contents ranged from 0.3 to 1.0 g kg-1 mixing ratios and vertical motions were from 2 to 10 ms-1. An inversion served both to reduce entrainment (and erosion) at the top and to prevent continued cloud rise. Even in the most unstable atmospheres, the ground cloud did not rise beyond 4 km and in stable atmospheres with strong low level inversions the cloud could be trapped below 500 m. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. One case of a simulated TITAN rocket explosion is also discussed.

  7. Constraining the models' response of tropical low clouds to SST forcings using CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Cesana, G.; Del Genio, A. D.; Ackerman, A. S.; Brient, F.; Fridlind, A. M.; Kelley, M.; Elsaesser, G.

    2017-12-01

    Low-cloud response to a warmer climate is still pointed out as being the largest source of uncertainty in the last generation of climate models. To date there is no consensus among the models on whether the tropical low cloudiness would increase or decrease in a warmer climate. In addition, it has been shown that - depending on their climate sensitivity - the models either predict deeper or shallower low clouds. Recently, several relationships between inter-model characteristics of the present-day climate and future climate changes have been highlighted. These so-called emergent constraints aim to target relevant model improvements and to constrain models' projections based on current climate observations. Here we propose to use - for the first time - 10 years of CALIPSO cloud statistics to assess the ability of the models to represent the vertical structure of tropical low clouds for abnormally warm SST. We use a simulator approach to compare observations and simulations and focus on the low-layered clouds (i.e. z < 3.2km) as well the more detailed level perspective of clouds (40 levels from 0 to 19km). Results show that in most models an increase of the SST leads to a decrease of the low-layer cloud fraction. Vertically, the clouds deepen namely by decreasing the cloud fraction in the lowest levels and increasing it around the top of the boundary-layer. This feature is coincident with an increase of the high-level cloud fraction (z > 6.5km). Although the models' spread is large, the multi-model mean captures the observed variations but with a smaller amplitude. We then employ the GISS model to investigate how changes in cloud parameterizations affect the response of low clouds to warmer SSTs on the one hand; and how they affect the variations of the model's cloud profiles with respect to environmental parameters on the other hand. Finally, we use CALIPSO observations to constrain the model by determining i) what set of parameters allows reproducing the observed relationships and ii) what are the consequences on the cloud feedbacks. These results point toward process-oriented constraints of low-cloud responses to surface warming and environmental parameters.

  8. CALIOP-based Biomass Burning Smoke Plume Injection Height

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Choi, H. D.; Fairlie, T. D.; Pouliot, G.; Baker, K. R.; Winker, D. M.; Trepte, C. R.; Szykman, J.

    2017-12-01

    Carbon and aerosols are cycled between terrestrial and atmosphere environments during fire events, and these emissions have strong feedbacks to near-field weather, air quality, and longer-term climate systems. Fire severity and burned area are under the control of weather and climate, and fire emissions have the potential to alter numerous land and atmospheric processes that, in turn, feedback to and interact with climate systems (e.g., changes in patterns of precipitation, black/brown carbon deposition on ice/snow, alteration in landscape and atmospheric/cloud albedo). If plume injection height is incorrectly estimated, then the transport and deposition of those emissions will also be incorrect. The heights to which smoke is injected governs short- or long-range transport, which influences surface pollution, cloud interaction (altered albedo), and modifies patterns of precipitation (cloud condensation nuclei). We are working with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) science team and other stakeholder agencies, primarily the Environmental Protection Agency and regional partners, to generate a biomass burning (BB) plume injection height database using multiple platforms, sensors and models (CALIOP, MODIS, NOAA HMS, Langley Trajectory Model). These data have the capacity to provide enhanced smoke plume injection height parameterization in regional, national and international scientific and air quality models. Statistics that link fire behavior and weather to plume rise are crucial for verifying and enhancing plume rise parameterization in local-, regional- and global-scale models used for air quality, chemical transport and climate. Specifically, we will present: (1) a methodology that links BB injection height and CALIOP air parcels to specific fires; (2) the daily evolution of smoke plumes for specific fires; (3) plumes transport and deposited on the Greenland Ice Sheet; and (4) compare CALIOP-derived smoke plume injection to CMAQ modeled smoke plume injection. These results have the potential to provide value to national and international modeling communities (scientific and air quality) and to public land, fire, and air quality management and regulations communities.

  9. Web-Based Toxic Gas Dispersion Model for Shuttle Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    During the launch of the Space Shuttle vehicle, the burning of liquid hydrogen fuel with liquid oxygen at extreme high temperatures inside the three space shuttle main engines, and the burning of the solid propellant mixture of ammonium perchlorate oxidizer, aluminum fuel, iron oxide catalyst, polymer binder, and epoxy curing agent in the two solid rocket boosters result in the formation of a large cloud of hot, buoyant toxic exhaust gases near the ground level which subsequently rises and entrains into ambient air until the temperature and density of the cloud reaches an approximate equilibrium with ambient conditions. In this paper, toxic gas dispersion for various gases are simulated over the web for varying environmental conditions which is provided by rawinsonde data. The model simulates chemical concentration at ground level up to 10 miles (1 KM grids) in downrange up to an hour after launch. The ambient concentration of the gas dispersion and the deposition of toxic particles are used as inputs for a human health risk assessment model. The advantage of the present model is the accessibility and dissemination of model results to other NASA centers over the web. The model can be remotely operated and various scenarios can be analyzed.

  10. Modeling Optical and Radiative Properties of Clouds Constrained with CARDEX Observations

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Praveen, P. S.; Ramanathan, V.

    2013-12-01

    Carbonaceous aerosols (CA) have important effects on climate by directly absorbing solar radiation and indirectly changing cloud properties. These particles tend to be a complex mixture of graphitic carbon and organic compounds. The graphitic component, called as elemental carbon (EC), is characterized by significant absorption of solar radiation. Recent studies showed that organic carbon (OC) aerosols absorb strongly near UV region, and this faction is known as Brown Carbon (BrC). The indirect effect of CA can occur in two ways, first by changing the thermal structure of the atmosphere which further affects dynamical processes governing cloud life cycle; secondly, by acting as cloud condensation nuclei (CCN) that can change cloud radiative properties. In this work, cloud optical properties have been numerically estimated by accounting for CAEDEX (Cloud Aerosol Radiative Forcing Dynamics Experiment) observed cloud parameters and the physico-chemical and optical properties of aerosols. The aerosol inclusions in the cloud drop have been considered as core shell structure with core as EC and shell comprising of ammonium sulfate, ammonium nitrate, sea salt and organic carbon (organic acids, OA and brown carbon, BrC). The EC/OC ratio of the inclusion particles have been constrained based on observations. Moderate and heavy pollution events have been decided based on the aerosol number and BC concentration. Cloud drop's co-albedo at 550nm was found nearly identical for pure EC sphere inclusions and core-shell inclusions with all non-absorbing organics in the shell. However, co-albedo was found to increase for the drop having all BrC in the shell. The co-albedo of a cloud drop was found to be the maximum for all aerosol present as interstitial compare to 50% and 0% inclusions existing as interstitial aerosols. The co-albedo was found to be ~ 9.87e-4 for the drop with 100% inclusions existing as interstitial aerosols externally mixed with micron size mineral dust with 2% hematite content. The cloud spectral optical properties and the radiative properties for the aforesaid cases during CARDEX observations will be discussed in detail.

  11. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  12. Homogeneous and heterogeneous chemistry along air parcel trajectories

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.

    1990-01-01

    The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.

  13. Impact of In-Cloud Aqueous Processes on the Chemistry and Transport of Biogenic Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Li, Yang; Barth, Mary C.; Patton, Edward G.; Steiner, Allison L.

    2017-10-01

    We investigate the impacts of cloud aqueous processes on the chemistry and transport of biogenic volatile organic compounds (BVOC) using the National Center for Atmospheric Research's large-eddy simulation code with an updated chemical mechanism that includes both gas- and aqueous-phase reactions. We simulate transport and chemistry for a meteorological case with a diurnal pattern of nonprecipitating cumulus clouds from the Baltimore-Washington area DISCOVER-AQ campaign. We evaluate two scenarios with and without aqueous-phase chemical reactions. In the cloud layer (2-3 km), the addition of aqueous phase reactions decreases HCHO by 18% over the domain due to its solubility and the fast depletion from aqueous reactions, resulting in a corresponding decrease in radical oxidants (e.g., 18% decrease in OH). The decrease of OH increases the mixing ratios of isoprene and methacrolein (MACR) (100% and 15%, respectively) in the cloud layer because the reaction rate is lower. Aqueous-phase reactions can modify the segregation between OH and BVOC by changing the sign of the segregation intensity, causing up to 55% reduction in the isoprene-OH reaction rate and 40% reduction for the MACR-OH reaction when clouds are present. Analysis of the isoprene-OH covariance budget shows the chemistry term is the primary driver of the strong segregation in clouds, triggered by the decrease in OH. All organic acids except acetic acid are formed only through aqueous-phase reactions. For acids formed in the aqueous phase, turbulence mixes these compounds on short time scales, with the near-surface mixing ratios of these acids reaching 20% of the mixing ratios in the cloud layer within 1 h of cloud formation.

  14. Global atmospheric particle formation from CERN CLOUD measurements

    NASA Astrophysics Data System (ADS)

    Dunne, Eimear M.; Gordon, Hamish; Carslaw, Kenneth S.

    2017-04-01

    New particle formation (or nucleation) is acknowledged as a significant source of climate-relevant aerosol throughout the atmosphere. However, performing atmospherically relevant nucleation experiments in a laboratory setting is extremely challenging. As a result, until now, the parameterisations used to represent new particle formation in global aerosol models were largely based on in-situ observations or theoretical nucleation models, and usually only represented the binary H2SO4-H2O system. Several different chemicals can affect particle formation rates, even at extremely low trace concentrations, which are technically challenging to measure directly. Nucleation rates also respond to environmental changes in e.g. temperature in a highly non-linear fashion. The CERN CLOUD experiment was designed to provide the most controlled and accurate nucleation rate measurements to date, over the full range of free tropospheric temperatures and down to sulphuric acid concentrations of the order of 105 cm-3. We will present a parameterisation of inorganic nucleation rates for use in global models, based on these measurements, which includes four separate nucleation pathways: binary neutral, binary ion-induced, ternary neutral, and ternary ion-induced. Both inorganic and organic nucleation parameterisations derived from CLOUD measurements have been implemented in the GLOMAP global aerosol model. The parameterisations depend on temperature and on concentrations of sulphuric acid, ammonia, organic vapours, and ions. One of CLOUD's main original goals was to determine the sensitivity of atmospheric aerosol to changes in the nucleation rate over a solar cycle. We will show that, in a present-day atmosphere, the changes in climate-relevant aerosol (in the form of cloud-level cloud condensation nuclei) over a solar cycle are on average about 0.1%, with local changes of less than 1%. In contrast, anthropogenic changes in ammonia since pre-industrial times were estimated to have a much greater influence, resulting in a radiative forcing of between -0.62 and -0.66 W m-2. Including ternary inorganic pathways in GLOMAP improved the model's agreement with free tropospheric observations, especially aircraft measurements. The further inclusion of an organic parameterisation, which increased nucleation in the summertime boundary layer, brought our results more in line with observations made at surface stations. We therefore believe that, while the addition of other nucleation pathways (such as amine-induced nucleation) will doubtless improve agreement with local in-situ measurements, this model set-up provides a good representation of the global atmosphere as a whole. By presenting this novel parameterisation at EGU, we hope to encourage its uptake among the aerosol modelling community.

  15. Multispecies reactive tracer test in an aquifer with spatially variable chemical conditions

    USGS Publications Warehouse

    Davis, J.A.; Kent, D.B.; Coston, J.A.; Hess, K.M.; Joye, J.L.

    2000-01-01

    A field investigation of multispecies reactive transport was conducted in a well‐characterized, sand and gravel aquifer on Cape Cod, Massachusetts. The aquifer is characterized by regions of differing chemical conditions caused by the disposal of secondary sewage effluent. Ten thousand liters of groundwater with added tracers (Br, Cr(VI), and EDTA complexed with Pb, Zn, Cu, and Ni) were injected into the aquifer and distributions of the tracers were monitored for 15 months. Most of the tracers were transported more than 200 m; transport was quantified using spatial moments computed from the results of a series of synoptic samplings. Cr(VI) transport was retarded relative to Br; the retardation factor varied from 1.1 to 2.4 and was dependent on chemical conditions. At 314 days after the injection, dissolved Cr(VI) mass in the tracer cloud had decreased 85%, with the likely cause being reduction to Cr(III) in a suboxic region of the aquifer. Transport of the metal‐EDTA complexes was affected by aqueous complexation, adsorption, and dissolution‐precipitation reactions of Fe oxyhydroxide minerals in the aquifer sediments. Dissolved Pb‐EDTA complexes disappeared from the tracer cloud within 85 days, probably due to metal exchange reactions with Fe and adsorbed Zn (present prior to the injection from contamination by the sewage effluent). About 30% of the Cu‐EDTA complexes remained within the tracer cloud 314 days after injection, even though the thermodynamic stability of the Pb‐EDTA complex is greater than Cu‐EDTA. It is hypothesized that stronger adsorption of Pb2+ to the aquifer sediments causes the Pb‐EDTA complex to disassociate to a greater degree than the Cu‐EDTA complex. The mass of dissolved Zn‐EDTA increased during the first 175 days of the tracer test to 140% of the mass injected, with the increase due to desorption of sewage‐derived Zn. Dissolved Ni‐EDTA mass remained nearly constant throughout the tracer test, apparently only participating in reversible adsorption reactions. The results of the field experiment provide a chemically complex data set that can be used in the testing of reactive transport models of flow coupled with chemical reactions.

  16. Observations of cloud chemistry during longrange transport of power plant plumes

    NASA Astrophysics Data System (ADS)

    Clark, P. A.; Fletcher, I. S.; Kallend, A. S.; McElroy, W. J.; Marsh, A. R. W.; Webb, A. H.

    Measurements of the chemical composition of cloud water have been made as part of a programme to study the chemical development of power plant plumes in trajectories over the North Sea. During a two-day study (28-29 January 1981), the conditions were anticyclonic with light winds advecting the plume from the NE coast of England towards Denmark. The mixing layer overland was capped by stratocumulus beneath a very strong subsidence inversion, which resulted in the plume being entirely trapped within the layer. Low level acceleration occurred as the plume travelled towards the coast, accompanied by a shallowing of the mixing layer. This led to the unusual situation whereby the plume was confined to a shallow (400m) stratocumulus-filled boundary layer throughout most of its travel. The light winds enabled approximately Lagrangian sampling of the plume after about 5 and 22 h travel (~ 100 and 650km from source). The very shallow boundary layer constrained the dilution of the plume to such an extent that even though ambient O 3 was consumed within the plume by the reaction with NO, the NO 2/NO x ratio was still < 0.5 along the plume centre line after 22 h travel. The measurements have been compared with the predictions of a reactive plume model involving both gas phase and solution phase chemistry. The model predicts oxidation rates for SO 2 in the ambient air outside the plume to be substantially higher than those within the plume, at values of 0.5-1.0 and ~ 0.04 % h -1, respectively. This leads to the conclusion that nearly all the sulphate in the plume arose from entrainment of sulphate produced in cloud droplets outside the plume. The absence of an effective oxidation mechanism in solution for the conversion of NOx to HNO 3 suggests that nitrate in the cloud water was derived from the gas phase oxidation of NOx. HC1 was found to be the major contributor to cloud water acidity in the plume on this occasion. The resultant acidity suppressed the solubility of SO 2 and this together with the low oxidant levels inhibited the production of sulphate in solution within the plume. The HCl contribution to acidity had declined markedly after 22h travel and this loss corresponds to a dry deposition velocity of 13 mm s -1.

  17. An efficient framework for modeling clouds from Landsat8 images

    NASA Astrophysics Data System (ADS)

    Yuan, Chunqiang; Guo, Jing

    2015-03-01

    Cloud plays an important role in creating realistic outdoor scenes for video game and flight simulation applications. Classic methods have been proposed for cumulus cloud modeling. However, these methods are not flexible for modeling large cloud scenes with hundreds of clouds in that the user must repeatedly model each cloud and adjust its various properties. This paper presents a meteorologically based method to reconstruct cumulus clouds from high resolution Landsat8 satellite images. From these input satellite images, the clouds are first segmented from the background. Then, the cloud top surface is estimated from the temperature of the infrared image. After that, under a mild assumption of flat base for cumulus cloud, the base height of each cloud is computed by averaging the top height for pixels on the cloud edge. Then, the extinction is generated from the visible image. Finally, we enrich the initial shapes of clouds using a fractal method and represent the recovered clouds as a particle system. The experimental results demonstrate our method can yield realistic cloud scenes resembling those in the satellite images.

  18. Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud

    NASA Astrophysics Data System (ADS)

    Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok

    Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.

  19. Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations

    NASA Astrophysics Data System (ADS)

    Mbarek, Rostom; Kempton, Eliza M.-R.

    2016-08-01

    Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K2SO4 and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.

  20. Shocks and Molecules in Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Arce, Héctor

    2014-06-01

    As protostars form through the gravitational infall of material from their parent molecular cloud, they power energetic bipolar outflows that interact with the surrounding medium. Protostellar outflows are important to the chemical evolution of star forming regions, as the shocks produced by the interaction of the high-velocity protostellar wind and the ambient cloud can heat the surrounding medium and trigger chemical and physical processes that would otherwise not take place in a quiescent molecular cloud. Protostellar outflows, are therefore a great laboratory to study shock physics and shock-induced chemistry. I will present results from millimeter-wave observations of a small sample of outflow shocks. The spectra show clear evidence of the existence of complex organic molecules (e.g., methyl formate, ethanol, acetaldehyde) and high abundance of certain simple molecules (e.g., HCO^+, HCN, H_2O) in outflows. Results indicate that, most likely, the complex species formed on the surface of grains and were then ejected from the grain mantles by the shock. Spectral surveys of shocked regions using ALMA could therefore be used to probe the composition of dust in molecular clouds. Our results demonstrate that outflows modify the chemical composition of the surrounding gaseous environment and that this needs to be considered when using certain species to study active star forming regions.

  1. SUPERNOVA DRIVING. III. SYNTHETIC MOLECULAR CLOUD OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padoan, Paolo; Juvela, Mika; Pan, Liubin

    We present a comparison of molecular clouds (MCs) from a simulation of supernova (SN) driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming that the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, T {sub B,min} = 1.4 K, of the J = 1 − 0 {sup 12}CO line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousandsmore » MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity–size and mass–size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity–size relation is slightly too steep for some of the models, while the mass–size relation is a bit too shallow for all models only at a spatial resolution dx ≈ 1 pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity–size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that SN-driven turbulence can explain the origin and dynamics of MCs.« less

  2. Supernova Driving. III. Synthetic Molecular Cloud Observations

    NASA Astrophysics Data System (ADS)

    Padoan, Paolo; Juvela, Mika; Pan, Liubin; Haugbølle, Troels; Nordlund, Åke

    2016-08-01

    We present a comparison of molecular clouds (MCs) from a simulation of supernova (SN) driven interstellar medium (ISM) turbulence with real MCs from the Outer Galaxy Survey. The radiative transfer calculations to compute synthetic CO spectra are carried out assuming that the CO relative abundance depends only on gas density, according to four different models. Synthetic MCs are selected above a threshold brightness temperature value, T B,min = 1.4 K, of the J = 1 - 0 12CO line, generating 16 synthetic catalogs (four different spatial resolutions and four CO abundance models), each containing up to several thousands MCs. The comparison with the observations focuses on the mass and size distributions and on the velocity-size and mass-size Larson relations. The mass and size distributions are found to be consistent with the observations, with no significant variations with spatial resolution or chemical model, except in the case of the unrealistic model with constant CO abundance. The velocity-size relation is slightly too steep for some of the models, while the mass-size relation is a bit too shallow for all models only at a spatial resolution dx ≈ 1 pc. The normalizations of the Larson relations show a clear dependence on spatial resolution, for both the synthetic and the real MCs. The comparison of the velocity-size normalization suggests that the SN rate in the Perseus arm is approximately 70% or less of the rate adopted in the simulation. Overall, the realistic properties of the synthetic clouds confirm that SN-driven turbulence can explain the origin and dynamics of MCs.

  3. A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.

    2015-12-01

    Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.

  4. Dehydration, denitrification and ozone loss during the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC and comparison to Aura/MLS and GLORIA observations

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Bjoern-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Manney, Gloria; Froidevaux, Lucien; Ungermann, Jörn; Preusse, Peter; Friedl-Vallon, Felix; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-04-01

    The Arctic winter 2015/2016 has been one of the coldest stratospheric winters in recent years. A stable vortex formed already in early December and the early winter has been exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles have led to denitrification as well as dehydration of stratospheric layers. Nudged model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. POLSTRACC was a HALO mission (High Altitude and LOng Range Research Aircraft) aiming on the investigation of the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds were investigated. In this presentation, an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given. Chemical-dynamical processes such as denitrification, dehydration and ozone loss will be investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed onboard of HALO during the POLSTRACC campaign show that the EMAC simulations are in good agreement with observations (differences generally within ±20%). However, larger differences between model and simulations are found e.g. in the areas of denitrification. Both, model simulations and observation show that in 2015/2016 ozone loss was quite strong, but not as strong as in 2010/2011 while denitrification and dehydration were so far the strongest in the Arctic stratosphere.

  5. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations

    NASA Astrophysics Data System (ADS)

    Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian

    2016-04-01

    Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.

  6. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  7. The Chemical and Microphysical Evolution of Droplet Spectra In Clean and Polluted Environment During Ace-2

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Osborne, S.; Smith, M. H.

    The stratocumulus cloud widely studied during the ACE-2 (Aerosol Characterisation Experiment-2) campaign was contaminated on certain days with European pollution. This led to some modification of the aerosol and the cloud properties and forms the basis of this observational and modelling study. Model results showed that much of the pH levels for the ammonium sulphate based droplets ranged between 4-6 indicating that sulphate production was effected predominantly by hydrogen peroxide and to some extent, when the pH was above 5.5, by ozone causing a very substantial increase in the total amount of sulphate. Our paper has also examined the alteration of the radiative properties induced by SO2 pollution. Under clean conditions (26 June 1997) the optical thickness was the lowest with the largest droplet effective diameters. Under the most polluted conditions (18 July 1997) when the SO2 level was the maximum the optical thickness was the high- est with the lowest droplet effective diameter. The following day (19 July) was less polluted with lower SO2 concentration and the optical depth and the effective diame- ters were in between the two. For the most polluted case the geometric cloud thickness was also the largest, and our sensitivity studies performed over 4 horizontal sectional runs showed that the droplet number concentrations changed considerably, and since the cloud thickness and the LWC did not vary much over these sections, the overall optical properties did not show much horizontal variablity.

  8. Cirrus clouds. I - A cirrus cloud model. II - Numerical experiments on the formation and maintenance of cirrus

    NASA Technical Reports Server (NTRS)

    Starr, D. OC.; Cox, S. K.

    1985-01-01

    A simplified cirrus cloud model is presented which may be used to investigate the role of various physical processes in the life cycle of a cirrus cloud. The model is a two-dimensional, time-dependent, Eulerian numerical model where the focus is on cloud-scale processes. Parametrizations are developed to account for phase changes of water, radiative processes, and the effects of microphysical structure on the vertical flux of ice water. The results of a simulation of a thin cirrostratus cloud are given. The results of numerical experiments performed with the model are described in order to demonstrate the important role of cloud-scale processes in determining the cloud properties maintained in response to larger scale forcing. The effects of microphysical composition and radiative processes are considered, as well as their interaction with thermodynamic and dynamic processes within the cloud. It is shown that cirrus clouds operate in an entirely different manner than liquid phase stratiform clouds.

  9. A multiscale modeling framework model (superparameterized CAM5) with a higher-order turbulence closure: Model description and low-cloud simulations

    DOE PAGES

    Wang, Minghuai; Larson, Vincent E.; Ghan, Steven; ...

    2015-04-18

    In this study, a higher-order turbulence closure scheme, called Cloud Layers Unified by Binormals (CLUBB), is implemented into a Multi-scale Modeling Framework (MMF) model to improve low cloud simulations. The performance of CLUBB in MMF simulations with two different microphysics configurations (one-moment cloud microphysics without aerosol treatment and two-moment cloud microphysics coupled with aerosol treatment) is evaluated against observations and further compared with results from the Community Atmosphere Model, Version 5 (CAM5) with conventional cloud parameterizations. CLUBB is found to improve low cloud simulations in the MMF, and the improvement is particularly evident in the stratocumulus-to-cumulus transition regions. Compared tomore » the single-moment cloud microphysics, CLUBB with two-moment microphysics produces clouds that are closer to the coast, and agrees better with observations. In the stratocumulus-to cumulus transition regions, CLUBB with two-moment cloud microphysics produces shortwave cloud forcing in better agreement with observations, while CLUBB with single moment cloud microphysics overestimates shortwave cloud forcing. CLUBB is further found to produce quantitatively similar improvements in the MMF and CAM5, with slightly better performance in the MMF simulations (e.g., MMF with CLUBB generally produces low clouds that are closer to the coast than CAM5 with CLUBB). As a result, improved low cloud simulations in MMF make it an even more attractive tool for studying aerosol-cloud-precipitation interactions.« less

  10. Limits to Cloud Susceptibility

    NASA Technical Reports Server (NTRS)

    Coakley, James A., Jr.

    2002-01-01

    1-kilometer AVHRR observations of ship tracks in low-level clouds off the west coast of the U S. were used to determine limits for the degree to which clouds might be altered by increases in anthropogenic aerosols. Hundreds of tracks were analyzed to determine whether the changes in droplet radii, visible optical depths, and cloud top altitudes that result from the influx of particles from underlying ships were consistent with expectations based on simple models for the indirect effect of aerosols. The models predict substantial increases in sunlight reflected by polluted clouds due to the increases in droplet numbers and cloud liquid water that result from the elevated particle concentrations. Contrary to the model predictions, the analysis of ship tracks revealed a 15-20% reduction in liquid water for the polluted clouds. Studies performed with a large-eddy cloud simulation model suggested that the shortfall in cloud liquid water found in the satellite observations might be attributed to the restriction that the 1-kilometer pixels be completely covered by either polluted or unpolluted cloud. The simulation model revealed that a substantial fraction of the indirect effect is caused by a horizontal redistribution of cloud water in the polluted clouds. Cloud-free gaps in polluted clouds fill in with cloud water while the cloud-free gaps in the surrounding unpolluted clouds remain cloud-free. By limiting the analysis to only overcast pixels, the current study failed to account for the gap-filling predicted by the simulation model. This finding and an analysis of the spatial variability of marine stratus suggest new ways to analyze ship tracks to determine the limit to which particle pollution will alter the amount of sunlight reflected by clouds.

  11. A Simple Model of Cirrus Horizontal Inhomogeneity and Cloud Fraction

    NASA Technical Reports Server (NTRS)

    Smith, Samantha A.; DelGenio, Anthony D.

    1998-01-01

    A simple model of horizontal inhomogeneity and cloud fraction in cirrus clouds has been formulated on the basis that all internal horizontal inhomogeneity in the ice mixing ratio is due to variations in the cloud depth, which are assumed to be Gaussian. The use of such a model was justified by the observed relationship between the normalized variability of the ice water mixing ratio (and extinction) and the normalized variability of cloud depth. Using radar cloud depth data as input, the model reproduced well the in-cloud ice water mixing ratio histograms obtained from horizontal runs during the FIRE2 cirrus campaign. For totally overcast cases the histograms were almost Gaussian, but changed as cloud fraction decreased to exponential distributions which peaked at the lowest nonzero ice value for cloud fractions below 90%. Cloud fractions predicted by the model were always within 28% of the observed value. The predicted average ice water mixing ratios were within 34% of the observed values. This model could be used in a GCM to produce the ice mixing ratio probability distribution function and to estimate cloud fraction. It only requires basic meteorological parameters, the depth of the saturated layer and the standard deviation of cloud depth as input.

  12. The Arctic Summer Cloud Ocean Study (ASCOS): overview and experimental design

    NASA Astrophysics Data System (ADS)

    Tjernström, M.; Leck, C.; Birch, C. E.; Bottenheim, J. W.; Brooks, B. J.; Brooks, I. M.; Bäcklin, L.; Chang, R. Y.-W.; de Leeuw, G.; Di Liberto, L.; de la Rosa, S.; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P. A.; Mauritsen, T.; Müller, M.; Norris, S. J.; Orellana, M. V.; Orsini, D. A.; Paatero, J.; Persson, P. O. G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M. D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C. R.

    2014-03-01

    The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of future climate in the Arctic. The problem is exacerbated by the paucity of research-quality observations in the central Arctic. Improved formulations in climate models require such observations, which can only come from measurements in situ in this difficult-to-reach region with logistically demanding environmental conditions. The Arctic Summer Cloud Ocean Study (ASCOS) was the most extensive central Arctic Ocean expedition with an atmospheric focus during the International Polar Year (IPY) 2007-2008. ASCOS focused on the study of the formation and life cycle of low-level Arctic clouds. ASCOS departed from Longyearbyen on Svalbard on 2 August and returned on 9 September 2008. In transit into and out of the pack ice, four short research stations were undertaken in the Fram Strait: two in open water and two in the marginal ice zone. After traversing the pack ice northward, an ice camp was set up on 12 August at 87°21' N, 01°29' W and remained in operation through 1 September, drifting with the ice. During this time, extensive measurements were taken of atmospheric gas and particle chemistry and physics, mesoscale and boundary-layer meteorology, marine biology and chemistry, and upper ocean physics. ASCOS provides a unique interdisciplinary data set for development and testing of new hypotheses on cloud processes, their interactions with the sea ice and ocean and associated physical, chemical, and biological processes and interactions. For example, the first-ever quantitative observation of bubbles in Arctic leads, combined with the unique discovery of marine organic material, polymer gels with an origin in the ocean, inside cloud droplets suggests the possibility of primary marine organically derived cloud condensation nuclei in Arctic stratocumulus clouds. Direct observations of surface fluxes of aerosols could, however, not explain observed variability in aerosol concentrations, and the balance between local and remote aerosols sources remains open. Lack of cloud condensation nuclei (CCN) was at times a controlling factor in low-level cloud formation, and hence for the impact of clouds on the surface energy budget. ASCOS provided detailed measurements of the surface energy balance from late summer melt into the initial autumn freeze-up, and documented the effects of clouds and storms on the surface energy balance during this transition. In addition to such process-level studies, the unique, independent ASCOS data set can and is being used for validation of satellite retrievals, operational models, and reanalysis data sets.

  13. Insights into low-latitude cloud feedbacks from high-resolution models.

    PubMed

    Bretherton, Christopher S

    2015-11-13

    Cloud feedbacks are a leading source of uncertainty in the climate sensitivity simulated by global climate models (GCMs). Low-latitude boundary-layer and cumulus cloud regimes are particularly problematic, because they are sustained by tight interactions between clouds and unresolved turbulent circulations. Turbulence-resolving models better simulate such cloud regimes and support the GCM consensus that they contribute to positive global cloud feedbacks. Large-eddy simulations using sub-100 m grid spacings over small computational domains elucidate marine boundary-layer cloud response to greenhouse warming. Four observationally supported mechanisms contribute: 'thermodynamic' cloudiness reduction from warming of the atmosphere-ocean column, 'radiative' cloudiness reduction from CO2- and H2O-induced increase in atmospheric emissivity aloft, 'stability-induced' cloud increase from increased lower tropospheric stratification, and 'dynamical' cloudiness increase from reduced subsidence. The cloudiness reduction mechanisms typically dominate, giving positive shortwave cloud feedback. Cloud-resolving models with horizontal grid spacings of a few kilometres illuminate how cumulonimbus cloud systems affect climate feedbacks. Limited-area simulations and superparameterized GCMs show upward shift and slight reduction of cloud cover in a warmer climate, implying positive cloud feedbacks. A global cloud-resolving model suggests tropical cirrus increases in a warmer climate, producing positive longwave cloud feedback, but results are sensitive to subgrid turbulence and ice microphysics schemes. © 2015 The Author(s).

  14. CovalentDock Cloud: a web server for automated covalent docking.

    PubMed

    Ouyang, Xuchang; Zhou, Shuo; Ge, Zemei; Li, Runtao; Kwoh, Chee Keong

    2013-07-01

    Covalent binding is an important mechanism for many drugs to gain its function. We developed a computational algorithm to model this chemical event and extended it to a web server, the CovalentDock Cloud, to make it accessible directly online without any local installation and configuration. It provides a simple yet user-friendly web interface to perform covalent docking experiments and analysis online. The web server accepts the structures of both the ligand and the receptor uploaded by the user or retrieved from online databases with valid access id. It identifies the potential covalent binding patterns, carries out the covalent docking experiments and provides visualization of the result for user analysis. This web server is free and open to all users at http://docking.sce.ntu.edu.sg/.

  15. CovalentDock Cloud: a web server for automated covalent docking

    PubMed Central

    Ouyang, Xuchang; Zhou, Shuo; Ge, Zemei; Li, Runtao; Kwoh, Chee Keong

    2013-01-01

    Covalent binding is an important mechanism for many drugs to gain its function. We developed a computational algorithm to model this chemical event and extended it to a web server, the CovalentDock Cloud, to make it accessible directly online without any local installation and configuration. It provides a simple yet user-friendly web interface to perform covalent docking experiments and analysis online. The web server accepts the structures of both the ligand and the receptor uploaded by the user or retrieved from online databases with valid access id. It identifies the potential covalent binding patterns, carries out the covalent docking experiments and provides visualization of the result for user analysis. This web server is free and open to all users at http://docking.sce.ntu.edu.sg/. PMID:23677616

  16. The chemical composition of cirrus forming aerosol: Lessons from the MACPEX field study

    NASA Astrophysics Data System (ADS)

    Cziczo, D. J.; Froyd, K. D.; Murphy, D. M.

    2012-12-01

    Cirrus clouds are an important factor in the Earth's climate system. These clouds exert a large radiative forcing due to their extensive global coverage and high altitude despite minimal physical and optical thickness. During the Mid-latitude Aerosol and Cloud Properties EXperiment (MACPEX) we measured chemical and physical properties of the aerosols on which cirrus ice crystals formed in situ and in real time using a laser ablation single particle mass spectrometry technique deployed aboard the NASA WB-57 research aircraft. Ice residual particles were also collected for off-line laboratory investigation including electron microscopy. Flights spanned from the Gulf of Mexico to the mid-latitudes over the United States. In most cases heterogeneous freezing was the inferred mechanism of cloud formation and aerosol composition had a significant impact on the nucleation of the ice phase. Mineral dust and some metallic particles were highly enhanced in the ice phase when compared to their abundance outside of cloud. Particles such as soot and biological material, previously suggested as ice nuclei, were not found either due to an inability to nucleate ice or low abundance. Atmospheric implications of these measurements and more advanced future analyses will be discussed.

  17. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3

    DOE PAGES

    Prather, M. J.

    2015-05-27

    A new approach for modeling photolysis rates ( J values) in atmospheres with fractional cloud cover has been developed and implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observed statistics for the vertical correlation of cloud layers, Cloud-J 7.3 provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations represented by four quadrature atmospheres produces mean J values in an atmospheric column with root-mean-square errors of 4% or less compared with 10–20% errors using simpler approximations.more » Cloud-J is practical for chemistry-climate models, requiring only an average of 2.8 Fast-J calls per atmosphere, vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections is also incorporated into Cloud-J.« less

  18. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    DOE PAGES

    Prather, M. J.

    2015-08-14

    A new approach for modeling photolysis rates ( J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J 7.3c provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations by four quadrature atmospheres produces mean J values in an atmospheric column with root mean square (rms) errors of 4 % or less compared with 10–20 %more » errors using simpler approximations. Cloud-J is practical for chemistry–climate models, requiring only an average of 2.8 Fast-J calls per atmosphere vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections, is also incorporated into Cloud-J.« less

  19. Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Stammes, P.; Aben, E. A. A.

    2007-01-01

    Reflectance spectra from 280-1750 nm of typical desert dust aerosol (DDA) and biomass burning aerosol (BBA) scenes over oceans are presented, measured by the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). DDA and BBA are both UV-absorbing aerosols, but their effect on the top-of-atmosphere (TOA) reflectance is different due to differences in the way mineral aerosols and smoke reflect and absorb radiation. Mineral aerosols are typically large, inert particles, found in warm, dry continental air. Smoke particles, on the other hand, are usually small particles, although often clustered, chemically very active and highly variable in composition. Moreover, BBA are hygroscopic and over oceans BBA were invariably found in cloudy scenes. TOA reflectance spectra of typical DDA and BBA scenes were analyzed, using radiative transfer simulations, and compared. The DDA spectrum was successfully simulated using a layer with a bimodal size distribution of mineral aerosols in a clear sky. The spectrum of the BBA scene, however, was determined by the interaction between cloud droplets and smoke particles, as is shown by simulations with a model of separate aerosol and cloud layers and models with internally and externally mixed aerosol/cloud layers. The occurrence of clouds in smoke scenes when sufficient water vapor is present usually prevents the detection of optical properties of these aerosol plumes using space-borne sensors. However, the Absorbing Aerosol Index (AAI), a UV color index, is not sensitive to scattering aerosols and clouds and can be used to detect these otherwise obscured aerosol plumes over clouds. The amount of absorption of radiation can be expressed using the absorption optical thickness. The absorption optical thickness in the DDA case was 0.42 (340 nm) and 0.14 (550 nm) for an aerosol layer of optical thickness 1.74 (550 nm). In the BBA case the absorption optical thickness was 0.18 (340 nm) and 0.10 (550 nm) for an aerosol/cloud layer of optical thickness 20.0 (550 nm). However, this reduced the cloud albedo by about 0.2 (340 nm) and 0.15 (550 nm). This method can be an important tool to estimate the global impact of absorption of shortwave radiation by smoke and industrial aerosols inside clouds.

  20. Titan’s High Altitude South Polar (HASP) Stratospheric Ice Cloud as observed by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Nna-Mvondo, Delphine; Samuelson, Robert E.; Achterberg, Richard K.; Flasar, F. Michael; Jennings, Donald E.; Raulin, Francois

    2017-10-01

    During Cassini’s T112 flyby of Titan in the late southern fall season (July 2015), the Composite InfraRed Spectrometer (CIRS) made a startling discovery - a massive cloud system had developed throughout Titan’s mid stratosphere (~200 km) at high southern latitudes. The vertical distributions of intensity of this High-Altitude South Polar (HASP) stratospheric ice cloud system are at least an order of magnitude stronger than the CIRS-observed northern winter polar stratospheric cloud system [1]. The chemical composition of the HASP cloud is not identical to its northern winter counterpart, in that it exhibits different spectral characteristics. The HASP cloud is just one illustrative example demonstrating the rapidly changing conditions occurring in Titan’s south polar stratospheric region as Titan began its journey into southern winter. Such observed changes are contrary to the observed configuration as Titan’s northern polar stratosphere transitioned out of northern winter, which revealed a relatively slow decay of: 1) the cold polar stratospheric temperatures, 2) the strength of the polar vortex, and 3) the abundances in stratospheric organic gases and ices. We will discuss the physical and chemical characteristics of the CIRS-observed HASP mid stratospheric ice cloud system. Potential ice analog candidates obtained from thin film transmission spectra of co-condensed nitrile/hydrocarbon ice mixtures obtained with our SPECtroscopy of Titan-Related ice AnaLogs (SPECTRAL) chamber are used to support these analyses. [1] Anderson C. M. and Samuelson R. E. (2011) Icarus, 212, 762-778.

  1. Dynamical Timescale of Pre-collapse Evolution Inferred from Chemical Distribution in the Taurus Molecular Cloud-1 (TMC-1) Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yunhee; Lee, Jeong-Eun; Bourke, Tyler L.

    We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Classmore » II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.« less

  2. Tropical and Subtropical Cloud Transitions in Weather and Climate Prediction Models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)

    NASA Technical Reports Server (NTRS)

    Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, J.; DeGenio, A.; DeMott, C.; Franklin, C.; Hannay, C.; Jakob, C.; Jiao, Y.; hide

    2011-01-01

    A model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/ WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June July August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yr ECMWF Re-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.

  3. Generalized background error covariance matrix model (GEN_BE v2.0)

    NASA Astrophysics Data System (ADS)

    Descombes, G.; Auligné, T.; Vandenberghe, F.; Barker, D. M.; Barré, J.

    2015-03-01

    The specification of state background error statistics is a key component of data assimilation since it affects the impact observations will have on the analysis. In the variational data assimilation approach, applied in geophysical sciences, the dimensions of the background error covariance matrix (B) are usually too large to be explicitly determined and B needs to be modeled. Recent efforts to include new variables in the analysis such as cloud parameters and chemical species have required the development of the code to GENerate the Background Errors (GEN_BE) version 2.0 for the Weather Research and Forecasting (WRF) community model. GEN_BE allows for a simpler, flexible, robust, and community-oriented framework that gathers methods used by some meteorological operational centers and researchers. We present the advantages of this new design for the data assimilation community by performing benchmarks of different modeling of B and showing some of the new features in data assimilation test cases. As data assimilation for clouds remains a challenge, we present a multivariate approach that includes hydrometeors in the control variables and new correlated errors. In addition, the GEN_BE v2.0 code is employed to diagnose error parameter statistics for chemical species, which shows that it is a tool flexible enough to implement new control variables. While the generation of the background errors statistics code was first developed for atmospheric research, the new version (GEN_BE v2.0) can be easily applied to other domains of science and chosen to diagnose and model B. Initially developed for variational data assimilation, the model of the B matrix may be useful for variational ensemble hybrid methods as well.

  4. Physical conditions in molecular clouds

    NASA Technical Reports Server (NTRS)

    Evans, Neal J., II

    1989-01-01

    Recent developments have complicated the picture of the physical conditions in molecular clouds. The discoveries of widespread emission from high-J lines of CD and 12-micron IRAS emission have revealed the presence of considerably hotter gas and dust near the surfaces of molecular clouds. These components can complicate interpretation of the bulk of the cloud gas. Commonly assumed relations between column density or mean density and cloud size are called into question by conflicting results and by consideration of selection effects. Analysis of density and density structure through molecular excitation has shown that very high densities exist in star formation regions, but unresolved structure and possible chemical effects complicate the interpretation. High resolution far-IR and submillimeter observations offer a complementary approach and are beginning to test theoretical predictions of density gradients in clouds.

  5. Tropospheric Ozone Determined from Aura OMI and MLS: Evaluation of Measurements and Comparison with the Global Modeling Initiative's Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Ziemke, J. R.; Chandra, S.; Duncan, B. N.; Froidevaux, L.; Bhartia, P. K.; Levelt, P. F.; Waters, J. W.

    2006-01-01

    Ozone measurements from the OMI and MLS instruments on board the Aura satellite are used for deriving global distributions of tropospheric column ozone (TCO). TCO is determined using the tropospheric ozone residual method which involves subtracting measurements of MLS stratospheric column ozone (SCO) from OMI total column ozone after adjusting for intercalibration differences of the two instruments using the convective-cloud differential method. The derived TCO field, which covers one complete year of mostly continuous daily measurements from late August 2004 through August 2005, is used for studying the regional and global pollution on a timescale of a few days to months. The seasonal and zonal characteristics of the observed TCO fields are also compared with TCO fields derived from the Global Modeling Initiative's Chemical Transport Model. The model and observations show interesting similarities with respect to zonal and seasonal variations. However, there are notable differences, particularly over the vast region of the Saharan desert.

  6. Unconventional Constraints on Nitrogen Chemistry using DC3 Observations and Trajectory-based Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Shu, Q.; Henderson, B. H.

    2017-12-01

    Chemical transport models underestimate nitrogen dioxide observations in the upper troposphere (UT). Previous research in the UT succeeded in combining model predictions with field campaign measurements to demonstrate that the nitric acid formation rate (HO + NO2 → HNO3 (R1)) is overestimated by 22% (Henderson et al., 2012). A subsequent publication (Seltzer et al., 2015) demonstrated that single chemical constraint alters ozone and aerosol formation/composition. This work attempts to replicate previous chemical constraints with newer observations and a different modeling framework. We apply the previously successful constraint framework to Deep Convection Clouds and Chemistry (DC3). DC3 is a more recent field campaign where simulated nitrogen imbalances still exist. Freshly convected air parcels, identified in the DC3 dataset, as initial coordinates to initiate Lagrangian trajectories. Along each trajectory, we simulate the air parcel chemical state. Samples along the trajectories will form ensembles that represent possible realizations of UT air parcels. We then apply Bayesian inference to constrain nitrogen chemistry and compare results to the existing literature. Our anticipated results will confirm overestimation of HNO3 formation rate in previous work and provide further constraints on other nitrogen reaction rate coefficients that affect terminal products from NOx. We will particularly focus on organic nitrate chemistry that laboratory literature has yet to fully address. The results will provide useful insights into nitrogen chemistry that affects climate and human health.

  7. Feedbacks between Air-Quality, Meteorology, and the Forest Environment

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Akingunola, Ayodeji; Stroud, Craig; Zhang, Junhua; Gong, Wanmin; Moran, Michael; Zheng, Qiong; Brook, Jeffrey; Sills, David

    2017-04-01

    The outcome of air quality forecasts depend in part on how the local environment surrounding the emissions regions influences chemical reaction rates and transport from those regions to the larger spatial scales. Forested areas alter atmospheric chemistry through reducing photolysis rates and vertical diffusivities within the forest canopy. The emitted pollutants, and their reaction products, are in turn capable of altering meteorology, through the well-known direct and indirect effects of particulate matter on radiative transfer. The combination of these factors was examined using version 2 of the Global Environmental Multiscale - Modelling Air-quality and CHemistry (GEM-MACH) on-line air pollution model. The model configuration used for this study included 12 aerosol size bins, eight aerosol species, homogeneous core Mie scattering, the Milbrandt-Yao two-moment cloud microphysics scheme with cloud condensation nuclei generated from model aerosols using the scheme of Abdul-Razzak and Ghan, and a new parameterization for forest canopy shading and turbulence. The model was nested to 2.5km resolution for a domain encompassing the lower Great Lakes, for simulations of a period in August of 2015 during the Pan American Games, held in Toronto, Canada. Four scenarios were carried out: (1) a "Base Case" scenario (the original model, in which coupling between chemistry and weather is not permitted; instead, the meteorological model's internal climatologies for aerosol optical and cloud condensation properties are used for direct and indirect effect calculations); (2) a "Feedback" scenario (the aerosol properties were derived from the internally simulated chemistry, and coupled to the meteorological model's radiative transfer and cloud formation modules); (3) a "Forest" scenario (canopy shading and turbulence were added to the Base Case); (4) a "Combined" scenario (including both direct and indirect effect coupling between meteorology and chemistry, as well as the forest canopy parameterization). The simulations suggest that the feedbacks between simulated aerosols and meteorology may strengthen the existing lake breeze circulation, modifying the resulting meteorological and air-quality forecasts, while the forest canopy's influence may extend throughout the planetary boundary layer, and may also influence the weather. The simulations will be compared to available observations, in order to determine their relative impact on model performance.

  8. A Model for Particle Microphysics,Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.

    1995-01-01

    A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gate conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less than 30-micron radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and under-prediction of peak supersaturations.

  9. A Model for Particle Microphysics, Turbulent Mixing, and Radiative Transfer in the Stratocumulus-Topped Marine Boundary Layer and Comparisons with Measurements

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew S.; Toon, Owen B.; Hobbs, Peter V.

    1995-01-01

    A detailed 1D model of the stratocumulus-topped marine boundary layer is described. The model has three coupled components: a microphysics module that resolves the size distributions of aerosols and cloud droplets, a turbulence module that treats vertical mixing between layers, and a multiple wavelength radiative transfer module that calculates radiative heating rates and cloud optical properties. The results of a 12-h model simulation reproduce reasonably well the bulk thermodynamics, microphysical properties, and radiative fluxes measured in an approx. 500-m thick, summertime marine stratocumulus cloud layer by Nicholls. However, in this case, the model predictions of turbulent fluxes between the cloud and subcloud layers exceed the measurements. Results of model simulations are also compared to measurements of a marine stratus layer made under gale conditions and with measurements of a high, thin marine stratocumulus layer. The variations in cloud properties are generally reproduced by the model, although it underpredicts the entrainment of overlying air at cloud top under gale conditions. Sensitivities of the model results are explored. The vertical profile of cloud droplet concentration is sensitive to the lower size cutoff of the droplet size distribution due to the presence of unactivated haze particles in the lower region of the modeled cloud. Increases in total droplet concentrations do not always produce less drizzle and more cloud water in the model. The radius of the mean droplet volume does not correlate consistently with drizzle, but the effective droplet radius does. The greatest impacts on cloud properties predicted by the model are produced by halving the width of the size distribution of input condensation nuclei and by omitting the effect of cloud-top radiative cooling on the condensational growth of cloud droplets. The omission of infrared scattering produces noticeable changes in cloud properties. The collection efficiencies for droplets less than 30-micrometers radius, and the value of the accommodation coefficient for condensational droplet growth, have noticeable effects on cloud properties. The divergence of the horizontal wind also has a significant effect on a 12-h model simulation of cloud structure. Conclusions drawn from the model are tentative because of the limitations of the 1D model framework. A principal simplification is that the model assumes horizontal homogeneity, and, therefore, does not resolve updrafts and downdrafts. Likely consequences of this simplification include overprediction of the growth of droplets by condensation in the upper region of the cloud, underprediction of droplet condensational growth in the lower region of the cloud, and underprediction of peak supersaturations.

  10. Single-footprint retrievals for AIRS using a fast TwoSlab cloud-representation model and the SARTA all-sky infrared radiative transfer algorithm

    NASA Astrophysics Data System (ADS)

    DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang

    2018-01-01

    One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper.

  11. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    NASA Astrophysics Data System (ADS)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  12. Regional Impacts of extending inorganic and organic cloud chemistry with AQCHEM-KMT

    EPA Science Inventory

    Starting with CMAQ version 5.1, AQCHEM-KMT has been offered as a readily expandable option for cloud chemistry via application of the Kinetic PreProcessor (KPP). AQCHEM-KMT treats kinetic mass transfer between the gas and aqueous phases, ionization, chemical kinetics, droplet sc...

  13. Oligomers Formed Through In-cloud Metylglyoxal Reactions: Chemical Composition, Properties, and Mechanisms Investigated by Ultra-high Resolution FT-ICR Mass Spectrometry

    EPA Science Inventory

    Secondary organic aerosol (SOA) is a substantial component of total atmospheric organic particulate matter, but little is known about the composition of SOA formed through cloud processing. We conducted aqueous phase photooxidation experiments of methylglyoxal and hydroxyl radica...

  14. CHEMICAL HETEROGENEITY AMONG CLOUD DROP POPULATIONS AND ITS INFLUENCE ON AEROSOL PROCESSING IN WINTER CLOUDS. (R823979)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. THE INFLUENCE OF CHEMICAL HETEROGENEITY AMONG CLOUD DROP POPULATIONS ON AEROSOL PROCESSING IN WINTER CLOUDS. (R823979)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. THE INFLUENCE OF CHEMICAL HETEROGENEITY AMONG CLOUD DROP POPULATIONS ON AEROSOL PROCESSING IN WINTER CLOUDS. (U915364)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. Elemental abundances in star-forming regions: results in Lupus and future analysis in Orion .

    NASA Astrophysics Data System (ADS)

    Biazzo, K.; Frasca, A.; Alcalá, J. M.; Zusi, M.; Covino, E.; Randich, S.; Esposito, M.; Manara, C. F.; Antoniucci, S.; Nisini, B.; Rigliaco, E.; Getman, F.; Spina, L.

    We present a recent study in press on lithium, iron, and barium abundance measurements obtained for low-mass (˜ 0.025-1.8 M_⊙) stars in four Lupus clouds and future investigations on chemical content to be performed in the Orion A cloud.

  18. The Atmosphere and Climate of Venus

    NASA Astrophysics Data System (ADS)

    Bullock, M. A.; Grinspoon, D. H.

    Venus lies just sunward of the inner edge of the Sun's habitable zone. Liquid water is not stable. Like Earth and Mars, Venus probably accreted at least an ocean's worth of water, although there are alternative scenarios. The loss of this water led to the massive, dry CO2 atmosphere, extensive H2SO4 clouds (at least some of the time), and an intense CO2 greenhouse effect. This chapter describes the current understanding of Venus' atmosphere, established from the data of dozens of spacecraft and atmospheric probe missions since 1962, and by telescopic observations since the nineteenth century. Theoretical work to model the temperature, chemistry, and circulation of Venus' atmosphere is largely based on analogous models developed in the Earth sciences. We discuss the data and modeling used to understand the temperature structure of the atmosphere, as well as its composition, cloud structure, and general circulation. We address what is known and theorized about the origin and early evolution of Venus' atmosphere. It is widely understood that Venus' dense CO2 atmosphere is the ultimate result of the loss of an ocean to space, but the timing of major transitions in Venus' climate is very poorly constrained by the available data. At present, the bright clouds allow only 20% of the sunlight to drive the energy balance and therefore determine conditions at Venus' surface. Like Earth and Mars, differential heating between the equator and poles drives the atmospheric circulation. Condensable species in the atmosphere create clouds and hazes that drive feedbacks that alter radiative forcing. Also in common with Earth and Mars, the loss of light, volatile elements to space produces long-term changes in composition and chemistry. As on Earth, geologic processes are most likely modifying the atmosphere and clouds by injecting gases from volcanos as well as directly through chemical reactions with the surface. The sensitivity of Venus' atmospheric energy balance is quantified in this chapter in terms of the initial forcing due to a perturbation, radiative response, and indirect responses, which are feedbacks — either positive or negative. When applied to one Venus climate model, we found that the albedo-radiative feedback is more important than greenhouse forcing for small changes in atmospheric H2O and SO2. An increase in these gases cools the planet by making the clouds brighter. On geologic timescales the reaction of some atmospheric species (SO2, CO, OCS, S, H2O, H2S, HCl, HF) with surface minerals could cause significant changes in atmospheric composition. Laboratory data and thermochemical modeling have been important for showing that atmospheric SO2 would be depleted in ~10 m.y. if carbonates are available at the surface. Without replenishment, the clouds would disappear. Alternatively, the oxidation of pyrite could add SO2 to the atmosphere while producing stable Fe oxides at the surface. The correlation of near-infrared high emissivity (dark) surface features with three young, large volcanos on Venus is strong evidence for recent volcanic activity at these sites, certainly over the timescale necessary to support the clouds. We address the nature of heterogeneous reactions with the surface and the implications for climate change on Venus. Chemical and mineralogical signatures of past climates must exist at the surface and below, so in situ experiments on the composition of surface layers are vital for reconstructing Venus' past climate. Many of the most Earth-like planets found around other stars will probably resemble Venus or a younger version of Venus. We finish the chapter with discussing what Venus can tell us about life in the universe, since it is an example of a planetary climate rendered uninhabitable. It also resembles our world's likely future. As with the climate history of Venus, however, the timing of predictable climate transitions on the Earth is poorly constrained by the data.

  19. Why do general circulation models overestimate the aerosol cloud lifetime effect? A case study comparing CAM5 and a CRM

    NASA Astrophysics Data System (ADS)

    Zhou, Cheng; Penner, Joyce E.

    2017-01-01

    Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.

  20. Structure analysis of simulated molecular clouds with the Δ-variance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.

    Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less

  1. Structure analysis of simulated molecular clouds with the Δ-variance

    DOE PAGES

    Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.

    2015-05-27

    Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less

  2. Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho

    2016-12-01

    Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.

  3. Chlorine truck attack consequences and mitigation.

    PubMed

    Barrett, Anthony Michael; Adams, Peter J

    2011-08-01

    We develop and apply an integrated modeling system to estimate fatalities from intentional release of 17 tons of chlorine from a tank truck in a generic urban area. A public response model specifies locations and actions of the populace. A chemical source term model predicts initial characteristics of the chlorine vapor and aerosol cloud. An atmospheric dispersion model predicts cloud spreading and movement. A building air exchange model simulates movement of chlorine from outdoors into buildings at each location. A dose-response model translates chlorine exposures into predicted fatalities. Important parameters outside defender control include wind speed, atmospheric stability class, amount of chlorine released, and dose-response model parameters. Without fast and effective defense response, with 2.5 m/sec wind and stability class F, we estimate approximately 4,000 (half within ∼10 minutes) to 30,000 fatalities (half within ∼20 minutes), depending on dose-response model. Although we assume 7% of the population was outdoors, they represent 60-90% of fatalities. Changing weather conditions result in approximately 50-90% lower total fatalities. Measures such as sheltering in place, evacuation, and use of security barriers and cryogenic storage can reduce fatalities, sometimes by 50% or more, depending on response speed and other factors. © 2011 Society for Risk Analysis.

  4. Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models

    NASA Astrophysics Data System (ADS)

    Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.

    2015-01-01

    Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud density rate in this layer may be augmented by a composition with non-NH4SH components (possibly including adsorbed NH3).

  5. Application of the CERES Flux-by-Cloud Type Simulator to GCM Output

    NASA Technical Reports Server (NTRS)

    Eitzen, Zachary; Su, Wenying; Xu, Kuan-Man; Loeb, Norman G.; Sun, Moguo; Doelling, David R.; Bodas-Salcedo, Alejandro

    2016-01-01

    The CERES Flux By CloudType data product produces CERES top-of-atmosphere (TOA) fluxes by region and cloud type. Here, the cloud types are defined by cloud optical depth (t) and cloud top pressure (pc), with bins similar to those used by ISCCP (International Satellite Cloud Climatology Project). This data product has the potential to be a powerful tool for the evaluation of the clouds produced by climate models by helping to identify which physical parameterizations have problems (e.g., boundary-layer parameterizations, convective clouds, processes that affect surface albedo). Also, when the flux-by-cloud type and frequency of cloud types are simultaneously used to evaluate a model, the results can determine whether an unrealistically large or small occurrence of a given cloud type has an important radiative impact for a given region. A simulator of the flux-by-cloud type product has been applied to three-hourly data from the year 2008 from the UK Met Office HadGEM2-A model using the Langley Fu-Lour radiative transfer model to obtain TOA SW and LW fluxes.

  6. A Simple Model for the Cloud Adjacency Effect and the Apparent Bluing of Aerosols Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Coakley, James A., Jr.; Remer, Lorraine A.; Loeb,Norman G.; Cahalan, Robert F.

    2008-01-01

    In determining aerosol-cloud interactions, the properties of aerosols must be characterized in the vicinity of clouds. Numerous studies based on satellite observations have reported that aerosol optical depths increase with increasing cloud cover. Part of the increase comes from the humidification and consequent growth of aerosol particles in the moist cloud environment, but part comes from 3D cloud-radiative transfer effects on the retrieved aerosol properties. Often, discerning whether the observed increases in aerosol optical depths are artifacts or real proves difficult. The paper provides a simple model that quantifies the enhanced illumination of cloud-free columns in the vicinity of clouds that are used in the aerosol retrievals. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from enhanced Rayleigh scattering that results from the presence of the nearby clouds. The enhancement in Rayleigh scattering is estimated using a stochastic cloud model to obtain the radiative flux reflected by broken clouds and comparing this flux with that obtained with the molecules in the atmosphere causing extinction, but no scattering.

  7. Polar clouds and radiation in satellite observations, reanalyses, and climate models

    NASA Astrophysics Data System (ADS)

    Lenaerts, Jan T. M.; Van Tricht, Kristof; Lhermitte, Stef; L'Ecuyer, Tristan S.

    2017-04-01

    Clouds play a pivotal role in the surface energy budget of the polar regions. Here we use two largely independent data sets of cloud and surface downwelling radiation observations derived by satellite remote sensing (2007-2010) to evaluate simulated clouds and radiation over both polar ice sheets and oceans in state-of-the-art atmospheric reanalyses (ERA-Interim and Modern Era Retrospective-Analysis for Research and Applications-2) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model ensemble. First, we show that, compared to Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled, CloudSat-CALIPSO better represents cloud liquid and ice water path over high latitudes, owing to its recent explicit determination of cloud phase that will be part of its new R05 release. The reanalyses and climate models disagree widely on the amount of cloud liquid and ice in the polar regions. Compared to the observations, we find significant but inconsistent biases in the model simulations of cloud liquid and ice water, as well as in the downwelling radiation components. The CMIP5 models display a wide range of cloud characteristics of the polar regions, especially with regard to cloud liquid water, limiting the representativeness of the multimodel mean. A few CMIP5 models (CNRM, GISS, GFDL, and IPSL_CM5b) clearly outperform the others, which enhances credibility in their projected future cloud and radiation changes over high latitudes. Given the rapid changes in polar regions and global feedbacks involved, future climate model developments should target improved representation of polar clouds. To that end, remote sensing observations are crucial, in spite of large remaining observational uncertainties, which is evidenced by the substantial differences between the two data sets.

  8. A multilinear regression methodology to analyze the effect of atmospheric and surface forcing on Arctic clouds

    NASA Astrophysics Data System (ADS)

    Boeke, R.; Taylor, P. C.; Li, Y.

    2017-12-01

    Arctic cloud amount as simulated in CMIP5 models displays large intermodel spread- models disagree on the processes important for cloud formation as well as the radiative impact of clouds. The radiative response to cloud forcing can be better assessed when the drivers of Arctic cloud formation are known. Arctic cloud amount (CA) is a function of both atmospheric and surface conditions, and it is crucial to separate the influences of unique processes to understand why the models are different. This study uses a multilinear regression methodology to determine cloud changes using 3 variables as predictors: lower tropospheric stability (LTS), 500-hPa vertical velocity (ω500), and sea ice concentration (SIC). These three explanatory variables were chosen because their effects on clouds can be attributed to unique climate processes: LTS is a thermodynamic indicator of the relationship between clouds and atmospheric stability, SIC determines the interaction between clouds and the surface, and ω500 is a metric for dynamical change. Vertical, seasonal profiles of necessary variables are obtained from the Coupled Model Intercomparison Project 5 (CMIP5) historical simulation, an ocean-atmosphere couple model forced with the best-estimate natural and anthropogenic radiative forcing from 1850-2005, and statistical significance tests are used to confirm the regression equation. A unique heuristic model will be constructed for each climate model and for observations, and models will be tested by their ability to capture the observed cloud amount and behavior. Lastly, the intermodel spread in Arctic cloud amount will be attributed to individual processes, ranking the relative contributions of each factor to shed light on emergent constraints in the Arctic cloud radiative effect.

  9. Regime-based evaluation of cloudiness in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin

    2017-01-01

    The concept of cloud regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating in each grid cell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product [long-term average total cloud amount (TCA)], cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our results support previous findings that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is still not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer cloud observations evaluated against ISCCP like another model output. Lastly, contrasting cloud simulation performance against each model's equilibrium climate sensitivity in order to gain insight on whether good cloud simulation pairs with particular values of this parameter, yields no clear conclusions.

  10. The Physics and Chemistry of Marine Aerosols

    NASA Astrophysics Data System (ADS)

    Russell, Lynn M.

    Understanding the physics and chemistry of the marine atmosphere requires both predicting the evolution of its gas and aerosol phases and making observations that reflect the processes in that evolution. This work presents a model of the most fundamental physical and chemical processes important in the marine atmosphere, and discusses the current uncertainties in our theoretical understanding of those processes. Backing up these predictions with observations requires improved instrumentation for field measurements of aerosol. One important advance in this instrumentation is described for accelerating the speed of size distribution measurements. Observations of aerosols in the marine boundary layer during the Atlantic Stratocumulus Transition Experiment (ASTEX) provide an illustration of the impact of cloud processing in marine stratus. More advanced measurements aboard aircraft were enabled by redesigning the design of the system for separating particles by differential mobility and counting them by condensational growth. With this instrumentation, observations made during the Monterey Area Ship Tracks (MAST) Experiment have illustrated the role of aerosol emissions of ships in forming tracks in clouds. High-resolution gas chromatography and mass spectrometry was used with samples extracted by supercritical fluid extraction in order to identify the role of combustion organics in forming ship tracks. The results illustrate the need both for more sophisticated models incorporating organic species in cloud activation and for more extensive boundary layer observations.

  11. Uniform Atmospheric Retrievals of Ultracool Late-T and Early-Y dwarfs

    NASA Astrophysics Data System (ADS)

    Garland, Ryan; Irwin, Patrick

    2017-10-01

    A significant number of ultracool (<600K) extrasolar objects have been discovered in the past decade thanks to wide-field surveys such as WISE. These objects present a perfect testbed for examining the evolution of atmospheric structure as we transition from typically hot extrasolar temperatures to the temperatures found within our Solar System.By examining these types of objects with a uniform retrieval method, we hope to elucidate any trends and (dis)similarities found in atmospheric parameters, such as chemical abundances, temperature-pressure profile, and cloud structure, for a sample of 7 ultracool brown dwarfs as we transition from hotter (~700K) to colder objects (~450K).We perform atmospheric retrievals on two late-T and five early-Y dwarfs. We use the NEMESIS atmospheric retrieval code coupled to a Nested Sampling algorithm, along with a standard uniform model for all of our retrievals. The uniform model assumes the atmosphere is described by a gray radiative-convective temperature profile, (optionally) a gray cloud, and a number of relevant gases. We first verify our methods by comparing it to a benchmark retrieval for Gliese 570D, which is found to be consistent. Furthermore, we present the retrieved gaseous composition, temperature structure, spectroscopic mass and radius, cloud structure and the trends associated with decreasing temperature found in this small sample of objects.

  12. Development of a New Model for Accurate Prediction of Cloud Water Deposition on Vegetation

    NASA Astrophysics Data System (ADS)

    Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R.

    2006-12-01

    Scarcity of water resources in arid and semi-arid areas is of great concern in the light of population growth and food shortages. Several experiments focusing on cloud (fog) water deposition on the land surface suggest that cloud water plays an important role in water resource in such regions. A one-dimensional vegetation model including the process of cloud water deposition on vegetation has been developed to better predict cloud water deposition on the vegetation. New schemes to calculate capture efficiency of leaf, cloud droplet size distribution, and gravitational flux of cloud water were incorporated in the model. Model calculations were compared with the data acquired at the Norway spruce forest at the Waldstein site, Germany. High performance of the model was confirmed by comparisons of calculated net radiation, sensible and latent heat, and cloud water fluxes over the forest with measurements. The present model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the Lovett model, which is a commonly used cloud water deposition model. Detailed calculations of evapotranspiration and of turbulent exchange of heat and water vapor within the canopy and the modifications are necessary for accurate prediction of cloud water deposition. Numerical experiments to examine the dependence of cloud water deposition on the vegetation species (coniferous and broad-leaved trees, flat and cylindrical grasses) and structures (Leaf Area Index (LAI) and canopy height) are performed using the presented model. The results indicate that the differences of leaf shape and size have a large impact on cloud water deposition. Cloud water deposition also varies with the growth of vegetation and seasonal change of LAI. We found that the coniferous trees whose height and LAI are 24 m and 2.0 m2m-2, respectively, produce the largest amount of cloud water deposition in all combinations of vegetation species and structures in the experiments.

  13. A Cloud Microphysics Model for the Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler

    2016-10-01

    Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303-326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141-156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.

  14. Online coupled regional meteorology-chemistry models in Europe: current status and prospects

    NASA Astrophysics Data System (ADS)

    Baklanov, A.; Schluenzen, K. H.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; Galmarini, S.; Gauss, M.; Grell, G.; Hirtl, M.; Joffre, S.; Jorba, O.; Kaas, E.; Kaasik, M.; Kallos, G.; Kong, X.; Korsholm, U.; Kurganskiy, A.; Kushta, J.; Lohmann, U.; Mahura, A.; Manders-Groot, A.; Maurizi, A.; Moussiopoulos, N.; Rao, S. T.; Savage, N.; Seigneur, C.; Sokhi, R.; Solazzo, E.; Solomos, S.; Sørensen, B.; Tsegas, G.; Vignati, E.; Vogel, B.; Zhang, Y.

    2013-05-01

    The simulation of the coupled evolution of atmospheric dynamics, pollutant transport, chemical reactions and atmospheric composition is one of the most challenging tasks in environmental modelling, climate change studies, and weather forecasting for the next decades as they all involve strongly integrated processes. Weather strongly influences air quality (AQ) and atmospheric transport of hazardous materials, while atmospheric composition can influence both weather and climate by directly modifying the atmospheric radiation budget or indirectly affecting cloud formation. Until recently, however, due to the scientific complexities and lack of computational power, atmospheric chemistry and weather forecasting have developed as separate disciplines, leading to the development of separate modelling systems that are only loosely coupled. The continuous increase in computer power has now reached a stage that enables us to perform online coupling of regional meteorological models with atmospheric chemical transport models. The focus on integrated systems is timely, since recent research has shown that meteorology and chemistry feedbacks are important in the context of many research areas and applications, including numerical weather prediction (NWP), AQ forecasting as well as climate and Earth system modelling. However, the relative importance of online integration and its priorities, requirements and levels of detail necessary for representing different processes and feedbacks can greatly vary for these related communities: (i) NWP, (ii) AQ forecasting and assessments, (iii) climate and earth system modelling. Additional applications are likely to benefit from online modelling, e.g.: simulation of volcanic ash or forest fire plumes, pollen warnings, dust storms, oil/gas fires, geo-engineering tests involving changes in the radiation balance. The COST Action ES1004 - European framework for online integrated air quality and meteorology modelling (EuMetChem) - aims at paving the way towards a new generation of online integrated atmospheric chemical transport and meteorology modelling with two-way interactions between different atmospheric processes including dynamics, chemistry, clouds, radiation, boundary layer and emissions. As its first task, we summarise the current status of European modelling practices and experience with online coupled modelling of meteorology with atmospheric chemistry including feedback mechanisms and attempt reviewing the various issues connected to the different modules of such online coupled models but also providing recommendations for coping with them for the benefit of the modelling community at large.

  15. Evolution in Cloud Population Statistics of the MJO: From AMIE Field Observations to Global-Cloud Permitting Models Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollias, Pavlos

    This is a multi-institutional, collaborative project using a three-tier modeling approach to bridge field observations and global cloud-permitting models, with emphases on cloud population structural evolution through various large-scale environments. Our contribution was in data analysis for the generation of high value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: the development of a synergistic cloud and precipitation cloud classification that identify different cloud (e.g. shallow cumulus, cirrus) and precipitation types (shallow, deep, convective, stratiform) using profiling ARM observations and the development of a quantitative precipitation ratemore » retrieval algorithm using profiling ARM observations. Similar efforts have been developed in the past for precipitation (weather radars), but not for the millimeter-wavelength (cloud) radar deployed at the ARM sites.« less

  16. Cloud Model Bat Algorithm

    PubMed Central

    Zhou, Yongquan; Xie, Jian; Li, Liangliang; Ma, Mingzhi

    2014-01-01

    Bat algorithm (BA) is a novel stochastic global optimization algorithm. Cloud model is an effective tool in transforming between qualitative concepts and their quantitative representation. Based on the bat echolocation mechanism and excellent characteristics of cloud model on uncertainty knowledge representation, a new cloud model bat algorithm (CBA) is proposed. This paper focuses on remodeling echolocation model based on living and preying characteristics of bats, utilizing the transformation theory of cloud model to depict the qualitative concept: “bats approach their prey.” Furthermore, Lévy flight mode and population information communication mechanism of bats are introduced to balance the advantage between exploration and exploitation. The simulation results show that the cloud model bat algorithm has good performance on functions optimization. PMID:24967425

  17. Feedbacks between air pollution and weather, part 2: Effects on chemistry

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Gong, W.; Hogrefe, C.; Zhang, Y.; Curci, G.; Žabkar, R.; Milbrandt, J.; Im, U.; Balzarini, A.; Baró, R.; Bianconi, R.; Cheung, P.; Forkel, R.; Gravel, S.; Hirtl, M.; Honzak, L.; Hou, A.; Jiménez-Guerrero, P.; Langer, M.; Moran, M. D.; Pabla, B.; Pérez, J. L.; Pirovano, G.; San José, R.; Tuccella, P.; Werhahn, J.; Zhang, J.; Galmarini, S.

    2015-08-01

    Fully-coupled air-quality models running in ;feedback; and ;no-feedback; configurations were compared against each other and observation network data as part of Phase 2 of the Air Quality Model Evaluation International Initiative. In the ;no-feedback; mode, interactions between meteorology and chemistry through the aerosol direct and indirect effects were disabled, with the models reverting to climatologies of aerosol properties, or a no-aerosol weather simulation, while in the ;feedback; mode, the model-generated aerosols were allowed to modify the models' radiative transfer and/or cloud formation processes. Annual simulations with and without feedbacks were conducted for domains in North America for the years 2006 and 2010, and for Europe for the year 2010. Comparisons against observations via annual statistics show model-to-model variation in performance is greater than the within-model variation associated with feedbacks. However, during the summer and during intense emission events such as the Russian forest fires of 2010, feedbacks have a significant impact on the chemical predictions of the models. The aerosol indirect effect was usually found to dominate feedbacks compared to the direct effect. The impacts of direct and indirect effects were often shown to be in competition, for predictions of ozone, particulate matter and other species. Feedbacks were shown to result in local and regional shifts of ozone-forming chemical regime, between NOx- and VOC-limited environments. Feedbacks were shown to have a substantial influence on biogenic hydrocarbon emissions and concentrations: North American simulations incorporating both feedbacks resulted in summer average isoprene concentration decreases of up to 10%, while European direct effect simulations during the Russian forest fire period resulted in grid average isoprene changes of -5 to +12.5%. The atmospheric transport and chemistry of large emitting sources such as plumes from forest fires and large cities were shown to be strongly impacted by the presence or absence of feedback mechanisms in the model simulations. Summertime model performance for ozone and other gases was improved through the inclusion of indirect effect feedbacks, while performance for particulate matter was degraded, suggesting that current parameterizations for in- and below cloud processes, once the cloud locations become more directly influenced by aerosols, may over- or under-predict the strength of these processes. Process parameterization-level comparisons of fully coupled feedback models are therefore recommended for future work, as well as further studies using these models for the simulations of large scale urban/industrial and/or forest fire plumes.

  18. Reexamination of the State of the Art Cloud Modeling Shows Real Improvements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muehlbauer, Andreas D.; Grabowski, Wojciech W.; Malinowski, S. P.

    Following up on an almost thirty year long history of International Cloud Modeling Workshops, that started out with a meeting in Irsee, Germany in 1985, the 8th International Cloud Modeling Workshop was held in July 2012 in Warsaw, Poland. The workshop, hosted by the Institute of Geophysics at the University of Warsaw, was organized by Szymon Malinowski and his local team of students and co-chaired by Wojciech Grabowski (NCAR/MMM) and Andreas Muhlbauer (University of Washington). International Cloud Modeling Workshops have been held traditionally every four years typically during the week before the International Conference on Clouds and Precipitation (ICCP) .more » Rooted in the World Meteorological Organization’s (WMO) weather modification program, the core objectives of the Cloud Modeling Workshop have been centered at the numerical modeling of clouds, cloud microphysics, and the interactions between cloud microphysics and cloud dynamics. In particular, the goal of the workshop is to provide insight into the pertinent problems of today’s state-of-the-art of cloud modeling and to identify key deficiencies in the microphysical representation of clouds in numerical models and cloud parameterizations. In recent years, the workshop has increasingly shifted the focus toward modeling the interactions between aerosols and clouds and provided case studies to investigate both the effects of aerosols on clouds and precipitation as well as the impact of cloud and precipitation processes on aerosols. This time, about 60 (?) scientists from about 10 (?) different countries participated in the workshop and contributed with discussions, oral and poster presentations to the workshop’s plenary and breakout sessions. Several case leaders contributed to the workshop by setting up five observationally-based case studies covering a wide range of cloud types, namely, marine stratocumulus, mid-latitude squall lines, mid-latitude cirrus clouds, Arctic stratus and winter-time orographic clouds and precipitation. Interested readers are encouraged to visit the workshop website at http://www.atmos.washington.edu/~andreasm/workshop2012/ and browse through the list of case studies. The web page also provides a detailed list of participants and the workshop agenda. Aside from contributed oral and poster presentations during the workshop’s plenary sessions, parallel breakout sessions focused on presentations and discussions of the individual cases. A short summary and science highlights from each of the cases is presented below.« less

  19. First highlights of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) field campaigns

    NASA Astrophysics Data System (ADS)

    Liousse, C.; Knippertz, P.; Flamant, C.; Adon, J.; Akpo, A.; Annesi-Maesano, I.; Assamoi, E.; Baeza, A.; Julien, B.; Bedou, M.; Brooks, B. J.; Chiu, J. Y. C.; Chiron, C.; Coe, H.; Danuor, S.; Djossou, J.; Evans, M. J.; Fayomi, B.; Fink, A. H.; Galy-Lacaux, C.; Gardrat, E.; Jegede, O.; Kalthoff, N.; Kedote, M.; Keita, S.; Kouame, K.; Konare, A.; Leon, J. F.; Mari, C. H.; Lohou, F.; Roblou, L.; Schlager, H.; Schwarzenboeck, A.; Toure, E. N.; Veronique, Y.

    2016-12-01

    The EU-funded project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) is investigating the relationship between weather, climate, air pollution and health in southern West Africa. The air over the coastal region of West Africa is a unique mixture of natural and anthropogenic gases, liquids and particles, emitted in an environment, in which multi-layer cloud decks frequently form. These exert a large influence on the local weather and climate, which has never been studied in detail over West Africa: this information is currently not included in the majority of weather and climate models. For the first time, the entire chain of impacts of natural and manmade emissions on the West African atmosphere was investigated in a coordinated field campaign. As part of this campaign, three research aircraft (Falcon 20, Twin Otter and ATR) based in Lomé (Togo) flew targeted 50 missions over West Africa from 27 June to 16 July 2016. In that campaign also, three highly instrumented measuring sites inland were set up with weather balloons launched several times a day across the region. The main objective was to build robust statistics of cloud properties in southern West Africa in different chemical landscapes (background state, ship/flaring emissions, polluted megacities, agricultural and forest areas, dust from the Sahel/Sahara). In addition, DACCIWA scientists working on measurements of urban emissions, air pollution, and health have set up four urban sites in Abidjan (Cote d'Ivoire) and Cotonou (Benin) focusing on main specific regional combustion sources (domestic fires, traffic and waste burning). Long-term measurements of gases and particles and census of hospital admissions for respiratory diseases were started in January 2015 and will continue until March 2017 to determine the links between human health and air pollution. Intensive measurement periods took place in July 2015, January 2016, and July 2016 (a final one is planned for January 2017) in order to characterize toxicological effects of size-speciated aerosol chemical composition. First highlights on the flight sampling strategy, the acquired datasets, and accompanying modelling work will be presented.

  20. Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations

    DOE PAGES

    Fierce, Laura; McGraw, Robert L.

    2017-07-26

    Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less

Top