Science.gov

Sample records for cloud climatology project

  1. Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data

    NASA Technical Reports Server (NTRS)

    Zhou, Y. P.; Xu, Kuan-Man; Sud, Y. C.; Betts, A. K.

    2011-01-01

    Scores of modeling studies have shown that increasing greenhouse gases in the atmosphere impact the global hydrologic cycle; however, disagreements on regional scales are large, and thus the simulated trends of such impacts, even for regions as large as the tropics, remain uncertain. The present investigation attempts to examine such trends in the observations using satellite data products comprising Global Precipitation Climatology Project precipitation and International Satellite Cloud Climatology Project cloud and radiation. Specifically, evolving trends of the tropical hydrological cycle over the last 20-30 years were identified and analyzed. The results show (1) intensification of tropical precipitation in the rising regions of the Walker and Hadley circulations and weakening over the sinking regions of the associated overturning circulation; (2) poleward shift of the subtropical dry zones (up to 2deg/decade in June-July-August (JJA) in the Northern Hemisphere and 0.3-0.7deg/decade in June-July-August and September-October-November in the Southern Hemisphere) consistent with an overall broadening of the Hadley circulation; and (3) significant poleward migration (0.9-1.7deg/decade) of cloud boundaries of Hadley cell and plausible narrowing of the high cloudiness in the Intertropical Convergence Zone region in some seasons. These results support findings of some of the previous studies that showed strengthening of the tropical hydrological cycle and expansion of the Hadley cell that are potentially related to the recent global warming trends.

  2. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    NASA Technical Reports Server (NTRS)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  3. Alpine cloud climatology: regional effects

    NASA Astrophysics Data System (ADS)

    Kaestner, Martina; Kriebel, Karl T.

    1996-12-01

    The present understanding of moist atmospheric processes and the role of clouds in the hydrologic cycle shows severe gaps of knowledge. Water vapor plays an essential part in atmospheric dynamics. For example, the release of large amounts of latent heat, due to the condensation in convective clouds, plays an important role in the general circulation. Knowledge of the distribution of clouds and its transport is essential to understand atmospheric dynamics. Clouds can have a positive as well as a negative contribution to the greenhouse effect. A cloud cover climatology in a 15 km grid resolution has been retrieved by means of the APOLLO algorithm using the 5 calibrated AVHRR channels. The monthly means of total cloud cover are about 15 percent too high compared to conventional data, the standard deviation is +/- 12 percent. The high resolution cloud cover maps show topometeorological features like 'Fohn' on single days but not in monthly means, because these events are too rare. But increased cloud cover in the luff regions are detected in monthly means as well as some cloud sparse regions like Lake Garda, Ticino or the Swiss Rhone valley. The different annual cycles of cloud cover show the different climatic regions, which are temperate, Alpine, and Mediterranean climate. This is indicated, for example, by the remarkably smaller cloud cover in the Alpine region in winter as compared to the northern and southern forelands.

  4. The global distribution of observed cloudiness - A contribution to the ISCCP. [International Satellite Cloud Climatology Project

    NASA Technical Reports Server (NTRS)

    London, Julius; Hahn, Carole J.; Warren, Stephen G.

    1989-01-01

    Satellite-inferred overall global cloud patterns generally corroborate those derived from ground-based observations. Both show significant differences of cloudiness between the two hemispheres and over extended land as compared with ocean areas. However, the averaged latitudinal values of surface-based observed cloud amounts are about 10 percent higher than those derived from Nimbus-7 observations. The largest difference (10-20 percent) is in the subtropics of each hemisphere and at subpolar and polar latitudes during the summer. The difference in reported average global total cloud amounts is about 10 percent.

  5. Analysis of global cloudiness comparison of meteor, Nimbus 7, and international satellite cloud climatology project (ISCCP) satellite data

    SciTech Connect

    Mokhov, I.I.; Schlesinger, M.E.

    1993-07-20

    In this first paper of a three-part series on cloudienss we intercompare the simultaneous cloudiness data obtained from Meteor satellites, Nimbus 7, and the International Satellite Cloud Climatology Project (ISCCP) for the one-year period, July 1983 to June 1984. Four versions of ISCCP cloudiness are obtained from analyses of the ISCCP-C1 data. These versions differ in their requirements for temporal and spectral sampling. ISCCPs 1 and 2 require for each 2.5{degree} x 2.5{degree} latitude-longitude cell that there be observations at least (N{sub d} = ) 20 of the 28-31 possible days per month and at least (N{sub h} = ) 5 of the 8 possible 3 hourly times each such day; ISCCPs 3 and 4 require only N{sub d} = 1 and N{sub h} = 1. The ISCCP 1-4 intercomparison shows that (1) the cloudiness differences due to the above temporal sampling are smaller than those due to the above spectral sampling; (2) both spectral and temporal sampling effects are larger for the northern hemisphere than for the southern hemisphere; and (3) the difference between zonal mean cloudiness with and without visible information generally increases with latitude from polar night to about 60{degree} latitude in the summer hemisphere. A special observational program in both the Arctic and the Antarctic is proposed to resolve the discrepancies among the satellite and ground-based cloudiness observations in polar latitudes.

  6. Analysis and comparison of diurnal variations of cloud radiative forcing: Earth Radiation Budget Experiment and International Satellite Cloud Climatology Project results

    NASA Technical Reports Server (NTRS)

    Kim, Yongseung

    1994-01-01

    Cloud radiative forcing (CRF) is the radiative impact of clouds on the Earth's radiation budget. This study examines the diurnal variations of CRF using the Earth Radiation Budget Experiment (ERBE) monthly hourly flux data and the flux data derived from the International Satellite Cloud Climatology Project (ISCCP) using the Goddard Institute for Space Studies general circulation model radiation code. The results for the months of April, July, and October 1985 and January 1986 are analyzed. We found that, in general, two data sets agreed. For longwave (LW) CRF the diurnal range over land is generally greater than that observed over oceans. For the 4-month averages the ERBE values are 15.8 W/sq m and 6.8 W/sq m for land and ocean, respectively, compared with the ISCCP calculated values of 18.4 W/sq m and 8.0 W/sq m, respectively. The land/ocean contrast is largely associated with changes in cloud amount and the temperature difference between surface and cloud top. It would be more important to note that the clear-sky flux (i.e., surface temperature) variabilities are shown to be a major contributor to the large variabilities over land. The maximum diurnal range is found to be in the summer hemisphere, and the minimum values in the winter hemisphere. It is also shown that the daytime maximum and the nighttime minimum are seen over large portions of land, whereas they occur at any local hour over most oceans. For shortwave (SW) CRF the daytime maximum values are about twice as large as monthly averages, and their highest frequency occurs at local noon, indicating that solar insolation is a primary factor for the diurnal variation of SW CRF. However, the comparison of the ERBE data with the ISCCP results demonstrated that the largest differences in the diurnal range and monthly mean of LW CRF were associated with tropical convergence zones, where clear-sky fluxes could be easily biased by persistent cloudiness and the inadequate treatment of the atmospheric water vapor.

  7. International Satellite Cloud Climatology Project (ISCCP) Ice Snow Product in Native (NAT) Format (ISCCP_ICESNOW_NAT)

    NASA Technical Reports Server (NTRS)

    Rossow, William B. (Principal Investigator)

    Since 1983 an international group of institutions has collected and analyzed satellite radiance measurements from up to five geostationary and two polar orbiting satellites to infer the global distribution of cloud properties and their diurnal, seasonal and interannual variations. The primary focus of the first phase of the project (1983-1995) was the elucidation of the role of clouds in the radiation budget (top of the atmosphere and surface). In the second phase of the project (1995 onwards) the analysis also concerns improving understanding of clouds in the global hydrological cycle. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=112 Km; Longitude_Resolution=112 Km; Temporal_Resolution=5-day].

  8. Empirical and modeled synoptic cloud climatology of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Crane, R. G.

    1985-01-01

    A daily climatology of the atmospheric circulation of the Arctic and the associated cloud conditions were determined. These are used for comparisons with the variability of general circulation model, generated circulation, and cloud cover for the same region.

  9. Evaluation and Applications of Cloud Climatologies from CALIOP

    NASA Technical Reports Server (NTRS)

    Winker, David; Getzewitch, Brian; Vaughan, Mark

    2008-01-01

    Clouds have a major impact on the Earth radiation budget and differences in the representation of clouds in global climate models are responsible for much of the spread in predicted climate sensitivity. Existing cloud climatologies, against which these models can be tested, have many limitations. The CALIOP lidar, carried on the CALIPSO satellite, has now acquired over two years of nearly continuous cloud and aerosol observations. This dataset provides an improved basis for the characterization of 3-D global cloudiness. Global average cloud cover measured by CALIOP is about 75%, significantly higher than for existing cloud climatologies due to the sensitivity of CALIOP to optically thin cloud. Day/night biases in cloud detection appear to be small. This presentation will discuss detection sensitivity and other issues associated with producing a cloud climatology, characteristics of cloud cover statistics derived from CALIOP data, and applications of those statistics.

  10. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1991-01-01

    The net upward longwave surface radiation is exceedingly difficult to measure from space. A hybrid method using General Circulation Model (GCM) simulations and satellite data from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Project (ISCCP) was used to produce global maps of this quantity over oceanic areas. An advantage of this technique is that no independent knowledge or assumptions regarding cloud cover for a particular month are required. The only information required is a relationship between the cloud radiation forcing (CRF) at the top of the atmosphere and that at the surface, which is obtained from the GCM simulation. A flow diagram of the technique and results are given.

  11. Developing a cloud mask climatology covering two Meteosat satellite generations

    NASA Astrophysics Data System (ADS)

    Posselt, Rebekka; Stöckli, Reto; Liniger, Mark A.

    2013-04-01

    Long term cloud cover observations from satellites are fundamental for climate model validation and climate monitoring. Further, they support ground-based observations in regions with sparse coverage. Additionally, information on cloud cover is needed to derive other physical parameters such as surface radiation fluxes or clear sky and cloudy atmospheric states and is of high relevance for the solar energy sector. Within the current project phase of the Satellite Application Facility on Climate Monitoring (CM SAF) an algorithm to calculate a climatological cloud mask (or cloud cover probability) from Meteosat satellites is developed. The algorithm shall be applicable for both Meteosat first generation (1983-2005) and Meteosat second generation (2004-present) which significantly differ in their spectral properties. The algorithm linearly aggregates a set of continuous scores instead of the commonly used decision tree approach. The scores are calculated for different channels as well as different spatial and temporal settings. Each score yields a probability for the pixel's cloud cover. The final result, the cloud cover probability, is obtained by combining all available scores taking into account the varying performance of the scores during day and night and over snow. The uncertainty of the final cloud cover estimate is an inherent part of the probability. The algorithm is calibrated using cloud cover measurements from SYNOP stations located on the Meteosat disc. The subsequent validation is done at an independent set of collocated SYNOP/ARSA (Automated Radiosonde Archive) stations. The presentation introduces the applied cloud mask algorithm and presents the results of the validation for both satellite generations. The comparison of the two satellite generations addresses the climatological homogeneity of the future cloud mask climate data record which will be distributed by CM SAF after 2016. Special attention is also drawn to issues like the day-night-bias of

  12. Global cloud climatology from surface observations

    SciTech Connect

    Warren, S.

    1995-09-01

    Surface weather observations from stations on land and ships in the ocean are used to obtain the global distribution, at 5{sup o}x5{sup o} latitude-longitude resolution, of total cloud cover and the average amounts of the different cloud types: cumulus, cumulonimbus, stratus, stratocumulus, nimbostratus, altostratus, altocumulus, cirrus, cirrostratus, cirrocumulus, and fog. Diurnal and seasonal variations are derived, as well as interannual variations and multi-year trends. 3 refs., 3 figs.

  13. The Global Precipitation Climatology Project: First Algorithm Intercomparison Project

    NASA Technical Reports Server (NTRS)

    Arkin, Phillip A.; Xie, Pingping

    1994-01-01

    The Global Precipitation Climatology Project (GPCP) was established by the World Climate Research Program to produce global analyses of the area- and time-averaged precipitation for use in climate research. To achieve the required spatial coverage, the GPCP uses simple rainfall estimates derived from IR and microwave satellite observations. In this paper, we describe the GPCP and its first Algorithm Intercomparison Project (AIP/1), which compared a variety of rainfall estimates derived from Geostationary Meteorological Satellite visible and IR observations and Special Sensor Microwave/Imager (SSM/I) microwave observations with rainfall derived from a combination of radar and raingage data over the Japanese islands and the adjacent ocean regions during the June and mid-July through mid-August periods of 1989. To investigate potential improvements in the use of satellite IR data for the estimation of large-scale rainfall for the GPCP, the relationship between rainfall and the fractional coverage of cold clouds in the AIP/1 dataset is examined. Linear regressions between fractional coverage and rainfall are analyzed for a number of latitude-longitude areas and for a range of averaging times. The results show distinct differences in the character of the relationship for different portions of the area. These results suggest that the simple IR-based estimation technique currently used in the GPCP can be used to estimate rainfall for global tropical and subtropical areas, provided that a method for adjusting the proportional coefficient for varying areas and seasons can be determined.

  14. The effect of moonlight on observation of cloud cover at night, and application to cloud climatology

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1995-01-01

    Ten years of nighttime weather observations from the Northern Hemisphere in December were classified according to the illuminance of moonlight or twilight on the cloud tops, and a threshold level of illuminance was determined, above which the clouds are apparently detected adequately. This threshold corresponds to light from a full moon at an elevation angle of 6 deg, light from a partial moon at higher elevation, or twilight from the sun less than 9 deg bvelow the horizon. It permits the use of about 38% of the observations made with the sun below the horizon. The computed diurnal cycles of total cloud cover are altered considerably when this moonlight criterion is imposed. Maximum cloud cover over much of the ocean is now found to be at night or in the morning, whereas computations obtained without benefit of the moonlight criterion, as in our published atlases, showed the time of maximum to be noon or early afternoon in many regions. The diurnal cycles of total cloud cover we obtain are compared with those of the International Satellite Cloud Climatology Project (ISCCP) for a few regions; they are generally in better agreement if the moonlight criterion is imposed on the surface observations. Using the moonlight criterion, we have analyzed 10 years (1982-91) of surface weather observations over land and ocean, worldwide, for total cloud cover and for the frequency of occurrence of clear sky, fog, and precipitation. The global average cloud cover (average of day and night) is about 2% higher if the moonlight criterion is imposed than if all observations are used. The difference is greater in winter than in summer, because of the fewer hours of darkness in summer. The amplitude of the annual cycle of total cloud cover over the Arctic Ocean and at the South Pole is diminished by a few percent when the moonlight criterion is imposed. The average cloud cover for 1982-91 is found to be 55% for Northern Hemisphere land, 53% for Southern Hemisphere land, 66% for

  15. Analysis of global cloudiness. 2: Comparison of ground-based and satellite-based cloud climatologies

    SciTech Connect

    Mokhov, I.I.; Schlesinger, M.E. |

    1994-08-01

    Cloud climatologies are developed and intercompared for International Satellite Cloud Climatology Project (ISCCO) (1983-1988), Meteor I (1971-1980), Meteor II (1979-1988), and Nimbus 7 (1979-1985) satellite observations, and for Berlyand and Strokina (1975, 1980) and Warren et al. (1986, 1988) ground-based observations. The satellite annual-mean, global- mean cloudiness, 0.57 +/- 0.05, is less than the ground-based value, 0.61 +/- 0.01, predominantly because of the low value for Nimbus 7. There is agreement between the satellite means of ISCCP, 0.62, and Meteor II, 0.61, and the ground-based means of Warren et al., 0.62, and Berlyand and Strokina, 0.60. Each satellite- and ground-based climatology shows that the hemispheric- mean cloudiness is larger in summer than that in winter in both the northern and southern hemispheres. Excluding Nimbus 7 observations, the zonal- mean cloudiness distributions for January, July, and July minus January display reasonably good agreement between 60 deg S and 60 deg N. In polar latitudes there is significant disagreement among the different climatologies, even in the sign of cloudiness changes from winter to summer. This evinces the need for special cloudiness experiments in polar regions, particularly in winter and summer.

  16. MERIS albedo climatology and its effect on the FRESCO+ O2 A-band cloud retrieval from SCIAMACHY data

    NASA Astrophysics Data System (ADS)

    Popp, Christoph; Wang, Ping; Brunner, Dominik; Stammes, Piet; Zhou, Yipin

    2010-05-01

    Accurate cloud information is an important prerequisite for the retrieval of atmospheric trace gases from spaceborne UV/VIS sensors. Errors in the estimated cloud fraction and cloud height (pressure) result in an erroneous air mass factor and thus can lead to inaccuracies in the vertical column densities of the retrieved trace gas. In ESA's TEMIS (Tropospheric Emission Monitoring Internet Service) project, the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) cloud retrieval is applied to, amongst others, SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY) data to determine these quantities. Effective cloud fraction and pressure are inverted by (i) radiative transfer simulations of top-of-atmosphere reflectance based on O2 absorption, single Rayleigh scattering, surface and cloud albedo in three spectral windows covering the O2 A-band and (ii) a subsequent fitting of the simulated to the measured spectrum. However, FRESCO+ relies on a relatively coarse resolution surface albedo climatology (1° x 1°) compiled from GOME (Global Ozone Monitoring Experiment) measurements in the 1990's which introduces several artifacts, e.g. an overestimation of cloud fraction at coastlines or over some mountainous regions. Therefore, we test the substitution of the GOME climatology with a new land surface albedo climatology compiled for every month from MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data (0.05° x 0.05°) covering the period January 2003 to October 2006. The MERIS channels at 754nm and 775nm are located spectrally close to the corresponding GOME channels (758nm and 772nm) on both sides of the O2 A-band. Further, the increased spatial resolution of the MERIS product allows to better account for SCIAMACHY's pixel size of approximately 30x60km. The aim of this study is to describe and assess (i) the compilation and quality of the MERIS climatology (ii) the differences to the GOME climatology, and (iii) possible

  17. A CERES-like Cloud Property Climatology Using AVHRR Data

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.

    2015-12-01

    Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.

  18. A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties

    SciTech Connect

    Sassen, K.; Comstock, Jennifer M.

    2001-08-01

    In Part III of a series of papers describing the extended time high-cloud observations from the University of Utah Facility for Atmospheric Remote Sensing (FARS) supporting the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment, the visible and infrared radiative properties of cirrus clouds over Salt Lake City, Utah, are examined. Using {approx}860 h of combined ruby (0.694 {micro}m) lidar and midinfrared (9.5-11.5 {micro}m) radiometer data collected between 1992 and 1999 from visually identified cirrus clouds, the visible optical depths {tau} and infrared layer emittance epsilon of the varieties of midlatitude cirrus are characterized. The mean and median values for the cirrus sample are 0.75 {+-} 0.91 and 0.61 for {tau}, and 0.30 {+-} 0.22 and 0.25 for epsilon. Other scattering parameters studied are the visible extinction and infrared absorption coefficients, and their ratio, and the lidar backscatter-to-extinction ratio, which has a mean value of 0.041 sr{sup -1}. Differences among cirrus clouds generated by general synoptic (e.g., jet stream), thunderstorm anvil, and orographic mechanisms are found, reflecting basic cloud microphysical effects. The authors draw parameterizations in terms of midcloud temperature T{sub m} and physical cloud thickness {Delta}z for epsilon and {tau}: both macrophysical variables are needed to adequately address the impact of the adiabatic process on ice cloud content, which modulates radiative transfer as a function of temperature. For the total cirrus dataset, the authors find epsilon = 1 -exp [-8.5 x 10{sup -5} (T{sub m} + 80 C) {Delta}z]. These parameterizations, based on a uniquely comprehensive dataset, hold the potential for improving weather and climate model predictions, and satellite cloud property retrieval methods.

  19. Development of Satellite-based Climatology of Low-level Cloud and Fog in Mountain Terrain

    NASA Astrophysics Data System (ADS)

    Duan, Y.; Barros, A. P.

    2014-12-01

    The presence of orographic clouds and fog has major environmental and economic implications that the potential shift in the space-time distribution can effectively redistribute freshwater resources and threaten the sustainability of the ecology, geomorphology and hydrology of mountainous regions and adjacent basins. This includes the Southern Appalachian Mountains, which rely closely on the moisture input from fog, cap clouds and light rainfall, as well as cloud forests in the Andes with frequent occurrence of dense fog. However, the applicability of fog forecasting models becomes limited in regions of complex terrain. The motivation of this project is to develop a satellite-based hydroclimatology and physical parameterization of orographic low-level clouds and fog regimes in the Southern Appalachians using a general methodology that can be applied to mountainous regions elsewhere. An algorithm for the detection and extraction of stratus clouds and fog was developed using changes in vertical gradients of CPR reflectivity and liquid water products from almost 5-years of CLOUDSAT and SRTM terrain data. This population of low-level clouds and fog will be analyzed with GOES infrared and visible imagery, MODIS and CALIPSO products, and with airport cloud height and visibility records to expand the spatial coverage beyond narrow satellite sensor swaths. The climatology will be further developed through integration with results from WRF simulations for selected periods since the bulk of the PMM network has been in place (2008-present) to aid in defining meteorological and time-of-day constraints in the interpretation of simulated satellite radar reflectivity profiles. The overarching goal is to infer a representation of the diurnal cycle, seasonal and inter-annual variations of the vertical distribution of LWC and hydrometeors in orographic clouds and fog that vary spatially with landform toward developing a more general parameterization of seeder-feeder interactions in

  20. Aerosol climatology using a tunable spectral variability cloud screening of AERONET data

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Gobbi, Gian Paolo; Koren, Ilan

    2005-01-01

    Can cloud screening of an aerosol data set, affect the aerosol optical thickness (AOT) climatology? Aerosols, humidity and clouds are correlated. Therefore, rigorous cloud screening can systematically bias towards less cloudy conditions, underestimating the average AOT. Here, using AERONET data we show that systematic rejection of variable atmospheric optical conditions can generate such bias in the average AOT. Therefore we recommend (1) to introduce more powerful spectral variability cloud screening and (2) to change the philosophy behind present aerosol climatologies: Instead of systematically rejecting all cloud contaminations, we suggest to intentionally allow the presence of cloud contamination, estimate the statistical impact of the contamination and correct for it. The analysis, applied to 10 AERONET stations with approx. 4 years of data, shows almost no change for Rome (Italy), but up to a change in AOT of 0.12 in Beijing (PRC). Similar technique may be explored for satellite analysis, e.g. MODIS.

  1. Comparisons of cloud ice mass content retrieved from the radar-infrared radiometer method with aircraft data during the second international satellite cloud climatology project regional experiment (FIRE-II)

    SciTech Connect

    Matrosov, S.Y. |; Heymsfield, A.J.; Kropfli, R.A.; Snider, J.B.

    1996-04-01

    Comparisons of remotely sensed meteorological parameters with in situ direct measurements always present a challenge. Matching sampling volumes is one of the main problems for such comparisons. Aircraft usually collect data when flying along a horizontal leg at a speed of about 100 m/sec (or even greater). The usual sampling time of 5 seconds provides an average horizontal resolution of the order of 500 m. Estimations of vertical profiles of cloud microphysical parameters from aircraft measurements are hampered by sampling a cloud at various altitudes at different times. This paper describes the accuracy of aircraft horizontal and vertical coordinates relative to the location of the ground-based instruments.

  2. Global Aerosol Climatology Project: An Update

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    1999-01-01

    This paper outlines the methodology of interpreting channe1 1 and 2 AVHRR (Advanced Very High Resolution Radiometer) radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmospheric-ocean system. We show that two-channel algorithms can be expected tp provide significantly more biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.

  3. A preliminary global oceanic cloud climatology from satellite albedo observations

    NASA Technical Reports Server (NTRS)

    Hughes, N. A.; Henderson-Sellers, A.

    1983-01-01

    A predictive relationship is developed between over-ocean cloud system albedo and the cloud amount present, using as a data base ERB satellite microwave readings at 0.5-0.7 micron and the USAF three-dimensional nephanalysis archive. The ERB data provided global coverage at a resolution of 2.5 x 2.5 deg during the 1974-78 period. Regression analyses were performed on the amounts and albedos for several years of data for one month in order to detect seasonal variations. A logarithmic relationship was found between the cloud system albedo and cloud amount over the oceans, with negligible seasonal variance. The analysis is noted to apply only where low surface albedos are encountered, and further work to extend the study to continental vegetated areas is indicated.

  4. Impact of deforestation in the Amazon basin on cloud climatology.

    PubMed

    Wang, Jingfeng; Chagnon, Frédéric J F; Williams, Earle R; Betts, Alan K; Renno, Nilton O; Machado, Luiz A T; Bisht, Gautam; Knox, Ryan; Bras, Rafael L

    2009-03-10

    Shallow clouds are prone to appear over deforested surfaces whereas deep clouds, much less frequent than shallow clouds, favor forested surfaces. Simultaneous atmospheric soundings at forest and pasture sites during the Rondonian Boundary Layer Experiment (RBLE-3) elucidate the physical mechanisms responsible for the observed correlation between clouds and land cover. We demonstrate that the atmospheric boundary layer over the forested areas is more unstable and characterized by larger values of the convective available potential energy (CAPE) due to greater humidity than that which is found over the deforested area. The shallow convection over the deforested areas is relatively more active than the deep convection over the forested areas. This greater activity results from a stronger lifting mechanism caused by mesoscale circulations driven by deforestation-induced heterogeneities in land cover.

  5. Impact of deforestation in the Amazon basin on cloud climatology

    PubMed Central

    Wang, Jingfeng; Chagnon, Frédéric J. F.; Williams, Earle R.; Betts, Alan K.; Renno, Nilton O.; Machado, Luiz A. T.; Bisht, Gautam; Knox, Ryan; Bras, Rafael L.

    2009-01-01

    Shallow clouds are prone to appear over deforested surfaces whereas deep clouds, much less frequent than shallow clouds, favor forested surfaces. Simultaneous atmospheric soundings at forest and pasture sites during the Rondonian Boundary Layer Experiment (RBLE-3) elucidate the physical mechanisms responsible for the observed correlation between clouds and land cover. We demonstrate that the atmospheric boundary layer over the forested areas is more unstable and characterized by larger values of the convective available potential energy (CAPE) due to greater humidity than that which is found over the deforested area. The shallow convection over the deforested areas is relatively more active than the deep convection over the forested areas. This greater activity results from a stronger lifting mechanism caused by mesoscale circulations driven by deforestation-induced heterogeneities in land cover. PMID:19237571

  6. Empirical and modeled synoptic cloud climatology of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Newell, J. P.; Schweiger, A.; Crane, R. G.

    1986-01-01

    A set of cloud cover data were developed for the Arctic during the climatically important spring/early summer transition months. Parallel with the determination of mean monthly cloud conditions, data for different synoptic pressure patterns were also composited as a means of evaluating the role of synoptic variability on Arctic cloud regimes. In order to carry out this analysis, a synoptic classification scheme was developed for the Arctic using an objective typing procedure. A second major objective was to analyze model output of pressure fields and cloud parameters from a control run of the Goddard Institue for Space Studies climate model for the same area and to intercompare the synoptic climatatology of the model with that based on the observational data.

  7. Tennessee Valley Total and Cloud-to-Ground Lightning Climatology Comparison

    NASA Technical Reports Server (NTRS)

    Buechler, Dennis; Blakeslee, R. J.; Hall, J. M.; McCaul, E. W.

    2008-01-01

    The North Alabama Lightning Mapping Array (NALMA) has been in operation since 2001 and consists often VHF receivers deployed across northern Alabama. The NALMA locates sources of impulsive VHF radio signals from total lightning by accurately measuring the time that the signals arrive at the different receiving stations. The sources detected are then clustered into flashes by applying spatially and temporally constraints. This study examines the total lightning climatology of the region derived from NALMA and compares it to the cloud-to-ground (CG) climatology derived from the National Lightning Detection Network (NLDN) The presentation compares the total and CG lightning trends for monthly, daily, and hourly periods.

  8. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  9. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1992-01-01

    Global maps of the monthly mean net upward longwave radiation flux at the ocean surface were obtained for April, July, October 1985 and January 1986. These maps were produced by blending information obtained from a combination of general circulation model cloud radiative forcing fields, the top of the atmosphere cloud radiative forcing from ERBE and TOVS profiles and sea surface temperature on ISCCP C1 tapes. The fields are compatible with known meteorological regimes of atmospheric water vapor content and cloudiness. There is a vast area of high net upward longwave radiation flux (greater than 80/sq Wm) in the eastern Pacific Ocean throughout most of the year. Areas of low net upward longwave radiation flux ((less than 40/sq Wm) are the tropical convective regions and extra tropical regions that tend to have persistent low cloud cover.The technique used relies on General Circulation Model simulations and so is subject to some of the uncertainties associated with the model. However, all input information regarding temperature, moisture, and cloud cover is from satellite data having near global coverage. This feature of the procedure alone warrants its consideration for further use in compiling global maps of longwave radiation.

  10. Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Gu, Guojun; Huffman, George

    2012-01-01

    A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a

  11. Climatology and Formation of Tropical Midlevel Clouds at the Darwin ARM Site

    SciTech Connect

    Riihimaki, Laura D.; McFarlane, Sally A.; Comstock, Jennifer M.

    2012-10-01

    A 4-yr climatology of midlevel clouds is presented from vertically pointing cloud lidar and radar measurements at the Atmospheric Radiation Measurement Program (ARM) site at Darwin, Australia. Few studies exist of tropical midlevel clouds using a dataset of this length. Seventy percent of clouds with top heights between 4 and 8 km are less than 2 km thick. These thin layer clouds have a peak in cloud-top temperature around the melting level (0°C) and also a second peak around -12.5°C. The diurnal frequency of thin clouds is highest during the night and reaches a minimum around noon, consistent with variation caused by solar heating. Using a 1.5-yr subset of the observations, the authors found that thin clouds have a high probability of containing supercooled liquid water at low temperatures: ~20% of clouds at -30°C, ~50% of clouds at -20°C, and ~65% of clouds at -10°C contain supercooled liquid water. The authors hypothesize that thin midlevel clouds formed at the melting level are formed differently during active and break monsoon periods and test this over three monsoon seasons. A greater frequency of thin midlevel clouds are likely formed by increased condensation following the latent cooling of melting during active monsoon periods when stratiform precipitation is most frequent. This is supported by the high percentage (65%) of midlevel clouds with preceding stratiform precipitation and the high frequency of stable layers slightly warmer than 0°C. In the break monsoon, a distinct peak in the frequency of stable layers at 0°C matches the peak in thin midlevel cloudiness, consistent with detrainment from convection.

  12. Alpine cloud climatology using long-term NOAA-AVHRR satellite data

    NASA Astrophysics Data System (ADS)

    Kästner, M.; Kriebel, K. T.

    Three different climates have been identified by our evaluation of AVHRR (Advanced Very High Resolution Radiometer) data using APOLLO (AVHRR Processing scheme Over Land, Clouds and Ocean) for a five-years cloud climatology of the Alpine region. The cloud cover data from four layers were spatially averaged in boxes of 15km by 14km. The study area only covers 540km by 560km, but contains regions with moderate, Alpine and Mediterranean climate. Data from the period July 1989 until December 1996 have been considered. The temporal resolution is one scene per day, the early afternoon pass, yielding monthly means of satellite derived cloud coverages 5% to 10% above the daily mean compared to conventional surface observation. At non-vegetated sites the cloudiness is sometimes significantly overestimated. Averaging high resolution cloud data seems to be superior to low resolution measurements of cloud properties and averaging is favourable in topographical homogeneous regions only. The annual course of cloud cover reveals typical regional features as foehn or temporal singularities as the so-called Christmas thaw. The cloud cover maps in spatially high resolution show local luff/lee features which outline the orography. Less cloud cover is found over the Alps than over the forelands in winter, an accumulation of thick cirrus is found over the High Alps and an accumulation of thin cirrus north of the Alps.

  13. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    NASA Astrophysics Data System (ADS)

    Popp, C.; Wang, P.; Brunner, D.; Stammes, P.; Zhou, Y.; Grzegorski, M.

    2011-03-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA) data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near-infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS) derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80) and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006) of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU) algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric trace gas

  14. MERIS albedo climatology for FRESCO+ O2 A-band cloud retrieval

    NASA Astrophysics Data System (ADS)

    Popp, C.; Wang, P.; Brunner, D.; Stammes, P.; Zhou, Y.; Grzegorski, M.

    2010-10-01

    A new global albedo climatology for Oxygen A-band cloud retrievals is presented. The climatology is based on MEdium Resolution Imaging Spectrometer (MERIS) Albedomap data and its favourable impact on the derivation of cloud fraction is demonstrated for the FRESCO+ (Fast Retrieval Scheme for Clouds from the Oxygen A-band) algorithm. To date, a relatively coarse resolution (1° × 1°) surface reflectance dataset from GOME (Global Ozone Monitoring Experiment) Lambert-equivalent reflectivity (LER) is used in FRESCO+. The GOME LER climatology does not account for the usually higher spatial resolution of UV/VIS instruments designed for trace gas remote sensing which introduces several artefacts, e.g. in regions with sharp spectral contrasts like coastlines or over bright surface targets. Therefore, MERIS black-sky albedo (BSA) data from the period October 2002 to October 2006 were aggregated to a grid of 0.25° × 0.25° for each month of the year and for different spectral channels. In contrary to other available surface reflectivity datasets, MERIS includes channels at 754 nm and 775 nm which are located close to the spectral windows required for O2 A-band cloud retrievals. The MERIS BSA in the near infrared compares well to Moderate Resolution Imaging Spectroradiometer (MODIS) derived BSA with an average difference lower than 1% and a correlation coefficient of 0.98. However, when relating MERIS BSA to GOME LER a distinctly lower correlation (0.80) and enhanced scatter is found. Effective cloud fractions from two exemplary months (January and July 2006) of Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) data were subsequently derived with FRESCO+ and compared to those from the Heidelberg Iterative Cloud Retrieval Utilities (HICRU) algorithm. The MERIS climatology generally improves FRESCO+ effective cloud fractions. In particular small cloud fractions are in better agreement with HICRU. This is of importance for atmospheric trace gas

  15. Climatology of Warm Boundary Layer Clouds at the ARM SGP Site and Their Comparison to Models

    SciTech Connect

    Sengupta, Manajit; Clothiaux, Eugene E.; Ackerman, Thomas P.

    2004-12-01

    A four-year climatology (1997-2000) of warm boundary layer cloud properties is developed for the U.S. Department of Energy Atmospheric Radiation (ARM) Program Southern Great Plains (SGP) site. Parameters in the climatology include cloud liquid water path, cloud base height and surface solar flux. These parameters are retrieved from measurements produced by a dual-channel microwave radiometer, a millimeter-wave cloud radar, a micropulse lidar, a Belfort ceilometer, shortwave radiometers and atmospheric temperature profiles amalgamated from multiple sources, including radiosondes. No significant interannual differences are observed, but nighttime liquid water paths are consistently higher than daytime values. The summer months of June, July and August have the lowest liquid water paths and the highest cloud base heights. Model outputs of cloud liquid water paths from the European Center for Medium Range Weather Forecasting (ECMWF) model and the Early Eta Model for 104 Model Output Location Time Series (MOLTS) stations in the environs of the SGP central facility are compared to observations. The ECMWF and MOLTS mean and median liquid water paths are 3 and 4 times greater, respectively, than the observed values. The MOLTS data show lower liquid water paths in summer, which is consistent with observations, while the ECMWF data exhibit the opposite tendency. A parameterization of normalized cloud forcing that requires only cloud liquid water path and solar zenith angle is developed from the observations. The parameterization, which has a correlation coefficient of 0.81 with the observations, provides estimates of surface solar flux that are comparable to values obtained from explicit radiative transfer calculations based on plane-parallel theory. This parameterization is used to estimate the impact on the surface solar flux of differences in the liquid water paths between models and observations. Overall, there is a low bias of 50% in modeled normalized cloud forcing

  16. Climate studies from satellite observations - Special problems in the verification of earth radiation balance, cloud climatology, and related climate experiments

    NASA Technical Reports Server (NTRS)

    Vonder Haar, T. H.

    1982-01-01

    A body of techniques that have been developed and planned for use during the Earth Radiation Budget Experiment (ERBE), the International Satellite Cloud Climatology Project (ISCCP), and related climate experiments of the 1980's are reviewed. Validation and verification methods must apply for systems of satellites. They include: (1) use of a normalization or intercalibration satellite, (2) special intensive observation areas located over ground-truth sites, and (3) monitoring of sun and earth by several satellites and/or several instruments at the same time. Since each climate application area has a hierarchy of user communities, validation techniques vary from very detailed methods to those that simply assure high relative accuracy in detecting space and time variations for climate studies. It is shown that climate experiments generally require more emphasis on long-term stability and internal consistency of satellite data sets than high absolute accuracy.

  17. Climatology Study of Low-level Cloud and Fog in Mountain Terrain Using Satellite Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Duan, Yajuan; Barros, Ana P.

    2015-04-01

    The presence of orographic clouds and fog has major environmental and economic implications that the potential shift in the space-time distribution can effectively redistribute freshwater resources and threaten the sustainability of the ecology, geomorphology and hydrology of mountainous regions and adjacent basins. This includes the Southern Appalachian Mountains, which rely closely on the moisture input from fog, cap clouds and light rainfall, as well as cloud forests in the Andes with frequent occurrence of dense fog. However, the applicability of fog forecasting models becomes limited in regions of complex terrain. The motivation of this project is to develop a satellite-based hydroclimatology and physical parameterization of orographic low-level clouds and fog regimes in the Southern Appalachians using a general methodology that can be applied to mountainous regions elsewhere. An algorithm for the detection and extraction of stratus clouds and fog was developed using cloud base height product from 8-years of CALIPSO and CloudSat observations, and evaluated against ground-based measurements from ceilometers. This population of low-level clouds and fog will be analyzed with GOES infrared and visible imagery, MODIS products, and with airport cloud height and visibility records to expand the spatial coverage beyond narrow satellite sensor swaths. The climatology will be further developed through integration with results from WRF high-solution simulations for selected periods since the bulk of the PMM network has been in place (2008-present) to aid in defining meteorological and time-of-day constraints in the interpretation of simulated satellite profiles through a satellite-sensor simulator. A 4-day WRF simulation is performed at Pegion Basin in the Southern Appalachian Mountains with increasing horizontal (0.25 km grid spacing) and vertical (up to 80 sigma levels) resolution and evaluated against observations collected during the Integrated Precipitation and

  18. Building a 15-Year Cloud Climatology using Lidar in Space Observations: CALIOP and CloudSat now, EarthCARE next.

    NASA Astrophysics Data System (ADS)

    Reverdy, M.; Chepfer, H.; Donovan, D. P.; Noel, V.; Marchand, R.; Cesana, G.; Hoareau, C.; Chiriaco, M.; Bastin, S.

    2014-12-01

    Today, the CALIOP lidar and CloudSat radar have collected more than seven years of observations, and willhopefully still operate in 2016, after the EarthCARE-ATLID/CPR launch. Lidars and Radars in space providecutting edge information on the detailed vertical structure of clouds: a key element for both the evaluation ofthe description of clouds in climate models, and the survey of the clouds inter-annual evolution in variousclimatic conditions (El Nino, variation of North Atlantic Oscillations, polar regions, etc). For this purpose,the observations collected by CALIOP and by ATLID as well as CloudSat and EarthCARE CPR need to bemerged into a long-term (15 years) cloud climatology. Here, we examine the possibility of building such a climatology, with the aim of defining its accuracy andrelevance for cloud inter-annual studies. We examine the differences between the instruments (wavelengths,satellite's altitudes, telescope fields of view, multiple scattering processes, spatial resolutions) and theirability to detect the same clouds consistently. Then, we define a set of cloud detection thresholds for ATLID,CALIOP, CloudSat and EarthCARE-CPR and test against synthetic cloud scenes (cirrus and shallowcumulus) over small areas (about 200km) produced by a lidar and radar instrument simulator (ECSIM)running on Large Eddy Simulations. Doing so, we verify that the fourth instruments will be able to detect thesame clouds despite their differences (e.g. their sensitivities to noise). Finally, we use the COSP lidar andradar simulator to predict the global scale cloud cover that ATLID, CALIOP, CloudSat and EarthCARE CPRwould observe if they were overflying the same atmosphere predicted by a GCM. Our results suggest that amerged CALIOP/ATLID and CloudSat/CPR cloud climatology could be to be useful for clouds inter-annualstudies, if the post-launch sensitivity of EarthCARE instruments is in line with what is predicted today.

  19. High Resolution Hydro-climatological Projections for Western Canada

    NASA Astrophysics Data System (ADS)

    Erler, Andre Richard

    Accurate identification of the impact of global warming on water resources and hydro-climatic extremes represents a significant challenge to the understanding of climate change on the regional scale. Here an analysis of hydro-climatic changes in western Canada is presented, with specific focus on the Fraser and Athabasca River basins and on changes in hydro-climatic extremes. The analysis is based on a suite of simulations designed to characterize internal variability, as well as model uncertainty. A small ensemble of Community Earth System Model version 1 (CESM1) simulations was employed to generate global climate projections, which were downscaled to 10 km resolution using the Weather Research and Forecasting model (WRF V3.4.1) with several sets of physical parameterizations. Downscaling was performed for a historical validation period and a mid- and end-21st-century projection period, using the RCP8.5 greenhouse gas trajectory. Daily station observations and monthly gridded datasets were used for validation. Changes in hydro-climatic extremes are characterized using Extreme Value Analysis. A novel method of aggregating data from climatologically similar stations was employed to increase the statistical power of the analysis. Changes in mean and extreme precipitation are found to differ strongly between seasons and regions, but (relative) changes in extremes generally follow changes in the (seasonal) mean. At the end of the 21st century, precipitation and precipitation extremes are projected to increase by 30% at the coast in fall and land-inwards in winter, while the projected increase in summer precipitation is smaller and changes in extremes are often not statistically significant. Reasons for the differences between seasons, the role of precipitation recycling in atmospheric water transport, and the sensitivity to physics parameterizations are discussed. Major changes are projected for the Fraser River basin, including earlier snowmelt and a 50% reduction in

  20. Partitioning the LIS/OTD Lightning Climatological Dataset into Separate Ground and Cloud Flash Distributions

    NASA Technical Reports Server (NTRS)

    Koshak, W. J.; Solarkiewicz, R. J.

    2009-01-01

    Presently, it is not well understood how to best model nitrogen oxides (NOx) emissions from lightning because lightning is highly variable. Peak current, channel length, channel altitude, stroke multiplicity, and the number of flashes that occur in a particular region (i.e., flash density) all influence the amount of lightning NOx produced. Moreover, these 5 variables are not the same for ground and cloud flashes; e.g., cloud flashes normally have lower peak currents, higher altitudes, and higher flash densities than ground flashes [see (Koshak, 2009) for additional details]. Because the existing satellite observations of lightning (Fig. 1) from the Lightning Imaging Sensor/Optical Transient Detector (LIS/OTD) do not distinguish between ground and cloud fashes, which produce different amounts of NOx, it is very difficult to accurately account for the regional/global production of lightning NOx. Hence, the ability to partition the LIS/OTD lightning climatology into separate ground and cloud flash distributions would substantially benefit the atmospheric chemistry modeling community. NOx indirectly influences climate because it controls the concentration of ozone and hydroxyl radicals in the atmosphere. The importance of lightning-produced NOx is empasized throughout the scientific literature (see for example, Huntrieser et al. 1998). In fact, lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2 and 20 Tg (N)yr(sup -1) (Lee et al., 1997), with more recent estimates of about 6 Tg(N)yr(sup -1) (Martin et al., 2007). In order to make accurate predictions, global chemistry/climate models (as well as regional air quality modells) must more accurately account for the effects of lightning NOx. In particular, the NASA Goddard Institute for Space Studies (GISS) Model E (Schmidt et al., 2005) and the GEOS-CHEM global chemical transport model (Bey et al., 2001) would each benefit from a partitioning of the

  1. Shuttle landing facility cloud cover study: Climatological analysis and two tenths cloud cover rule evaluation

    NASA Technical Reports Server (NTRS)

    Atchison, Michael K.; Schumann, Robin; Taylor, Greg; Warburton, John; Wheeler, Mark; Yersavich, Ann

    1993-01-01

    The two-tenths cloud cover rule in effect for all End Of Mission (EOM) STS landings at the Kennedy Space Center (KSC) states: 'for scattered cloud layers below 10,000 feet, cloud cover must be observed to be less than or equal to 0.2 at the de-orbit burn go/no-go decision time (approximately 90 minutes before landing time)'. This rule was designed to protect against a ceiling (below 10,000 feet) developing unexpectedly within the next 90 minutes (i.e., after the de-orbit burn decision and before landing). The Applied Meteorological Unit (AMU) developed and analyzed a database of cloud cover amounts and weather conditions at the Shuttle Landing Facility for a five-year (1986-1990) period. The data indicate the best time to land the shuttle at KSC is during the summer while the worst time is during the winter. The analysis also shows the highest frequency of landing opportunities occurs for the 0100-0600 UTC and 1300-1600 UTC time periods. The worst time of the day to land a shuttle is near sunrise and during the afternoon. An evaluation of the two-tenths cloud cover rule for most data categorizations has shown that there is a significant difference in the proportions of weather violations one and two hours subsequent to initial conditions of 0.2 and 0.3 cloud cover. However, for May, Oct., 700 mb northerly wind category, 1500 UTC category, and 1600 UTC category there is some evidence that the 0.2 cloud cover rule may be overly conservative. This possibility requires further investigation. As a result of these analyses, the AMU developed nomograms to help the Spaceflight Meteorological Group (SMG) and the Cape Canaveral Forecast Facility (CCFF) forecast cloud cover for EOM and Return to Launch Site (RTLS) at KSC. Future work will include updating the two tenths database, further analysis of the data for several categorizations, and developing a proof of concept artificial neural network to provide forecast guidance of weather constraint violations for shuttle

  2. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements

    NASA Astrophysics Data System (ADS)

    Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas

    2016-06-01

    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ < 0.03) have been observed during 6 % of the observation time, whereas above Zürich and Jülich fewer clouds of that type were observed. Cirrus have been observed up to altitudes of 14.4 km a.s.l. above Jungfraujoch, whereas they have only been observed to about 1 km lower at the other stations. These features highlight the advantage of the high-altitude station Jungfraujoch, which is often in the free troposphere above the polluted boundary layer, thus enabling lidar measurements of thinner and higher clouds. In addition, the measurements suggest a change in cloud morphology at Jungfraujoch above ˜ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected

  3. Climatological data for clouds over the globe from surface observations, 1982--1991: The total cloud edition

    SciTech Connect

    Hahn, C.J.; Warren, S.G.; London, J.

    1994-10-01

    Routine, surface synoptic weather reports from ships and land stations over the entire globe, for the ten-year period December 1981 through November 1991, were processed for total cloud cover and the frequencies of occurrence of clear sky, precipitation, and sky-obscured due to fog. Archived data, consisting of various annual, seasonal and monthly averages, are provided in grid boxes that are typically 2.5{degrees} {times} 2.5{degrees} for land and 5{degrees} {times} 5{degrees} for ocean. Day and nighttime averages are also given separately for each season. Several derived quantities, such as interannual variations and annual and diurnal harmonics, are provided as well. This data set incorporates an improved representation of nighttime cloudiness by utilizing only those nighttime observations for which the illuminance due to moonlight exceeds a specified threshold. This reduction in the night-detection bias increases the computed global average total cloud cover by about 2%. The impact on computed diurnal cycles is even greater, particularly over the oceans where is found, in contrast to previous surface-based climatologies, that cloudiness is often greater at night than during the day.

  4. The Global Precipitation Climatology Project (GPCP): Results, Status and Future

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2007-01-01

    The Global Precipitation Climatology Project (GPCP) is one of a number of long-term, satellite-based, global analyses routinely produced under the auspices of the World Climate Research Program (WCRP) and its Global Energy and Watercycle EXperiment (GEWEX) program. The research quality analyses are produced a few months after real-time through the efforts of scientists at various national agencies and universities in the U.S., Europe and Japan. The primary product is a monthly analysis of surface precipitation that is globally complete and spans the period 1979-present. There are also pentad analyses for the same period and a daily analysis for the 1997-present period. Although generated with somewhat different data sets and analysis schemes, the pentad and daily data sets are forced to agree with the primary monthly analysis on a grid box by grid box basis. The primary input data sets are from low-orbit passive microwave observations, geostationary infrared observations and surface raingauge information. Examples of research with the data sets are discussed, focusing on tropical (25N-25s) rainfall variations and possible long-term changes in the 28-year (1979-2006) monthly dataset. Techniques are used to discriminate among the variations due to ENSO, volcanic events and possible long-term changes for rainfall over both land and ocean. The impact of the two major volcanic eruptions over the past 25 years is estimated to be about a 5% maximum reduction in tropical rainfall during each event. Although the global change of precipitation in the data set is near zero, a small upward linear change over tropical ocean (0.06 mm/day/l0yr) and a slight downward linear change over tropical land (-0.03 mm/day/l0yr) are examined to understand the impact of the inhomogeneity in the data record and the length of the data set. These positive changes correspond to about a 5% increase (ocean) and 3% increase (ocean plus land) during this time period. Relations between variations in

  5. A Climatology of Polar Stratospheric Cloud Types by MIPAS-Envisat

    NASA Astrophysics Data System (ADS)

    Spang, Reinhold; Hoffmann, Lars; Griessbach, Sabine; Orr, Andrew; Höpfner, Michael; Müller, Rolf

    2015-04-01

    For Chemistry Climate Models (CCM) it is still a challenging task to properly represent the evolution of the polar vortices over the entire winter season. The models usually do not include comprehensive microphysical modules to evolve the formation of different types of polar stratospheric clouds (PSC) over the winter. Consequently, predictions on the development and recovery of the future ozone hole have relatively large uncertainties. A climatological record of hemispheric measurement of PSC types could help to better validate and improve the PSC schemes in CCMs. The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument onboard the ESA Envisat satellite operated from July 2002 to April 2012. The infra-red limb emission measurements compile a unique dataset of day and night measurements of polar stratospheric clouds up to the poles. From the spectral measurements in the 4.15-14.6 microns range it is possible to select a number of atmospheric window regions and spectral signatures to classify PSC cloud types like nitric acid hydrates, sulfuric ternary solution droplets, and ice particles. The cloud detection sensitivity is similar to space borne lidars, but MIPAS adds complementary information due to its different measurement technique (limb instead of nadir) and wavelength region. Here we will describe a new classification method for PSCs based on the combination of multiple brightness temperature differences (BTD) and colour ratios. Probability density functions (PDF) of the MIPAS measurements in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions enable the definition of regions attributed to specific or mixed types clouds. Applying a naive bias classifier for independent criteria to all defined classes in four 2D PDF distributions, it is possible to assign the most likely PSC type to any measured cloud spectrum. Statistical Monte Carlo test have been applied to quantify

  6. Climatology of aerosol and cloud optical properties at the Atmospheric Radiation Measurements Climate Research Facility Barrow and Atqasuk sites

    NASA Astrophysics Data System (ADS)

    Yin, Bangsheng; Min, Qilong

    2014-02-01

    The long-term measurements at the Barrow and Atqasuk sites have been processed to develop the climatology of aerosol and cloud properties at interannual, seasonal, and diurnal temporal scales. At the Barrow site, the surface temperature exhibits an increasing trend in both thawed and frozen seasons over the period studied here, about one decade. Corresponding to the warming, the snow melting day arrives earlier, and the non-snow-cover duration increases. Aerosol optical depth increased during 2001-2003 and 2005-2009 and decreased during 2003-2005. The liquid water path (LWP), cloud optical depth (COD), and cloud fraction exhibit apparently decreasing trends from 2002 to 2007 and increased significantly after 2008. In the frozen season, the arctic haze and ice clouds are dominant, while in the thawed season, the oceanic biogenic aerosols and liquid water clouds or mixed-phase clouds are dominant. The cloud droplet effective radius during the thawed season is larger than that during the frozen season. The diurnal variations of aerosol and cloud-related atmospheric properties are not obvious at these two sites. During the sunshine periods, the aerosol has a cooling effect on the surface through direct aerosol radiative forcing. In the frozen season, clouds have a positive impact on the net surface radiation, and the water vapor path, LWP, and COD have good positive correlations with the surface temperature, suggesting that the cloud radiation feedback is positive. In the thawed season, clouds have a negative impact on the net surface radiation.

  7. Climatological characteristics of deep and shallow precipitation clouds in summer over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Pan, Xiao; Fu, Yunfei

    2016-04-01

    The Tibetan Plateau (TP) is the highest plateau with complex terrain in the world, and it can affect the weather and climate of many regions through its mechanical and thermal effects. The precipitation types over TP are divided into deep (strong deep convection and weak deep convection) and shallow precipitations, according to the particular atmospheric vertical structures of TP. The climatological characteristics of the deep and shallow precipitations including their horizontal distributions, infrared signal characteristics of clouds, vertical structures, diurnal variations and local phase shifts over TP are investigated by utilizing combining measurements of the tropical rainfall measuring mission (TRMM) precipitation radar (PR) and visible and infrared scanner (VIRS) in summer from 1998 to 2007. The results show that the precipitation over TP is mainly in the form of weak deep convection, which occupies 67.8% of total rain, then followed by shallow precipitation with 26.4% and the strong deep convection with 5.8%. The clouds for strong deep convection and weak deep convection are mainly composed of ice and ice-water mixed particles, respectively. The vertical profiles of deep precipitations firstly increase, and then decrease from the storm top altitude to the ground level, with maximizing at about 7.5 km altitude. In contrast, the vertical profile of the shallow precipitation only has an increasing process. The deep precipitations have significant diurnal variations. The precipitation frequencies for strong deep convection and weak deep convection both peak at 16 local time (LT), while the rain intensities for them peak at 13 and 18 LST, respectively. Furthermore, the rain intensity for strong deep convection is characterized by a secondary peak at 00 LT. For the shallow precipitation, the diurnal variation is relatively weaker. The precipitation frequency and intensity both peak at 20 LT, presenting the characteristic of night rain. The diurnal variations of

  8. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    NASA Astrophysics Data System (ADS)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-06-01

    16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  9. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    NASA Astrophysics Data System (ADS)

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  10. Satellite-based climatology of low-level continental clouds in southern West Africa during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Linden, Roderick; Fink, Andreas H.; Redl, Robert

    2015-02-01

    Synoptic observations and various satellite products have been utilized for computing climatologies of low-level stratus over southern West Africa for the wet monsoon seasons July-September of 2006-2011. Previous studies found inconsistencies between satellite cloud products; climate models often fail to reproduce the extensive stratus decks. Therefore, a better observational reference and an understanding of its limitations are urgently needed to better validate models. Most detailed information of the spatiotemporal characteristics of low-level clouds was obtained from two Meteosat Second Generation (MSG) satellite-based data sets. However, CALIPSO and CloudSat cross sections of cloud occurrence frequency suggest that both MSG products underestimate the low-level cloudiness over Nigeria due to shielding by abundant upper level and midlevel clouds and reveal that the stratus is lower over the continent than over the ocean. The Terra Multiangle Imaging Spectroradiometer product appears to overestimate the morning extent of low-level clouds. The climatology presented here shows that the zone of abundant low-level stratiform clouds is at its diurnal minimum south of 6-7°N around sunset (~1800 UTC). Thereafter, it starts to spread inland and reaches its maximum northward extent of 10-11°N between 0900 and 1000 UTC. The maximum affected area is approximately 800,000 km2. After about 1000 UTC, the northern boundary gets fragmented due to the breakup of stratus decks into fair-weather cumuli. The stratus is most frequent around Cape Palmas, over Ivory Coast, and at the windward sides of the Mampong Range (Ghana) and Oshogbo Hills (Nigeria).

  11. A 3-Year Climatology of Cloud and Radiative Properties Derived from GOES-8 Data Over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Khaiyer, M. M.; Rapp, A. D.; Doelling, D. R.; Nordeen, M. L.; Minnis, P.; Smith, W. L., Jr.; Nguyen, L.

    2001-01-01

    While the various instruments maintained at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) Central Facility (CF) provide detailed cloud and radiation measurements for a small area, satellite cloud property retrievals provide a means of examining the large-scale properties of the surrounding region over an extended period of time. Seasonal and inter-annual climatological trends can be analyzed with such a dataset. For this purpose, monthly datasets of cloud and radiative properties from December 1996 through November 1999 over the SGP region have been derived using the layered bispectral threshold method (LBTM). The properties derived include cloud optical depths (ODs), temperatures and albedos, and are produced on two grids of lower (0.5 deg) and higher resolution (0.3 deg) centered on the ARM SGP CF. The extensive time period and high-resolution of the inner grid of this dataset allows for comparison with the suite of instruments located at the ARM CF. In particular, Whole-Sky Imager (WSI) and the Active Remote Sensing of Clouds (ARSCL) cloud products can be compared to the cloud amounts and heights of the LBTM 0.3 deg grid box encompassing the CF site. The WSI provides cloud fraction and the ARSCL computes cloud fraction, base, and top heights using the algorithms by Clothiaux et al. (2001) with a combination of Belfort Laser Ceilometer (BLC), Millimeter Wave Cloud Radar (MMCR), and Micropulse Lidar (MPL) data. This paper summarizes the results of the LBTM analysis for 3 years of GOES-8 data over the SGP and examines the differences between surface and satellite-based estimates of cloud fraction.

  12. Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data set over Southern India

    NASA Astrophysics Data System (ADS)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-12-01

    Sixteen-year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from 7 and a half years (June 2006-December 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and the differences in sampling frequencies. Nearly 50-55 % of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect a higher number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. The mid-cloud altitude of sub-visible cirrus clouds is found to be increasing at the rate of 41 ± 21 m year-1. Statistically significant decrease in optical thickness of sub-visible and thick cirrus clouds is observed. Also, the fraction of sub-visible cirrus cloud is found to have increased by 9 % in the last 16 years (1998 to 2013). This increase is mainly compensated by a 7 % decrease in thin cirrus cloud fraction. This has implications for the temperature and water vapour budget in the tropical tropopause layer.

  13. Tropical Stratospheric Cloud climatology from the PATMOS-x dataset - an assessment of convective contributions to stratospheric water

    NASA Astrophysics Data System (ADS)

    Nielsen, J. K.; Heidinger, A. K.; Foster, M. J.

    2012-04-01

    The PATMOS-x level 2b climatology, generated using three decades of AVHRR measurements, contains valuable information about the past global cloud record. We extract climatologies of tropical deep convective clouds from the PATMOS-x data set, based on the 10.30-11.30 micro meter brightness temperature. A comparison of the cross ropopause convective cloud frequency between ISCCP and PATMOS-x shows that PATMOS-x has a greater frequency of occurrence than does the ISCCP, and this enhanced frequency is attributed to greater horizontal resolution (2 km) in the PATMOS-x data. The high resolution makes this dataset suitable for a search for cross tropopause convection, which happens on length scales down to 1 km. We find there have been several changes in deep convective activity over land during the period 1982 to 2009. We explore specifically the epoch of the HALOE satellite, and find a correlation between land deep convective activity and anomalies in the HALOE stratospheric water retrievals. A simple model is able to predict stratospheric water vapor concentrations highly correlated to that observed using only frequency of deep convection. From this we conclude that deep convection over land contributes to moistening of the lowest tropical stratosphere on seasonal, annual and decadal timescales[1]. [1] GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L18801, 5 PP., 2011 doi:10.1029/2011GL049429

  14. Lidar Studies of Extinction in Clouds in the ECLIPS Project

    NASA Technical Reports Server (NTRS)

    Martin, C.; Platt, R.; Young, Stuart A.; Patterson, Graeme P.

    1992-01-01

    The Experimental Cloud Lidar Pilot Study (ECLIPS) project has now had two active phases in 1989 and 1991. A number of laboratories around the world have taken part in the study. The observations have yielded new data on cloud height and structure, and have yielded some useful new information on the retrieval of cloud optical properties, together with the uncertainties involved. Clouds have a major impact on the climate of the earth. They have the effect of reducing the mean surface temperature from 30 C for a cloudless planet to a value of about 15 C for present cloud conditions. However, it is not at all certain how clouds would react to a change in the planetary temperature in the event of climate change due to a radiative forcing from greenhouse gases. Clouds both reflect out sunlight (negative feedback) and enhance the greenhouse effect (positive feedback), but the ultimate sign of cloud feedback is unknown. Because of these uncertainties, campaigns to study clouds intensely were initiated. The International Satellite Cloud Climatology (ISCPP) and the FIRE Campaigns (cirrus and stratocumulus) are examples. The ECLIPS was set up similarly to the above experiments to obtain information specifically on cloud base, but also cloud top (where possible), optical properties, and cloud structure. ECLIPS was designed to allow as many laboratories as possible globally to take part to get the largest range of clouds. It involves observations with elastic backscatter lidar, supported by infrared fluxes at the ground and radiosonde data, as basic instrumentation. More complex experiments using beam filter radiometers, solar pyranometers, and satellite data and often associated with other campaigns were also encouraged to join ECLIPS. Two periods for observation were chosen, Sep. - Dec. 1989 and Apr. - Jul. 1992 into which investigators were requested to fit 30 days of observations. These would be either continuous, or arranged to coincide with NOAA satellite overpasses to

  15. Hybrid fine scale climatology and microphysics of in-cloud icing: From 32 km reanalysis to 5 km mesoscale modeling

    NASA Astrophysics Data System (ADS)

    Lamraoui, Fayçal; Benoit, Robert; Perron, Jean; Fortin, Guy; Masson, Christian

    2015-03-01

    In-cloud icing can impose safety concerns and economic challenges for various industries. Icing climate representations proved beneficial for optimal designs and careful planning. The current study investigates in-cloud icing, its related cloud microphysics and introduces a 15-year time period climatology of icing events. The model was initially driven by reanalysis data from North American Regional Reanalysis and downscaled through a two-level nesting of 10 km and 5 km, using a limited-area version of the Global Environment Multiscale Model of the Canadian Meteorological Center. In addition, a hybrid approach is used to reduce time consuming calculations. The simulation realized exclusively on significant icing days, was combined with non-significant icing days as represented by data from NARR. A proof of concept is presented here for a 1000 km area around Gaspé during January for those 15 years. An increase in the number and intensity of icing events has been identified during the last 15 years. From GEM-LAM simulations and within the atmospheric layer between 10 m and 200 m AGL, supercooled liquid water contents indicated a maximum of 0.4 g m- 3, and 50% of the values are less than 0.05 g m- 3. All values of median volume diameters (MVD) are approximately capped by 70 μm and the typical values are around 15 μm. Supercooled Large Droplets represent approximately 5%. The vertical profile of icing climatology demonstrates a steady duration of icing events until the level of 60 m. The altitudes of 60 m and 100 m indicate substantial icing intensification toward higher elevations. GEM-LAM demonstrated a substantial improvement in the calculation of in-cloud icing, reducing significantly the challenge posed by complex terrains.

  16. KLIMHIST: A Project on Historical Climatology in Portugal

    NASA Astrophysics Data System (ADS)

    Fragoso, Marcelo; João Alcoforado, Maria; Santos, João A.

    2013-04-01

    Climatic variability from the beginning of regular meteorological observations is now acknowledged. However, climate change prior to 1900 is far from being well known in Portugal, except for the 1675-1800 period in Southern Portugal. An interdisciplinary team is working in the frame of the KLIMHIST PROJECT ("Reconstruction and model simulations of past climate in Portugal using documentary and early instrumental sources, 17th-19th century)", since May 2012. The main objectives of the project are: (i) to contribute to the creation of a long-term history of climate in Portugal by producing databases of documentary evidence and of instrumental data since 1645, a period of natural climate variability that includes the Maunder Minimum and the Dalton Minimum; (ii) to search systematically for the first simultaneous documentary and instrumental data in order to calibrate the series; (iii) to analyse simulated multi-decadal trends over Portugal generated by climate models; (iv) to compare results with those obtained from dendroclimatology and from geothermal studies regarding Portugal and (v) to study extreme events of the past, their impacts and the vulnerability of societies to weather during the last 350 years, and compare them with current analogues. With these tasks, we expect to help completing the spatial coverage of past European climate, as the data gap over SW Europe is often mentioned. As the team members come from four different Universities in Portugal (Évora, Lisbon, Oporto and UTAD), we expect to obtain a good spatial representation of documentary evidence. Teams are now progressing in data search activities in archives. An Access database frame was constructed. Some 18th century extreme events have been and are being studied (Barbara storm, Dec.1739, among others). The first workshop took place in Lisbon (October 2012): Prof Brázdil and Dr. Domínguez-Castro (two of our consultants) were keynote speakers. Key-words: Climate reconstruction, Documentary

  17. The Cloud2SM Project

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barosso, Guillermo; Simonin, Matthieu

    2015-04-01

    From the past decades the monitoring of civil engineering structure became a major field of research and development process in the domains of modelling and integrated instrumentation. This increasing of interest can be attributed in part to the need of controlling the aging of such structures and on the other hand to the need to optimize maintenance costs. From this standpoint the project Cloud2SM (Cloud architecture design for Structural Monitoring with in-line Sensors and Models tasking), has been launched to develop a robust information system able to assess the long term monitoring of civil engineering structures as well as interfacing various sensors and data. The specificity of such architecture is to be based on the notion of data processing through physical or statistical models. Thus the data processing, whether material or mathematical, can be seen here as a resource of the main architecture. The project can be divided in various items: -The sensors and their measurement process: Those items provide data to the main architecture and can embed storage or computational resources. Dependent of onboard capacity and the amount of data generated it can be distinguished heavy and light sensors. - The storage resources: Based on the cloud concept this resource can store at least two types of data, raw data and processed ones. - The computational resources: This item includes embedded "pseudo real time" resources as the dedicated computer cluster or computational resources. - The models: Used for the conversion of raw data to meaningful data. Those types of resources inform the system of their needs they can be seen as independents blocks of the system. - The user interface: This item can be divided in various HMI to assess maintaining operation on the sensors or pop-up some information to the user. - The demonstrators: The structures themselves. This project follows previous research works initiated in the European project ISTIMES [1]. It includes the infrared

  18. Climatology of clouds and precipitation over East Antarctica using ground-based remote sensing at the Princess Elizabeth station

    NASA Astrophysics Data System (ADS)

    Souverijns, Niels; Gossart, Alexandra; Gorodetskaya, Irina; Lhermitte, Stef; Van Tricht, Kristof; Mangold, Alexander; Laffineur, Quentin; Van Lipzig, Nicole

    2016-04-01

    The surface mass balance of the Antarctic ice sheet is highly dependent on the interaction between clouds and precipitation. Our understanding of these processes is challenged by the limited availability of observations over the area and problems in Antarctic climate simulations by state-of-the-art climate models. Improvements are needed in this field, as the Antarctic ice sheet is expected to become a dominant contributor to sea level rise in the 21st century. In 2010, an observational site was established at the Princess Elisabeth (PE) Antarctic station. PE is located in the escarpment area of Dronning Maud Land, East Antarctica (72°S, 23°E). The instruments consist of several ground-based remote sensing instruments: a ceilometer (measuring cloud-base height and vertical structure), a 24-GHz Micro Rain Radar (MRR; providing vertical profiles of radar effective reflectivity and Doppler velocity), and a pyrometer (measuring effective cloud base temperature). An automatic weather station provides info on boundary-layer meteorology (temperature, wind speed and direction, humidity, pressure), as well as broadband radiative fluxes and snow height changes. This set of instruments can be used to infer the role of clouds in the Antarctic climate system, their interaction with radiation and their impact on precipitation. Cloud and precipitation characteristics are derived from 5-year-long measurement series, which is unprecedented for the Antarctic region. Here, we present an overview of the cloud and precipitation climatology. Statistics on cloud occurrence are calculated on annual / seasonal basis and a distinction between liquid / mixed phase and ice clouds is made. One can discriminate between liquid-bearing and ice-only clouds by investigating the ceilometer attenuated backscatter, since liquid phase clouds have a much higher signal. Furthermore, by using pyrometer measurements, we are able to identify the range of temperatures at which liquid / ice clouds are

  19. A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing: Part V. Cloud Structural Properties

    SciTech Connect

    Sassen, Kenneth; Wang, Likun; Starr, David O.; Comstock, Jennifer M.; Quante, Markus

    2007-07-31

    In this fifth of a series of papers describing the extended-time high cloud observation program from the University of Utah Facility for Atmospheric Remote Sensing, the structural properties of cirrus clouds over Salt Lake City, Utah, are examined. Wavelet analysis is applied as a function of cloud height to a 10-y record of ruby (0.694 um) lidar backscattering data collected from visually-identified cirrus clouds to study the presence of periodic cloud structures, such as Kelvin-Helmholtz waves, cirrus mammata, and uncinus cells (all with wavelengths of ~1-10 km), as well as longer mesoscale cloud organizations. Approximately 8.4% (18.8%, 30.8%) of the data display such periodic structures after passing a 95% (75%, 50%) confidence level test. This may signify that most cloud organizations are quasi-periodic in nature. The amount of lidar cloud data showing periodic structures does not change considerably with length scale between 0.2 to 200 km, although a preference for ~20-km mesoscale cloud structures is indicated. Using time series of vertically-integrated lidar backscattering profiles, we find a steady decrease in autocorrelation coefficients starting at a few kilometers as the length (or model grid) scale increases. Examining the variability of cirrus cloud optical depth t from an earlier LIRAD (combined lidar and infrared radiometer) analysis reveals that the standard deviation σ of t is related by σ = 0.36 t.

  20. Quantifying the climatological cloud-free shortwave direct radiative forcing of mineral dust aerosol over the Red Sea

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Brindley, H. E.; Osipov, S.; Bantges, R. J.; Smirnov, A.; Prakash, P. J.

    2014-12-01

    While there have been a number of campaigns designed to probe dust-climate interactions over much of the world, relatively little attention has been paid to the Red Sea. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements, which can be used to evaluate retrievals, are thus highly desirable. Here we take advantage of ship-based hand-held sun-photometer (microtops) observations gathered within the framework of NASA Aerosol Maritime Network from a series of cruises, which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Here we used the microtops measurements to evaluate the performance of co-located satellite retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the MODerate Imaging Spectrometer (MODIS). Both algorithms show good agreement with the ship-based measurements and with each other, although it appears that the MODIS cloud detection scheme in particular is rather conservative. The stand alone Rapid Radiative Transfer Model (RRTM) driven by reanalysis meteorological fields is used to estimate the cloud-free aerosol direct radiative effect at the surface and TOA along the ship tracks. The TOA effects are compared to co-located measurements from the Geostationary Earth Radiation Budget (GERB) instrument. Having evaluated both the quality of the retrievals and the ability of the model to capture the associated radiative effect, we will present a climatology of aerosol loading over the

  1. A Climatology of Surface Cloud Radiative Effects at the ARM Tropical Western Pacific Sites

    SciTech Connect

    McFarlane, Sally A.; Long, Charles N.; Flaherty, Julia E.

    2013-04-01

    Cloud radiative effects on surface downwelling fluxes are investigated using long-term datasets from the three Atmospheric Radiation Measurement (ARM) sites in the Tropical Western Pacific (TWP) region. The Nauru and Darwin sites show significant variability in sky cover, downwelling radiative fluxes, and surface cloud radiative effect (CRE) due to El Niño and the Australian monsoon, respectively, while the Manus site shows little intra-seasonal or interannual variability. Cloud radar measurement of cloud base and top heights are used to define cloud types so that the effect of cloud type on the surface CRE can be examined. Clouds with low bases contribute 71-75% of the surface shortwave (SW) CRE and 66-74% of the surface longwave (LW) CRE at the three TWP sites, while clouds with mid-level bases contribute 8-9% of the SW CRE and 12-14% of the LW CRE, and clouds with high bases contribute 16-19% of the SW CRE and 15-21% of the LW CRE.

  2. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II; Cloud Fraction and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Minnis, Patrick

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility are analyzed for determining the variability of cloud fraction and radiative forcing at several temporal scales between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layer low (0-3 km), middle (3-6 km), and high clouds (greater than 6 km) using ARM SGP ground-based paired lidar-radar measurements. Shortwave (SW), longwave (LW), and net cloud radiative forcings (CRF) are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements. The annual averages of total, and single-layer, nonoverlapped low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Total and low cloud amounts were greatest from December through March and least during July and August. The monthly variation of high cloud amount is relatively small with a broad maximum from May to August. During winter, total cloud cover varies diurnally with a small amplitude, mid-morning maximum and early evening minimum, and during summer it changes by more than 0.14 over the daily cycle with a pronounced early evening minimum. The diurnal variations of mean single-layer cloud cover change with season and cloud height. Annual averages of all-sky, total, and single-layer high, middle, and low LW CRFs are 21.4, 40.2, 16.7, 27.2, and 55.0 Wm(sup -2), respectively; and their SW CRFs are -41.5, -77.2, -37.0, -47.0, and -90.5 Wm(sup -2). Their net CRFs range from -20 to -37 Wm(sup -2). For all-sky, total, and low clouds, the maximum negative net CRFs of -40.1, -70, and -69.5 Wm(sup -2), occur during April; while the respective minimum values of -3.9, -5.7, and -4.6 Wm(sup -2), are found during December. July is the month having maximum negative net CRF of -46.2 Wm(sup -2) for middle clouds, and May has the maximum value of -45.9 Wm(sup -2) for high clouds. An

  3. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part II; Cloud Fraction and Surface Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Xi, B.; Minnis, P.

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0-3 km), middle (3-6 km), and high clouds (more than 6 km) using ARM SCG ground-based paired lidar-radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of approximately 10 Wm(exp -2). The annual averages of total, and single-layered low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total and low cloud amounts peak during January and February and reach a minimum during July and August, high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 Wm(exp-2), respectively) are less than those under middle and high clouds (188 and 201 Wm(exp -2), respectively), but the downwelling LW fluxes (349 and 356 Wm(exp -2)) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 Wm(exp -2)). Low clouds produce the largest LW warming (55 Wm(exp -2) and SW cooling (-91 Wm(exp -2)) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 Wm(exp -2)) and SW cooling (-37 Wm(exp -2)) effects at the surface. All-sky SW CRF decreases and LW CRF increases with increasing cloud fraction with mean slopes of -0.984 and 0.616 Wm(exp -2)%(exp -1), respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly

  4. A Climatology of Fair-Weather Cloud Statistics at the Atmospheric Radiation Measurement Program Southern Great Plains Site: Temporal and Spatial Variability

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Gustafson, William I.

    2006-03-30

    In previous work, Berg and Stull (2005) developed a new parameterization for Fair-Weather Cumuli (FWC). Preliminary testing of the new scheme used data collected during a field experiment conducted during the summer of 1996. This campaign included a few research flights conducted over three locations within the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. A more comprehensive verification of the new scheme requires a detailed climatology of FWC. Several cloud climatologies have been completed for the ACRF SGP, but these efforts have focused on either broad categories of clouds grouped by height and season (e.g., Lazarus et al. 1999) or height and time of day (e.g., Dong et al. 2005). In these two examples, the low clouds were not separated by the type of cloud, either stratiform or cumuliform, nor were the horizontal chord length (the length of the cloud slice that passed directly overhead) or cloud aspect ratio (defined as the ratio of the cloud thickness to the cloud chord length) reported. Lane et al. (2002) presented distributions of cloud chord length, but only for one year. The work presented here addresses these shortcomings by looking explicitly at cases with FWC over five summers. Specifically, we will address the following questions: •Does the cloud fraction (CF), cloud-base height (CBH), and cloud-top height (CTH) of FWC change with the time of day or the year? •What is the distribution of FWC chord lengths? •Is there a relationship between the cloud chord length and the cloud thickness?

  5. The first ISLSCP field experiment (FIFE). [International Satellite Land Surface Climatology Project

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Hall, F. G.; Asrar, G.; Strebel, D. E.; Murphy, R. E.

    1988-01-01

    The background and planning of the first International Satellite Land Surface Climatology Project (ISLSCP) field experiment (FIFE) are discussed. In FIFE, the NOAA series of satellites and GOES will be used to provide a moderate-temporal resolution coarse-spatial resolution data set, with SPOT and aircraft data providing the high-spatial resolution pointable-instrument capability. The paper describes the experiment design, the measurement strategy, the configuration of the site of the experiment (which will be at and around the Konza prairie near Manhattan, Kansas), and the experiment's operations and execution.

  6. An aerosol climatology for the Jungfraujoch, Part 1: Criteria for cloud presence and boundary layer influence

    NASA Astrophysics Data System (ADS)

    Herrmann, Erik; Weingartner, Ernest; Gysel, Martin; Bukowiecki, Nicolas; Hammer, Emanuel; Collaud Coen, Martine; Conen, Franz; Vuilleumier, Laurent; Baltensperger, Urs

    2014-05-01

    The high alpine research station at the Jungfraujoch in Switzerland is located at 3580 m asl. Depending on meteorological conditions, the station is in the planetary boundary layer or in the free troposphere; and often it is inside clouds. In one location, it is thus possible to study aerosols under very different conditions. These possibilities have been recognized early on, with aerosol measurements starting in 1995. Over the years, the instrumentation has been extended significantly, today including various measurements of aerosol optical properties (nephelometer, aethalometer, MAAP) as well as aerosol size distribution (SMPS, OPC, APS). Additionally, the station regularly hosts campaigns (e.g. CLACE) with a multitude of additional devices, mostly focusing on new particle formation, cloud condensation nuclei, and ice nuclei. However, there are no continuously operated direct measurements to determine whether the station is in the clouds or not, whether it is in the PBL or the free troposphere. As these are essential parameters to describe the aerosol observed at the station, we present approaches to describe them based on the observations available to us. The intuitive choices to look at in terms of clouds are relative humidity and dew point. When comparing dew point and ambient temperature, a clear criterion to identify clouds can be easily deducted. However, the determination of "no clouds" is more ambiguous. Based on longwave radiation measurements performed routinely at the site, it is possible to calculate the sky temperature, i.e. the temperature at the point of origin of the radiation. When within a cloud, the sky temperature should be identical or at least close to ambient temperature. The comparison of sky and ambient temperature shows two clear clusters which can be interpreted as "cloud" and "no cloud". One has to note that in case of inversion or clouds shortly above the research station, this approach will produce false positives. However, combining

  7. Using Active Satellite Observations to Characterize Uncertatinty in Long Term Satellite Cloud Liquid Water Path Climatologies

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.

    2014-12-01

    Bias between the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) version 2 and the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 5.1 cloud liquid water path (Wc)products are explored with the aid of coincident active observations from the CloudSat radar and the CALIPSO lidar. In terms of detection, the active observations provide precise separation of cloudy from clear sky and precipitating from nonprecipitating clouds. In addition, they offer a unique quantification of precipitation water path (Wp) in warm clouds. They also provide an independent quantification of Wc that isbased on an accurate surface reference technique, which is an independent arbiter between the two passive approaches. The results herein establish the potential for CloudSat and CALIPSO to provide an independent assessment of bias between the conventional passive remote sensing methods from reflected solar and emitted microwave radiation. After applying a common data filter to the observations to account for sampling biases, AMSR-E is biased high relative to MODIS in the global mean by 26.4gm2. The RMS difference in the regional patterns is 32.4gm2, which highlights a large geographical dependence in the bias which is related to the tropical transitions from stratocumulus to cumulus cloud regimes. The contributions of four potential sources for this bias are investigated by exploiting the active observations: (1)bias in MODIS related to solar zenith angle dependence accounts for 2.3gm2, (2) bias in MODIS due to undersampling of cloud edges accounts for 4.2gm2, (3) a wind speed and water vapor-dependent "clear-sky bias" in the AMSR-E retrieval accounts for 6.3gm2, and (4) evidence suggests that much of the remaining 18gm2 bias is related to the assumed partitioning of the observed emission signal between cloud and precipitation water in the AMSR-E retrieval. This is most evident through the correlations between the regional mean patterns of Wp and the Wc bias within the

  8. Satellite Sounder-Based OLR-, Cloud- and Atmospheric Temperature Climatologies for Climate Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2006-01-01

    Global energy balance of the Earth-atmosphere system may change due to natural and man-made climate variations. For example, changes in the outgoing longwave radiation (OLR) can be regarded as a crucial indicator of climate variations. Clouds play an important role -still insufficiently assessed in the global energy balance on all spatial and temporal scales, and satellites provide an ideal platform to measure cloud and large-scale atmospheric variables simultaneously. The TOVS series of satellites were the first to provide this type of information since 1979. OLR [Mehta and Susskind], cloud cover and cloud top pressure [Susskind et al] are among the key climatic parameters computed by the TOVS Pathfinder Path-A algorithm using mainly the retrieved temperature and moisture profiles. AIRS, regarded as the new and improved TOVS , has a much higher spectral resolution and greater S/N ratio, retrieving climatic parameters with higher accuracy. First we present encouraging agreements between MODIS and AIRS cloud top pressure (C(sub tp) and effective (A(sub eff), a product of infrared emissivity at 11 microns and physical cloud cover or A(sub c)) cloud fraction seasonal and interannual variabilities for selected months. Next we present validation efforts and preliminary trend analyses of TOVS-retrieved C(sub tp) and A(sub eff). For example, decadal global trends of the TOVS Path-A and ISCCP-D2 P(sub c), and A(sub eff)/A(sub c), values are similar. Furthermore, the TOVS Path-A and ISCCP-AVHRR [available since 19831 cloud fractions correlate even more strongly, including regional trends. We also present TOVS and AIRS OLR validation effort results and (for the longer-term TOVS Pathfinder Path-A dataset) trend analyses. OLR interannual spatial variabilities from the available state-of-the-art CERES measurements and both from the AIRS [Susskind et al] and TOVS OLR computations are in remarkably good agreement. Global monthly mean CERES and TOVS OLR time series show very good

  9. The ESA Cloud_cci project: generation of multi-decadal, consistent, global data sets of cloud properties with uncertainty information

    NASA Astrophysics Data System (ADS)

    Stapelberg, Stefan; Finkensieper, Stephan; Stengel, Martin; Schlundt, Cornelia; Sus, Oliver; Hollmann, Rainer; Poulsen, Caroline; ESA Cloud cci Team

    2016-04-01

    In 2010 the ESA Climate Change Initiative (CCI) Cloud project was started along with 12 other CCI projects covering atmospheric, oceanic and terrestrial "essential climate variables (ECV)". The main goal is the generation of satellite-based climate data records that meet the challenging requirements of the Global Climate Observing System. The objective target within the ESA Cloud_cci project is the generation of long-term coherent cloud property datasets covering 33 years that also provide mathematically consistent uncertainty information following the optimal estimation (OE) retrieval theory. The cloud properties considered are cloud mask, cloud top level estimates, cloud thermodynamic phase, cloud optical thickness, cloud effective radius and post processed parameters such as cloud liquid and ice water path. In this presentation we will discuss the benefit of using an optimal estimation retrieval framework, which provides consistence among the retrieved cloud variables and pixel-based uncertainty estimates based on different passive instruments such as AVHRR, MODIS and AATSR. We will summarize the results of the project so far along with ongoing further developments that currently take place. Our results will be compared with other well-established satellite data records, surface observations and cloud climatologies (e.g., PATMOS-X, ISCCP, CLARA-A2, MODIS collection 6, SYNOP). These inter-comparison results will indicate the strengths and weaknesses of the Cloud_cci datasets. Finally, we will present long-term time series of the retrieved cloud variables for AVHRR (1982-2014) that enable global, multi-decadal analyses of clouds.

  10. The ESA Cloud_cci Project: Generation of Multi-Decadal, Consistent, Global Data Sets of Cloud Properties with Uncertainty Information

    NASA Astrophysics Data System (ADS)

    Stapelberg, S.; Stengel, M.; Schlundt, C.; Sus, O.; Hollmann, R.; Poulsen, C. A.

    2015-12-01

    In 2010 the ESA Climate Change Initiative (CCI) Cloud project was started along with 12 other CCI projects covering atmospheric, oceanic and terrestrial "essential climate variables (ECV)". The main goal is the generation of satellite-based climate data records that meet the challenging requirements of the Global Climate Observing System. The objective target within the ESA Cloud_cci project is the generation of long-term coherent cloud property datasets covering 33 years that also provide mathematically consistent uncertainty information following the optimal estimation (OE) retrieval theory. The cloud properties considered are cloud mask, cloud top level estimates, cloud thermodynamic phase, cloud optical thickness, cloud effective radius and post processed parameters such as cloud liquid and ice water path. In this presentation we will discuss the benefit of using an optimal estimation retrieval framework, which provides consistence among the retrieved cloud variables and pixel-based uncertainty estimates based on different passive instruments such as AVHRR, MODIS and AATSR. We will summarize the results of the project so far along with ongoing further developments that currently take place. Our results will be compared with other well-established satellite data records, surface observations and cloud climatologies (e.g., PATMOS-X, ISCCP, CLARA-A2, MODIS collection 6, SYNOP). These inter-comparison results will indicate the strengths and weaknesses of the Cloud_cci datasets. Finally, we will present long-term time series of the retrieved cloud variables for AVHRR (1982-2014) that enable global, multi-decadal analyses of clouds.

  11. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  12. A combined microwave/infrared algorithm for estimating rainfall during the GPCP. [Global Precipitation Climatology Project

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.

    1990-01-01

    The paper presents results of a satellite algorithm intercomparison of monthly precipitation, which was organized by the World Climate Research Program's Global Precipitation Climatology Project (GPCP). Special attention is given to the techniques used in the projects and the type of data provided in the study (mainly by Japan's GMS visible and IR sensors and the USA's Special Sensor Microwave/Imager). The results of rainfall estimates obtained by Negri et al. (1994) and Adler and Negri (1988) techniques are compared with estimates made with the threshold technique of Arkin (1979, 1983). Results obtained by various techniques are presented for both the instantaneous estimates and for total rain accumulations over an area including Japan for a 24-hr period on June 22, 1989.

  13. A 10 Year Climatology of Arctic Cloud Fraction and Radiative Forcing at Barrow, Alaska

    SciTech Connect

    Dong, Xiquan; Xi, Baike; Crosby, Kathryn; Long, Charles N.; Stone, R. S.; Shupe, Matthew D.

    2010-09-15

    A 10-yr record of Arctic cloud fraction and surface radiation budget has been generated using data collected from June 1998 to May 2008 at the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) site and the nearby NOAA Barrow Observatory (BRW). The record includes the seasonal variations of cloud fraction (CF), cloud liquid water path (LWP), precipitable water vapor (PWV), surface albedo, shortwave (SW) and longwave (LW) fluxes and cloud radative forcings (CRFs), as well as their decadal variations. Values of CF derived from different instruments and methods agree well, having an annual average of ~0.74. Cloudiness increases from March to May, remains high (~0.8-0.9) from May to October, and then decreases over winter. More clouds and higher LWP and PWV occurred during the warm season (May-October) than the cold season (November-April). These results are strongly associated with southerly flow which transports warm, moist air masses to Barrow from the North Pacific and over area of Alaska already free of snow during the warm season and with a dipole pattern of pressure in which a high is centered over the Beaufort Sea and low over the Aleutians during the cold season. The monthly means of estimated clear-sky and measured allsky SW-down and LW-down fluxes at the two facilities are almost identical with the annual mean differences less than 1.6 W m-2. The downwelling and upwelling LW fluxes remain almost constant from January to March, then increase from March and peak during July-August. SW-down fluxes are primarily determined by seasonal changes in the intensity and duration of insolation over Northern Alaska, and are also strongly dependent on cloud fraction and optical depth, and surface albedo. The monthly variations of NET CRF generally follow the cycle of SW CRF, modulated by LW effects. On annual average, the negative SW CRF and positive LW CRF tend to cancel, resulting in annual average NET CRF of 2-4.5 Wm-2. Arctic clouds have a 3 net

  14. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George J.; Chang, Alfred; Ferraro, Ralph; Xie, Ping-Ping; Janowiak, John; Rudolf, Bruno; Schneider, Udo; Curtis, Scott; Bolvin, David

    2003-01-01

    The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

  15. Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays.

    PubMed

    Sassen, Kenneth; Zhu, Jiang; Benson, Sally

    2003-01-20

    In this fourth of a series of papers that describe long-term cloud research at the Facility for Atmospheric Remote Sensing at Salt Lake City, Utah, an approximately 10-year record of polarization lidar and photographic observations is analyzed to characterize the occurrence of optical displays in our local varieties of midlatitude cirrus clouds. The frequencies of occurrence of various types of halo, arc, and corona displays are evaluated according to their appearance and longevity over nominal 1-h observation periods and to the meteorological source of the cirrus. We find that complex halo-arc displays are rare at our locale and that even the so-called common 22 degree halo occurs infrequently as a complete long-lived ring. For example, only approximately 6% of the 1561-h daytime cirrus periods have bright and prolonged 22 degree halos, although a total of 37.3% have some indications of this halo, even if they are brief and fragmentary. Other fairly frequent features are the 22 degree upper tangent arc (8.6%), 22 degree parhelia (8.5%), and solar corona (7.2%). Of the optical displays observed, 83.6% are refraction based, only 1.9% are due to reflection phenomena, and a surprising 15.4% are caused by diffraction. Complex halo-arc displays are disproportionally associated with cirrus formed in tropical or subtropical airflow and also contain more horizontally oriented planar ice crystals. Lidar linear depolarization ratios from a subset of vivid displays show significant differences between halo- and the corona-producing cirrus, reflecting the effects of particle shape. Halos are associated with relatively warm cirrus that contain randomly and horizontally oriented planar ice crystals, whereas the colder corona cirrus produce much stronger depolarization from crystals too small to be uniformly oriented. Comparisons are made with available information from other locales, and we attempt to explain the geographical differences in terms of basic cirrus cloud processes.

  16. Cloud cover climatologies in the Mediterranean obtained from satellites, surface observations, reanalyses, and CMIP5 simulations: validation and future scenarios

    NASA Astrophysics Data System (ADS)

    Enriquez-Alonso, Aaron; Sanchez-Lorenzo, Arturo; Calbó, Josep; González, Josep-Abel; Norris, Joel R.

    2016-07-01

    Clouds are an important regulator of climate due to their connection to the water balance of the atmosphere and their interaction with solar and infrared radiation. In this study, monthly total cloud cover (TCC) records from different sources have been inter-compared on annual and seasonal basis for the Mediterranean region and the period 1984-2005. Specifically, gridded databases from satellite projects (ISCCP, CLARA, PATMOS-x), from reanalysis products (ERA-Interim, MERRA), and from surface observations over land (EECRA) and ocean (ICOADS) have been examined. Then, simulations from 44 climate runs of the Coupled Model Intercomparison Project phase 5 corresponding to the historical scenario have been compared against the observations. Overall, we find good agreement between the mean values of TCC estimated from the three satellite products and from surface observations, while reanalysis products show much lower values across the region. Nevertheless, all datasets show similar behavior regarding the annual cycle of TCC. In addition, our results indicate an underestimation of TCC from climate model simulations as compared to the satellite products, especially during summertime, although the annual cycle is well simulated by most models. This result is quite general and apparently independent of the cloud parameterizations included in each particular model. Equally, similar results are obtained if the ISCCP simulator included in the Cloud Feedback Model Intercomparison Project Observation Simulator Package is considered, despite only few models provide the post-processed results. Finally, GCM projections of TCC over the Mediterranean are presented. These projections predict a reduction of TCC during the 21st century in the Mediterranean. Specifically, for an extreme emission scenario (RCP8.5) the projected relative rate of TCC decrease is larger than 10 % by the end of the century.

  17. The New 20-Year Global Precipitation Climatology Project (GPCP) Merged Satellite and Rainguage Monthly Analysis

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Huffman, George; Xie, Ping Ping; Rudolf, Bruno; Gruber, Arnold; Janowiak, John

    1999-01-01

    A new 20-year, monthly, globally complete precipitation analysis has been completed as part of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP). This Version 2 of the community generated data set is a result of combining the procedures and data sets as described. The global, monthly, 2.5x 2.5 degree latitude-longitude product utilizes precipitation estimates from low-orbit microwave sensors (SSM/1) and geosynchronous IR sensors and raingauge information over land. The low-orbit microwave estimates are used to adjust or correct the geosynchronous IR estimates, thereby maximizing the utility of the more physically-based microwave estimates and the finer time sampling of the geosynchronous observations. Information from raingauges is blended into the analyses over land. In the 1986-present period TOVS-based precipitation estimates are adjusted to GPCP fields and used in polar regions to produce globally-complete results. The extension back to 1979 utilizes the procedures of Xie and Arkin and their OLR Precipitation Index (OPI). The 20-year climatology of the Version 2 GPCP analysis indicates the expected features of a very strong Pacific Ocean ITCZ and SPCZ with maximum 20-year means approaching 10 mm/day. A similar strength maximum over land is evident over Borneo. Weaker maxima in the tropics occur in the Atlantic ITCZ and over South America and Africa. In mid-latitudes of the Northern Hemisphere the Western Pacific and Western Atlantic maxima have values of approximately 7 mm/day, while in the Southern Hemisphere the mid-latitude maxima are located southeast of Africa, in mid-Pacific as an extension of the SPCZ and southeast of South America. In terms of global totals the GPCP analysis shows 2.7 mm/day (3.0 mm/day over ocean; 2.1 mm/day over land), similar to the Jaeger climatology, but not other climatologies. Zonal averages peak at 6 mm/day at 7*N with mid-latitude peaks of about 3 mm/day at 40-45* latitude

  18. Building a Global Network of Hydro-climatology Sites in Cloud-affected Tropical Montane Forests

    NASA Astrophysics Data System (ADS)

    Moore, G. W.; Asbjornsen, H.; Bruijnzeel, S., Sr.; Berry, Z. C.; Giambelluca, T. W.; Martin, P.; Mulligan, M.

    2015-12-01

    Tropical montane forests are characteristically wet environments with low evapotranspiration and sometimes significant contributions from fog interception. They are often located at headwater catchments critical for water supplies, but ecohydroclimate data in these regions are sparse. Such evidence may be crucial for assessing climate alterations in these sensitive ecosystems. As part of a global effort led by the Tropical Montane Cloud Forest Research Coordination Network (Cloudnet - http://cloudnet.agsci.colostate.edu), we aim to extend the network of tropical montane forest sites and establish robust protocols for measuring key ecohydroclimatic parameters, including fog interception, windblown rain, throughfall, leaf wetness, and micrometeorological conditions. Specific recommendations for standardized protocols include (1) rain and fog collectors uniquely designed to separately quantify fog interception from direct rain inputs, even in windy conditions, (2) trough-style throughfall gages that collect 40 times the area of a typical tipping bucket gage with added features to reduce splash-out, (3) clusters of leaf wetness sensors to differentiate frequency and duration of wetness caused by rain and fog on windward and leeward exposures, and (4) basic micrometeorological sensors for solar radiation, temperature, humidity, and wind. At sites where resources allow for additional measurements, we developed protocols for quantifying soil moisture, soil saturation, and plant water uptake from both roots and leaves (i.e. foliar absorption), since these are also important drivers in these systems. Participating sites will be invited to contribute to a global meta-analysis that will provide new insights into the ecohydrology of cloud-affected tropical montane forests.

  19. Using Cloud-to-Ground Lightning Climatologies to Initialize Gridded Lightning Threat Forecasts for East Central Florida

    NASA Technical Reports Server (NTRS)

    Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew

    2005-01-01

    Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on

  20. Argonne's Magellan Cloud Computing Research Project

    SciTech Connect

    Beckman, Pete

    2009-01-01

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  1. Argonne's Magellan Cloud Computing Research Project

    ScienceCinema

    Beckman, Pete

    2016-07-12

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  2. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog in East Asia from AERONET and Satellite Remote Sensing: 2012 DRAGON Campaigns and Climatological Data

    NASA Astrophysics Data System (ADS)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Lynch, P.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Arola, A. T.; Munchak, L. A.; O'Neill, N. T.; Lyapustin, A.; Sayer, A. M.; Hsu, N. Y. C.; Randles, C. A.; da Silva, A. M., Jr.; Govindaraju, R.; Hyer, E. J.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.

    2015-12-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. Major Distributed Regional Aerosol Gridded Observation Networks (DRAGON) field campaigns involving multiple AERONET sites in Japan and South Korea during Spring of 2012 have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth (AODf) signal from AERONET data for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors (from Dark Target, Deep Blue and MAIAC algorithms) were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. Underestimation of fine mode AOD by the Navy Aerosol Analysis and Prediction System (NAAPS) and by the NASA Modern-Era Retrospective Analysis For Research And Applications Aerosol Re-analysis (MERRAaero) models at very high AOD at sites in China and Korea was observed, especially for observations that are cloud screened by AERONET (Level 2 data). Additionally, multi-year monitoring at several AERONET sites are examined for climatological statistics of cloud screening of fine mode aerosol events. Aerosol that has been affected by clouds or the near-cloud environment may be more prevalent than AERONET data suggest due to inherent difficulty in

  3. Status and Plans for the WCRP/GEWEX Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.

    2007-01-01

    The Global Precipitation Climatology Project (GPCP) is an international project under the auspices of the World Climate Research Program (WCRP) and GEWEX (Global Water and Energy Experiment). The GPCP group consists of scientists from agencies and universities in various countries that work together to produce a set of global precipitation analyses at time scales of monthly, pentad, and daily. The status of the current products will be briefly summarized, focusing on the monthly analysis. Global and large regional rainfall variations and possible long-term changes are examined using the 27-year (1 979-2005) monthly dataset. In addition to global patterns associated with phenomena such as ENSO, the data set is explored for evidence of long-term change. Although the global change of precipitation in the data set is near zero, the data set does indicate a small upward change in the Tropics (25s-25N) during the period,. especially over ocean. Techniques are derived to isolate and eliminate variations due to ENS0 and major volcanic eruptions and the significance of the linear change is examined. Plans for a GPCP reprocessing for a Version 3 of products, potentially including a fine-time resolution product will be discussed. Current and future links to IPWG will also be addressed.

  4. Status and Plans for the WCRP/GEWEX Global Precipitation Climatology Project (GPCP)

    NASA Technical Reports Server (NTRS)

    Adkerm Robert F.

    2006-01-01

    Status and plans for GPCP are presented along with scientific findings from the current data set. Global and large regional rainfall variations and possible long-term changes are examined using the 26-year (1979-2004) monthly dataset from the Global Precipitation Climatology Project (GPCP). One emphasis is to discriminate among the variations due to ENSO, volcanic events and possible long-term changes. Although the global change of precipitation in the data set is near zero, the data set does indicate an upward trend (0.13 mm/day/25yr) and a downward trend (-0.06 mm/day/25yr) over tropical oceans and lands (25S-25N), respectively. This corresponds to a 4% increase (ocean) and 2% decrease (land) during this time period. Simple techniques are derived to attempt to eliminate variations due to ENSO and major volcanic eruptions in the Tropics. Using only annual values two "volcano years" are determined by examining ocean-land coupled variations in precipitation related to ENSO and other phenomena. The outlier years coincide with Pinatubo and El Chicon eruptions. The ENSO signal is reduced by deriving mean ocean and land values for El Nino, La Nina and neutral conditions based on Nino 3.4 SST and normalizing the annual ocean and land precipitation to the neutral set of cases. The impact of the two major volcanic eruptions over the past 25 years is estimated to be about a 5% reduction in tropical rainfall. The modified data set (with ENSO and volcano effect at least partially removed) retains the same approximate linear change slopes over the data set period, but with reduced variance leading to significance tests with results in the 90-95% range. Intercomparisons between the GPCP, SSM/I (1988-2004), and TRMM (1998-2004) satellite rainfall products and alternate gauge analyses over land are made to attempt to increase or decrease confidence in the changes seen in the GPCP analysis.

  5. TRMM-based Merged Data Products Compared to Global Precipitation Climatology Project (GPCP) Analyses

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) (launched in November 1997) information as the key calibration tool; in a merged analysis on a 1 degree x l degree latitude/longitude monthly scale based on multiple satellite sources and raingauge analyses. The TRMM-based product will be compared with the community-based Global Precipitation Climatology Project (GPCP) results. The long-term GPCP analysis is compared to the new TRMM-based analysis which uses the most accurate TRMM information to calibrate the estimates from the Special Sensor Microwave/Imager (SSM/I) and geosynchronous IR observations and merges those estimates together with the TRMM and gauge information to produce accurate rainfall estimates with the increased sampling provided by the combined satellite information. The comparison with TRMM results on a month-to-month basis should clarify the strengths and weaknesses of the long-term GPCP product in the tropics and point to how to improve the monitoring analysis. Preliminary results from the TRMM merged satellite analysis indicates close agreement with the GPCP estimates. By the time of the meeting over a year of TRMM products will be available for comparison. Global tropical and regional values will be compared. Seasonal variations, and variations associated with the 1998 El Nino/Southern Oscillation ENSO event will be examined and compared between the two analyses. These variations will be examined carefully and validated where possible from surface-based radar and gauge observations. The role of TRMM observations in the refinement of the long-term monitoring product will be outlined.

  6. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    NASA Astrophysics Data System (ADS)

    Brindley, H.; Osipov, S.; Bantges, R.; Smirnov, A.; Banks, J.; Levy, R.; Jish Prakash, P.; Stenchikov, G.

    2015-10-01

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m-2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m-2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  7. Comparison of TRMM and Global Precipitation Climatology Project (GPCP) Precipitation Analyses

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) (launched in November 1997) information as the key calibration tool in a merged analysis on a 1 x 1' latitude/longitude monthly scale based on multiple satellite sources and raingauge analyses. The TRMM-based product is compared with the community-based Global Precipitation Climatology Project (GPCP) results. The long-term GPCP analysis is compared to the new TRMM-based analysis which uses the most accurate TRMM information to calibrate the estimates from the Special Sensor Microwave/Imager (SSM/I) and geosynchronous IR observations and merges those estimates together with the TRMM and gauge information to produce accurate rainfall estimates with the increased sampling provided by the combined satellite information. The comparison with TRMM results on a month-to-month basis should clarify the strengths and weaknesses of the long-term GPCP product in the tropics and point to how to improve the monitoring analysis. Preliminary results from the TRMM merged satellite analysis indicates fairly close agreement with the GPCP estimates. The GPCP analysis is done at 2.5 degree latitude/longitude resolution and interpolated to a 1 degree grid for comparison with the TRMM analysis. As expected the same features are evident in both panels, but there are subtle differences in the magnitudes. Focusing on the Pacific Ocean Inter-Tropical Convergence Zone (ITCZ) one can see the TRMM-based estimates having higher peak values and lower values in the ITCZ periphery. These attributes also show up in the statistics, where GPCP>TRMM at low values (below 10 mm/d) and TRMM>GPCP at high values (greater than 15 mm/d). The area in the Indian Ocean which shows consistently higher values of TRMM over GPCP needs to be examined carefully to determine if the lack of geosynchronous data has led to a difference in the two analyses. By the time of the meeting over a year of TRMM products will be available for

  8. Boundary-layer heat and moisture budgets from FIFE. [First International satellite land surface climatology project Field Experiment

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Macpherson, J. I.; Kelly, R. D.; Betts, A. K.

    1990-01-01

    Aircraft stacks were flown upwind and downwind of the First International Satellite Land Surface Climatology Project Field Experiment site in Kansas to measure the heat and moisture budgets of the boundary layer under fairly clear skies for four daytime periods. The terms in the conservation equation are evaluated. The vertical flux divergence and advection do not account for the difference between surface and low-level aircraft flux estimates. Budget estimates of the surface fluxes using the aircraft data agree well with surface flux measurements, but extrapolation of the aircraft fluxes gives surface fluxes that are too low.

  9. Revisiting a Hydrological Analysis Framework with International Satellite Land Surface Climatology Project Initiative 2 Rainfall, Net Radiation, and Runoff Fields

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Fekete, Balazs M.; Huffman, George J.; Stackhouse, Paul W.

    2006-01-01

    The International Satellite Land Surface Climatology Project Initiative 2 (ISLSCP-2) data set provides the data needed to characterize the surface water budget across much of the globe in terms of energy availability (net radiation) and water availability (precipitation) controls. The data, on average, are shown to be consistent with Budyko s decades-old framework, thereby demonstrating the continuing relevance of Budyko s semiempirical relationships. This consistency, however, appears only when a small subset of the data with hydrologically suspicious behavior is removed from the analysis. In general, the precipitation, net radiation, and runoff data also appear consistent in their interannual variability and in the phasing of their seasonal cycles.

  10. Mapping the clouds of Titan over 3.5 years with VIMS/Cassini: Implications for Titan climatology

    NASA Astrophysics Data System (ADS)

    Rodriguez, S.; Le Mouélic, S.; Rannou, P.; Sotin, C.; Tobie, G.; Barnes, J. W.; Griffith, C. A.; Hirtzig, M.; Pitman, K. M.; Brown, R. H.; Baines, K. H.; Buratti, B. J.; Clark, R. N.; Nicholson, P. D.

    2008-11-01

    The N_2-rich atmosphere of Saturn's largest moon Titan contains a few percent of methane (CH_4) ( te{}Kuiper 1944) which dissociates to produce a plethora of organic compounds, the most abundant of which is ethane (C_2H_6) (Yung et al. 1984; Toublanc et al. 1995). Methane and ethane are involved in a cycle similar to the terrestrial hydrological cycle, including clouds, rain, surface or sub-surface liquids and evaporation (Flasar 1998; Tokano 2001; Rannou et al. 2006). Clouds are visible consequences of meteorological activity on Titan. The Cassini spacecraft, in orbit in the Saturnian system since July 2004, has provided an unprecedented view of Titan's clouds. We present here the first comprehensive map of cloud events, detected from the Visual and Infrared Mapping Spectrometer onboard the Cassini spacecraft. We detect more than one hundred and fifty cloud events between July 2004 and December 2007. Three categories of clouds have been identified: 1) bursts of clouds at the south pole, 2) a long lived widespread cloud system at the north pole, and 3) transient temperate clouds centered around 40^oS which may display longitudinal variations. These observations are consistent with control of the cloud spatial distribution dominated by the global atmospheric circulation, possibly combined with some geographic forcing (gravity waves imposed by Saturn's tides and local surface sources of methane), mostly observable at temperate latitudes. Global circulation models (GCM) predict dramatic changes in the cloud activity as Titan's equinox approaches (2009). Such long-term variations should be observed during the extension of the Cassini mission.

  11. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part I; Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike

    2005-01-01

    A record of single-layer and overcast low cloud (stratus) properties has been generated using approximately 4000 hours of data collected from January 1997 to December 2002 at the Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility (SCF). The cloud properties include liquid-phase and liquid-dominant, mixed-phase, low cloud macrophysical, microphysical, and radiative properties including cloud-base and -top heights and temperatures, and cloud physical thickness derived from a ground-based radar and lidar pair, and rawinsonde sounding; cloud liquid water path (LWP) and content (LWC), and cloud-droplet effective radius (r(sub e)) and number concentration (N) derived from the macrophysical properties and radiometer data; and cloud optical depth (tau), effective solar transmission (gamma), and cloud/top-of-atmosphere albedos (R(sub cldy)/R(sub TOA)) derived from Eppley precision spectral pyranometer measurements. The cloud properties were analyzed in terms of their seasonal, monthly, and hourly variations. In general, more stratus clouds occur during winter and spring than in summer. Cloud-layer altitudes and physical thicknesses were higher and greater in summer than in winter with averaged physical thicknesses of 0.85 km and 0.73 km for day and night, respectively. The seasonal variations of LWP, LWC, N. tau, R(sub cldy), and R(sub TOA) basically follow the same pattern with maxima and minima during winter and summer, respectively. There is no significant variation in mean r(sub e), however, despite a summertime peak in aerosol loading, Although a considerable degree of variability exists, the 6-yr average values of LWP, LWC, r(sub e), N, tau, gamma, R(sub cldy) and R(sub TOA) are 150 gm(exp -2) (138), 0.245 gm(exp -3) (0.268), 8.7 micrometers (8.5), 213 cm(exp -3) (238), 26.8 (24.8), 0.331, 0.672, 0.563 for daytime (nighttime). A new conceptual model of midlatitude continental low clouds at the ARM SGP site has been developed from this study

  12. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy

  13. Probing the climatological impact of a cosmic ray-cloud connection through low-frequency radio observations

    NASA Astrophysics Data System (ADS)

    Magee, Nathan; Kavic, Michael

    2012-01-01

    It has been proposed that cosmic ray events could have a causal relationship with cloud formation rates. Given the weak constraints on the role that cloud formation plays in climate forcing it is essential to understand the role such a relationship could have in shaping the Earth's climate. This issue has been previously investigated in the context of the long-term effect of cosmic ray events on climate. However, in order to establish whether or not such a relationship exists, measurements of short-timescale solar events, individual cosmic ray events, and spatially correlated cloud parameters could be of great significance. Here we propose such a comparison using observations from a pair of radio telescopes arrays, the Long Wavelength Array (LWA) and the Eight-meter-wavelength Transient Array (ETA). These low-frequency radio arrays have a unique ability to simultaneously conduct solar, ionospheric and cosmic rays observations and are thus ideal for such a comparison. We will outline plans for a comparison using data from these instruments, satellite images of cloud formation as well as expected cloud formation rates from numerical models. We present some preliminary results illustrating the efficacy of this type of comparison and discuss future plans to carryout this program.

  14. Temporal and spectral cloud screening of polar winter aerosol optical depth (AOD): impact of homogeneous and inhomogeneous clouds and crystal layers on climatological-scale AODs

    NASA Astrophysics Data System (ADS)

    O'Neill, Norman T.; Baibakov, Konstantin; Hesaraki, Sareh; Ivanescu, Liviu; Martin, Randall V.; Perro, Chris; Chaubey, Jai P.; Herber, Andreas; Duck, Thomas J.

    2016-10-01

    We compared star-photometry-derived, polar winter aerosol optical depths (AODs), acquired at Eureka, Nunavut, Canada, and Ny-Ålesund, Svalbard, with GEOS-Chem (GC) simulations as well as ground-based lidar and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) retrievals over a sampling period of two polar winters. The results indicate significant cloud and/or low-altitude ice crystal (LIC) contamination which is only partially corrected using temporal cloud screening. Spatially homogeneous clouds and LICs that remain after temporal cloud screening represent an inevitable systematic error in the estimation of AOD: this error was estimated to vary from 78 to 210 % at Eureka and from 2 to 157 % at Ny-Ålesund. Lidar analysis indicated that LICs appeared to have a disproportionately large influence on the homogeneous coarse-mode optical depths that escape temporal cloud screening. In principle, spectral cloud screening (to yield fine-mode or submicron AODs) reduces pre-cloud-screened AODs to the aerosol contribution if one assumes that coarse-mode (super-micron) aerosols are a minor part of the AOD. Large, low-frequency differences between these retrieved values and their GC analogue appeared to be often linked to strong, spatially extensive planetary boundary layer events whose presence at either site was inferred from CALIOP profiles. These events were either not captured or significantly underestimated by the GC simulations. High-frequency AOD variations of GC fine-mode aerosols at Ny-Ålesund were attributed to sea salt, while low-frequency GC variations at Eureka and Ny-Ålesund were attributable to sulfates. CALIOP profiles and AODs were invaluable as spatial and temporal redundancy support (or, alternatively, as insightful points of contention) for star photometry retrievals and GC estimates of AOD.

  15. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  16. On the Analysis of the Climatology of Cloudiness of the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Yousef, L. A.; Temimi, M.

    2015-12-01

    This study aims to determine the climatology of cloudiness over the Arabian Peninsula. The determined climatology will assist solar energy resource assessment in the region. The seasonality of cloudiness and its spatial variability will also help guide several cloud seeding operational experiments in the region. Cloud properties from the International Satellite Cloud Climatology Project (ISCCP) database covering the time period from 1983 through 2009 are analyzed. Time series of low, medium, high, and total cloud amounts are investigated, in addition to cloud optical depth and total column water vapor. Initial results show significant decreasing trends in the total and middle cloud amounts, both annually and seasonally, at a 95% confidence interval. The relationship between cloud amounts and climate oscillations known to affect the region is explored. Climate indices exhibiting significant correlations with the total cloud amounts include the Pacific Decadal Oscillation (PDO) index. The study also includes a focus on the United Arab Emirates (UAE), comparing the inferred cloudiness data to in situ rainfall measurements taken from rain gauges across the UAE. To assess the impact of cloudiness on solar power resources in the country, time series of cloud amounts and Direct Normal Irradiance (DNI), obtained from the UAE Solar Atlas, are compared.

  17. Climatology of Vertical Air Motion During Rainfall in Niamey, Niger and Black Forest, Germany using an Innovative Cloud Radar Retrieval Technique

    NASA Astrophysics Data System (ADS)

    Luke, E. P.; Giangrande, S. E.; Kollias, P.

    2008-12-01

    In recent years, the DOE Atmospheric Radiation Measurement (ARM) program has deployed its ARM Mobile Facility (AMF) to collect continuous measurements in several climatologically distinct locations, including a year-long stay in Niamey, Niger and eight months in Germany's Black Forest. The AMF includes a vertically pointing 95 GHz cloud radar, a tool of choice for profiling non-precipitating clouds at high spatial and temporal resolutions, but commonly considered poorly suited to the quantitative study of precipitation, due in large part to attenuation. However, an innovative technique first explored by Lhermitte in the late 1980s, and subsequently by others, sidesteps much of the quantitative uncertainty imposed by attenuation by exploiting non-Rayleigh resonance effects of scattering from raindrops at 95 GHz. Given a modest range of suitable drop sizes, non-Rayleigh resonances appear as distinct peaks and valleys in Doppler spectra, which once identified, can be directly mapped to known drop sizes by Mie theory. Although attenuation in rain at 95 GHz is substantial, key to the technique is that all non-Rayleigh peaks and valleys in a given Doppler spectrum are affected equally, preserving their relative positions and magnitudes (barring feature extinction). Vertical air motion is retrieved very accurately by taking the difference between the measured Doppler velocity of a resonance feature (usually the first valley) and the known terminal velocity of its associated drop size. We have achieved promising retrieval accuracies at spatial and temporal resolutions of 30 meters and 2 seconds. Here we present lessons learned when the retrieval technique is automated and applied to measurements taken in rain over the full durations of the Niamey and Black Forest AMF deployments, comparing vertical air velocity patterns of monsoonal precipitation over the African desert with those of the orographically influenced precipitation in Germany's mountains.

  18. Urban Climatology

    NASA Technical Reports Server (NTRS)

    Brazel, Anthony J.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2002-01-01

    This section on Urban Climates provides a basic understanding of what comprises the urban climate and what factors control the overall development of the urban climate. We also discuss in this section, methods for evaluating urban climate characteristics and forcing functions as well as how the urban heat island effect comes into play as a dynamic influence on urban climatology. Additionally, we examine and discuss the major radiation and energy balance of city (i.e., shortwave and longwave radiation, albedo, net all-wave radiation, total energy balance, and sensible latent, and storage heat) and the interactions of these energy balances with the lower atmosphere. The use of remote sensing to measure urban surface temperatures as a driving force in the development of the urban heat island effect is presented. We also discuss how the overall moisture, precipitation, humidity, and air movement in cities (i,e,, wind speeds and wind direction) and wind environment of the city affects urban climatology.

  19. The Deep South Clouds & Aerosols project: Improving the modelling of clouds in the Southern Ocean region

    NASA Astrophysics Data System (ADS)

    Morgenstern, Olaf; McDonald, Adrian; Harvey, Mike; Davies, Roger; Katurji, Marwan; Varma, Vidya; Williams, Jonny

    2016-04-01

    Southern-Hemisphere climate projections are subject to persistent climate model biases affecting the large majority of contemporary climate models, which degrade the reliability of these projections, particularly at the regional scale. Southern-Hemisphere specific problems include the fact that satellite-based observations comparisons with model output indicate that cloud occurrence above the Southern Ocean is substantially underestimated, with consequences for the radiation balance, sea surface temperatures, sea ice, and the position of storm tracks. The Southern-Ocean and Antarctic region is generally characterized by an acute paucity of surface-based and airborne observations, further complicating the situation. In recognition of this and other Southern-Hemisphere specific problems with climate modelling, the New Zealand Government has launched the Deep South National Science Challenge, whose purpose is to develop a new Earth System Model which reduces these very large radiative forcing problems associated with erroneous clouds. The plan is to conduct a campaign of targeted observations in the Southern Ocean region, leveraging off international measurement campaigns in this area, and using these and existing measurements of cloud and aerosol properties to improve the representation of clouds in the nascent New Zealand Earth System Model. Observations and model development will target aerosol physics and chemistry, particularly sulphate, sea salt, and non-sulphate organic aerosol, its interactions with clouds, and cloud microphysics. The hypothesis is that the cloud schemes in most GCMs are trained on Northern-Hemisphere data characterized by substantial anthropogenic or terrestrial aerosol-related influences which are almost completely absent in the Deep South.

  20. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    NASA Technical Reports Server (NTRS)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; Maddux, B.; Menzel, P.; Minnis, P.; Pearl, C.; Platnick, S.; Riedi, J.; Sun-Mack, S.; Walther, A.; Winker, D.; Zeng, S.; Zhao, G.

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  1. Describing the NPOESS Preparatory Project Visible/Infrared Imaging Radiometer Suite (VIIRS) Cloud Environmental Data Records

    NASA Astrophysics Data System (ADS)

    Hoffman, C.; Guenther, B.; Kilcoyne, H.; Mineart, G.; St. Germain, K.; Reed, B.

    2008-12-01

    The Visible/Infrared Imaging Radiometer Suite (VIIRS) is one of the instruments that make up the suite of sensors on the NPOESS Preparatory Project (NPP) scheduled to launch in 2010. VIIRS will produce seven Environmental Data Records (EDRs) describing cloud properties. The VIIRS Cloud EDRs include the Cloud Optical Thickness (COT), Cloud Effective Particle Size Parameter (CEPS), Cloud Top Pressure (CTP), Cloud Top Height (CTH), Cloud Top Temperature (CTT), Cloud Cover/Layers (CCL), and Cloud Base Height (CBH). This paper will describe the VIIRS algorithms used to generate these EDRs and provide a current estimate of performance based on pre-Launch test data.

  2. NASA/Max Planck Institute Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  3. A 19-Month Climatology of Marine Aerosol-Cloud-Radiation Properties Derived From DOE ARM AMF Deployment at the Azores: Part I: Cloud Fraction and Single-Layered MBL Cloud Properties

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Minnis, Patrick; Wood, Robert

    2013-01-01

    A 19-month record of total, and single-layered low (0-3 km), middle (3-6 km), and high (> 6 km) cloud fractions (CFs), and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties has been generated from ground-based measurements taken at the ARM Azores site between June 2009 and December 2010. It documents the most comprehensive and longest dataset on marine cloud fraction and MBL cloud properties to date. The annual means of total CF, and single-layered low, middle, and high CFs derived from ARM radar-lidar observations are 0.702, 0.271, 0.01 and 0.106, respectively. More total and single-layered high CFs occurred during winter, while single-layered low CFs were greatest during summer. The diurnal cycles for both total and low CFs are stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at approx. 1 km and higher one between 8 and 11 km during all seasons, except summer, when only the low peak occurs. The persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, while the low pressure and moist air masses during winter generate more total and multilayered-clouds, and deep frontal clouds associated with midlatitude cyclones.

  4. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  5. Global Monthly and Daily Precipitation Analysis for the Global Precipitation Climatology Project (GPCP): Global and Regional Variations and Trends

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Huffman, George; Curtis, Scott; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The 22 year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) and the four year (1997-present) daily GPCP analysis are described in terms of the data sets and analysis techniques used in their preparation. These analyses are then used to study global and regional variations and trends during the 22 years and the shorter-time scale events that constitute those variations. The GPCP monthly data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. The relation of global (and tropical) total precipitation and ENSO (El Nino and Southern Oscillation) events is quantified with no significant signal when land and ocean are combined. In terms of regional trends 1979 to 2000 the tropics have a distribution of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes. Positive anomalies extend in the Southern Hemisphere from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe. In the

  6. A 10-Year Climatology of Cloud Cover and Vertical Distribution Derived from Both Surface and GOES Observations Over the DOE ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Xi, Baike; Dong, Xiquan; Minnis, P.; Khaiyer, M.

    2010-01-01

    Analysis of a decade of ARM radar-lidar and GOES observations at the SGP site reveal that 0.5 and 4-hr averages of the surface cloud fraction correspond closely to 0.5deg and 2.5deg averages of GOES cloudiness, respectively. The long-term averaged surface and GOES cloud fractions agree to within 0.5%. Cloud frequency increases and cloud amount decreases as the temporal and spatial averaging scales increase. Clouds occurred most often during winter and spring. Single-layered clouds account for 61.5% of the total cloud frequency. There are distinct bimodal vertical distributions of clouds with a lower peak around 1 km and an upper one that varies from 7.5 to 10.8 km between winter and summer, respectively. The frequency of occurrence for nighttime GOES high-cloud tops agree well with the surface observations, but are underestimated during the day.

  7. A study of cloud-generated radiative heating and its generation of available potential energy. I - Theoretical background. II - Results for a climatological zonal mean January

    NASA Technical Reports Server (NTRS)

    Stuhlmann, R.; Smith, G. L.

    1988-01-01

    The effect of radiative heating and cooling by clouds on the available potential energy (APE) is theoretically discussed. It is shown that the cloud radiative contribution to the generation of APE is determined by the net cloud radiative heating and the efficiency factor, which is a function of the temperature distribution of the atmosphere. Results are presented for low and middle cloud effects for three atmospheric layers. Cloud radiative heating is found to be a single function of cloud optical thickness for all classes designed in terms of cloud top heights and optical thickness. Low clouds at low latitudes destroy APE an midclouds generate APE. A concept is developed to relate the cloud radiative heating to cloud heights and optical depths. Cloud-generated radiative heating is computed for January zonal mean conditions for low and midclouds. For both cases, the strongest influence is found in the low troposphere, with marked differences in signs and magnitudes. At extratropical latitudes, both cloud classes generate net radiative cooling. In the tropics, the effect of low cloud changes from net cooling to the net heating as the optical thickness increases, and midclouds cause net heating. A mechanism is described whereby this dependence produces a strong positive feedback effect on the development of SST anomalies in the tropical oceans.

  8. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  9. Detect signals of interdecadal climate variations from an enhanced suite of reconstructed precipitation products since 1850 using the historical station data from Global Historical Climatology Network and the dynamical patterns derived from Global Precipitation Climatology Project

    NASA Astrophysics Data System (ADS)

    Shen, S. S.

    2015-12-01

    This presentation describes the detection of interdecadal climate signals in a newly reconstructed precipitation data from 1850-present. Examples are on precipitation signatures of East Asian Monsoon (EAM), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillations (AMO). The new reconstruction dataset is an enhanced edition of a suite of global precipitation products reconstructed by Spectral Optimal Gridding of Precipitation Version 1.0 (SOGP 1.0). The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). This enhanced version has three different temporal resolutions (5-day, monthly, and annual) and two different spatial resolutions (2.5 deg and 5.0 deg). It also has a friendly Graphical User Interface (GUI). SOGP uses a multivariate regression method using an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1981-20010 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed according to the number of EOF modes used in the reconstruction. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction has been validated by GPCP data after 1979. Our reconstruction successfully displays the 1877 El Nino (see the attached figure), which is considered a validation before 1900. Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort of San Diego State University (Sam Shen, Gregori Clarke, Christian Junjinger, Nancy Tafolla, Barbara Sperberg, and

  10. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J. R.; Maslanik, J. A.

    1988-01-01

    The principal objectives of this project are: (1) to develop suitable validation data sets to evaluate the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) operational algorithm for cloud retrieval in polar regions and to validate model simulations of polar cloud cover; (2) to identify limitations of current procedures for varying atmospheric surface conditions, and to explore potential means to remedy them using textural classifiers; and (3) to compare synoptic cloud data from a control run experiment of the GISS climate model II with typical observed synoptic cloud patterns.

  11. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction (Browning et al, 1994). The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  12. Comparison of Cirrus Cloud Models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus M.; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric

    2000-01-01

    The GEWEX Cloud System Study (GCSS, GEWEX is the Global Energy and Water Cycle Experiment) is a community activity aiming to promote development of improved cloud parameterizations for application in the large-scale general circulation models (GCMs) used for climate research and for numerical weather prediction. The GCSS strategy is founded upon the use of cloud-system models (CSMs). These are "process" models with sufficient spatial and temporal resolution to represent individual cloud elements, but spanning a wide range of space and time scales to enable statistical analysis of simulated cloud systems. GCSS also employs single-column versions of the parametric cloud models (SCMs) used in GCMs. GCSS has working groups on boundary-layer clouds, cirrus clouds, extratropical layer cloud systems, precipitating deep convective cloud systems, and polar clouds.

  13. A Study to Investigate Cloud Feedback Processes and Evaluate GCM Cloud Variations Using Statistical Cloud Property Composites From ARM Data

    SciTech Connect

    George Tselioudis

    2009-08-11

    cloud layering information into the context of large-scale dynamical regimes, such information can be used to study interactions among cloud vertical distributions and dynamical and microphysical processes and to evaluate the ability of models to simulate those interactions. The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program has established several Climate Research Facilities (ACRF) that provide continuous, long-term observations of clouds and radiation. ARM, with its overall goal of improving the treatment of radiation and clouds in climate models has provided unique observing systems for accelerating progress on the representation of cloud processes. In this project, six and a half years (January 1998 to June 2004) of cloud observations collected at the Southern Great Plains (SGP) Oklahoma ACRF were used to produce a cloud-type climatology. The climatology provides cloud amounts for seven different cloud types as well as information on the detailed structure of multi-layer cloud occurrences. Furthermore, the European Centre for Medium-Range Weather Forecasts (ECMWF) model output was used to define the dynamic regimes present during the observations of the cloud conditions by the vertically pointing radars at the SGP ACRF. The cloud-type climatology and the ECMWF SGP data set were then analyzed to examine and map dynamical conditions that favor the creation of single-layer versus multi-layer cloud structures as well as dynamical conditions that favor the occurrence of drizzle in continental stratus clouds. In addition, output from the ECMWF weather model forecasts was analyzed with the objective to compare model and radar derived cloud type statistics, in order to identify the major model deficiencies in cloud vertical distribution and map their seasonal variations. The project included two primary goals. The first was to create a cloud type climatology over the Southern Great Planes site that will show how cloud vertical distribution

  14. Principal uncertainty patterns in precipitation among CMIP5 models: Dominant modes of intermodel disagreement in precipitation climatologies and projected change patterns

    NASA Astrophysics Data System (ADS)

    Langenbrunner, B.; Neelin, J.; Anderson, B. T.

    2013-12-01

    Projections of modeled precipitation change in global warming scenarios demonstrate marked intermodel disagreement, especially at regional scales. While these differences are often considered within a geographically local domain, they are in part caused by intermodel uncertainty inherited from the large scale. It is therefore important to identify the major aspects of model disagreement at larger scales in order to better understand differences at the regional level. One way to do this is to pinpoint the major modes of intermodel disagreement through objective analysis of modeled precipitation change patterns, as well as the disagreement in precipitation climatologies in historical and radiative forcing scenarios. For brevity, these modes are labeled Principal Uncertainty Patterns (PUPs). For the Coupled Model Intercomparison Project phase 5 (CMIP5) models, a PUP analysis is applied to projected changes in precipitation, upper-level wind, and temperature fields, for both coupled model runs (36 models) and atmosphere-only simulations (30 models). This analysis is also applied to the simulated historical and future climatologies for the same ensembles. We take a global approach first, and then focus on specific regions: Africa, the tropical and subtropical Americas, and the mid-latitude Pacific storm tracks. For Africa, the leading June-July-August (JJA) PUP is associated with disagreement in the amplitude of positive end-of-century precipitation changes in the monsoon region. For the tropical Americas, intermodel uncertainty in the amount of end-of-century drying is the dominant PUP for JJA. The two leading December-January-February (DJF) PUPs in the storm tracks region appear to represent (1) an amplitude mode that shows the eastward extension of mid-latitude Pacific storm tracks trailing into the North American coast, and (2) a gradient mode associated with the meridional shift of these storm tracks. Relationships of precipitation uncertainties to model

  15. Implications of the Observed Mesoscale Variations of Clouds for Earth's Radiation Budget

    NASA Technical Reports Server (NTRS)

    Rossow, William B.; Delo, Carl; Cairns, Brian; Hansen, James E. (Technical Monitor)

    2001-01-01

    The effect of small-spatial-scale cloud variations on radiative transfer in cloudy atmospheres currently receives a lot of research attention, but the available studies are not very clear about which spatial scales are important and report a very large range of estimates of the magnitude of the effects. Also, there have been no systematic investigations of how to measure and represent these cloud variations. We exploit the cloud climatology produced by the International Satellite Cloud Climatology Project (ISCCP) to: (1) define and test different methods of representing cloud variation statistics, (2) investigate the range of spatial scales that should be included, (3) characterize cloud variations over a range of space and time scales covering mesoscale (30 - 300 km, 3-12 hr) into part of the lower part of the synoptic scale (300 - 3000 km, 1-30 days), (4) obtain a climatology of the optical thickness, emissivity and cloud top temperature variability of clouds that can be used in weather and climate GCMS, together with the parameterization proposed by Cairns et al. (1999), to account for the effects of small-scale cloud variations on radiative fluxes, and (5) evaluate the effect of observed cloud variations on Earth's radiation budget. These results lead to the formulation of a revised conceptual model of clouds for use in radiative transfer calculations in GCMS. The complete variability climatology can be obtained from the ISCCP Web site at http://isccp.giss.nasa.gov.

  16. The MACHO Project: Status Report on the Magellanic Clouds.

    NASA Astrophysics Data System (ADS)

    Vandehei, T.; Griest, K.; Alcock, C.; Alves, D.; Cook, K.; Minniti, D.; Marshall, S.; Allsman, R.; Axelrod, T.; Freeman, K.; Peterson, B.; Rodgers, A.; Pratt, M.; Becker, A.; Stubbs, C.; Tomaney, A. B.; Lehner, M.; Bennett, D.; Nelson, C.; Quinn, P.; Sutherland, W.; Welch, D.

    1998-05-01

    The MACHO Project is a search for dark matter in the form of massive compact halo objects (MACHOs). Photometric monitoring of tens of millions of stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge is used to search for these rare gravitational microlensing events caused by these otherwise invisible objects. An analysis of 4 years of LMC data on 12 million stars and 5 years of SMC data on 3 million stars is currently underway. We present preliminary results of this analysis which reveal about 15 candidate microlensing events in the LMC and 1 event in the SMC. We also present our microlensing detection efficiency calculation pipeline. The accurate determination of our detection efficiency is key in estimating the MACHO contribution to the dark matter in the halo. The efficiency pipeline uses data from the MACHO Project's ground based survey and from HST observations of MACHO fields to determine the true color and luminosity distribution of LMC source stars. Artificial microlensing events are then inserted into the underlying source distribution, image sequences are created from a wide sample of real image conditions and detection efficiencies are determined using our standard reduction pipeline. The full calculation of our efficiencies requires the creation, reduction and analysis of 322 Gbytes of artificial image data and is currently underway.

  17. Toward a Diurnal Climatology of Cold-Season Turbulence Statistics in Continental Stratocumulus as Observed by the Atmospheric Radiation Millimeter- Wavelength Cloud Radars

    SciTech Connect

    Mechem, D.B.; Kogan, Y.L.; Childers, M.E.; Donner, K.M.

    2005-03-18

    Numerous observational studies of marine stratocumulus have demonstrated a pronounced diurnal cycle. At night, longwave flux divergence at the top of the cloud drives negatively buoyant eddies that tend to keep the boundary layer well mixed. During the day, solar absorption by the cloud tends to reduce the turbulent intensity and often decouples the planetary boundary layer (PBL) into cloud- and sub-cloud circulations. The delicate balance between turbulent intensity, entrainment, and fluxes dictates cloud geometry and persistence, which can significantly impact the shortwave radiation budget. Millimeter-wavelength cloud radars (MMCRs) have been used to study the turbulent structure of boundary layer stratocumulus (e.g. Frisch et al. 1995; Kollias and Albrecht 2000). Analysis is confined to nondrizzling or lightly drizzling cloud systems for which precipitation contamination is negligible. Under such assumptions the Doppler velocity field becomes a proxy for vertical velocity. Prior research has mainly consisted of a few case studies of specific cloud systems using radar scan strategies optimized for this particular cloud type. The MMCR operating at the Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility is broadly configured to be able to detect many different cloud types over a broad range of reflectivities and altitudes, so it is not specifically optimized for PBL clouds. Being in more-or-less continuous operation since the end of 1996, it does, however, have the advantage of long data coverage, which suggests that statistically significant measures of the diurnal cycle of turbulence should be attainable. This abstract summarizes the first few steps toward this goal, using 7 months of cold season MMCR data.

  18. The ESA Cloud CCI project: Generation of Multi Sensor consistent Cloud Properties with an Optimal Estimation Based Retrieval Algorithm

    NASA Astrophysics Data System (ADS)

    Jerg, M.; Stengel, M.; Hollmann, R.; Poulsen, C.

    2012-04-01

    The ultimate objective of the ESA Climate Change Initiative (CCI) Cloud project is to provide long-term coherent cloud property data sets exploiting and improving on the synergetic capabilities of past, existing, and upcoming European and American satellite missions. The synergetic approach allows not only for improved accuracy and extended temporal and spatial sampling of retrieved cloud properties better than those provided by single instruments alone but potentially also for improved (inter-)calibration and enhanced homogeneity and stability of the derived time series. Such advances are required by the scientific community to facilitate further progress in satellite-based climate monitoring, which leads to a better understanding of climate. Some of the primary objectives of ESA Cloud CCI Cloud are (1) the development of inter-calibrated radiance data sets, so called Fundamental Climate Data Records - for ESA and non ESA instruments through an international collaboration, (2) the development of an optimal estimation based retrieval framework for cloud related essential climate variables like cloud cover, cloud top height and temperature, liquid and ice water path, and (3) the development of two multi-annual global data sets for the mentioned cloud properties including uncertainty estimates. These two data sets are characterized by different combinations of satellite systems: the AVHRR heritage product comprising (A)ATSR, AVHRR and MODIS and the novel (A)ATSR - MERIS product which is based on a synergetic retrieval using both instruments. Both datasets cover the years 2007-2009 in the first project phase. ESA Cloud CCI will also carry out a comprehensive validation of the cloud property products and provide a common data base as in the framework of the Global Energy and Water Cycle Experiment (GEWEX). The presentation will give an overview of the ESA Cloud CCI project and its goals and approaches and then continue with results from the Round Robin algorithm

  19. Decadal Variability of Clouds and Comparison with Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Su, H.; Shen, T. J.; Jiang, J. H.; Yung, Y. L.

    2014-12-01

    An apparent climate regime shift occurred around 1998/1999, when the steady increase of global-mean surface temperature appeared to hit a hiatus. Coherent decadal variations are found in atmospheric circulation and hydrological cycles. Using 30-year cloud observations from the International Satellite Cloud Climatology Project, we examine the decadal variability of clouds and associated cloud radiative effects on surface warming. Empirical Orthogonal Function analysis is performed. After removing the seasonal cycle and ENSO signal in the 30-year data, we find that the leading EOF modes clearly represent a decadal variability in cloud fraction, well correlated with the indices of Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). The cloud radiative effects associated with decadal variations of clouds suggest a positive cloud feedback, which would reinforce the global warming hiatus by a net cloud cooling after 1998/1999. Climate model simulations driven by observed sea surface temperature are compared with satellite observed cloud decadal variability. Copyright:

  20. Projected Regime Shift in Arctic Cloud and Water Vapor Feedbacks

    NASA Technical Reports Server (NTRS)

    Chen, Yonghua; Miller, James R.; Francis, Jennifer; Russel, Gary L.

    2011-01-01

    The Arctic climate is changing faster than any other large-scale region on Earth. A variety of positive feedback mechanisms are responsible for the amplification, most of which are linked with changes in snow and ice cover, surface temperature (T(sub s)), atmospheric water vapor (WV), and cloud properties. As greenhouse gases continue to accumulate in the atmosphere, air temperature and water vapor content also increase, leading to a warmer surface and ice loss, which further enhance evaporation and WV. Many details of these interrelated feedbacks are poorly understood, yet are essential for understanding the pace and regional variations in future Arctic change. We use a global climate model (Goddard Institute for Space Studies, Atmosphere-Ocean Model) to examine several components of these feedbacks, how they vary by season, and how they are projected to change through the 21st century. One positive feedback begins with an increase in T(sub s) that produces an increase in WV, which in turn increases the downward longwave flux (DLF) and T(sub s), leading to further evaporation. Another associates the expected increases in cloud cover and optical thickness with increasing DLF and T(sub s). We examine the sensitivities between DLF and other climate variables in these feedbacks and find that they are strongest in the non-summer seasons, leading to the largest amplification in Ts during these months. Later in the 21st century, however, DLF becomes less sensitive to changes in WV and cloud optical thickness, as they cause the atmosphere to emit longwave radiation more nearly as a black body. This regime shift in sensitivity implies that the amplified pace of Arctic change relative to the northern hemisphere could relax in the future.

  1. Climatology of precipitating convective clouds in ERA-Interim derived from the Emanuel and Živković-Rothman parameterisation scheme

    NASA Astrophysics Data System (ADS)

    Philipp, Anne; Seibert, Petra

    2016-04-01

    The convective parameterisation scheme of Emanuel and Živković-Rothman (1999) was designed to represent cumulus convection with a special focus on convective water fluxes. This scheme is implemented in the Lagrangian particle transport and dispersion model FLEXPART (FLEXible PARTicle dispersion model, http://flexpart.eu) to calculate a redistribution matrix used for the transport simulation. In order to improve the wet scavenging through convective clouds in this model, we are statistically evaluating a global data set of cloud base and cloud top heights of precipitating clouds derived from the EZ99 scheme and based on ECMWF's ERA-Interim data. They have a spectral resolution of about 80 km and 60 vertical levels available every 6 hours. The results will be evaluated as a function of season and geographical region.

  2. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Sundwall, Jed; Bouffler, Brendan

    2016-04-01

    Last year, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  3. The NOAA Big Data Project: NEXRAD on the Cloud

    NASA Astrophysics Data System (ADS)

    Gold, A.; Weber, J.

    2015-12-01

    This past April, the US National Oceanic and Atmospheric Administration (NOAA) made headlines when it entered into a research agreement with Amazon Web Services (AWS) to explore sustainable models to increase the output of open NOAA data. Publicly available NOAA data drives multi-billion dollar industries and critical research efforts. Under this new agreement, AWS and its Data Alliance collaborators are looking at ways to push more NOAA data to the cloud and build an ecosystem of innovation around it. In this presentation, we will provide a brief overview of the NOAA Big Data Project and the AWS Data Alliance, then dive into a specific example of data that has been made available (high resolution Doppler radar from the NEXRAD system) and early use cases.

  4. Comparison between SAGE II and ISCCP high-level clouds. 2: Locating clouds tops

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    A comparison is made of the vertical distribution of high-level cloud tops derived from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements and from the International Satellite Cloud Climatology Project (ISCCP) for all Julys and Januarys in 1985 to 1990. The results suggest that ISCCP overestimates the pressure of high-level clouds by up to 50-150 mbar, particularly at low latitudes. This is caused by the frequent presence of clouds with diffuse tops (greater than 50% time when cloudy events are observed). The averaged vertical extent of the diffuse top is about 1.5 km. At midlatitudes where the SAGE II and ISCCP cloud top pressure agree best, clouds with distinct tops reach a maximum relative proportion of the total level cloud amount (about 30-40%), and diffuse-topped clouds are reduced to their minimum (30-40%). The ISCCP-defined cloud top pressure should be regarded not as the material physical height of the clouds but as the level which emits the same infrared radiance as observed. SAGE II and ISCCP cloud top pressures agree for clouds with distinct tops. There is also an indication that the cloud top pressures of optically thin clouds not overlying thicker clouds are poorly estimated by ISCCP at middle latitudes. The average vertical extent of these thin clouds is about 2.5 km.

  5. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Cho, Byung S.

    1992-01-01

    A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.

  6. Global Surface Ultraviolet Radiation Climatology from TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    1998-01-01

    The overall goal of this project has been to develop a method for calculating the distribution of solar ultraviolet radiation (UVR) over most of the earth's surface using NASA's Total Ozone Mapping Spectrometer (TOMS) and Earth Radiation Budget Experiment (ERBE) data, and to use this method to develop a UVR climatology that is useful in the context of the global ozone depletion issue. The research carried out with this support has resulted the following accomplishments: (1) a radioactive transfer method. based on the delta-Eddington approximation, was successfully developed; (2) the method was applied to the five years of overlapping TOMS and ERBE Monthly-Hourly data to examine the impact of global variability in cloud cover on trends in surface UVR; (3) a presentation was made on effects of stratospheric ozone depletion; (4) the radioactive transfer model was finally applied to all daylight hours to make a through study of the global effect of cloud cover;and (6) a five-year global climatology of surface UVR based on all of the research has been prepared for general distribution.

  7. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    DOE PAGES

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m2) and longwave cloud forcing (~5 W/m2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation is more faithfullymore » satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.« less

  8. The effect of large-scale model time step and multiscale coupling frequency on cloud climatology, vertical structure, and rainfall extremes in a superparameterized GCM

    SciTech Connect

    Yu, Sungduk; Pritchard, Michael S.

    2015-12-17

    The effect of global climate model (GCM) time step—which also controls how frequently global and embedded cloud resolving scales are coupled—is examined in the Superparameterized Community Atmosphere Model ver 3.0. Systematic bias reductions of time-mean shortwave cloud forcing (~10 W/m2) and longwave cloud forcing (~5 W/m2) occur as scale coupling frequency increases, but with systematically increasing rainfall variance and extremes throughout the tropics. An overarching change in the vertical structure of deep tropical convection, favoring more bottom-heavy deep convection as a global model time step is reduced may help orchestrate these responses. The weak temperature gradient approximation is more faithfully satisfied when a high scale coupling frequency (a short global model time step) is used. These findings are distinct from the global model time step sensitivities of conventionally parameterized GCMs and have implications for understanding emergent behaviors of multiscale deep convective organization in superparameterized GCMs. Lastly, the results may also be useful for helping to tune them.

  9. The ENSO Effects on Tropical Clouds and Top-of-Atmosphere Cloud Radiative Effects in CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Wang, Hailan

    2015-01-01

    The El Nino-Southern Oscillation (ENSO) effects on tropical clouds and top-of-atmosphere (TOA) cloud radiative effects (CREs) in Coupled Model Intercomparison Project Phase5 (CMIP5) models are evaluated using satellite-based observations and International Satellite Cloud Climatology Project satellite simulator output. Climatologically, most CMIP5 models produce considerably less total cloud amount with higher cloud top and notably larger reflectivity than observations in tropical Indo-Pacific (60 degrees East - 200 degrees East; 10 degrees South - 10 degrees North). During ENSO, most CMIP5 models considerably underestimate TOA CRE and cloud changes over western tropical Pacific. Over central tropical Pacific, while the multi-model mean resembles observations in TOA CRE and cloud amount anomalies, it notably overestimates cloud top pressure (CTP) decreases; there are also substantial inter-model variations. The relative effects of changes in cloud properties, temperature and humidity on TOA CRE anomalies during ENSO in the CMIP5 models are assessed using cloud radiative kernels. The CMIP5 models agree with observations in that their TOA shortwave CRE anomalies are primarily contributed by total cloud amount changes, and their TOA longwave CRE anomalies are mostly contributed by changes in both total cloud amount and CTP. The model biases in TOA CRE anomalies particularly the strong underestimations over western tropical Pacific are, however, mainly explained by model biases in CTP and cloud optical thickness (tau) changes. Despite the distinct model cloud biases particularly in tau regime, the TOA CRE anomalies from cloud amount changes are comparable between the CMIP5 models and observations, because of the strong compensations between model underestimation of TOA CRE anomalies from thin clouds and overestimation from medium and thick clouds.

  10. 76 FR 12096 - McCloud-Pit Project; Notice of Availability of the Final Environmental Impact Statement for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Energy Regulatory Commission McCloud-Pit Project; Notice of Availability of the Final Environmental... reviewed the application for license for the McCloud-Pit Hydroelectric Project (FERC No. 2106), located on the McCloud and Pit Rivers in Shasta County, California and has prepared a final environmental...

  11. The Global Climatology of Large Lakes

    NASA Astrophysics Data System (ADS)

    Merchant, Christopher J.; MacCallum, Stuart N.

    2010-12-01

    There are ~250 large lakes in the world, large here meaning lakes with surface areas exceeding 500 km2 . Lakes are potentially sensitive indicators of regional climatic changes and large lakes also significantly modulate climate locally, via their effects on surface atmosphere fluxes and atmospheric stability. The interactions of lakes and atmosphere are therefore significant for climatology and weather forecasting. Relatively few lakes are permanently instrumented (mostly in N America and Europe), and in assimilation systems for numerical weather prediction, highly simplistic approximations for lake surface temperature are giving way to lake temperature models within the land-atmosphere exchange schemes. It is therefore important to exploit satellite observations to inform and constrain lake and weather models, and to provide observations of lake temperature changes for a wider range of lakes. Here we present results from the first phase of an ESA-funded project, ARCLake, to demonstrate accurate lake surface temperatures and detection of ice cover, using ATSR-2 and AATSR, for large lakes globally. It is sometimes assumed that sea surface temperature (SST) techniques are applicable, but in fact, lake-specific approaches are required for cloud detection and for temperature retrieval. In this paper, we present preliminary results from application of the techniques described in a companion paper [1].

  12. Global survey of the relationships of cloud albedo and liquid water path with droplet size using ISCCP

    SciTech Connect

    Han, Q.; Chou, J.; Welch, R.M.; Rossow, W.B.

    1998-07-01

    The most common approach used to model the aerosol indirect effect on clouds holds the cloud liquid water path constant. In this case, increasing aerosol concentration increases cloud droplet concentration, decreases cloud droplet size, and increases cloud albedo. The expected decrease in cloud droplet size associated with larger aerosol concentrations has been found to be larger over land than over water and larger in the Northern that in the Southern Hemisphere, but the corresponding cloud albedo increase has not been found. Many previous studies have shown that cloud liquid water path varies with changing cloud droplet size, which may alter the behavior of clouds when aerosols change. This study examines the relationship between geographic and seasonal variations of cloud effective droplet size and cloud albedo, as well as cloud liquid water path, in low-level clouds using International Satellite Cloud Climatology Project data. The results show that cloud albedo increases with decreasing droplet size for most clouds over continental areas and for all optically thicker clouds, but that cloud albedo decreases with decreasing droplet size for optically thinner clouds over most oceans and the tropical rain forest regions. For almost all clouds, the liquid water path increases with increasing cloud droplet size.

  13. A Status Report on the SHADOZ (Southern Hemisphere Additional Ozonesondes) Project and Some Issues Affecting Ozone Climatology

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, J. C.; McPeters, R. D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    SHADOZ aims to support the study of local and global patterns in stratospheric and tropospheric ozone and to provide a data set for the validation for satellite products and model calculations of ozone. Southern hemispheric tropical ozone is of particular interest because this region appears to have complex interplay among photochemical ozone formation (from biomass burning and lightning), stratospheric dynamics, convection and possibly cross-hemispheric transport. Balloon-borne ozone instrumentation (ozonesondes), joined with standard radiosondes for measurement of pressure, temperature and relative humidity, is used to collect profiles throughout the troposphere and lower- to mid-stratosphere. A network of 10 southern hemisphere tropical and subtropical stations, called the Southern Hemisphere ADditional OZonesondes (SHADOZ) project, has been established from operational sites to assemble sonde data for 1998-2000. A status report on the archive, with station operating characteristics, will be given, along with some operational issues that may affect data analysis and interpretation.

  14. Interpreting the inter-model spread in regional precipitation projections in the tropics: role of surface evaporation and cloud radiative effects

    NASA Astrophysics Data System (ADS)

    Oueslati, Boutheina; Bony, Sandrine; Risi, Camille; Dufresne, Jean-Louis

    2016-02-01

    In this study, we investigate and quantify different contributors to inter-model differences in regional precipitation projections among CMIP5 climate models. Contributors to the spread are very contrasted between land and ocean. While circulation changes dominate the spread over oceans and continental coasts, thermodynamic changes associated with water vapor increase dominate over inland regions. The inter-model spread in the dynamic component is associated with the change in atmospheric radiative cooling with warming, which largely relates to atmospheric cloud radiative effects. Differences in the thermodynamic component result from the differences in the change in surface evaporation that is explained by decreases in surface humidity and limited surface water availability over land. Secondary contributions to the inter-model spread in thermodynamic and dynamic components result respectively from present-day climatology (owing to the Clausius-Clapeyron scaling) and from the shape of the vertical velocity profile associated with changes in surface temperature gradients. Advancing the physical understanding of the cloud-circulation and precipitation-evaporation couplings and improving their representation in climate models may stand the best chance to reduce uncertainty in regional precipitation projections.

  15. SeReNA Project: studying aerosol interactions with cloud microphysics in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Correia, A. L.; Catandi, P. B.; Frigeri, F. F.; Ferreira, W. C.; Martins, J.; Artaxo, P.

    2012-12-01

    Cloud microphysics and its interaction with aerosols is a key atmospheric process for weather and climate. Interactions between clouds and aerosols can impact Earth's radiative balance, its hydrological and energetic cycles, and are responsible for a large fraction of the uncertainty in climatic models. On a planetary scale, the Amazon Basin is one of the most significant land sources of moisture and latent heat energy. Moreover, every year this region undergoes mearked seasonal shifts in its atmospheric state, transitioning from clean to heavily polluted conditions due to the occurrence of seasonal biomass burning fires, that emit large amounts of smoke to the atmosphere. These conditions make the Amazon Basin a special place to study aerosol-cloud interactions. The SeReNA Project ("Remote sensing of clouds and their interaction with aerosols", from the acronym in Portuguese, @SerenaProject on Twitter) is an ongoing effort to experimentally investigate the impact of aerosols upon cloud microphysics in Amazonia. Vertical profiles of droplet effective radius of water and ice particles, in single convective clouds, can be derived from measurements of the emerging radiation on cloud sides. Aerosol optical depth, cloud top properties, and meteorological parameters retrieved from satellites will be correlated with microphysical properties derived for single clouds. Maps of cloud brightness temperature will allow building temperature vs. effective radius profiles for hydrometeors in single clouds. Figure 1 shows an example extracted from Martins et al. (2011), illustrating a proof-of-concept for the kind of result expected within the framework for the SeReNA Project. The results to be obtained will help foster the quantitative knowledge about interactions between aerosols and clouds in a microphysical level. These interactions are a fundamental process in the context of global climatic changes, they are key to understanding basic processes within clouds and how aerosols

  16. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    stimulate further research on this critical subject. The study of climate involves much more than understanding atmospheric processes. This subtlety is particularly appreciated for Earth, where chemical cycles, geology, ocean influences, and biology are considered in most climate models. In Part IV, Surface and Interior, we look at the role that geochemical cycles, volcanism, and interior mantle processes play in the stability and evolution of terrestrial planetary climates. There is one vital commonality between the climates of all the planets of the solar system: Regardless of the different processes that dominate each of the climates of Earth, Mars, Venus, and Titan, they are all ultimately forced by radiation from the same star, albeit at variable distances. In Part V, Solar Influences, we discuss how the Sun's early evolution affected the climates of the terrestrial planets, and how it continues to control the temperatures and compositions of planetary atmospheres. This will be of particular interest as models of exoplanets, and the influences of much different stellar types and distances, are advanced by further observations. Comparisons of atmospheric and climate processes between the planets in our solar system has been a focus of numerous conferences over the past decade, including the Exoclimes conference series. In particular, this book project was closely tied to a conference on Comparative Climatology of Terrestrial Planets that was held in Boulder, Colorado, on June 25-28, 2012. This book benefited from the opportunity for the author teams to interact and obtain feedback from the broader community, but the chapters do not in general tie directly to presentations at the conference. The conference, which was organized by a diverse group of atmospheric and climate scientists led by Mark Bullock and Lori Glaze, sought to build connections between the various communities, focusing on synergies and complementary capabilities. Discussion panels at the end of most

  17. The NEWS Water Cycle Climatology

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Beaudoing, Hiroko Kato; L'Ecuyer, Tristan; William, Olson

    2012-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  18. The NEWS Water Cycle Climatology

    NASA Astrophysics Data System (ADS)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T.; Olson, W. S.

    2012-12-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the first phase of the NEWS Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project was a multi-institutional collaboration with more than 20 active contributors. This presentation will describe the results of the water cycle component of the first phase of the project, which include seasonal (monthly) climatologies of water fluxes over land, ocean, and atmosphere at continental and ocean basin scales. The requirement of closure of the water budget (i.e., mass conservation) at various scales was exploited to constrain the flux estimates via an optimization approach that will also be described. Further, error assessments were included with the input datasets, and we examine these in relation to inferred uncertainty in the optimized flux estimates in order to gauge our current ability to close the water budget within an expected uncertainty range.

  19. 75 FR 48322 - McCloud-Pit Project; Notice of Availability of the Draft Environmental Impact Statement for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... Energy Regulatory Commission McCloud-Pit Project; Notice of Availability of the Draft Environmental Impact Statement for the McCloud-Pit Hydroelectric Project and Intention To Hold Public Meetings July 30... CFR part 380 ), the Office of Energy Projects has reviewed the application for license for the...

  20. Global patterns of cloud optical thickness variation with temperature

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rossow, William B.; Rind, David

    1992-01-01

    The International Satellite Cloud Climatology Project dataset is used to correlate variations of cloud optical thickness and cloud temperature in today's atmosphere. The analysis focuses on low clouds in order to limit the importance of changes in cloud vertical extent, particle size, and water phase. Coherent patterns of change are observed on several time and space scales. On the planetary scale, clouds in colder, higher latitudes are found to be optically thicker than clouds in warmer, lower latitudes. On the seasonal scale, winter clouds are, for the most part, optically thicker than summer clouds. The logarithmic derivative of cloud optical thickness with temperature is used to describe the sign and magnitude of the optical thickness-temperature correlation. The seasonal, latitudinal, and day-to-day variations of this relation are examined for Northern Hemisphere clouds in 1984. In cold continental clouds, optical thickness increases with temperature, consistent with the temperature variation of the adiabatic cloud water content. In warm continental and in almost all maritime clouds, however, optical thickness decreases with temperature.

  1. Interpreting measurements obtained with the cloud absorption radiometer

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The software developed for the analysis of data from the Cloud Absorption Radiometer (CAR) is discussed. The CAR is a multichannel radiometer designed to measure the radiation field in the middle of an optically thick cloud (the diffusion domain). It can also measure the surface albedo and escape function. The instrument currently flies on a C-131A aircraft operated by the University of Washington. Most of this data was collected during the First International satellite cloud climatology project Regional Experiment (FIRE) Marine Stratocumulus Intensive Field Observation program off San Diego during July 1987. Earlier flights of the CAR have also been studied.

  2. Meteorological support to the West German-United States Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Westfall, R. R.; Chamberlain, L. W.

    1972-01-01

    The objective of the Barium Ion Cloud Project was to study a barium ionized cloud released at an altitude of 5 earth radii. Accurate forecasting of weather conditions to prevail during the experiment period was critical to the project success. Good seeing conditions were required at all optical sites during the experiment. All meteorological support was the responsibility of the National Weather Service at Wallops Station, Virginia. Preliminary results confirm the scientists' theories of the magnetic fields and the existence of electric fields in the magnetosphere.

  3. Cirrus cloud spectra and layers observed during the FIRE and GASP projects

    NASA Technical Reports Server (NTRS)

    Flatau, Piotr J.; Gultepe, I.; Nastrom, G.; Cotton, William R.; Heymsfield, A. J.

    1990-01-01

    A general characterization is developed for cirrus clouds in terms of their spectra, shapes, optical thicknesses, and radiative properties for use in numerical models. Data sets from the Global Atmospheric Sampling Project (GASP) of the upper troposphere and the First ISCCP Regional Experiment (FIRE) are combined and analyzed to study general traits of cirrus clouds. A definition is given for 2D turbulence, and the GASP and FIRE data sets are examined with respect to cirrus layers and entrainment and to dominant turbulent scales. The approach employs conditional sampling in cloudy and clear air, power-spectral analysis, and mixing-line-type diagrams. Evidence is given for a well mixed cloud deck and for the tendency of cirrus to be formed in multilayer structures. The results are of use in mesoscale and global circulation models which predict cirrus, in small-scale cirrus modeling, and in studying the role of gravity waves in the horizontal structure of upper tropospheric clouds.

  4. The ENSO Effects on Tropical Clouds and Top-of-Atmosphere Cloud Radiative Effects in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Su, Wenying; Wang, Hailan

    2015-04-01

    This study evaluates and investigates El Niño-Southern Oscillation (ENSO) effects on tropical clouds and top-of-atmosphere (TOA) cloud radiative effects (CREs) in seven Coupled Model Intercomparison Project Phase5 (CMIP5) models. Satellite-based observations and International Satellite Cloud Climatology Project (ISCCP) satellite simulator output from the CMIP5 Atmospheric Model Intercomparison Project (AMIP) simulations are used. The CMIP5 model simulations of the relative roles of changes in cloud amount, cloud top pressure (CTP) and optical thickness (τ) on TOA CRE anomalies during ENSO are assessed using a series of offline Fu-Liou radiative transfer calculations, including derivation of cloud radiative kernels. The results show that the CMIP5 models do a considerably better job in simulating tropical TOA CREs than clouds. The better simulations of TOA CREs are often a result of compensating errors between different cloud processes. In the tropical Indo-Pacific, most of the CMIP5 models have the climatological biases of producing considerably less total cloud amount with notably higher cloud top, and all the models produce clouds that are optically much thicker than the observed. During ENSO, most of the CMIP5 models considerably underestimate TOA CREs and cloud changes in the western tropical Pacific. In the central tropical Pacific, while the multi-model mean is comparable to the observations in TOA CRE anomalies and cloud fraction changes, it overestimates the cloud top pressure (CTP) changes by 50%; there are also substantial inter-model variations. On the relative roles of cloud property changes for the TOA CRE anomalies during ENSO, the CMIP5 multi-model mean agrees with the observations on the dominance of proportional cloud fraction change for the shortwave TOA CRE anomalies, and the comparable contributions of changes in cloud fraction and CTP for the longwave TOA CRE anomalies. The comparison between the models and the observations in TOA CRE

  5. All Sky Cloud Coverage Monitoring for SONG-China Project

    NASA Astrophysics Data System (ADS)

    Tian, J. F.; Deng, L. C.; Yan, Z. Z.; Wang, K.; Wu, Y.

    2016-05-01

    In order to monitor the cloud distributions at Qinghai station, a site selected for SONG (Stellar Observations Network Group)-China node, the design of the proto-type of all sky camera (ASC) applied in Xinglong station is adopted. Both hardware and software improvements have been made in order to be more precise and deliver quantitative measurements. The ARM (Advanced Reduced Instruction Set Computer Machine) MCU (Microcontroller Unit) instead of PC is used to control the upgraded version of ASC. A much higher reliability has been realized in the current scheme. Independent of the positions of the Sun and Moon, the weather conditions are constantly changing, therefore it is difficult to get proper exposure parameters using only the temporal information of the major light sources. A realistic exposure parameters for the ASC can actually be defined using a real-time sky brightness monitor that is also installed at the same site. The night sky brightness value is a very sensitive function of the cloud coverage, and can be accurately measured by the sky quality monitor. We study the correlation between the exposure parameter and night sky brightness value, and give the mathematical relation. The images of the all sky camera are inserted into database directly. All sky quality images are archived in FITS format which can be used for further analysis.

  6. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect

    None, None

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition

  7. Using Roving Cloud Observations from the S'COOL Project to Engage Citizen Scientists

    NASA Astrophysics Data System (ADS)

    Lewis, P. M.; Oostra, D.; Moore, S. W.; Rogerson, T. M.; Crecelius, S. A.; Chambers, L. H.

    2011-12-01

    Students' Clouds Observations On-Line (S'COOL) is a hands-on project, which supports NASA research on the Earth's climate. Through their observations, participants are engaged in identifying cloud-types and levels and sending that information to NASA. The two main groups of S'COOL observers are permanent locations such as regularly participating classrooms, and non-permanent locations or Rovers. These non-permanent locations can be a field trip, vacation, or just an occasional observation from a backyard. S'COOL welcomes participation from any interested observers, especially from places where official weather observations are few and far between. This program is offered to citizen scientists all over the world. They are participating in climate research by reporting cloud types and levels within +/- 15 minutes of a satellite overpass and sending that information back to NASA. When a participant's cloud observation coincides with a satellite overpass, the project sends them an email with a MODIS image of the overpass location, and a comparison of the satellite's cloud data results next to their ground-based report. This allows for the students and citizen scientists to participate in ground-truthing the CERES satellite data, to determine the level of agreement/disagreement. A new tool slated for future use in cloud identification, developed by the S'COOL team, is a mobile application. The application is entitled "Cloud Identification for Students" or "CITRUS". The mobile application utilizes a cloud dichotomous key with images to help with cloud identification. Also included in the application is a link to the project's cloud-reporting page to help with data submission in the field. One of the project's recent and most unique roving observers is a solo ocean rower who has traversed many of the world's ocean basins alone in a rowboat. While rowing across the oceans, she has recently been making cloud observations, which she sends back to us for analysis. In doing so

  8. A systematic risk management approach employed on the CloudSat project

    NASA Technical Reports Server (NTRS)

    Basilio, R. R.; Plourde, K. S.; Lam, T.

    2000-01-01

    The CloudSat Project has developed a simplified approach for fault tree analysis and probabilistic risk assessment. A system-level fault tree has been constructed to identify credible fault scenarios and failure modes leading up to a potential failure to meet the nominal mission success criteria.

  9. Shallowness of tropical low clouds as a predictor of climate models' response to warming

    NASA Astrophysics Data System (ADS)

    Brient, Florent; Schneider, Tapio; Tan, Zhihong; Bony, Sandrine; Qu, Xin; Hall, Alex

    2016-07-01

    How tropical low clouds change with climate remains the dominant source of uncertainty in global warming projections. An analysis of an ensemble of CMIP5 climate models reveals that a significant part of the spread in the models' climate sensitivity can be accounted by differences in the climatological shallowness of tropical low clouds in weak-subsidence regimes: models with shallower low clouds in weak-subsidence regimes tend to have a higher climate sensitivity than models with deeper low clouds. The dynamical mechanisms responsible for the model differences are analyzed. Competing effects of parameterized boundary-layer turbulence and shallow convection are found to be essential. Boundary-layer turbulence and shallow convection are typically represented by distinct parameterization schemes in current models—parameterization schemes that often produce opposing effects on low clouds. Convective drying of the boundary layer tends to deepen low clouds and reduce the cloud fraction at the lowest levels; turbulent moistening tends to make low clouds more shallow but affects the low-cloud fraction less. The relative importance different models assign to these opposing mechanisms contributes to the spread of the climatological shallowness of low clouds and thus to the spread of low-cloud changes under global warming.

  10. Seasonal evolution of the West African heat low: a climatological perspective

    NASA Astrophysics Data System (ADS)

    Lavaysse, C.; Flamant, C.; Janicot, S.; Parker, D. J.; Lafore, J.-P.; Sultan, B.; Pelon, J.

    2009-08-01

    The West African heat low (WAHL), a region of high surface temperatures and low surface pressures, is a key element of the West African monsoon system. In this study, we propose a method to detect the WAHL in order to monitor its climatological seasonal displacement over West Africa during the period 1979-2001, using the European Centre for Medium-range Weather Forecast (ECMWF) ERA-40 reanalyses. The low-level atmospheric thickness (LLAT), a variable defined as the difference of geopotential heights at 700 and 925 hPa, is used to detect the dilatation of these levels generated by an increase of the temperature. We define grid points with 10% highest values of the LLAT as the WAHL. We show that our method reliably positions the WAHL over areas of high surface temperatures and low surface pressures, and that it is effective at detecting heat lows. In the course of the year, the climatological WAHL is shown to migrate north-westward from a position south of the Darfur mountains in the winter (November-March) to a location over the Sahara, between the Hoggar and the Atlas mountains, during the summer (June-September). The temperature tendency equation is used to investigate the processes controlling the displacement of the WAHL, and more particularly the heating at low levels. The specific period of the onset of the WAHL in its summer location over the Sahara (referred to as the Saharan heat low -SHL- onset) is also analysed during the 1984-2001 period, using complementary brightness temperature data from the European Union-funded Cloud Archive User Service (CLAUS). The climatological onset of the SHL occurs around 20 June, i.e. just before the climatological monsoon onset date. The present study suggests that the onset of the WAHL occurs approximately 5 days before the monsoon onset for the 1984-2001 period. This is confirmed independently by comparing the SHL onset date and the monsoon onset date for the 1984-2001 period. The seasonal evolution of the WAHL for the

  11. Antarctic Meteorology and Climatology

    NASA Astrophysics Data System (ADS)

    King, J. C.; Turner, J.

    1997-07-01

    This book is a comprehensive survey of the climatology and meteorology of Antarctica. The first section of the book reviews the methods by which we can observe the Antarctic atmosphere and presents a synthesis of climatological measurements. In the second section, the authors consider the processes that maintain the observed climate, from large-scale atmospheric circulation to small-scale processes. The final section reviews our current knowledge of the variability of Antarctic climate and the possible effects of "greenhouse" warming. The authors stress links among the Antarctic atmosphere, other elements of the Antarctic climate system (oceans, sea ice and ice sheets), and the global climate system. This volume will be of greatest interest to meteorologists and climatologists with a specialized interest in Antarctica, but it will also appeal to researchers in Antarctic glaciology, oceanography and biology. Graduates and undergraduates studying physical geography, and the earth, atmospheric and environmental sciences will find much useful background material in the book.

  12. Evidence for Liquid-Phase Cirrus Cloud Formation from Volcanic Aerosols: Climatic Implications

    NASA Astrophysics Data System (ADS)

    Sassen, Kenneth

    1992-07-01

    Supercooled droplets in cirrus uncinus cell heads between -40^circ and -50^circC are identified from Project FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  13. Derivation of Tropospheric Ozone Climatology and Trends from TOMS Data

    NASA Technical Reports Server (NTRS)

    Newchurch, Michael J.; McPeters, Rich; Logan, Jennifer; Kim, Jae-Hwan

    2002-01-01

    This research addresses the following three objectives: (1) Derive tropospheric ozone columns from the TOMS instruments by computing the difference between total-ozone columns over cloudy areas and over clear areas in the tropics; (2) Compute secular trends in Nimbus-7 derived tropospheric Ozone column amounts and associated potential trends in the decadal-scale tropical cloud climatology; (3) Explain the occurrence of anomalously high ozone retrievals over high ice clouds.

  14. Final Technical Report for Project "Improving the Simulation of Arctic Clouds in CCSM3"

    SciTech Connect

    Stephen J. Vavrus

    2008-11-15

    This project has focused on the simulation of Arctic clouds in CCSM3 and how the modeled cloud amount (and climate) can be improved substantially by altering the parameterized low cloud fraction. The new formula, dubbed 'freeezedry', alleviates the bias of excessive low clouds during polar winter by reducing the cloud amount under very dry conditions. During winter, freezedry decreases the low cloud amount over the coldest regions in high latitudes by over 50% locally and more than 30% averaged across the Arctic (Fig. 1). The cloud reduction causes an Arctic-wide drop of 15 W m{sup -2} in surface cloud radiative forcing (CRF) during winter and about a 50% decrease in mean annual Arctic CRF. Consequently, wintertime surface temperatures fall by up to 4 K on land and 2-8 K over the Arctic Ocean, thus significantly reducing the model's pronounced warm bias (Fig. 1). While improving the polar climate simulation in CCSM3, freezedry has virtually no influence outside of very cold regions (Fig. 2) or during summer (Fig. 3), which are space and time domains that were not targeted. Furthermore, the simplicity of this parameterization allows it to be readily incorporated into other GCMs, many of which also suffer from excessive wintertime polar cloudiness, based on the results from the CMIP3 archive (Vavrus et al., 2008). Freezedry also affects CCSM3's sensitivity to greenhouse forcing. In a transient-CO{sub 2} experiment, the model version with freezedry warms up to 20% less in the North Polar and South Polar regions (1.5 K and 0.5 K smaller warming, respectively) (Fig. 4). Paradoxically, the muted high-latitude response occurs despite a much larger increase in cloud amount with freezedry during non-summer months (when clouds warm the surface), apparently because of the colder modern reference climate. These results of the freezedry parameterization have recently been published (Vavrus and D. Waliser, 2008: An improved parameterization for simulating Arctic cloud amount in

  15. A comparison of cirrus clouds determined by ISCCP and SAGE-II and their relation to convection in the tropics

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vonder Haar, Thomas H.

    1992-01-01

    Results of tropical thin cirrus cloud retrievals using International Satellite Cloud Climatology Project (ISCCP) and Stratospheric Aerosol and Gaseous Experiment (SAGE-II) data from January 1985 are presented. A preliminary analysis of the results shows that thin cirrus increases with increasing height in both data sets, and SAGE-II exhibits a high frequency of occurrence. The thin cirrus extinction coefficient shows maxima around the convective regions of South America and the western Pacific Ocean.

  16. Cloud processes of the main precipitation systems in Brazil- CHUVA Project

    NASA Astrophysics Data System (ADS)

    Angelis, C. F.; Sakuragi, J.; Vila, D. A.; Carvalho, I.; Schneebeli, M.

    2011-12-01

    The project CHUVA (Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the GPM) is been carrying and its main goal is understand the physical processes involved on the precipitating systems which occur over Brazil. The project plans the setting up of a series of instruments in different parts of Brazil and so far many instruments had been deployed over the three field campaigns. Among the instruments, a dual polarization X band radar, two micro rain radars, a multi-channel ground radiometer, disdrometers, pluviometers are the more important equipments used to collect rainfall information from both: warn and cold clouds. Preliminary results show evident differences in some cloud microphysics observed in different rain events during the campaigns. Besides, rainfall maps produced by the radar data were compared to those similar maps produced by satellite. The X band radar radome, when wet, imposed some attenuation on the radar reflectivities values and an algorithm to compensate such attenuation had been developed based on data observed by disdrometers and micro rain radars. The preliminary results will be shown during the conference and it is expected that the community could discuss and evaluate them under the light of the GPM purposes.

  17. Near-global survey of effective droplet radii in liquid water clouds using ISCCP data

    NASA Technical Reports Server (NTRS)

    Han, Qingyan; Rossow, William B.; Lacis, Andrew B.

    1994-01-01

    A global survey of cloud particle size variations can provide crucial constraints on how cloud processes determine cloud liquid water contents and their variation with temperature, and further, may indicate the magnitude of aerosol effects on clouds. A method, based on a complete radiative transfer model for Advanced Very High Resolution Radiometer (AVHRR)-measured radiances, is described for retrieving cloud particle radii in liquid water clouds from satellite data currently available from the International Satellite Cloud Climatology Project. Results of sensitivity tests and validation studies provide error estimates. AVHRR data from NOAA-9 and NOAA-10 have been analyzed for January, April, July and October in 1987 and 1988. The results of this first survey reveal systematic continental and maritime differences and hemispheric contrasts that are indicative of the effects of associated aerosol concentration differences: cloud droplet radii in continental water clouds are about 2-3 micrometers smaller than in marine clouds, and droplet radii are about 1 micrometer smaller in marine clouds of the Northern Hemisphere than in the Southern Hemisphere. The height dependencies of cloud droplet radii in continental and marine clouds are also consistent with differences in the vertical profiles of aerosol concentration. Significant seasonal and diurnal variations of effective droplet radii are also observed, particularly at lower latitudes. Variations of the relationship between cloud optical thickness and droplet radii may indicate variations in cloud microphysical regimes.

  18. Situational Lightning Climatologies

    NASA Technical Reports Server (NTRS)

    Bauman, William; Crawford, Winifred

    2010-01-01

    Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. It was believed there were two flow systems, but it has been discovered that actually there are seven distinct flow regimes. The Applied Meteorology Unit (AMU) has recalculated the lightning climatologies for the Shuttle Landing Facility (SLF), and the eight airfields in the National Weather Service in Melbourne (NWS MLB) County Warning Area (CWA) using individual lightning strike data to improve the accuracy of the climatologies. The software determines the location of each CG lightning strike with 5-, 10-, 20-, and 30-nmi (.9.3-, 18.5-, 37-, 55.6-km) radii from each airfield. Each CG lightning strike is binned at 1-, 3-, and 6-hour intervals at each specified radius. The software merges the CG lightning strike time intervals and distance with each wind flow regime and creates probability statistics for each time interval, radii, and flow regime, and stratifies them by month and warm season. The AMU also updated the graphical user interface (GUI) with the new data.

  19. Cloud and solar radiation biases over the Southern Ocean in climate models (Invited)

    NASA Astrophysics Data System (ADS)

    Bodas-Salcedo, A.; Williams, K. D.; Hyder, P.; Edwards, J. M.; Copsey, D.

    2013-12-01

    Current climate models generally reflect too little solar radiation over the Southern Ocean, which may be the leading cause of the prevalent sea-surface temperature biases in climate models. We study the role of clouds on the solar radiation biases in atmosphere-only simulations of the Cloud Feedback Model Intercomparison Project phase 2 (CFMIP2), which is part of the Climate Model Intercomparison Project phase 5 (CMIP5). The CFMIP2 protocol requests additional diagnostics that are useful to investigate the causes of cloud and radiation biases in models, and their relation with cloud feedbacks. We composite AMIP daily data around cyclone centres in the latitude band between 40S and 70S during the summer. Most of the model biases occur in the cold air side of the cyclone composite, away from the cold front. We show that the cyclone composite accounts for most of the climatological error in that latitudinal band. We then use cloud property estimates from the International Cloud Climatology Project (ISCCP) to classify clouds into different regimes, following the clustering technique of Williams and Webb (2009). The cloud regime labelled as 'mid-level' is the main contributor to the Southern Ocean shortwave radiation biases. We use information from the CALIPSO lidar to investigate in more detail the properties of the 'mid-level' cloud regime. CALIPSO shows that the 'mid-level' cloud regime is dominated by two main cloud types; cloud with tops actually at mid-level, and low-level cloud. We will also present initial analyses of biases in air-sea fluxes over the Southern Ocean in the most recent configuration of the Met Office coupled model.

  20. Ground-Based Cloud and Atmospheric Boundary Layer Observations for the Project: High Definition Clouds and Precipitation for Advancing Climate Prediction, HD(CP)2

    NASA Astrophysics Data System (ADS)

    Hirsikko, A.; Ebell, K.; Ulrich, U.; Schween, J. H.; Bohn, B.; Görsdorf, U.; Leinweber, R.; Päschke, E.; Baars, H.; Seifert, P.; Klein Baltink, H.

    2014-12-01

    The German research initiative ''High Definition Clouds and Precipitation for advancing Climate Prediction, HD(CP)2'' aims for an improved representation of clouds and precipitation in climate models. Model development and its evaluation require comprehensive observational datasets. A specific work package was established to create uniform and documented observational datasets for the HD(CP)2 data base. Datasets included ground-based remote-sensing (Doppler lidars, ceilometers, microwave radiometers, and cloud radars) and in-situ (meteorological and radiation sensors) measurements. Four supersites (Jülich ObservatorY for Cloud Evolution (JOYCE), Lindenberg Meteorological Observatory - Richard Assmann Observatory (RAO), and Leipzig Aerosol and Cloud Remote Observations System (LACROS) in Germany, and Cabauw experimental site for atmospheric research (Cesar) in the Netherlands) are finalizing the operational procedures to provide quality controlled (and calibrated if possible) remote-sensing and in-situ observations, retrievals on atmospheric boundary layer state (e.g. winds, mixing layer height, humidity and temperature), and cloud macro and micro physical properties with uncertainty estimations or at least quality flags. During the project new processing and retrieval methods were developed if no commonly agreed or satisfying methods were available. Especially, large progress was made concerning uncertainty estimation and automated quality control. Additionally, the data from JOYCE are used in a radiative closure studies under cloudy conditions to evaluate retrievals of cloud properties. The current status of work progress will be presented.

  1. The MAGellanic Inter-Cloud (MAGIC) project - II. Slicing up the Bridge

    NASA Astrophysics Data System (ADS)

    Noël, N. E. D.; Conn, B. C.; Read, J. I.; Carrera, R.; Dolphin, A.; Rix, H.-W.

    2015-10-01

    The origin of the gas in between the Magellanic Clouds (MCs), known as the Magellanic Bridge, has always been the subject of controversy. To shed light into this, we present the results from the MAGellanic Inter-Cloud II (MAGIC II) project aimed at probing the stellar populations in 10 large fields located perpendicular to the main ridge-line of H I in the Inter-Cloud region. We secured these observations of the stellar populations in between the MCs using the WFI (Wide Field Imager) camera on the 2.2 m telescope in La Silla. Using colour-magnitude diagrams, we trace stellar populations across the Inter-Cloud region. In good agreement with MAGIC I, we find significant intermediate-age stars in the Inter-Cloud region as well as young stars of a similar age to the last pericentre passage in between the MCs (˜200 Myr ago). We show here that the young, intermediate-age and old stars have distinct spatial distributions. The young stars correlate well with the H I gas suggesting that they were either recently stripped from the Small Magellanic Cloud (SMC) or formed in situ. The bulk of intermediate-age stars are located mainly in the Bridge region where the H I column density is higher, but they are more spread out than the young stars. They have very similar properties to stars located ˜2 kpc from the SMC centre, suggesting that they were tidally stripped from this region. Finally, the old stars extend to some 8 kpc from the SMC supporting the idea that all galaxies have a large extended metal-poor stellar halo.

  2. Sensitivity of Satellite-Retrieved Cloud Properties to the Effective Variance of Cloud Droplet Size Distribution

    SciTech Connect

    Arduini, R.F.; Minnis, P.; Smith, W.L.Jr.; Ayers, J.K.; Khaiyer, M.M.; Heck, P.

    2005-03-18

    Cloud reflectance models currently used in cloud property retrievals from satellites have been developed using size distributions defined by a set of fixed effective radii with a fixed effective variance. The satellite retrievals used for the Atmospheric Radiation Measurement (ARM) program assume droplet size distributions with an effective variance value of 0.10 (Minnis et al. 1998); the International Satellite Cloud Climatology Project uses 0.15 (Rossow and Schiffer 1999); and the Moderate Resolution Imaging Spectroradiometer (MODIS) team uses 0.13 (Nakajima and King 1990). These distributions are not necessarily representative of the actual sizes present in the clouds being observed. Because the assumed distributions can affect the reflectance patterns and near-infrared absorption, even for the same droplet effective radius reff, it is desirable to use the optimal size distributions in satellite retrievals of cloud properties. Collocated observations of the same clouds from different geostationary satellites, at different viewing angles, indicate that the current models may not be optimal (Ayers et al. 2005). Similarly, hour-to-hour variations in effective radius and optical depth reveal an unexplained dependence on scattering angle. To explore this issue, this paper examines the sensitivity of the cloud reflectance at 0.65 and 3.90-{micro}m to changes in the effective variance, or the spectral dispersion, of the modeled size distributions. The effects on the scattering phase functions and on the cloud reflectances are presented, as well as some resultant effects on the retrieved cloud properties.

  3. Cloud cover determination in polar regions from satellite imagery

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Key, J.

    1989-01-01

    The objectives are to develop a suitable validation data set for evaluating the effectiveness of the International Satellite Cloud Climatology Project (ISCCP) algorithm for cloud retrieval in polar regions, to identify limitations of current procedures and to explore potential means to remedy them using textural classifiers, and to compare synoptic cloud data from model runs with observations. Toward the first goal, a polar data set consisting of visible, thermal, and passive microwave data was developed. The AVHRR and SMMR data were digitally merged to a polar stereographic projection with an effective pixel size of 5 sq km. With this data set, two unconventional methods of classifying the imagery for the analysis of polar clouds and surfaces were examined: one based on fuzzy sets theory and another based on a trained neural network. An algorithm for cloud detection was developed from an early test version of the ISCCP algorithm. This algorithm includes the identification of surface types with passive microwave, then temporal tests at each pixel location in the cloud detection phase. Cloud maps and clear sky radiance composites for 5 day periods are produced. Algorithm testing and validation was done with both actural AVHRR/SMMR data, and simulated imagery. From this point in the algorithm, groups of cloud pixels are examined for their spectral and textural characteristics, and a procedure is developed for the analysis of cloud patterns utilizing albedo, IR temperature, and texture. In a completion of earlier work, empirical analyses of arctic cloud cover were explored through manual interpretations of DMSP imagery and compared to U.S. Air Force 3D-nephanalysis. Comparisons of observed cloudiness from existing climatologies to patterns computed by the GISS climate model were also made.

  4. Thin Clouds

    Atmospheric Science Data Center

    2013-04-18

    ... their delicate appearance, thin, feathery clouds of ice crystals called cirrus may contribute to global warming. Some scientists ... July 9, 2002 - Thin, feathery clouds of ice crystals over the Caribbean Sea. project:  MISR ...

  5. Comparison between SAGE II and ISCCP high-level clouds. 1: Global and zonal mean cloud amounts

    NASA Technical Reports Server (NTRS)

    Liao, Xiaohan; Rossow, William B.; Rind, David

    1995-01-01

    Global high-level clouds identified in Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation measurements for January and July in the period 1985 to 1990 are compared with near-nadir-looking observations from the International Satellite Cloud Climatology Project (ISCCP). Global and zonal mean high-level cloud amounts from the two data sets agree very well, if clouds with layer extinction coefficients of less than 0.008/km at 1.02 micrometers wavelength are removed from the SAGE II results and all detected clouds are interpreted to have an average horizontal size of about 75 km along the 200 km transimission path length of the SAGE II observations. The SAGE II results are much more sensitive to variations of assumed cloud size than to variations of detection threshold. The geographical distribution of cloud fractions shows good agreement, but systematic regional differences also indicate that the average cloud size varies somewhat among different climate regimes. The more sensitive SAGE II results show that about one third of all high-level clouds are missed by ISCCP but that these clouds have very low optical thicknesses (less than 0.1 at 0.6 micrometers wavelength). SAGE II sampling error in monthly zonal cloud fraction is shown to produce no bias, to be less than the intraseasonal natural variability, but to be comparable with the natural variability at longer time scales.

  6. The interpretation of remotely sensed cloud properties from a model paramterization perspective

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN; Wielicki, Bruce A.; Ginger, Kathryn M.

    1994-01-01

    A study has been made of the relationship between mean cloud radiative properties and cloud fraction in stratocumulus cloud systems. The analysis is of several Land Resources Satellite System (LANDSAT) images and three hourly International Satellite Cloud Climatology Project (ISCCP) C-1 data during daylight hours for two grid boxes covering an area typical of a general circulation model (GCM) grid increment. Cloud properties were inferred from the LANDSAT images using two thresholds and several pixel resolutions ranging from roughly 0.0625 km to 8 km. At the finest resolution, the analysis shows that mean cloud optical depth (or liquid water path) increases somewhat with increasing cloud fraction up to 20% cloud coverage. More striking, however, is the lack of correlation between the two quantities for cloud fractions between roughly 0.2 and 0.8. When the scene is essentially overcast, the mean cloud optical tends to be higher. Coarse resolution LANDSAT analysis and the ISCCP 8-km data show lack of correlation between mean cloud optical depth and cloud fraction for coverage less than about 90%. This study shows that there is perhaps a local mean liquid water path (LWP) associated with partly cloudy areas of stratocumulus clouds. A method has been suggested to use this property to construct the cloud fraction paramterization in a GCM when the model computes a grid-box-mean LWP.

  7. The interpretation of remotely sensed cloud properties from a model paramterization perspective

    SciTech Connect

    Harshvardhan; Wielicki, B.A.; Ginger, K.M. |

    1994-12-01

    A study has been made of the relationship between mean cloud radiative properties and cloud fraction in stratocumulus cloud systems. The analysis is of several Land Resources Satellite System (LANDSAT) images and three hourly International Satellite Cloud Climatology Project (ISCCP) C-1 data during daylight hours for two grid boxes covering an area typical of a general circulation model (GCM) grid increment. Cloud properties were inferred from the LANDSAT images using two thresholds and several pixel resolutions ranging from roughly 0.0625 km to 8 km. At the finest resolution, the analysis shows that mean cloud optical depth (or liquid water path) increases somewhat with increasing cloud fraction up to 20% cloud coverage. More striking, however, is the lack of correlation between the two quantities for cloud fractions between roughly 0.2 and 0.8. When the scene is essentially overcast, the mean cloud optical tends to be higher. Coarse resolution LANDSAT analysis and the ISCCP 8-km data show lack of correlation between mean cloud optical depth and cloud fraction for coverage less than about 90%. This study shows that there is perhaps a local mean liquid water path (LWP) associated with partly cloudy areas of stratocumulus clouds. A method has been suggested to use this property to construct the cloud fraction paramterization in a GCM when the model computes a grid-box-mean LWP.

  8. Evidence for liquid-phase cirrus cloud formation from volcanic aerosols - Climatic implications

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1992-01-01

    Supercooled droplets in cirrus uncinus cell heads between -40 and -50 C are identified from the First International Satellite Cloud Climatology Project Regional Experiment polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  9. Structural characteristics and radiative properties of tropical cloud clusters

    SciTech Connect

    Machado, L.A.T.; Rossow, W.B.

    1993-12-01

    By identifying individual tropical cloud clusters in eight months of the International Satellite Cloud Climatology Project data, the size distribution, average cloud properties, and their variation with system size in tropical convective systems (CS) is examined. The geographic distribution of CS shows a concentration over land areas in the summer hemisphere with little seasonal variation except for the major shift of location into the summer hemisphere. When the tropics are considered as a whole or a region is considered over a whole season, CS of all sizes form a continuous size distribution where the area covered by the clouds in each size range is approximately the same. Land CS show a small excess of the smallest CS and a small deficit of the largest CS in comparison to ocean CS. Average CS cloud properties suggest two major cloud types: One with lower cloud-top pressures and much higher optical thicknesses, associated with deep convection, and one with higher cloud-top pressures and some evidence of a further division into optically thicker and thinner parts. The average properties of these clouds vary in a correlated fashion such that a larger horizontal extent of the convective system cloud is accompanied by a lower convective cloud-top pressure, larger anvil cloud size, and larger anvil cloud optical thickness. These structural properties and their diurnal variation also suggest that the smallest CS may represent a mixture of the formative and dissipative stages of CS, while the medium and large sizes are, principally, the mature stage. A radiative transfer model is used to evaluate the local radiative effects of CS with average cloud properties. The results imply that the mesoscale anvil cloud reinforces the diabatic heating of the atmosphere by the convection and may help sustain these systems at night. The radiative effects of the convective clouds may reinforce the diurnal variation of convection. 80 refs., 17 figs., 3 tabs.

  10. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project

    DOE PAGES

    Yum, Seong Soo; Wang, Jian; Liu, Yangang; Senum, Gunnar; Springston, Stephen; McGraw, Robert; Yeom, Jae Min

    2015-05-27

    Cloud microphysical data obtained from G-1 aircraft flights over the southeastern pacific during the VOCALS-Rex field campaign were analyzed for evidence of entrainment mixing of dry air from above cloud top. Mixing diagram analysis was made for the horizontal flight data recorded at 1 Hz and 40 Hz. The dominant observed feature, a positive relationship between cloud droplet mean volume (V) and liquid water content (L), suggested occurrence of homogeneous mixing. On the other hand, estimation of the relevant scale parameters (i.e., transition length scale and transition scale number) consistently indicated inhomogeneous mixing. Importantly, the flight altitudes of the measurementsmore » were significantly below cloud top. We speculate that mixing of the entrained air near the cloud top may have indeed been inhomogeneous; but due to vertical circulation mixing, the correlation between V and L became positive at the measurement altitudes in mid-level of clouds, because during their descent, cloud droplets evaporate, faster in more diluted cloud parcels, leading to a positive correlation between V and L regardless of the mixing mechanism near the cloud top.« less

  11. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project

    SciTech Connect

    Yum, Seong Soo; Wang, Jian; Liu, Yangang; Senum, Gunnar; Springston, Stephen; McGraw, Robert; Yeom, Jae Min

    2015-05-27

    Cloud microphysical data obtained from G-1 aircraft flights over the southeastern pacific during the VOCALS-Rex field campaign were analyzed for evidence of entrainment mixing of dry air from above cloud top. Mixing diagram analysis was made for the horizontal flight data recorded at 1 Hz and 40 Hz. The dominant observed feature, a positive relationship between cloud droplet mean volume (V) and liquid water content (L), suggested occurrence of homogeneous mixing. On the other hand, estimation of the relevant scale parameters (i.e., transition length scale and transition scale number) consistently indicated inhomogeneous mixing. Importantly, the flight altitudes of the measurements were significantly below cloud top. We speculate that mixing of the entrained air near the cloud top may have indeed been inhomogeneous; but due to vertical circulation mixing, the correlation between V and L became positive at the measurement altitudes in mid-level of clouds, because during their descent, cloud droplets evaporate, faster in more diluted cloud parcels, leading to a positive correlation between V and L regardless of the mixing mechanism near the cloud top.

  12. Multidecadal Changes in Near-Global Cloud Cover and Estimated Cloud Cover Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Norris, Joel

    2005-01-01

    The first paper was Multidecadal changes in near-global cloud cover and estimated cloud cover radiative forcing, by J. R. Norris (2005, J. Geophys. Res. - Atmos., 110, D08206, doi: lO.l029/2004JD005600). This study examined variability in zonal mean surface-observed upper-level (combined midlevel and high-level) and low-level cloud cover over land during 1971-1 996 and over ocean during 1952-1997. These data were averaged from individual synoptic reports in the Extended Edited Cloud Report Archive (EECRA). Although substantial interdecadal variability is present in the time series, long-term decreases in upper-level cloud cover occur over land and ocean at low and middle latitudes in both hemispheres. Near-global upper-level cloud cover declined by 1.5%-sky-cover over land between 1971 and 1996 and by 1.3%-sky-cover over ocean between 1952 and 1997. Consistency between EECRA upper-level cloud cover anomalies and those from the International Satellite Cloud Climatology Project (ISCCP) during 1984-1 997 suggests the surface-observed trends are real. The reduction in surface-observed upper-level cloud cover between the 1980s and 1990s is also consistent with the decadal increase in all-sky outgoing longwave radiation reported by the Earth Radiation Budget Satellite (EMS). Discrepancies occur between time series of EECRA and ISCCP low-level cloud cover due to identified and probable artifacts in satellite and surface cloud data. Radiative effects of surface-observed cloud cover anomalies, called "cloud cover radiative forcing (CCRF) anomalies," are estimated based on a linear relationship to climatological cloud radiative forcing per unit cloud cover. Zonal mean estimated longwave CCRF has decreased over most of the globe. Estimated shortwave CCRF has become slightly stronger over northern midlatitude oceans and slightly weaker over northern midlatitude land areas. A long-term decline in the magnitude of estimated shortwave CCRF occurs over low-latitude land and ocean

  13. Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro

    2016-04-01

    Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data

  14. Eclipsing binary stars in the Large and Small Magellanic Clouds from the MACHO project: The Sample

    SciTech Connect

    Faccioli, L; Alcock, C; Cook, K; Prochter, G; Protopapas, P; Syphers, D

    2007-03-29

    We present a new sample of 4634 eclipsing binary stars in the Large Magellanic Cloud (LMC), expanding on a previous sample of 611 objects and a new sample of 1509 eclipsing binary stars in the Small Magellanic Cloud (SMC), that were identified in the light curve database of the MACHO project. We perform a cross correlation with the OGLE-II LMC sample, finding 1236 matches. A cross correlation with the OGLE-II SMC sample finds 698 matches. We then compare the LMC subsamples corresponding to center and the periphery of the LMC and find only minor differences between the two populations. These samples are sufficiently large and complete that statistical studies of the binary star populations are possible.

  15. Using Diurnal Temperature Range to Examine the Climatology of Solar Energy Potential

    NASA Astrophysics Data System (ADS)

    Zercher, C. N.; Hanrahan, J.; Murphy, S. Y.

    2015-12-01

    The potential for annual solar energy production largely depends on the amount of incoming shortwave radiation which is dependent on cloud cover. Due to natural large-scale climate variability, long-term cloud cover can vary substantially, therefore modifying the total energy that can be produced by solar cells in individual locations. Under anthropogenic climate change, future precipitation is expected to significantly deviate from observed values, therefore suggesting that cloud cover, and thus solar energy potential, will also change. The expected changes are both positive and negative depending on geographic region and can be highly spatially variable, particularly in regions of complex terrain. Because of the short-term availability of observed radiation and cloud cover data, it is difficult to study the historical climatology of solar energy potential, thus making future projections uncertain. Research has shown that another readily available climate variable, the diurnal temperature range, correlates well with daily averaged shortwave radiation values during months of minimal/no snow cover, and can thus serve as a proxy for shortwave radiation during the warm season throughout the period of record. In the present study, the diurnal temperature range is shown to be an excellent predictor of shortwave radiation around the state of Vermont, independent of latitude and elevation. Monte Carlo significance testing is also used to examine recent trends in this region.

  16. An Examination of the Nature of Global MODIS Cloud Regimes

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji; Huffman, George J.

    2014-01-01

    We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.

  17. Diagnosing AIRS Sampling with CloudSat Cloud Classes

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian

    2011-01-01

    AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.

  18. Citizen Science participation in the NASA CERES Students' Cloud Observations Online Project (S'COOL)

    NASA Astrophysics Data System (ADS)

    Lewis, P. M.; Moore, S.; Crecelius, S.; Rogerson, T.; Chambers, L. H.

    2012-12-01

    Many science programs designed for the classroom see little participation when school is not in session. Many factors, such as materials, cost, needing a teacher to lead discussion, and reporting/assessment criteria are classroom-centric. The S'COOL project has the ability to serve not only as a classroom-teaching tool, but as a citizen science project in which anyone can help NASA collect cloud data. Since its inception in 1997, the S'COOL project has invited help from the citizen science community from age 6 to 99. The S'COOL project has the ability to reach everyone in the world through satellite overpasses. This provides the citizen scientist with a temporal "match", i.e., the opportunity to make cloud observations "looking up" as various NASA Earth observing satellites make cloud observations "looking down" at the same location. After an observation is made, the observing scientist completes an online report form and sends this directly to NASA Langley Research Center's Atmospheric Science Data Center. After the satellite data are processed, generally within a week, an auto-generated email informs the observer of what the satellite observed, compared side-by-side with what they observed. All of the observations are stored in a database for later viewing and analysis. The ability to view satellite matches and past observations allows the citizen scientist to develop good scientific practices, particularly skills in cloud observation and data analysis techniques. Much of the success of the S'COOL project can be associated with its aim as a classroom-based program that transcends to the citizen science community. This allows both parties to have access to the same materials and data, creating an authentic science experience. Another avenue of success can be found in the project's translation of materials into French and Spanish. Translation provides a multicultural perspective and enables broader participation. Since the aim of the S'COOL project is to collect

  19. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  20. Clear sky atmosphere at cm-wavelengths from climatology data

    NASA Astrophysics Data System (ADS)

    Lew, Bartosz; Uscka-Kowalkowska, Joanna

    2016-01-01

    We utilize ground-based, balloon-borne and satellite climatology data to reconstruct site and season-dependent vertical profiles of precipitable water vapour (PWV). We use these profiles to solve radiative transfer through the atmosphere, and derive atmospheric brightness temperature (Tatm) and optical depth (τ) at centimetre wavelengths. We validate the reconstruction by comparing the model column PWV with photometric measurements of PWV, performed in clear sky conditions pointed towards the Sun. Based on the measurements, we devise a selection criteria to filter the climatology data to match the PWV levels to the expectations of the clear sky conditions. We apply the reconstruction to the location of a Polish 32-metre radio telescope, and characterize Tatm and τ year round, at selected frequencies. We also derive the zenith distance dependence for these parameters, and discuss the shortcomings of using planar, single-layer and optically thin atmospheric models in continuum radio-source flux-density measurement calibrations. We obtain PWV-Tatm and PWV-τ scaling relations in clear sky conditions, and constrain limits to which the actual Tatm and τ can deviate from those derived solely from the climatological data. Finally, we suggest a statistical method to detect clear sky that involves ground-level measurements of relative humidity. Accuracy is tested using local climatological data. The method may be useful to constrain cloud cover in cases when no other (and more robust) climatological data are available.

  1. Cloud Distribution Statistics from LITE

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1998-01-01

    The Lidar In-Space Technology Experiment (LITE) mission has demonstrated the utility of spaceborne lidar in observing multilayer clouds and has provided a dataset showing the distribution of tropospheric clouds and aerosols. These unambiguous observations of the vertical distribution of clouds will allow improved verification of current cloud climatologies and GCM cloud parameterizations. Although there is now great interest in cloud profiling radar, operating in the mm-wave region, for the spacebased observation of cloud heights the results of the LITE mission have shown that satellite lidars can also make significant contributions in this area.

  2. Arctic ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud dataset, 1983-1990

    NASA Technical Reports Server (NTRS)

    Schweiger, Axel J.; Key, Jeffrey R.

    1994-01-01

    Radiative fluxes and cloud forcings for the ocean areas of the Arctic are computed from the monthly cloud product of the International Satellite Cloud Climatology Project (ISCCP) for 1983-90. Spatially averaged short-wave fluxes are compared well with climatological values, while downwelling longwave fluxes are significantly lower. This is probably due to the fact that the ISCCP cloud amounts are underestimates. Top-of-the-atmosphere radiative fluxes are in excellent agreement with measurements from the Earth Radiation Budget Experiment (ERBE). Computed cloud forcings indicate that clouds have a warming effect at the surface and at the top of the atmosphere during winter and a cooling effect during summer. The net radiative effect of clouds is larger at the surface during winter but greater at the top of the atmosphere during summer. Overall the net radiative effect of clouds at the top of the atmosphere is one of cooling. This is in contrast to a previous result from ERBE data showing arctic cloud forcings have a net warming effect. Sensitivities to errors in input parameters are generally greater during winter with cloud amount being the most important paarameter. During summer the surface radiation balance is most sensitive to errors in the measurements of surface reflectance. The results are encouraging, but the estimated error of 20 W/sq m in surface net radiative fluxes is too large, given that estimates of the net radiative warming effect due to a doubling of CO2 are on the order of 4 W/sq m. Because it is difficult to determine the accuracy of results with existing in situ observations, it is recommended that the development of improved algorithms for the retrieval of surface radiative properties be accompanied by the simultaneous assembly of validation datasets.

  3. Tornado climatology of Austria

    NASA Astrophysics Data System (ADS)

    Holzer, A. M.

    After several decades of little work, a revised tornado climatology for Austria is presented. Tornadoes seldom form in the alpine areas, however, near the eastern flanks of the Alps, favourable conditions for tornado genesis are found. Whereas in the alpine regions less than 0.3 tornadoes per 10,000 km 2 a year touch down (averaged for provinces or major parts of a province), we can count 0.9 in the greater Graz area, 1.0 in the greater Linz area and 1.2 tornadoes per 10,000 km 2 a year in the greater Vienna area, suggesting the existence of so-called tornado alleys. As these regions are the most populated areas of Austria, there is a possible population bias in the dataset. The overall average for Austria is 0.3 tornadoes per 10,000 km 2 a year. The database consists of 89 tornadoes, one landspout and six waterspouts, with a total of 96 events. The seasonal peak is in July with a maximum probability of tornadoes in the late afternoon and early evening hours. Every fifth tornado occurs in the hour after 5 p.m. The maximum intensity determined for a tornado in Austria was T7 on the TORRO-Scale (F3 on the Fujita-Scale), the most common intensity is T2 on the TORRO-Scale (F1 on the Fujita-Scale).

  4. Satellite Cloud Data Validation through MAGIC Ground Observation and the S'COOL Project: Scientific Benefits grounded in Citizen Science

    NASA Astrophysics Data System (ADS)

    Crecelius, S.; Chambers, L. H.; Lewis, P. M.; Rogerson, T.

    2013-12-01

    The Students' Cloud Observation On-Line (S'COOL) Project was launched in 1997 as the Formal Education and Public Outreach arm of the Clouds and the Earth's Radiant Energy System (CERES) Mission. ROVER, the Citizen Scientist area of S'COOL, started in 2007 and allows participants to make 'roving' observations from any location as opposed to a fixed, registered classroom. The S'COOL Project aids the CERES Mission in trying to answer the research question: 'What is the Effect of Clouds on the Earth's Climate'. Participants from all 50 states, most U.S. Territories, and 63 countries have reported more than 100,500 observations to the S'COOL Project over the past 16 years. The Project is supported by an intuitive website that provides curriculum support and guidance through the observation steps; 1) Request satellite overpass schedule, 2) Observe clouds, and 3) Report cloud observations. The S'COOL Website also hosts a robust database housing all participants' observations as well as the matching satellite data. While the S'COOL observation parameters are based on the data collected by 5 satellite missions, ground observations provide a unique perspective to data validation. Specifically, low to mid level clouds can be obscured by overcast high-level clouds, or difficult to observe from a satellite's perspective due to surface cover or albedo. In these cases, ground observations play an important role in filling the data gaps and providing a better, global picture of our atmosphere and clouds. S'COOL participants, operating within the boundary layer, have an advantage when observing low-level clouds that affect the area we live in, regional weather patterns, and climate change. S'COOL's long-term data set provides a valuable resource to the scientific community in improving the "poorly characterized and poorly represented [clouds] in climate and weather prediction models'. The MAGIC Team contacted S'COOL in early 2012 about making cloud observations as part of the MAGIC

  5. Antarctic Ultraviolet Radiation Climatology from Total Ozone Mapping Spectrometer Data

    NASA Technical Reports Server (NTRS)

    Lubin, Dan

    2004-01-01

    This project has successfully produced a climatology of local noon spectral surface irradiance covering the Antarctic continent and the Southern Ocean, the spectral interval 290-700 nm (UV-A, UV-B, and photosynthetically active radiation, PAR), and the entire sunlit part of the year for November 1979-December 1999. Total Ozone Mapping Spectrometer (TOMS) data were used to specify column ozone abundance and UV-A (360- or 380-nm) reflectivity, and passive microwave (MW) sea ice concentrations were used to specify the surface albedo over the Southern Ocean. For this latter task, sea ice concentration retrievals from the Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) and its successor, the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) were identified with ultraviolet/visible-wavelength albedos based on an empirical TOMS/MW parameterization developed for this purpose (Lubin and Morrow, 2001). The satellite retrievals of surface albedo and UV-A reflectivity were used in a delta-Eddington radiative transfer model to estimate cloud effective optical depth. These optical depth estimates were then used along with the total ozone and surface albedo to calculate the downwelling spectral UV and PAR irradiance at the surface. These spectral irradiance maps were produced for every usable day of TOMS data between 1979-1999 (every other day early in the TOMS program, daily later on).

  6. Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1992-01-01

    Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed.

  7. On ISSM and leveraging the Cloud towards faster quantification of the uncertainty in ice-sheet mass balance projections

    NASA Astrophysics Data System (ADS)

    Larour, E.; Schlegel, N.

    2016-11-01

    With the Amazon EC2 Cloud becoming available as a viable platform for parallel computing, Earth System Models are increasingly interested in leveraging its capabilities towards improving climate projections. In particular, faced with long wait periods on high-end clusters, the elasticity of the Cloud presents a unique opportunity of potentially "infinite" availability of small-sized clusters running on high-performance instances. Among specific applications of this new paradigm, we show here how uncertainty quantification in climate projections of polar ice sheets (Antarctica and Greenland) can be significantly accelerated using the Cloud. Indeed, small-sized clusters are very efficient at delivering sensitivity and sampling analysis, core tools of uncertainty quantification. We demonstrate how this approach was used to carry out an extensive analysis of ice-flow projections on one of the largest basins in Greenland, the North-East Greenland Glacier, using the Ice Sheet System Model, the public-domain NASA-funded ice-flow modeling software. We show how errors in the projections were accurately quantified using Monte-Carlo sampling analysis on the EC2 Cloud, and how a judicious mix of high-end parallel computing and Cloud use can best leverage existing infrastructures, and significantly accelerate delivery of potentially ground-breaking climate projections, and in particular, enable uncertainty quantification that were previously impossible to achieve.

  8. THE MAGELLANIC INTER-CLOUD PROJECT (MAGIC). I. EVIDENCE FOR INTERMEDIATE-AGE STELLAR POPULATIONS IN BETWEEN THE MAGELLANIC CLOUDS

    SciTech Connect

    Noeel, N. E. D.; Read, J. I.; Conn, B. C.; Rix, H.-W.; Carrera, R.

    2013-05-10

    The origin of the gas in between the Magellanic Clouds (MCs)-known as the ''Magellanic Bridge'' (MB)-is puzzling. Numerical simulations suggest that the MB formed from tidally stripped gas and stars in a recent interaction between the MCs. However, the apparent lack of stripped intermediate- or old-age stars associated with the MB is at odds with this picture. In this paper, we present the first results from the MAGellanic Inter-Cloud program (MAGIC) aimed at probing the stellar populations in the inter-Cloud region. We present observations of the stellar populations in two large fields located in between the Large and Small Magellanic Clouds (LMC/SMC), secured using the WFI camera on the 2.2 m telescope in La Silla. Using a synthetic color-magnitude diagram technique, we present the first quantitative evidence for the presence of intermediate-age and old stars in the inter-Cloud region. The intermediate-age stars-which make up {approx}28% of all stars in the region-are not present in fields at a similar distance from the SMC in a direction pointing away from the LMC. This provides potential evidence that these intermediate-age stars could have been tidally stripped from the SMC. However, spectroscopic studies will be needed to confirm or rule out the tidal origin for the inter-Cloud gas and stars.

  9. Application of Space Shuttle Project Hercules imagery in the investigation of ship cloud tracks

    NASA Astrophysics Data System (ADS)

    Whitmeyer, Larry E.

    1993-09-01

    An assessment is made as to the utility obtained via the Project HERCULES electronic still camera system, utilized onboard the Space Shuttle, toward the MAST Space Test Program investigation of ship-induced cloud tracks. Project HERCULES and MAST concepts are described. A detailed discussion is presented of the integration requirements, mission conduct, and payload support procedures involved in using the HERCULES system during the STS-56 mission to image potential shiptrack areas and Naval-related sites. Five HERCULES imagery cases are analyze with feature measurements. Alternate camera systems are described, and then compared with the HERCULES system. Recommendations are made for the MAST payload. Although utility is seen in the geolocation and digital format offered by HERCULES images, the present configuration permits only limited use in the shiptrack and Naval-related application. However, a firm procedural knowledge-base has been established for the MAST experiment.

  10. Evaluation of cloud prediction and determination of critical relative humidity for a mesoscale numerical weather prediction model

    SciTech Connect

    Seaman, N.L.; Guo, Z.; Ackerman, T.P.

    1996-04-01

    Predictions of cloud occurrence and vertical location from the Pennsylvannia State University/National Center for Atmospheric Research nonhydrostatic mesoscale model (MM5) were evaluated statistically using cloud observations obtained at Coffeyville, Kansas, as part of the Second International satellite Cloud Climatology Project Regional Experiment campaign. Seventeen cases were selected for simulation during a November-December 1991 field study. MM5 was used to produce two sets of 36-km simulations, one with and one without four-dimensional data assimilation (FDDA), and a set of 12-km simulations without FDDA, but nested within the 36-km FDDA runs.

  11. Effects of observed horizontal inhomogeneities within cirrus clouds on solar radiative transfer

    NASA Astrophysics Data System (ADS)

    Buschmann, Nicole; McFarquhar, Greg M.; Heymsfield, Andrew J.

    2002-10-01

    In situ microphysical and combined radar and radiometer measurements of 11 cirrus clouds from Central Equatorial Pacific Experiment (CEPEX), European Cloud and Radiation Experiment (EUCREX), investigation of Clouds by Ground-Based and Airborne Radar and Lidar (CARL), and First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE) are used to investigate effects of horizontal cloud inhomogeneities on solar radiative transfer. A three-dimensional ray-tracing model (GRIMALDI), based on the Monte Carlo method, is used to calculate upward and downward flux densities and absorption for the spectral range from 0.38 to 4.0 μm. Radiative flux densities are calculated using the inhomogeneous clouds derived from the observations and for horizontally and vertically averaged homogeneous clouds. Horizontally averaged values of radiative flux densities and absorption for heterogeneous clouds can differ by up to 30% from those calculated for the homogeneous clouds for convectively induced tropical cirrus clouds. The midlatitude cases examined tended to be more homogeneous, and hence differences between radiative properties for the homogeneous and heterogeneous clouds did not exceed 10%. For cirrus clouds with mean optical thicknesses smaller than 5 and with relative variances of optical thickness smaller than 0.2, errors caused by the homogeneous assumption are smaller than ±10%.

  12. The DACCIWA Project: Dynamics-Aerosol-Chemistry-Cloud interactions in West Africa

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter

    2014-05-01

    Massive economic and population growth and urbanisation are expected to lead to a tripling of anthropogenic emissions from southern West Africa (SWA) between 2000 and 2030, the impacts of which on human health, ecosystems, food security and the regional climate are largely unknown. An assessment of these impacts is complicated by (a) a superposition with effects of global climate change, (b) the strong dependence of SWA on the sensitive West African monsoon, (c) incomplete scientific understanding of interactions between emissions, clouds, radiation, precipitation and regional circulations and (d) by a lack of observations to advance our understanding and improve predictions. The purpose of this contribution is to introduce the research consortium DACCIWA (Dynamics-Aerosol-Chemistry-Cloud interactions in West Africa), which comprises 16 partners in six European and West African countries. The interdisciplinary DACCIWA team will build on the scientific and logistical foundations established by the African Monsoon Multidisciplinary Analysis (AMMA) project and collaborate closely with operational centres. DACCIWA will receive funding of about M8.75€ from the European Commission as part of Framework Programme 7 from 2015 until 2018. The DACCIWA project will conduct extensive fieldwork in SWA to collect high-quality observations, spanning the entire process chain from surface-based natural and anthropogenic emissions to impacts on health, ecosystems and climate. This will include a major field campaign in summer 2015 with three research aircrafts and two ground-based supersites. Combining the resulting benchmark dataset with a wide range of modelling activities will allow us: (a) to assess all relevant physical and chemical processes, (b) to improve the monitoring of climate and compositional parameters from space, (c) to determine health impacts from air pollution, and (d) to develop the next generation of weather and climate models capable of representing coupled

  13. Cloud Coverage and Height Distribution from the GLAS Polar Orbiting Lidar: Comparison to Passive Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Spinhime, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) began full on orbit operations in September 2003. A main application of the two-wavelength GLAS lidar is highly accurate detection and profiling of global cloud cover. Initial analysis indicates that cloud and aerosol layers are consistently detected on a global basis to cross-sections down to 10(exp -6) per meter. Images of the lidar data dramatically and accurately show the vertical structure of cloud and aerosol to the limit of signal attenuation. The GLAS lidar has made the most accurate measurement of global cloud coverage and height to date. In addition to the calibrated lidar signal, GLAS data products include multi level boundaries and optical depth of all transmissive layers. Processing includes a multi-variable separation of cloud and aerosol layers. An initial application of the data results is to compare monthly cloud means from several months of GLAS observations in 2003 to existing cloud climatologies from other satellite measurement. In some cases direct comparison to passive cloud retrievals is possible. A limitation of the lidar measurements is nadir only sampling. However monthly means exhibit reasonably good global statistics and coverage results, at other than polar regions, compare well with other measurements but show significant differences in height distribution. For polar regions where passive cloud retrievals are problematic and where orbit track density is greatest, the GLAS results are particularly an advance in cloud cover information. Direct comparison to MODIS retrievals show a better than 90% agreement in cloud detection for daytime, but less than 60% at night. Height retrievals are in much less agreement. GLAS is a part of the NASA EOS project and data products are thus openly available to the science community (see http://glo.gsfc.nasa.gov).

  14. Cloud detection and analysis on the Tibetan Plateau using Meteosat and CloudSat

    NASA Astrophysics Data System (ADS)

    Rüthrich, Frank; Thies, Boris; Reudenbach, Christoph; Bendix, Jörg

    2013-09-01

    studies of clouds over the Tibetan Plateau (TiP) were subject to limitations. Surface observations are scarce, and satellite retrievals are not well adapted to the peculiar conditions of the TiP. For the most comprehensive existing cloud data set, provided by the International Satellite Cloud Climatology Project (ISCCP), issues were reported for the TiP. It also lacks sufficient spatiotemporal resolution for this topographically complex region. With the Indian Ocean Data Coverage service, European Organisation for the Exploitation of Meteorological Satellites provides a Meteosat data set between 1998 and 2008. The resolution of around 6 km at the study area is sufficient even for complex terrain. Based on this data set and on products of the active sensor onboard CloudSat, we develop a novel gross-cloud retrieval for the TiP using logistic regression models. The approach maintains the original Meteosat resolution. Validation against independent CloudSat data reveals good performance. The approach also outperforms the ISCCP pixel level (DX) data set. The resulting data set is the first for the TiP that provides cloud information with sufficient resolution for both day and night. Patterns of cloud frequencies during winter, premonsoon, and monsoon seasons are analyzed. Strong diurnal forcing is found for the plateau. Peaks of cloud frequencies above the slopes occur during afternoon, while they are delayed in the valleys, where high cloud frequencies persist throughout the nights. Above the lower parts of the southern foothills of the Himalayas cloud frequencies were for the first time found to increase until the early morning. Katabatic flows are suspected to be responsible for this pattern by initiating the formation of mesoscale convective systems.

  15. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements.

    PubMed

    Cho, Hyoun-Myoung; Yang, Ping; Kattawar, George W; Nasiri, Shaima L; Hu, Yongxiang; Minnis, Patrick; Trepte, Charles; Winker, David

    2008-03-17

    This paper reports on the relationship between lidar backscatter and the corresponding depolarization ratio for nine types of cloud systems. The data used in this study are the lidar returns measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite and the collocated cloud products derived from the observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua satellite. Specifically, the operational MODIS cloud optical thickness and cloud-top pressure products are used to classify cloud types on the basis of the International Satellite Cloud Climatology Project (ISCCP) cloud classification scheme. While the CALIPSO observations provide information for up to 10 cloud layers, in the present study only the uppermost clouds are considered. The layer-averaged attenuated backscatter (gamma') and layer-averaged depolarization ratio (delta) from the CALIPSO measurements show both water- and ice-phase features for global cirrus, cirrostratus, and deep convective cloud classes. Furthermore, we screen both the MODIS and CALIPSO data to eliminate cases in which CALIPSO detected two- or multi-layered clouds. It is shown that low gamma' values corresponding to uppermost thin clouds are largely eliminated in the CALIPSO delta-gamma' relationship for single-layered clouds. For mid-latitude and polar regions corresponding, respectively, to latitude belts 30 degrees -60 degrees and 60 degrees -90 degrees in both the hemispheres, a mixture of water and ice is also observed in the case of the altostratus class. MODIS cloud phase flags are also used to screen ice clouds. The resultant water clouds flagged by the MODIS algorithm show only water phase feature in the delta-gamma' relation observed by CALIOP; however, in the case of the ice clouds flagged by the MODIS algorithm, the co-existence of ice- and water-phase clouds is still observed in

  16. Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements.

    PubMed

    Cho, Hyoun-Myoung; Yang, Ping; Kattawar, George W; Nasiri, Shaima L; Hu, Yongxiang; Minnis, Patrick; Trepte, Charles; Winker, David

    2008-03-17

    This paper reports on the relationship between lidar backscatter and the corresponding depolarization ratio for nine types of cloud systems. The data used in this study are the lidar returns measured by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aboard the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite and the collocated cloud products derived from the observations made by the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua satellite. Specifically, the operational MODIS cloud optical thickness and cloud-top pressure products are used to classify cloud types on the basis of the International Satellite Cloud Climatology Project (ISCCP) cloud classification scheme. While the CALIPSO observations provide information for up to 10 cloud layers, in the present study only the uppermost clouds are considered. The layer-averaged attenuated backscatter (gamma') and layer-averaged depolarization ratio (delta) from the CALIPSO measurements show both water- and ice-phase features for global cirrus, cirrostratus, and deep convective cloud classes. Furthermore, we screen both the MODIS and CALIPSO data to eliminate cases in which CALIPSO detected two- or multi-layered clouds. It is shown that low gamma' values corresponding to uppermost thin clouds are largely eliminated in the CALIPSO delta-gamma' relationship for single-layered clouds. For mid-latitude and polar regions corresponding, respectively, to latitude belts 30 degrees -60 degrees and 60 degrees -90 degrees in both the hemispheres, a mixture of water and ice is also observed in the case of the altostratus class. MODIS cloud phase flags are also used to screen ice clouds. The resultant water clouds flagged by the MODIS algorithm show only water phase feature in the delta-gamma' relation observed by CALIOP; however, in the case of the ice clouds flagged by the MODIS algorithm, the co-existence of ice- and water-phase clouds is still observed in

  17. A global monthly sea surface temperature climatology

    SciTech Connect

    Shea, D.J.; Trenberth, K.E.; Reynolds, R.W. NOAA, Climate Analysis Center, Washington, DC )

    1992-09-01

    The paper presents a new global 2 deg x 2 deg monthly sea surface temperature (SST) climatology, referred here to as the Shea-Trenberth-Reynolds (STR) climatology, which was derived by modifying a 1950-1979-based SST climatology from the Climate Analysis Center (CAC), by using data from the Comprehensive Ocean-Atmosphere Data Set to improve the SST estimates in the regions of the Kuroshio and the Gulf Stream. A comparison of the STR climatology with the Alexander and Mobley SST climatology showed that the STR climatology is warmer in the Northern Hemisphere, and colder poleward of 45 deg S. 22 refs.

  18. Application of Stochastic Radiative Transfer Theory to the ARM Cloud-Radiative Parameterization Problem

    SciTech Connect

    Dana E. Veron

    2012-04-09

    This project had two primary goals: (1) development of stochastic radiative transfer as a parameterization that could be employed in an AGCM environment, and (2) exploration of the stochastic approach as a means for representing shortwave radiative transfer through mixed-phase layer clouds. To achieve these goals, climatology of cloud properties was developed at the ARM CART sites, an analysis of the performance of the stochastic approach was performed, a simple stochastic cloud-radiation parameterization for an AGCM was developed and tested, a statistical description of Arctic mixed phase clouds was developed and the appropriateness of stochastic approach for representing radiative transfer through mixed-phase clouds was assessed. Significant progress has been made in all of these areas and is detailed in the final report.

  19. APhoRISM FP7 project: the Multi-platform volcanic Ash Cloud Estimation (MACE) infrastructure

    NASA Astrophysics Data System (ADS)

    Merucci, Luca; Corradini, Stefano; Bignami, Christian; Stramondo, Salvatore

    2014-05-01

    APHORISM is an FP7 project that aims to develop innovative products to support the management and mitigation of the volcanic and the seismic crisis. Satellite and ground measurements will be managed in a novel manner to provide new and improved products in terms of accuracy and quality of information. The Multi-platform volcanic Ash Cloud Estimation (MACE) infrastructure will exploit the complementarity between geostationary, and polar satellite sensors and ground measurements to improve the ash detection and retrieval and to fully characterize the volcanic ash clouds from source to the atmosphere. The basic idea behind the proposed method consists to manage in a novel manner, the volcanic ash retrievals at the space-time scale of typical geostationary observations using both the polar satellite estimations and in-situ measurements. The typical ash thermal infrared (TIR) retrieval will be integrated by using a wider spectral range from visible (VIS) to microwave (MW) and the ash detection will be extended also in case of cloudy atmosphere or steam plumes. All the MACE ash products will be tested on three recent eruptions representative of different eruption styles in different clear or cloudy atmospheric conditions: Eyjafjallajokull (Iceland) 2010, Grimsvotn (Iceland) 2011 and Etna (Italy) 2011-2012. The MACE infrastructure will be suitable to be implemented in the next generation of ESA Sentinels satellite missions.

  20. 3D polygonal representation of dense point clouds by triangulation, segmentation, and texture projection

    NASA Astrophysics Data System (ADS)

    Tajbakhsh, Touraj

    2010-02-01

    A basic concern of computer graphic is the modeling and realistic representation of three-dimensional objects. In this paper we present our reconstruction framework which determines a polygonal surface from a set of dense points such those typically obtained from laser scanners. We deploy the concept of adaptive blobs to achieve a first volumetric representation of the object. In the next step we estimate a coarse surface using the marching cubes method. We propose to deploy a depth-first search segmentation algorithm traversing a graph representation of the obtained polygonal mesh in order to identify all connected components. A so called supervised triangulation maps the coarse surfaces onto the dense point cloud. We optimize the mesh topology using edge exchange operations. For photo-realistic visualization of objects we finally synthesize optimal low-loss textures from available scene captures of different projections. We evaluate our framework on artificial data as well as real sensed data.

  1. Impact of aerosols on precipitation from deep convective clouds in eastern China

    NASA Astrophysics Data System (ADS)

    Jiang, Mengjiao; Li, Zhanqing; Wan, Bingcheng; Cribb, Maureen

    2016-08-01

    We analyzed the impact of aerosols on precipitation based on 3 years of 3-hourly observations made in heavily polluted eastern China. The probability of precipitation from different cloud types was calculated using International Satellite Cloud Climatology Project cloud data and gauge-based hourly precipitation data. Because deep convective clouds have the largest precipitation probability, the influence of aerosols on the precipitation from such clouds was studied in particular. Aerosol properties were taken from the Modern-Era Retrospective Analysis for Research and Applications Aerosol Reanalysis data set. As aerosol optical depth increased, rainfall amounts from deep convective clouds increased at first and then decreased. The descending part of the trend is likely due to the aerosol radiative effect. Downwelling solar radiative fluxes at the surface decreased as aerosol optical depth increased. The decrease in solar radiation led to a decrease in ground heat fluxes and convective available potential energy, which is unfavorable for development of convective clouds and precipitation. The tendencies for lower cloud top temperatures, lower cloud top pressures, and higher cloud optical depths as a response to larger aerosol optical depths suggest the invigoration effect. Vertical velocity, relative humidity, and air temperature from the National Centers for Environmental Prediction Climate Forecast System Reanalysis were sorted to help investigate if the trends are dependent on any environmental conditions. How dynamic and microphysical factors strengthen or mitigate the impact of aerosols on clouds and precipitation and more details about their interplay should be studied further using more observations and model simulations.

  2. An improved cloud retrieval algorithim using HIRS2-MSU radiance measurements

    NASA Technical Reports Server (NTRS)

    Mcmillin, Larry; Zhou, Si-Song; Yang, Shi-Keng

    1994-01-01

    Cloud-top heights and cloud amounts are produced as part of the operational processing of polar-satellite data at the National Environmental Satellite Data and Information Service (NESDIS). These products were compared with similar products from the air force's real-time nephanalysis (RTNEPH), from the International Satellite Cloud Climatology Project, and from NASA Goddard's processing of satellite data. It was found that the amount of high-level cloud was too small in the NESDIS results, while the amount of low-level cloud was too large. An examination of the NESDIS algorithm revealed that the differences in cloud distributions were caused by the selection of channels used for the cloud retrievals. Cloud retrievals are most accurate at the levels at which the channels that are used are most sensitive. In addition, it was found that no one pair of channels was best at all levels. A new procedure was developed that varied the channels as a function of an initial estimate of the cloud height. This procedure produced improved cloud retrievals that were then compared with the RTNEPH results. The comparison showed that the two methods provide similar retrievals of cloud height and amount.

  3. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    PubMed

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability.

  4. Solar influences on cosmic rays and cloud formation: A reassessment

    NASA Astrophysics Data System (ADS)

    Sun, Bomin; Bradley, Raymond S.

    2002-07-01

    Svensmark and Friis-Christensen [1997] proposed a ``cosmic ray-cloud cover'' hypothesis that cosmic ray flux, modulated by solar activity, may modify global cloud cover and thus global surface temperature by increasing the number of ions in the atmosphere, leading to enhanced condensation of water vapor and cloud droplet formation. We evaluate this idea by extending their period of study and examining long-term surface-based cloud data (from national weather services and the Global Telecommunication System) as well as newer satellite data (International Satellite Cloud Climatology Project (ISCCP) D2, 1983-1993). No meaningful relationship is found between cosmic ray intensity and cloud cover over tropical and extratropical land areas back to the 1950s. The high cosmic ray-cloud cover correlation in the period 1983-1991 over the Atlantic Ocean, the only large ocean area over which the correlation is statistically significant, is greatly weakened when the extended satellite data set (1983-1993) is used. Cloud cover data from ship observations over the North Atlantic, where measurements are denser, did not show any relationship with solar activity over the period 1953-1995, though a large discrepancy exists between ISCCP D2 data and surface marine observations. Our analysis also suggests that there is not a solid relationship between cosmic ray flux and low cloudiness as proposed by Marsh and Svensmark [2000].

  5. The latitudinal distribution of clouds on Titan.

    PubMed

    Rannou, P; Montmessin, F; Hourdin, F; Lebonnois, S

    2006-01-13

    Clouds have been observed recently on Titan, through the thick haze, using near-infrared spectroscopy and images near the south pole and in temperate regions near 40 degrees S. Recent telescope and Cassini orbiter observations are now providing an insight into cloud climatology. To study clouds, we have developed a general circulation model of Titan that includes cloud microphysics. We identify and explain the formation of several types of ethane and methane clouds, including south polar clouds and sporadic clouds in temperate regions and especially at 40 degrees in the summer hemisphere. The locations, frequencies, and composition of these cloud types are essentially explained by the large-scale circulation.

  6. Challenges and opportunities of cloud computing for atmospheric sciences

    NASA Astrophysics Data System (ADS)

    Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.

    2016-04-01

    Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.

  7. Active Learning in Introductory Climatology.

    ERIC Educational Resources Information Center

    Dewey, Kenneth F.; Meyer, Steven J.

    2000-01-01

    Introduces a software package available for the climatology curriculum that determines possible climatic events according to a long-term climate history. Describes the integration of the software into the curriculum and presents examples of active learning. (Contains 19 references.) (YDS)

  8. Variability of Clouds Over a Solar Cycle

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.

    2002-01-01

    One of the most controversial aspects of climate studies is the debate over the natural and anthropogenic causes of climate change. Historical data strongly suggest that the Little Ice Age (from 1550 to 1850 AD when the mean temperature was colder by about 1 C) was most likely caused by variability of the sun and not greenhouse molecules (e.g., CO2). However, the known variability in solar irradiance and modulation of cosmic rays provides too little energy, by many orders of magnitude, to lead to climate changes in the troposphere. The conjecture is that there is a 'trigger mechanism'. This idea may now be subjected to a quantitative test using recent global datasets. Using the best available modern cloud data from International Satellite Cloud Climatology Project (ISCCP), Svensmark and Friis-Christensen found a correlation of a large variation (3-4%) in global cloud cover with the solar cycle. The work has been extended by Svensmark and Marsh and Svensmark. The implied forcing on climate is an order of magnitude greater than any previous claims. Are clouds the long sought trigger mechanism? This discovery is potentially so important that it should be corroborated by an independent database, and, furthermore, it must be shown that alternative explanations (i.e., El Nino) can be ruled out. We used the ISCCP data in conjunction with the Total Ozone Mapping Spectrometer (TOMS) data to carry out in in depth study of the cloud trigger mechanism.

  9. The MACHO Project HST Follow-Up: The Large Magellanic Cloud Microlensing Source Stars

    SciTech Connect

    Nelson, C.A.; Drake, A.J.; Cook, K.H.; Bennett, D.P.; Popowski, P.; Dalal, N.; Nikolaev, S.; Alcock, C.; Axelrod, T.S.; Becker, A.C. Freeman, K.C.; Geha, M.; Griest, K.; Keller, S.C.; Lehner, M.J.; Marshall, S.L.; Minniti, D.; Pratt, M.R.; Quinn, P.J.; Stubbs, C.W.; Sutherland, W.; /Oxford U. /Oran, Sci. Tech. U. /Garching, Max Planck Inst. /McMaster U.

    2009-06-25

    We present Hubble Space Telescope (HST) WFPC2 photometry of 13 microlensed source stars from the 5.7 year Large Magellanic Cloud (LMC) survey conducted by the MACHO Project. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. None of these sources is coincident with a background galaxy, which rules out the possibility that the MACHO LMC microlensing sample is contaminated with misidentified supernovae or AGN in galaxies behind the LMC. This supports the conclusion that the MACHO LMC microlensing sample has only a small amount of contamination due to non-microlensing forms of variability. We compare the WFPC2 source star magnitudes with the lensed flux predictions derived from microlensing fits to the light curve data. In most cases the source star brightness is accurately predicted. Finally, we develop a statistic which constrains the location of the Large Magellanic Cloud (LMC) microlensing source stars with respect to the distributions of stars and dust in the LMC and compare this to the predictions of various models of LMC microlensing. This test excludes at {approx}> 90% confidence level models where more than 80% of the source stars lie behind the LMC. Exotic models that attempt to explain the excess LMC microlensing optical depth seen by MACHO with a population of background sources are disfavored or excluded by this test. Models in which most of the lenses reside in a halo or spheroid distribution associated with either the Milky Way or the LMC are consistent which these data, but LMC halo or spheroid models are favored by the combined MACHO and EROS microlensing results.

  10. The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates

    PubMed Central

    Oliveira, Rafael S.; Eller, Cleiton B.; Bittencourt, Paulo R. L.; Mulligan, Mark

    2014-01-01

    Background Tropical montane cloud forests (TMCFs) are characterized by a unique set of biological and hydroclimatic features, including frequent and/or persistent fog, cool temperatures, and high biodiversity and endemism. These forests are one of the most vulnerable ecosystems to climate change given their small geographic range, high endemism and dependence on a rare microclimatic envelope. The frequency of atmospheric water deficits for some TMCFs is likely to increase in the future, but the consequences for the integrity and distribution of these ecosystems are uncertain. In order to investigate plant and ecosystem responses to climate change, we need to know how TMCF species function in response to current climate, which factors shape function and ecology most and how these will change into the future. Scope This review focuses on recent advances in ecophysiological research of TMCF plants to establish a link between TMCF hydrometeorological conditions and vegetation distribution, functioning and survival. The hydraulic characteristics of TMCF trees are discussed, together with the prevalence and ecological consequences of foliar uptake of fog water (FWU) in TMCFs, a key process that allows efficient acquisition of water during cloud immersion periods, minimizing water deficits and favouring survival of species prone to drought-induced hydraulic failure. Conclusions Fog occurrence is the single most important microclimatic feature affecting the distribution and function of TMCF plants. Plants in TMCFs are very vulnerable to drought (possessing a small hydraulic safety margin), and the presence of fog and FWU minimizes the occurrence of tree water deficits and thus favours the survival of TMCF trees where such deficits may occur. Characterizing the interplay between microclimatic dynamics and plant water relations is key to foster more realistic projections about climate change effects on TMCF functioning and distribution. PMID:24759267

  11. Model Evaluation for Low-Level Cloud Feedback

    NASA Astrophysics Data System (ADS)

    Shin, S.-H.

    2012-04-01

    The purpose of this research is to address the cloud feedbacks in future climate predicted using global climate models. To understand the variability of low clouds in current climate, variations in cloud cover as well as relationship between cloud cover and other variables are examined using the adjusted International Satellite Cloud Climatology Project (ISCCP) data and Intergovernmental panel on climate change (IPCC) Fourth Assessment Report (AR4) models. The study focuses on the low-cloud amount, which variability is very critical in balancing earth's radiation budget. The correlations of the observed low cloud cover anomalies with a variety of variables suggest that low clouds in tropical marine areas (persistent low cloud regions) are associated with a cool sea surface, stronger stability, and higher sea level pressure, and subsidence. An increase in SST causes a reduction in lower tropospheric stability. And the reduced stability allows for more vertical motion within and around the cloud deck, leading to increased entrainment of dry air. This brings about a reduction in cloudiness and a transition from low cloud to high cloud types. Higher SLP could also produce more subsidence aloft, increasing LTS independent of SST. The understanding of the physical processes that control the cloud response to climate variability and the evaluation of some components of cloud feedbacks in current models should help to assess which of the model estimates of cloud feedback is the most reliable. Being rooted on this observed features of total and low-cloud variability, we evaluate the performance and the realism for the model simulations form various coupled GCMs, which lead the selection of reliable models, CGCM3 (from CCCMa) and HadGEM1 (from UKMO). These two models exhibit considerably good agreement in net cloud radiative forcing and produce a reduction in cloud throughout much of the Pacific in response to greenhouse gas forcing (i.e., a positive feedback). In this study

  12. An Objective Climatology of Tropical Plumes

    NASA Astrophysics Data System (ADS)

    Fröhlich, Luise; Hohberger, Esther; Knippertz, Peter; Fink, Andreas H.

    2010-05-01

    Tropical Plumes (TPs) are continuous bands of high and mid-level clouds stretching over several thousand of kilometres from the Tropics pole- and eastward into the subtropics or even mid-latitudes. TP-related poleward moisture transports can lead to extreme precipitation events in the outer Tropics or subtropics, and the cloudiness associated with TPs affects the Earth's radiation budget. Previous TP studies were based on a subjective visual inspection of infrared satellite images and were therefore quite time consuming with respect to climatological investigations. Here we present a newly developed objective identification algorithm that allows a flexible and quick processing of large datasets. The new algorithm is applied to 10.8μm brightness temperatures (BTs) from the Cloud Archive User Service (CLAUS), which provides global data on a uniform latitude-longitude grid at a spatial resolution of 0.5 by 0.5 degrees and a temporal resolution of three hours for the time period July 1983 to June 2006. Following the classic definition by McGuirk et al. (1987, Mon. Wea. Rev.) TPs are defined as extended bands (length > 2000 km) with BT anomalies below -30 K that cross 15° North or South. Additionally a criterion for the elongatedness of TP is developed, which is based on the length-width ratio of the smallest rectangle that contains the TP. The detected systems are tracked in time based on spatial overlap and attributes such as lifetime are determined. For boreal winter (Oct.-March), the resulting climatology reveals that TP occurrence is largely confined to oceanic regions with the main maximum located over the Central South Pacific close to the South Pacific convergence zone. Other TP frequency maxima are found over the eastern parts of the North Pacific and North Atlantic Oceans and over the western part of the South Atlantic near the South Atlantic convergence zone. In boreal summer (April-Sep.) the geographical distribution of TP occurrence has a similar

  13. Heat and moisture fluxes within a nighttime maritime stratus cloud during CASP II

    SciTech Connect

    Gultepe, I.; Issac, G.

    1994-12-31

    Stratus clouds in the lower part of the atmosphere over the ocean or land can play an important role in boundary layer processes and in climate change. Physical, dynamical, and radiative processes within marine stratus clouds on both cloud and regional scale are studied for the first time during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) (Albrecht et al., 1988). These clouds can effect the nowcasting, pollution transfer, and radiative processes (Nicholls and Leighton, 1986). Similar to the FIRE stratus project, the Canadian Atlantic Storms Program (CASP) II field project was planned to obtain a better understanding of cloud physical, dynamical, radiative characteristics, and mesoscale structure of Canadian east coast storms. Here the dynamical and microphysical data, and a radiative transfer model are used to better understand a developing nighttime stratus cloud over the ocean during CASP II which took place over Atlantic Canada. Observations collected by the Convair aircraft of the National Research Council (NRC) of Canada during the CASP II field project on February 6, 1991 are presented.

  14. Characterisation of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene during Cloud Condensation-Evaporation Cycles (CUMULUS Project)

    NASA Astrophysics Data System (ADS)

    Doussin, J. F.; Giorio, C.; Bregonzio-Rozier, L.; Siekmann, F.; Temime-Roussel, B.; Gratien, A.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Vermeylen, R.; Claeys, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many oxidation processes in the atmosphere accompanied by formation of water-soluble compounds. These compounds could partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and less volatile compounds which could form new aerosol (Ervens et al., 2011). This work investigates the formation and composition of secondary organic aerosol (SOA) from the photooxidation of isoprene and methacrolein (its main first-generation oxidation product) and the effect of cloud water on SOA formation and composition. The experiments were performed within the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere) at the 4.2 m3 stainless steel CESAM chamber (Wang et al., 2011). In each experiment, isoprene or methacrolein was injected in the chamber together with HONO under dry conditions before irradiation. The experimental protocol was optimised to generate cloud events in the chamber, lasting for ca. 10 minutes in the presence of light. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation and composition were analysed on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and off-line through sampling on filters and analysis in GC-MS and LC-MS. We observed that during cloud formation water soluble gas-phase oxidation products readily partitioned into cloud droplets and new SOA was promptly produced. Chemical composition, elemental ratios and density of SOA were compared before, during cloud formation and after cloud evaporation. Ervens, B. et al. (2011) Atmos. Chem. Phys. 11, 11069-11102. Wang, J. et al. (2011) Atmos. Measur. Tech. 4, 2465-2494.

  15. Global Weather States and Their Properties from Passive and Active Satellite Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rossow, William; Zhang, Yuanchong; Konsta, Dimitra

    2013-01-01

    In this study, the authors apply a clustering algorithm to International Satellite Cloud Climatology Project (ISCCP) cloud optical thickness-cloud top pressure histograms in order to derive weather states (WSs) for the global domain. The cloud property distribution within each WS is examined and the geographical variability of each WS is mapped. Once the global WSs are derived, a combination of CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical cloud structure retrievals is used to derive the vertical distribution of the cloud field within each WS. Finally, the dynamic environment and the radiative signature of the WSs are derived and their variability is examined. The cluster analysis produces a comprehensive description of global atmospheric conditions through the derivation of 11 WSs, each representing a distinct cloud structure characterized by the horizontal distribution of cloud optical depth and cloud top pressure. Matching those distinct WSs with cloud vertical profiles derived from CloudSat and CALIPSO retrievals shows that the ISCCP WSs exhibit unique distributions of vertical layering that correspond well to the horizontal structure of cloud properties. Matching the derived WSs with vertical velocity measurements shows a normal progression in dynamic regime when moving from the most convective to the least convective WS. Time trend analysis of the WSs shows a sharp increase of the fair-weather WS in the 1990s and a flattening of that increase in the 2000s. The fact that the fair-weather WS is the one with the lowest cloud radiative cooling capability implies that this behavior has contributed excess radiative warming to the global radiative budget during the 1990s.

  16. Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget

    NASA Technical Reports Server (NTRS)

    Haynes, John M.; Jakob, Christian; Rossow, William B.; Tselioudis, George; Brown, Josephine

    2011-01-01

    Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79%of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.

  17. Cloud optical thickness variations during 1983-1991: Solar cycle or ENSO?

    NASA Astrophysics Data System (ADS)

    Kuang, Zhiming; Jiang, Yibo; Yung, Yuk L.

    Based on a detailed analysis of the cloud data obtained by the International Satellite Cloud Climatology Project (ISCCP) in the years 1983-1991, we show that besides the reported 3% variation in global cloudiness (Svensmark and Friis-Christensen, 1997), the global mean cloud optical thickness (MCOT) also has significant variation which is out of phase with that of the global cloudiness. The combined effect of the two opposing variations may be a null effect on the cloud reflectivity. These results are consistent with the Total Ozone Mapping Spectrometer (TOMS) reflectivity measurements. The MCOT variation is further shown to be correlated with both the solar cycle and the ENSO cycle. Our present analysis cannot distinguish which of the above two provides better correlation, although independent data from the High resolution Infrared Radiation Sounder (HIRS) from 1990 to 1996 favor the solar cycle. Future data are needed to identify the true cause of these changes.

  18. Annual Climatology of the Diurnal Cycle on the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Betts, Alan; Tawfik, Ahmed

    2016-01-01

    We show the annual climatology of the diurnal cycle, stratified by opaque cloud, using the full hourly resolution of the Canadian Prairie data. The opaque cloud field itself has distinct cold and warm season diurnal climatologies; with a near-sunrise peak of cloud in the cold season and an early afternoon peak in the warm season. There are two primary climate states on the Canadian Prairies, separated by the freezing point of water, because a reflective surface snow cover acts as a climate switch. Both cold and warm season climatologies can be seen in the transition months of November, March and April with a large difference in mean temperature. In the cold season with snow, the diurnal ranges of temperature and relative humidity increase quasi-linearly with decreasing cloud, and increase from December to March with increased solar forcing. The warm season months, April to September, show a homogeneous coupling to the cloud cover, and a diurnal cycle of temperature and humidity that depends only on net longwave. Our improved representation of the diurnal cycle shows that the warm season coupling between diurnal temperature range and net longwave is weakly quadratic through the origin, rather than the linear coupling shown in earlier papers. We calculate the conceptually important 24-h imbalances of temperature and relative humidity (and other thermodynamic variables) as a function of opaque cloud cover. In the warm season under nearly clear skies, there is a warming of +2oC and a drying of -6% over the 24-h cycle, which is about 12% of their diurnal ranges. We summarize results on conserved variable diagrams and explore the impact of surface windspeed on the diurnal cycle in the cold and warm seasons. In all months, the fall in minimum temperature is reduced with increasing windspeed, which reduces the diurnal temperature range. In July and August, there is an increase of afternoon maximum temperature and humidity at low windspeeds, and a corresponding rise in

  19. Sprite climatology in the Eastern Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico

    2015-04-01

    We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (< 40% of events) between 00:30 and 02:15 LST (22:30-00:15 UT; LST = UT + 2). The detection times of sprites are well-correlated with a relative increase in the fraction of + CG strokes, which exhibit maxima between 00:00 and 02:00 LST. The morphological distribution of 339 sprites, that we were able to clearly identify, is dominated by column sprites (49.3%), with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan and summer ones in Central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogenous types are slightly more frequent than mixed ones (55%). Our observations suggest winter Mediterranean thunderstorms to have a vertical structure in between high tropical convective systems and the lower cloud-top cells in Japan. The climatology shows the Eastern Mediterranean to be a major sprite producer in Northern Hemisphere winter, and offers ground-based coverage for future space missions.

  20. Sprite Climatology in the Eastern Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Price, Colin; Katzenelson, Dor; Rosenthal, Neta; Rubanenko, Lior; Ben-Ami, Yuval; Arnone, Enrico

    2015-04-01

    We present statistical analysis of 436 sprites observed in 7 winter campaigns from 2006/7-2012/13. Results show a clear peak in the frequency of sprite detections, with maximum values (< 40% of events) between 00:30-02:15 LST (22:30-00:15 UT; LST=UT+2). The detection times of sprites are well-correlated with a relative increase in the fraction of +CG strokes, which exhibit maxima between 00:00-02:00 LST. The morphological distribution of 339 sprites, that we were able to clearly identify, is dominated by column sprites (49.3%), with angels (33.0%) and carrots (25.7%) being less frequent. This is similar to reports of winter sprites over the Sea of Japan and summer ones in central Europe. Other shapes such as trees, wishbones, etc. appear quite rarely. Single element events constitute 16.5% of observations, with 83.5% containing 2 elements or more. Clusters of homogeneous types are slightly more frequent than mixed ones (55%). Our observations suggest winter East Mediterranean thunderstorms to have a vertical structure that is an intermediate type between high tropical convective systems and the lower cloud-top cells in winter thunderstorms over the Sea of Japan. The climatology shows that the Eastern Mediterranean is a major sprite producer during Northern Hemisphere winter, and thus the existing and future optical observation infrastructure in Israel offers ground-based coverage for upcoming space missions that aim to map global sprite activity.

  1. Cloud information for FIRE from surface weather reports

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Warren, Stephen G.; London, Julius

    1990-01-01

    Surface weather observations of clouds were analyzed to obtain a global cloud climatology (Warren et al, 1986; 1988). The form of the synoptic weather code limits the types of cloud information which are available from these reports. Comparison of surface weather reports with instrumental observations during the FIRE field experiments can help to clarify the operational definitions which were made in the climatology because of the nature of the synoptic code. The long-term climatology from surface weather observations is also useful background for planning the location and timing of intensive field experiments.

  2. The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony G.; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung

    2013-01-01

    The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10MJO events show the following anticipatedMJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for EarthObserving System (EOS) (AMSR-E) columnwater vapor (CWV) increases by;5 mmduring the shallow- deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between;46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow-deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. 1.

  3. Mars Orbiter Camera climatology of textured dust storms

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Toigo, Anthony D.; Kulowski, Laura; Wang, Huiqun

    2015-09-01

    We report the climatology of "textured dust storms", those dust storms that have visible structure on their cloud tops that are indicative of active dust lifting, as observed in Mars Daily Global Maps produced from Mars Orbiter Camera wide-angle images. Textured dust storms predominantly occur in the equinox seasons while both solstice periods experience a planet-wide "pause" in textured dust storm activity. These pauses correspond to concurrent decreases in global atmospheric dust opacity. Textured dust storms most frequently occur in Acidalia Planitia, Chryse Planitia, Arcadia Planitia, and Hellas basin. To examine the nature of the link between textured dust storms and atmospheric dust opacity, we compare the textured dust storm climatology with a record of atmospheric dust opacity and find a peak global correlation coefficient of approximately 0.5 with a lag of 20-40° in solar longitude in the opacity compared to the solar climatology. This implies that textured dust storms observed at 1400 local time by MOC are responsible for a large fraction of atmospheric dust opacity and that other mechanisms (e.g., dust devil lifting or storm-scale lifting not observed in this study) may supply a comparable amount of dust.

  4. Global Single and Multiple Cloud Classification with a Fuzzy Logic Expert System

    NASA Technical Reports Server (NTRS)

    Welch, Ronald M.; Tovinkere, Vasanth; Titlow, James; Baum, Bryan A.

    1996-01-01

    An unresolved problem in remote sensing concerns the analysis of satellite imagery containing both single and multiple cloud layers. While cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget, most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. Coakley (1983) used a spatial coherence method to determine whether a region contained more than one cloud layer. Baum et al. (1995) developed a scheme for detection and analysis of daytime multiple cloud layers using merged AVHRR (Advanced Very High Resolution Radiometer) and HIRS (High-resolution Infrared Radiometer Sounder) data collected during the First ISCCP Regional Experiment (FIRE) Cirrus 2 field campaign. Baum et al. (1995) explored the use of a cloud classification technique based on AVHRR data. This study examines the feasibility of applying the cloud classifier to global satellite imagery.

  5. External Influences on Modeled and Observed Cloud Trends

    NASA Technical Reports Server (NTRS)

    Marvel, Kate; Zelinka, Mark; Klein, Stephen A.; Bonfils, Celine; Caldwell, Peter; Doutriaux, Charles; Santer, Benjamin D.; Taylor, Karl E.

    2015-01-01

    Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.

  6. Toward Creating A Global Retrospective Climatology of Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Curran, Robert J.; Mishchenko, Michael I.; Hansen, James E. (Technical Monitor)

    2000-01-01

    Tropospheric aerosols are thought to cause a significant direct and indirect climate forcing, but the magnitude of this forcing remains highly uncertain because of poor knowledge of global aerosol characteristics and their temporal changes. The standard long-term global product, the one-channel Advanced Very-High-Resolution Radiometer (AVHRR) aerosol optical thickness over the ocean, relies on a single predefined aerosol model and can be inaccurate in many cases. Furthermore, it provides no information on aerosol column number density, thus making it impossible to estimate the indirect aerosol effect on climate. Total Ozone Mapping Spectrometer (TOMS) data can be used to detect absorbing aerosols over land, but are insensitive to aerosols located below one kilometer. It is thus clear that innovative approaches must be employed in order to extract a more quantitative and accurate aerosol climatology from available satellite and other measurements, thus enabling more reliable estimates of the direct and indirect aerosol forcings. The Global Aerosol Climatology Project (GACP) was established in 1998 as part of the Global Energy and Water Cycle Experiment (GEWEX). Its main objective is to analyze satellite radiance measurements and field observations to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations. The overall goal is to develop advanced global aerosol climatologies for the period of satellite data and to make the aerosol climatologies broadly available through the GACP web site.

  7. TRMM-Based Lightning Climatology

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  8. Cirrus cloud retrieval using infrared sounding data: Multilevel cloud errors

    NASA Technical Reports Server (NTRS)

    Baum, Bryan A.; Wielicki, Bruce A.

    1994-01-01

    In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-microns CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1-1.0) and cloud-top pressures (850-250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud effective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all cases, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300-500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.

  9. A Comparison of Multiscale Variations of Decade-long Cloud Fractions from Six Different Platforms over the Southern Great Plains in the United States

    SciTech Connect

    Wu, Wei; Liu, Yangang; Jensen, Michael; Toto, Tami; Foster, Michael J.; Long, Charles N.

    2014-03-27

    This study investigates 1997-2011 observationally based cloud fraction estimates from different platforms over the Southern Great Plains, United States, including three ground-based estimates and three satellite-based estimates at multiple temporal and spatial scales. They are: 1) the Active Remotely Sensed Clouds Locations (ARSCL); 2) the Total Sky Imager (TSI); 3) the Radiative Flux Analysis (RFA); 4) Geostationary Operational Environmental Satellite (GOES); 5) the International Satellite Cloud Climatology Project (ISCCP); and 6) Advanced Very High Resolution Radiometer Pathfinder Atmospheres Extended (PATMOS-x). A substantial disagreement is evident among different estimates, especially for ISCCP and ARSCL with statistically significant larger cloud fractions than the other estimates. For example, ISCCP and ARSCL mean cloud fractions in January are ~21% and 8% larger than the average from all the other estimates, respectively. Three estimates (ISCCP, ARSCL, GOES) exhibit an 8%-10% overall increase in the annually averaged cloud fractions from 1998 to 2009; the other three estimates (TSI, RFA, and PATMOS-x) exhibit no significant tendency of increase in this decade. Monthly cloud fractions from all the estimates exhibit Gaussian-like distributions while the distributions of daily cloud fractions are dependent on spatial scales. Investigations of high-resolution cloud fractions reveal that the differences stem from the inconsistent definitions of cloud fraction. Findings from this study suggest caution when using observationally based cloud fraction estimates for climate studies, highlighting that the consistency in defining cloud fraction between models and observations is crucial for studying the Earth’s climate.

  10. A climatologically significant aerosol longwave indirect effect in the Arctic.

    PubMed

    Lubin, Dan; Vogelmann, Andrew M

    2006-01-26

    The warming of Arctic climate and decreases in sea ice thickness and extent observed over recent decades are believed to result from increased direct greenhouse gas forcing, changes in atmospheric dynamics having anthropogenic origin, and important positive reinforcements including ice-albedo and cloud-radiation feedbacks. The importance of cloud-radiation interactions is being investigated through advanced instrumentation deployed in the high Arctic since 1997 (refs 7, 8). These studies have established that clouds, via the dominance of longwave radiation, exert a net warming on the Arctic climate system throughout most of the year, except briefly during the summer. The Arctic region also experiences significant periodic influxes of anthropogenic aerosols, which originate from the industrial regions in lower latitudes. Here we use multisensor radiometric data to show that enhanced aerosol concentrations alter the microphysical properties of Arctic clouds, in a process known as the 'first indirect' effect. Under frequently occurring cloud types we find that this leads to an increase of an average 3.4 watts per square metre in the surface longwave fluxes. This is comparable to a warming effect from established greenhouse gases and implies that the observed longwave enhancement is climatologically significant.

  11. Cloud Infrastructure & Applications - CloudIA

    NASA Astrophysics Data System (ADS)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  12. Climatological Atlas of the World Ocean

    NASA Astrophysics Data System (ADS)

    Levitus, Sydney

    A project to objectively analyze historical ocean temperature, salinity, oxygen, and percent oxygen saturation data for the world ocean has recently been completed at the National Oceanic and Atmospheric Administration's (NOAA) Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey. The results of the project are being made available through distribution of the Climatological Atlas of the World Ocean (NOAA Professional Paper No. 13), and through distribution of magnetic tapes containing the objective analyses.The sources of data used in the project were the Station Data, Mechanical Bathythermograph, and Expendable Bathythermograph files of the National Oceanographic Data Center (NODC) in Washington, D.C., updated through 1977-1978. The raw data were subjected to quality control procedures, averaged by one-degree squares, and then used as input to an objective analysis procedure that fills in one-degree squares containing no data and smooths the results. Due to the lack of synoptic observations for the world ocean, the historical data are composited by annual, seasonal, and (for temperature) monthly periods.

  13. Satellite-Based Assessment of Possible Dust Aerosols Semi-Direct Effect on Cloud Water Path over East Asia

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Lin, Bing; Minnis, Patrick; Wang, Tainhe; Wang, Xin; Hu, Yongxiang; Yi, Yuhong; Ayers, J. Kirk

    2006-01-01

    The semi-direct effects of dust aerosols are analyzed over eastern Asia using 2 years (June 2002 to June 2004) of data from the Clouds and the Earth s Radiant Energy System (CERES) scanning radiometer and MODerate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, and 18 years (1984 to 2001) of International Satellite Cloud Climatology Project (ISCCP) data. The results show that the water path of dust-contaminated clouds is considerably smaller than that of dust-free clouds. The mean ice water path (IWP) and liquid water path (LWP) of dusty clouds are less than their dust-free counterparts by 23.7% and 49.8%, respectively. The long-term statistical relationship derived from ISCCP also confirms that there is significant negative correlation between dust storm index and ISCCP cloud water path. These results suggest that dust aerosols warm clouds, increase the evaporation of cloud droplets and further reduce cloud water path, the so-called semi-direct effect. The semi-direct effect may play a role in cloud development over arid and semi-arid areas of East Asia and contribute to the reduction of precipitation.

  14. Lidar measurements of boundary layers, aerosol scattering and clouds during project FIFE

    NASA Technical Reports Server (NTRS)

    Eloranta, Edwin W. (Principal Investigator)

    1995-01-01

    A detailed account of progress achieved under this grant funding is contained in five journal papers. The titles of these papers are: The calculation of area-averaged vertical profiles of the horizontal wind velocity using volume imaging lidar data; Volume imaging lidar observation of the convective structure surrounding the flight path of an instrumented aircraft; Convective boundary layer mean depths, cloud base altitudes, cloud top altitudes, cloud coverages, and cloud shadows obtained from Volume Imaging Lidar data; An accuracy analysis of the wind profiles calculated from Volume Imaging Lidar data; and Calculation of divergence and vertical motion from volume-imaging lidar data. Copies of these papers form the body of this report.

  15. The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP)

    NASA Astrophysics Data System (ADS)

    Chepfer, H.; Bony, S.; Winker, D.; Cesana, G.; Dufresne, J. L.; Minnis, P.; Stubenrauch, C. J.; Zeng, S.

    2010-01-01

    This article presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP) designed to evaluate the cloudiness simulated by general circulation models (GCMs). For this purpose, Cloud-Aerosol Lidar with Orthogonal Polarization L1 data are processed following the same steps as in a lidar simulator used to diagnose the model cloud cover that CALIPSO would observe from space if the satellite was flying above an atmosphere similar to that predicted by the GCM. Instantaneous profiles of the lidar scattering ratio (SR) are first computed at the highest horizontal resolution of the data but at the vertical resolution typical of current GCMs, and then cloud diagnostics are inferred from these profiles: vertical distribution of cloud fraction, horizontal distribution of low, middle, high, and total cloud fractions, instantaneous SR profiles, and SR histograms as a function of height. Results are presented for different seasons (January-March 2007-2008 and June-August 2006-2008), and their sensitivity to parameters of the lidar simulator is investigated. It is shown that the choice of the vertical resolution and of the SR threshold value used for cloud detection can modify the cloud fraction by up to 0.20, particularly in the shallow cumulus regions. The tropical marine low-level cloud fraction is larger during nighttime (by up to 0.15) than during daytime. The histograms of SR characterize the cloud types encountered in different regions. The GOCCP high-level cloud amount is similar to that from the TIROS Operational Vertical Sounder (TOVS) and the Atmospheric Infrared Sounder (AIRS). The low-level and middle-level cloud fractions are larger than those derived from passive remote sensing (International Satellite Cloud Climatology Project, Moderate-Resolution Imaging Spectroradiometer-Cloud and Earth Radiant Energy System Polarization and Directionality of Earth Reflectances, TOVS Path B, AIRS-Laboratoire de M

  16. Anthropogenic sulfate and organic aerosols, CCN, and cloud project concentration at a marine site

    SciTech Connect

    Novakao, T.; Rivera-Carpio, C.; Penner, J.E.; Rogers, C.F.

    1993-10-01

    The need to establish the relationships between the number concentration of cloud droplets, cloud condensation nuclei (CCN), and the mass concentrations of major aerosol species has been heightened by the results of recent modeling studies suggesting that anthropogenic sulfate and biomass smoke aerosols may cause a globally averaged climate forcing comparable in magnitude but opposite in sign to the forcing due to ``greenhouse`` gases. In this paper we present the results of measurements of nonseasalt (nss) sulfate and organic carbon mass concentrations and mass size distributions, CCN, and cloud droplet number concentrations obtained in 1991 and 1992 on El Yunque peak, Puerto Rico . This peak (18{degree}19N, 65{degree}45W; elevation 1000 m) is located the eastern end of the island, directly exposed to the ocean winds and frequently covered with clouds. Our results show that although CCN number concentrations (measured at 0.5% supersaturation) and nss sulfate mass concentrations are significantly correlated at this site, estimates based on measured mass size distributions of organic and sulfate aerosols indicate that the organic aerosols may account for the majority of CCN number concentrations. Droplet concentrations in the cumulus clouds do not show a discernible trend with nss sulfate mass concentrations. In stratocumulus clouds a small increase in droplet concentrations with nss sulfate mass concentrations was observed.

  17. 30 CFR 779.18 - Climatological information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Climatological information. 779.18 Section 779... PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 779.18 Climatological information. (a) When requested by the regulatory authority, the...

  18. 30 CFR 779.18 - Climatological information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Climatological information. 779.18 Section 779... PROGRAMS SURFACE MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 779.18 Climatological information. (a) When requested by the regulatory authority, the...

  19. 30 CFR 783.18 - Climatological information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Climatological information. 783.18 Section 783... PROGRAMS UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 783.18 Climatological information. (a) When requested by the regulatory authority,...

  20. 30 CFR 783.18 - Climatological information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Climatological information. 783.18 Section 783... PROGRAMS UNDERGROUND MINING PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR INFORMATION ON ENVIRONMENTAL RESOURCES § 783.18 Climatological information. (a) When requested by the regulatory authority,...

  1. Precipitation Characteristics of ISCCP Cloud Regimes for Improving Model Hydrological Budgets

    NASA Technical Reports Server (NTRS)

    Lee, D.; Oreopoulos, L.

    2011-01-01

    The key in unraveling relationships between precipitation and atmospheric circulations is their common linkage to clouds. Clouds can be described in a variety of ways and several approaches can be adopted to examine their connections to precipitation. We claim that when cloud regimes (aka weather states) from the International Satellite Cloud Climatology Project (ISCCP) are used to conditionally sample/sort and average precipitation data, useful insight and GCM-appropriate diagnostics on the origins and distribution of precipitation can be obtained. The ISCCP cloud regimes are mesoscale (2.5 ) cloud mixtures determined by cluster analysis on joint histograms of cloud optical thickness and cloud top pressure inferred from geostationary and polar orbiter satellite passive retrievals. The ISCCP cloud regime data are combined with GPCP IDD merged surface precipitation data and/or higher temporal and spatial resolution TRMM Multi-Satellite Precipitation Analysis (TMPA) data. The analysis is performed separately for three geographical zones, tropics, and northern/southern midlatitudes (for GPCP; only the tropics can be examined with TMPA data). Our presentation aspires to provide answers to the following questions: (l) What is the mean and variability of surface precipitation produced by each cloud regime at the time of regime occurrence? (2) What is the relative contribution of each cloud regime to the total precipitation within its geographical zone? (3) What is the geographical distribution of precipitation corresponding to particular cloud regime? (4) To what extent are the cloud regimes distinct in terms of their precipitation characteristics and is the regime ordering in terms of convective strength consistent with the observed precipitation intensity?

  2. Characterising cloud regimes associated with the Southern Ocean shortwave radiation bias

    NASA Astrophysics Data System (ADS)

    Mason, S.; Jakob, C.; Protat, A.

    2013-12-01

    The high-latitude Southern Ocean is the site of persistent cloud biases in GCMs. A deficit of shortwave cloud radiative effect especially between 50-65S causes an excess of absorbed shortwave radiation, which has been associated with other biases in the global circulation. Recent model evaluation studies have found that the shortwave radiation bias is potentially associated with low- and mid-level clouds in the cold-air part of extratropical cyclones and ahead of transient ridges. However a coherent description of the cloud properties and cloud processes most associated with the bias has not yet emerged. This study focuses on three cloud regimes that are most frequent in the area of the shortwave radiation bias during the austral summer. They are selected from the cloud regimes derived for the Southern Ocean from International Satellite Cloud Climatology Project (ISCCP) cloud observations. We characterise the selected cloud regimes in terms of their meteorological conditions using the ECMWF Interim reanalysis. We also study their vertical macrophysical structure and microphysical properties based on active satellite observations using the DARDAR (raDAR/liDAR) combined CloudSat and CALIPSO data product. We find that two cloud regimes identified as mid-topped in the ISCCP based data set are associated with distinct meteorological processes. An optically thin mid-level top cloud regime is related to cold mid-levels, cold-air advection and moderate subsidence, while an optically thicker cloud regime is associated with a broader range of conditions resembling weak to moderate frontal events, with warm and moist mid-levels, moderate ascent and warm-air advection. The vertical cloud structure derived from DARDAR profiles show that both these regimes contain mostly low clouds, but both also include frequent occurrences of mid-level cloud. We use a clustering method to quantify the differences in microphysical properties between the regimes. We find that the optically

  3. Cloud Modeling Using Field Project Data for the Study of Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-H.; Lang, S.; Simpson, J.

    2003-01-01

    The use of cloud-resolving models (CRMs) in the study of precipitation process and their relation to the large-scale environment can be generally categorized into two approaches. The first approach is so called "cloud ensemble modeling". In this approach, many clouds of different size in various stages of their lifecycles can be present at any model simulation time. Large-scale effects are derived from observations and imposed into the model as the main forcing. The advantage of this approach is that the modeled convection will be forced to have the same intensity, thermodynamic budget and organization as the obserations.This approach will also allow CRMs to perform multi-day or multi-week time integrations. The second approach usually requires initial temperature and water vapor profiles that have a medium to large CAPE, and open lateral boundary conditions are used. The modeled clouds could be termed "self-forced convection". Model improvements, such as in the microphysics, are achieved using the second approach. In cloud ensemble modeling, accurate large-scale advective tendencies for temperature and water vapor are the main forcing for the CRMs. We found that the large-scale advective terms for temperature and water vapor are not always consistent, For example, large-scale forcing could indicate strong drying which would produce cooling in the model through evaporation but not contain large-scale advective heating to compensate. This discrepancy in forcing would cause differences between the observed and modeled latent heating profiles. Good measurements of other quantities (i.e., surface fluxes and radiation) are also required to perform variational objective analysis that computes and minimizes a "cost function" that constrains the difference between the large-scale advective forcing in temperature and water vapor. With self-forced convection, accurate vertical distributions of temperature, moisture (water vapor), and horizontal winds are required. The timing

  4. Climatology and Impact of Convection on the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Pittman, Jasna

    2007-01-01

    Water vapor plays an important role in controlling the radiative balance and the chemical composition of the Tropical Tropopause Layer (TTL). Mechanisms ranging from slow transport and dehydration under thermodynamic equilibrium conditions to fast transport in convection have been proposed as regulators of the amount of water vapor in this layer. However,.details of these mechanisms and their relative importance remain poorly understood, The recently completed Tropical Composition, Cloud, and Climate Coupling (TC4) campaign had the opportunity to sample the.TTL over the Eastern Tropical Pacific using ground-based, airborne, and spaceborne instruments. The main goal of this study is to provide the climatological context for this campaign of deep and overshooting convective activity using various satellite observations collected during the summertime. We use the Microwave Humidity Sensor (MRS) aboard the NOAA-18 satellite to investigate the horizontal extent.and the frequency of convection reaching and penetrating into the TTL. We use the Moderate Resolution I1l1aging Spectroradiometer (MODIS) aboard the Aqua satellite to investigate the frequency distribution of daytime cirrus clouds. We use the Tropical Rainfall Measuring Mission(TRMM) and CloudSat to investigate the vertical structure and distribution of hydrometeors in the convective cells, In addition to cloud measurements; we investigate the impact that convection has on the concentration of radiatively important gases such as water vapor and ozone in the TTL by examining satellite measurement obtained from the Microwave Limb Sounder(MLS) aboard the Aura satellite.

  5. A tornado and waterspout climatology for Greece

    NASA Astrophysics Data System (ADS)

    Sioutas, Michalis V.

    2011-06-01

    The results of a systematic investigation and recording of tornado and waterspout occurrence in Greece for the 10-year period 2000-2009 are presented. This is the first database developed in Greece in an attempt to collect and record comprehensive information about tornadoes, waterspouts, funnel clouds, dust devils and other whirlwind phenomena. The primary research purpose of this database is to search, diagnose and record tornado and waterspout occurrences and identify their morphological and climatological features. Based on the 10-year data, a mean annual number of 1.1 tornadoes per unit area of 10 4 km 2, is depicted for Greece. The seasonality appears differently for various parts, with winter most active tornado season for western Greece and summer for northern Greece. Spatial distribution showed that tornadoes are more frequent over western Greece and the Ionian coasts with a local maximum over northwest Peloponnese. Waterspouts occur in both the Aegean and the Ionian Sea mostly in summer and autumn, with a peak in September, while a considerable geographical maximum is located over north off the shore of Iraklion, Crete Island. A preliminary estimate of probability of tornado occurrence for each of the 51 Greek prefectures plus the Mount Athos area, showed highest values for Kerkyra Island and Elias prefectures, western Greece. Analysis based on intensities as assessed by damage data, indicated that the majority of tornadoes reached T4 of the T-scale or F2 of the F-scale. Short wave trough is found as the most relevant synoptic circulation pattern to tornadic activity. Thermodynamic and wind parameters showed a wide range of values, suggesting that threat levels should be adjusted for various areas since tornadoes and waterspouts can occur in different environments.

  6. Multi-summer Cumulus-Radiation-Aerosol Climatology at SGP site

    NASA Astrophysics Data System (ADS)

    Kassianov, E.; Berg, L. K.; Flynn, C.; Long, C.; Barnard, J.

    2010-12-01

    Compared to other cloud types, shallow cumulus clouds are relatively small in size and have large variations over time/space that are poorly captured by current large-scale models of the atmosphere. Since these small-scale variations are very difficult to monitor and accurately describe, models improvement is hampered, in part, by the lack of appropriate observational constraints, including cloud and aerosol properties, surface parameters and radiative fluxes. To address this issue, a multi-summer (2000-2007) cumulus-radiation-aerosol climatology has been developed for the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Site. In particular, this climatology is applied to illustrate that positive values of shortwave cloud radiative forcing occur frequently and are characterized by fluctuations with a small temporal scale; the duration for the majority of events with positive radiative forcing is less than 5 minutes. In this presentation, the developed climatology will be described and several important applications will be shown.

  7. The three-dimensional structure of cumulus clouds over the ocean. 1: Structural analysis

    NASA Technical Reports Server (NTRS)

    Kuo, Kwo-Sen; Welch, Ronald M.; Weger, Ronald C.; Engelstad, Mark A.; Sengupta, S. K.

    1993-01-01

    Thermal channel (channel 6, 10.4-12.5 micrometers) images of five Landsat thematic mapper cumulus scenes over the ocean are examined. These images are thresholded using the standard International Satellite Cloud Climatology Project (ISCCP) thermal threshold algorithm. The individual clouds in the cloud fields are segmented to obtain their structural statistics which include size distribution, orientation angle, horizontal aspect ratio, and perimeter-to-area (PtA) relationship. The cloud size distributions exhibit a double power law with the smaller clouds having a smaller absolute exponent. The cloud orientation angles, horizontal aspect ratios, and PtA exponents are found in good agreement with earlier studies. A technique also is developed to recognize individual cells within a cloud so that statistics of cloud cellular structure can be obtained. Cell structural statistics are computed for each cloud. Unicellular clouds are generally smaller (less than or equal to 1 km) and have smaller PtA exponents, while multicellular clouds are larger (greater than or equal to 1 km) and have larger PtA exponents. Cell structural statistics are similar to those of the smaller clouds. When each cell is approximated as a quadric surface using a linear least squares fit, most cells have the shape of a hyperboloid of one sheet, but about 15% of the cells are best modeled by a hyperboloid of two sheets. Less than 1% of the clouds are ellipsoidal. The number of cells in a cloud increases slightly faster than linearly with increasing cloud size. The mean nearest neighbor distance between cells in a cloud, however, appears to increase linearly with increasing cloud size and to reach a maximum when the cloud effective diameter is about 10 km; then it decreases with increasing cloud size. Sensitivity studies of threshold and lapse rate show that neither has a significant impact upon the results. A goodness-of-fit ratio is used to provide a quantitative measure of the individual cloud

  8. The three-dimensional structure of cumulus clouds over the ocean: 1. Structural analysis

    NASA Astrophysics Data System (ADS)

    Kuo, Kwo-Sen; Welch, Ronald M.; Weger, Ronald C.; Engelstad, Mark A.; Sengupta, S. K.

    1993-11-01

    Thermal channel (channel 6, 10.4-12.5 μm) images of five Landsat thematic mapper cumulus scenes over the ocean are examined. These images are thresholded using the standard International Satellite Cloud Climatology Project thermal threshold algorithm. The individual clouds in the cloud fields are segmented to obtain their structural statistics which include size distribution, orientation angle, horizontal aspect ratio, and perimeter-to-area (PtA) relationship. It is found that the cloud size distributions exhibit a double power law with the smaller clouds having a smaller absolute exponent. The cloud orientation angles, horizontal aspect ratios, and PtA exponents are found in good agreement with earlier studies. A technique also is developed to recognize individual cells within a cloud so that statistics of cloud cellular structure can be obtained. Cell structural statistics are computed for each cloud. Further examination reveals that unicellular clouds are generally smaller (≤ 1 km) and have smaller PtA exponents, while multicellular clouds are larger (≥ 1 km) and have larger PtA exponents. Cell structural statistics are similar to those of the smaller clouds. Each cell is approximated as a quadric surface using a linear least squares fit. Most cells are found to have the shape of a hyperboloid of one sheet. However, about 15% of the cells are best modeled by a hyperboloid of two sheets. Contrary to intuition, less than 1% of the clouds are found to be ellipsoidal. The number of cells in a cloud is found to increase slightly faster than linearly with increasing cloud size. The mean nearest neighbor distance between cells in a cloud, however, appears to increase linearly with increasing cloud size and to reach a maximum when the cloud effective diameter is about 10 km; then it decreases with increasing cloud size. Sensitivity studies of threshold and lapse rate show that neither has a significant impact upon the results. A goodness-of-fit ratio is used to

  9. Statistical examination of climatological data relevant to global temperature variation

    SciTech Connect

    Gray, H.L.; Gunst, R.F.; Woodward, W.A.

    1992-01-01

    The research group at Southern Methodist University has been involved in the examination of climatological data as specified in the proposal. Our efforts have resulted in three papers which have been submitted to scholarly journals, as well as several other projects which should be completed either during the next six months or next year. In the following, we discuss our results to date along with projected progress within the next six months. Major topics discussed in this progress report include: testing for trend in the global temperature data; (2) defining and estimating mean global temperature change; and, (3) the effect of initial conditions on autoregressive models for global temperature data.

  10. The Magnitude and Variability of Global and Regional Precipitation Based on the 22-Year GPCP (Global Precipitation Climatology Project) and Three-Year TRMM (Tropical Rainfall Measuring Mission) Data Sets

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Curtis, Scott; Huffman, George; Bolvin, David; Nelkin, Eric

    2001-01-01

    This paper gives an overview of the analysis of global precipitation over the last few decades and the impact of the new TRMM precipitation observations. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to study global and regional variations and trends and is compared to the much shorter TRMM (Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. Identifying regional trends in precipitation may be more practical. From 1979 to 1999 the northern mid-latitudes appear to be drying, the southern mid-latitudes have gotten wetter, and there is a mixed signal in the tropics. The relation between this field of trends and the relation to the frequency of El Nino events during this time period is explored. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. These El Nino minus La Nina composites of normalized precipitation show the usual positive, or wet, anomaly over the central and eastern Pacific Ocean with the negative, or dry, anomaly over the maritime continent along with an additional negative anomaly over Brazil and the Atlantic Ocean extending into Africa and a positive anomaly over the Horn of Africa and the western Indian Ocean. A number of the features are shown to extend into high latitudes. Positive anomalies

  11. Variations and Trends in Global and Regional Precipitation Based on the 22-Year GPCP (Global Precipitation Climatology Project) and Three-Year TRMM (Tropical Rainfall Measuring Mission) Data Sets

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Curtis, Scott; Huffman, George; Bolvin, David; Nelkin, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    This paper gives an overview of the analysis of global precipitation over the last few decades and the impact of the new TRMM precipitation observations. The 20+ year, monthly, globally complete precipitation analysis of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP) is used to study global and regional variations and trends and is compared to the much shorter TRMM(Tropical Rainfall Measuring Mission) tropical data set. The GPCP data set shows no significant trend in global precipitation over the twenty years, unlike the positive trend in global surface temperatures over the past century. The global trend analysis must be interpreted carefully, however, because the inhomogeneity of the data set makes detecting a small signal very difficult, especially over this relatively short period. The relation of global (and tropical) total precipitation and ENSO events is quantified with no significant signal when land and ocean are combined. Identifying regional trends in precipitation may be more practical. From 1979 to 2000 the tropics have pattern of regional rainfall trends that has an ENSO-like pattern with features of both the El Nino and La Nina. This feature is related to a possible trend in the frequency of ENSO events (either El Nino or La Nina) over the past 20 years. Monthly anomalies of precipitation are related to ENSO variations with clear signals extending into middle and high latitudes of both hemispheres. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. A number of the features are shown to extend into high latitudes. Positive anomalies extend in the Southern Hemisphere (S.H.) from the Pacific southeastward across Chile and Argentina into the south Atlantic Ocean. In the Northern Hemisphere (N.H.) the counterpart feature extends across the southern U.S. and Atlantic Ocean into Europe

  12. Relating A-Train Water Vapor Observations to Cloud Classes from CloudSat

    NASA Astrophysics Data System (ADS)

    Fetzer, E. J.; Kahn, B. H.; Teixeira, J.; Fishbein, E. F.; Wilson, B. D.; Waliser, D. E.

    2008-12-01

    Three of the standard data sets from the NASA A-Train satellite constellation are CloudSat cloud classes, Atmospheric Infrared Sounder (AIRS) moist thermodynamic observations, and Advanced Microwave Sounding Radiometer for EOS (AMSR-E) total precipitable water vapor. We describe AIRS and AMSR-E water vapor observability, and the associated climatologies, conditional on CloudSat cloud classes. Because cloud classes represent unique physical processes, each scene type can be expected to have distinct temperature and water vapor signatures. Understanding the sampling characteristics of the water vapor observations is critical to interpreting them in the context of changing cloud and water vapor regimes.

  13. Tower Mesonetwork Climatology and Interactive Display Tool

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the 45th Weather Squadron and Spaceflight Meteorology Group use data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria, and issue and verify forecasts for ground operations. Systematic biases in these parameters could adversely affect an analysis, forecast, or verification. Also, substantial geographical variations in temperature and wind speed can occur under specific wind directions. To address these concerns, the Applied Meteorology Unit (AMU) developed a climatology of temperatures and winds from the tower network, and identified the geographical variation and significant tower biases. The mesoclimate is largely driven by the complex land-water interfaces across KSC/CCAFS. Towers with close proximity to water typically had much warmer nocturnal temperatures and higher wind speeds throughout the year. The strongest nocturnal wind speeds occurred from October to March whereas the strongest mean daytime wind speeds occurred from February to May. These results of this project can be viewed by forecasters through an interactive graphical user interface developed by the AMU. The web-based interface includes graphical and map displays of mean, standard deviation, bias, and data availability for any combination of towers, variables, months, hours, and wind directions.

  14. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1993-01-01

    The purpose of this work is to estimate sampling errors of area-time averaged rain rate due to temporal samplings by satellites. In particular, the sampling errors of the proposed low inclination orbit satellite of the Tropical Rainfall Measuring Mission (TRMM) (35 deg inclination and 350 km altitude), one of the sun synchronous polar orbiting satellites of NOAA series (98.89 deg inclination and 833 km altitude), and two simultaneous sun synchronous polar orbiting satellites--assumed to carry a perfect passive microwave sensor for direct rainfall measurements--will be estimated. This estimate is done by performing a study of the satellite orbits and the autocovariance function of the area-averaged rain rate time series. A model based on an exponential fit of the autocovariance function is used for actual calculations. Varying visiting intervals and total coverage of averaging area on each visit by the satellites are taken into account in the model. The data are generated by a General Circulation Model (GCM). The model has a diurnal cycle and parameterized convective processes. A special run of the GCM was made at NASA/GSFC in which the rainfall and precipitable water fields were retained globally for every hour of the run for the whole year.

  15. A Climatology of Central American Gyres

    NASA Astrophysics Data System (ADS)

    Papin, P. P.; Griffin, K. S.; Bosart, L. F.; Torn, R. D.

    2012-12-01

    Monsoon gyres, commonly found over the western Pacific Ocean, are characterized by broad low-level cyclonic circulations that occur at a variety of spatial scales ranging from 1500-3000 km. Low-level cyclonic gyre circulations, while less frequent and occupying a smaller scale, have also been observed over Central America during the tropical cyclone (TC) season. A noteworthy gyre observed during the 2010 PREDICT field project served as a "collector" of TC Matthew and a source for TC Nicole. During October 2011, devastating flooding occurred in Guatemala and El Salvador when TD 12-E, embedded in a gyre circulation, made landfall on the Pacific coast of Central America. These gyre occurrences, their apparent links to TC activity, and their association with high-impact weather motivates this presentation. A preliminary analysis of Central American gyres suggests that their spatial scales vary between 1000-2000 km. These gyres also tend to be co-located with reservoirs of deep moisture that are characterized by high precipitable water values (>50 mm) and embedded deep convection on their southern and eastern sides. Catastrophic flooding can occur when gyre cyclonic circulations interact with the topography of Central America. A Central American gyre climatology including gyre frequency over the TC season and individual gyre duration will be presented. This climatology is then used to craft a gyre composite using previous gyre cases from 1980-2010. Particular attention will be given to the common synoptic and sub-synoptic scale features that precede and take place during gyre formation. This includes the role that intraseasonal and interannual circulations such as the Madden-Julian Oscillation (MJO) and El Nino-Southern Oscillation (ENSO) might play in gyre development. TC genesis events within gyre circulations will also be highlighted and examined further. Finally, the results of a September 2010 case study will be used to illustrate the impact that Central American

  16. Cloud Condensation Nuclei in Fire-3

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The centerpiece of this research was the cloud condensation nuclei (CCN) measurements of the Desert Research Institute (DRI) CCN spectrometers on board the NCAR C-130 aircraft during the Arctic Cloud Experiment (ACE) in May, 1998. These instruments operated successfully throughout all eight 10-hour research flights based in Fairbanks and the two ferry flights between Colorado and Fairbanks. Within a few months of completion of ACE the CCN data was edited and put into the archives. A paper was completed and published on the CCN climatology during the previous two FIRE field projects-FIRE 1 based in San Diego in June and July, 1987 and ASTEX based in the Azores Islands in June, 1992. This showed distinct contrasts in concentrations and spectra between continental and maritime CCN concentrations, which depended on air mass trajectories. Pollution episodes from Europe had distinct influences on particle concentrations at low altitudes especially within the boundary layer. At higher altitudes concentrations were similar in the two air mass regimes. Cloudier atmospheres showed lower concentrations especially below the clouds, which were a result mostly of coalescence scavenging.

  17. Seasonal and Interannual Variations of Top-of-Atmosphere Irradiance and Cloud Cover over Polar Regions Derived from the CERES Data Set

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Loeb, Norman G.; Minnis, Patrick; Francis, Jennifer A.; Charlock, Thomas P.; Rutan, David A.; Clothiaux, Eugene E.; Sun-Mack, Szedung

    2006-01-01

    The semi-direct effects of dust aerosols are analyzed over eastern Asia using 2 years (June 2002 to June 2004) of data from the Clouds and the Earth s Radiant Energy System (CERES) scanning radiometer and MODerate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, and 18 years (1984 to 2001) of International Satellite Cloud Climatology Project (ISCCP) data. The results show that the water path of dust-contaminated clouds is considerably smaller than that of dust-free clouds. The mean ice water path (IWP) and liquid water path (LWP) of dusty clouds are less than their dust-free counterparts by 23.7% and 49.8%, respectively. The long-term statistical relationship derived from ISCCP also confirms that there is significant negative correlation between dust storm index and ISCCP cloud water path. These results suggest that dust aerosols warm clouds, increase the evaporation of cloud droplets and further reduce cloud water path, the so-called semi-direct effect. The semi-direct effect may play a role in cloud development over arid and semi-arid areas of East Asia and contribute to the reduction of precipitation.

  18. Climatological data summary 1993 with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1994-06-01

    This document presents the climatological data summary for calendar year 1993. It presents updated historical climatologies for temperature, wind, precipitation, and other miscellaneous meteorological parameters from the Hanford Meteorology Station (HMS) and Hanford Meteorological Monitoring Network. It also presents climatological normal and extreme values of temperature and precipitation for the HMS. Previous documents have included climatological data collected at the old Hanford Townsite, located approximately 10 miles east-northeast of the present HMS. The records for these two different sites have been frequently interchanged as if representing the same location. With the exception of Section 2.0, the remainder of this document uses data only from the HMS, with a period of record beginning December 7, 1944.

  19. Automated cloud classification with a fuzzy logic expert system

    NASA Technical Reports Server (NTRS)

    Tovinkere, Vasanth; Baum, Bryan A.

    1993-01-01

    An unresolved problem in current cloud retrieval algorithms concerns the analysis of scenes containing overlapping cloud layers. Cloud parameterizations are very important both in global climate models and in studies of the Earth's radiation budget. Most cloud retrieval schemes, such as the bispectral method used by the International Satellite Cloud Climatology Project (ISCCP), have no way of determining whether overlapping cloud layers exist in any group of satellite pixels. One promising method uses fuzzy logic to determine whether mixed cloud and/or surface types exist within a group of pixels, such as cirrus, land, and water, or cirrus and stratus. When two or more class types are present, fuzzy logic uses membership values to assign the group of pixels partially to the different class types. The strength of fuzzy logic lies in its ability to work with patterns that may include more than one class, facilitating greater information extraction from satellite radiometric data. The development of the fuzzy logic rule-based expert system involves training the fuzzy classifier with spectral and textural features calculated from accurately labeled 32x32 regions of Advanced Very High Resolution Radiometer (AVHRR) 1.1-km data. The spectral data consists of AVHRR channels 1 (0.55-0.68 mu m), 2 (0.725-1.1 mu m), 3 (3.55-3.93 mu m), 4 (10.5-11.5 mu m), and 5 (11.5-12.5 mu m), which include visible, near-infrared, and infrared window regions. The textural features are based on the gray level difference vector (GLDV) method. A sophisticated new interactive visual image Classification System (IVICS) is used to label samples chosen from scenes collected during the FIRE IFO II. The training samples are chosen from predefined classes, chosen to be ocean, land, unbroken stratiform, broken stratiform, and cirrus. The November 28, 1991 NOAA overpasses contain complex multilevel cloud situations ideal for training and validating the fuzzy logic expert system.

  20. Spatial and Temporal Variability of Satellite-Derived Cloud and Surface Characteristics During FIRE-ACE

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Key, J.; Fowler, C. W.; Nguyen, T.; Wang, X.a

    2000-01-01

    Advanced very high resolution radiometer (AVHRR) products calculated for the western Arctic for April-July 1998 are used to investigate spatial, temporal, and regional patterns and variability in energy budget parameters associated with ocean- ice-atmosphere interactions over the Arctic Ocean during the Surface Heat Budget of the Arctic Ocean (SHEBA) project and the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). The AVHRR-derived parameters include cloud fraction, clear-sky and all-sky skin temperature and broadband albedo, upwelling and downwelling shortwave and longwave radiation, cloud top pressure and temperature, and cloud optical depth. The remotely sensed products generally agree well with field observations at the SHEBA site, which in turn is shown to be representative of a surrounding region comparable in size to a climate-model grid cell. Time series of products for other locations in the western Arctic illustrate the magnitude of spatial variability during the study period and provide spatial and temporal detail useful for studying regional processes. The data illustrate the progression of reduction in cloud cover, albedo decrease, and the considerable heating of the open ocean associated with the anomalous decrease in sea ice cover in the eastern Beaufort Sea that began in late spring. Above-freezing temperatures are also recorded within the ice pack, suggesting warming of the open water areas within the ice cover.

  1. Estimation of cirrus cloud particle fallspeeds from vertically pointing Doppler radar

    NASA Technical Reports Server (NTRS)

    Orr, Brad W.; Kropfli, Robert A.

    1993-01-01

    The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment 2 (FIRE 2) was conducted in Coffeyville, Kansas in late 1991 to study the microphysical and radiative properties of cirrus clouds. A variety of active and passive remote sensors were employed, including an 8-mm-wavelength cloud-sensing Doppler radar developed at the Wave Propagation Laboratory (WPL). The radar, having excellent sensitivity to cloud particles (-30 dBZ at 10 km), good spatial resolution (37 m), and velocity precision (.05 ms -1), is an excellent tool for observing cirrus clouds. Having this radar directed toward the zenith for long periods of time during FIRE 2 permitted the reflectivity-weighted particle fallspeed to be related to reflectivity which allowed a separation of ice particle fallspeeds from vertical air motions. Additionally, such relationships proved useful in other multi-sensor techniques for determining vertical profiles of ice particle characteristic size and ice water content in cirrus clouds. The analysis method and the results of applying it to cirrus cloud reflectivity and velocity data collected during FIRE 2 are discussed.

  2. A climatological link between slantwise instability and surface weather conditions

    NASA Astrophysics Data System (ADS)

    Glinton, M. R.; Gray, S. L.; Chagnon, J. M.; Morcrette, C. J.

    2012-04-01

    Midlatitude weather phenomena including rainbands in fronts and cloud heads and the descending sting jets found in extreme windstorms have been attributed, in part, to the release of conditional symmetric instability (CSI). CSI is a slantwise parcel instability arising from the combination of inertial and gravitational instability in a baroclinic atmosphere; its release gives slantwise convection. However, to date, demonstration of the link between CSI and severe weather has been confined to a few case studies. Weather forecast models with domains big enough to encompass entire midlatitude storms do not have sufficient resolution to realistically resolve the release of CSI, and CSI release is not parameterized in these models. The consequences of this lack of representation of CSI release are currently unknown and motivate this study. We present a North Atlantic climatology of the energy available for slantwise convection due to CSI derived from the ERA-Interim re-analysis, and compare it with an equivalent climatology of CAPE (the energy available for upright convection due to conditional instability). The annual cycle of land and sea surface temperatures are shown to strongly modulate these instabilities. The statistical relationship between these instabilities and surface weather conditions are presented.

  3. Biomes computed from simulated climatologies

    NASA Astrophysics Data System (ADS)

    Claussen, Martin; Esch, Monika

    1994-01-01

    The biome model of Prentice et al. (1992a) is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fur Meteorologie. This study is undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to failures in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are seen for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced C02 concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting changes in vegetation patterns due to a rapid climate change, the latter simulation has to be taken as a prediction of changes in conditions favourable for the existence of certain biomes, not as a prediction of a future distribution of biomes.[/ab

  4. Biomes computed from simulated climatologies

    SciTech Connect

    Claussen, M.; Esch, M.

    1994-01-01

    The biome model of Prentice et al. is used to predict global patterns of potential natural plant formations, or biomes, from climatologies simulated by ECHAM, a model used for climate simulations at the Max-Planck-Institut fuer Meteorologie. This study undertaken in order to show the advantage of this biome model in diagnosing the performance of a climate model and assessing effects of past and future climate changes predicted by a climate model. Good overall agreement is found between global patterns of biomes computed from observed and simulated data of present climate. But there are also major discrepancies indicated by a difference in biomes in Australia, in the Kalahari Desert, and in the Middle West of North America. These discrepancies can be traced back to in simulated rainfall as well as summer or winter temperatures. Global patterns of biomes computed from an ice age simulation reveal that North America, Europe, and Siberia should have been covered largely by tundra and taiga, whereas only small differences are for the tropical rain forests. A potential northeast shift of biomes is expected from a simulation with enhanced CO{sub 2} concentration according to the IPCC Scenario A. Little change is seen in the tropical rain forest and the Sahara. Since the biome model used is not capable of predicting chances in vegetation patterns due to a rapid climate change, the latter simulation to be taken as a prediction of chances in conditions favourable for the existence of certain biomes, not as a reduction of a future distribution of biomes. 15 refs., 8 figs., 2 tabs.

  5. Cloud Radiative Effect in dependence on Cloud Type

    NASA Astrophysics Data System (ADS)

    Aebi, Christine; Gröbner, Julian; Kämpfer, Niklaus; Vuilleumier, Laurent

    2015-04-01

    Radiative transfer of energy in the atmosphere and the influence of clouds on the radiation budget remain the greatest sources of uncertainty in the simulation of climate change. Small changes in cloudiness and radiation can have large impacts on the Earth's climate. In order to assess the opposing effects of clouds on the radiation budget and the corresponding changes, frequent and more precise radiation and cloud observations are necessary. The role of clouds on the surface radiation budget is studied in order to quantify the longwave, shortwave and the total cloud radiative forcing in dependence on the atmospheric composition and cloud type. The study is performed for three different sites in Switzerland at three different altitude levels: Payerne (490 m asl), Davos (1'560 m asl) and Jungfraujoch (3'580 m asl). On the basis of data of visible all-sky camera systems at the three aforementioned stations in Switzerland, up to six different cloud types are distinguished (Cirrus-Cirrostratus, Cirrocumulus-Altocumulus, Stratus-Altostratus, Cumulus, Stratocumulus and Cumulonimbus-Nimbostratus). These cloud types are classified with a modified algorithm of Heinle et al. (2010). This cloud type classifying algorithm is based on a set of statistical features describing the color (spectral features) and the texture of an image (textural features) (Wacker et al. (2015)). The calculation of the fractional cloud cover information is based on spectral information of the all-sky camera data. The radiation data are taken from measurements with pyranometers and pyrgeometers at the different stations. A climatology of a whole year of the shortwave, longwave and total cloud radiative effect and its sensitivity to integrated water vapor, cloud cover and cloud type will be calculated for the three above-mentioned stations in Switzerland. For the calculation of the shortwave and longwave cloud radiative effect the corresponding cloud-free reference models developed at PMOD/WRC will be

  6. The SunCloud project: worldwide compilation of long-term series of sunshine duration and cloudiness observations

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Pallé, Enric; Wild, Martin; Calbó, Josep; Brunetti, Michelle; Stanhill, Gerald; Brázdil, Rudolf; Barriendos, Mariano; Pereira, Paulo; Azorin-Molina, César

    2010-05-01

    One problem encountered when establishing the causes of global dimming and brightening is the limited number of long-term solar radiation series with accurate and calibrated measurements. For this reason, the analysis is often supported and extended with the use of other climatic variables such as diurnal temperature range, cloud cover, evaporation, visibility, or sunshine duration records. Moreover, it is of vital importance to study the reliability of the 'early brightening' identified by different studies during the first half of the 20th century, which cannot be detected by using the current downward solar radiation dataset. Therefore proxy variables are required again. Specifically, sunshine duration is defined as the amount of time usually expressed in hours that direct solar radiation exceeds a certain threshold (usually taken at 120 W m-2). Consequently, this variable can be considered as an excellent proxy measure of global and direct solar radiation at interannual and decadal time scales, with the advantage that measurements of this variable were initiated in the late 19th century in different main meteorological stations. Nevertheless, detailed and up-to-date analysis of sunshine duration behavior on global or hemispheric scales are still missing. Thus, in the framework of different research projects we will engage a worldwide compilation of the longest daily or monthly sunshine duration series from the late 19th century until present, using data freely available on the Internet or by means of direct contacts with meteorological institutions/individual researchers with access to long-term sunshine databases. We also plan to digitize long-term sunshine duration series when these become available only in analog format. Several quality control checks and homogenization methods will be applied to the generated sunshine dataset. The relationship between the more precise downward solar radiation series from the Global Energy Balance Archive (GEBA) and the

  7. Separation of cirrus cloud from clear surface from AVIRIS data using the 1.38 micron water vapor band

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.

    1992-01-01

    Cirrus clouds play an important role in climate systems because of their large area coverage, persistence, and radiative effects. Thin cirrus clouds are difficult to detect in visible images and infrared images in the 10-12 micron atmospheric window region, particularly over land, because these clouds are partially transparent. Ackerman recently developed a method for detecting cirrus clouds using three narrow channels centered near 8, 11, and 12 microns, respectively, based on the analysis of IR emission spectra measured with a high spectral resolution interferometer. Barton also described a method for estimating cirrus cloud height and amount from measurements with two narrow channel radiometers of the Selective Chopper Radiometer on Nimbus 5. Both channels are located within the strong 2.7 micron water vapor band absorption region. One of the channels includes additional carbon dioxide absorption. A differential absorption technique with sets of empirical coefficients was used in the estimation of cirrus cloud heights and amounts. A technique using narrow channels in the strong 1.38 micron water vapor band absorption region for detecting cirrus clouds from spectral imaging data acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) on 5 Dec. 1991 during the FIRE (The First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment) Phase 2 Field Experiment is described.

  8. FINAL REPORT FOR THE DOE/ARM PROJECT TITLED Representation of the Microphysical and Radiative Properties of Ice Clouds in SCMs and GCMs

    SciTech Connect

    Mitchell, David L.

    2005-08-08

    The broad goal of this research is to improve climate prediction through better representation of cirrus cloud microphysical and radiative properties in global climate models (GCMs). Clouds still represent the greatest source of uncertainty in climate prediction, and the representation of ice clouds is considerably more challenging than liquid water clouds. While about 40% of cloud condensate may be in the form of ice by some estimates, there have been no credible means of representing the ice particle size distribution and mass removal rates from ice clouds in GCMs. Both factors introduce large uncertainties regarding the global net flux, the latter factor alone producing a change of 10 W/m2 in the global net flux due to plausible changes in effective ice particle fallspeed. In addition, the radiative properties of ice crystals themselves are in question. This research provides GCMs with a credible means of representing the full (bimodal) ice particle size distribution (PSD) in ice clouds, including estimates of the small crystal (D < 65 microns) mode of the PSD. It also provides realistic estimates of mass sedimentation rates from ice clouds, which have a strong impact on their ice contents and radiative properties. This can be done through proper analysis of ice cloud microphysical data from ARM and other field campaigns. In addition, this research tests the ice cloud radiation treatment developed under two previous ARM projects by comparing it against laboratory measurements of ice cloud extinction efficiency and by comparing it with explicit theoretical calculations of ice crystal optical properties. The outcome of this project includes two PSD schemes for ice clouds; one appropriate for mid-latitude cirrus clouds and another for tropical anvil cirrus. Cloud temperature and ice water content (IWC) are the inputs for these PSD schemes, which are based on numerous PSD observations. The temperature dependence of the small crystal mode of the PSD for tropical

  9. Electron Cloud Effects in the KEK-PS and the KEK/JAERI Joint Project

    NASA Astrophysics Data System (ADS)

    Toyama, T.; Irie, Y.; Kato, S.; Ohmi, K.; Ohmori, C.; Satoh, K.; Uota, M.; Hayashi, N.

    2002-12-01

    An e-p instability is potentially a serious problem for proton rings in JKJ, which forces us to study the e-p instability in several high-intensity proton rings. This work informs JKJ whether we have to take measures to cure the instability. A TiN coating on the chamber surface is one of remedies. Results of SEY measurements performed at KEK are discussed. The observation of electron cloud candidates at the KEK 12 GeV PS Main Ring is also presented.

  10. A global satellite-assisted precipitation climatology

    NASA Astrophysics Data System (ADS)

    Funk, C.; Verdin, A.; Michaelsen, J.; Peterson, P.; Pedreros, D.; Husak, G.

    2015-10-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high-resolution (0.05°) global precipitation climatologies that perform reasonably well in data-sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  11. A global satellite assisted precipitation climatology

    USGS Publications Warehouse

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  12. Mars Geoscience Climatology Orbiter (MGCO) extended study: Technical volume

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The FLTSATCOM Earth orbiting communications satellite is a prominent candidate to serve as the Mars Geoscience Climatology Orbiter (MGCO) spacecraft. Major aspects directly applicable are: (1) the incorporation of solid orbit insertion motor; (2) the ability to cruise to Mars in the spin-stabilized mode; (3) ample capability for payload mass and power; (4) attitude control tried to nadir and orbit plane coordinates; (5) exemplary Earth orbital performance record and projected lifetime; and (6) existence of an on-going procurement into the MGCO time period.

  13. Representing twentieth-century space-time climate variability. Part 1: Development of a 1961--90 mean monthly terrestrial climatology

    SciTech Connect

    New, M.; Hulme, M.; Jones, P.

    1999-03-01

    The construction of a 0.5{degree} lat x 0.5 {degree} long surface climatology of global land areas, excluding Antarctica, is described. The climatology represents the period 1961--90 and comprises a suite of nine variables: precipitation, wet-day frequency, mean temperature, diurnal temperature range, vapor pressure, sunshine, cloud cover, ground frost frequency, and wind speed. The climate surfaces have been constructed from a new dataset of station 1961--90 climatological normals, numbering between 19,800 (precipitation) and 3,615 (wind speed). The station data were interpolated as a function of latitude, longitude, and elevation using thin-plate splines. The accuracy of the interpolations are assessed using cross validation and by comparison with other climatologies. This new climatology represents an advance over earlier published global terrestrial climatologies in that it is strictly constrained to the period 1961--90, describes an extended suite of surface climate variables, explicitly incorporates elevation as a predictor variable, and contains an evaluation of regional errors associated with this and other commonly used climatologies. The climatology is already being used by researchers in the areas of ecosystem modelling, climate model evaluation, and climate change impact assessment. The data are available from the Climatic Research Unit and images of all the monthly fields can be accessed via the World Wide Web.

  14. SPARC Intercomparison of Middle Atmosphere Climatologies

    NASA Technical Reports Server (NTRS)

    Randel, William; Fleming, Eric; Geller, Marvin; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2002-01-01

    This atlas presents detailed incomparisons of several climatological wind and temperature data sets which cover the middle atmosphere (over altitudes approx. 10-80 km). A number of middle atmosphere climatologies have been developed in the research community based on a variety of meteorological analyses and satellite data sets. Here we present comparisons between these climatological data sets for a number of basic circulation statistics, such as zonal mean temperature, winds and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. We also include comparisons between the global climatologies and historical rocketsonde wind and temperature measurements, and also with more recent lidar temperature data. These comparisons highlight differences and uncertainties in contemporary middle atmosphere data sets, and allow biases in particular analyses to be isolated. In addition, a brief atlas of zonal mean temperature and wind statistics is provided to highlight data availability and as a quick-look reference. This technical report is intended as a companion to the climatological data sets held in archive at the SPARC Data Center (http://www.sparc.sunysb.edu).

  15. Linkages between Southern Ocean Cloud-Radiative Processes and the Large-Scale Southern Hemisphere Circulation, and Their Implications for Climate Model Projections

    NASA Astrophysics Data System (ADS)

    Grise, K. M.; Polvani, L. M.

    2014-12-01

    Southern Ocean cloud cover is strongly linked to extratropical weather systems, and thus to the position of the Southern Hemisphere (SH) storm track and the mid-latitude eddy-driven jet stream. Consequently, if the jet moves poleward (either as a result of natural variability or anthropogenic forcing), a notable change in cloud-radiative processes might be expected. In this study, we examine the cloud-radiative anomalies associated with interannual variability in the latitude of the SH mid-latitude eddy-driven jet, using two satellite data sets (ISCCP-FD and CERES) and 20 global climate models from Phase 5 of the Coupled Model Intercomparison Project (CMIP5). Two distinct model types are found. In the first class of models ("type I models"), the total cloud fraction is reduced at SH mid-latitudes as the jet moves poleward, contributing to enhanced shortwave radiative warming. In the second class of models ("type II models"), this dynamically-induced cloud-radiative warming effect is largely absent. Type I and type II models have distinct deficiencies in their representation of observed Southern Ocean clouds, but comparison with the two satellite data sets indicates that the cloud-dynamics behavior of type II models is more realistic. Because the SH mid-latitude jet shifts poleward in response to CO2 forcing, the cloud-dynamics biases uncovered from interannual variability are directly relevant for climate change projections. In CMIP5 model experiments with abruptly quadrupled atmospheric CO2 concentrations, the global-mean surface temperature initially warms more in type I models, even though their equilibrium climate sensitivity is not significantly larger. In type I models, this larger initial warming is linked to the rapid adjustment of the circulation and clouds to CO2 forcing in the SH, where a nearly instantaneous poleward shift of the mid-latitude jet is accompanied by a reduction in the reflection of solar radiation by clouds. In type II models, the SH jet

  16. Using DOE-ARM and Space-Based Assets to Assess the Quality of Air Force Weather 3D Cloud Analysis and Forecast Products

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2015-12-01

    Air Force Weather (AFW) has documented requirements for global cloud analysis and forecasting to support DoD missions around the world. To meet these needs, AFW utilizes a number of cloud products. Cloud analyses are constructed using 17 different near real time satellite sources. Products include analysis of the individual satellite transmissions at native satellite resolution and an hourly global merge of all 17 sources on a 24km grid. AFW has also recently started creation of a time delayed global cloud reanalysis to produce a 'best possible' analysis for climatology and verification purposes. Forecasted cloud products include global short-range cloud forecasts created using advection techniques as well as statistically post processed cloud forecast products derived from various global and regional numerical weather forecast models. All of these cloud products cover different spatial and temporal resolutions and are produced on a number of different grid projections. The longer term vision of AFW is to consolidate these various approaches into uniform global numerical weather modeling (NWM) system using advanced cloudy-data assimilation processes to construct the analysis and a licensed version of UKMO's Unified Model to produce the various cloud forecast products. In preparation for this evolution in cloud modeling support, AFW has started to aggressively benchmark the performance of their current capabilities. Cloud information collected from so called 'active' sensors on the ground at the DOE-ARM sites and from space by such instruments as CloudSat, CALIPSO and CATS are being utilized to characterize the performance of AFW products derived largely by passive means. The goal is to understand the performance of the 3D cloud analysis and forecast products of today to help shape the requirements and standards for the future NWM driven system.This presentation will present selected results from these benchmarking efforts and highlight insights and observations

  17. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. [An automatic extraction algorithm for individual tree crown projection area and volume based on 3D point cloud data].

    PubMed

    Xu, Wei-Heng; Feng, Zhong-Ke; Su, Zhi-Fang; Xu, Hui; Jiao, You-Quan; Deng, Ou

    2014-02-01

    fixed angles to estimate crown projections, and (2) different regular volume formula to simulate crown volume according to the tree crown shapes. Based on the high-resolution 3D LIDAR point cloud data of individual tree, tree crown structure was reconstructed at a high rate of speed with high accuracy, and crown projection and volume of individual tree were extracted by this automatical untouched method, which can provide a reference for tree crown structure studies and be worth to popularize in the field of precision forestry.

  19. Plane-parallel biases computed from inhomogeneous Arctic clouds and sea ice

    NASA Astrophysics Data System (ADS)

    Rozwadowska, Anna; Cahalan, Robert F.

    2002-10-01

    Monte Carlo simulations of the expected influence of nonuniformity in cloud structure and surface albedo on shortwave radiative fluxes in the Arctic atmosphere are presented. In particular, plane-parallel biases in cloud albedo and transmittance are studied for nonabsorbing, low-level, all-liquid stratus clouds over sea ice. The "absolute bias" is defined as the difference between the cloud albedo or transmittance for the uniform or plane-parallel case, and the albedo or transmittance for nonuniform conditions with the same mean cloud optical thickness and the same mean surface albedo, averaged over a given area (i.e., bias > 0 means plane-parallel overestimates). Ranges of means and standard deviations of input parameters typical of Arctic conditions are determined from the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment Artic Cloud Experiment (FIRE/ACE)/Surface Heat Budget of the Arctic Ocean (SHEBA)/Atmospheric Radiation Measurement Program (ARM) experiment, a cooperative effort of the Department of Energy, NASA, NSF, the National Oceanic and Atmospheric Administration, the Office of Naval Research, and the Atmospheric Environment Service. We determine the sensitivity of the bias with respect to the following: domain averaged means and spatial variances of cloud optical thickness and surface albedo, shape of the surface reflectance function, presence of a scattering layer under the clouds, and solar zenith angle. The simulations show that the biases in Arctic conditions are generally lower than in subtropical stratocumulus. The magnitudes of the absolute biases are unlikely to exceed 0.02 for albedo and 0.05 for transmittance. The "relative bias" expresses the absolute bias as a percentage of the actual cloud albedo or transmittance. The magnitude of the relative bias in albedo is typically below 2% over the reflective Arctic surface, while the magnitude of the relative bias in transmittance can exceed 10%.

  20. Comparative Climatology of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    to a future volume. Our authors have taken on the task to look at climate on the terrestrial planets in the broadest sense possible — by comparing the atmospheric processes at work on the four terrestrial bodies, Earth, Venus, Mars, and Titan (Titan is included because it hosts many of the common processes), and on terrestrial planets around other stars. These processes include the interactions of shortwave and thermal radiation with the atmosphere, condensation and vaporization of volatiles, atmospheric dynamics, chemistry and aerosol formation, and the role of the surface and interior in the long-term evolution of climate. Chapters herein compare the scientific questions, analysis methods, numerical models, and spacecraft remote sensing experiments of Earth and the other terrestrial planets, emphasizing the underlying commonality of physical processes. We look to the future by identifying objectives for ongoing research and new missions. Through these pages we challenge practicing planetary scientists, and most importantly new students of any age, to find pathways and synergies for advancing the field. In Part I, Foundations, we introduce the fundamental physics of climate on terrestrial planets. Starting with the best studied planet by far, Earth, the first chapters discuss what is known and what is not known about the atmospheres and climates of the terrestrial planets of the solar system and beyond. In Part II, Greenhouse Effect and Atmospheric Dynamics, we focus on the processes that govern atmospheric motion and the role that general circulation models play in our current understanding. In Part III, Clouds and Hazes, we provide an in-depth look at the many effects of clouds and aerosols on planetary climate. Although this is a vigorous area of research in the Earth sciences, and very strongly influences climate modeling, the important role that aerosols and clouds play in the climate of all planets is not yet well constrained. This section is intended to

  1. A synoptic climatological analysis of air quality in the Grand Canyon National Park

    NASA Astrophysics Data System (ADS)

    Davis, Robert E.; Gay, David A.

    Daily air quality variations within the Grand Canyon National Park, AZ are related to a regional synoptic climatology. The climatology is developed using upper air data from 21 stations throughout the western U.S.A. and Mexico from 1979 to 1988. Thirteen synoptic situations are identified which represent days with distinct and recurring meteorological conditions throughout the region. Daily particulate concentrations and scattering coefficient readings from Hopi Point, on the south rim of the Grand Canyon, are related to the daily synoptic climatology. Three synoptic situations are associated with poor air quality. Summer monsoon days have poor air quality because of high humidity and cloud cover. On continental high days, a slow-moving anticyclone is located near the Great Basin and local pollutants are trapped within the boundary layer in this poorly ventilated air mass. The situation with the worst air quality—Rockies Ridge—has strong southwesterly winds throughout the troposphere, suggesting that regional haze is advected from southern California into the Grand Canyon area. Good air quality occurs (1) during zonal flow situations when the jet stream is strong; (2) when cold, dry air masses are present; (3) during dry and generally clear days in the summer. This research demonstrates the utility of analysing air quality problems from a synoptic climatological framework.

  2. An analysis of high cloud variability: imprints from the El Niño-Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Li, King-Fai; Su, Hui; Mak, Sze-Ning; Chang, Tiffany M.; Jiang, Jonathan H.; Norris, Joel R.; Yung, Yuk L.

    2016-03-01

    Using data from the International Satellite Cloud Climatology Project (ISCCP), we examine how near-global (60°N-60°S) high cloud fraction varies over time in the past three decades. Our focus is on identifying dominant modes of variability and associated spatial patterns, and how they are related to sea surface temperature. By performing the principal component analysis, we find that the first two principal modes of high cloud distribution show strong imprints of the two types of El Niño-Southern Oscillation (ENSO)—the canonical ENSO and the ENSO Modoki. Comparisons between ISCCP data and 14 models from the Atmospheric Model Intercomparison Project Phase 5 (AMIP5) show that models simulate the spatial pattern and the temporal variations of high cloud fraction associated with the canonical ENSO very well but the magnitudes of the canonical ENSO vary among the models. Furthermore, the multi-model mean of the second principal mode in the AMIP5 simulations appears to capture the temporal behavior of the second mode but individual AMIP5 models show large discrepancies in capturing observed temporal variations. A new metric, defined by the relative variances of the first two principal components, suggests that most of the AMIP5 models overestimate the second principal mode of high clouds.

  3. Dependence of cloud properties derived from spectrally resolved visible satellite observations on surface temperature

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Grzegorski, M.; Platt, U.

    2008-05-01

    Cloud climate feedback constitutes the most important uncertainty in climate modelling, and currently even its sign is still unknown. In the recently published report of the intergovernmental panel on climate change (IPCC), 6 out of 20 climate models showed a positive and 14 a negative cloud radiative feedback in a doubled CO2 scenario. The radiative budget of clouds has also been investigated by experimental methods, especially by studying the relation of satellite observed broad band shortwave and longwave radiation to sea surface temperature. Here we present a new method for the investigation of the dependence of cloud properties on temperature changes, derived from spectrally resolved satellite observations in the visible spectral range. Our study differs from previous investigations in three important ways: first, we directly extract cloud properties (effective cloud fraction and effective cloud top height) and relate them to surface temperature. Second, we retrieve the cloud altitude from the atmospheric O2 absorption instead from thermal IR radiation. Third, our correlation analysis is performed using 7.5 years of global monthly anomalies (with respect to the average of the same month for all years). For most parts of the globe (except the tropics) we find a negative correlation of effective cloud fraction versus surface-near temperature. In contrast, for the effective cloud top height a positive correlation is found for almost the whole globe. Both findings might serve as an indicator for an overall positive cloud radiative feedback. Another peculiarity of our study is that the cloud-temperature relationships are determined for fixed locations (instead to spatial variations over selected areas) and are based on the "natural" variability over several years (instead the anomaly for a strong El-Nino event). From a detailed comparison to cloud properties from the International Satellite Cloud Climatology Project (ISCCP), in general good agreement is found

  4. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  5. Snow and Ice Climatology of the Western United States and Alaska from MODIS

    NASA Astrophysics Data System (ADS)

    Rittger, K. E.; Painter, T. H.; Mattmann, C. A.; Seidel, F. C.; Burgess, A.; Brodzik, M.

    2013-12-01

    The climate and hydroclimate of the Western US and Alaska are tightly coupled to their snow and ice cover. The Western US depends on mountain snowmelt for the majority of its water supply to agriculture, industrial and urban use, hydroelectric generation, and recreation, all driven by increasing population and demand. Alaskan snow and glacier cover modulate regional climate and, as with the Western US, dominate water supply and hydroelectric generation in much of the state. Projections of climate change in the Western US and Alaska suggest that the most pronounced impacts will include reductions of mountain snow and ice cover, earlier runoff, and a greater fraction of rain instead of snow. We establish a snow and ice climatology of the Western US and Alaska using physically based MODIS Snow Covered Area and Grain size model (MODSCAG) for fractional snow cover, the MODIS Dust Radiative Forcing in Snow model (MODDRFS) for radiative forcing by light absorbing impurities in snow, and the MODIS Permanent Ice model (MODICE) for annual minimum exposed snow. MODSCAG and MODDRFS use EOS MOD09GA historical reflectance data (2000-2012) to provide daily and 8-day composites and near real time products since the beginning of 2013, themselves ultimately composited to 8-day products. The compositing method considers sensor-viewing geometry, solar illumination, clouds, cloud shadows, aerosols and noisy detectors in order to select the best pixel for an 8-day period. The MODICE annual minimum exposed snow and ice product uses the daily time series of fractional snow and ice from MODSCAG to generate annual maps. With this project we have established an ongoing, national-scale, consistent and replicable approach to assessing current and projected climate impacts and climate-related risk in the context of other stressors. We analyze the products in the Northwest, Southwest, and Alaska/Arctic regions of the National Climate Assessment for the last decade, the nation's hottest on record

  6. The SunCloud project: An initiative for a development of a worldwide sunshine duration and cloudiness observations dataset

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, A.

    2010-09-01

    One problem encountered when establishing the causes of global dimming and brightening is the limited number of long-term solar radiation series with accurate and calibrated measurements. For this reason, the analysis is often supported and extended with the use of other climatic variables such as sunshine duration and cloud cover. Specifically, sunshine duration is defined as the amount of time usually expressed in hours that direct solar radiation exceeds a certain threshold (usually taken at 120 W m-2). Consequently, this variable can be considered as an excellent proxy measure of solar radiation at interannual and decadal time scales, with the advantage that measurements of this variable were initiated in the late 19th century in different, worldwide, main meteorological stations. Nevertheless, detailed and up-to-date analysis of sunshine duration behavior on global or hemispheric scales are still missing. Thus, starting on September 2010 in the framework of different research projects, we will engage a worldwide compilation of the longest daily or monthly sunshine duration series from the late 19th century until present. Several quality control checks and homogenization methods will be applied to the generated sunshine dataset. The relationship between the more precise downward solar radiation series from the Global Energy Balance Archive (GEBA) and the homogenized sunshine series will be studied in order to reconstruct global and regional solar irradiance at the Earth's surface since the late 19th century. Since clouds are the main cause of interannual and decadal variability of radiation reaching the Earth's surface, as a complement to the long-term sunshine series we will also compile worldwide surface cloudiness observations. With this presentation we seek to encourage the climate community to contribute with their own local datasets to the SunCloud project. The SunCloud Team: M. Wild, Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland

  7. A time variable model of Earth's albedo. [for climatology studies and interpretation of satellite data

    NASA Technical Reports Server (NTRS)

    Bartman, F. L.

    1980-01-01

    A time variable model of Earth's albedo was prepared for use in climate studies and as an aid to the interpretation of satellite Earth radiation budget data. The features of the model include: a 10 deg latitude 10 deg longitude grid for numerical integration, surface albedo specified at 1 month intervals, calculation of zenith angle effect for surface albedo and of the additional effect of the atmosphere on the albedo. Percent cloud cover is specified for 29 different climatological cloud type regions at 8 times of the day for 12 months of the year. Cloud albedos were specified for each of the cloud climatological types. Diurnal and monthly variations of this model are described and results are compared with a model which is based on satellite measurements. A computer program was also written for use in studying the sampling effects in satellite radiation budget measurements. An example of the results of calculations with this program are compared with a previous study of the sampling effects. This program for satellite orbit characteristics is to be combined with the time-variable albedo model for further study of the sampling problem.

  8. Exploiting Open Environmental Data using Linked Data and Cloud Computing: the MELODIES project

    NASA Astrophysics Data System (ADS)

    Blower, Jon; Gonçalves, Pedro; Caumont, Hervé; Koubarakis, Manolis; Perkins, Bethan

    2015-04-01

    The European Open Data Strategy establishes important new principles that ensure that European public sector data will be released at no cost (or marginal cost), in machine-readable, commonly-understood formats, and with liberal licences enabling wide reuse. These data encompass both scientific data about the environment (from Earth Observation and other fields) and other public sector information, including diverse topics such as demographics, health and crime. Many open geospatial datasets (e.g. land use) are already available through the INSPIRE directive and made available through infrastructures such as the Global Earth Observation System of Systems (GEOSS). The intention of the Open Data Strategy is to stimulate the growth of research and value-adding services that build upon these data streams; however, the potential value inherent in open data, and the benefits that can be gained by combining previously-disparate sources of information are only just starting to become understood. The MELODIES project (Maximising the Exploitation of Linked Open Data In Enterprise and Science) is developing eight innovative and sustainable services, based upon Open Data, for users in research, government, industry and the general public in a broad range of societal and environmental benefit areas. MELODIES (http://melodiesproject.eu) is a European FP7 project that is coordinated by the University of Reading and has sixteen partners (including nine SMEs) from eight European countries. It started in November 2013 and will run for three years. The project is therefore in its early stages and therefore we will value the opportunity that this workshop affords to present our plans and interact with the wider Linked Geospatial Data community. The project is developing eight new services[1] covering a range of domains including agriculture, urban ecosystems, land use management, marine information, desertification, crisis management and hydrology. These services will combine Earth

  9. Hanford Site Climatological Data Summary 1999 with Historical Data

    SciTech Connect

    Hoitink, Dana J.; Burk, Kenneth W.; Ramsdell, James V.

    2000-05-11

    This document presents the climatological data measured at the Hanford Site for claendar year 1999. The information contained includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitaion and other meteorological parameters.

  10. Improved Spatial Distribution and Trends of Clouds Observed with the Atmospheric Infrared Sounder

    NASA Astrophysics Data System (ADS)

    Hearty, T. J.; Susskind, J.; Blaisdell, J.; Kahn, B.; Fishbein, E.; Oliphant, R.

    2008-12-01

    Clouds are an important component of the Earth's radiation budget. Depending on their height and type they can either cool or warm the Earth's surface and atmosphere. Therefore it is important to have an accurate determination of cloud properties and where they are located to understand how Earth's climate is changing. The CO2 climatology used in the AIRS Version 5 retrieval algorithm assumes the CO2 abundance increases linearly with time but it neglects seasonal and spatial variations. Although a simple linearly varying CO2 climatology can remove spurious year-to-year trends it can cause spurious seasonal and spatial variations. We show that an improved CO2 climatology improves the retrieved AIRS cloud height and fraction. We also estimate the uncertainty in the AIRS Version 5 cloud parameters due to the simple CO2 climatology.

  11. Ice clouds over Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Kayetha, Vinay Kumar

    properties of the clouds are derived from the lidar data, which serves as a climatological representation for the visually identified cirrus and mid-level ice clouds over a typical sub-Arctic location. Synoptic-scale weather patterns conducive for such cloud type formations are derived using a clustering technique applied to a re-analysis dataset. The cloud properties derived from ground-based lidar over AFARS are used to assess the cloud observations from the CALIPSO satellite.

  12. The Savannah River Technology Center Research and Development Climatology Center

    SciTech Connect

    Kurzeja, R.J.

    1995-12-31

    The Environmental Technology Section (ETS) of the Savannah River Technology Center (SRTC) built and has operated the Climatology Site (CS) for almost 10 years. The Climatology Site provides a wide variety of meteorological support functions for Savannah River Site (SRS) operations and research. This document describes the Climatology Site facility to familiarize present and potential users with its capabilities.

  13. Cloud Inhomogeneity from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Cahalan, Robert F.

    2004-01-01

    Two full months (July 2003 and January 2004) of MODIS Atmosphere Level-3 data from the Terra and Aqua satellites are analyzed in order to characterize the horizontal variability of cloud optical thickness and water path at global scales. Various options to derive cloud variability parameters are discussed. The climatology of cloud inhomogeneity is built by first calculating daily parameter values at spatial scales of l degree x 1 degree, and then at zonal and global scales, followed by averaging over monthly time scales. Geographical, diurnal, and seasonal changes of inhomogeneity parameters are examined separately for the two cloud phases, and separately over land and ocean. We find that cloud inhomogeneity is weaker in summer than in winter, weaker over land than ocean for liquid clouds, weaker for local morning than local afternoon, about the same for liquid and ice clouds on a global scale, but with wider probability distribution functions (PDFs) and larger latitudinal variations for ice, and relatively insensitive to whether water path or optical thickness products are used. Typical mean values at hemispheric and global scales of the inhomogeneity parameter nu (roughly the mean over the standard deviation of water path or optical thickness), range from approximately 2.5 to 3, while for the inhomogeneity parameter chi (the ratio of the logarithmic to linear mean) from approximately 0.7 to 0.8. Values of chi for zonal averages can occasionally fall below 0.6 and for individual gridpoints below 0.5. Our results demonstrate that MODIS is capable of revealing significant fluctuations in cloud horizontal inhomogenity and stress the need to model their global radiative effect in future studies.

  14. The Roles of El Nino and Solar Forcing on Cloud Cover

    NASA Astrophysics Data System (ADS)

    Rohde, R. A.; Levine, J.; Muller, R. A.

    2003-12-01

    Although cloud cover has a very strong effect on climate, its behavior is so poorly understood that its role is frequently neglected. A potential breakthrough occurred with initial reports that cloud cover could be driven by variations in cosmic rays (H. Svensmark & E. Friis-Christensen, J. Atmos. Solar-Terr. Phys. v. 59, n. 11, pp 1225-32, 1997, and N.D. Marsh & H. Svensmark, Space Sci. Rev., pp 1-16, 2000). In this paper we report a detailed analysis of recently extended data now available from the International Satellite Cloud Climatology Project. In a surprise, we find that the major driving force for cloud cover is ENSO (El Nino / Southern Oscillation). In addition, we do find a weak but significant response to solar forcing; however, in contradiction to the previous reports, we find no stronger relationship to cosmic rays than to other solar parameters. For the majority of the 23 cloud types available to us, interannual variability is dominated by changes that follow the NINO3 index of Pacific sea surface temperatures. In particular, increases in high-altitude and vertically extensive cloud cover are observed to follow the motions of warm water throughout the El Nino cycle. Even far from the Pacific, many cloud cover changes are observed to correlate with El Nino, and these data provide a new and previously unexplored tool for understanding the global nature and influence of the El Nino / Southern Oscillation. In contrast, solar forcing of cloud cover is observed in, at most, a few cloud types. Only in the cloud type emphasized by Svensmark, low-altitude clouds detected in the infrared, does the dominant mode of interannual variability make a good match with solar forcing. The extended cloud record provides continued support for solar forcing of this cloud type; however, unlike Svensmark, we find no empirical reason to prefer cosmic ray flux as the forcing mechanism over any other type of solar cycle variation (e.g. irradiance or UV flux changes). Our

  15. Radiative Effect of Clouds on Tropospheric Chemistry in a Global Three-Dimensional Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Pierce, Robert B.; Norris, Peter; Platnick, Steven E.; Chen, Gao; Logan, Jennifer A.; Yantosca, Robert M.; Evans, Mat J.; Kittaka, Chieko; Feng, Yan; Tie, Xuexi

    2006-01-01

    Clouds exert an important influence on tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies (J-values). We assess the radiative effect of clouds on photolysis frequencies and key oxidants in the troposphere with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations from the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA Global Modeling and Assimilation Office (GMAO). We focus on the year of 2001 with the GEOS-3 meteorological observations. Photolysis frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical depth and cloud fraction are evaluated and generally consistent with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP). Results using the linear assumption, which assumes linear scaling of cloud optical depth with cloud fraction in a grid box, show global mean OH concentrations generally increase by less than 6% because of the radiative effect of clouds. The OH distribution shows much larger changes (with maximum decrease of approx.20% near the surface), reflecting the opposite effects of enhanced (weakened) photochemistry above (below) clouds. The global mean photolysis frequencies for J[O1D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (approx.5% versus approx.20-30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions

  16. MACHO project 9 million star color-magnitude diagram of the large magellanic cloud

    SciTech Connect

    Alcock, C; Allsman, R A; Alves, D R; Axelrod, T S; Basu, A; Becker, A C; Bennett, D P; Cook, K H; Drake, A J; Freeman, K C; Geha, M; Griest, K; King,L; Lehner, M J; Marshall, S L; Minniti, D; Nelson, C; Peterson, B A; Popowski, P; Pratt, M R; Quinn, P J; Stubbs, C W; Sutherland, W.; Tomaney, A B; Vandehei, T.; Welch, D L

    2000-01-31

    The authors present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different age and metallicity stellar populations, with important stellar evolutionary phases occurring over three orders of magnitude in number density. First, they count the non-variable red and blue supergiants, the associated Cepheid variables, and measure the stellar effective temperatures defining the Cepheid instability strip. Lifetime predictions of stellar evolution theory are tested, with implications for the origin of low-luminosity Cepheids. The highly-evolved asymptotic giant branch (AGB) stars in the 9M CMD have a bimodal distribution in brightness, which they interpret as discrete old populations ({ge} 1 Gyr). The faint AGB sequence may be metal-poor and very old. Comparing the mean properties of giant branch and horizontal branch (HB) stars in the 9M CMD to those of clusters, they identify NGC 411 and M3 as templates for the admixture of old stellar populations in the bar. However, there are several indications that the old and metal-poor field population has a red HB morphology: the RR Lyrae variables lie preferentially on the red edge of the instability strip, the AGB-bump is very red, and the ratio of AGB-bump stars to RR Lyraes is quite large. If the HB second parameter is age, the old and metal-poor field population in the bar likely formed after the oldest LMC clusters. Lifetime predictions of stellar evolution theory lead us to associate a significant fraction of the {approx} 1 million red HB clump giants in the 9M CMD with the same old and metal-poor population producing the RR Lyraes and the AGB-bump. In this case, compared to the age-dependent luminosity predictions of stellar evolution theory, the red HB clump is too bright relative to the RR Lyraes and AGB-bump. Last, they show that the surface density profile of RR Lyraes is fit by an exponential, favoring a disk-like rather than

  17. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Toward an improved global network for determination of tropospheric ozone climatology and trends

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1988-01-01

    Current data on ozone variability on daily, monthly, annual, and interannual time scales were used for a standard trend-prediction analysis. Using the results of this analysis, together with a quantitative theory that defines the 'effectively sampled region' for an observing station, a definition was developed for a global network capable of determining ozone climatology and ozone trends with uncertainties not above 1 percent per year at the 95 percent confidence level. The definition indicates a need for at least a doubling of the present number of stations; the areas where more stations are most needed include the oceans, most of Asia, Africa, and South America. It is pointed out that differential absorption lidar ozone instruments have the potential for far more frequent measurements of ozone vertical profiles and, hence, potentially more accurate climatology and trend determinations than the ozonesondes; however, the differential-absorption lidar ozone measurements may produce a biased data set above the cloud base.

  19. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  20. A Climatology of Global Aerosol Mixtures to Support Sentinel-5P and Earthcare Mission Applications

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Amaridis, V.; Kahn, R. A.

    2015-06-01

    Since constraining aerosol type with satellite remote sensing continues to be a challenge, we present a newly derived global climatology of aerosol mixtures to support atmospheric composition studies that are planned for Sentinel-5P and EarthCARE. The global climatology is obtained via application of iterative cluster analysis to gridded global decadal and seasonal mean values of the aerosol optical depth (AOD) of sulfate, biomass burning, mineral dust and marine aerosol as a proportion of the total AOD at 500nm output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART). For both the decadal and seasonal means, the number of aerosol mixtures (clusters) identified is ≈10. Analysis of the percentage contribution of the component aerosol types to each mixture allowed development of a straightforward naming convention and taxonomy, and assignment of primary colours for the generation of true colour-mixing and easy-to-interpret maps of the spatial distribution of clusters across the global grid. To further help characterize the mixtures, aerosol robotic network (AERONET) Level 2.0 Version 2 inversion products were extracted from each cluster's spatial domain and used to estimate climatological values of key optical and microphysical parameters. The aerosol type climatology represents current knowledge that would be enhanced, possibly corrected, and refined by high temporal and spectral resolution, cloud-free observations produced by Sentinel-5P and EarthCARE instruments. The global decadal mean and seasonal gridded partitions comprise a preliminary reference framework and global climatology that can help inform the choice of components and mixtures in aerosol retrieval algorithms used by instruments such as TROPOMI and ATLID, and to test retrieval results.

  1. Climatology of salt transitions and implications for stone weathering.

    PubMed

    Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). PMID:21514627

  2. Millimeter-Wave Radar Field Measurements and Inversion of Cloud Parameters for the 1999 Mt. Washington Icing Sensors Project

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.; Reehorst, Andrew (Technical Monitor)

    2001-01-01

    The Mount Washington Icing Sensors Project (MWISP) was a multi-investigator experiment with participants from Quadrant Engineering, NOAA Environmental Technology Laboratory (NOAA/ETL), the Microwave Remote Sensing Laboratory (MIRSL) of the University of Massachusetts (UMass), and others. Radar systems from UMass and NOAA/ETL were used to measure X-, Ka-, and W-band backscatter data from the base of Mt. Washington, while simultaneous in-situ particle measurements were made from aircraft and from the observatory at the summit. This report presents range and time profiles of liquid water content and particle size parameters derived from range profiles of radar reflectivity as measured at X-, Ka-, and W-band (9.3, 33.1, and 94.9 GHz) using an artificial neural network inversion algorithm. In this report, we provide a brief description of the experiment configuration, radar systems, and a review of the artificial neural network used to extract cloud parameters from the radar data. Time histories of liquid water content (LWC), mean volume diameter (MVD) and mean Z diameter (MZD) are plotted at 300 m range intervals for slant ranges between 1.1 and 4 km. Appendix A provides details on the extraction of radar reflectivity from measured radar power, and Appendix B provides summary logs of the weather conditions for each day in which we processed data.

  3. Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity

    NASA Technical Reports Server (NTRS)

    Gollmer, Steven M.; Harshvardhan; Cahalan, Robert F.; Snider, Jack B.

    1995-01-01

    To improve radiative transfer calculations for inhomogeneous clouds, a consistent means of modeling inhomogeneity is needed. One current method of modeling cloud inhomogeneity is through the use of fractal parameters. This method is based on the supposition that cloud inhomogeneity over a large range of scales is related. An analysis technique named wavelet analysis provides a means of studying the multiscale nature of cloud inhomogeneity. In this paper, the authors discuss the analysis and modeling of cloud inhomogeneity through the use of wavelet analysis. Wavelet analysis as well as other windowed analysis techniques are used to study liquid water path (LWP) measurements obtained during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment. Statistics obtained using analysis windows, which are translated to span the LWP dataset, are used to study the local (small scale) properties of the cloud field as well as their time dependence. The LWP data are transformed onto an orthogonal wavelet basis that represents the data as a number of times series. Each of these time series lies within a frequency band and has a mean frequency that is half the frequency of the previous band. Wavelet analysis combined with translated analysis windows reveals that the local standard deviation of each frequency band is correlated with the local standard deviation of the other frequency bands. The ratio between the standard deviation of adjacent frequency bands is 0.9 and remains constant with respect to time. This ratio defined as the variance coupling parameter is applicable to all of the frequency bands studied and appears to be related to the slope of the data's power spectrum. Similar analyses are performed on two cloud inhomogeneity models, which use fractal-based concepts to introduce inhomogeneity into a uniform cloud field. The bounded cascade model does this by iteratively redistributing LWP at each scale

  4. Climate and cloud response of the Super-Parameterized Community Atmosphere Model with additional super-parameterization of low clouds

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, Marat

    2013-04-01

    climatology over the traditional SP-CAM with less than a factor-of-two increase of computational cost. The climate sensitivity of the new model as estimated from the response to SST anomaly derived from one of the IPCC AR4 future-change projections, will also be discussed.

  5. The SPARC Intercomparison of Middle Atmosphere Climatologies

    NASA Technical Reports Server (NTRS)

    Randel, William; Fleming, Eric; Geller, Marvin; Gelman, Mel; Hamilton, Kevin; Karoly, David; Ortland, Dave; Pawson, Steve; Swinbank, Richard; Udelhofen, Petra

    2003-01-01

    Our current confidence in 'observed' climatological winds and temperatures in the middle atmosphere (over altitudes approx. 10-80 km) is assessed by detailed intercomparisons of contemporary and historic data sets. These data sets include global meteorological analyses and assimilations, climatologies derived from research satellite measurements, and historical reference atmosphere circulation statistics. We also include comparisons with historical rocketsonde wind and temperature data, and with more recent lidar temperature measurements. The comparisons focus on a few basic circulation statistics, such as temperature, zonal wind, and eddy flux statistics. Special attention is focused on tropical winds and temperatures, where large differences exist among separate analyses. Assimilated data sets provide the most realistic tropical variability, but substantial differences exist among current schemes.

  6. Observed Land Impacts on Clouds, Water Vapor, and Rainfall at Continental Scales

    NASA Technical Reports Server (NTRS)

    Jin, Menglin; King, Michael D.

    2005-01-01

    How do the continents affect large-scale hydrological cycles? How important can one continent be to the climate system? To address these questions, 4-years of National Aeronautics and Space Administration (NASA) Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations, Tropical Rainfall Measuring Mission (TRMM) observations, and the Global Precipitation Climatology Project (GPCP) global precipitation analysis, were used to assess the land impacts on clouds, rainfall, and water vapor at continental scales. At these scales, the observations illustrate that continents are integrated regions that enhance the seasonality of atmospheric and surface hydrological parameters. Specifically, the continents of Eurasia and North America enhance the seasonality of cloud optical thickness, cirrus fraction, rainfall, and water vapor. Over land, both liquid water and ice cloud effective radii are smaller than over oceans primarily because land has more aerosol particles. In addition, different continents have similar impacts on hydrological variables in terms of seasonality, but differ in magnitude. For example, in winter, North America and Eurasia increase cloud optical thickness to 17.5 and 16, respectively, while in summer, Eurasia has much smaller cloud optical thicknesses than North America. Such different land impacts are determined by each continent s geographical condition, land cover, and land use. These new understandings help further address the land-ocean contrasts on global climate, help validate global climate model simulated land-atmosphere interactions, and help interpret climate change over land.

  7. 4-D display of satellite cloud images

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.

    1987-01-01

    A technique has been developed to display GOES satellite cloud images in perspective over a topographical map. Cloud heights are estimated using temperatures from an infrared (IR) satellite image, surface temperature observations, and a climatological model of vertical temperature profiles. Cloud levels are discriminated from each other and from the ground using a pattern recognition algorithm based on the brightness variance technique of Coakley and Bretherton. The cloud regions found by the pattern recognizer are rendered in three-dimensional perspective over a topographical map by an efficient remap of the visible image. The visible shades are mixed with an artificial shade based on the geometry of the cloud-top surface, in order to enhance the texture of the cloud top.

  8. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    NASA Technical Reports Server (NTRS)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  9. Final Technical Report for "Radiative Heating Associated with Tropical Convective Cloud Systems: Its Importance at Meso and Global Scales"

    SciTech Connect

    Schumacher, Courtney

    2012-12-13

    Heating associated with tropical cloud systems drive the global circulation. The overall research objectives of this project were to i) further quantify and understand the importance of heating in tropical convective cloud systems with innovative observational techniques, and ii) use global models to determine the large-scale circulation response to variability in tropical heating profiles, including anvil and cirrus cloud radiative forcing. The innovative observational techniques used a diversity of radar systems to create a climatology of vertical velocities associated with the full tropical convective cloud spectrum along with a dissection of the of the total heating profile of tropical cloud systems into separate components (i.e., the latent, radiative, and eddy sensible heating). These properties were used to validate storm-scale and global climate models (GCMs) and were further used to force two different types of GCMs (one with and one without interactive physics). While radiative heating was shown to account for about 20% of the total heating and did not have a strong direct response on the global circulation, the indirect response was important via its impact on convection, esp. in how radiative heating impacts the tilt of heating associated with the Madden-Julian Oscillation (MJO), a phenomenon that accounts for most tropical intraseasonal variability. This work shows strong promise in determining the sensitivity of climate models and climate processes to heating variations associated with cloud systems.

  10. Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies.

    PubMed

    Sassen, K; Knight, N C; Takano, Y; Heymsfield, A J

    1994-07-20

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22° halo-producing cirrus clouds were studied jointly from a groundbased polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations, and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  11. Effects of Ice-Crystal Structure on Halo Formation: Cirrus Cloud Experimental and Ray-Tracing Modeling Studies

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Knight, Nancy C.; Takano, Yoshihide; Heymsfield, Andrew J.

    1994-01-01

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22 deg halo-producing cirrus clouds were studied jointly from a ground-based polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow-ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  12. A Study of the Role of Clouds in the Relationship Between Land Use/Land Cover and the Climate and Air Quality of the Atlanta Area

    NASA Technical Reports Server (NTRS)

    Kidder, Stanley Q.; Hafner, Jan

    1997-01-01

    The goal of Project ATLANTA is to derive a better scientific understanding of how land cover changes associated with urbanization affect local and regional climate and air quality. Clouds play a significant role in this relationship. Using GOES images, we found that in a 63-day period (5 July-5 September 1996) there were zero days which were clear for the entire daylight period. Days which are cloud-free in the morning become partly cloudy with small cumulus clouds in the afternoon in response to solar heating. This result casts doubt on the applicability of California-style air quality models which run in perpetual clear skies. Days which are clear in the morning have higher ozone than those which are cloudy in the morning. Using the RAMS model, we found that urbanization increases the skin surface temperature by about 1.0-1.5 C on average under cloudy conditions, with an extreme of +3.5 C. Clouds cool the surface due to their shading effect by 1.5-2.0 C on average, with an extreme of 5.0 C. RAMS simulates well the building stage of the cumulus cloud field, but does poorly in the decaying phase. Next year's work: doing a detailed cloud climatology and developing improved RAMS cloud simulations.

  13. A climatology of formation conditions for aerodynamic contrails

    NASA Astrophysics Data System (ADS)

    Gierens, K.; Dilger, F.

    2013-11-01

    Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

  14. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    NASA Technical Reports Server (NTRS)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  15. Observations of the Global Characteristics and Regional Radiative Effects of Marine Cloud Liquid Water

    NASA Technical Reports Server (NTRS)

    Greenwald, Thomas J.; Stephens, Graeme L.; Christopher, Sundar A.; Vonder Harr, Thomas H.

    1995-01-01

    The large-scale spatial distribution and temporal variability of cloud liquid water path (LWP) over the world's oceans and the relationship of cloud LWP to temperature and the radiation budget are investigated using recent satellite measurements from the Special Sensor Microwave/Imager (SSM/I), the Earth Radiation Budget Experiment (ERBE), and the International Satellite Cloud Climatology Project (ISCCP). Observations of cloud liquid water on a 2.5 deg x 2.5 deg and are used over a 53-month period beginning July 1987 and ending in December 1991. The highest values of cloud liquid water (greater than 0.13 kg/sq m) occur largely along principal routes of northern midlatitude storms and in areas dominated by tropical convection. The zonally averaged structure is distinctly trimodal, where maxima appear in the midlatitudes and near the equator. The average marine cloud LWP over the globe is estimated to be about 0.113 kg/sq m. Its highest seasonal variability is typically between 15% and 25% of the annual mean but in certain locations can exceed 30%. Comparisons of cloud LWP to temperature for low clouds during JJA and DJF of 1990 show significant positive correlations at colder temperatures and negative correlations at warmer temperatures. The correlations also exhibit strong seasonal and regional variation. Coincident and collocated observations of cloud LWP from the SSM/I and albedo measurements from the Earth Radiation Budget Satellite (ERBS) and the NOAA-10 satellite are compared for low clouds in the North Pacific and North Atlantic. The observed albedo-LWP relationships correspond reasonably well with theory, where the average cloud effective radius (r(sub e)) is 11.1 microns and the standard deviation is 5.2 microns. The large variability in the inferred values of r(sub e) suggests that other factors may be important in the albedo-LWP relationships. In terms of the effect of the LWP on the net cloud forcing, the authors find that a 0.05 kg/sq m increase in LWP

  16. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. The EOS CERES Global Cloud Mask

    NASA Technical Reports Server (NTRS)

    Berendes, T. A.; Welch, R. M.; Trepte, Q.; Schaaf, C.; Baum, B. A.

    1996-01-01

    To detect long-term climate trends, it is essential to produce long-term and consistent data sets from a variety of different satellite platforms. With current global cloud climatology data sets, such as the International Satellite Cloud Climatology Experiment (ISCCP) or CLAVR (Clouds from Advanced Very High Resolution Radiometer), one of the first processing steps is to determine whether an imager pixel is obstructed between the satellite and the surface, i.e., determine a cloud 'mask.' A cloud mask is essential to studies monitoring changes over ocean, land, or snow-covered surfaces. As part of the Earth Observing System (EOS) program, a series of platforms will be flown beginning in 1997 with the Tropical Rainfall Measurement Mission (TRMM) and subsequently the EOS-AM and EOS-PM platforms in following years. The cloud imager on TRMM is the Visible/Infrared Sensor (VIRS), while the Moderate Resolution Imaging Spectroradiometer (MODIS) is the imager on the EOS platforms. To be useful for long term studies, a cloud masking algorithm should produce consistent results between existing (AVHRR) data, and future VIRS and MODIS data. The present work outlines both existing and proposed approaches to detecting cloud using multispectral narrowband radiance data. Clouds generally are characterized by higher albedos and lower temperatures than the underlying surface. However, there are numerous conditions when this characterization is inappropriate, most notably over snow and ice of the cloud types, cirrus, stratocumulus and cumulus are the most difficult to detect. Other problems arise when analyzing data from sun-glint areas over oceans or lakes over deserts or over regions containing numerous fires and smoke. The cloud mask effort builds upon operational experience of several groups that will now be discussed.

  18. Validation of Global Climatologies of Trace Gases Using NASA Global Tropospheric Experiment (GTE) Data

    NASA Technical Reports Server (NTRS)

    Courchaine, Brian; Venable, Jessica C.

    1995-01-01

    Methane is an important trace gas because it is a greenhouse gas that affects the oxidative capacity of the atmosphere. It is produced from biological and anthropogenic sources, and is increasing globally at a rate of approximately 0.6% per year [Climate Change 1992, IPCC]. By using National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) ground station data, a global climatology of methane values was produced. Unfortunately, because the NOAA/CMDL ground stations are so sparse, the global climatology is low resolution. In order to compensate for this low resolution data, it was compared to in-situ flight data obtained from the NASA Global Tropospheric Experiment (GTE). The smoothed ground station data correlated well with the flight data. Thus, for the first time it is shown that the smoothing process used to make global contours of methane using the ground stations is a plausible way to approximate global atmospheric concentrations of the gas. These verified climatologies can be used for testing large-scale models of chemical production, destruction, and transport. This project develops the groundwork for further research in building global climatologies from sparse ground station data and studying the transport and distribution of trace gases.

  19. Regional Climatology and Surface Radiation Budget

    NASA Technical Reports Server (NTRS)

    Wilber, Anne C.; Smith, G. Louis; Stackhouse, Paul W., Jr.

    1999-01-01

    The climatology and surface radiation budget (SRB) of a region are intimately related. This paper presents a brief examination of this relationship. An 8-year surface radiation budget data set has been developed based on satellite measurements. In that data set and in this paper a region is defined as a quasi-square 2.5o in latitude and approximately the same physical distance in longitude. A pilot study by Wilber et al. (1998) showed a variety of behaviors of the annual cycles for selected regions. Selected desert regions form a loop in a specific part of the plot, with large NLW and large NSW. Tropical wet regions form much smaller loops in a different part of the plot, with small NLW and large NSW. For regions selected in high latitude the annual cycles form nearly linear figures in another part of the plot. The question arises as to whether these trajectories are characteristic of the climatology of the region or simply the behavior of the few regions selected from the set of 6596 regions. In order to address this question, it is necessary to classify the climatology of the each region, e.g. as classified by Koeppen (1936) or Trenwarthe and Horne (1980). This paper presents a method of classifying climate of the regions on the basis of the surface radiation behavior such that the results are very similar to the classification of Trenwarthe and Horne. The characteristics of the annual cycle of SRB components can then be investigated further, based on the climate classification of each region.

  20. Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO

    NASA Astrophysics Data System (ADS)

    Cesana, G.; Chepfer, H.; Winker, D.; Getzewich, B.; Cai, X.; Jourdan, O.; Mioche, G.; Okamoto, H.; Hagihara, Y.; Noel, V.; Reverdy, M.

    2016-05-01

    We compare the cloud detection and cloud phase determination of three independent climatologies based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) to airborne in situ measurements. Our analysis of the cloud detection shows that the differences between the satellite and in situ measurements mainly arise from three factors. First, averaging CALIPSO Level l data along track before cloud detection increases the estimate of high- and low-level cloud fractions. Second, the vertical averaging of Level 1 data before cloud detection tends to artificially increase the cloud vertical extent. Third, the differences in classification of fully attenuated pixels among the CALIPSO climatologies lead to differences in the low-level Arctic cloud fractions. In another section, we compare the cloudy pixels detected by colocated in situ and satellite observations to study the cloud phase determination. At midlatitudes, retrievals of homogeneous high ice clouds by CALIPSO data sets are very robust (more than 94.6% of agreement with in situ). In the Arctic, where the cloud phase vertical variability is larger within a 480 m pixel, all climatologies show disagreements with the in situ measurements and CALIPSO-General Circulation Models-Oriented Cloud Product (GOCCP) report significant undefined-phase clouds, which likely correspond to mixed-phase clouds. In all CALIPSO products, the phase determination is dominated by the cloud top phase. Finally, we use global statistics to demonstrate that main differences between the CALIPSO cloud phase products stem from the cloud detection (horizontal averaging, fully attenuated pixels) rather than the cloud phase determination procedures.

  1. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  2. Lightning climatology over the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Galanaki, Elissavet; Lagouvardos, Kostas; Kotroni, Vassiliki; Argyriou, Athanassios

    2015-04-01

    In the frame of TALOS project, the lightning activity for a 10-year period (2005-2014) over the eastern Mediterranean (16-320E, 34-460N) is analysed. The study is based on the use of cloud-to-ground lightning activity data from ZEUS system, a Very-Low-Frequency Lightning detection network operated by the National Observatory of Athens. The spatial and temporal (seasonal and diurnal) variability of the lightning activity is examined. Lightning is modulated by the diurnal cycle of insolation and the underlying topographic features of the region. CG lightning activity is dominant over land and coastal areas during summer and spring, while during the cold period of the year is dominant over the sea and is significantly stronger over the mainland than over the sea. The maximum of the lightning activity is observed in June and mostly in the afternoon. The CG variability is consistent with the global lightning activity observations. The effect of elevation, terrain slope and vegetation on the distribution of the CG flashes is also investigated. The orography and the terrain slope favour the lightning activity. Throughout the year, the potential of producing CG flashes ("lightning yield") over bareground is low while during the warm period of the year, the forested areas have increased "lightning yield". Additional analysis focuses on the links of CG lightning with indices related with the atmospheric instability such as the Convective Available Potential Energy (CAPE). CAPE is known as the driving force for thunderstorm development. The analysis showed that the lightning density increases with increasing values of CAPE.

  3. Search Cloud

    MedlinePlus

    ... of this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this ... of Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search ...

  4. Uncertainties in climatological tropical humidity profiles: Some implications for estimating the greenhouse effect

    SciTech Connect

    Gutzler, D.S. )

    1993-05-01

    The vertical profile of water vapor, the principal infrared-absorbing gas in the atmosphere, is an important factor in determining the energy balance of the climate system. This study examines uncertainties in calculating a climatological humidity profile: specifically one derived from radiosonde data representative of the moist and highly convective region over the western tropical Pacific Ocean. Uncertainties in the humidity data are large in conditions of low temperature or low humidity in the mid- and upper troposphere. Results derived from a single United States station (Koror) and from an average of four United States-operated stations (all near the equator west of the date line) yield nearly identical results. No humidity measurements are reported in fully the upper third of the troposphere. The implications of these uncertainties for determining the climatological humidity profile are quantitatively assessed by bracketing the range of plausible assumptions for unreported humidity to produce extreme estimates of the climatological profile. These profiles, together with the observed climatological temperature profile, are used as input to a radiative transfer model to ascertain the uncertainty in clear-sky outgoing infrared radiance due to water vapor uncertainties. The radiance uncertainty is shown to be comparable in magnitude to the purely radiative response of the tropical atmosphere to doubling carbon dioxide. The uncertainty associated with unmeasured upper-tropospheric humidity is approximately equal to that arising from incompletely measured midtropospheric humidity. Clear-sky radiative uncertainties, however, are modest relative to the uncertainty associated with variations of infrared absorption due to clouds, as demonstrated by introducing citrus ice particles into the radiative transfer calculations.

  5. The NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs

    NASA Astrophysics Data System (ADS)

    Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Zhang, T.

    2015-12-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. At the time of abstract submission, results from the year 2007 have been produced. More years will be added as ISCCP reprocessing occurs. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. Improvements in GSW include an expansion of the number of wavelength bands from five to eighteen, and the inclusion of ice cloud vs. water cloud radiative transfer. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  6. Martian Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure.

    Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  7. NASA GLDAS Evapotranspiration Data and Climatology

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Beaudoing, Hiroko Kato; Teng, William L.; Vollmer, Bruce; Rodell, Matthew

    2012-01-01

    Evapotranspiration (ET) is the water lost to the atmosphere by evaporation and transpiration. ET is a shared component in the energy and water budget, therefore, a critical variable for global energy and water cycle and climate change studies. However, direct ET measurements and data acquisition are difficult and expensive, especially at the global level. Therefore, modeling is one common alternative for estimating ET. With the goal to generate optimal fields of land surface states and fluxes, the Global Land Data Assimilation System (GLDAS) has been generating quality-controlled, spatially and temporally consistent, terrestrial hydrologic data, including ET and other variables that affect evaporation and transpiration, such as temperature, precipitation, humidity, wind, soil moisture, heat flux, and solar radiation. This poster presents the long-term ET climatology (mean and monthly), derived from the 61-year GLDAS-2 monthly 1.0 deg x 1.0 deg. NOAH model Experiment-1 data, and describes the basic characteristics of spatial and seasonal variations of the climatology. The time series of GLDAS-2 precipitation and radiation, and ET are also discussed to show the improvement of GLDAS-2 forcing data and model output over those from GLDAS-1.

  8. Precipitation Climatology on Titan-like Exomoons

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya

    2015-06-01

    The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets.

  9. Precipitation Climatology on Titan-like Exomoons.

    PubMed

    Tokano, Tetsuya

    2015-06-01

    The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets. PMID:25796390

  10. Precipitation Climatology on Titan-like Exomoons.

    PubMed

    Tokano, Tetsuya

    2015-06-01

    The availability of liquid water on the surface on Earth's continents in part relies on the precipitation of water. This implies that the habitability of exomoons has to consider not only the surface temperature and atmospheric pressure for the presence of liquid water, but also the global precipitation climatology. This study explores the sensitivity of the precipitation climatology of Titan-like exomoons to these moons' orbital configuration using a global climate model. The precipitation rate primarily depends on latitude and is sensitive to the planet's obliquity and the moon's rotation rate. On slowly rotating moons the precipitation shifts to higher latitudes as obliquity is increased, whereas on quickly rotating moons the latitudinal distribution does not strongly depend on obliquity. Stellar eclipse can cause a longitudinal variation in the mean surface temperature and surface pressure between the subplanetary and antiplanetary side if the planet's obliquity and the moon's orbital distance are small. In this particular condition the antiplanetary side generally receives more precipitation than the subplanetary side. However, precipitation on exomoons with dense atmospheres generally occurs at any longitude in contrast to tidally locked exoplanets.

  11. A climatology of visible surface reflectance spectra

    NASA Astrophysics Data System (ADS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-09-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290-740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment-2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes.

  12. Up-to-date probabilistic temperature climatologies

    NASA Astrophysics Data System (ADS)

    Krakauer, Nir Y.; Devineni, Naresh

    2015-02-01

    With ongoing global warming, climatologies based on average past temperatures are increasingly recognized as imperfect guides for current conditions, yet there is no consensus on alternatives. Here, we compare several approaches to deriving updated expected values of monthly mean temperatures, including moving average, exponentially weighted moving average, and piecewise linear regression. We go beyond most previous work by presenting updated climate normals as probability distributions rather than only point estimates, enabling estimation of the changing likelihood of hot and cold extremes. We show that there is a trade-off between bias and variance in these approaches, but that bias can be mitigated by an additive correction based on a global average temperature series, which has much less interannual variability than a single-station series. Using thousands of monthly temperature time series from the Global Historical Climatology Network (GHCN), we find that the exponentially weighted moving average with a timescale of 15 years and global bias correction has good overall performance in hindcasting temperatures over the last 30 years (1984-2013) compared with the other methods tested. Our results suggest that over the last 30 years, the likelihood of extremely hot months (above the 99th percentile of the temperature probability distribution as of the early 1980s) has increased more than fourfold across the GHCN stations, whereas the likelihood of very cold months (under the 1st percentile) has decreased by over two-thirds.

  13. Conditional averaging of the Cloud Radiative Effect as a higher order test of GCM radiation budgets

    NASA Astrophysics Data System (ADS)

    Oreopoulos, L.

    2010-12-01

    Global Climate Models (GCMs) are quite capable in producing temporally and spatially averaged radiative fluxes that are close to observed values. Closer examination however of clear-sky fluxes and Cloud Radiative Effects (CREs) reveal that the agreement is often the result of numerous error cancellations in the spatiotemporal and spectral domains. One manifestation of this phenomenon is canceling CRE errors among different cloud types. Recent approaches of cloud retrieval analysis from satellites allow us to determine the contribution to the total CRE of various cloud types, information that can be used as a diagnostic of the quality of cloud-radiation simulations in GCMs. In this presentation we apply such conditional averaging to CREs and cloud types provided by the International Satellite Cloud Climatology Project (ISCCP). The ISCCP D1 gridded cloud product contains the joint distribution of cloud top pressure and cloud optical depth at 280 km grid cells observed daily every 3-hours. The patterns of these joint distributions can be used to identify, via cluster analysis, distinct states of the atmosphere at the mesoscale, which ISCCP terms "weather states". The spatiotemporal distribution of distinct weather states is now available as a separate ISCCP D1 product for various geographical zones. We identify the relative contribution to the total CRE (shortwave, longwave, and net; both top of the atmosphere and surface) of these weather states separately for the extended low latitudes, northern midlatitudes and southern midlatitudes for the period 1984-2007 by conditionally averaging the CREs of the ISCCP FD data set according to weather state. Results from such a CRE breakdown that can be used as higher order GCM diagnostics include: (a) The seasonal cycle of CRE of the various weather states and the relationship between their relative strength and their frequency of occurrence; b) the identification of the most dominant weather states in terms of their relative

  14. Cloud microphysics modification with an online coupled COSMO-MUSCAT regional model

    NASA Astrophysics Data System (ADS)

    Sudhakar, D.; Quaas, J.; Wolke, R.; Stoll, J.; Muehlbauer, A. D.; Tegen, I.

    2015-12-01

    Abstract: The quantification of clouds, aerosols, and aerosol-cloud interactions in models, continues to be a challenge (IPCC, 2013). In this scenario two-moment bulk microphysical scheme is used to understand the aerosol-cloud interactions in the regional model COSMO (Consortium for Small Scale Modeling). The two-moment scheme in COSMO has been especially designed to represent aerosol effects on the microphysics of mixed-phase clouds (Seifert et al., 2006). To improve the model predictability, the radiation scheme has been coupled with two-moment microphysical scheme. Further, the cloud microphysics parameterization has been modified via coupling COSMO with MUSCAT (MultiScale Chemistry Aerosol Transport model, Wolke et al., 2004). In this study, we will be discussing the initial result from the online-coupled COSMO-MUSCAT model system with modified two-moment parameterization scheme along with COSP (CFMIP Observational Simulator Package) satellite simulator. This online coupled model system aims to improve the sub-grid scale process in the regional weather prediction scenario. The constant aerosol concentration used in the Seifert and Beheng, (2006) parameterizations in COSMO model has been replaced by aerosol concentration derived from MUSCAT model. The cloud microphysical process from the modified two-moment scheme is compared with stand-alone COSMO model. To validate the robustness of the model simulation, the coupled model system is integrated with COSP satellite simulator (Muhlbauer et al., 2012). Further, the simulations are compared with MODIS (Moderate Resolution Imaging Spectroradiometer) and ISCCP (International Satellite Cloud Climatology Project) satellite products.

  15. Introduction to MODIS Cloud Products. Chapter 5

    NASA Technical Reports Server (NTRS)

    Baum, Bryan A.; Platnick, Steven

    2006-01-01

    The Earth's radiative energy balance and hydrological cycle are fundamentally coupled with the distribution and properties of clouds. Therefore, the ability to remotely infer cloud properties and their variation in space and time is crucial for establishing climatologies as a reference for validation of present-day climate models and in assessing future climate change. Remote cloud observations also provide data sets useful for testing and improving cloud model physics, and for assimilation into numerical weather prediction models. The MODerate Resolution Imaging Spectroradiometer (MODIS) imagers on the Terra and Aqua Earth Observing System (EOS) platforms provide the capability for globally retrieving these properties using passive solar reflectance and infrared techniques. In addition to providing measurements similar to those offered on a suite of historical operational weather platforms such as the Advanced Very High Resolution Radiometer (AVHRR), the High-resolution Infrared Radiation Sounder (HIRS), and the Geostationary Operational Environmental Satellite (GOES), MODIS provides additional spectral and/or spatial resolution in key atmospheric bands, along with on-board calibration, to expand the capability for global cloud property retrievals. The core MODIS operational cloud products include cloud top pressure, thermodynamic phase, optical thickness, particle size, and water path, and are derived globally at spatial resolutions of either 1- or 5-km (referred to as Level-2 or pixel-level products). In addition, the MODIS atmosphere team (collectively providing cloud, aerosol, and clear sky products) produces a combined gridded product (referred to as Level-3) aggregated to a 1 equal-angle grid, available for daily, eight-day, and monthly time periods. The wealth of information available from these products provides critical information for climate studies as well as the continuation and improved understanding of existing satellite-based cloud climatologies

  16. The seasonal cycle of low stratiform clouds

    NASA Technical Reports Server (NTRS)

    Klein, Stephen A.; Hartmann, Dennis L.

    1993-01-01

    The seasonal cycle of low stratiform clouds is studied using data from surface-based cloud climatologies. The impact of low clouds on the radiation budget is illustrated by comparison of data from the Earth Radiation Budget Experiment with the cloud climatologies. Ten regions of active stratocumulus convection are identified. These regions fall into four categories: subtropical marine, midlatitude marine, Arctic stratus, and Chinese stratus. With the exception of the Chinese region, all the regions with high amounts of stratus clouds are over the oceans. In all regions except the Arctic, the season of maximum stratus corresponds to the season of greatest lower-troposphere static stability. Interannual variations in stratus cloud amount also are related to changes in static stability. A linear analysis indicates that a 6 percent increase in stratus fractional area coverage is associated with each 1 C increase in static stability. Over midlatitude oceans, sky-obscuring fog is a large component of the summertime stratus amount. The amount of fog appears to be related to warm advection across sharp gradients of SST.

  17. A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    NASA Technical Reports Server (NTRS)

    Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.

    2012-01-01

    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c)< 1 cm/s and v(sub f)> 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.

  18. Observed characteristics of clouds and precipitating systems associated with the tropical circulation in global models and reanalyses

    NASA Astrophysics Data System (ADS)

    Stachnik, Justin Paul

    This dissertation presents a series of work related to the representation of the Hadley circulation (HC) in atmospheric reanalyses and general circulation models (GCMs), with connections to the underlying tropical and subtropical cloud systems that comprise the mean meridional circulation. An intercomparison of eight atmospheric reanalyses showed that significant variability exists in the mean state for HC intensity, with less variability in HC width. Ensemble trends were broadly consistent with previous work and suggest a strengthening and widening of the tropical circulation over the last 30 years. Composite profiles of the apparent heat source and moisture sink were calculated for the International Satellite Cloud Climatology Project (ISCCP) cloud regimes using sounding observations from 10 field campaigns. Distinct heating profiles were determined for each ISCCP cloud regime, ranging from strong, upper-tropospheric heating for mesoscale convective systems to integrated cooling for populations associated with marine stratus and stratocumulus clouds. The derived profiles were generally similar over land and ocean with the notable exception of the fair-weather cumulus regime, which leads to some uncertainty in the mid- and upper-level reconstruction of subtropical heating. An instrument simulator indicated that low-latitude cloud properties from the NASA MERRA reanalysis qualitatively matched the distributions of cloud-top pressure and optical thickness in the ISCCP data, though the tallest and thickest clouds were missing from the reanalysis. Simulator results were sensitive to the choice of cloud overlap parameterization and the reanalysis consistently underpredicted the observed cloud fractions for all regimes. The vertical velocity, temperature, and moisture for each regime in MERRA largely matched observations from previous studies, suggesting that the dynamic and thermodynamic properties of the cloud regimes are well captured by the reanalysis. Finally, HC

  19. CAPER 3.0: A Scalable Cloud-Based System for Data-Intensive Analysis of Chromosome-Centric Human Proteome Project Data Sets.

    PubMed

    Yang, Shuai; Zhang, Xinlei; Diao, Lihong; Guo, Feifei; Wang, Dan; Liu, Zhongyang; Li, Honglei; Zheng, Junjie; Pan, Jingshan; Nice, Edouard C; Li, Dong; He, Fuchu

    2015-09-01

    The Chromosome-centric Human Proteome Project (C-HPP) aims to catalog genome-encoded proteins using a chromosome-by-chromosome strategy. As the C-HPP proceeds, the increasing requirement for data-intensive analysis of the MS/MS data poses a challenge to the proteomic community, especially small laboratories lacking computational infrastructure. To address this challenge, we have updated the previous CAPER browser into a higher version, CAPER 3.0, which is a scalable cloud-based system for data-intensive analysis of C-HPP data sets. CAPER 3.0 uses cloud computing technology to facilitate MS/MS-based peptide identification. In particular, it can use both public and private cloud, facilitating the analysis of C-HPP data sets. CAPER 3.0 provides a graphical user interface (GUI) to help users transfer data, configure jobs, track progress, and visualize the results comprehensively. These features enable users without programming expertise to easily conduct data-intensive analysis using CAPER 3.0. Here, we illustrate the usage of CAPER 3.0 with four specific mass spectral data-intensive problems: detecting novel peptides, identifying single amino acid variants (SAVs) derived from known missense mutations, identifying sample-specific SAVs, and identifying exon-skipping events. CAPER 3.0 is available at http://prodigy.bprc.ac.cn/caper3.

  20. A method for estimating vertical distibution of the SAGE II opaque cloud frequency

    SciTech Connect

    Wang, P.; Mccormick, M.P.; Minnis, P.; Kent, G.S.; Yue, G.K.; Skeens, K.M. |

    1995-02-01

    A method is developed to infer the vertical distribution of the occurrence frequency of clouds that are opaque to the Stratospheric Aerosol and Gas Experiment (SAGE) II instrument. An application of the method to the 1986 SAGE II observations is included in this paper. The 1986 SAGE II results are compared with the 1952-1981 cloud climatology of Warren et al. (1986, 1988)

  1. A method for estimating vertical distibution of the SAGE II opaque cloud frequency

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. Patrick; Minnis, Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Skeens, Kristi M.

    1995-01-01

    A method is developed to infer the vertical distribution of the occurrence frequency of clouds that are opaque to the Stratospheric Aerosol and Gas Experiment (SAGE) II instrument. An application of the method to the 1986 SAGE II observations is included in this paper. The 1986 SAGE II results are compared with the 1952-1981 cloud climatology of Warren et al. (1986, 1988)

  2. Lidar cloud studies for FIRE and ECLIPS

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Grund, Christian J.; Spinhirne, James D.; Hardesty, Michael; Alvarez, James

    1990-01-01

    Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32 h period during this case study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: dissipating subvisual and thin fibrous cirrus cloud bands, an isolated mesoscale uncinus complex (MUC), a large-scale deep cloud that developed into an organized cirrus structure within the lidar array, and a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fall-streaks emanating from generating regions at or near cloud tops, glaciating supercooled (-30 to -35 C) altocumulus clouds contributed to the production of ice mass at the base of the deep cirrus cloud, apparently even through riming, and other mechanisms involving evaporation, wave motions, and radiative effects are indicated. The generating regions ranged in scale from approximately 1.0 km cirrus uncinus cells, to organized MUC structures up to approximately 120 km across.

  3. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins

    NASA Astrophysics Data System (ADS)

    Marengo, Jose A.; Chou, Sin Chan; Kay, Gillian; Alves, Lincoln M.; Pesquero, José F.; Soares, Wagner R.; Santos, Daniel C.; Lyra, André A.; Sueiro, Gustavo; Betts, Richard; Chagas, Diego J.; Gomes, Jorge L.; Bustamante, Josiane F.; Tavares, Priscila

    2012-05-01

    The objective of this study is to assess the climate projections over South America using the Eta-CPTEC regional model driven by four members of an ensemble of the Met Office Hadley Centre Global Coupled climate model HadCM3. The global model ensemble was run over the twenty-first century according to the SRES A1B emissions scenario, but with each member having a different climate sensitivity. The four members selected to drive the Eta-CPTEC model span the sensitivity range in the global model ensemble. The Eta-CPTEC model nested in these lateral boundary conditions was configured with a 40-km grid size and was run over 1961-1990 to represent baseline climate, and 2011-2100 to simulate possible future changes. Results presented here focus on austral summer and winter climate of 2011-2040, 2041-2070 and 2071-2100 periods, for South America and for three major river basins in Brazil. Projections of changes in upper and low-level circulation and the mean sea level pressure (SLP) fields simulate a pattern of weakening of the tropical circulation and strengthening of the subtropical circulation, marked by intensification at the surface of the Chaco Low and the subtropical highs. Strong warming (4-6°C) of continental South America increases the temperature gradient between continental South America and the South Atlantic. This leads to stronger SLP gradients between continent and oceans, and to changes in moisture transport and rainfall. Large rainfall reductions are simulated in Amazonia and Northeast Brazil (reaching up to 40%), and rainfall increases around the northern coast of Peru and Ecuador and in southeastern South America, reaching up to 30% in northern Argentina. All changes are more intense after 2040. The Precipitation-Evaporation (P-E) difference in the A1B downscaled scenario suggest water deficits and river runoff reductions in the eastern Amazon and São Francisco Basin, making these regions susceptible to drier conditions and droughts in the future.

  4. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  5. Hanford Site climatological data summary 1996, with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1997-04-01

    This document presents the climatological data measured at the US Department of Energy`s Hanford Site for calendar year 1996. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters.

  6. Hanford Site Climatological Data Summary 1998

    SciTech Connect

    DJ Hoitink; JV Ramsdell; KW Burk

    1999-05-26

    This document presents the climatological data measured at the U.S. Department of Energy's Hanford Site for calendar year 1998. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature; precipitation, normal and extreme values of temperature and precipitation and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk (1994, 1995, 1996, 1997, 1998); however, Appendix B--Wind Climatology (1994) is excluded. 1998 was much warmer than normal, tying 1992 as the warmest year on record. The average temperature was 56.4 F, 3.1 F above normal (53.3 F). The highest July temperature ever recorded was 112 F on July 27, 1998. The first week in May, three daily temperature records were broken or tied. November 1998 was the third warmest on record. For the year 1998, there were 73 days with maximum temperature >90 F, the third highest on record. For the 12-month period, 11 months were warmer than normal and 1 was cooler than normal. The summer (June, July, and August) and autumn (September, October, and November) of 1998 were the fourth warmest on record. 1998 was slightly wetter than normal. Precipitation totaled 6.45 in., 103% of normal (6.26 in.); snow-fall totaled 7.2 in., compared to the normal of 13.8 in. There were eight thunderstorms recorded at Hanford Meteorological Station in July 1998, tying 1983 for the most thunderstorms in July. The average wind speed during 1998 was 7.9 mph, 0.2 mph above normal (7.7 mph). There were 32 days with peak gusts {ge}40 mph, compared to a yearly average of 26 mph. The peak gust during the year was 56 mph from the south-southwest on November 21. November 1998 had a record number of days (10) with wind gusts {ge}40 mph. The heating-degree days for 1997-1998 were 4,523 (14% below the 5

  7. Stratus Cloud Supersaturations

    NASA Astrophysics Data System (ADS)

    Noble, S.; Hudson, J. G.; Jha, V.

    2009-12-01

    Extensive aircraft measurements of cloud microphysics and complete CCN spectra from 15 flights in central California stratus clouds are presented. Cloud droplet and CCN concentrations varied over an order of magnitude in this July-August, 2008 POST project. Correlation coefficients (R) between CCN and average total cloud droplet concentrations within parcels with specific minimal liquid water contents (LWC) are shown in the table. For most LWC thresholds R is greatest for CCN concentrations at rather high supersaturations (S); i.e., 1%. The highest R for the 0.1 gm-3 are for the 300’ altitude CCN measurements but the number of cases is very small. The 0.5 g-3 R values are higher at lower S but the number of cases is also very small. The high cloud S implied by most R values goes against conventional wisdom that low stratus cloud updraft velocities limit cloud S to < 0.3%. On the other hand average droplet concentrations for most LWC thresholds match best the CCN concentrations at 0.2-0.3% S, which is more in keeping with conventional wisdom. However, these average droplet concentrations were probably reduced from adiabatic values by entrainment, which would suggest higher initial cloud S. Yum and Hudson (2002, Tellus) did report S > 1% in some maritime clouds. Further research is ongoing with this data set to substantiate stratus cloud S values. If stratus cloud S is determined to be higher than previous estimates this would imply that a much larger subset of particles (even smaller sizes) influence cloud microphysics and this would have important climate implications. As has recently been reported for small cumulus clouds (Hudson et al. 2009 JGR and Hudson and Noble 2009 GRL) negative R values were found for CCN with larger cloud droplets and drizzle drop concentrations. Correlation coefficients (R) between average droplet and CCN concentrations. 1st row (1 min)is for CCN measurements in ascents or descents closest to cloud base. 2nd row is for CCN averaged in

  8. Statistical dependence of albedo and cloud cover on sea surface temperature for two tropical marine stratocumulus regions

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Davies, Roger

    1993-01-01

    The relationship between sea surface temperature (SST) and albedo or cloud cover is examined for two tropical regions with high values of cloud radiative forcing and persistent marine stratocumulus (mSc)-one off the west coast of Peru, the other off the west coast of Angola. The data span five years, from December 1984 to November 1989. Albedos are from the Earth Radiation Budget Experiment (ERBE), cloud covers are from the International Satellite Cloud Climatology Project (ISCCP), and SSTS are from the Climate Analysis Center. Negative correlation coefficients between albedo and SST are found to be about -0.8 when the seasonal variation of the entire dataset is analyzed. The interannual variation and the spatial variation of individual months also yields correlation coefficients that are negative. The correlation between cloud cover and SST is found to be similar to but weaker than the correlation between albedo and SST, suggesting a decrease in cloud amount and a decrease in cloud albedo with increasing SST for these regions. The corresponding albedo sensitivity averages -0.018/K with local values reaching -0.04/K. These findings are valid from 19 C to 25 C for the Peru mSc and 22 C to 27 C for the Angola mSc. These temperatures approximately bound the domains over which mSc is the prevalent cloud type within each region. These results imply a potential positive feedback to global warming by marine stratocumulus that ranges from approximately 0.14 W/sq m/K to approximately 1 W/sq m/K, depending on whether or not our results apply to all marine stratocumulus. While these values are uncertain to at least +/- 50%, the sensitivity of albedo to sea surface temperature in the present climate may serve as a useful diagnostic tool in monitoring the performance of global climate models.

  9. A high-resolution global sea surface temperature climatology

    SciTech Connect

    Reynolds, R.W.; Smith, T.M.

    1995-06-01

    In response to the development of a new higher-resolution sea surface temperature (SST) analysis at the National Meteorological Center (NMC), a new monthly 1{degrees} global sea surface temperature climatology was constructed from two intermediate climatologies: the 2{degrees} SST climatology used a 30-yr 1950-1979 base period between roughly 40{degrees}S and 60{degrees}N based on in situ (ship and buoy) SST data supplemented by four years (1982-1985) of satellite SST retrievals, and sea-ice coverage data over a 12-yr period (1982-1993). The final climatology was combined from these two products so that a 1{degrees} resolution was maintained and the base period was adjusted to the 1950-1979 period wherever possible (approximately between 40{degrees}S and 60{degrees}N). Compared to the 2{degrees} climatology, the 1{degrees} climatology resolves equatorial upwelling and fronts much better. This leads to a better matching of the scales of the new analysis and climatology. In addition, because the magnitudes of large-scale features are consistently maintained in both the older 2{degrees} and the new 1{degrees} climatologies, climate monitoring of large-scale anomalies will be minimally affected by the analysis change. The use of 12 years of satellite SST retrievals makes this new climatology useful for many additional purposes because its effective resolution actually approaches 1{degrees} everywhere over the global ocean and because the mean SST values are more accurate south of 40{degrees}S than climatologies without these data. 12 refs., 16 figs.

  10. Climatology of Urban-regional Systems

    NASA Technical Reports Server (NTRS)

    Pease, R. W.

    1971-01-01

    Urbanized areas have come to be significant if not dominant components of many regional land surfaces. They represent perhaps the most dramatic recent change man has made in his environment - a change that may well burgeon in the foreseeable future as greater percentages of world populations crowd into metropolitan areas. The climate of urban-regional systems is involved because temperature, air, and pollutants added to the air are significant aspects of this change. During the past two years, substantial progress has been made in the application of remote sensing techniques to the study of urban climatology by programs jointly sponsored by NASA and the United States Geological Survey. The initial effort has endeavored with considerable success to map terrestrial radiation emission or the general thermal state of the land surface with the aid of imaging radiometers (mechanical-optical scanners).

  11. Inner Radiation Belt Dynamics and Climatology

    NASA Astrophysics Data System (ADS)

    Guild, T. B.; O'Brien, P. P.; Looper, M. D.

    2012-12-01

    We present preliminary results of inner belt proton data assimilation using an augmented version of the Selesnick et al. Inner Zone Model (SIZM). By varying modeled physics parameters and solar particle injection parameters to generate many ensembles of the inner belt, then optimizing the ensemble weights according to inner belt observations from SAMPEX/PET at LEO and HEO/DOS at high altitude, we obtain the best-fit state of the inner belt. We need to fully sample the range of solar proton injection sources among the ensemble members to ensure reasonable agreement between the model ensembles and observations. Once this is accomplished, we find the method is fairly robust. We will demonstrate the data assimilation by presenting an extended interval of solar proton injections and losses, illustrating how these short-term dynamics dominate long-term inner belt climatology.

  12. Climatology of fog in SW-Iceland

    NASA Astrophysics Data System (ADS)

    Barranco, Aurelio; Ólafsson, Haraldur

    2016-04-01

    The climatology of fog in Keflavik Airport in Southwest-Iceland has been investigated for the latter half of the 20th Century. Fog is twice as frequent in the late night than in the afternoon, suggesting important, but not dominating, impact of the diurnal cycle. There is large interannual variability in the frequency of fog, but no clear long-term trend. However, there is a clear shift in seasonal frequency; the period 1953-1977 had relatively frequent fog in the autumn, while 1978-1998, fog is relatively frequent in the spring and summer. This indicates sensitivity of the fog to mean sea surface temperatures. An attempt is made to assess frequency of fog in climate scenarii.

  13. Tohono O'odham Monsoon Climatology

    NASA Astrophysics Data System (ADS)

    Ackerman, G.

    2006-12-01

    The North American monsoon is a summertime weather phenomenon that develops over the southwestern North America. For thousands of years the Tohono O'odham people of this area have depended on the associated rainy season (Jukiabig Masad) to grow traditional crops using runoff agriculture. Today, the high incidence of Type II diabetes among native people has prompted many to return to their traditional agricultural diets. Local monsoon onset dates and the North American Regional Reanalysis dataset were used to develop a 24-year Tohono O'odham Nation (TON) monsoon and pre-monsoon climatology that can be used as a tool for planning runoff agriculture. Using monsoon composite datasets, temporal and spatial correlations between antecedent period meteorological variables, monsoon onset dates and total monsoon precipitation were examined to identify variables that could be useful in predicting the onset and intensity of the monsoon. The results suggest additional research is needed to identify variables related to monsoon onset and intensity.

  14. A hemispheric climatology of monsoon depressions

    NASA Astrophysics Data System (ADS)

    Hurley, J. V.; Boos, W.

    2012-12-01

    Monsoon depressions are large (1000-2000 km diameter) cyclonic low pressure systems having organized deep convection, best known for forming in the Bay of Bengal and migrating northwest over northern India in the monsoon trough. About 3 to 5 of these systems occur during each monsoon season, contributing about half of the Indian summer rainfall. Despite their importance as a precipitation source, their dynamics are poorly constrained. Furthermore, although they do occur elsewhere, such as around Australia and in the southern Indian Ocean, there does not exist a collective inventory of these systems outside of the Bay of Bengal region. Here we present a climatology of monsoon depressions produced from the ERA-Interim Reanalysis. Feature tracks are identified using an automated tracking algorithm (K. Hodges' TRACK code) applied to the 850 hPa relative vorticity field for local summer, 1989 to 2003. Using criteria based on relative vorticity and sea level pressure, cyclonic low pressure systems are separated into different intensity categories, one of which corresponds to the definition for monsoon depressions used by the India Meteorological Department. The resultant distribution of storms obtained for the Bay of Bengal region compares well with a previously compiled climatology of monsoon depressions that was limited to the region surrounding India. Having validated our ability to identify monsoon depressions in their classic genesis region near India, we then extend the methods to include the western Pacific, Australia, and the southern Indian Ocean. Track distributions and composite structures of monsoon depressions for these different regions will be presented.

  15. Trends and uncertainties in U.S. cloud cover from weather stations and satellite data

    NASA Astrophysics Data System (ADS)

    Free, M. P.; Sun, B.; Yoo, H. L.

    2014-12-01

    Cloud cover data from ground-based weather observers can be an important source of climate information, but the record of such observations in the U.S. is disrupted by the introduction of automated observing systems and other artificial shifts that interfere with our ability to assess changes in cloudiness at climate time scales. A new dataset using 54 National Weather Service (NWS) and 101 military stations that continued to make human-augmented cloud observations after the 1990s has been adjusted using statistical changepoint detection and visual scrutiny. The adjustments substantially reduce the trends in U.S. mean total cloud cover while increasing the agreement between the cloud cover time series and those of physically related climate variables such as diurnal temperature range and number of precipitation days. For 1949-2009, the adjusted time series give a trend in U.S. mean total cloud of 0.11 ± 0.22 %/decade for the military data, 0.55 ± 0.24 %/decade for the NWS data, and 0.31 ± 0.22 %/decade for the combined dataset. These trends are less than half those in the original data. For 1976-2004, the original data give a significant increase but the adjusted data show an insignificant trend of -0.17 (military stations) to 0.66 %/decade (NWS stations). The differences between the two sets of station data illustrate the uncertainties in the U.S. cloud cover record. We compare the adjusted station data to cloud cover time series extracted from several satellite datasets: ISCCP (International Satellite Cloud Climatology Project), PATMOS-x (AVHRR Pathfinder Atmospheres Extended) and CLARA-a1 (CM SAF cLoud Albedo and RAdiation), and the recently developed PATMOS-x diurnally corrected dataset. Like the station data, satellite cloud cover time series may contain inhomogeneities due to changes in the observing systems and problems with retrieval algorithms. Overall we find good agreement between interannual variability in most of the satellite data and that in our

  16. An Emerging Global Aerosol Climatology from the MODIS Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kleidman, Richard G.; Levy, Robert C.; Kaufman, Yoram J.; Tanre, Didier; Mattoo, Shana; Martins, J. Vandelei; Ichoku, Charles; Koren, Ilan; Hongbin, Yu; Holben, Brent N.

    2008-01-01

    The recently released Collection 5 MODIS aerosol products provide a consistent record of the Earth's aerosol system. Comparison with ground-based AERONET observations of aerosol optical depth (AOD) we find that Collection 5 MODIS aerosol products estimate AOD to within expected accuracy more than 60% of the time over ocean and more than 72% of the time over land. This is similar to previous results for ocean, and better than the previous results for land. However, the new Collection introduces a 0.01 5 offset between the Terra and Aqua global mean AOD over ocean, where none existed previously. Aqua conforms to previous values and expectations while Terra is high. The cause of the offset is unknown, but changes to calibration are a possible explanation. We focus the climatological analysis on the better understood Aqua retrievals. We find that global mean AOD at 550 nm over oceans is 0.13 and over land 0.19. AOD in situations with 80% cloud fraction are twice the global mean values, although such situations occur only 2% of the time over ocean and less than 1% of the time over land. There is no drastic change in aerosol particle size associated with these very cloudy situations. Regionally, aerosol amounts vary from polluted areas such as East Asia and India, to the cleanest regions such as Australia and the northern continents. In almost all oceans fine mode aerosol dominates over dust, except in the tropical Atlantic downwind of the Sahara and in some months the Arabian Sea.

  17. Training programme for the dissemination of climatological and meteorological applications using GIS technology

    NASA Astrophysics Data System (ADS)

    de Filippis, T.; di Vecchia, A.; Maracchi, G.; Sorani, F.

    2006-06-01

    IBIMET-CNR is involved in making different research projects and in managing operational programmes on national and international level and has acquired a relevant training competence to sustain partner countries and improve their methodological and operational skills by using innovative tools, such as Geographical Information Systems focused on the development of meteorological and climatological applications. Training activities are mainly addressed to National Meteorological and Hydrological Services of Partner-Countries and/or to other Specialized Centers in the frame of Cooperation Programmes promoted by the Italian Ministry of Foreign Affairs mainly in favour of the Less Developing Countries (LDC) of World Meteorological Organisation (WMO) Regional Association I (Africa). The Institute, as a branch of the WMO-Regional Meteorological Training Centre for Region VI (Europe), organizes also international training courses of high-level in Meteorology, Climatology and Remote Sensing applied to environment and agriculture fields. Moreover, considering the increasing evolution of the GIS functions for meteorological information users, IBIMET has promoted in 2005 the EU COST Action 719 Summer School on "GIS applications in meteorology and climatology''. The paper offers an overview of the main institute training programmes organised to share the results of research activities and operational projects, through the exploitation of innovative technologies and tools like GIS.

  18. Two Years of Global Cirrus Cloud Statistics Using HIRS

    NASA Technical Reports Server (NTRS)

    Wylie, Donald; Menzel, W. Paul; Woolf, H. M.

    1991-01-01

    A climatology of upper tropospheric semi-transparent cirrus clouds has been compiled using HIRS multispectral infrared data, sensitive to CO2 absorption, from the NOAA polar orbiting satellites. This is a report on the two years of data analyzed (June 1989 - May 1991). Semi-transparent clouds were found in 36% of the observations. Large seasonal changes were found in these clouds in many geographical areas; large changes occur in areas dominated by the ITCZ, the sub-tropical high pressure systems, and the mid-latitude storm belts. Semi-transparent clouds associated with these features move latitudinally with the seasons. These clouds also are more frequent in the summer hemisphere than the winter hemisphere. They appear to be linked to convective cloud development and the mid-latitudinal frontal weather systems. However, very thin semi-transparent cirrus has less seasonal movement than other cloud forms.

  19. Global patterns of cloud optical thickness variation with temperature

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rind, David; Rossow, William B.

    1990-01-01

    A global cloud climatology dataset is used to study patterns of cloud optical thickness variation with temperature. The data, which cover the period from July 1983 through June 1995, contain detailed information on the distribution of cloud radiative properties and their diurnal and seasonal variations, as well as information on the vertical distribution of temperature and humidity in the troposphere. For cold low clouds over land, the temperature coefficient of change in optical thickness has a value of about 0.04, which is similar to that deduced from Soviet aircraft observations and derived from thermodynamic considerations for the change of cloud liquid water with temperature. It is suggested that, in this cold-temperature range, cloud optical thickness variations are dominated by changes in the liquid water content of the cloud and that the liquid water content changes in accordance with the thermodynamic theory.

  20. Final Report for LDRD Project ''A New Era of Research in Aerosol/Cloud/Climate Interactions at LLNL''

    SciTech Connect

    Chuang, C; Bergman, D J; Dignon, J E; Connell, P S

    2002-01-31

    Observations of global temperature records seem to show less warming than predictions of global warming brought on by increasing concentrations of CO{sub 2} and other greenhouse gases. One of the reasonable explanations for this apparent inconsistency is that the increasing concentrations of anthropogenic aerosols may be partially counteracting the effects of greenhouse gases. Aerosols can scatter or absorb the solar radiation, directly change the planetary albedo. Aerosols, unlike CO{sub 2}, may also have a significant indirect effect by serving as cloud condensation nuclei (CCN). Increases in CCN can result in clouds with more but smaller droplets, enhancing the reflection of solar radiation. Aerosol direct and indirect effects are a strong function of the distributions of all aerosol types and the size distribution of the aerosol in question. However, the large spatial and temporal variabilities in the concentration, chemical characteristics, and size distribution of aerosols have made it difficult to assess the magnitude of aerosol effects on atmospheric radiation. These variabilities in aerosol characteristics as well as their effects on clouds are the leading sources of uncertainty in predicting future climate variation. Inventory studies have shown that the present-day anthropogenic emissions contribute more than half of fine particle mass primarily due to sulfate and carbonaceous aerosols derived from fossil fuel combustion and biomass burning. Parts of our earlier studies have been focused on developing an understanding of global sulfate and carbonaceous aerosol abundances and investigating their climate effects [Chuang et al., 1997; Penner et al., 1998]. We have also modeled aerosol optical properties to account for changes in the refractive indices with relative humidity and dry aerosol composition [Grant et al., 1999]. Moreover, we have developed parameterizations of cloud response to aerosol abundance for use in global models to evaluate the importance

  1. Biases in Total Precipitable Water Vapor Climatologies from Atmospheric Infrared Sounder and Advanced Microwave Scanning Radiometer

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Eldering, Annmarie; Aumann, Hartmut H.; Chahine, Moustafa T.

    2006-01-01

    We examine differences in total precipitable water vapor (PWV) from the Atmospheric Infrared Sounder (AIRS) and the Advanced Microwave Scanning Radiometer (AMSR-E) experiments sharing the Aqua spacecraft platform. Both systems provide estimates of PWV over water surfaces. We compare AIRS and AMSR-E PWV to constrain AIRS retrieval uncertainties as functions of AIRS retrieved infrared cloud fraction. PWV differences between the two instruments vary only weakly with infrared cloud fraction up to about 70%. Maps of AIRS-AMSR-E PWV differences vary with location and season. Observational biases, when both instruments observe identical scenes, are generally less than 5%. Exceptions are in cold air outbreaks where AIRS is biased moist by 10-20% or 10-60% (depending on retrieval processing) and at high latitudes in winter where AIRS is dry by 5-10%. Sampling biases, from different sampling characteristics of AIRS and AMSR-E, vary in sign and magnitude. AIRS sampling is dry by up to 30% in most high-latitude regions but moist by 5-15% in subtropical stratus cloud belts. Over the northwest Pacific, AIRS samples conditions more moist than AMSR-E by a much as 60%. We hypothesize that both wet and dry sampling biases are due to the effects of clouds on the AIRS retrieval methodology. The sign and magnitude of these biases depend upon the types of cloud present and on the relationship between clouds and PWV. These results for PWV imply that climatologies of height-resolved water vapor from AIRS must take into consideration local meteorological processes affecting AIRS sampling.

  2. A climatological network for regional climate monitoring in Sardinia.

    NASA Astrophysics Data System (ADS)

    Delitala, Alessandro M. S.

    2016-04-01

    In recent years the Region of Sardinia has been working to set-up a Regional Climatological Network of surface stations, in order to monitor climate (either stationary or changing) at sub-synoptic scale and in order to make robust climatological information available to researchers and to local stake-holders. In order to do that, an analysis of long climatological time series has been performed on the different historical networks of meteorological stations that existed over the past two centuries. A set of some hundreds of stations, with about a century of observations of daily precipitation, was identified. An important subset of them was also defined, having long series of observations of temperature, wind, pressure and other quantities. Specific investments were made on important stations sites where observations had been carried for decades, but where the climatological stations did not exist anymore. In the present talk, the Regional Climatological Network of Sardinia will be presented and its consistency discussed. Specific attention will be given to the most important climatological stations which have got more than a century of observations of meteorological quantities. Critical issues of the Regional Climatological Network, like relocation of stations and inhomogeneity of data due to instrumental changes or environmental modifications, will be discussed.

  3. Statistical examination of climatological data relevant to global temperature variation. Progress report, July 1991--January 1992

    SciTech Connect

    Gray, H.L.; Gunst, R.F.; Woodward, W.A.

    1992-01-01

    The research group at Southern Methodist University has been involved in the examination of climatological data as specified in the proposal. Our efforts have resulted in three papers which have been submitted to scholarly journals, as well as several other projects which should be completed either during the next six months or next year. In the following, we discuss our results to date along with projected progress within the next six months. Major topics discussed in this progress report include: testing for trend in the global temperature data; (2) defining and estimating mean global temperature change; and, (3) the effect of initial conditions on autoregressive models for global temperature data.

  4. Cloud-screening for Africa using a geographically and seasonally variable infrared threshold

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Kalb, V. L.

    1991-01-01

    A spatially variable monthly, infrared cloud-threshold data base has been used to screen cloud-contaminated observations from radiances measured by the NOAA-9 AVHRR over Africa. Cloud-screening through a monthly average infrared threshold based on measured surface air temperature, which is geographically dependent, shows an improvement over using a seasonally and geographically independent thermal cloud threshold of 287 K. It is found that differences in cloud-screening for these two thresholds occur for cases of lower altitude clouds or subpixel clouds where the radiative temperature is higher than the 287 K infrared threshold, yet colder than the variable threshold developed by Stowe et al. (1988) for the Nimbus-7 global cloud climatology. The variable IR threshold is shown to be effective over persistently cloud-covered regions, such as the coastal region of the Gulf of Guinea, but may introduce some erroneous cloud identifications over mountains.

  5. Using Cloud Top Pressures Derived from Raman Scattering in the UV for the OMI Total Column Ozone Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Yang, K.

    2003-01-01

    The OMI cloud pressure product is necessary for accounting for cloud effects on the mission- critical total ozone product. One of the OM1 cloud pressure algorithms uses UV measurements to derive cloud pressures from the high frequency structure of top- of-atmosphere reflectance caused by rotational Raman scattering (RRS) in the atmosphere. RRS results in filling-in of Fraunhofer lines in the backscatter UV spectra (also known as the Ring effect). The magnitude of filling-in of the Fraunhofer lines is roughly proportional to the average number of solar photon scatterings in the atmosphere above the clouds. This property of RRS is used to deduce an effective cloud pressure. The cloud pressure algorithm retrieves the cloud pressure and cloud fraction using a concept of the Mixed Lambert Equivalent Reflectivity (MLER) also used for the TOMS-V8 OM1 total column ozone algorithm. Currently, this OMI total column ozone algorithm utilizes information about cloud top pressures from a climatology based on IR measurements. The IR-derived cloud top pressure is known to be lower than UV-derived cloud top pressure because UV radiation penetrates clouds deeper than IR radiation. That is why the UV-derived cloud pressure may be more consistent withthe total ozone algorithm. We estimate total column ozone differences caused by replacing the cloud pressure climatology with cloud pressures retrieved from GOME data same as used for retrieval of ozone.

  6. Hanford Site climatological data summary 1997, with historical data

    SciTech Connect

    Hoitink, D.J.; Burk, K.W.

    1998-03-01

    This document presents the climatological data measured at the U.S. Department of Energy`s Hanford Site for calendar year 1997. Pacific Northwest National Laboratory operates the Hanford Meteorology Station and the Hanford Meteorological Monitoring Network from which these data were collected. The information contained herein includes updated historical climatologies for temperature, precipitation, normal and extreme values of temperature and precipitation, and other miscellaneous meteorological parameters. Further, the data are adjunct to and update Hoitink and Burk; however, Appendix B - Wind Climatology is excluded.

  7. Climatology of Global Swell-Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro

    2016-04-01

    , but also where the wind speed is lowest and consequently the wave age is high. A detailed global climatology of the wave age and swell steepness parameters, based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis is presented. It will be shown, in line with previous studies, that the global climatological patterns of the wave age confirm the global dominance of the World Ocean by swell waves. The areas of the ocean where the highest interaction of swell waves and the lower atmosphere can be expected are also presented.

  8. Lightning climatology in the Congo Basin

    NASA Astrophysics Data System (ADS)

    Soula, S.; Kasereka, J. Kigotsi; Georgis, J. F.; Barthe, C.

    2016-09-01

    The lightning climatology of the Congo Basin including several countries of Central Africa is analysed in detail for the first time. It is based on data from the World Wide Lightning Location Network (WWLLN), for the period from 2005 to 2013. A comparison of these data with Lightning Imaging Sensor (LIS) data for the same period shows the relative detection efficiency of the WWLLN (DE) in the 2500 km × 2500 km region increases from about 1.70% in the beginning of the period to 5.90% in 2013, and it is in agreement with previous results for other regions of the world. However, the increase of DE is not uniform over the whole region. The average monthly flash rate describes an annual cycle with a strong activity from October to March and a low one from June to August, associated with the ITCZ migration but not exactly symmetrical on both sides of the equator. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56% of the flashes are located south of the equator in the 10°S-10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year. The annual flash density and number of stormy days show a sharp maximum localized in the eastern part of Democratic Republic of Congo (DRC) regardless of the reference year and the period of the year. These maxima reach 12.86 fl km- 2 and 189 days, respectively, in 2013, and correspond to a very active region located at the rear of the Virunga mountain range at altitudes that exceed 3000 m. The presence of these mountains plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003).

  9. Dust and Gas in the Magellanic Clouds from the Heritage Herschel Key Project. I. Dust Properties and Insights into the Origin of the Submm (Submillimeter) Excess Emission

    NASA Technical Reports Server (NTRS)

    Gordon, Karl D.; Roman-Duval, Julia; Bot, Caroline; Meixner, Margaret; Babler, Brian; Bernard, Jean-Philippe; Bolatto, Alberto; Boyer, Martha L.; Clayton, Geoffrey C.; Engelbracht, Charles; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Hony, Sacha; Hughes, Annie; Indebetouw, Remy; Israel, Frank P.; Jameson, Katie; Kawamura, Akiko; Lebouteiller, Vianney; Li, Aigen; Madden, Suzanne C.; Matsuura, Mikako; Misselt, Karl; Montiel, Edward

    2014-01-01

    The dust properties in the Large and Small Magellanic Clouds are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 micromillimeters. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a powerlaw emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models we investigate the origin of the submillimeter excess; defined as the submillimeter (submm) emission above that expected from SMBB models fit to observations < 200 micromillimeters. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 micromillimeters submillimeter excesses of 27% and 43% for the Large and Small Magellanic Clouds, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 plus or minus 1.7) x 10 (sup 5) and (8.3 plus or minus 2.1) x 10 (sup 4) solar masses for the Large and Small Magellanic Clouds, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  10. THE EFFECT OF CLOUD FRACTION ON THE RADIATIVE ENERGY BUDGET: The Satellite-Based GEWEX-SRB Data vs. the Ground-Based BSRN Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Stackhouse, P. W.; Gupta, S. K.; Cox, S. J.; Mikovitz, J. C.; Nasa Gewex Srb

    2011-12-01

    The NASA GEWEX-SRB (Global Energy and Water cycle Experiment - Surface Radiation Budget) project produces and archives shortwave and longwave atmospheric radiation data at the top of the atmosphere (TOA) and the Earth's surface. The archive holds uninterrupted records of shortwave/longwave downward/upward radiative fluxes at 1 degree by 1 degree resolution for the entire globe. The latest version in the archive, Release 3.0, is available as 3-hourly, daily and monthly means, spanning 24.5 years from July 1983 to December 2007. Primary inputs to the models used to produce the data include: shortwave and longwave radiances from International Satellite Cloud Climatology Project (ISCCP) pixel-level (DX) data, cloud and surface properties derived therefrom, temperature and moisture profiles from GEOS-4 reanalysis product obtained from the NASA Global Modeling and Assimilation Office (GMAO), and column ozone amounts constituted from Total Ozone Mapping Spectrometer (TOMS), TIROS Operational Vertical Sounder (TOVS) archives, and Stratospheric Monitoring-group's Ozone Blended Analysis (SMOBA), an assimilation product from NOAA's Climate Prediction Center. The data in the archive have been validated systemically against ground-based measurements which include the Baseline Surface Radiation Network (BSRN) data, the World Radiation Data Centre (WRDC) data, and the Global Energy Balance Archive (GEBA) data, and generally good agreement has been achieved. In addition to all-sky radiative fluxes, the output data include clear-sky fluxes, cloud optical depth, cloud fraction and so on. The BSRN archive also includes observations that can be used to derive the cloud fraction, which provides a means for analyzing and explaining the SRB-BSRN flux differences. In this paper, we focus on the effect of cloud fraction on the surface shortwave flux and the level of agreement between the satellite-based SRB data and the ground-based BSRN data. The satellite and BSRN employ different

  11. Validating the topographic climatology logic of the MTCLIM model

    SciTech Connect

    Glassy, J.M.; Running, S.W.

    1995-06-01

    The topographic climatology logic of the MTCLIM model was validated using a comparison of modeled air temperatures vs. remotely sensed, thermal infrared (TIR) surface temperatures from three Daedalus Thematic Mapper Simulator scenes. The TIR data was taken in 1990 near Sisters, Oregon, as part of the NASA OTTER project. The original air temperature calculation method was modified for the spatial context of this study. After stratifying by canopy closure and relative solar loading, r{sup 2} values of 0.74, 0.89, and 0.97 were obtained for the March, June, and August scenes, respectively, using a modified air temperature algorithm. Consistently lower coefficients of determination were obtained using the original air temperature algorithm on the same data r{sup 2} values of .070, .52, and .66 for the March, June, and August samples respectively. The difficulties of comparing screen height air temperatures with remotely sensed surface temperatures are discussed, and several ideas for follow-on studies are suggested.

  12. Cloud Computing

    SciTech Connect

    Pete Beckman and Ian Foster

    2009-12-04

    Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

  13. Teaching a Model-based Climatology Using Energy Balance Simulation.

    ERIC Educational Resources Information Center

    Unwin, David

    1981-01-01

    After outlining the difficulties of teaching climatology within an undergraduate geography curriculum, the author describes and evaluates the use of a computer assisted simulation to model surface energy balance and the effects of land use changes on local climate. (AM)

  14. Hanford Site Climatological Summary 2004 with Historical Data

    SciTech Connect

    Hoitink, Dana J.; Burk, Kenneth W.; Ramsdell, James V.; Shaw, William J.

    2005-06-03

    This document presents the climatological data measured on the DOE Hanford Site for calendar year 2004. This report contains updated historical information for temperature, precipitation, wind, and normal and extreme values of temperature, and precipitation.

  15. The Synoptic Climatology of Ocean-Sea Ice-Atmosphere Coupling over the Cape Bathurst Flaw Lead

    NASA Astrophysics Data System (ADS)

    Asplin, M. G.; Candlish, L. M.; Barber, D. G.; Raddatz, R.

    2009-12-01

    The Circumpolar Flaw Lead (CFL) system is formed when the mobile central pack ice moves away from coastal fast ice, creating an area of open water and thin ice. This process can contribute significant fluxes of heat and moisture to the atmosphere throughout the winter and spring, thus modifying the boundary layer meteorology. The Canadian Research Icebreaker (NGCC Amundsen) overwintered and remained mobile from September 2007 to August 2008 in the Cape Bathurst Flaw Lead, and was the primary field research platform for the International Polar Year Circumpolar Flaw Lead System Study. A ship-based meteorological program monitored surface and upper-level meteorological conditions during the CFL project. These conditions are compared to synoptic-scale meteorology using techniques of synoptic climatology. There are generally two approaches to creating a synoptic climatology: Environment-to-surface, which involves using atmospheric circulation to define weather types, or surface-to-environment, which bases classifications upon a surface variable. In this paper, we propose a technique to generate a surface-to-environment synoptic climatology for the Southern Beaufort Sea region using gridded ice concentration data, and to use it in parallel with an existing environment-to-surface synoptic climatology based upon sea level pressure to examine dynamic and thermodynamic cyclone forcing of the atmosphere-sea ice interface in the Banks Island flaw lead. The existing environment-to-surface synoptic climatology characterizes atmospheric forcing of sea ice motion well, and it is expected that the surface-to-environment synoptic climatology will show how sea ice concentration forces seasonal boundary layer atmospheric profiles over the Cape Bathurst flaw lead.

  16. Cloud Statistics for NASA Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    1999-01-01

    the International Satellite Cloud Climatology Program (ISCCP) and the Stratospheric Aerosol and Gas Experiment (SAGE). A summary of eight years of HIRS data will be published in late 1998. Important information from this study are: 1) cirrus clouds cover most of the earth, 2) they are found about 40% of the time globally, 3) in the tropics cirrus cloud frequencies are even higher, from 80-100%, 4) there is slight evidence that cirnis cloud cover is increasing in the northern hemisphere at about 0.5% per year, and 5) cirrus clouds have an average infrared transmittance of about 40% of the terrestrial radiation. (5) Global Cloud Frequency Statistics published on the Principal Investigator's web page have been used in the planning of the future CRYSTAL experiment and have been used for refinements of a global numerical model operated at the Colorado State University.

  17. Global dust altitude climatology based on CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Tsamalis, C.; Chedin, A.; Peyridieu, S.

    2011-12-01

    Dust aerosols are important constituents of the earth climate as they influence many processes of the planet. They affect the earth's radiative budget via the direct, the indirect and the semi-direct effects, which cause the modification of the mesoscale dynamics at short time scales and the climate change at long time scales, they act as cloud condensation and ice nuclei and therefore have strong implications in the hydrological cycle, their deposition in the ocean supplies it with nutrients, which in turn affect the ocean biogeochemistry, they impact the atmospheric concentrations of trace gases, via heterogeneous reactions, they contribute to air pollution and they degrade the restitution of atmospheric or surface parameters from satellite instruments. An important parameter of the dust aerosols is their altitude as it defines their impact on the aforementioned processes. But this parameter is not easily measurable except from lidars and more recently from passive infrared remote sensors. Nevertheless, ground based lidars are situated at specific locations and cannot offer a global view of the dust altitude, while dedicated campaigns using lidars and in situ measurements are restricted in time. On the other hand, the passive instruments AIRS or IASI offer a good spatial coverage, but their new established results need further validation. Launched in April 2006, the satellite CALIPSO, with the on board two wavelength depolarisation lidar CALIOP, permits an accurate determination of the aerosols altitude. Moreover, the depolarisation at 532 nm allows the discrimination between dust and other types of aerosols, which generally do not depolarize light. Nevertheless, the beam diameter of 70 m at the earth's surface makes it difficult to interpret statistically the results, as the 16 days repetition cycle of CALIPSO does not cover all the earth. In order to overcome this difficulty, the L2 5 km aerosol layer product (version 3.01) is used here to calculate the

  18. An Updated TRMM Composite Climatology of Tropical Rainfall and Its Validation

    NASA Technical Reports Server (NTRS)

    Wang, Jian-Jian; Adler, Robert F.; Huffman, George; Bolvin, David

    2013-01-01

    An updated 15-yr Tropical Rainfall Measuring Mission (TRMM) composite climatology (TCC) is presented and evaluated. This climatology is based on a combination of individual rainfall estimates made with data from the primaryTRMMinstruments: theTRMM Microwave Imager (TMI) and the precipitation radar (PR). This combination climatology of passive microwave retrievals, radar-based retrievals, and an algorithm using both instruments simultaneously provides a consensus TRMM-based estimate of mean precipitation. The dispersion of the three estimates, as indicated by the standard deviation sigma among the estimates, is presented as a measure of confidence in the final estimate and as an estimate of the uncertainty thereof. The procedures utilized by the compositing technique, including adjustments and quality-control measures, are described. The results give a mean value of the TCC of 4.3mm day(exp -1) for the deep tropical ocean beltbetween 10 deg N and 10 deg S, with lower values outside that band. In general, the TCC values confirm ocean estimates from the Global Precipitation Climatology Project (GPCP) analysis, which is based on passive microwave results adjusted for sampling by infrared-based estimates. The pattern of uncertainty estimates shown by sigma is seen to be useful to indicate variations in confidence. Examples include differences between the eastern and western portions of the Pacific Ocean and high values in coastal and mountainous areas. Comparison of the TCC values (and the input products) to gauge analyses over land indicates the value of the radar-based estimates (small biases) and the limitations of the passive microwave algorithm (relatively large biases). Comparison with surface gauge information from western Pacific Ocean atolls shows a negative bias (16%) for all the TRMM products, although the representativeness of the atoll gauges of open-ocean rainfall is still in question.

  19. Ultraviolet radiation climatology of the Earth`s surface and lower atmosphere. Final report

    SciTech Connect

    Madronich, S.; Stamnes, K.

    1999-03-01

    Ultraviolet (UV) radiation is the driving force of tropospheric chemistry and is furthermore detrimental to most living tissues. A three year modeling program was carried out to characterize the UV radiation in the lower atmosphere, with the objective of development a climatology of UV biologically active radiation, and of photo-dissociation reaction rates that are key to tropospheric chemistry. A comprehensive model, the Tropospheric Ultraviolet-Visible (TUV) model, was developed and made available to the scientific community. The model incorporates updated spectroscopic data, recent advances in radiative transfer theory, and allows flexible customization for the needs of different users. The TUV model has been used in conjunction with satellite-derived measurements of total atmospheric ozone and cloud amount, to develop a global climatology of UV radiation reaching the surface of the Earth. Initial validation studies are highly encouraging, showing that model predictions agree with direct measurements to ca. 5--10% at times when environmental conditions are well known, and to 10--30% for monthly averages when local environmental conditions can only be estimated remotely from satellite-based measurements. Additional validation studies are continuing.

  20. Using a synoptic climatological approach to understand climate-viticulture relationships

    NASA Astrophysics Data System (ADS)

    Jones, Gregory V.; Davis, Robert E.

    2000-06-01

    Regional circulation and local air mass synoptic climatologies are developed for Bordeaux, France, to examine the relationship between climate and viticulture. Using a variation of the temporal synoptic index, days with similar weather (both throughout Western Europe and at Bordeaux) are grouped together. The annual relative frequencies of these groups are used as independent variables to investigate climate-viticulture relationships for the region. The viticulture data are divided annually into stages based on the region-wide mean phenology of the grapevines. Synoptic climate-phenology models are then developed using multiple linear regression analysis.A high degree of spatial and temporal cohesiveness is found between the regional and the local synoptic climatologies. Circulation patterns identified in the regional circulation analyses are linked in a consistent fashion with corresponding thermal, moisture, wind and cloud cover conditions at the Bordeaux site.A small number of synoptic clusters greatly affect viticultural potential throughout the year. In general, vintage quality and production are reduced by (i) increased frequencies of cold- and moisture-producing events that delay the plant's physiology, and (ii) increases in frontal incursions and the associated winds and rain that affect flowering and the setting of berries. Conversely, the relative occurrence of warm, stable events during maturation lead to full ripeness and higher vintage quality.

  1. cloud supersaturations and CCN spectra

    NASA Astrophysics Data System (ADS)

    Hudson, James; Noble, Stephen

    2014-05-01

    Multiple regression analysis predictions of low altitude cloud droplet concentrations based on measured CCN spectra compared much better with measured low altitude droplet concentrations than various CCN concentrations at single supersaturations (S) in two aircraft cumulus cloud projects, RICO and ICE-T. The addition of vertical velocity (W) to the single and multiple regressions showed small improvements. For RICO the multiple regression correlations were also superior to previous adiabatic model predictions of droplet concentrations also based on CCN spectra and mean W. More adiabatic cloud parcels showed only slightly better correlations than flight-averaged droplet concentrations. Results show the value of more extensive CCN spectra and the relative unimportance of W variations for determining droplet concentrations in these Caribbean cumuli. The fact that flight-averaged droplet concentrations of all low cloud data was almost as well correlated with CCN spectra as were droplet concentrations of more adiabatic cloud parcels indicates that entrainment did not significantly perturb CCN-droplet concentration relationships. As should be expected higher cloud S were determined for the cumulus clouds than for stratus clouds. Suppression of cloud S by higher CCN concentrations that had previously been observed in stratus was observed in ICE-T but not in RICO where the CCN range may have been too low for cloud S suppression. But ICE-T and a stratus project, POST, even showed this S suppression over the same limited maritime CCN range as RICO.

  2. A Study of Surface Temperatures, Clouds and Net Radiation

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans

    1996-01-01

    This study focused on the seasonal relationships and interactions of climate parameters such as the surface temperatures, net radiation, long wave flux, short wave flux, and clouds on a global basis. Five years of observations (December 1984 to November 1989) from the Earth Radiation Budget Experiment (ERBE) and the International Satellite Cloud Climatology Program (ISCCP) were used to study both seasonal variations and interannual variations by use of a basic radiation budget equation. In addition, the study was extended to include an analysis of the cloud forcing due El-Nino's impact on the ERBE parameters.

  3. Climatological diurnal variation of negative CG lightning peak current over the continental United States

    NASA Astrophysics Data System (ADS)

    Chronis, T.; Cummins, K.; Said, R.; Koshak, W.; McCaul, E.; Williams, E. R.; Stano, G. T.; Grant, M.

    2015-01-01

    study provides an 11 year climatology of the diurnal variability of the cloud-to-ground (CG) lightning peak current. The local diurnal variation of peak current for negative polarity CG (-CG) flashes exhibits a highly consistent behavior, with increasing magnitudes between the late night to early morning hours and decreasing magnitudes during the afternoon. Over most regions, an inverse relationship exists between the -CG peak current and the corresponding -CG activity, although specific details can depend on region and time of day. Overall, the diurnal variation of the -CG peak current appears to reflect fundamental differences between morning and afternoon storms, but additional studies are required to clearly identify the primary cause(s).

  4. A Seasonal Air Transport Climatology for Kenya

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  5. Climatology of equatorial stratosphere over Lagos, Nigeria

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi Samuel

    We have used 12 complete calendar years (January 1993-December 2004) of monthly averages of measurements made by the Dobson spectrophotometer instrument over an urban site, Lagos (6.6oN, 3.3oE), southwest Nigeria, to study equatorial stratospheric column ozone variations and trends. Our results indicate that the time-averaged total column ozone has a seasonal cy-cle, which maximizes in June and July with a value of 259 Dobson units (DU) and minimizes in February with a magnitude of 250 DU. Statistical analysis of the climatological mean monthly total Dobson O3 record for 1993-2004 show that the local trend is approximately +0.041±0.0011 DU/year (+0.49±0.013% per decade). Spectral analysis was applied to the monthly averages series. The significant periodicity at 95% confidence level demonstrate prominent spectra peaks near 1.9 and 3.6 years, representative of quasi-biennial oscillation (QBO) and quasi-triennial oscillation (QTO), respectively. Signal due to semiannual variation is also identified at Lagos sounding site. Comparison with the ozone observations from Total Ozone Mapping Spectrom-eter (TOMS) on board the Earth-Probe (EP) satellite for the period from 1997 to 2002 reveal that EP/TOMS instrument consistently larger than the ground-based measurement from Dob-son station. Percentage mean relative disparity ranges from -11% to 15%. The root mean square error (RMSE) between satellite and ground-based observations over Lagos ranges be-tween ˜35-83 DU with largest and lowest variability occurring during the ascending phase of solar activity (1999, 10.7 cm radio flux, F10.7 equals 154 flux units) and during the peak phase of solar activity (2001, F10.7 equals 181), respectively.

  6. A Tale of Two Clouds

    ERIC Educational Resources Information Center

    Gray, Terry

    2010-01-01

    The University of Washington (UW) adopted a dual-provider cloud-computing strategy, focusing initially on software as a service. The original project--to replace an obsolete alumni e-mail system--resulted in a cloud solution that soon grew to encompass the entire campus community. The policies and contract terms UW developed, focusing on…

  7. Chemical climatology of high elevation spruce-fir forests in the southern Appalachian mountains.

    PubMed

    Aneja, V P; Robarge, W P; Claiborn, C S; Murthy, A; Soo-Kim, D; Li, Z; Cowling, E B

    1992-01-01

    The physical and chemical climatology of high elevation (> 1500 m) spruce-fir forests in the southern Appalachian mountains was studied by establishing a weather and atmospheric chemical observatory at Mt Mitchell State Park in North Carolina (35 degrees 44' 05" N, 82 degrees 17' 15"W). Data collected during the summer and autumn (May-October) of 1986, 1987, and 1988 are reported. All measurements were made on or near a 16.5 m walk-up tower extending 10 m above the forest canopy on Mt Gibbes (2006 m msl), which is located approximately 2 km SW of Mt Mitchell. The tower was equipped with standard meteorological instrumentation, a passive cloud water collector, and gas pollutant sensors for O3, SO2, NOx. The tower and nearby forest canopy were immersed in clouds 25 to 40% of the time. Non-precipitating clouds were very acidic (pH 2.5-4.5). Precipitating clouds were less acidic (pH 3.5-5.5). The dominant wind directions were WNW and ESE. Clouds from the most common wind direction (WNW) were more acidic (mean pH 3.5) than those from the next most common wind direction (ESE, mean pH 5.5). Cloud water acidity was related to the concentration of SO4(2-), and NO3- ions. Mean concentration of H+, NH4+, SO4(2-), and NO3- ions in the cloud water varied from 330-340, 150-200, 190-200 and 120-140 micromol litre(-1) respectively. The average and range of O3 were 50 (25-100) ppbv (109) in 1986, 51 (26-102) ppbv in 1987, and 66 (30-140) during the 1988 field seasons, respectively. The daily maximum, 1-h average, and 24-h average concentrations were all greatest during June through mid-August, suggesting a correlation with the seasonal temperature and solar intensity. Throughfall collectors near the tower were used to obtain a useful estimate of deposition to the forest canopy. Between 50-60% of the total deposition of SO4(2-) was due to cloud impact.

  8. Pluvial Inhibition by Urban Cloud Condensation Nuclei

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Yum, S. S.

    2002-05-01

    Cloud microphysics and sub-cloud aerosol measurements in urban and cleaner air masses showed the effects of anthropogenic air pollution. Cloud condensation nuclei (CCN) measurements in three different parts of the world displayed typical urban/clean air mass differences in concentrations. Near-simultaneous cloud droplet measurements (diameter < 50 micrometers) showed the higher concentrations and smaller sizes expected for higher CCN concentrations. The commensurate lower concentrations of large cloud droplets (30-50 micrometers) in urban air indicated that the higher CCN concentrations were responsible for the order(s) of magnitude lower drizzle drop (diameter > 50 micrometers) concentrations in the urban-influenced clouds. The similarity of the clean and urban- influenced cloud droplet spectra near cloud base suggested no differences in giant nuclei concentrations that have been suggested to be responsible for greater precipitation in cleaner clouds. This suppression of warm rain by higher CCN concentrations occurred hundreds of km from the urban sources. Similar effects were found for three different cloud types in these three field projects: 1) stratocumulus clouds in the eastern Atlantic (ASTEX); 2) small cumulus clouds in eastern Florida (SCMS); and small trade wind cumuli in the Indian Ocean (INDOEX). Comparisons of CCN and cloud droplet concentrations in the three projects showed a more-or-less linear relationship between CCN and cloud droplet concentrations. Comparisons of CCN and cloud droplet spectra showed that supersaturations were lower in the urban-influenced clouds due to greater competition for condensed water. This means that a smaller percentage of the higher urban CCN concentrations actually produced cloud droplets. However, the supersaturation suppression was smaller because droplet sizes were so reduced that many urban cloud droplets escaped detection. This underestimation of cloud droplet concentrations suggested a greater suppression of

  9. Radiative Heating of the ISCCP Upper Level Cloud Regimes and its Impact on the Large-scale Tropical Circulation

    SciTech Connect

    Li, Wei; Schumacher, Courtney; McFarlane, Sally A.

    2013-01-31

    Radiative heating profiles of the International Satellite Cloud Climatology Project (ISCCP) cloud regimes (or weather states) were estimated by matching ISCCP observations with radiative properties derived from cloud radar and lidar measurements from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) sites at Manus, Papua New Guinea, and Darwin, Australia. Focus was placed on the ISCCP cloud regimes containing the majority of upper level clouds in the tropics, i.e., mesoscale convective systems (MCSs), deep cumulonimbus with cirrus, mixed shallow and deep convection, and thin cirrus. At upper levels, these regimes have average maximum cloud occurrences ranging from 30% to 55% near 12 km with variations depending on the location and cloud regime. The resulting radiative heating profiles have maxima of approximately 1 K/day near 12 km, with equal heating contributions from the longwave and shortwave components. Upper level minima occur near 15 km, with the MCS regime showing the strongest cooling of 0.2 K/day and the thin cirrus showing no cooling. The gradient of upper level heating ranges from 0.2 to 0.4 K/(day∙km), with the most convectively active regimes (i.e., MCSs and deep cumulonimbus with cirrus) having the largest gradient. When the above heating profiles were applied to the 25-year ISCCP data set, the tropics-wide average profile has a radiative heating maximum of 0.45Kday-1 near 250 hPa. Column-integrated radiative heating of upper level cloud accounts for about 20% of the latent heating estimated by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The ISCCP radiative heating of tropical upper level cloud only slightly modifies the response of an idealized primitive equation model forced with the tropics-wide TRMM PR latent heating, which suggests that the impact of upper level cloud is more important to large-scale tropical circulation variations because of convective feedbacks rather than direct forcing by

  10. A spectral climatology for atmospheric compensation of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Powell, John H.; Resmini, Ronald G.

    2016-05-01

    Most Earth observation hyperspectral imagery (HSI) detection and identification algorithms depend critically upon a robust atmospheric compensation capability to correct for the effects of the atmosphere on the radiance signal. Atmospheric compensation methods typically perform optimally when ancillary ground truth data are available, e.g., high fidelity in situ radiometric observations or atmospheric profile measurements. When ground truth is incomplete or not available, additional assumptions must be made to perform the compensation. Meteorological climatologies are available to provide climatological norms for input into the radiative transfer models; however no such climatologies exist for empirical methods. The success of atmospheric compensation methods such as the empirical line method suggests that remotely sensed HSI scenes contain comprehensive sets of atmospheric state information within the spectral data itself. It is argued that large collections of empirically-derived atmospheric coefficients collected over a range of climatic and atmospheric conditions comprise a resource that can be applied to prospective atmospheric compensation problems. A previous study introduced a new climatological approach to atmospheric compensation in which empirically derived spectral information, rather than sensible atmospheric state variables, is the fundamental datum. The current work expands the approach across an experimental archive of 127 airborne HSI datasets spanning nine physical sites to represent varying climatological conditions. The representative atmospheric compensation coefficients are assembled in a scientific database of spectral observations and modeled data. Improvements to the modeling methods used to standardize the coefficients across varying collection and illumination geometries and the resulting comparisons of adjusted coefficients are presented. The climatological database is analyzed to show that common spectral similarity metrics can be used

  11. Assessing MODIS Macrophysical Cloud Property Uncertainties

    NASA Astrophysics Data System (ADS)

    Maddux, B. C.; Ackerman, S. A.; Frey, R.; Holz, R.

    2013-12-01

    Cloud, being multifarious and ephemeral, is difficult to observe and quantify in a systematic way. Even basic terminology used to describe cloud observations is fraught with ambiguity in the scientific literature. Any observational technique, method, or platform will contain inherent and unavoidable measurement uncertainties. Quantifying these uncertainties in cloud observations is a complex task that requires an understanding of all aspects of the measurement. We will use cloud observations obtained from the Moderate Resolution Imaging Spectroradiameter(MODIS) to obtain metrics of the uncertainty of its cloud observations. Our uncertainty analyses will contain two main components, 1) an attempt to create a bias or uncertainty with respect to active measurements from CALIPSO and 2) a relative uncertainty within the MODIS cloud climatologies themselves. Our method will link uncertainty to the physical observation and its environmental/scene characteristics. Our aim is to create statistical uncertainties that are based on the cloud observational values, satellite view geometry, surface type, etc, for cloud amount and cloud top pressure. The MODIS instruments on the NASA Terra and Aqua satellites provide observations over a broad spectral range (36 bands between 0.415 and 14.235 micron) and high spatial resolution (250 m for two bands, 500 m for five bands, 1000 m for 29 bands), which the MODIS cloud mask algorithm (MOD35) utilizes to provide clear/cloud determinations over a wide array of surface types, solar illuminations and view geometries. For this study we use the standard MODIS products, MOD03, MOD06 and MOD35, all of which were obtained from the NASA Level 1 and Atmosphere Archive and Distribution System.

  12. Position paper on the potential of inadvertent weather modification of the Florida Peninsula resulting from neutralization of space shuttle solid rocket booster exhaust clouds

    NASA Technical Reports Server (NTRS)

    Bollay, E.; Bosart, L.; Droessler, E.; Jiusto, J.; Lala, G. G.; Mohnen, V.; Schaefer, V.; Squires, P.

    1979-01-01

    A concept of injecting compounds into the exhaust cloud was proposed to neutralize the acidic nature of the low-level stabilized ground cloud (SGC) was studied. The potential Inadvertent Weather Modification caused by exhaust cloud characteristics from three hours to seven days after launch was studied. Possible effects of the neutralized SGC in warm and cloud precipitation processes were discussed. Based on a detailed climatology of the Florida Peninsula, the risk for weather modification under a variety of weather situations was assessed.

  13. Cloud supersaturations and Hoppel minima

    NASA Astrophysics Data System (ADS)

    Noble, Stephen; Hudson, James G.

    2013-05-01

    CCN spectral measurements in four aircraft research projects often showed bimodal distributions of which the Hoppel minima can be used to infer cloud supersaturations (S)—effective S (Seff). These direct critical S (Sc) measurements are superior to differential mobility analyzer (DMA) Seff estimates because they do not need composition information and have more channel resolution. These Seff are higher than Seff obtained by matching CCN spectra with droplet concentrations (Nc). These differences can help determine whether the easier evaporation of polluted cloud droplets can increase cloud turbulence and thus reduce cloud thickness, extent, and liquid water content and thus essentially mitigate the indirect aerosol effect (IAE).

  14. Outcome of the Third Cloud Retrieval Evaluation Workshop

    NASA Astrophysics Data System (ADS)

    Roebeling, R.; Baum, B.; Bennartz, R.; Hamann, U.; Heidinger, A.; Thoss, A.; Walther, A.

    2012-04-01

    Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and inter-annual variations are needed to improve the understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics need to be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), which was held from 15-18 November 2011 in Madison, Wisconsin, USA, is to enhance our knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimising these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods that are used to prepare daily and monthly cloud parameter climatologies. An important component of the workshop is the discussion on the results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we will summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on the reasons for the observed differences. More in depth discussions were held on retrieval principles and validation, and the utilization of cloud parameters for

  15. Outcome of the third cloud retrieval evaluation workshop

    NASA Astrophysics Data System (ADS)

    Roebeling, Rob; Baum, Bryan; Bennartz, Ralf; Hamann, Ulrich; Heidinger, Andy; Thoss, Anke; Walther, Andi

    2013-05-01

    Accurate measurements of global distributions of cloud parameters and their diurnal, seasonal, and interannual variations are needed to improve understanding of the role of clouds in the weather and climate system, and to monitor their time-space variations. Cloud properties retrieved from satellite observations, such as cloud vertical placement, cloud water path and cloud particle size, play an important role for such studies. In order to give climate and weather researchers more confidence in the quality of these retrievals their validity needs to be determined and their error characteristics must be quantified. The purpose of the Cloud Retrieval Evaluation Workshop (CREW), held from 15-18 Nov. 2011 in Madison, Wisconsin, USA, is to enhance knowledge on state-of-art cloud properties retrievals from passive imaging satellites, and pave the path towards optimizing these retrievals for climate monitoring as well as for the analysis of cloud parameterizations in climate and weather models. CREW also seeks to observe and understand methods used to prepare daily and monthly cloud parameter climatologies. An important workshop component is discussion on results of the algorithm and sensor comparisons and validation studies. Hereto a common database with about 12 different cloud properties retrievals from passive imagers (MSG, MODIS, AVHRR, POLDER and/or AIRS), complemented with cloud measurements that serve as a reference (CLOUDSAT, CALIPSO, AMSU, MISR), was prepared for a number of "golden days". The passive imager cloud property retrievals were inter-compared and validated against Cloudsat, Calipso and AMSU observations. In our presentation we summarize the outcome of the inter-comparison and validation work done in the framework of CREW, and elaborate on reasons for observed differences. More in depth discussions were held on retrieval principles and validation, and utilization of cloud parameters for climate research. This was done in parallel breakout sessions on

  16. Scaling the CERN OpenStack cloud

    NASA Astrophysics Data System (ADS)

    Bell, T.; Bompastor, B.; Bukowiec, S.; Castro Leon, J.; Denis, M. K.; van Eldik, J.; Fermin Lobo, M.; Fernandez Alvarez, L.; Fernandez Rodriguez, D.; Marino, A.; Moreira, B.; Noel, B.; Oulevey, T.; Takase, W.; Wiebalck, A.; Zilli, S.

    2015-12-01

    CERN has been running a production OpenStack cloud since July 2013 to support physics computing and infrastructure services for the site. In the past year, CERN Cloud Infrastructure has seen a constant increase in nodes, virtual machines, users and projects. This paper will present what has been done in order to make the CERN cloud infrastructure scale out.

  17. Characterizing the Influence of the General Circulation on Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Rozendaal, Margaret A.; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The seasonal and intraseasonal variability of boundary layer cloud in the subtropical eastern oceans are studied using combined data from the International Satellite Cloud Climatology Project (ISCCP) and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis. Spectral analysis reveals that most of the time variability of cloud properties occurs on seasonal to annual time scales. The variance decreases one to two orders of magnitude for each decade of time scale decrease, indicating that daily to monthly time scales have smaller, but non-negligible variability. The length of these dominant time scales suggests that the majority of the variability is influenced by the general circulation and its interaction with boundary layer turbulence, rather than a product of boundary layer turbulence alone. Previous datasets have lacked the necessary resolution in either time or in space to properly characterize variability on synoptic scales; this is remedied by using global satellite-retrieved cloud properties. We characterize the intraseasonal subtropical cloud variability in both hemispheres and in different seasons. In addition to cloud fraction, we examine variability of cloud optical thickness - cloud top pressure frequency distributions. Despite the large concentration of research on the variability of Northern Hemisphere (NH) regions during summer, it is noted that the largest amplitude intraseasonal variability in the NH regions occurs during local winter. The effect of intraseasonal variability on the calculation and interpretation of seasonal results is investigated. Decreases in seasonally averaged cloud cover, optical thickness and cloud top pressure from the May-through-September season to the November-through-March season are most apparent in the NH regions. Further analysis indicates that these changes are due to an increase in frequency, but a decrease in the persistence of synoptic events. In addition, changes in cloud top pressure and

  18. Glory of clouds in the near infrared.

    PubMed

    Spinhirne, J D; Nakajima, T

    1994-07-20

    Spectrally resolved visible and infrared images of marine stratus clouds were acquired from the NASA ER-2 high-altitude aircraft during the 1987 First International Cloud Climatology Program Regional Experiment. The images were obtained by cross-track scanning radiometers. Data images at nearinfrared wavelengths show frequent and readily apparent brightness features that are due to glory single scattering. The observations and subsequent analysis by radiative transfer calculations show that the glory is a significant feature of near-infrared solar reflectance from water clouds. Glory observations and calculations based on in-cloud microphysics measurements agree well. The most dramatic difference from the visible glory is that the scattering angles are significantly larger in the near infrared. The glory is also apparently more distinct in the near infrared than in the visible, as scattering size parameters are in a range that effectively produces a glory feature, and also there is less obscuration bymultipe-scattering reflectance because of absorption of radiation by droplets in the near infrared. For both the visible and the near infrared, the principal factors that wash out the glory are dispersion and, to a lesser degree, the effective radius of the cloud droplet-size distribution. The obscuration by multiple scattering in optically thick clouds is secondary. Rather than being a novelty, glory observations would be an accurate and unambiguous technique to sense the droplet size of water clouds remotely.

  19. A climatology of Central American Gyres

    NASA Astrophysics Data System (ADS)

    Papin, Philippe P.

    Central American gyres (CAGs) are large, low-level, cyclonic circulations that are observed over Central America during the tropical cyclone (TC) season. CAGs often occur in conjunction with TCs, and can result in torrential rainfall over portions of Central America, the Caribbean Islands, and eastern United States. The lack of prior research on CAGs, their apparent links to TC activity, and their association with high- impact weather motivates this study. To study CAG occurrence, an algorithm was developed to identify cyclonic circulations possessing similar characteristics to monsoon depressions (MDs) and monsoon gyres (MGs) in other ocean basins. This algorithm also includes a series of tests that distinguishes CAG events from large TCs and non-closed circulations. This algorithm was run between May-November 1980-2010 using the National Centers for Environmental Prediction Climate Forecast System Reanalysis 0.5o gridded dataset to produce the CAG climatology. 42 CAGs were classified (˜1.4 per season) with a bimodal distribution of occurrence favoring the early (May-Jun) and late (Sep-Nov) TC season. Stratification of CAG occurrence by the phase of the Madden Julian Oscillation (MJO) shows that over 75% of all CAGs develop in phases 8,1, and 2. A gyre-relative, time-lagged, CAG composite analysis is performed on CAG cases spanning from three days prior to two days after CAG formation. Positive low-level geopotential height anomalies are present in the east Pacific and Atlantic basins and are associated with anomalous low-level flow before the formation of the CAG. This results in increasing cyclonic vorticity near anomalously high precipitable water over Central America, a pattern that aids the generation of deep convection and the broad closed low-level cyclonic circulation that defines the CAG. CAGs are also split into two subsets using potential vorticity (PV) on the 350K isentropic surface. Tropical CAGs possess upper-tropospheric ridging associated with low

  20. Cirrus Cloud Modeling: Overview and Issues

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A review of cirrus cloud modeling will be given with special attention to the role of dynamical processes in regulating cloud microphysical properties and the interactions with radiative process in determining cloud lifecycle. The talk will draw heavily on the papers by Starr and Quante, Quante and Starr and Demoz et al., as well as recent results from the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems (WG2) Idealized Cirrus Model Comparison and Cirrus Parcel Model Comparison projects, as described in Starr et al. and Lin et al. Key issues in current cirrus cloud modeling will be described and discussed.

  1. The International Reference Ionosphere - Climatological Standard for the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    2006-01-01

    The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities. I will discuss the latest version of the IRI model, IRI-2006, highlighting the most recent changes and additions. Finally, the talk will review some of the applications of the IRI model with special emphasis on the use for radiowave propagation studies and communication purposes.

  2. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; Gerber, H.; Fairall, C. W.; Garrett, T. J.; Hudson, J.; Intrieri, J. M.; Jakob, C.; Jensen, T.; Lawson, P.; Marcotte, D.; Nguyen, L.

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  3. Stratiform clouds and their interaction with atmospheric motion

    NASA Technical Reports Server (NTRS)

    Clark, John H. E.; Shirer, Hampton N.

    1990-01-01

    During 1989 and 1990, the researchers saw the publication of two papers and the submission of a third for review on work supported primarily by the previous contract, NAS8-36150; the delivery of an invited talk at the SIAM Conference on Dynamical Systems in Orlando, Florida; and the start of two new projects on the radiative effects of stratocumulus on the large-scale flow. The published papers discuss aspects of stratocumulus circulations (Laufersweiler and Shirer, 1989) and the Hadley to Rossby regime transition in rotating spherical systems (Higgins and Shirer, 1990). The submitted paper (Haack and Shirer, 1990) discusses a new nonlinear model of roll circulations that are forced both dynamically and thermally. The invited paper by H. N. Shirer and R. Wells presented an objective means for determining appropriate truncation levels for low-order models of flows involving two incommensurate periods; this work has application to the Hadley to Rossby transition problem in quasi-geostrophic flows (Moroz and Holmes, 1984). The new projects involve the development of a multi-layered quasi-geostrophic channel model for study of the modulation of the large-scale flow by stratocumulus clouds that typically develop off the coasts of continents. In this model the diabatic forcing in the lowest layer will change in response to the (parameterized) development of extensive fields of stratocumulus clouds. To guide creation of this parameterization scheme, researchers are producing climatologies of stratocumulus frequency and the authors correlate these frequencies with the phasing and amplitude of the large-scale flow pattern. Researchers discuss the above topics in greater detail.

  4. Why Does the Leeward Side of Mt. Tamalpais Experience a Climatological Precipitation Maximum?

    NASA Astrophysics Data System (ADS)

    Christen, N.; Dempsey, D. P.; Stine, A.

    2015-12-01

    Climatological records show annual precipitation maximum values on the northeast side of Mt. Tamalpais in the San Francisco Bay Area, which is typically the leeward side during winter precipitation events. The town of Kentfield, CA, about five kilometers to the northeast of the mountain, has a significantly higher annual-average rainfall than adjacent locations, particularly compared with stations to its north and south. One hypothesis regarding this phenomenon is that the topography if Mt. Tamalpais creates convergence on the leeward side, thereby enhancing precipitation. If prevailing southwesterly winds during rainfall events are interrupted by the mountain and then flow around either side, converging on leeward side, then enhanced cloud formation and precipitation would replace the divergent flow characteristic to leeward slopes. A second hypothesis is that Mt. Tamalpais is narrow relative to the advective scale of orographically triggered precipitation. If the mountain is relatively narrow, precipitation from clouds generated orographically on the upwind side might not develop and fall until air within the clouds has reached the leeward side, where Kentfield lies. With a network of surface weather stations, we analyze precipitation accumulations to quantify the Kentfield rainfall maximum over a series of rainfall events during 2015. For these rainfall events, we evaluate how well a 1.1-km resolution WRF-ARW model reproduces the precipitation observations. To the extent that the model agrees with observations, we investigate mechanisms underlying the rainfall maximum by analyzing patterns of low-level wind convergence downwind of Mt. Tamalpais and patterns of vertical velocity and cloud and rain-water mixing ratios in vertical cross sections across Mt. Tamalpais, parallel to the wind flow for each rainfall event. Cross-sectional mixing ratio analyses provide evidence of precipitation development and advection and test the second of the aforementioned hypotheses

  5. A climatology of wet deposition scavenging ratios for the United States

    NASA Astrophysics Data System (ADS)

    Hicks, Bruce B.

    A decade of weekly measurements of precipitation chemistry obtained in the US National Atmospheric Deposition Program (NADP) are combined with air concentration measurements from the Atmospheric Integrated Research Monitoring Network (AIRMoN) to estimate scavenging ratios (of concentrations in rain to like concentrations in surface air) for the ions that dominate precipitation chemistry—sulfate, nitrate, and ammonium. The intention is to provide a climatology of these ratios, for use in evaluating models that are now simulating precipitation chemistry as well as air quality. The scavenging ratios that are computed are found to be distributed approximately log-normally, with a standard deviation corresponding to about a factor of two. That is, if scavenging ratios are used to predict precipitation chemistry and wet deposition, then geometric means should be considered and the error for any given weekly prediction should be expected to be described by a standard deviation of a factor of two. (It follows that for daily predictions, the factor increases to about five.) Scavenging ratios appear to be similar for nitrate and ammonium, with those for sulfate being somewhat larger and displaying a behavior indicative of the contribution of in-cloud conversion from gaseous sulfur dioxide. Seasonal cycles are similar for most locations. The limited data available for western US stations indicate, however, that these locations yield scavenging ratios that can be significantly different from those characterizing the east. The data are in accord with the conventional understanding regarding the cloud scavenging of sulfur dioxide. For summer, each sulfur dioxide molecule appears to pass through an average of 1.3 clouds before being scavenged as sulfate. For winter, the average is 4.8 clouds.

  6. Analysis of high-resolution simulations for the Black Forest region from a point of view of tourism climatology - a comparison between two regional climate models (REMO and CLM)

    NASA Astrophysics Data System (ADS)

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    An analysis of climate simulations from a point of view of tourism climatology based on two regional climate models, namely REMO and CLM, was performed for a regional domain in the southwest of Germany, the Black Forest region, for two time frames, 1971-2000 that represents the twentieth century climate and 2021-2050 that represents the future climate. In that context, the Intergovernmental Panel on Climate Change (IPCC) scenarios A1B and B1 are used. The analysis focuses on human-biometeorological and applied climatologic issues, especially for tourism purposes - that means parameters belonging to thermal (physiologically equivalent temperature, PET), physical (precipitation, snow, wind), and aesthetic (fog, cloud cover) facets of climate in tourism. In general, both models reveal similar trends, but differ in their extent. The trend of thermal comfort is contradicting: it tends to decrease in REMO, while it shows a slight increase in CLM. Moreover, REMO reveals a wider range of future climate trends than CLM, especially for sunshine, dry days, and heat stress. Both models are driven by the same global coupled atmosphere-ocean model ECHAM5/MPI-OM. Because both models are not able to resolve meso- and micro-scale processes such as cloud microphysics, differences between model results and discrepancies in the development of even those parameters (e.g., cloud formation and cover) are due to different model parameterization and formulation. Climatic changes expected by 2050 are small compared to 2100, but may have major impacts on tourism as for example, snow cover and its duration are highly vulnerable to a warmer climate directly affecting tourism in winter. Beyond indirect impacts are of high relevance as they influence tourism as well. Thus, changes in climate, natural environment, demography, tourists' demands, among other things affect economy in general. The analysis of the CLM results and its comparison with the REMO results complete the analysis performed

  7. CO observations of dark clouds in Lupus

    NASA Technical Reports Server (NTRS)

    Murphy, D. C.; Cohen, R.; May, J.

    1986-01-01

    C-12O observations covering 170 square degrees toward the southern T Association Lupus have revealed the presence of an extended physically related complex of dark clouds which have recently formed low mass stars. The estimated mass of the clouds (about 30,000 solar masses) is comparable to that of the nearby Ophiuchus dust clouds. The Lupus clouds are projected onto a gap between two subgroups of the Scorpio-Centaurus OB association suggesting that this long accepted subgrouping may require reinterpretation.

  8. SUCCESS Studies of the Impact of Aircraft on Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Condon, Estelle P. (Technical Monitor)

    1996-01-01

    During April of 1996 NASA will sponsor the SUCCESS project to better understand the impact of subsonic aircraft on the Earth's radiation budget. We plan to better determine the radiative properties of cirrus clouds and of contrails so that satellite observations can better determine their impact on Earth's radiation budget. We hope to determine how cirrus clouds form, whether the exhaust from subsonic aircraft presently affects the formation of cirrus clouds, and if the exhaust does affect the clouds whether the changes induced are of climatological significance. We seek to pave the way for future studies by developing and testing several new instruments. We also plan to better determine the characteristics of gaseous and particulate exhaust products from subsonic aircraft and their evolution in the region near the aircraft. In order to achieve our experimental objectives we plan to use the DC-8 aircraft as an in situ sampling platform. It will carry a wide variety of gaseous, particulate, radiative, and meteorological instruments. We will also use a T-39 aircraft primarily to sample the exhaust from other aircraft. It will carry a suite of instruments to measure particles and gases. We will employ an ER-2 aircraft as a remote sensing platform. The ER-2 will act as a surrogate satellite so that remote sensing observations can be related to the in situ parameters measured by the DC-8 and T-39. The mission strategy calls for a 5 week deployment beginning on April 8, 1996, and ending on May 10, 1996. During this time all three aircraft will be based in Salina, Kansas. A series of flights, averaging one every other day during this period, will be made mainly near the Department of Energy's Climate and Radiation Testbed site (CART) located in Northern Oklahoma, and Southern Kansas. During this same time period an extensive set of ground based measurements will be made by the DOE, which will also be operating several aircraft in the area to better understand the

  9. Mash-up of techniques between data crawling/transfer, data preservation/stewardship and data processing/visualization technologies on a science cloud system designed for Earth and space science: a report of successful operation and science projects of the NICT Science Cloud

    NASA Astrophysics Data System (ADS)

    Murata, K. T.

    2014-12-01

    Data-intensive or data-centric science is 4th paradigm after observational and/or experimental science (1st paradigm), theoretical science (2nd paradigm) and numerical science (3rd paradigm). Science cloud is an infrastructure for 4th science methodology. The NICT science cloud is designed for big data sciences of Earth, space and other sciences based on modern informatics and information technologies [1]. Data flow on the cloud is through the following three techniques; (1) data crawling and transfer, (2) data preservation and stewardship, and (3) data processing and visualization. Original tools and applications of these techniques have been designed and implemented. We mash up these tools and applications on the NICT Science Cloud to build up customized systems for each project. In this paper, we discuss science data processing through these three steps. For big data science, data file deployment on a distributed storage system should be well designed in order to save storage cost and transfer time. We developed a high-bandwidth virtual remote storage system (HbVRS) and data crawling tool, NICTY/DLA and Wide-area Observation Network Monitoring (WONM) system, respectively. Data files are saved on the cloud storage system according to both data preservation policy and data processing plan. The storage system is developed via distributed file system middle-ware (Gfarm: GRID datafarm). It is effective since disaster recovery (DR) and parallel data processing are carried out simultaneously without moving these big data from storage to storage. Data files are managed on our Web application, WSDBank (World Science Data Bank). The big-data on the cloud are processed via Pwrake, which is a workflow tool with high-bandwidth of I/O. There are several visualization tools on the cloud; VirtualAurora for magnetosphere and ionosphere, VDVGE for google Earth, STICKER for urban environment data and STARStouch for multi-disciplinary data. There are 30 projects running on the NICT

  10. Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.

    PubMed

    Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James

    2012-06-01

    Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.

  11. Analysis of Cirrus Cloud Microphysical Data

    NASA Technical Reports Server (NTRS)

    Poellot, Michael R.; Grainger, Cedric A.

    1999-01-01

    The First International Satellite Cloud Climatology Regional Experiment (FIRE) program has the goal of improving our capabilities to understand, model and detect the properties of climatically-important clouds. This is being undertaken through a three-pronged effort of modeling, long-term observations and short-term intensive field studies. Through examination of satellite and other data it is apparent that stratus and cirrus cloud types have the greatest impact on climate due to their radiative effects and ubiquitous nature. As a result, the FIRE program has developed two paths of investigation, each having its own subset of research objectives and measurement programs. The work conducted under this grant was directed toward furthering our understanding of cirrus cloud systems. While it is known that cirrus are climatically important, the magnitude and even sign of the impact is unclear. Cirrus clouds affect the transfer of radiation according to their physical depth and location in the atmosphere and their microphysical composition. However, significant uncertainties still exist in how cirrus clouds form and how they are maintained, what their physical properties are and how they can be parameterized in numerical models. Better remote sensing techniques for monitoring cirrus cloud systems and improved modeling of radiative transfer through ice particles are also needed. A critical element in resolving these issues is a better understanding of cirrus cloud microphysical properties and how they vary. The focus of the research to be conducted under this grant was th data collected in situ by the University of North Dakota Citation aircraft. The goals of this research were to add to the body of knowledge of cirrus cloud microphysics, particularly at the small end of the size spectrum; and analyze the spatial variation of cirrus clouds.

  12. Cloud Control

    ERIC Educational Resources Information Center

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  13. Cloud Cover

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  14. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  15. Cloud Control

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2012-01-01

    Your learning curriculum needs a new technological platform, but you don't have the expertise or IT equipment to pull it off in-house. The answer is a learning system that exists online, "in the cloud," where learners can access it anywhere, anytime. For trainers, cloud-based coursework often means greater ease of instruction resulting in greater…

  16. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image Stratus clouds are common in the Arctic during the summer months, and are important modulators of ... from MISR's two most obliquely forward-viewing cameras. The cold, stable air causes the clouds to persist in stratified layers, and this ...

  17. Wind Climate Analyses for SRTC's Central Climatology Site

    SciTech Connect

    Weber, A.H.

    2003-06-23

    This report was written to present climatological summaries of the wind data at the Central Climatology (CC) tower in a convenient format and to point out some features of the wind speed and direction that have not been widely appreciated in the past. Short-term (two-week) wind roses provide a means to demonstrate the temporal and spatial relationships that wind speed and direction undergo using a ten-year database from the CC tower. These relationships are best demonstrated by examining the figures provided in this report or looking at loops of computer-generated images provided by the authors.

  18. Seasonal variation of surface and atmospheric cloud radiative forcing over the globe derived from satellite data

    NASA Technical Reports Server (NTRS)

    Gupta, Shashi K.; Staylor, W. Frank; Darnell, Wayne L.; Wilber, Anne C.; Ritchey, Nancy A.

    1993-01-01

    Global distributions of surface and atmospheric cloud radiative forcing parameters have been derived using parameterized radiation models with satellite meteorological data from the International Satellite Cloud Climatology Project, and directly measured top-of-atmosphere radiative fluxes from the Earth Radiation Budget Experiment. Specifically, shortwave, longwave, and total cloud forcing at the surface, and column-averaged values of longwave cloud forcing of the atmosphere were derived for the midseasonal months of April, July, and October 1985 and January 1986, covering a complete annual cycle. Seasonal variability is illustrated by comparing the results for July 1985 and January 1986, which represent the seasonal extremes. Surface shortwave cloud forcing is always negative, representing a cooling of the surface, with strongest cooling (-120 to -180 W/sq m) occurring over midlatitude storm tracks of the summer hemisphere. Surface longwave cloud forcing is always positive, representing a warming of the surface, with strongest warming (60 to 75 W/sq m) occurring over storm tracks of the winter hemisphere. Zonal averages show the entire summer hemisphere dominated by shortwave cooling, the middle and high latitudes of the winter hemisphere dominated by longwave warming, and a broad zone of transition in between. The globally averaged total cloud forcing amounts to a cooling throughout the year, ranging from a low of about -12 W/sq m for July 1985 to a high of about -25 W/sq m for January 1986. The longwave cloud forcing of the atmosphere shows a strong warming over deep convective regions in the tropics and a moderate cooling outside the tropics, amounting to a weak cooling (-2 to -5 W/sq m) in the global average. Comparisons of the results with general circulation model simulations show broad qualitative agreement regarding the locations of prominent warming and cooling regions. Quantitative comparisons, on the other hand, show significant differences between the

  19. Climatological analysis of precipitation patterns over Mount Baldo (Southern Alps)

    NASA Astrophysics Data System (ADS)

    Poletti, G.; Zardi, D.; de Franceschi, M.

    2010-09-01

    The mountain range of Mount Baldo is an elongated chain in the southern Prealps. Bounded on the western side by Lake Garda, and on the eastern side by the parallel-running deep furrow of the River Adige Valley, the whole Mount Baldo range stretches in the direction southwest-northeast for about 40 km, from the southern highlands of Caprino Veronese up to the elevated saddle joining the surroundings of Rovereto (in the Adige Valley) to the plain of Nago-Torbole (northern shore of Lake Garda). Mount Baldo displays for most of its length a sharp and uninterrupted crest ridge, mostly running over 2000 m MSL. Its surface covers a variety of altitudinal ranges, from 65 m MSL at the mountain feet, along the Lake Garda shores, to 2,218 m MSL at its highest peak (Cima Valdritta). Furthermore the particular layout of being the southernmost alpine headland, projecting as a balcony over the Po Plain, makes it exposed to the climatic influence of the larger Mediterranean basin. All of these factors concurred to develop a remarkable variety of local microclimates, geographical characters and ecosystems. In particular Mount Baldo is well known for its varied flora, whence it has been named, since 16th century, Hortus Europae (Europe Garden). Precipitation is one of the key factors characterising the peculiar local climates of Mount Baldo. Various precipitation features can be produced by a variety of processes, including both orographic uplift of moist air advected by synoptic systems, and evaporation and up-slope advection of moist air from Lake Garda or from the Po Plain. Furthermore these effects may variously develop, and even combine, under different meteorological scenarios. In the present contribution the preliminary results are shown from a research work aiming at retrieving, collecting in a homogeneous dataset and analysing data from 18 weather stations disseminated on Mount Baldo, in order to produce a climatological analysis of precipitation in the area. The whole

  20. Cloudnet Project

    DOE Data Explorer

    Hogan, Robin

    2008-01-15

    Cloudnet is a research project supported by the European Commission. This project aims to use data obtained quasi-continuously for the development and implementation of cloud remote sensing synergy algorithms. The use of active instruments (lidar and radar) results in detailed vertical profiles of important cloud parameters which cannot be derived from current satellite sensing techniques. A network of three already existing cloud remote sensing stations (CRS-stations) will be operated for a two year period, activities will be co-ordinated, data formats harmonised and analysis of the data performed to evaluate the representation of clouds in four major european weather forecast models.

  1. SAGE III L2 Monthly Cloud Presence Data (Binary)

    Atmospheric Science Data Center

    2016-06-14

    SAGE III L2 Monthly Cloud Presence Data Project Title:  SAGE III ... FTP Access:  Data Pool Parameters:  Cloud Amount/Frequency Cloud Height Cloud Vertical Distribution ... Order Data: Contact User Services:  Order Data Temporal Coverage: ...

  2. The Earliest Phases of Star Formation (EPoS): a Herschel key project. The thermal structure of low-mass molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Launhardt, R.; Stutz, A. M.; Schmiedeke, A.; Henning, Th.; Krause, O.; Balog, Z.; Beuther, H.; Birkmann, S.; Hennemann, M.; Kainulainen, J.; Khanzadyan, T.; Linz, H.; Lippok, N.; Nielbock, M.; Pitann, J.; Ragan, S.; Risacher, C.; Schmalzl, M.; Shirley, Y. L.; Stecklum, B.; Steinacker, J.; Tackenberg, J.

    2013-03-01

    Context. The temperature and density structure of molecular cloud cores are the most important physical quantities that determine the course of the protostellar collapse and the properties of the stars they form. Nevertheless, density profiles often rely either on the simplifying assumption of isothermality or on observationally poorly constrained model temperature profiles. The instruments of the Herschel satellite provide us for the first time with both the spectral coverage and the spatial resolution that is needed to directly measure the dust temperature structure of nearby molecular cloud cores. Aims: With the aim of better constraining the initial physical conditions in molecular cloud cores at the onset of protostellar collapse, in particular of measuring their temperature structure, we initiated the guaranteed time key project (GTKP) "The Earliest Phases of Star Formation" (EPoS) with the Herschel satellite. This paper gives an overview of the low-mass sources in the EPoS project, the Herschel and complementary ground-based observations, our analysis method, and the initial results of the survey. Methods: We study the thermal dust emission of 12 previously well-characterized, isolated, nearby globules using FIR and submm continuum maps at up to eight wavelengths between 100 μm and 1.2 mm. Our sample contains both globules with starless cores and embedded protostars at different early evolutionary stages. The dust emission maps are used to extract spatially resolved SEDs, which are then fit independently with modified blackbody curves to obtain line-of-sight-averaged dust temperature and column density maps. Results: We find that the thermal structure of all globules (mean mass 7 M⊙) is dominated by external heating from the interstellar radiation field and moderate shielding by thin extended halos. All globules have warm outer envelopes (14-20 K) and colder dense interiors (8-12 K) with column densities of a few 1022 cm-2. The protostars embedded in some

  3. Latitudinal variations of cloud base height and lightning parameters in the tropics

    NASA Technical Reports Server (NTRS)

    Mushtak, V. C.; Williams, E. R.; Boccippio, D. J.

    2006-01-01

    The observed reduction in cloud-to-ground lightning in the new-equational zone is examined from the perspective of the width of the main negative charge region. Thermodynamic observations of cloud base height also show a climatological minimum value in the near-equatorial region. The association of low cloud base with both narrow updrafts and narrow changing zones may impede the bridging of the large air gap to ground, and thereby suppress cloud-to-ground lightning activity. This width dependence may be more important than the approx. 10% variation in height of the freezing level in the encouraging flashes to ground.

  4. A cloud model-radiative model combination for determining microwave TB-rain rate relations

    NASA Technical Reports Server (NTRS)

    Szejwach, Gerard; Adler, Robert F.; Jobard, Esabelle; Mack, Robert A.

    1986-01-01

    The development of a cloud model-radiative transfer model combination for computing average brightness temperature, T(B), is discussed. The cloud model and radiative transfer model used in this study are described. The relations between rain rate, cloud and rain water, cloud and precipitation ice, and upwelling radiance are investigated. The effects of the rain rate relations on T(B) under different climatological conditions are examined. The model-derived T(B) results are compared to the 92 and 183 GHz aircraft observations of Hakkarinen and Adler (1984, 1986) and the radar-estimated rain rate of Hakkarinen and Adler (1986); good correlation between the data is detected.

  5. A satellite observation test bed for cloud parameterization development

    NASA Astrophysics Data System (ADS)

    Lebsock, M. D.; Suselj, K.

    2015-12-01

    We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.

  6. Scaling Critical Zone analysis tasks from desktop to the cloud utilizing contemporary distributed computing and data management approaches: A case study for project based learning of Cyberinfrastructure concepts

    NASA Astrophysics Data System (ADS)

    Swetnam, T. L.; Pelletier, J. D.; Merchant, N.; Callahan, N.; Lyons, E.

    2015-12-01

    Earth science is making rapid advances through effective utilization of large-scale data repositories such as aerial LiDAR and access to NSF-funded cyberinfrastructures (e.g. the OpenTopography.org data portal, iPlant Collaborative, and XSEDE). Scaling analysis tasks that are traditionally developed using desktops, laptops or computing clusters to effectively leverage national and regional scale cyberinfrastructure pose unique challenges and barriers to adoption. To address some of these challenges in Fall 2014 an 'Applied Cyberinfrastructure Concepts' a project-based learning course (ISTA 420/520) at the University of Arizona focused on developing scalable models of 'Effective Energy and Mass Transfer' (EEMT, MJ m-2 yr-1) for use by the NSF Critical Zone Observatories (CZO) project. EEMT is a quantitative measure of the flux of available energy to the critical zone, and its computation involves inputs that have broad applicability (e.g. solar insolation). The course comprised of 25 students with varying level of computational skills and with no prior domain background in the geosciences, collaborated with domain experts to develop the scalable workflow. The original workflow relying on open-source QGIS platform on a laptop was scaled to effectively utilize cloud environments (Openstack), UA Campus HPC systems, iRODS, and other XSEDE and OSG resources. The project utilizes public data, e.g. DEMs produced by OpenTopography.org and climate data from Daymet, which are processed using GDAL, GRASS and SAGA and the Makeflow and Work-queue task management software packages. Students were placed into collaborative groups to develop the separate aspects of the project. They were allowed to change teams, alter workflows, and design and develop novel code. The students were able to identify all necessary dependencies, recompile source onto the target execution platforms, and demonstrate a functional workflow, which was further improved upon by one of the group leaders over

  7. Methods for Cloud Cover Estimation

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Huning, J. R.; Smith, J. H.; Logan, T. L.

    1984-01-01

    Several methods for cloud cover estimation are described relevant to assessing the performance of a ground-based network of solar observatories. The methods rely on ground and satellite data sources and provide meteorological or climatological information. One means of acquiring long-term observations of solar oscillations is the establishment of a ground-based network of solar observatories. Criteria for station site selection are: gross cloudiness, accurate transparency information, and seeing. Alternative methods for computing this duty cycle are discussed. The cycle, or alternatively a time history of solar visibility from the network, can then be input to a model to determine the effect of duty cycle on derived solar seismology parameters. Cloudiness from space is studied to examine various means by which the duty cycle might be computed. Cloudiness, and to some extent transparency, can potentially be estimated from satellite data.

  8. CGILS: Results from the First Phase of an International Project to Understand the Physical Mechanisms of Low Cloud Feedbacks in Single Column Models

    NASA Technical Reports Server (NTRS)

    Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony; DeRoode, Stephan R.; Endo, Satoshi; Franklin, Charmaine N.; Oolaz, Jean-Christophe; Hannay, Cecile; Heus, Thijs; Isotta, Francesco Alessandro; Dufresne, Jean-Louis; Kang, In-Sik; Kawai, Hideaki; Kiehler, Martin; Larson, Vincent E.; Liu, Yangang; Lock, Adrian P.; Lohmann, Ulrike; Molod, Andrea M.; Suarez, Max J.

    2013-01-01

    1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations

  9. Some Spatial Aspects of Southeastern United States Climatology.

    ERIC Educational Resources Information Center

    Soule, Peter T.

    1998-01-01

    Focuses on the climatology of an eight-state region in the southern and southeastern United States. Discusses general controls of climate and spatial patterns of various climatic averages. Examines mapped extremes as a means of fostering increased awareness of the variability that exists for climatic conditions in the region. (CMK)

  10. A Total Lightning Climatology for the Tennessee Valley Region

    NASA Technical Reports Server (NTRS)

    McCaul, E. W.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hallm, J.; Bateman, M.

    2003-01-01

    Total flash counts derived from the North Alabama Lightning Mapping Array are being processed for 2002 to form a climatology of total lightning for the Tennessee Valley region. The data from this active and interesting period will be compared to data fiom the National Lightning Detection Network, space-based lightning sensors, and weather radars.

  11. A climatological description of the Savannah River Site

    SciTech Connect

    Hunter, C.H.

    1990-05-22

    This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site or near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.

  12. Climatology of tropopause folds over a European Arctic station (Esrange)

    NASA Astrophysics Data System (ADS)

    Rao, T. Narayana; Arvelius, J.; Kirkwood, S.

    2008-04-01

    Eleven years (September 1996 to August 2007) of continuous measurements of three-dimensional wind and backscattered signal strength observed with Esrange Radar (ESRAD) have been utilized to study the annual and interannual variation of tropopause folds over an Arctic station. Two typical tropopause fold events (one is associated with a streamer type of system and the other with a cutoff low) are selected and are characterized with the help of synoptic charts and potential vorticity (PV) analysis. Typical characteristics of radar parameters during the passage of folds are identified, such as the sudden rise in the tropopause altitude, high-reflectivity layer sloping downward from the tropopause beneath the jet stream, and intensification of the jet stream. These characteristics are utilized to discern the tropopause fold in the radar data. The climatology of tropopause folds exhibits a pronounced annual cycle with a large number of folds in winter and fewer in summer. The annual cycle of folds is more or less similar in all the years; however, significant interannual variation is observed with winter periods exhibiting maximum interannual variability. The climatology of folds and its annual cycle are compared and contrasted with similar climatological studies available in the literature. The differences in the climatologies are discussed in light of differences in the algorithms and the spatial variability of fold frequency.

  13. Biologically effective surface UV climatology at Rome and Aosta, Italy

    NASA Astrophysics Data System (ADS)

    Siani, Anna Maria; Modesti, Sarah; Casale, Giuseppe Rocco; Diemoz, Henri; Colosimo, Alfredo

    2013-05-01

    Given the beneficial and harmful effects of UV radiation on human health, our study aims to provide a characterization of erythemal and vitamin D dose rates at two Italian sites, Rome and Aosta, subject to quite different environmental conditions. Based on the respective UV climatologies, exposure times needed to induce erythema or vitamin D photoproduction are provided as a function of the UV index.

  14. Interannual Variability in Radiative Cloud Effects and Cloud Macrophysical Properties From Surface Measurements

    NASA Astrophysics Data System (ADS)

    Long, C. N.; Ackerman, T. P.; Gaustad, K. L.; Turner, D. D.; Barnard, J. C.

    2005-12-01

    Recently significant progress has been made in inferring cloud effects and cloud macrophysical properties using surface measurements of broadband irradiance and basic meteorological variables. These "Flux Analysis" methodologies build on the original work by Long and Ackerman (2000), who show that these techniques include a high degree of repeatability since both the clear-sky and all-sky values include the same measuring instrument characteristics. Thus the resultant all-sky/clear-sky ratios and differences, while not reflecting improvement in the absolute accuracy inherent in the measurements, do lend themselves well to trend analyses. We will present results of the Flux Analysis methodology applied to measurements from various ARM and BSRN sites spanning the years of available data. These results include analyses of shortwave (SW) and longwave (LW) all-sky and clear-sky climatology; SW, LW, and net cloud effects; total (daylight) and LW effective (24 hour) fractional sky cover; cloud visible optical thickness; and estimates of cloud field effective radiating temperature and radiating surface height. Preliminary results of the upwelling components of clear-sky and cloud effect will also be presented, and used to infer the total net surface radiative cloud forcing.

  15. The MACHO Project Large Magellanic Cloud microlensing results from the first two years and the nature of the galactic dark halo

    SciTech Connect

    Alcock, C. |; Allsman, R.A.; Alves, D. |; Axelrod, T.S.; Becker, A.C. |; Bennett, D.P. |||; Cook, K.H. |; Freeman, K.C.; Griest, K.; Guern, J.; Lehner, M.J. |; Marshall, S.L. |

    1997-09-01

    The MACHO Project is a search for dark matter in the form of massive compact halo objects (MACHOs). Photometric monitoring of millions of stars in the Large Magellanic Cloud (LMC), Small Magellanic Cloud (SMC), and Galactic bulge is used to search for gravitational microlensing events caused by these otherwise invisible objects. Analysis of the first 2.1 yr of photometry of 8.5 million stars in the LMC reveals eight candidate microlensing events. This is substantially more than the number expected ({approximately}1.1) from lensing by known stellar populations. The timescales (t) of the events range from 34 to 145 days. We estimate the total microlensing optical depth toward the LMC from events with 2{lt}{cflx t}{lt}200 days to be {tau}{sub 2}{sup 200}=2.9{sub {minus}0.9}{sup +1.4}{times}10{sup {minus}7} based upon our eight event sample. This exceeds the optical depth, {tau}{sub backgnd}=0.5{times}10{sup {minus}7}, expected from known stars, and the difference is to be compared with the optical depth predicted for a {open_quotes}standard{close_quotes} halo composed entirely of MACHOs: {tau}{sub halo}=4.7{times}10{sup {minus}7}. To compare with Galactic halo models, we perform likelihood analyses on the full eight-event sample and a six-event subsample (which allows for two events to be caused by a nonhalo {open_quotes}background{close_quotes}). This gives a fairly model-independent estimate of the halo mass in MACHOs within 50 kpc of 2.0{sub {minus}0.7}{sup +1.2}{times}10{sup 11}M{sub {circle_dot}}, which is about half of the {open_quotes}standard halo{close_quotes} value. We also find a most probable MACHO mass of 0.5{sub {minus}0.2}{sup +0.3}M{sub {circle_dot}}, although this value is strongly model dependent. In addition, the absence of short duration events places stringent upper limits on the contribution of low-mass MACHOs: objects from 10{sup {minus}4}M{sub {circle_dot}} to 0.03M{sub {circle_dot}} contribute {approx_lt}20{percent} of the {open

  16. The interaction between warm conveyor belts and breaking Rossby waves: a climatological perspective.

    NASA Astrophysics Data System (ADS)

    Madonna, Erica; Joos, Hanna; Martius, Olivia; Aebi, Christine; Limbach, Sebastian

    2014-05-01

    Warm conveyor belts (WCBs) are moist ascending airstreams in extratropical cyclones. Climatologically, they are key for the meridional and vertical transport of water vapour and heat. The rapid ascent of WCBs from the boundary layer to the upper troposphere in about 1-2 days leads to cloud formation, (intense) precipitation and the release of latent heat, which modifies their potential vorticity (PV) value in a significant way. Typically WCBs reach the tropopause level with low PV values (~0.5 pvu) and therefore the cross-isentropic transport of low-PV air in WCBs can amplify upper-level Rossby waves and contribute to the formation of PV streamers downstream. Here, filamentary PV streamers are regarded as clear signs of breaking Rossby waves. They in turn can act as precursors of extreme weather events and/or trigger the genesis of another cyclone, potentially generating a new WCB. The aim of this study is to quantify the interaction of WCBs and PV-streamers from a climatological point of view for the ERA-Interim data set for the period 1989-2010. WCBs are identified from comprehensive trajectory calculations that select air parcels in the vicinity of cyclones with a minimum ascent of 600 hPa in 48 hours. From these WCB trajectories, coherent features of WCB outflows are derived and checked for overlapping with PV streamers, which are identified using a contour searching algorithm. Both, WCBs and PV-streamers are then tracked using a novel feature tracking technique, which is based upon a modified region growing approach. With this technique, the interaction of WCBs and PV-streamers is analysed for a 22-years period leading to novel insight about the role of WCBs for triggering the breaking of Rossby waves, as well as, vice versa, about the importance of PV-streamers for the formation of new WCBs.

  17. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ... title:  Multi-layer Clouds Over the South Indian Ocean     View Larger Image ... a noticeable cyclonic circulation over the Southern Indian Ocean, to the north of Enderbyland, East Antarctica. The image at left was ...

  18. Noctilucent clouds

    NASA Astrophysics Data System (ADS)

    Gadsden, M.

    An assessment of spacecraft, sounding rocket and ground level observational data on the noctilucent clouds which appear during summertime, at high latitudes, near the top of the mesosphere shows that these data are not sufficiently unambiguous and clear to permit conclusions as to the nature of the clouds. Although they seem to be ice particles nucleated at very low temperatures and pressures by either meteoric smoke or atmospheric ions, the very existence of the clouds poses the problem of how so much water vapor could be present at such a great height. An attempt is made to predict the microscopic behavior of the cloud particles through consideration of the relative importance of radiometer effects, radiation balance, Brownian movement, electric polarization, and the influence of Coulomb attraction on the growth of large clustered ions.

  19. Low Cloud Cover-Adjusted Ultraviolet B Irradiance Is Associated with High Incidence Rates of Leukemia: Study of 172 Countries

    PubMed Central

    2015-01-01

    There are 52,380 cases of leukemia and 24,090 deaths from it in the US annually. Its causes are unknown and no preventive strategies have been implemented. We hypothesized that leukemia is due mainly to vitamin D deficiency, which is due mainly to low solar ultraviolet B (UVB) irradiance. To test this hypothesis, we estimated age-standardized cloud-cover-adjusted winter UVB irradiance using cloud cover data from the International Satellite Cloud Climatology Project, latitudes of population centroids, and standard astronomical calculations. Incidence rates for 172 countries, available from the International Agency for Cancer Research, were plotted according to cloud-adjusted UVB irradiance. We used multiple regression to account for national differences in elevation and average life expectancy. Leukemia incidence rates were inversely associated with cloud-adjusted UVB irradiance in males (p ≤ 0.01) and females (p ≤ 0.01) in both hemispheres. There were few departures from the trend line, which was parabolic when plotted with the equator at the center of the display, northern hemisphere countries on the right side and southern hemisphere countries on the left. The bivariate association displayed by the polynomial trend line indicated that populations at higher latitudes had at least two times the risk of leukemia compared to equatorial populations. The association persisted in males (p ≤ 0.05) and females (p ≤ 0.01) after controlling for elevation and life expectancy. Incidence rates of leukemia were inversely associated with solar UVB irradiance. It is plausible that the association is due to vitamin D deficiency. This would be consistent with laboratory studies and a previous epidemiological study. Consideration should be given to prudent use of vitamin D for prevention of leukemia. PMID:26637119

  20. Low Cloud Cover-Adjusted Ultraviolet B Irradiance Is Associated with High Incidence Rates of Leukemia: Study of 172 Countries.

    PubMed

    Cuomo, Raphael E; Garland, Cedric F; Gorham, Edward D; Mohr, Sharif B

    2015-01-01

    There are 52,380 cases of leukemia and 24,090 deaths from it in the US annually. Its causes are unknown and no preventive strategies have been implemented. We hypothesized that leukemia is due mainly to vitamin D deficiency, which is due mainly to low solar ultraviolet B (UVB) irradiance. To test this hypothesis, we estimated age-standardized cloud-cover-adjusted winter UVB irradiance using cloud cover data from the International Satellite Cloud Climatology Project, latitudes of population centroids, and standard astronomical calculations. Incidence rates for 172 countries, available from the International Agency for Cancer Research, were plotted according to cloud-adjusted UVB irradiance. We used multiple regression to account for national differences in elevation and average life expectancy. Leukemia incidence rates were inversely associated with cloud-adjusted UVB irradiance in males (p ≤ 0.01) and females (p ≤ 0.01) in both hemispheres. There were few departures from the trend line, which was parabolic when plotted with the equator at the center of the display, northern hemisphere countries on the right side and southern hemisphere countries on the left. The bivariate association displayed by the polynomial trend line indicated that populations at higher latitudes had at least two times the risk of leukemia compared to equatorial populations. The association persisted in males (p ≤ 0.05) and females (p ≤ 0.01) after controlling for elevation and life expectancy. Incidence rates of leukemia were inversely associated with solar UVB irradiance. It is plausible that the association is due to vitamin D deficiency. This would be consistent with laboratory studies and a previous epidemiological study. Consideration should be given to prudent use of vitamin D for prevention of leukemia. PMID:26637119

  1. Assessing Extremes Climatology Using NWS Local Climate Analysis Tool

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Hollingshead, A.; Hilderbrand, D.; Mayes, B.; Hartley, T.; Kempf McGavock, N. M.; Lau, E.; Olenic, E. A.; Motta, B.; Bunge, R.; Brown, L. E.; Fritsch, F.

    2010-12-01

    The Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices’ ability to access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NWS Regional Headquarters, Weather Forecast Offices, Weather Service Offices, and River Forecast Centers the ability to conduct regional and local climate studies using station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. Field offices need standardized, scientifically sound methodology for local climate analysis (such as trend, composites, and principal statistical and time-series analysis) that is comprehensive, accessible, and efficient, with the potential to expand with growing NOAA Climate Services needs. The methodology for climate analyses is practiced by the NWS Climate Prediction Center (CPC), NOAA National Climatic Data Center, and NOAA Earth System Research Laboratory, as well as NWS field office staff. LCAT will extend this practice at the local level, allowing it to become both widespread and standardized, and thus improve NWS climate services capabilities. LCAT focus is on the local scale (as opposed to national and global scales of CPC products). The LCAT will: -Improve professional competency of local office staff and expertise in providing local information to their users. LCAT will improve quality of local climate services -Ensure adequate local input to CPC products that depend on local information, such as the U.S. Drought Monitor. LCAT will allow improvement of CPC climate products -Allow testing of local climate variables beyond temperature averages and precipitation totals such as climatology of

  2. Assessment of cloud cover in climate models and reanalysis databases with ISCCP over the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Enriquez, Aaron; Calbo, Josep; Gonzalez, Josep-Abel

    2013-04-01

    Clouds are an important regulator of climate due to their influence on the water balance of the atmosphere and their interaction with solar and infrared radiation. At any time, clouds cover a great percentage of the Earth's surface but their distribution is very irregular along time and space, which makes the evaluation of their influence on climate a difficult task. At present there are few studies related to cloud cover comparing current climate models with observational data. In this study, the database of monthly cloud cover provided by the International Satellite Cloud Climatology Project (ISCCP) has been chosen as a reference against which we compare the output of CMIP5 climate models and reanalysis databases, on the domain South-Europe-Mediterranean (SEM) established by the Intergovernmental Panel on Climate Change (IPCC) [1]. The study covers the period between 1984 and 2009, and the performance of cloud cover estimations for seasons has also been studied. To quantify the agreement between the databases we use two types of statistics: bias and SkillScore, which is based on the probability density functions (PDFs) of the databases [2]. We also use Taylor diagrams to visualize the statistics. Results indicate that there are areas where the models accurately describe what it is observed by ISCCP, for some periods of the year (e.g. Northern Africa, for autumn), compared to other areas and periods for which the agreement is lower (Iberian Peninsula in winter and the Black Sea for the summer months). However these differences should be attributed not only to the limitations of climate models, but possibly also to the data provided by ISCCP. References [1] Intergovernmental Panel on Climate Change (2007) Fourth Assessment Report: Climate Change 2007: Working Group I Report: The Physical Science Basis. [2] Ranking the AR4 climate models over the Murray Darling Basin using simulated maximum temperature, minimum temperature and precipitation. Int J Climatol 28

  3. North Alabama Total Lightning Climatology in Support of Lightning Safety Operations

    NASA Astrophysics Data System (ADS)

    Stano, G. T.; Schultz, C. J.; Koshak, W. J.

    2015-12-01

    The North Alabama Lightning Mapping Array (NALMA) was installed in 2001 to observe total lightning (cloud-to-ground and intra-cloud) and study its relationship to convective activity. NALMA has served as ground-truth for the Tropical Rainfall Measuring Mission Lightning Imager (TRMM-LIS) and will again for the GOES-R Geostationary Lightning Mapper (GLM). Also, NASA's Short-term Prediction Research and Transition Center (SPoRT) has transitioned these data to National Weather Service Weather Forecast Offices to evaluate the impact in operations since 2003. This study focuses on seasonal and diurnal observations from NALMA's 14 year history. This is initially intended to improve lightning safety at Marshall Space Flight Center, but has other potential applications. Improvements will be made by creating a dataset to investigate temporal, spatial, and seasonal patterns in total lightning over the Tennessee Valley, compare these observations to background environmental parameters and the TRMM-LIS climatology, and investigate applying these data to specific points of interest. Unique characteristics, such as flash extent density and length of flashes can be investigated, which are unavailable from other lightning networks like the National Lightning Detection Network (NLDN). The NALMA and NLDN data can be combined such that end users can use total lightning to gain lead time on the initial cloud-to-ground flash of a storm and identify if lightning is extending far from the storm's core. This spatial extent can be analyzed to determine how often intra-cloud activity may impinge on a region of interest and how often a cloud-to-ground strike may occur in the region. The seasonal and diurnal lightning maps can aid with planning of various experiments or tests that often require some knowledge about future weather patterns months in advance. The main goal is to develop a protocol to enhance lightning safety everywhere once the Geostationary Lightning Mapper (GLM) is on orbit

  4. Quantifying uncertainty in precipitation climatology, twenty-first century change, and teleconnections in global climate models

    NASA Astrophysics Data System (ADS)

    Langenbrunner, Baird Grant

    The ability of global climate models (GCMs) to simulate climatological precipitation and other features of the hydrological cycle accurately is acceptable by some metrics, especially at large scales. Regionally, however, there can be substantial discrepancy in a multi-model ensemble, both in the annual or seasonal historical precipitation climatology as well as in end-of-century changes. Characterizing this intermodel spread and identifying leading uncertainty patterns and underlying physical pathways is important in constraining climatological biases and projections of future change. This dissertation looks at three aspects of precipitation uncertainty in ensembles. First, El Nino-Southern Oscillation (ENSO) teleconnections are analyzed in an atmosphere-only ensemble to gauge the ability of atmospheric components of GCMs to reproduce ENSO precipitation teleconnections. This serves as a test for how well models simulate the atmospheric response to sea surface temperature forcing in the immediate ENSO vicinity, as well as how accurately they reproduce the large-scale tropical-to-midlatitude dynamics leading to teleconnected precipitation. While individual models have difficulty in simulating the exact spatial pattern of teleconnections, they demonstrate skill in regional amplitude measures and sign agreement of the precipitation teleconnections at the grid point level, which lends value to the use of such measures in global warming projections. Next, objective spatial analysis techniques are applied to a fully-coupled GCM ensemble in order to visualize patterns of uncertainty in end-of-century precipitation changes and in the historical climatology. Global patterns are considered first, with the tropics exerting a clear dominance in intermodel spread, mainly within zones of deep convection or along convective margins. Regional domains are considered second, with a focus on the wintertime midlatitude Pacific storm track. A key region of end-of-century precipitation

  5. When STAR meets the Clouds - Virtualization & Cloud Computing Experiences

    NASA Astrophysics Data System (ADS)

    Lauret, J.; Walker, M.; Goasguen, S.; Stout, L.; Fenn, M.; Balewski, J.; Hajdu, L.; Keahey, K.

    2011-12-01

    In recent years, Cloud computing has become a very attractive paradigm and popular model for accessing distributed resources. The Cloud has emerged as the next big trend. The burst of platform and projects providing Cloud resources and interfaces at the very same time that Grid projects are entering a production phase in their life cycle has however raised the question of the best approach to handling distributed resources. Especially, are Cloud resources scaling at the levels shown by Grids? Are they performing at the same level? What is their overhead on the IT teams and infrastructure? Rather than seeing the two as orthogonal, the STAR experiment has viewed them as complimentary and has studied merging the best of the two worlds with Grid middleware providing the aggregation of both Cloud and traditional resources. Since its first use of Cloud resources on Amazon EC2 in 2008/2009 using a Nimbus/EC2 interface, the STAR software team has tested and experimented with many novel approaches: from a traditional, native EC2 approach to the Virtual Organization Cluster (VOC) at Clemson University and Condor/VM on the GLOW resources at the University of Wisconsin. The STAR team is also planning to run as part of the DOE/Magellan project. In this paper, we will present an overview of our findings from using truly opportunistic resources and scaling-out two orders of magnitude in both tests and practical usage.

  6. Further developments in cloud statistics for computer simulations

    NASA Technical Reports Server (NTRS)

    Chang, D. T.; Willand, J. H.

    1972-01-01

    This study is a part of NASA's continued program to provide global statistics of cloud parameters for computer simulation. The primary emphasis was on the development of the data bank of the global statistical distributions of cloud types and cloud layers and their applications in the simulation of the vertical distributions of in-cloud parameters such as liquid water content. These statistics were compiled from actual surface observations as recorded in Standard WBAN forms. Data for a total of 19 stations were obtained and reduced. These stations were selected to be representative of the 19 primary cloud climatological regions defined in previous studies of cloud statistics. Using the data compiled in this study, a limited study was conducted of the hemogeneity of cloud regions, the latitudinal dependence of cloud-type distributions, the dependence of these statistics on sample size, and other factors in the statistics which are of significance to the problem of simulation. The application of the statistics in cloud simulation was investigated. In particular, the inclusion of the new statistics in an expanded multi-step Monte Carlo simulation scheme is suggested and briefly outlined.

  7. Image processing software for providing radiometric inputs to land surface climatology models

    NASA Technical Reports Server (NTRS)

    Newcomer, Jeffrey A.; Goetz, Scott J.; Strebel, Donald E.; Hall, Forrest G.

    1989-01-01

    During the First International Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), 80 gigabytes of image data were generated from a variety of satellite and airborne sensors in a multidisciplinary attempt to study energy and mass exchange between the land surface and the atmosphere. To make these data readily available to researchers with a range of image data handling experience and capabilities, unique image-processing software was designed to perform a variety of nonstandard image-processing manipulations and to derive a set of standard-format image products. The nonconventional features of the software include: (1) adding new layers of geographic coordinates, and solar and viewing conditions to existing data; (2) providing image polygon extraction and calibration of data to at-sensor radiances; and, (3) generating standard-format derived image products that can be easily incorporated into radiometric or climatology models. The derived image products consist of easily handled ASCII descriptor files, byte image data files, and additional per-pixel integer data files (e.g., geographic coordinates, and sun and viewing conditions). Details of the solutions to the image-processing problems, the conventions adopted for handling a variety of satellite and aircraft image data, and the applicability of the output products to quantitative modeling are presented. They should be of general interest to future experiment and data-handling design considerations.

  8. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. I. DUST PROPERTIES AND INSIGHTS INTO THE ORIGIN OF THE SUBMILLIMETER EXCESS EMISSION

    SciTech Connect

    Gordon, Karl D.; Roman-Duval, Julia; Meixner, Margaret; Bot, Caroline; Babler, Brian; Bernard, Jean-Philippe; Bolatto, Alberto; Jameson, Katherine; Boyer, Martha L.; Clayton, Geoffrey C.; Engelbracht, Charles; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Hony, Sacha; Lebouteiller, Vianney; Indebetouw, Remy; Israel, Frank P.; Kawamura, Akiko; and others

    2014-12-20

    The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 μm. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 μm. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 μm submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 ± 1.7) × 10{sup 5} and (8.3 ± 2.1) × 10{sup 4} M {sub ☉} for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  9. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Whiteman, D.; Ferrare, R.; Evans, K.; Goldsmith, J. E. M.; Lapp, M.; Bisson, S. E.

    1992-01-01

    Water vapor is one of the most important constituents of the earth's atmosphere. It has a major impact on both atmospheric dynamics and radiative transfer. From a dynamic standpoint, the distribution of water vapor with height determines convective stability which is the major indicator of destructive storm development. Also, water vapor stored in the planetary boundary layer acts as the fuel to intensify severe weather. In regards to radiative transfer, water vapor is the most active IR molecule in the atmosphere. It is more effective in absorbing and emitting IR radiation than either carbon dioxide or methane, and thus plays an important role in global change. The main objective of FIRE (First ISSCCP (International Satellite Cloud Climatology Project) Regional Experiment) was to study the development and radiative characteristics of cirrus clouds. The SPECTRE (Spectral Radiation Experiment) project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. The FIRE/SPECTRE field campaign was conducted during Nov. - Dec. 1991 in Coffeyville, Kansas. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments.

  10. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    SciTech Connect

    Melfi, S.H.; Whiteman, D.; Ferrare, R.; Evans, K.; Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E.

    1992-07-01

    The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kansas. The main objective of FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] was to study the development and radiative characteristics of cirrus clouds. The SPECTRE [Spectral Radiation Experiment] project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments. A ground-based Raman Lidar was deployed at Coffeyville, Kansas from November 12 until December 7, 1991. During the campaign, the lidar operated during 14 observation periods. The periods ranged in length from 3.5 hours to 12 hours for a total operating time of approximately 119 hours. During each of the operational periods the lidar obtained vertical profiles of water vapor mixing ratio and aerosol scattering ratio once every minute with vertical resolution of 75 meters from near the earth`s surface to an altitude of 9--10 km for water vapor and higher for aerosols. Several balloon-sondes were launched during each operational period providing an independent measurement of humidity with altitude. For each operational period, the 1-minute profiles of water vapor mixing ratio and aerosol scattering ratio are composited to give a color- coded time-height display of water vapor and aerosol scattering, respectively.

  11. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    SciTech Connect

    Melfi, S.H.; Whiteman, D. . Goddard Space Flight Center); Ferrare, R. ); Evans, K. ); Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E. )

    1992-01-01

    The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kan