WE-B-BRD-01: Innovation in Radiation Therapy Planning II: Cloud Computing in RT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K; Kagadis, G; Xing, L
As defined by the National Institute of Standards and Technology, cloud computing is “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.” Despite the omnipresent role of computers in radiotherapy, cloud computing has yet to achieve widespread adoption in clinical or research applications, though the transition to such “on-demand” access is underway. As this transition proceeds, new opportunities for aggregate studies and efficient use of computational resources are set againstmore » new challenges in patient privacy protection, data integrity, and management of clinical informatics systems. In this Session, current and future applications of cloud computing and distributed computational resources will be discussed in the context of medical imaging, radiotherapy research, and clinical radiation oncology applications. Learning Objectives: Understand basic concepts of cloud computing. Understand how cloud computing could be used for medical imaging applications. Understand how cloud computing could be employed for radiotherapy research.4. Understand how clinical radiotherapy software applications would function in the cloud.« less
RAPPORT: running scientific high-performance computing applications on the cloud.
Cohen, Jeremy; Filippis, Ioannis; Woodbridge, Mark; Bauer, Daniela; Hong, Neil Chue; Jackson, Mike; Butcher, Sarah; Colling, David; Darlington, John; Fuchs, Brian; Harvey, Matt
2013-01-28
Cloud computing infrastructure is now widely used in many domains, but one area where there has been more limited adoption is research computing, in particular for running scientific high-performance computing (HPC) software. The Robust Application Porting for HPC in the Cloud (RAPPORT) project took advantage of existing links between computing researchers and application scientists in the fields of bioinformatics, high-energy physics (HEP) and digital humanities, to investigate running a set of scientific HPC applications from these domains on cloud infrastructure. In this paper, we focus on the bioinformatics and HEP domains, describing the applications and target cloud platforms. We conclude that, while there are many factors that need consideration, there is no fundamental impediment to the use of cloud infrastructure for running many types of HPC applications and, in some cases, there is potential for researchers to benefit significantly from the flexibility offered by cloud platforms.
Military clouds: utilization of cloud computing systems at the battlefield
NASA Astrophysics Data System (ADS)
Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai
2012-05-01
Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.
Cloud Based Applications and Platforms (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodt-Giles, D.
2014-05-15
Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.
NASA Astrophysics Data System (ADS)
Aneri, Parikh; Sumathy, S.
2017-11-01
Cloud computing provides services over the internet and provides application resources and data to the users based on their demand. Base of the Cloud Computing is consumer provider model. Cloud provider provides resources which consumer can access using cloud computing model in order to build their application based on their demand. Cloud data center is a bulk of resources on shared pool architecture for cloud user to access. Virtualization is the heart of the Cloud computing model, it provides virtual machine as per application specific configuration and those applications are free to choose their own configuration. On one hand, there is huge number of resources and on other hand it has to serve huge number of requests effectively. Therefore, resource allocation policy and scheduling policy play very important role in allocation and managing resources in this cloud computing model. This paper proposes the load balancing policy using Hungarian algorithm. Hungarian Algorithm provides dynamic load balancing policy with a monitor component. Monitor component helps to increase cloud resource utilization by managing the Hungarian algorithm by monitoring its state and altering its state based on artificial intelligent. CloudSim used in this proposal is an extensible toolkit and it simulates cloud computing environment.
A Test-Bed of Secure Mobile Cloud Computing for Military Applications
2016-09-13
searching databases. This kind of applications is a typical example of mobile cloud computing (MCC). MCC has lots of applications in the military...Release; Distribution Unlimited UU UU UU UU 13-09-2016 1-Aug-2014 31-Jul-2016 Final Report: A Test-bed of Secure Mobile Cloud Computing for Military...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Test-bed, Mobile Cloud Computing , Security, Military Applications REPORT
Research on the application in disaster reduction for using cloud computing technology
NASA Astrophysics Data System (ADS)
Tao, Liang; Fan, Yida; Wang, Xingling
Cloud Computing technology has been rapidly applied in different domains recently, promotes the progress of the domain's informatization. Based on the analysis of the state of application requirement in disaster reduction and combining the characteristics of Cloud Computing technology, we present the research on the application of Cloud Computing technology in disaster reduction. First of all, we give the architecture of disaster reduction cloud, which consists of disaster reduction infrastructure as a service (IAAS), disaster reduction cloud application platform as a service (PAAS) and disaster reduction software as a service (SAAS). Secondly, we talk about the standard system of disaster reduction in five aspects. Thirdly, we indicate the security system of disaster reduction cloud. Finally, we draw a conclusion the use of cloud computing technology will help us to solve the problems for disaster reduction and promote the development of disaster reduction.
Research on OpenStack of open source cloud computing in colleges and universities’ computer room
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhang, Dandan
2017-06-01
In recent years, the cloud computing technology has a rapid development, especially open source cloud computing. Open source cloud computing has attracted a large number of user groups by the advantages of open source and low cost, have now become a large-scale promotion and application. In this paper, firstly we briefly introduced the main functions and architecture of the open source cloud computing OpenStack tools, and then discussed deeply the core problems of computer labs in colleges and universities. Combining with this research, it is not that the specific application and deployment of university computer rooms with OpenStack tool. The experimental results show that the application of OpenStack tool can efficiently and conveniently deploy cloud of university computer room, and its performance is stable and the functional value is good.
The application of cloud computing to scientific workflows: a study of cost and performance.
Berriman, G Bruce; Deelman, Ewa; Juve, Gideon; Rynge, Mats; Vöckler, Jens-S
2013-01-28
The current model of transferring data from data centres to desktops for analysis will soon be rendered impractical by the accelerating growth in the volume of science datasets. Processing will instead often take place on high-performance servers co-located with data. Evaluations of how new technologies such as cloud computing would support such a new distributed computing model are urgently needed. Cloud computing is a new way of purchasing computing and storage resources on demand through virtualization technologies. We report here the results of investigations of the applicability of commercial cloud computing to scientific computing, with an emphasis on astronomy, including investigations of what types of applications can be run cheaply and efficiently on the cloud, and an example of an application well suited to the cloud: processing a large dataset to create a new science product.
Cloud Computing for radiologists.
Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit
2012-07-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.
Cloud Computing for radiologists
Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit
2012-01-01
Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560
State of the Art of Network Security Perspectives in Cloud Computing
NASA Astrophysics Data System (ADS)
Oh, Tae Hwan; Lim, Shinyoung; Choi, Young B.; Park, Kwang-Roh; Lee, Heejo; Choi, Hyunsang
Cloud computing is now regarded as one of social phenomenon that satisfy customers' needs. It is possible that the customers' needs and the primary principle of economy - gain maximum benefits from minimum investment - reflects realization of cloud computing. We are living in the connected society with flood of information and without connected computers to the Internet, our activities and work of daily living will be impossible. Cloud computing is able to provide customers with custom-tailored features of application software and user's environment based on the customer's needs by adopting on-demand outsourcing of computing resources through the Internet. It also provides cloud computing users with high-end computing power and expensive application software package, and accordingly the users will access their data and the application software where they are located at the remote system. As the cloud computing system is connected to the Internet, network security issues of cloud computing are considered as mandatory prior to real world service. In this paper, survey and issues on the network security in cloud computing are discussed from the perspective of real world service environments.
COMBAT: mobile-Cloud-based cOmpute/coMmunications infrastructure for BATtlefield applications
NASA Astrophysics Data System (ADS)
Soyata, Tolga; Muraleedharan, Rajani; Langdon, Jonathan; Funai, Colin; Ames, Scott; Kwon, Minseok; Heinzelman, Wendi
2012-05-01
The amount of data processed annually over the Internet has crossed the zetabyte boundary, yet this Big Data cannot be efficiently processed or stored using today's mobile devices. Parallel to this explosive growth in data, a substantial increase in mobile compute-capability and the advances in cloud computing have brought the state-of-the- art in mobile-cloud computing to an inflection point, where the right architecture may allow mobile devices to run applications utilizing Big Data and intensive computing. In this paper, we propose the MObile Cloud-based Hybrid Architecture (MOCHA), which formulates a solution to permit mobile-cloud computing applications such as object recognition in the battlefield by introducing a mid-stage compute- and storage-layer, called the cloudlet. MOCHA is built on the key observation that many mobile-cloud applications have the following characteristics: 1) they are compute-intensive, requiring the compute-power of a supercomputer, and 2) they use Big Data, requiring a communications link to cloud-based database sources in near-real-time. In this paper, we describe the operation of MOCHA in battlefield applications, by formulating the aforementioned mobile and cloudlet to be housed within a soldier's vest and inside a military vehicle, respectively, and enabling access to the cloud through high latency satellite links. We provide simulations using the traditional mobile-cloud approach as well as utilizing MOCHA with a mid-stage cloudlet to quantify the utility of this architecture. We show that the MOCHA platform for mobile-cloud computing promises a future for critical battlefield applications that access Big Data, which is currently not possible using existing technology.
Research on Key Technologies of Cloud Computing
NASA Astrophysics Data System (ADS)
Zhang, Shufen; Yan, Hongcan; Chen, Xuebin
With the development of multi-core processors, virtualization, distributed storage, broadband Internet and automatic management, a new type of computing mode named cloud computing is produced. It distributes computation task on the resource pool which consists of massive computers, so the application systems can obtain the computing power, the storage space and software service according to its demand. It can concentrate all the computing resources and manage them automatically by the software without intervene. This makes application offers not to annoy for tedious details and more absorbed in his business. It will be advantageous to innovation and reduce cost. It's the ultimate goal of cloud computing to provide calculation, services and applications as a public facility for the public, So that people can use the computer resources just like using water, electricity, gas and telephone. Currently, the understanding of cloud computing is developing and changing constantly, cloud computing still has no unanimous definition. This paper describes three main service forms of cloud computing: SAAS, PAAS, IAAS, compared the definition of cloud computing which is given by Google, Amazon, IBM and other companies, summarized the basic characteristics of cloud computing, and emphasized on the key technologies such as data storage, data management, virtualization and programming model.
Design for Run-Time Monitor on Cloud Computing
NASA Astrophysics Data System (ADS)
Kang, Mikyung; Kang, Dong-In; Yun, Mira; Park, Gyung-Leen; Lee, Junghoon
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is the type of a parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring the system status change, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize resources on cloud computing. RTM monitors application software through library instrumentation as well as underlying hardware through performance counter optimizing its computing configuration based on the analyzed data.
Applications integration in a hybrid cloud computing environment: modelling and platform
NASA Astrophysics Data System (ADS)
Li, Qing; Wang, Ze-yuan; Li, Wei-hua; Li, Jun; Wang, Cheng; Du, Rui-yang
2013-08-01
With the development of application services providers and cloud computing, more and more small- and medium-sized business enterprises use software services and even infrastructure services provided by professional information service companies to replace all or part of their information systems (ISs). These information service companies provide applications, such as data storage, computing processes, document sharing and even management information system services as public resources to support the business process management of their customers. However, no cloud computing service vendor can satisfy the full functional IS requirements of an enterprise. As a result, enterprises often have to simultaneously use systems distributed in different clouds and their intra enterprise ISs. Thus, this article presents a framework to integrate applications deployed in public clouds and intra ISs. A run-time platform is developed and a cross-computing environment process modelling technique is also developed to improve the feasibility of ISs under hybrid cloud computing environments.
Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing
NASA Astrophysics Data System (ADS)
Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.
2012-12-01
Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in cloud computing platform, with the sharing spirit of cloud computing, it is very hard to ensure higher level security, except a private cloud is built for a specific organization without public access, public cloud platform does not support FISMA medium level yet and may never be able to support FISMA high level; 5) HPC jobs needs of cloud computing is not well supported and only Amazon EC2 supports this well. The research is being taken by NASA and other agencies to consider cloud computing adoption. We hope the publication of the research would also benefit the public to adopt cloud computing.
The emerging role of cloud computing in molecular modelling.
Ebejer, Jean-Paul; Fulle, Simone; Morris, Garrett M; Finn, Paul W
2013-07-01
There is a growing recognition of the importance of cloud computing for large-scale and data-intensive applications. The distinguishing features of cloud computing and their relationship to other distributed computing paradigms are described, as are the strengths and weaknesses of the approach. We review the use made to date of cloud computing for molecular modelling projects and the availability of front ends for molecular modelling applications. Although the use of cloud computing technologies for molecular modelling is still in its infancy, we demonstrate its potential by presenting several case studies. Rapid growth can be expected as more applications become available and costs continue to fall; cloud computing can make a major contribution not just in terms of the availability of on-demand computing power, but could also spur innovation in the development of novel approaches that utilize that capacity in more effective ways. Copyright © 2013 Elsevier Inc. All rights reserved.
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin; ...
2015-02-19
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
Understanding the Performance and Potential of Cloud Computing for Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadooghi, Iman; Martin, Jesus Hernandez; Li, Tonglin
In this paper, commercial clouds bring a great opportunity to the scientific computing area. Scientific applications usually require significant resources, however not all scientists have access to sufficient high-end computing systems, may of which can be found in the Top500 list. Cloud Computing has gained the attention of scientists as a competitive resource to run HPC applications at a potentially lower cost. But as a different infrastructure, it is unclear whether clouds are capable of running scientific applications with a reasonable performance per money spent. This work studies the performance of public clouds and places this performance in context tomore » price. We evaluate the raw performance of different services of AWS cloud in terms of the basic resources, such as compute, memory, network and I/O. We also evaluate the performance of the scientific applications running in the cloud. This paper aims to assess the ability of the cloud to perform well, as well as to evaluate the cost of the cloud running scientific applications. We developed a full set of metrics and conducted a comprehensive performance evlauation over the Amazon cloud. We evaluated EC2, S3, EBS and DynamoDB among the many Amazon AWS services. We evaluated the memory sub-system performance with CacheBench, the network performance with iperf, processor and network performance with the HPL benchmark application, and shared storage with NFS and PVFS in addition to S3. We also evaluated a real scientific computing application through the Swift parallel scripting system at scale. Armed with both detailed benchmarks to gauge expected performance and a detailed monetary cost analysis, we expect this paper will be a recipe cookbook for scientists to help them decide where to deploy and run their scientific applications between public clouds, private clouds, or hybrid clouds.« less
A lightweight distributed framework for computational offloading in mobile cloud computing.
Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul
2014-01-01
The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC.
A Lightweight Distributed Framework for Computational Offloading in Mobile Cloud Computing
Shiraz, Muhammad; Gani, Abdullah; Ahmad, Raja Wasim; Adeel Ali Shah, Syed; Karim, Ahmad; Rahman, Zulkanain Abdul
2014-01-01
The latest developments in mobile computing technology have enabled intensive applications on the modern Smartphones. However, such applications are still constrained by limitations in processing potentials, storage capacity and battery lifetime of the Smart Mobile Devices (SMDs). Therefore, Mobile Cloud Computing (MCC) leverages the application processing services of computational clouds for mitigating resources limitations in SMDs. Currently, a number of computational offloading frameworks are proposed for MCC wherein the intensive components of the application are outsourced to computational clouds. Nevertheless, such frameworks focus on runtime partitioning of the application for computational offloading, which is time consuming and resources intensive. The resource constraint nature of SMDs require lightweight procedures for leveraging computational clouds. Therefore, this paper presents a lightweight framework which focuses on minimizing additional resources utilization in computational offloading for MCC. The framework employs features of centralized monitoring, high availability and on demand access services of computational clouds for computational offloading. As a result, the turnaround time and execution cost of the application are reduced. The framework is evaluated by testing prototype application in the real MCC environment. The lightweight nature of the proposed framework is validated by employing computational offloading for the proposed framework and the latest existing frameworks. Analysis shows that by employing the proposed framework for computational offloading, the size of data transmission is reduced by 91%, energy consumption cost is minimized by 81% and turnaround time of the application is decreased by 83.5% as compared to the existing offloading frameworks. Hence, the proposed framework minimizes additional resources utilization and therefore offers lightweight solution for computational offloading in MCC. PMID:25127245
When cloud computing meets bioinformatics: a review.
Zhou, Shuigeng; Liao, Ruiqi; Guan, Jihong
2013-10-01
In the past decades, with the rapid development of high-throughput technologies, biology research has generated an unprecedented amount of data. In order to store and process such a great amount of data, cloud computing and MapReduce were applied to many fields of bioinformatics. In this paper, we first introduce the basic concepts of cloud computing and MapReduce, and their applications in bioinformatics. We then highlight some problems challenging the applications of cloud computing and MapReduce to bioinformatics. Finally, we give a brief guideline for using cloud computing in biology research.
Cloudbus Toolkit for Market-Oriented Cloud Computing
NASA Astrophysics Data System (ADS)
Buyya, Rajkumar; Pandey, Suraj; Vecchiola, Christian
This keynote paper: (1) presents the 21st century vision of computing and identifies various IT paradigms promising to deliver computing as a utility; (2) defines the architecture for creating market-oriented Clouds and computing atmosphere by leveraging technologies such as virtual machines; (3) provides thoughts on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain SLA-oriented resource allocation; (4) presents the work carried out as part of our new Cloud Computing initiative, called Cloudbus: (i) Aneka, a Platform as a Service software system containing SDK (Software Development Kit) for construction of Cloud applications and deployment on private or public Clouds, in addition to supporting market-oriented resource management; (ii) internetworking of Clouds for dynamic creation of federated computing environments for scaling of elastic applications; (iii) creation of 3rd party Cloud brokering services for building content delivery networks and e-Science applications and their deployment on capabilities of IaaS providers such as Amazon along with Grid mashups; (iv) CloudSim supporting modelling and simulation of Clouds for performance studies; (v) Energy Efficient Resource Allocation Mechanisms and Techniques for creation and management of Green Clouds; and (vi) pathways for future research.
Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation
NASA Technical Reports Server (NTRS)
Stocker, John C.; Golomb, Andrew M.
2011-01-01
Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.
High-performance scientific computing in the cloud
NASA Astrophysics Data System (ADS)
Jorissen, Kevin; Vila, Fernando; Rehr, John
2011-03-01
Cloud computing has the potential to open up high-performance computational science to a much broader class of researchers, owing to its ability to provide on-demand, virtualized computational resources. However, before such approaches can become commonplace, user-friendly tools must be developed that hide the unfamiliar cloud environment and streamline the management of cloud resources for many scientific applications. We have recently shown that high-performance cloud computing is feasible for parallelized x-ray spectroscopy calculations. We now present benchmark results for a wider selection of scientific applications focusing on electronic structure and spectroscopic simulation software in condensed matter physics. These applications are driven by an improved portable interface that can manage virtual clusters and run various applications in the cloud. We also describe a next generation of cluster tools, aimed at improved performance and a more robust cluster deployment. Supported by NSF grant OCI-1048052.
Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P.; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data. PMID:22163811
Design and development of a run-time monitor for multi-core architectures in cloud computing.
Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon
2011-01-01
Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.
Transitioning ISR architecture into the cloud
NASA Astrophysics Data System (ADS)
Lash, Thomas D.
2012-06-01
Emerging cloud computing platforms offer an ideal opportunity for Intelligence, Surveillance, and Reconnaissance (ISR) intelligence analysis. Cloud computing platforms help overcome challenges and limitations of traditional ISR architectures. Modern ISR architectures can benefit from examining commercial cloud applications, especially as they relate to user experience, usage profiling, and transformational business models. This paper outlines legacy ISR architectures and their limitations, presents an overview of cloud technologies and their applications to the ISR intelligence mission, and presents an idealized ISR architecture implemented with cloud computing.
Security model for VM in cloud
NASA Astrophysics Data System (ADS)
Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.
2013-03-01
Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.
NASA Astrophysics Data System (ADS)
Delipetrev, Blagoj
2016-04-01
Presently, most of the existing software is desktop-based, designed to work on a single computer, which represents a major limitation in many ways, starting from limited computer processing, storage power, accessibility, availability, etc. The only feasible solution lies in the web and cloud. This abstract presents research and development of a cloud computing geospatial application for water resources based on free and open source software and open standards using hybrid deployment model of public - private cloud, running on two separate virtual machines (VMs). The first one (VM1) is running on Amazon web services (AWS) and the second one (VM2) is running on a Xen cloud platform. The presented cloud application is developed using free and open source software, open standards and prototype code. The cloud application presents a framework how to develop specialized cloud geospatial application that needs only a web browser to be used. This cloud application is the ultimate collaboration geospatial platform because multiple users across the globe with internet connection and browser can jointly model geospatial objects, enter attribute data and information, execute algorithms, and visualize results. The presented cloud application is: available all the time, accessible from everywhere, it is scalable, works in a distributed computer environment, it creates a real-time multiuser collaboration platform, the programing languages code and components are interoperable, and it is flexible in including additional components. The cloud geospatial application is implemented as a specialized water resources application with three web services for 1) data infrastructure (DI), 2) support for water resources modelling (WRM), 3) user management. The web services are running on two VMs that are communicating over the internet providing services to users. The application was tested on the Zletovica river basin case study with concurrent multiple users. The application is a state-of-the-art cloud geospatial collaboration platform. The presented solution is a prototype and can be used as a foundation for developing of any specialized cloud geospatial applications. Further research will be focused on distributing the cloud application on additional VMs, testing the scalability and availability of services.
Exploiting GPUs in Virtual Machine for BioCloud
Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon
2013-01-01
Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment. PMID:23710465
Exploiting GPUs in virtual machine for BioCloud.
Jo, Heeseung; Jeong, Jinkyu; Lee, Myoungho; Choi, Dong Hoon
2013-01-01
Recently, biological applications start to be reimplemented into the applications which exploit many cores of GPUs for better computation performance. Therefore, by providing virtualized GPUs to VMs in cloud computing environment, many biological applications will willingly move into cloud environment to enhance their computation performance and utilize infinite cloud computing resource while reducing expenses for computations. In this paper, we propose a BioCloud system architecture that enables VMs to use GPUs in cloud environment. Because much of the previous research has focused on the sharing mechanism of GPUs among VMs, they cannot achieve enough performance for biological applications of which computation throughput is more crucial rather than sharing. The proposed system exploits the pass-through mode of PCI express (PCI-E) channel. By making each VM be able to access underlying GPUs directly, applications can show almost the same performance as when those are in native environment. In addition, our scheme multiplexes GPUs by using hot plug-in/out device features of PCI-E channel. By adding or removing GPUs in each VM in on-demand manner, VMs in the same physical host can time-share their GPUs. We implemented the proposed system using the Xen VMM and NVIDIA GPUs and showed that our prototype is highly effective for biological GPU applications in cloud environment.
Cloud computing applications for biomedical science: A perspective.
Navale, Vivek; Bourne, Philip E
2018-06-01
Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.
Cloud computing applications for biomedical science: A perspective
2018-01-01
Biomedical research has become a digital data–intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research. PMID:29902176
Research on phone contacts online status based on mobile cloud computing
NASA Astrophysics Data System (ADS)
Wang, Wen-jinga; Ge, Weib
2013-03-01
Because the limited ability of storage space, CPU processing on mobile phone, it is difficult to realize complex applications on mobile phones, but along with the development of cloud computing, we can place the computing and storage in the clouds, provide users with rich cloud services, helping users complete various function through the browser has become the trend for future mobile communication. This article is taking the mobile phone contacts online status as an example to analysis the development and application of mobile cloud computing.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-07
... Rehabilitation Research--Disability and Rehabilitation Research Projects--Inclusive Cloud and Web Computing... Rehabilitation Research Projects (DRRPs)--Inclusive Cloud and Web Computing Notice inviting applications for new...#DRRP . Priorities: Priority 1--DRRP on Inclusive Cloud and Web Computing-- is from the notice of final...
The monitoring and managing application of cloud computing based on Internet of Things.
Luo, Shiliang; Ren, Bin
2016-07-01
Cloud computing and the Internet of Things are the two hot points in the Internet application field. The application of the two new technologies is in hot discussion and research, but quite less on the field of medical monitoring and managing application. Thus, in this paper, we study and analyze the application of cloud computing and the Internet of Things on the medical field. And we manage to make a combination of the two techniques in the medical monitoring and managing field. The model architecture for remote monitoring cloud platform of healthcare information (RMCPHI) was established firstly. Then the RMCPHI architecture was analyzed. Finally an efficient PSOSAA algorithm was proposed for the medical monitoring and managing application of cloud computing. Simulation results showed that our proposed scheme can improve the efficiency about 50%. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Analysis on the security of cloud computing
NASA Astrophysics Data System (ADS)
He, Zhonglin; He, Yuhua
2011-02-01
Cloud computing is a new technology, which is the fusion of computer technology and Internet development. It will lead the revolution of IT and information field. However, in cloud computing data and application software is stored at large data centers, and the management of data and service is not completely trustable, resulting in safety problems, which is the difficult point to improve the quality of cloud service. This paper briefly introduces the concept of cloud computing. Considering the characteristics of cloud computing, it constructs the security architecture of cloud computing. At the same time, with an eye toward the security threats cloud computing faces, several corresponding strategies are provided from the aspect of cloud computing users and service providers.
Cloud Based Educational Systems and Its Challenges and Opportunities and Issues
ERIC Educational Resources Information Center
Paul, Prantosh Kr.; Lata Dangwal, Kiran
2014-01-01
Cloud Computing (CC) is actually is a set of hardware, software, networks, storage, services an interface combines to deliver aspects of computing as a service. Cloud Computing (CC) actually uses the central remote servers to maintain data and applications. Practically Cloud Computing (CC) is extension of Grid computing with independency and…
NASA Astrophysics Data System (ADS)
Wan, Junwei; Chen, Hongyan; Zhao, Jing
2017-08-01
According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.
Study on the application of mobile internet cloud computing platform
NASA Astrophysics Data System (ADS)
Gong, Songchun; Fu, Songyin; Chen, Zheng
2012-04-01
The innovative development of computer technology promotes the application of the cloud computing platform, which actually is the substitution and exchange of a sort of resource service models and meets the needs of users on the utilization of different resources after changes and adjustments of multiple aspects. "Cloud computing" owns advantages in many aspects which not merely reduce the difficulties to apply the operating system and also make it easy for users to search, acquire and process the resources. In accordance with this point, the author takes the management of digital libraries as the research focus in this paper, and analyzes the key technologies of the mobile internet cloud computing platform in the operation process. The popularization and promotion of computer technology drive people to create the digital library models, and its core idea is to strengthen the optimal management of the library resource information through computers and construct an inquiry and search platform with high performance, allowing the users to access to the necessary information resources at any time. However, the cloud computing is able to promote the computations within the computers to distribute in a large number of distributed computers, and hence implement the connection service of multiple computers. The digital libraries, as a typical representative of the applications of the cloud computing, can be used to carry out an analysis on the key technologies of the cloud computing.
Managing competing elastic Grid and Cloud scientific computing applications using OpenNebula
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Lusso, S.; Masera, M.; Vallero, S.
2015-12-01
Elastic cloud computing applications, i.e. applications that automatically scale according to computing needs, work on the ideal assumption of infinite resources. While large public cloud infrastructures may be a reasonable approximation of this condition, scientific computing centres like WLCG Grid sites usually work in a saturated regime, in which applications compete for scarce resources through queues, priorities and scheduling policies, and keeping a fraction of the computing cores idle to allow for headroom is usually not an option. In our particular environment one of the applications (a WLCG Tier-2 Grid site) is much larger than all the others and cannot autoscale easily. Nevertheless, other smaller applications can benefit of automatic elasticity; the implementation of this property in our infrastructure, based on the OpenNebula cloud stack, will be described and the very first operational experiences with a small number of strategies for timely allocation and release of resources will be discussed.
Provider-Independent Use of the Cloud
NASA Astrophysics Data System (ADS)
Harmer, Terence; Wright, Peter; Cunningham, Christina; Perrott, Ron
Utility computing offers researchers and businesses the potential of significant cost-savings, making it possible for them to match the cost of their computing and storage to their demand for such resources. A utility compute provider enables the purchase of compute infrastructures on-demand; when a user requires computing resources a provider will provision a resource for them and charge them only for their period of use of that resource. There has been a significant growth in the number of cloud computing resource providers and each has a different resource usage model, application process and application programming interface (API)-developing generic multi-resource provider applications is thus difficult and time consuming. We have developed an abstraction layer that provides a single resource usage model, user authentication model and API for compute providers that enables cloud-provider neutral applications to be developed. In this paper we outline the issues in using external resource providers, give examples of using a number of the most popular cloud providers and provide examples of developing provider neutral applications. In addition, we discuss the development of the API to create a generic provisioning model based on a common architecture for cloud computing providers.
NASA Astrophysics Data System (ADS)
Huang, Qian
2014-09-01
Scientific computing often requires the availability of a massive number of computers for performing large-scale simulations, and computing in mineral physics is no exception. In order to investigate physical properties of minerals at extreme conditions in computational mineral physics, parallel computing technology is used to speed up the performance by utilizing multiple computer resources to process a computational task simultaneously thereby greatly reducing computation time. Traditionally, parallel computing has been addressed by using High Performance Computing (HPC) solutions and installed facilities such as clusters and super computers. Today, it has been seen that there is a tremendous growth in cloud computing. Infrastructure as a Service (IaaS), the on-demand and pay-as-you-go model, creates a flexible and cost-effective mean to access computing resources. In this paper, a feasibility report of HPC on a cloud infrastructure is presented. It is found that current cloud services in IaaS layer still need to improve performance to be useful to research projects. On the other hand, Software as a Service (SaaS), another type of cloud computing, is introduced into an HPC system for computing in mineral physics, and an application of which is developed. In this paper, an overall description of this SaaS application is presented. This contribution can promote cloud application development in computational mineral physics, and cross-disciplinary studies.
Cloud Computing Security Issue: Survey
NASA Astrophysics Data System (ADS)
Kamal, Shailza; Kaur, Rajpreet
2011-12-01
Cloud computing is the growing field in IT industry since 2007 proposed by IBM. Another company like Google, Amazon, and Microsoft provides further products to cloud computing. The cloud computing is the internet based computing that shared recourses, information on demand. It provides the services like SaaS, IaaS and PaaS. The services and recourses are shared by virtualization that run multiple operation applications on cloud computing. This discussion gives the survey on the challenges on security issues during cloud computing and describes some standards and protocols that presents how security can be managed.
Platform for High-Assurance Cloud Computing
2016-06-01
to create today’s standard cloud computing applications and services. Additionally , our SuperCloud (a related but distinct project under the same... Additionally , our SuperCloud (a related but distinct project under the same MRC funding) reduces vendor lock-in and permits application to migrate, to follow...managing key- value storage with strong assurance properties. This first accomplishment allows us to climb the cloud technical stack, by offering
Are Cloud Environments Ready for Scientific Applications?
NASA Astrophysics Data System (ADS)
Mehrotra, P.; Shackleford, K.
2011-12-01
Cloud computing environments are becoming widely available both in the commercial and government sectors. They provide flexibility to rapidly provision resources in order to meet dynamic and changing computational needs without the customers incurring capital expenses and/or requiring technical expertise. Clouds also provide reliable access to resources even though the end-user may not have in-house expertise for acquiring or operating such resources. Consolidation and pooling in a cloud environment allow organizations to achieve economies of scale in provisioning or procuring computing resources and services. Because of these and other benefits, many businesses and organizations are migrating their business applications (e.g., websites, social media, and business processes) to cloud environments-evidenced by the commercial success of offerings such as the Amazon EC2. In this paper, we focus on the feasibility of utilizing cloud environments for scientific workloads and workflows particularly of interest to NASA scientists and engineers. There is a wide spectrum of such technical computations. These applications range from small workstation-level computations to mid-range computing requiring small clusters to high-performance simulations requiring supercomputing systems with high bandwidth/low latency interconnects. Data-centric applications manage and manipulate large data sets such as satellite observational data and/or data previously produced by high-fidelity modeling and simulation computations. Most of the applications are run in batch mode with static resource requirements. However, there do exist situations that have dynamic demands, particularly ones with public-facing interfaces providing information to the general public, collaborators and partners, as well as to internal NASA users. In the last few months we have been studying the suitability of cloud environments for NASA's technical and scientific workloads. We have ported several applications to multiple cloud environments including NASA's Nebula environment, Amazon's EC2, Magellan at NERSC, and SGI's Cyclone system. We critically examined the performance of the applications on these systems. We also collected information on the usability of these cloud environments. In this talk we will present the results of our study focusing on the efficacy of using clouds for NASA's scientific applications.
A service brokering and recommendation mechanism for better selecting cloud services.
Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan
2014-01-01
Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI).
Evaluating open-source cloud computing solutions for geosciences
NASA Astrophysics Data System (ADS)
Huang, Qunying; Yang, Chaowei; Liu, Kai; Xia, Jizhe; Xu, Chen; Li, Jing; Gui, Zhipeng; Sun, Min; Li, Zhenglong
2013-09-01
Many organizations start to adopt cloud computing for better utilizing computing resources by taking advantage of its scalability, cost reduction, and easy to access characteristics. Many private or community cloud computing platforms are being built using open-source cloud solutions. However, little has been done to systematically compare and evaluate the features and performance of open-source solutions in supporting Geosciences. This paper provides a comprehensive study of three open-source cloud solutions, including OpenNebula, Eucalyptus, and CloudStack. We compared a variety of features, capabilities, technologies and performances including: (1) general features and supported services for cloud resource creation and management, (2) advanced capabilities for networking and security, and (3) the performance of the cloud solutions in provisioning and operating the cloud resources as well as the performance of virtual machines initiated and managed by the cloud solutions in supporting selected geoscience applications. Our study found that: (1) no significant performance differences in central processing unit (CPU), memory and I/O of virtual machines created and managed by different solutions, (2) OpenNebula has the fastest internal network while both Eucalyptus and CloudStack have better virtual machine isolation and security strategies, (3) Cloudstack has the fastest operations in handling virtual machines, images, snapshots, volumes and networking, followed by OpenNebula, and (4) the selected cloud computing solutions are capable for supporting concurrent intensive web applications, computing intensive applications, and small-scale model simulations without intensive data communication.
Construction and application of Red5 cluster based on OpenStack
NASA Astrophysics Data System (ADS)
Wang, Jiaqing; Song, Jianxin
2017-08-01
With the application and development of cloud computing technology in various fields, the resource utilization rate of the data center has been improved obviously, and the system based on cloud computing platform has also improved the expansibility and stability. In the traditional way, Red5 cluster resource utilization is low and the system stability is poor. This paper uses cloud computing to efficiently calculate the resource allocation ability, and builds a Red5 server cluster based on OpenStack. Multimedia applications can be published to the Red5 cloud server cluster. The system achieves the flexible construction of computing resources, but also greatly improves the stability of the cluster and service efficiency.
ERIC Educational Resources Information Center
Conn, Samuel S.; Reichgelt, Han
2013-01-01
Cloud computing represents an architecture and paradigm of computing designed to deliver infrastructure, platforms, and software as constructible computing resources on demand to networked users. As campuses are challenged to better accommodate academic needs for applications and computing environments, cloud computing can provide an accommodating…
Cloud Infrastructure & Applications - CloudIA
NASA Astrophysics Data System (ADS)
Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank
The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.
Abdulhamid, Shafi’i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques. PMID:27384239
Abdulhamid, Shafi'i Muhammad; Abd Latiff, Muhammad Shafie; Abdul-Salaam, Gaddafi; Hussain Madni, Syed Hamid
2016-01-01
Cloud computing system is a huge cluster of interconnected servers residing in a datacenter and dynamically provisioned to clients on-demand via a front-end interface. Scientific applications scheduling in the cloud computing environment is identified as NP-hard problem due to the dynamic nature of heterogeneous resources. Recently, a number of metaheuristics optimization schemes have been applied to address the challenges of applications scheduling in the cloud system, without much emphasis on the issue of secure global scheduling. In this paper, scientific applications scheduling techniques using the Global League Championship Algorithm (GBLCA) optimization technique is first presented for global task scheduling in the cloud environment. The experiment is carried out using CloudSim simulator. The experimental results show that, the proposed GBLCA technique produced remarkable performance improvement rate on the makespan that ranges between 14.44% to 46.41%. It also shows significant reduction in the time taken to securely schedule applications as parametrically measured in terms of the response time. In view of the experimental results, the proposed technique provides better-quality scheduling solution that is suitable for scientific applications task execution in the Cloud Computing environment than the MinMin, MaxMin, Genetic Algorithm (GA) and Ant Colony Optimization (ACO) scheduling techniques.
Cognitive Approaches for Medicine in Cloud Computing.
Ogiela, Urszula; Takizawa, Makoto; Ogiela, Lidia
2018-03-03
This paper will present the application potential of the cognitive approach to data interpretation, with special reference to medical areas. The possibilities of using the meaning approach to data description and analysis will be proposed for data analysis tasks in Cloud Computing. The methods of cognitive data management in Cloud Computing are aimed to support the processes of protecting data against unauthorised takeover and they serve to enhance the data management processes. The accomplishment of the proposed tasks will be the definition of algorithms for the execution of meaning data interpretation processes in safe Cloud Computing. • We proposed a cognitive methods for data description. • Proposed a techniques for secure data in Cloud Computing. • Application of cognitive approaches for medicine was described.
Risk in the Clouds?: Security Issues Facing Government Use of Cloud Computing
NASA Astrophysics Data System (ADS)
Wyld, David C.
Cloud computing is poised to become one of the most important and fundamental shifts in how computing is consumed and used. Forecasts show that government will play a lead role in adopting cloud computing - for data storage, applications, and processing power, as IT executives seek to maximize their returns on limited procurement budgets in these challenging economic times. After an overview of the cloud computing concept, this article explores the security issues facing public sector use of cloud computing and looks to the risk and benefits of shifting to cloud-based models. It concludes with an analysis of the challenges that lie ahead for government use of cloud resources.
Security Risks of Cloud Computing and Its Emergence as 5th Utility Service
NASA Astrophysics Data System (ADS)
Ahmad, Mushtaq
Cloud Computing is being projected by the major cloud services provider IT companies such as IBM, Google, Yahoo, Amazon and others as fifth utility where clients will have access for processing those applications and or software projects which need very high processing speed for compute intensive and huge data capacity for scientific, engineering research problems and also e- business and data content network applications. These services for different types of clients are provided under DASM-Direct Access Service Management based on virtualization of hardware, software and very high bandwidth Internet (Web 2.0) communication. The paper reviews these developments for Cloud Computing and Hardware/Software configuration of the cloud paradigm. The paper also examines the vital aspects of security risks projected by IT Industry experts, cloud clients. The paper also highlights the cloud provider's response to cloud security risks.
Research on Influence of Cloud Environment on Traditional Network Security
NASA Astrophysics Data System (ADS)
Ming, Xiaobo; Guo, Jinhua
2018-02-01
Cloud computing is a symbol of the progress of modern information network, cloud computing provides a lot of convenience to the Internet users, but it also brings a lot of risk to the Internet users. Second, one of the main reasons for Internet users to choose cloud computing is that the network security performance is great, it also is the cornerstone of cloud computing applications. This paper briefly explores the impact on cloud environment on traditional cybersecurity, and puts forward corresponding solutions.
A high performance scientific cloud computing environment for materials simulations
NASA Astrophysics Data System (ADS)
Jorissen, K.; Vila, F. D.; Rehr, J. J.
2012-09-01
We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.
A Service Brokering and Recommendation Mechanism for Better Selecting Cloud Services
Gui, Zhipeng; Yang, Chaowei; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Yu, Manzhu; Sun, Min; Zhou, Nanyin; Jin, Baoxuan
2014-01-01
Cloud computing is becoming the new generation computing infrastructure, and many cloud vendors provide different types of cloud services. How to choose the best cloud services for specific applications is very challenging. Addressing this challenge requires balancing multiple factors, such as business demands, technologies, policies and preferences in addition to the computing requirements. This paper recommends a mechanism for selecting the best public cloud service at the levels of Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). A systematic framework and associated workflow include cloud service filtration, solution generation, evaluation, and selection of public cloud services. Specifically, we propose the following: a hierarchical information model for integrating heterogeneous cloud information from different providers and a corresponding cloud information collecting mechanism; a cloud service classification model for categorizing and filtering cloud services and an application requirement schema for providing rules for creating application-specific configuration solutions; and a preference-aware solution evaluation mode for evaluating and recommending solutions according to the preferences of application providers. To test the proposed framework and methodologies, a cloud service advisory tool prototype was developed after which relevant experiments were conducted. The results show that the proposed system collects/updates/records the cloud information from multiple mainstream public cloud services in real-time, generates feasible cloud configuration solutions according to user specifications and acceptable cost predication, assesses solutions from multiple aspects (e.g., computing capability, potential cost and Service Level Agreement, SLA) and offers rational recommendations based on user preferences and practical cloud provisioning; and visually presents and compares solutions through an interactive web Graphical User Interface (GUI). PMID:25170937
Performance, Agility and Cost of Cloud Computing Services for NASA GES DISC Giovanni Application
NASA Astrophysics Data System (ADS)
Pham, L.; Chen, A.; Wharton, S.; Winter, E. L.; Lynnes, C.
2013-12-01
The NASA Goddard Earth Science Data and Information Services Center (GES DISC) is investigating the performance, agility and cost of Cloud computing for GES DISC applications. Giovanni (Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), one of the core applications at the GES DISC for online climate-related Earth science data access, subsetting, analysis, visualization, and downloading, was used to evaluate the feasibility and effort of porting an application to the Amazon Cloud Services platform. The performance and the cost of running Giovanni on the Amazon Cloud were compared to similar parameters for the GES DISC local operational system. A Giovanni Time-Series analysis of aerosol absorption optical depth (388nm) from OMI (Ozone Monitoring Instrument)/Aura was selected for these comparisons. All required data were pre-cached in both the Cloud and local system to avoid data transfer delays. The 3-, 6-, 12-, and 24-month data were used for analysis on the Cloud and local system respectively, and the processing times for the analysis were used to evaluate system performance. To investigate application agility, Giovanni was installed and tested on multiple Cloud platforms. The cost of using a Cloud computing platform mainly consists of: computing, storage, data requests, and data transfer in/out. The Cloud computing cost is calculated based on the hourly rate, and the storage cost is calculated based on the rate of Gigabytes per month. Cost for incoming data transfer is free, and for data transfer out, the cost is based on the rate in Gigabytes. The costs for a local server system consist of buying hardware/software, system maintenance/updating, and operating cost. The results showed that the Cloud platform had a 38% better performance and cost 36% less than the local system. This investigation shows the potential of cloud computing to increase system performance and lower the overall cost of system management.
Cloud computing for energy management in smart grid - an application survey
NASA Astrophysics Data System (ADS)
Naveen, P.; Kiing Ing, Wong; Kobina Danquah, Michael; Sidhu, Amandeep S.; Abu-Siada, Ahmed
2016-03-01
The smart grid is the emerging energy system wherein the application of information technology, tools and techniques that make the grid run more efficiently. It possesses demand response capacity to help balance electrical consumption with supply. The challenges and opportunities of emerging and future smart grids can be addressed by cloud computing. To focus on these requirements, we provide an in-depth survey on different cloud computing applications for energy management in the smart grid architecture. In this survey, we present an outline of the current state of research on smart grid development. We also propose a model of cloud based economic power dispatch for smart grid.
A Simple Technique for Securing Data at Rest Stored in a Computing Cloud
NASA Astrophysics Data System (ADS)
Sedayao, Jeff; Su, Steven; Ma, Xiaohao; Jiang, Minghao; Miao, Kai
"Cloud Computing" offers many potential benefits, including cost savings, the ability to deploy applications and services quickly, and the ease of scaling those application and services once they are deployed. A key barrier for enterprise adoption is the confidentiality of data stored on Cloud Computing Infrastructure. Our simple technique implemented with Open Source software solves this problem by using public key encryption to render stored data at rest unreadable by unauthorized personnel, including system administrators of the cloud computing service on which the data is stored. We validate our approach on a network measurement system implemented on PlanetLab. We then use it on a service where confidentiality is critical - a scanning application that validates external firewall implementations.
Bootstrapping and Maintaining Trust in the Cloud
2016-12-01
simultaneous cloud nodes. 1. INTRODUCTION The proliferation and popularity of infrastructure-as-a- service (IaaS) cloud computing services such as...Amazon Web Services and Google Compute Engine means more cloud tenants are hosting sensitive, private, and business critical data and applications in the...thousands of IaaS resources as they are elastically instantiated and terminated. Prior cloud trusted computing solutions address a subset of these features
Speeding Up Geophysical Research Using Docker Containers Within Multi-Cloud Environment.
NASA Astrophysics Data System (ADS)
Synytsky, R.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.; Starovoit, Y. O.
2016-12-01
How useful are the geophysical observations in a scope of minimizing losses from natural disasters today? Does it help to decrease number of human victims during tsunami and earthquake? Unfortunately it's still at early stage these days. It's a big goal and achievement to make such observations more useful by improving early warning and prediction systems with the help of cloud computing. Cloud computing technologies have proved the ability to speed up application development in many areas for 10 years already. Cloud unlocks new opportunities for geoscientists by providing access to modern data processing tools and algorithms including real-time high-performance computing, big data processing, artificial intelligence and others. Emerging lightweight cloud technologies, such as Docker containers, are gaining wide traction in IT due to the fact of faster and more efficient deployment of different applications in a cloud environment. It allows to deploy and manage geophysical applications and systems in minutes across multiple clouds and data centers that becomes of utmost importance for the next generation applications. In this session we'll demonstrate how Docker containers technology within multi-cloud can accelerate the development of applications specifically designed for geophysical researches.
Cloud Computing in Support of Synchronized Disaster Response Operations
2010-09-01
scalable, Web application based on cloud computing technologies to facilitate communication between a broad range of public and private entities without...requiring them to compromise security or competitive advantage. The proposed design applies the unique benefits of cloud computing architectures such as
Implementation of cloud computing in higher education
NASA Astrophysics Data System (ADS)
Asniar; Budiawan, R.
2016-04-01
Cloud computing research is a new trend in distributed computing, where people have developed service and SOA (Service Oriented Architecture) based application. This technology is very useful to be implemented, especially for higher education. This research is studied the need and feasibility for the suitability of cloud computing in higher education then propose the model of cloud computing service in higher education in Indonesia that can be implemented in order to support academic activities. Literature study is used as the research methodology to get a proposed model of cloud computing in higher education. Finally, SaaS and IaaS are cloud computing service that proposed to be implemented in higher education in Indonesia and cloud hybrid is the service model that can be recommended.
Exploring Cloud Computing for Large-scale Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Guang; Han, Binh; Yin, Jian
This paper explores cloud computing for large-scale data-intensive scientific applications. Cloud computing is attractive because it provides hardware and software resources on-demand, which relieves the burden of acquiring and maintaining a huge amount of resources that may be used only once by a scientific application. However, unlike typical commercial applications that often just requires a moderate amount of ordinary resources, large-scale scientific applications often need to process enormous amount of data in the terabyte or even petabyte range and require special high performance hardware with low latency connections to complete computation in a reasonable amount of time. To address thesemore » challenges, we build an infrastructure that can dynamically select high performance computing hardware across institutions and dynamically adapt the computation to the selected resources to achieve high performance. We have also demonstrated the effectiveness of our infrastructure by building a system biology application and an uncertainty quantification application for carbon sequestration, which can efficiently utilize data and computation resources across several institutions.« less
Cloud computing in medical imaging.
Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R
2013-07-01
Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
... related to the development and application of cloud computing for people with disabilities. Cloud computing offers the potential to provide accommodations that enable people with disabilities to access...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
... activities related to the development and application of cloud computing for people with disabilities. Cloud computing offers the potential to provide accommodations that enable people with disabilities to access...
A Review Study on Cloud Computing Issues
NASA Astrophysics Data System (ADS)
Kanaan Kadhim, Qusay; Yusof, Robiah; Sadeq Mahdi, Hamid; Al-shami, Sayed Samer Ali; Rahayu Selamat, Siti
2018-05-01
Cloud computing is the most promising current implementation of utility computing in the business world, because it provides some key features over classic utility computing, such as elasticity to allow clients dynamically scale-up and scale-down the resources in execution time. Nevertheless, cloud computing is still in its premature stage and experiences lack of standardization. The security issues are the main challenges to cloud computing adoption. Thus, critical industries such as government organizations (ministries) are reluctant to trust cloud computing due to the fear of losing their sensitive data, as it resides on the cloud with no knowledge of data location and lack of transparency of Cloud Service Providers (CSPs) mechanisms used to secure their data and applications which have created a barrier against adopting this agile computing paradigm. This study aims to review and classify the issues that surround the implementation of cloud computing which a hot area that needs to be addressed by future research.
CloudMC: a cloud computing application for Monte Carlo simulation.
Miras, H; Jiménez, R; Miras, C; Gomà, C
2013-04-21
This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.
Do Clouds Compute? A Framework for Estimating the Value of Cloud Computing
NASA Astrophysics Data System (ADS)
Klems, Markus; Nimis, Jens; Tai, Stefan
On-demand provisioning of scalable and reliable compute services, along with a cost model that charges consumers based on actual service usage, has been an objective in distributed computing research and industry for a while. Cloud Computing promises to deliver on this objective: consumers are able to rent infrastructure in the Cloud as needed, deploy applications and store data, and access them via Web protocols on a pay-per-use basis. The acceptance of Cloud Computing, however, depends on the ability for Cloud Computing providers and consumers to implement a model for business value co-creation. Therefore, a systematic approach to measure costs and benefits of Cloud Computing is needed. In this paper, we discuss the need for valuation of Cloud Computing, identify key components, and structure these components in a framework. The framework assists decision makers in estimating Cloud Computing costs and to compare these costs to conventional IT solutions. We demonstrate by means of representative use cases how our framework can be applied to real world scenarios.
Evaluating the Efficacy of the Cloud for Cluster Computation
NASA Technical Reports Server (NTRS)
Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom
2012-01-01
Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.
Enhancing Security by System-Level Virtualization in Cloud Computing Environments
NASA Astrophysics Data System (ADS)
Sun, Dawei; Chang, Guiran; Tan, Chunguang; Wang, Xingwei
Many trends are opening up the era of cloud computing, which will reshape the IT industry. Virtualization techniques have become an indispensable ingredient for almost all cloud computing system. By the virtual environments, cloud provider is able to run varieties of operating systems as needed by each cloud user. Virtualization can improve reliability, security, and availability of applications by using consolidation, isolation, and fault tolerance. In addition, it is possible to balance the workloads by using live migration techniques. In this paper, the definition of cloud computing is given; and then the service and deployment models are introduced. An analysis of security issues and challenges in implementation of cloud computing is identified. Moreover, a system-level virtualization case is established to enhance the security of cloud computing environments.
Application-oriented offloading in heterogeneous networks for mobile cloud computing
NASA Astrophysics Data System (ADS)
Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.
2018-04-01
Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.
Assessment of physical server reliability in multi cloud computing system
NASA Astrophysics Data System (ADS)
Kalyani, B. J. D.; Rao, Kolasani Ramchand H.
2018-04-01
Business organizations nowadays functioning with more than one cloud provider. By spreading cloud deployment across multiple service providers, it creates space for competitive prices that minimize the burden on enterprises spending budget. To assess the software reliability of multi cloud application layered software reliability assessment paradigm is considered with three levels of abstractions application layer, virtualization layer, and server layer. The reliability of each layer is assessed separately and is combined to get the reliability of multi-cloud computing application. In this paper, we focused on how to assess the reliability of server layer with required algorithms and explore the steps in the assessment of server reliability.
Cloud Computing Based E-Learning System
ERIC Educational Resources Information Center
Al-Zoube, Mohammed; El-Seoud, Samir Abou; Wyne, Mudasser F.
2010-01-01
Cloud computing technologies although in their early stages, have managed to change the way applications are going to be developed and accessed. These technologies are aimed at running applications as services over the internet on a flexible infrastructure. Microsoft office applications, such as word processing, excel spreadsheet, access database…
Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian
2011-08-30
Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.
Mobile healthcare information management utilizing Cloud Computing and Android OS.
Doukas, Charalampos; Pliakas, Thomas; Maglogiannis, Ilias
2010-01-01
Cloud Computing provides functionality for managing information data in a distributed, ubiquitous and pervasive manner supporting several platforms, systems and applications. This work presents the implementation of a mobile system that enables electronic healthcare data storage, update and retrieval using Cloud Computing. The mobile application is developed using Google's Android operating system and provides management of patient health records and medical images (supporting DICOM format and JPEG2000 coding). The developed system has been evaluated using the Amazon's S3 cloud service. This article summarizes the implementation details and presents initial results of the system in practice.
2010-09-01
Cloud computing describes a new distributed computing paradigm for IT data and services that involves over-the-Internet provision of dynamically scalable and often virtualized resources. While cost reduction and flexibility in storage, services, and maintenance are important considerations when deciding on whether or how to migrate data and applications to the cloud, large organizations like the Department of Defense need to consider the organization and structure of data on the cloud and the operations on such data in order to reap the full benefit of cloud
The Magellan Final Report on Cloud Computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
,; Coghlan, Susan; Yelick, Katherine
The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computingmore » Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.« less
Cloud Computing Boosts Business Intelligence of Telecommunication Industry
NASA Astrophysics Data System (ADS)
Xu, Meng; Gao, Dan; Deng, Chao; Luo, Zhiguo; Sun, Shaoling
Business Intelligence becomes an attracting topic in today's data intensive applications, especially in telecommunication industry. Meanwhile, Cloud Computing providing IT supporting Infrastructure with excellent scalability, large scale storage, and high performance becomes an effective way to implement parallel data processing and data mining algorithms. BC-PDM (Big Cloud based Parallel Data Miner) is a new MapReduce based parallel data mining platform developed by CMRI (China Mobile Research Institute) to fit the urgent requirements of business intelligence in telecommunication industry. In this paper, the architecture, functionality and performance of BC-PDM are presented, together with the experimental evaluation and case studies of its applications. The evaluation result demonstrates both the usability and the cost-effectiveness of Cloud Computing based Business Intelligence system in applications of telecommunication industry.
ERIC Educational Resources Information Center
Aaron, Lynn S.; Roche, Catherine M.
2012-01-01
"Cloud computing" refers to the use of computing resources on the Internet instead of on individual personal computers. The field is expanding and has significant potential value for educators. This is discussed with a focus on four main functions: file storage, file synchronization, document creation, and collaboration--each of which has…
Challenges and opportunities of cloud computing for atmospheric sciences
NASA Astrophysics Data System (ADS)
Pérez Montes, Diego A.; Añel, Juan A.; Pena, Tomás F.; Wallom, David C. H.
2016-04-01
Cloud computing is an emerging technological solution widely used in many fields. Initially developed as a flexible way of managing peak demand it has began to make its way in scientific research. One of the greatest advantages of cloud computing for scientific research is independence of having access to a large cyberinfrastructure to fund or perform a research project. Cloud computing can avoid maintenance expenses for large supercomputers and has the potential to 'democratize' the access to high-performance computing, giving flexibility to funding bodies for allocating budgets for the computational costs associated with a project. Two of the most challenging problems in atmospheric sciences are computational cost and uncertainty in meteorological forecasting and climate projections. Both problems are closely related. Usually uncertainty can be reduced with the availability of computational resources to better reproduce a phenomenon or to perform a larger number of experiments. Here we expose results of the application of cloud computing resources for climate modeling using cloud computing infrastructures of three major vendors and two climate models. We show how the cloud infrastructure compares in performance to traditional supercomputers and how it provides the capability to complete experiments in shorter periods of time. The monetary cost associated is also analyzed. Finally we discuss the future potential of this technology for meteorological and climatological applications, both from the point of view of operational use and research.
Extended outlook: description, utilization, and daily applications of cloud technology in radiology.
Gerard, Perry; Kapadia, Neil; Chang, Patricia T; Acharya, Jay; Seiler, Michael; Lefkovitz, Zvi
2013-12-01
The purpose of this article is to discuss the concept of cloud technology, its role in medical applications and radiology, the role of the radiologist in using and accessing these vast resources of information, and privacy concerns and HIPAA compliance strategies. Cloud computing is the delivery of shared resources, software, and information to computers and other devices as a metered service. This technology has a promising role in the sharing of patient medical information and appears to be particularly suited for application in radiology, given the field's inherent need for storage and access to large amounts of data. The radiology cloud has significant strengths, such as providing centralized storage and access, reducing unnecessary repeat radiologic studies, and potentially allowing radiologic second opinions more easily. There are significant cost advantages to cloud computing because of a decreased need for infrastructure and equipment by the institution. Private clouds may be used to ensure secure storage of data and compliance with HIPAA. In choosing a cloud service, there are important aspects, such as disaster recovery plans, uptime, and security audits, that must be considered. Given that the field of radiology has become almost exclusively digital in recent years, the future of secure storage and easy access to imaging studies lies within cloud computing technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.
Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for bothmore » academia and government, including configuration options, hardware issues, challenges, and solutions.« less
Bigdata Driven Cloud Security: A Survey
NASA Astrophysics Data System (ADS)
Raja, K.; Hanifa, Sabibullah Mohamed
2017-08-01
Cloud Computing (CC) is a fast-growing technology to perform massive-scale and complex computing. It eliminates the need to maintain expensive computing hardware, dedicated space, and software. Recently, it has been observed that massive growth in the scale of data or big data generated through cloud computing. CC consists of a front-end, includes the users’ computers and software required to access the cloud network, and back-end consists of various computers, servers and database systems that create the cloud. In SaaS (Software as-a-Service - end users to utilize outsourced software), PaaS (Platform as-a-Service-platform is provided) and IaaS (Infrastructure as-a-Service-physical environment is outsourced), and DaaS (Database as-a-Service-data can be housed within a cloud), where leading / traditional cloud ecosystem delivers the cloud services become a powerful and popular architecture. Many challenges and issues are in security or threats, most vital barrier for cloud computing environment. The main barrier to the adoption of CC in health care relates to Data security. When placing and transmitting data using public networks, cyber attacks in any form are anticipated in CC. Hence, cloud service users need to understand the risk of data breaches and adoption of service delivery model during deployment. This survey deeply covers the CC security issues (covering Data Security in Health care) so as to researchers can develop the robust security application models using Big Data (BD) on CC (can be created / deployed easily). Since, BD evaluation is driven by fast-growing cloud-based applications developed using virtualized technologies. In this purview, MapReduce [12] is a good example of big data processing in a cloud environment, and a model for Cloud providers.
A Cost-Benefit Study of Doing Astrophysics On The Cloud: Production of Image Mosaics
NASA Astrophysics Data System (ADS)
Berriman, G. B.; Good, J. C. Deelman, E.; Singh, G. Livny, M.
2009-09-01
Utility grids such as the Amazon EC2 and Amazon S3 clouds offer computational and storage resources that can be used on-demand for a fee by compute- and data-intensive applications. The cost of running an application on such a cloud depends on the compute, storage and communication resources it will provision and consume. Different execution plans of the same application may result in significantly different costs. We studied via simulation the cost performance trade-offs of different execution and resource provisioning plans by creating, under the Amazon cloud fee structure, mosaics with the Montage image mosaic engine, a widely used data- and compute-intensive application. Specifically, we studied the cost of building mosaics of 2MASS data that have sizes of 1, 2 and 4 square degrees, and a 2MASS all-sky mosaic. These are examples of mosaics commonly generated by astronomers. We also study these trade-offs in the context of the storage and communication fees of Amazon S3 when used for long-term application data archiving. Our results show that by provisioning the right amount of storage and compute resources cost can be significantly reduced with no significant impact on application performance.
GATE Monte Carlo simulation in a cloud computing environment
NASA Astrophysics Data System (ADS)
Rowedder, Blake Austin
The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud computing services. Amazon's Elastic Compute Cloud was used to launch several nodes equipped with GATE. Job data was initially broken up on the local computer, then uploaded to the worker nodes on the cloud. The results were automatically downloaded and aggregated on the local computer for display and analysis. Five simulations were repeated for every cluster size between 1 and 20 nodes. Ultimately, increasing cluster size resulted in a decrease in calculation time that could be expressed with an inverse power model. Comparing the benchmark results to the published values and error margins indicated that the simulation results were not affected by the cluster size and thus that integrity of a calculation is preserved in a cloud computing environment. The runtime of a 53 minute long simulation was decreased to 3.11 minutes when run on a 20-node cluster. The ability to improve the speed of simulation suggests that fast MC simulations are viable for imaging and radiotherapy applications. With high power computing continuing to lower in price and accessibility, implementing Monte Carlo techniques with cloud computing for clinical applications will continue to become more attractive.
Scientific Services on the Cloud
NASA Astrophysics Data System (ADS)
Chapman, David; Joshi, Karuna P.; Yesha, Yelena; Halem, Milt; Yesha, Yaacov; Nguyen, Phuong
Scientific Computing was one of the first every applications for parallel and distributed computation. To this date, scientific applications remain some of the most compute intensive, and have inspired creation of petaflop compute infrastructure such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated hardware infrastructure has become both a blessing and a curse to the scientific community. Scientists are interested in cloud computing for much the same reason as businesses and other professionals. The hardware is provided, maintained, and administrated by a third party. Software abstraction and virtualization provide reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping and execution. Cloud computing resources are only a few clicks away, and by far the easiest high performance distributed platform to gain access to. There may still be dedicated infrastructure for ultra-scale science, but the cloud can easily play a major part of the scientific computing initiative.
Integration of High-Performance Computing into Cloud Computing Services
NASA Astrophysics Data System (ADS)
Vouk, Mladen A.; Sills, Eric; Dreher, Patrick
High-Performance Computing (HPC) projects span a spectrum of computer hardware implementations ranging from peta-flop supercomputers, high-end tera-flop facilities running a variety of operating systems and applications, to mid-range and smaller computational clusters used for HPC application development, pilot runs and prototype staging clusters. What they all have in common is that they operate as a stand-alone system rather than a scalable and shared user re-configurable resource. The advent of cloud computing has changed the traditional HPC implementation. In this article, we will discuss a very successful production-level architecture and policy framework for supporting HPC services within a more general cloud computing infrastructure. This integrated environment, called Virtual Computing Lab (VCL), has been operating at NC State since fall 2004. Nearly 8,500,000 HPC CPU-Hrs were delivered by this environment to NC State faculty and students during 2009. In addition, we present and discuss operational data that show that integration of HPC and non-HPC (or general VCL) services in a cloud can substantially reduce the cost of delivering cloud services (down to cents per CPU hour).
2011-01-01
Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105
ERIC Educational Resources Information Center
Liao, Yuan
2011-01-01
The virtualization of computing resources, as represented by the sustained growth of cloud computing, continues to thrive. Information Technology departments are building their private clouds due to the perception of significant cost savings by managing all physical computing resources from a single point and assigning them to applications or…
NASA Astrophysics Data System (ADS)
Khan, Kashif A.; Wang, Qi; Luo, Chunbo; Wang, Xinheng; Grecos, Christos
2014-05-01
Mobile cloud computing is receiving world-wide momentum for ubiquitous on-demand cloud services for mobile users provided by Amazon, Google etc. with low capital cost. However, Internet-centric clouds introduce wide area network (WAN) delays that are often intolerable for real-time applications such as video streaming. One promising approach to addressing this challenge is to deploy decentralized mini-cloud facility known as cloudlets to enable localized cloud services. When supported by local wireless connectivity, a wireless cloudlet is expected to offer low cost and high performance cloud services for the users. In this work, we implement a realistic framework that comprises both a popular Internet cloud (Amazon Cloud) and a real-world cloudlet (based on Ubuntu Enterprise Cloud (UEC)) for mobile cloud users in a wireless mesh network. We focus on real-time video streaming over the HTTP standard and implement a typical application. We further perform a comprehensive comparative analysis and empirical evaluation of the application's performance when it is delivered over the Internet cloud and the cloudlet respectively. The study quantifies the influence of the two different cloud networking architectures on supporting real-time video streaming. We also enable movement of the users in the wireless mesh network and investigate the effect of user's mobility on mobile cloud computing over the cloudlet and Amazon cloud respectively. Our experimental results demonstrate the advantages of the cloudlet paradigm over its Internet cloud counterpart in supporting the quality of service of real-time applications.
HPC on Competitive Cloud Resources
NASA Astrophysics Data System (ADS)
Bientinesi, Paolo; Iakymchuk, Roman; Napper, Jeff
Computing as a utility has reached the mainstream. Scientists can now easily rent time on large commercial clusters that can be expanded and reduced on-demand in real-time. However, current commercial cloud computing performance falls short of systems specifically designed for scientific applications. Scientific computing needs are quite different from those of the web applications that have been the focus of cloud computing vendors. In this chapter we demonstrate through empirical evaluation the computational efficiency of high-performance numerical applications in a commercial cloud environment when resources are shared under high contention. Using the Linpack benchmark as a case study, we show that cache utilization becomes highly unpredictable and similarly affects computation time. For some problems, not only is it more efficient to underutilize resources, but the solution can be reached sooner in realtime (wall-time). We also show that the smallest, cheapest (64-bit) instance on the studied environment is the best for price to performance ration. In light of the high-contention we witness, we believe that alternative definitions of efficiency for commercial cloud environments should be introduced where strong performance guarantees do not exist. Concepts like average, expected performance and execution time, expected cost to completion, and variance measures--traditionally ignored in the high-performance computing context--now should complement or even substitute the standard definitions of efficiency.
Cloud Computing for Geosciences--GeoCloud for standardized geospatial service platforms (Invited)
NASA Astrophysics Data System (ADS)
Nebert, D. D.; Huang, Q.; Yang, C.
2013-12-01
The 21st century geoscience faces challenges of Big Data, spike computing requirements (e.g., when natural disaster happens), and sharing resources through cyberinfrastructure across different organizations (Yang et al., 2011). With flexibility and cost-efficiency of computing resources a primary concern, cloud computing emerges as a promising solution to provide core capabilities to address these challenges. Many governmental and federal agencies are adopting cloud technologies to cut costs and to make federal IT operations more efficient (Huang et al., 2010). However, it is still difficult for geoscientists to take advantage of the benefits of cloud computing to facilitate the scientific research and discoveries. This presentation reports using GeoCloud to illustrate the process and strategies used in building a common platform for geoscience communities to enable the sharing, integration of geospatial data, information and knowledge across different domains. GeoCloud is an annual incubator project coordinated by the Federal Geographic Data Committee (FGDC) in collaboration with the U.S. General Services Administration (GSA) and the Department of Health and Human Services. It is designed as a staging environment to test and document the deployment of a common GeoCloud community platform that can be implemented by multiple agencies. With these standardized virtual geospatial servers, a variety of government geospatial applications can be quickly migrated to the cloud. In order to achieve this objective, multiple projects are nominated each year by federal agencies as existing public-facing geospatial data services. From the initial candidate projects, a set of common operating system and software requirements was identified as the baseline for platform as a service (PaaS) packages. Based on these developed common platform packages, each project deploys and monitors its web application, develops best practices, and documents cost and performance information. This paper presents the background, architectural design, and activities of GeoCloud in support of the Geospatial Platform Initiative. System security strategies and approval processes for migrating federal geospatial data, information, and applications into cloud, and cost estimation for cloud operations are covered. Finally, some lessons learned from the GeoCloud project are discussed as reference for geoscientists to consider in the adoption of cloud computing.
ERIC Educational Resources Information Center
Alshihri, Bandar A.
2017-01-01
Cloud computing is a recent computing paradigm that has been integrated into the educational system. It provides numerous opportunities for delivering a variety of computing services in a way that has not been experienced before. The Google Company is among the top business companies that afford their cloud services by launching a number of…
NASA Astrophysics Data System (ADS)
Xiong, Ting; He, Zhiwen
2017-06-01
Cloud computing was first proposed by Google Company in the United States, which was based on the Internet center, providing a standard and open network sharing service approach. With the rapid development of the higher education in China, the educational resources provided by colleges and universities had greatly gap in the actual needs of teaching resources. therefore, Cloud computing of using the Internet technology to provide shared methods liked the timely rain, which had become an important means of the Digital Education on sharing applications in the current higher education. Based on Cloud computing environment, the paper analyzed the existing problems about the sharing of digital educational resources in Jiangxi Province Independent Colleges. According to the sharing characteristics of mass storage, efficient operation and low input about Cloud computing, the author explored and studied the design of the sharing model about the digital educational resources of higher education in Independent College. Finally, the design of the shared model was put into the practical applications.
Web N.0, the New Development Trend of Internet
NASA Astrophysics Data System (ADS)
Sun, Zhiguo; Wang, Wensheng
This article analyzes the Internet basic theory, the network foundation environment and the user behavior change and so on, Which analyzes the development tendency of existing partial Internet products in the future Internet environment. The article also hot on the concept of cloud computing, Demonstrates the relation between Cloud Computing and Web 2.0 from the angle of Cloud-based end-user applications, The possibly killing application in the future was discussed.
Application of Cloud Computing at KTU: MS Live@Edu Case
ERIC Educational Resources Information Center
Miseviciene, Regina; Budnikas, Germanas; Ambraziene, Danute
2011-01-01
Cloud computing is a significant alternative in today's educational perspective. The technology gives the students and teachers the opportunity to quickly access various application platforms and resources through the web pages on-demand. Unfortunately, not all educational institutions often have an ability to take full advantages of the newest…
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D T; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.
Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D. T.; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung
2014-01-01
Background Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. Results We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. Conclusions CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. Availability: CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/. PMID:24897343
SaaS enabled admission control for MCMC simulation in cloud computing infrastructures
NASA Astrophysics Data System (ADS)
Vázquez-Poletti, J. L.; Moreno-Vozmediano, R.; Han, R.; Wang, W.; Llorente, I. M.
2017-02-01
Markov Chain Monte Carlo (MCMC) methods are widely used in the field of simulation and modelling of materials, producing applications that require a great amount of computational resources. Cloud computing represents a seamless source for these resources in the form of HPC. However, resource over-consumption can be an important drawback, specially if the cloud provision process is not appropriately optimized. In the present contribution we propose a two-level solution that, on one hand, takes advantage of approximate computing for reducing the resource demand and on the other, uses admission control policies for guaranteeing an optimal provision to running applications.
Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing.
Shatil, Anwar S; Younas, Sohail; Pourreza, Hossein; Figley, Chase R
2015-01-01
With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications.
Heads in the Cloud: A Primer on Neuroimaging Applications of High Performance Computing
Shatil, Anwar S.; Younas, Sohail; Pourreza, Hossein; Figley, Chase R.
2015-01-01
With larger data sets and more sophisticated analyses, it is becoming increasingly common for neuroimaging researchers to push (or exceed) the limitations of standalone computer workstations. Nonetheless, although high-performance computing platforms such as clusters, grids and clouds are already in routine use by a small handful of neuroimaging researchers to increase their storage and/or computational power, the adoption of such resources by the broader neuroimaging community remains relatively uncommon. Therefore, the goal of the current manuscript is to: 1) inform prospective users about the similarities and differences between computing clusters, grids and clouds; 2) highlight their main advantages; 3) discuss when it may (and may not) be advisable to use them; 4) review some of their potential problems and barriers to access; and finally 5) give a few practical suggestions for how interested new users can start analyzing their neuroimaging data using cloud resources. Although the aim of cloud computing is to hide most of the complexity of the infrastructure management from end-users, we recognize that this can still be an intimidating area for cognitive neuroscientists, psychologists, neurologists, radiologists, and other neuroimaging researchers lacking a strong computational background. Therefore, with this in mind, we have aimed to provide a basic introduction to cloud computing in general (including some of the basic terminology, computer architectures, infrastructure and service models, etc.), a practical overview of the benefits and drawbacks, and a specific focus on how cloud resources can be used for various neuroimaging applications. PMID:27279746
2011-09-01
COMPUTING: EFFECTS AND APPLICATION OF HASTILY FORMED NETWORKS (HFN) FOR HUMANITARIAN ASSISTANCE/DISASTER RELIEF (HA/DR) MISSIONS by Mark K. Morris...i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...SUBTITLE Virtual Cloud Computing: Effects and Application of Hastily Formed Networks (HFN) for Humanitarian Assistance/Disaster Relief (HA/DR) Missions
Managing a tier-2 computer centre with a private cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara
2014-06-01
In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.
Use of cloud computing in biomedicine.
Sobeslav, Vladimir; Maresova, Petra; Krejcar, Ondrej; Franca, Tanos C C; Kuca, Kamil
2016-12-01
Nowadays, biomedicine is characterised by a growing need for processing of large amounts of data in real time. This leads to new requirements for information and communication technologies (ICT). Cloud computing offers a solution to these requirements and provides many advantages, such as cost savings, elasticity and scalability of using ICT. The aim of this paper is to explore the concept of cloud computing and the related use of this concept in the area of biomedicine. Authors offer a comprehensive analysis of the implementation of the cloud computing approach in biomedical research, decomposed into infrastructure, platform and service layer, and a recommendation for processing large amounts of data in biomedicine. Firstly, the paper describes the appropriate forms and technological solutions of cloud computing. Secondly, the high-end computing paradigm of cloud computing aspects is analysed. Finally, the potential and current use of applications in scientific research of this technology in biomedicine is discussed.
The StratusLab cloud distribution: Use-cases and support for scientific applications
NASA Astrophysics Data System (ADS)
Floros, E.
2012-04-01
The StratusLab project is integrating an open cloud software distribution that enables organizations to setup and provide their own private or public IaaS (Infrastructure as a Service) computing clouds. StratusLab distribution capitalizes on popular infrastructure virtualization solutions like KVM, the OpenNebula virtual machine manager, Claudia service manager and SlipStream deployment platform, which are further enhanced and expanded with additional components developed within the project. The StratusLab distribution covers the core aspects of a cloud IaaS architecture, namely Computing (life-cycle management of virtual machines), Storage, Appliance management and Networking. The resulting software stack provides a packaged turn-key solution for deploying cloud computing services. The cloud computing infrastructures deployed using StratusLab can support a wide range of scientific and business use cases. Grid computing has been the primary use case pursued by the project and for this reason the initial priority has been the support for the deployment and operation of fully virtualized production-level grid sites; a goal that has already been achieved by operating such a site as part of EGI's (European Grid Initiative) pan-european grid infrastructure. In this area the project is currently working to provide non-trivial capabilities like elastic and autonomic management of grid site resources. Although grid computing has been the motivating paradigm, StratusLab's cloud distribution can support a wider range of use cases. Towards this direction, we have developed and currently provide support for setting up general purpose computing solutions like Hadoop, MPI and Torque clusters. For what concerns scientific applications the project is collaborating closely with the Bioinformatics community in order to prepare VM appliances and deploy optimized services for bioinformatics applications. In a similar manner additional scientific disciplines like Earth Science can take advantage of StratusLab cloud solutions. Interested users are welcomed to join StratusLab's user community by getting access to the reference cloud services deployed by the project and offered to the public.
Integrating multiple scientific computing needs via a Private Cloud infrastructure
NASA Astrophysics Data System (ADS)
Bagnasco, S.; Berzano, D.; Brunetti, R.; Lusso, S.; Vallero, S.
2014-06-01
In a typical scientific computing centre, diverse applications coexist and share a single physical infrastructure. An underlying Private Cloud facility eases the management and maintenance of heterogeneous use cases such as multipurpose or application-specific batch farms, Grid sites catering to different communities, parallel interactive data analysis facilities and others. It allows to dynamically and efficiently allocate resources to any application and to tailor the virtual machines according to the applications' requirements. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques; for example, rolling updates can be performed easily and minimizing the downtime. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 site and a dynamically expandable PROOF-based Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The Private Cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem (used in two different configurations for worker- and service-class hypervisors) and the OpenWRT Linux distribution (used for network virtualization). A future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and by using mainstream contextualization tools like CloudInit.
Enhancing Instruction through Constructivism, Cooperative Learning, and Cloud Computing
ERIC Educational Resources Information Center
Denton, David W.
2012-01-01
Cloud computing technologies, such as Google Docs and Microsoft Office Live, have the potential to enhance instructional methods predicated on constructivism and cooperative learning. Cloud-based application features like file sharing and online publishing are prompting departments of education across the nation to adopt these technologies.…
Providing Assistive Technology Applications as a Service Through Cloud Computing.
Mulfari, Davide; Celesti, Antonio; Villari, Massimo; Puliafito, Antonio
2015-01-01
Users with disabilities interact with Personal Computers (PCs) using Assistive Technology (AT) software solutions. Such applications run on a PC that a person with a disability commonly uses. However the configuration of AT applications is not trivial at all, especially whenever the user needs to work on a PC that does not allow him/her to rely on his / her AT tools (e.g., at work, at university, in an Internet point). In this paper, we discuss how cloud computing provides a valid technological solution to enhance such a scenario.With the emergence of cloud computing, many applications are executed on top of virtual machines (VMs). Virtualization allows us to achieve a software implementation of a real computer able to execute a standard operating system and any kind of application. In this paper we propose to build personalized VMs running AT programs and settings. By using the remote desktop technology, our solution enables users to control their customized virtual desktop environment by means of an HTML5-based web interface running on any computer equipped with a browser, whenever they are.
Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing
NASA Astrophysics Data System (ADS)
Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.
2011-12-01
Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly better performance than the local machine. Much of the difference was due to newer equipment in the Nebula than the legacy computer, which is suggestive of a potential economic advantage beyond elastic power, i.e., access to up-to-date hardware vs. legacy hardware that must be maintained past its prime to amortize the cost. In addition to a trade study of advantages and challenges of porting complex processing to the cloud, a tutorial was developed to enable further progress in utilizing the Nebula for Earth Science applications and understanding better the potential for Cloud Computing in further data- and computing-intensive Earth Science research. In particular, highly bursty computing such as that experienced in the user-demand-driven Giovanni system may become more tractable in a Cloud environment. Our future work will continue to focus on migrating more GES DISC's applications/instances, e.g. Giovanni instances, to the Nebula platform and making matured migrated applications to be in operation on the Nebula.
The direction of cloud computing for Malaysian education sector in 21st century
NASA Astrophysics Data System (ADS)
Jaafar, Jazurainifariza; Rahman, M. Nordin A.; Kadir, M. Fadzil A.; Shamsudin, Syadiah Nor; Saany, Syarilla Iryani A.
2017-08-01
In 21st century, technology has turned learning environment into a new way of education to make learning systems more effective and systematic. Nowadays, education institutions are faced many challenges to ensure the teaching and learning process is running smoothly and manageable. Some of challenges in the current education management are lack of integrated systems, high cost of maintenance, difficulty of configuration and deployment as well as complexity of storage provision. Digital learning is an instructional practice that use technology to make learning experience more effective, provides education process more systematic and attractive. Digital learning can be considered as one of the prominent application that implemented under cloud computing environment. Cloud computing is a type of network resources that provides on-demands services where the users can access applications inside it at any location and no time border. It also promises for minimizing the cost of maintenance and provides a flexible of data storage capacity. The aim of this article is to review the definition and types of cloud computing for improving digital learning management as required in the 21st century education. The analysis of digital learning context focused on primary school in Malaysia. Types of cloud applications and services in education sector are also discussed in the article. Finally, gap analysis and direction of cloud computing in education sector for facing the 21st century challenges are suggested.
Cloud Computing and Its Applications in GIS
NASA Astrophysics Data System (ADS)
Kang, Cao
2011-12-01
Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature of cloud computing. This paper presents a parallel Euclidean distance algorithm that works seamlessly with the distributed nature of cloud computing infrastructures. The mechanism of this algorithm is to subdivide a raster image into sub-images and wrap them with a one pixel deep edge layer of individually computed distance information. Each sub-image is then processed by a separate node, after which the resulting sub-images are reassembled into the final output. It is shown that while any rectangular sub-image shape can be used, those approximating squares are computationally optimal. This study also serves as a demonstration of this subdivide and layer-wrap strategy, which would enable the migration of many truly spatial GIS algorithms to cloud computing infrastructures. However, this research also indicates that certain spatial GIS algorithms such as cost distance cannot be migrated by adopting this mechanism, which presents significant challenges for the development of cloud-based GIS systems. The third article is entitled "A Distributed Storage Schema for Cloud Computing based Raster GIS Systems". This paper proposes a NoSQL Database Management System (NDDBMS) based raster GIS data storage schema. NDDBMS has good scalability and is able to use distributed commodity computers, which make it superior to Relational Database Management Systems (RDBMS) in a cloud computing environment. In order to provide optimized data service performance, the proposed storage schema analyzes the nature of commonly used raster GIS data sets. It discriminates two categories of commonly used data sets, and then designs corresponding data storage models for both categories. As a result, the proposed storage schema is capable of hosting and serving enormous volumes of raster GIS data speedily and efficiently on cloud computing infrastructures. In addition, the scheme also takes advantage of the data compression characteristics of Quadtrees, thus promoting efficient data storage. Through this assessment of cloud computing technology, the exploration of the challenges and solutions to the migration of GIS algorithms to cloud computing infrastructures, and the examination of strategies for serving large amounts of GIS data in a cloud computing infrastructure, this dissertation lends support to the feasibility of building a cloud-based GIS system. However, there are still challenges that need to be addressed before a full-scale functional cloud-based GIS system can be successfully implemented. (Abstract shortened by UMI.)
Towards an Approach of Semantic Access Control for Cloud Computing
NASA Astrophysics Data System (ADS)
Hu, Luokai; Ying, Shi; Jia, Xiangyang; Zhao, Kai
With the development of cloud computing, the mutual understandability among distributed Access Control Policies (ACPs) has become an important issue in the security field of cloud computing. Semantic Web technology provides the solution to semantic interoperability of heterogeneous applications. In this paper, we analysis existing access control methods and present a new Semantic Access Control Policy Language (SACPL) for describing ACPs in cloud computing environment. Access Control Oriented Ontology System (ACOOS) is designed as the semantic basis of SACPL. Ontology-based SACPL language can effectively solve the interoperability issue of distributed ACPs. This study enriches the research that the semantic web technology is applied in the field of security, and provides a new way of thinking of access control in cloud computing.
An Application-Based Performance Evaluation of NASAs Nebula Cloud Computing Platform
NASA Technical Reports Server (NTRS)
Saini, Subhash; Heistand, Steve; Jin, Haoqiang; Chang, Johnny; Hood, Robert T.; Mehrotra, Piyush; Biswas, Rupak
2012-01-01
The high performance computing (HPC) community has shown tremendous interest in exploring cloud computing as it promises high potential. In this paper, we examine the feasibility, performance, and scalability of production quality scientific and engineering applications of interest to NASA on NASA's cloud computing platform, called Nebula, hosted at Ames Research Center. This work represents the comprehensive evaluation of Nebula using NUTTCP, HPCC, NPB, I/O, and MPI function benchmarks as well as four applications representative of the NASA HPC workload. Specifically, we compare Nebula performance on some of these benchmarks and applications to that of NASA s Pleiades supercomputer, a traditional HPC system. We also investigate the impact of virtIO and jumbo frames on interconnect performance. Overall results indicate that on Nebula (i) virtIO and jumbo frames improve network bandwidth by a factor of 5x, (ii) there is a significant virtualization layer overhead of about 10% to 25%, (iii) write performance is lower by a factor of 25x, (iv) latency for short MPI messages is very high, and (v) overall performance is 15% to 48% lower than that on Pleiades for NASA HPC applications. We also comment on the usability of the cloud platform.
Where the Cloud Meets the Commons
ERIC Educational Resources Information Center
Ipri, Tom
2011-01-01
Changes presented by cloud computing--shared computing services, applications, and storage available to end users via the Internet--have the potential to seriously alter how libraries provide services, not only remotely, but also within the physical library, specifically concerning challenges facing the typical desktop computing experience.…
Elastic Cloud Computing Infrastructures in the Open Cirrus Testbed Implemented via Eucalyptus
NASA Astrophysics Data System (ADS)
Baun, Christian; Kunze, Marcel
Cloud computing realizes the advantages and overcomes some restrictionsof the grid computing paradigm. Elastic infrastructures can easily be createdand managed by cloud users. In order to accelerate the research ondata center management and cloud services the OpenCirrusTM researchtestbed has been started by HP, Intel and Yahoo!. Although commercialcloud offerings are proprietary, Open Source solutions exist in the field ofIaaS with Eucalyptus, PaaS with AppScale and at the applications layerwith Hadoop MapReduce. This paper examines the I/O performance ofcloud computing infrastructures implemented with Eucalyptus in contrastto Amazon S3.
A Weibull distribution accrual failure detector for cloud computing.
Liu, Jiaxi; Wu, Zhibo; Wu, Jin; Dong, Jian; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing.
A General Cross-Layer Cloud Scheduling Framework for Multiple IoT Computer Tasks.
Wu, Guanlin; Bao, Weidong; Zhu, Xiaomin; Zhang, Xiongtao
2018-05-23
The diversity of IoT services and applications brings enormous challenges to improving the performance of multiple computer tasks' scheduling in cross-layer cloud computing systems. Unfortunately, the commonly-employed frameworks fail to adapt to the new patterns on the cross-layer cloud. To solve this issue, we design a new computer task scheduling framework for multiple IoT services in cross-layer cloud computing systems. Specifically, we first analyze the features of the cross-layer cloud and computer tasks. Then, we design the scheduling framework based on the analysis and present detailed models to illustrate the procedures of using the framework. With the proposed framework, the IoT services deployed in cross-layer cloud computing systems can dynamically select suitable algorithms and use resources more effectively to finish computer tasks with different objectives. Finally, the algorithms are given based on the framework, and extensive experiments are also given to validate its effectiveness, as well as its superiority.
Security and Cloud Outsourcing Framework for Economic Dispatch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi
The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less
Security and Cloud Outsourcing Framework for Economic Dispatch
Sarker, Mushfiqur R.; Wang, Jianhui; Li, Zuyi; ...
2017-04-24
The computational complexity and problem sizes of power grid applications have increased significantly with the advent of renewable resources and smart grid technologies. The current paradigm of solving these issues consist of inhouse high performance computing infrastructures, which have drawbacks of high capital expenditures, maintenance, and limited scalability. Cloud computing is an ideal alternative due to its powerful computational capacity, rapid scalability, and high cost-effectiveness. A major challenge, however, remains in that the highly confidential grid data is susceptible for potential cyberattacks when outsourced to the cloud. In this work, a security and cloud outsourcing framework is developed for themore » Economic Dispatch (ED) linear programming application. As a result, the security framework transforms the ED linear program into a confidentiality-preserving linear program, that masks both the data and problem structure, thus enabling secure outsourcing to the cloud. Results show that for large grid test cases the performance gain and costs outperforms the in-house infrastructure.« less
Behavior Life Style Analysis for Mobile Sensory Data in Cloud Computing through MapReduce
Hussain, Shujaat; Bang, Jae Hun; Han, Manhyung; Ahmed, Muhammad Idris; Amin, Muhammad Bilal; Lee, Sungyoung; Nugent, Chris; McClean, Sally; Scotney, Bryan; Parr, Gerard
2014-01-01
Cloud computing has revolutionized healthcare in today's world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user's activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends. PMID:25420151
Behavior life style analysis for mobile sensory data in cloud computing through MapReduce.
Hussain, Shujaat; Bang, Jae Hun; Han, Manhyung; Ahmed, Muhammad Idris; Amin, Muhammad Bilal; Lee, Sungyoung; Nugent, Chris; McClean, Sally; Scotney, Bryan; Parr, Gerard
2014-11-20
Cloud computing has revolutionized healthcare in today's world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user's activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends.
Hybrid cloud and cluster computing paradigms for life science applications
2010-01-01
Background Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Results Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. Conclusions The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. Methods We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments. PMID:21210982
Hybrid cloud and cluster computing paradigms for life science applications.
Qiu, Judy; Ekanayake, Jaliya; Gunarathne, Thilina; Choi, Jong Youl; Bae, Seung-Hee; Li, Hui; Zhang, Bingjing; Wu, Tak-Lon; Ruan, Yang; Ekanayake, Saliya; Hughes, Adam; Fox, Geoffrey
2010-12-21
Clouds and MapReduce have shown themselves to be a broadly useful approach to scientific computing especially for parallel data intensive applications. However they have limited applicability to some areas such as data mining because MapReduce has poor performance on problems with an iterative structure present in the linear algebra that underlies much data analysis. Such problems can be run efficiently on clusters using MPI leading to a hybrid cloud and cluster environment. This motivates the design and implementation of an open source Iterative MapReduce system Twister. Comparisons of Amazon, Azure, and traditional Linux and Windows environments on common applications have shown encouraging performance and usability comparisons in several important non iterative cases. These are linked to MPI applications for final stages of the data analysis. Further we have released the open source Twister Iterative MapReduce and benchmarked it against basic MapReduce (Hadoop) and MPI in information retrieval and life sciences applications. The hybrid cloud (MapReduce) and cluster (MPI) approach offers an attractive production environment while Twister promises a uniform programming environment for many Life Sciences applications. We used commercial clouds Amazon and Azure and the NSF resource FutureGrid to perform detailed comparisons and evaluations of different approaches to data intensive computing. Several applications were developed in MPI, MapReduce and Twister in these different environments.
ERIC Educational Resources Information Center
Donna, Joel D.; Miller, Brant G.
2013-01-01
Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…
Multi-Dimensional Optimization for Cloud Based Multi-Tier Applications
ERIC Educational Resources Information Center
Jung, Gueyoung
2010-01-01
Emerging trends toward cloud computing and virtualization have been opening new avenues to meet enormous demands of space, resource utilization, and energy efficiency in modern data centers. By being allowed to host many multi-tier applications in consolidated environments, cloud infrastructure providers enable resources to be shared among these…
Translational bioinformatics in the cloud: an affordable alternative
2010-01-01
With the continued exponential expansion of publicly available genomic data and access to low-cost, high-throughput molecular technologies for profiling patient populations, computational technologies and informatics are becoming vital considerations in genomic medicine. Although cloud computing technology is being heralded as a key enabling technology for the future of genomic research, available case studies are limited to applications in the domain of high-throughput sequence data analysis. The goal of this study was to evaluate the computational and economic characteristics of cloud computing in performing a large-scale data integration and analysis representative of research problems in genomic medicine. We find that the cloud-based analysis compares favorably in both performance and cost in comparison to a local computational cluster, suggesting that cloud computing technologies might be a viable resource for facilitating large-scale translational research in genomic medicine. PMID:20691073
Biomedical cloud computing with Amazon Web Services.
Fusaro, Vincent A; Patil, Prasad; Gafni, Erik; Wall, Dennis P; Tonellato, Peter J
2011-08-01
In this overview to biomedical computing in the cloud, we discussed two primary ways to use the cloud (a single instance or cluster), provided a detailed example using NGS mapping, and highlighted the associated costs. While many users new to the cloud may assume that entry is as straightforward as uploading an application and selecting an instance type and storage options, we illustrated that there is substantial up-front effort required before an application can make full use of the cloud's vast resources. Our intention was to provide a set of best practices and to illustrate how those apply to a typical application pipeline for biomedical informatics, but also general enough for extrapolation to other types of computational problems. Our mapping example was intended to illustrate how to develop a scalable project and not to compare and contrast alignment algorithms for read mapping and genome assembly. Indeed, with a newer aligner such as Bowtie, it is possible to map the entire African genome using one m2.2xlarge instance in 48 hours for a total cost of approximately $48 in computation time. In our example, we were not concerned with data transfer rates, which are heavily influenced by the amount of available bandwidth, connection latency, and network availability. When transferring large amounts of data to the cloud, bandwidth limitations can be a major bottleneck, and in some cases it is more efficient to simply mail a storage device containing the data to AWS (http://aws.amazon.com/importexport/). More information about cloud computing, detailed cost analysis, and security can be found in references.
Design and deployment of an elastic network test-bed in IHEP data center based on SDN
NASA Astrophysics Data System (ADS)
Zeng, Shan; Qi, Fazhi; Chen, Gang
2017-10-01
High energy physics experiments produce huge amounts of raw data, while because of the sharing characteristics of the network resources, there is no guarantee of the available bandwidth for each experiment which may cause link congestion problems. On the other side, with the development of cloud computing technologies, IHEP have established a cloud platform based on OpenStack which can ensure the flexibility of the computing and storage resources, and more and more computing applications have been deployed on virtual machines established by OpenStack. However, under the traditional network architecture, network capability can’t be required elastically, which becomes the bottleneck of restricting the flexible application of cloud computing. In order to solve the above problems, we propose an elastic cloud data center network architecture based on SDN, and we also design a high performance controller cluster based on OpenDaylight. In the end, we present our current test results.
Bent, John M.; Faibish, Sorin; Grider, Gary
2016-04-19
Cloud object storage is enabled for checkpoints of high performance computing applications using a middleware process. A plurality of files, such as checkpoint files, generated by a plurality of processes in a parallel computing system are stored by obtaining said plurality of files from said parallel computing system; converting said plurality of files to objects using a log structured file system middleware process; and providing said objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.
Reconciliation of the cloud computing model with US federal electronic health record regulations
2011-01-01
Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing. PMID:21727204
A Weibull distribution accrual failure detector for cloud computing
Wu, Zhibo; Wu, Jin; Zhao, Yao; Wen, Dongxin
2017-01-01
Failure detectors are used to build high availability distributed systems as the fundamental component. To meet the requirement of a complicated large-scale distributed system, accrual failure detectors that can adapt to multiple applications have been studied extensively. However, several implementations of accrual failure detectors do not adapt well to the cloud service environment. To solve this problem, a new accrual failure detector based on Weibull Distribution, called the Weibull Distribution Failure Detector, has been proposed specifically for cloud computing. It can adapt to the dynamic and unexpected network conditions in cloud computing. The performance of the Weibull Distribution Failure Detector is evaluated and compared based on public classical experiment data and cloud computing experiment data. The results show that the Weibull Distribution Failure Detector has better performance in terms of speed and accuracy in unstable scenarios, especially in cloud computing. PMID:28278229
Reconciliation of the cloud computing model with US federal electronic health record regulations.
Schweitzer, Eugene J
2012-01-01
Cloud computing refers to subscription-based, fee-for-service utilization of computer hardware and software over the Internet. The model is gaining acceptance for business information technology (IT) applications because it allows capacity and functionality to increase on the fly without major investment in infrastructure, personnel or licensing fees. Large IT investments can be converted to a series of smaller operating expenses. Cloud architectures could potentially be superior to traditional electronic health record (EHR) designs in terms of economy, efficiency and utility. A central issue for EHR developers in the US is that these systems are constrained by federal regulatory legislation and oversight. These laws focus on security and privacy, which are well-recognized challenges for cloud computing systems in general. EHRs built with the cloud computing model can achieve acceptable privacy and security through business associate contracts with cloud providers that specify compliance requirements, performance metrics and liability sharing.
A Novel Market-Oriented Dynamic Collaborative Cloud Service Platform
NASA Astrophysics Data System (ADS)
Hassan, Mohammad Mehedi; Huh, Eui-Nam
In today's world the emerging Cloud computing (Weiss, 2007) offer a new computing model where resources such as computing power, storage, online applications and networking infrastructures can be shared as "services" over the internet. Cloud providers (CPs) are incentivized by the profits to be made by charging consumers for accessing these services. Consumers, such as enterprises, are attracted by the opportunity for reducing or eliminating costs associated with "in-house" provision of these services.
Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Case, Jonathan; Venner, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; O'Brien, Raymond
2015-01-01
Cloud computing capabilities have rapidly expanded within the private sector, offering new opportunities for meteorological applications. Collaborations between NASA Marshall, NASA Ames, and contractor partners led to evaluations of private (NASA) and public (Amazon) resources for executing short-term NWP systems. Activities helped the Marshall team further understand cloud capabilities, and benchmark use of cloud resources for NWP and other applications
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community.
Krampis, Konstantinos; Booth, Tim; Chapman, Brad; Tiwari, Bela; Bicak, Mesude; Field, Dawn; Nelson, Karen E
2012-03-19
A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them.
Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community
2012-01-01
Background A steep drop in the cost of next-generation sequencing during recent years has made the technology affordable to the majority of researchers, but downstream bioinformatic analysis still poses a resource bottleneck for smaller laboratories and institutes that do not have access to substantial computational resources. Sequencing instruments are typically bundled with only the minimal processing and storage capacity required for data capture during sequencing runs. Given the scale of sequence datasets, scientific value cannot be obtained from acquiring a sequencer unless it is accompanied by an equal investment in informatics infrastructure. Results Cloud BioLinux is a publicly accessible Virtual Machine (VM) that enables scientists to quickly provision on-demand infrastructures for high-performance bioinformatics computing using cloud platforms. Users have instant access to a range of pre-configured command line and graphical software applications, including a full-featured desktop interface, documentation and over 135 bioinformatics packages for applications including sequence alignment, clustering, assembly, display, editing, and phylogeny. Each tool's functionality is fully described in the documentation directly accessible from the graphical interface of the VM. Besides the Amazon EC2 cloud, we have started instances of Cloud BioLinux on a private Eucalyptus cloud installed at the J. Craig Venter Institute, and demonstrated access to the bioinformatic tools interface through a remote connection to EC2 instances from a local desktop computer. Documentation for using Cloud BioLinux on EC2 is available from our project website, while a Eucalyptus cloud image and VirtualBox Appliance is also publicly available for download and use by researchers with access to private clouds. Conclusions Cloud BioLinux provides a platform for developing bioinformatics infrastructures on the cloud. An automated and configurable process builds Virtual Machines, allowing the development of highly customized versions from a shared code base. This shared community toolkit enables application specific analysis platforms on the cloud by minimizing the effort required to prepare and maintain them. PMID:22429538
High-Performance Compute Infrastructure in Astronomy: 2020 Is Only Months Away
NASA Astrophysics Data System (ADS)
Berriman, B.; Deelman, E.; Juve, G.; Rynge, M.; Vöckler, J. S.
2012-09-01
By 2020, astronomy will be awash with as much as 60 PB of public data. Full scientific exploitation of such massive volumes of data will require high-performance computing on server farms co-located with the data. Development of this computing model will be a community-wide enterprise that has profound cultural and technical implications. Astronomers must be prepared to develop environment-agnostic applications that support parallel processing. The community must investigate the applicability and cost-benefit of emerging technologies such as cloud computing to astronomy, and must engage the Computer Science community to develop science-driven cyberinfrastructure such as workflow schedulers and optimizers. We report here the results of collaborations between a science center, IPAC, and a Computer Science research institute, ISI. These collaborations may be considered pathfinders in developing a high-performance compute infrastructure in astronomy. These collaborations investigated two exemplar large-scale science-driver workflow applications: 1) Calculation of an infrared atlas of the Galactic Plane at 18 different wavelengths by placing data from multiple surveys on a common plate scale and co-registering all the pixels; 2) Calculation of an atlas of periodicities present in the public Kepler data sets, which currently contain 380,000 light curves. These products have been generated with two workflow applications, written in C for performance and designed to support parallel processing on multiple environments and platforms, but with different compute resource needs: the Montage image mosaic engine is I/O-bound, and the NASA Star and Exoplanet Database periodogram code is CPU-bound. Our presentation will report cost and performance metrics and lessons-learned for continuing development. Applicability of Cloud Computing: Commercial Cloud providers generally charge for all operations, including processing, transfer of input and output data, and for storage of data, and so the costs of running applications vary widely according to how they use resources. The cloud is well suited to processing CPU-bound (and memory bound) workflows such as the periodogram code, given the relatively low cost of processing in comparison with I/O operations. I/O-bound applications such as Montage perform best on high-performance clusters with fast networks and parallel file-systems. Science-driven Cyberinfrastructure: Montage has been widely used as a driver application to develop workflow management services, such as task scheduling in distributed environments, designing fault tolerance techniques for job schedulers, and developing workflow orchestration techniques. Running Parallel Applications Across Distributed Cloud Environments: Data processing will eventually take place in parallel distributed across cyber infrastructure environments having different architectures. We have used the Pegasus Work Management System (WMS) to successfully run applications across three very different environments: TeraGrid, OSG (Open Science Grid), and FutureGrid. Provisioning resources across different grids and clouds (also referred to as Sky Computing), involves establishing a distributed environment, where issues of, e.g, remote job submission, data management, and security need to be addressed. This environment also requires building virtual machine images that can run in different environments. Usually, each cloud provides basic images that can be customized with additional software and services. In most of our work, we provisioned compute resources using a custom application, called Wrangler. Pegasus WMS abstracts the architectures of the compute environments away from the end-user, and can be considered a first-generation tool suitable for scientists to run their applications on disparate environments.
Design and implementation of a cloud based lithography illumination pupil processing application
NASA Astrophysics Data System (ADS)
Zhang, Youbao; Ma, Xinghua; Zhu, Jing; Zhang, Fang; Huang, Huijie
2017-02-01
Pupil parameters are important parameters to evaluate the quality of lithography illumination system. In this paper, a cloud based full-featured pupil processing application is implemented. A web browser is used for the UI (User Interface), the websocket protocol and JSON format are used for the communication between the client and the server, and the computing part is implemented in the server side, where the application integrated a variety of high quality professional libraries, such as image processing libraries libvips and ImageMagic, automatic reporting system latex, etc., to support the program. The cloud based framework takes advantage of server's superior computing power and rich software collections, and the program could run anywhere there is a modern browser due to its web UI design. Compared to the traditional way of software operation model: purchased, licensed, shipped, downloaded, installed, maintained, and upgraded, the new cloud based approach, which is no installation, easy to use and maintenance, opens up a new way. Cloud based application probably is the future of the software development.
An adaptive process-based cloud infrastructure for space situational awareness applications
NASA Astrophysics Data System (ADS)
Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce
2014-06-01
Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.
Dynamic electronic institutions in agent oriented cloud robotic systems.
Nagrath, Vineet; Morel, Olivier; Malik, Aamir; Saad, Naufal; Meriaudeau, Fabrice
2015-01-01
The dot-com bubble bursted in the year 2000 followed by a swift movement towards resource virtualization and cloud computing business model. Cloud computing emerged not as new form of computing or network technology but a mere remoulding of existing technologies to suit a new business model. Cloud robotics is understood as adaptation of cloud computing ideas for robotic applications. Current efforts in cloud robotics stress upon developing robots that utilize computing and service infrastructure of the cloud, without debating on the underlying business model. HTM5 is an OMG's MDA based Meta-model for agent oriented development of cloud robotic systems. The trade-view of HTM5 promotes peer-to-peer trade amongst software agents. HTM5 agents represent various cloud entities and implement their business logic on cloud interactions. Trade in a peer-to-peer cloud robotic system is based on relationships and contracts amongst several agent subsets. Electronic Institutions are associations of heterogeneous intelligent agents which interact with each other following predefined norms. In Dynamic Electronic Institutions, the process of formation, reformation and dissolution of institutions is automated leading to run time adaptations in groups of agents. DEIs in agent oriented cloud robotic ecosystems bring order and group intellect. This article presents DEI implementations through HTM5 methodology.
Analysis and Research on Spatial Data Storage Model Based on Cloud Computing Platform
NASA Astrophysics Data System (ADS)
Hu, Yong
2017-12-01
In this paper, the data processing and storage characteristics of cloud computing are analyzed and studied. On this basis, a cloud computing data storage model based on BP neural network is proposed. In this data storage model, it can carry out the choice of server cluster according to the different attributes of the data, so as to complete the spatial data storage model with load balancing function, and have certain feasibility and application advantages.
The Role of Networks in Cloud Computing
NASA Astrophysics Data System (ADS)
Lin, Geng; Devine, Mac
The confluence of technology advancements and business developments in Broadband Internet, Web services, computing systems, and application software over the past decade has created a perfect storm for cloud computing. The "cloud model" of delivering and consuming IT functions as services is poised to fundamentally transform the IT industry and rebalance the inter-relationships among end users, enterprise IT, software companies, and the service providers in the IT ecosystem (Armbrust et al., 2009; Lin, Fu, Zhu, & Dasmalchi, 2009).
Application of cellular automata approach for cloud simulation and rendering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Immanuel, W.; Paul Mary Deborrah, S.; Samuel Selvaraj, R.
Current techniques for creating clouds in games and other real time applications produce static, homogenous clouds. These clouds, while viable for real time applications, do not exhibit an organic feel that clouds in nature exhibit. These clouds, when viewed over a time period, were able to deform their initial shape and move in a more organic and dynamic way. With cloud shape technology we should be able in the future to extend to create even more cloud shapes in real time with more forces. Clouds are an essential part of any computer model of a landscape or an animation ofmore » an outdoor scene. A realistic animation of clouds is also important for creating scenes for flight simulators, movies, games, and other. Our goal was to create a realistic animation of clouds.« less
Distance Learning and Cloud Computing: "Just Another Buzzword or a Major E-Learning Breakthrough?"
ERIC Educational Resources Information Center
Romiszowski, Alexander J.
2012-01-01
"Cloud computing is a model for the enabling of ubiquitous, convenient, and on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and other services) that can be rapidly provisioned and released with minimal management effort or service provider interaction." This…
Hybrid cloud: bridging of private and public cloud computing
NASA Astrophysics Data System (ADS)
Aryotejo, Guruh; Kristiyanto, Daniel Y.; Mufadhol
2018-05-01
Cloud Computing is quickly emerging as a promising paradigm in the recent years especially for the business sector. In addition, through cloud service providers, cloud computing is widely used by Information Technology (IT) based startup company to grow their business. However, the level of most businesses awareness on data security issues is low, since some Cloud Service Provider (CSP) could decrypt their data. Hybrid Cloud Deployment Model (HCDM) has characteristic as open source, which is one of secure cloud computing model, thus HCDM may solve data security issues. The objective of this study is to design, deploy and evaluate a HCDM as Infrastructure as a Service (IaaS). In the implementation process, Metal as a Service (MAAS) engine was used as a base to build an actual server and node. Followed by installing the vsftpd application, which serves as FTP server. In comparison with HCDM, public cloud was adopted through public cloud interface. As a result, the design and deployment of HCDM was conducted successfully, instead of having good security, HCDM able to transfer data faster than public cloud significantly. To the best of our knowledge, Hybrid Cloud Deployment model is one of secure cloud computing model due to its characteristic as open source. Furthermore, this study will serve as a base for future studies about Hybrid Cloud Deployment model which may relevant for solving big security issues of IT-based startup companies especially in Indonesia.
Cloud Quantum Computing of an Atomic Nucleus
NASA Astrophysics Data System (ADS)
Dumitrescu, E. F.; McCaskey, A. J.; Hagen, G.; Jansen, G. R.; Morris, T. D.; Papenbrock, T.; Pooser, R. C.; Dean, D. J.; Lougovski, P.
2018-05-01
We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Cloud Quantum Computing of an Atomic Nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute
Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Enterprise Cloud Architecture for Chinese Ministry of Railway
NASA Astrophysics Data System (ADS)
Shan, Xumei; Liu, Hefeng
Enterprise like PRC Ministry of Railways (MOR), is facing various challenges ranging from highly distributed computing environment and low legacy system utilization, Cloud Computing is increasingly regarded as one workable solution to address this. This article describes full scale cloud solution with Intel Tashi as virtual machine infrastructure layer, Hadoop HDFS as computing platform, and self developed SaaS interface, gluing virtual machine and HDFS with Xen hypervisor. As a result, on demand computing task application and deployment have been tackled per MOR real working scenarios at the end of article.
Cloud Quantum Computing of an Atomic Nucleus.
Dumitrescu, E F; McCaskey, A J; Hagen, G; Jansen, G R; Morris, T D; Papenbrock, T; Pooser, R C; Dean, D J; Lougovski, P
2018-05-25
We report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Cloud Quantum Computing of an Atomic Nucleus
Dumitrescu, Eugene F.; McCaskey, Alex J.; Hagen, Gaute; ...
2018-05-23
Here, we report a quantum simulation of the deuteron binding energy on quantum processors accessed via cloud servers. We use a Hamiltonian from pionless effective field theory at leading order. We design a low-depth version of the unitary coupled-cluster ansatz, use the variational quantum eigensolver algorithm, and compute the binding energy to within a few percent. Our work is the first step towards scalable nuclear structure computations on a quantum processor via the cloud, and it sheds light on how to map scientific computing applications onto nascent quantum devices.
Mapping urban green open space in Bontang city using QGIS and cloud computing
NASA Astrophysics Data System (ADS)
Agus, F.; Ramadiani; Silalahi, W.; Armanda, A.; Kusnandar
2018-04-01
Digital mapping techniques are available freely and openly so that map-based application development is easier, faster and cheaper. A rapid development of Cloud Computing Geographic Information System makes this system can help the needs of the community for the provision of geospatial information online. The presence of urban Green Open Space (GOS) provide great benefits as an oxygen supplier, carbon-binding agent and can contribute to providing comfort and beauty of city life. This study aims to propose a platform application of GIS Cloud Computing (CC) of Bontang City GOS mapping. The GIS-CC platform uses the basic map available that’s free and open source. The research used survey method to collect GOS data obtained from Bontang City Government, while application developing works Quantum GIS-CC. The result section describes the existence of GOS Bontang City and the design of GOS mapping application.
Analysis of the frontier technology of agricultural IoT and its predication research
NASA Astrophysics Data System (ADS)
Han, Shuqing; Zhang, Jianhua; Zhu, Mengshuai; Wu, Jianzhai; Shen, Chen; Kong, Fantao
2017-09-01
Agricultural IoT (Internet of Things) develops rapidly. Nanotechnology, biotechnology and optoelectronic technology are successfully integrated into the agricultural sensor technology. Big data, cloud computing and artificial intelligence technology have also been successfully used in IoT. This paper carries out the research on integration of agricultural sensor technology, nanotechnology, biotechnology and optoelectronic technology and the application of big data, cloud computing and artificial intelligence technology in agricultural IoT. The advantages and development of the integration of nanotechnology, biotechnology and optoelectronic technology with agricultural sensor technology were discussed. The application of big data, cloud computing and artificial intelligence technology in IoT and their development trend were analysed.
Prototyping manufacturing in the cloud
NASA Astrophysics Data System (ADS)
Ciortea, E. M.
2017-08-01
This paper attempts a theoretical approach to cloud systems with impacts on production systems. I call systems as cloud computing because form a relatively new concept in the field of informatics, representing an overall distributed computing services, applications, access to information and data storage without the user to know the physical location and configuration of systems. The advantages of this approach are especially computing speed and storage capacity without investment in additional configurations, synchronizing user data, data processing using web applications. The disadvantage is that it wants to identify a solution for data security, leading to mistrust users. The case study is applied to a module of the system of production, because the system is complex.
Further developments in cloud statistics for computer simulations
NASA Technical Reports Server (NTRS)
Chang, D. T.; Willand, J. H.
1972-01-01
This study is a part of NASA's continued program to provide global statistics of cloud parameters for computer simulation. The primary emphasis was on the development of the data bank of the global statistical distributions of cloud types and cloud layers and their applications in the simulation of the vertical distributions of in-cloud parameters such as liquid water content. These statistics were compiled from actual surface observations as recorded in Standard WBAN forms. Data for a total of 19 stations were obtained and reduced. These stations were selected to be representative of the 19 primary cloud climatological regions defined in previous studies of cloud statistics. Using the data compiled in this study, a limited study was conducted of the hemogeneity of cloud regions, the latitudinal dependence of cloud-type distributions, the dependence of these statistics on sample size, and other factors in the statistics which are of significance to the problem of simulation. The application of the statistics in cloud simulation was investigated. In particular, the inclusion of the new statistics in an expanded multi-step Monte Carlo simulation scheme is suggested and briefly outlined.
Infrastructure Systems for Advanced Computing in E-science applications
NASA Astrophysics Data System (ADS)
Terzo, Olivier
2013-04-01
In the e-science field are growing needs for having computing infrastructure more dynamic and customizable with a model of use "on demand" that follow the exact request in term of resources and storage capacities. The integration of grid and cloud infrastructure solutions allows us to offer services that can adapt the availability in terms of up scaling and downscaling resources. The main challenges for e-sciences domains will on implement infrastructure solutions for scientific computing that allow to adapt dynamically the demands of computing resources with a strong emphasis on optimizing the use of computing resources for reducing costs of investments. Instrumentation, data volumes, algorithms, analysis contribute to increase the complexity for applications who require high processing power and storage for a limited time and often exceeds the computational resources that equip the majority of laboratories, research Unit in an organization. Very often it is necessary to adapt or even tweak rethink tools, algorithms, and consolidate existing applications through a phase of reverse engineering in order to adapt them to a deployment on Cloud infrastructure. For example, in areas such as rainfall monitoring, meteorological analysis, Hydrometeorology, Climatology Bioinformatics Next Generation Sequencing, Computational Electromagnetic, Radio occultation, the complexity of the analysis raises several issues such as the processing time, the scheduling of tasks of processing, storage of results, a multi users environment. For these reasons, it is necessary to rethink the writing model of E-Science applications in order to be already adapted to exploit the potentiality of cloud computing services through the uses of IaaS, PaaS and SaaS layer. An other important focus is on create/use hybrid infrastructure typically a federation between Private and public cloud, in fact in this way when all resources owned by the organization are all used it will be easy with a federate cloud infrastructure to add some additional resources form the Public cloud for following the needs in term of computational and storage resources and release them where process are finished. Following the hybrid model, the scheduling approach is important for managing both cloud models. Thanks to this model infrastructure every time resources are available for additional request in term of IT capacities that can used "on demand" for a limited time without having to proceed to purchase additional servers.
2009-11-12
Service (IaaS) Software -as-a- Service ( SaaS ) Cloud Computing Types Platform-as-a- Service (PaaS) Based on Type of Capability Based on access Based...Mellon University Software -as-a- Service ( SaaS ) Application-specific capabilities, e.g., service that provides customer management Allows organizations...as a Service ( SaaS ) Model of software deployment in which a provider licenses an application to customers for use as a service on
Collaborative Working Architecture for IoT-Based Applications.
Mora, Higinio; Signes-Pont, María Teresa; Gil, David; Johnsson, Magnus
2018-05-23
The new sensing applications need enhanced computing capabilities to handle the requirements of complex and huge data processing. The Internet of Things (IoT) concept brings processing and communication features to devices. In addition, the Cloud Computing paradigm provides resources and infrastructures for performing the computations and outsourcing the work from the IoT devices. This scenario opens new opportunities for designing advanced IoT-based applications, however, there is still much research to be done to properly gear all the systems for working together. This work proposes a collaborative model and an architecture to take advantage of the available computing resources. The resulting architecture involves a novel network design with different levels which combines sensing and processing capabilities based on the Mobile Cloud Computing (MCC) paradigm. An experiment is included to demonstrate that this approach can be used in diverse real applications. The results show the flexibility of the architecture to perform complex computational tasks of advanced applications.
A scoping review of cloud computing in healthcare.
Griebel, Lena; Prokosch, Hans-Ulrich; Köpcke, Felix; Toddenroth, Dennis; Christoph, Jan; Leb, Ines; Engel, Igor; Sedlmayr, Martin
2015-03-19
Cloud computing is a recent and fast growing area of development in healthcare. Ubiquitous, on-demand access to virtually endless resources in combination with a pay-per-use model allow for new ways of developing, delivering and using services. Cloud computing is often used in an "OMICS-context", e.g. for computing in genomics, proteomics and molecular medicine, while other field of application still seem to be underrepresented. Thus, the objective of this scoping review was to identify the current state and hot topics in research on cloud computing in healthcare beyond this traditional domain. MEDLINE was searched in July 2013 and in December 2014 for publications containing the terms "cloud computing" and "cloud-based". Each journal and conference article was categorized and summarized independently by two researchers who consolidated their findings. 102 publications have been analyzed and 6 main topics have been found: telemedicine/teleconsultation, medical imaging, public health and patient self-management, hospital management and information systems, therapy, and secondary use of data. Commonly used features are broad network access for sharing and accessing data and rapid elasticity to dynamically adapt to computing demands. Eight articles favor the pay-for-use characteristics of cloud-based services avoiding upfront investments. Nevertheless, while 22 articles present very general potentials of cloud computing in the medical domain and 66 articles describe conceptual or prototypic projects, only 14 articles report from successful implementations. Further, in many articles cloud computing is seen as an analogy to internet-/web-based data sharing and the characteristics of the particular cloud computing approach are unfortunately not really illustrated. Even though cloud computing in healthcare is of growing interest only few successful implementations yet exist and many papers just use the term "cloud" synonymously for "using virtual machines" or "web-based" with no described benefit of the cloud paradigm. The biggest threat to the adoption in the healthcare domain is caused by involving external cloud partners: many issues of data safety and security are still to be solved. Until then, cloud computing is favored more for singular, individual features such as elasticity, pay-per-use and broad network access, rather than as cloud paradigm on its own.
Trusted computing strengthens cloud authentication.
Ghazizadeh, Eghbal; Zamani, Mazdak; Ab Manan, Jamalul-lail; Alizadeh, Mojtaba
2014-01-01
Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.
Trusted Computing Strengthens Cloud Authentication
2014-01-01
Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model. PMID:24701149
Degaspari, John
2011-08-01
As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.
The AIST Managed Cloud Environment
NASA Astrophysics Data System (ADS)
Cook, S.
2016-12-01
ESTO is currently in the process of developing and implementing the AIST Managed Cloud Environment (AMCE) to offer cloud computing services to ESTO-funded PIs to conduct their project research. AIST will provide projects access to a cloud computing framework that incorporates NASA security, technical, and financial standards, on which project can freely store, run, and process data. Currently, many projects led by research groups outside of NASA do not have the awareness of requirements or the resources to implement NASA standards into their research, which limits the likelihood of infusing the work into NASA applications. Offering this environment to PIs will allow them to conduct their project research using the many benefits of cloud computing. In addition to the well-known cost and time savings that it allows, it also provides scalability and flexibility. The AMCE will facilitate infusion and end user access by ensuring standardization and security. This approach will ultimately benefit ESTO, the science community, and the research, allowing the technology developments to have quicker and broader applications.
The AMCE (AIST Managed Cloud Environment)
NASA Astrophysics Data System (ADS)
Cook, S.
2017-12-01
ESTO has developed and implemented the AIST Managed Cloud Environment (AMCE) to offer cloud computing services to SMD-funded PIs to conduct their project research. AIST will provide projects access to a cloud computing framework that incorporates NASA security, technical, and financial standards, on which project can freely store, run, and process data. Currently, many projects led by research groups outside of NASA do not have the awareness of requirements or the resources to implement NASA standards into their research, which limits the likelihood of infusing the work into NASA applications. Offering this environment to PIs allows them to conduct their project research using the many benefits of cloud computing. In addition to the well-known cost and time savings that it allows, it also provides scalability and flexibility. The AMCE facilitates infusion and end user access by ensuring standardization and security. This approach will ultimately benefit ESTO, the science community, and the research, allowing the technology developments to have quicker and broader applications.
A case study of tuning MapReduce for efficient Bioinformatics in the cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Lizhen; Wang, Zhong; Yu, Weikuan
The combination of the Hadoop MapReduce programming model and cloud computing allows biological scientists to analyze next-generation sequencing (NGS) data in a timely and cost-effective manner. Cloud computing platforms remove the burden of IT facility procurement and management from end users and provide ease of access to Hadoop clusters. However, biological scientists are still expected to choose appropriate Hadoop parameters for running their jobs. More importantly, the available Hadoop tuning guidelines are either obsolete or too general to capture the particular characteristics of bioinformatics applications. In this paper, we aim to minimize the cloud computing cost spent on bioinformatics datamore » analysis by optimizing the extracted significant Hadoop parameters. When using MapReduce-based bioinformatics tools in the cloud, the default settings often lead to resource underutilization and wasteful expenses. We choose k-mer counting, a representative application used in a large number of NGS data analysis tools, as our study case. Experimental results show that, with the fine-tuned parameters, we achieve a total of 4× speedup compared with the original performance (using the default settings). Finally, this paper presents an exemplary case for tuning MapReduce-based bioinformatics applications in the cloud, and documents the key parameters that could lead to significant performance benefits.« less
Towards Dynamic Remote Data Auditing in Computational Clouds
Khurram Khan, Muhammad; Anuar, Nor Badrul
2014-01-01
Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server. PMID:25121114
Towards dynamic remote data auditing in computational clouds.
Sookhak, Mehdi; Akhunzada, Adnan; Gani, Abdullah; Khurram Khan, Muhammad; Anuar, Nor Badrul
2014-01-01
Cloud computing is a significant shift of computational paradigm where computing as a utility and storing data remotely have a great potential. Enterprise and businesses are now more interested in outsourcing their data to the cloud to lessen the burden of local data storage and maintenance. However, the outsourced data and the computation outcomes are not continuously trustworthy due to the lack of control and physical possession of the data owners. To better streamline this issue, researchers have now focused on designing remote data auditing (RDA) techniques. The majority of these techniques, however, are only applicable for static archive data and are not subject to audit the dynamically updated outsourced data. We propose an effectual RDA technique based on algebraic signature properties for cloud storage system and also present a new data structure capable of efficiently supporting dynamic data operations like append, insert, modify, and delete. Moreover, this data structure empowers our method to be applicable for large-scale data with minimum computation cost. The comparative analysis with the state-of-the-art RDA schemes shows that the proposed scheme is secure and highly efficient in terms of the computation and communication overhead on the auditor and server.
NASA Astrophysics Data System (ADS)
Brandic, Ivona; Music, Dejan; Dustdar, Schahram
Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.
MaMR: High-performance MapReduce programming model for material cloud applications
NASA Astrophysics Data System (ADS)
Jing, Weipeng; Tong, Danyu; Wang, Yangang; Wang, Jingyuan; Liu, Yaqiu; Zhao, Peng
2017-02-01
With the increasing data size in materials science, existing programming models no longer satisfy the application requirements. MapReduce is a programming model that enables the easy development of scalable parallel applications to process big data on cloud computing systems. However, this model does not directly support the processing of multiple related data, and the processing performance does not reflect the advantages of cloud computing. To enhance the capability of workflow applications in material data processing, we defined a programming model for material cloud applications that supports multiple different Map and Reduce functions running concurrently based on hybrid share-memory BSP called MaMR. An optimized data sharing strategy to supply the shared data to the different Map and Reduce stages was also designed. We added a new merge phase to MapReduce that can efficiently merge data from the map and reduce modules. Experiments showed that the model and framework present effective performance improvements compared to previous work.
Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon
2017-03-01
This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model.
Dinh, Thanh; Kim, Younghan; Lee, Hyukjoon
2017-01-01
This paper presents a location-based interactive model of Internet of Things (IoT) and cloud integration (IoT-cloud) for mobile cloud computing applications, in comparison with the periodic sensing model. In the latter, sensing collections are performed without awareness of sensing demands. Sensors are required to report their sensing data periodically regardless of whether or not there are demands for their sensing services. This leads to unnecessary energy loss due to redundant transmission. In the proposed model, IoT-cloud provides sensing services on demand based on interest and location of mobile users. By taking advantages of the cloud as a coordinator, sensing scheduling of sensors is controlled by the cloud, which knows when and where mobile users request for sensing services. Therefore, when there is no demand, sensors are put into an inactive mode to save energy. Through extensive analysis and experimental results, we show that the location-based model achieves a significant improvement in terms of network lifetime compared to the periodic model. PMID:28257067
Diaz, Javier; Arrizabalaga, Saioa; Bustamante, Paul; Mesa, Iker; Añorga, Javier; Goya, Jon
2013-01-01
Portable systems and global communications open a broad spectrum for new health applications. In the framework of electrophysiological applications, several challenges are faced when developing portable systems embedded in Cloud computing services. In order to facilitate new developers in this area based on our experience, five areas of interest are presented in this paper where strategies can be applied for improving the performance of portable systems: transducer and conditioning, processing, wireless communications, battery and power management. Likewise, for Cloud services, scalability, portability, privacy and security guidelines have been highlighted.
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
Towards Cloud-based Asynchronous Elasticity for Iterative HPC Applications
NASA Astrophysics Data System (ADS)
da Rosa Righi, Rodrigo; Facco Rodrigues, Vinicius; André da Costa, Cristiano; Kreutz, Diego; Heiss, Hans-Ulrich
2015-10-01
Elasticity is one of the key features of cloud computing. It allows applications to dynamically scale computing and storage resources, avoiding over- and under-provisioning. In high performance computing (HPC), initiatives are normally modeled to handle bag-of-tasks or key-value applications through a load balancer and a loosely-coupled set of virtual machine (VM) instances. In the joint-field of Message Passing Interface (MPI) and tightly-coupled HPC applications, we observe the need of rewriting source codes, previous knowledge of the application and/or stop-reconfigure-and-go approaches to address cloud elasticity. Besides, there are problems related to how profit this new feature in the HPC scope, since in MPI 2.0 applications the programmers need to handle communicators by themselves, and a sudden consolidation of a VM, together with a process, can compromise the entire execution. To address these issues, we propose a PaaS-based elasticity model, named AutoElastic. It acts as a middleware that allows iterative HPC applications to take advantage of dynamic resource provisioning of cloud infrastructures without any major modification. AutoElastic provides a new concept denoted here as asynchronous elasticity, i.e., it provides a framework to allow applications to either increase or decrease their computing resources without blocking the current execution. The feasibility of AutoElastic is demonstrated through a prototype that runs a CPU-bound numerical integration application on top of the OpenNebula middleware. The results showed the saving of about 3 min at each scaling out operations, emphasizing the contribution of the new concept on contexts where seconds are precious.
Privacy-Preserving Location-Based Service Scheme for Mobile Sensing Data.
Xie, Qingqing; Wang, Liangmin
2016-11-25
With the wide use of mobile sensing application, more and more location-embedded data are collected and stored in mobile clouds, such as iCloud, Samsung cloud, etc. Using these data, the cloud service provider (CSP) can provide location-based service (LBS) for users. However, the mobile cloud is untrustworthy. The privacy concerns force the sensitive locations to be stored on the mobile cloud in an encrypted form. However, this brings a great challenge to utilize these data to provide efficient LBS. To solve this problem, we propose a privacy-preserving LBS scheme for mobile sensing data, based on the RSA (for Rivest, Shamir and Adleman) algorithm and ciphertext policy attribute-based encryption (CP-ABE) scheme. The mobile cloud can perform location distance computing and comparison efficiently for authorized users, without location privacy leakage. In the end, theoretical security analysis and experimental evaluation demonstrate that our scheme is secure against the chosen plaintext attack (CPA) and efficient enough for practical applications in terms of user side computation overhead.
Privacy-Preserving Location-Based Service Scheme for Mobile Sensing Data †
Xie, Qingqing; Wang, Liangmin
2016-01-01
With the wide use of mobile sensing application, more and more location-embedded data are collected and stored in mobile clouds, such as iCloud, Samsung cloud, etc. Using these data, the cloud service provider (CSP) can provide location-based service (LBS) for users. However, the mobile cloud is untrustworthy. The privacy concerns force the sensitive locations to be stored on the mobile cloud in an encrypted form. However, this brings a great challenge to utilize these data to provide efficient LBS. To solve this problem, we propose a privacy-preserving LBS scheme for mobile sensing data, based on the RSA (for Rivest, Shamir and Adleman) algorithm and ciphertext policy attribute-based encryption (CP-ABE) scheme. The mobile cloud can perform location distance computing and comparison efficiently for authorized users, without location privacy leakage. In the end, theoretical security analysis and experimental evaluation demonstrate that our scheme is secure against the chosen plaintext attack (CPA) and efficient enough for practical applications in terms of user side computation overhead. PMID:27897984
Data Center Consolidation: A Step towards Infrastructure Clouds
NASA Astrophysics Data System (ADS)
Winter, Markus
Application service providers face enormous challenges and rising costs in managing and operating a growing number of heterogeneous system and computing landscapes. Limitations of traditional computing environments force IT decision-makers to reorganize computing resources within the data center, as continuous growth leads to an inefficient utilization of the underlying hardware infrastructure. This paper discusses a way for infrastructure providers to improve data center operations based on the findings of a case study on resource utilization of very large business applications and presents an outlook beyond server consolidation endeavors, transforming corporate data centers into compute clouds.
Cloud computing for comparative genomics
2010-01-01
Background Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. Results We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. Conclusions The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems. PMID:20482786
Application of microarray analysis on computer cluster and cloud platforms.
Bernau, C; Boulesteix, A-L; Knaus, J
2013-01-01
Analysis of recent high-dimensional biological data tends to be computationally intensive as many common approaches such as resampling or permutation tests require the basic statistical analysis to be repeated many times. A crucial advantage of these methods is that they can be easily parallelized due to the computational independence of the resampling or permutation iterations, which has induced many statistics departments to establish their own computer clusters. An alternative is to rent computing resources in the cloud, e.g. at Amazon Web Services. In this article we analyze whether a selection of statistical projects, recently implemented at our department, can be efficiently realized on these cloud resources. Moreover, we illustrate an opportunity to combine computer cluster and cloud resources. In order to compare the efficiency of computer cluster and cloud implementations and their respective parallelizations we use microarray analysis procedures and compare their runtimes on the different platforms. Amazon Web Services provide various instance types which meet the particular needs of the different statistical projects we analyzed in this paper. Moreover, the network capacity is sufficient and the parallelization is comparable in efficiency to standard computer cluster implementations. Our results suggest that many statistical projects can be efficiently realized on cloud resources. It is important to mention, however, that workflows can change substantially as a result of a shift from computer cluster to cloud computing.
Cloud computing for comparative genomics.
Wall, Dennis P; Kudtarkar, Parul; Fusaro, Vincent A; Pivovarov, Rimma; Patil, Prasad; Tonellato, Peter J
2010-05-18
Large comparative genomics studies and tools are becoming increasingly more compute-expensive as the number of available genome sequences continues to rise. The capacity and cost of local computing infrastructures are likely to become prohibitive with the increase, especially as the breadth of questions continues to rise. Alternative computing architectures, in particular cloud computing environments, may help alleviate this increasing pressure and enable fast, large-scale, and cost-effective comparative genomics strategies going forward. To test this, we redesigned a typical comparative genomics algorithm, the reciprocal smallest distance algorithm (RSD), to run within Amazon's Elastic Computing Cloud (EC2). We then employed the RSD-cloud for ortholog calculations across a wide selection of fully sequenced genomes. We ran more than 300,000 RSD-cloud processes within the EC2. These jobs were farmed simultaneously to 100 high capacity compute nodes using the Amazon Web Service Elastic Map Reduce and included a wide mix of large and small genomes. The total computation time took just under 70 hours and cost a total of $6,302 USD. The effort to transform existing comparative genomics algorithms from local compute infrastructures is not trivial. However, the speed and flexibility of cloud computing environments provides a substantial boost with manageable cost. The procedure designed to transform the RSD algorithm into a cloud-ready application is readily adaptable to similar comparative genomics problems.
USDA-ARS?s Scientific Manuscript database
Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...
Enabling Large-Scale Biomedical Analysis in the Cloud
Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen
2013-01-01
Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665
A study on strategic provisioning of cloud computing services.
Whaiduzzaman, Md; Haque, Mohammad Nazmul; Rejaul Karim Chowdhury, Md; Gani, Abdullah
2014-01-01
Cloud computing is currently emerging as an ever-changing, growing paradigm that models "everything-as-a-service." Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified.
A Study on Strategic Provisioning of Cloud Computing Services
Rejaul Karim Chowdhury, Md
2014-01-01
Cloud computing is currently emerging as an ever-changing, growing paradigm that models “everything-as-a-service.” Virtualised physical resources, infrastructure, and applications are supplied by service provisioning in the cloud. The evolution in the adoption of cloud computing is driven by clear and distinct promising features for both cloud users and cloud providers. However, the increasing number of cloud providers and the variety of service offerings have made it difficult for the customers to choose the best services. By employing successful service provisioning, the essential services required by customers, such as agility and availability, pricing, security and trust, and user metrics can be guaranteed by service provisioning. Hence, continuous service provisioning that satisfies the user requirements is a mandatory feature for the cloud user and vitally important in cloud computing service offerings. Therefore, we aim to review the state-of-the-art service provisioning objectives, essential services, topologies, user requirements, necessary metrics, and pricing mechanisms. We synthesize and summarize different provision techniques, approaches, and models through a comprehensive literature review. A thematic taxonomy of cloud service provisioning is presented after the systematic review. Finally, future research directions and open research issues are identified. PMID:25032243
Cloudweaver: Adaptive and Data-Driven Workload Manager for Generic Clouds
NASA Astrophysics Data System (ADS)
Li, Rui; Chen, Lei; Li, Wen-Syan
Cloud computing denotes the latest trend in application development for parallel computing on massive data volumes. It relies on clouds of servers to handle tasks that used to be managed by an individual server. With cloud computing, software vendors can provide business intelligence and data analytic services for internet scale data sets. Many open source projects, such as Hadoop, offer various software components that are essential for building a cloud infrastructure. Current Hadoop (and many others) requires users to configure cloud infrastructures via programs and APIs and such configuration is fixed during the runtime. In this chapter, we propose a workload manager (WLM), called CloudWeaver, which provides automated configuration of a cloud infrastructure for runtime execution. The workload management is data-driven and can adapt to dynamic nature of operator throughput during different execution phases. CloudWeaver works for a single job and a workload consisting of multiple jobs running concurrently, which aims at maximum throughput using a minimum set of processors.
Spontaneous Ad Hoc Mobile Cloud Computing Network
Lacuesta, Raquel; Sendra, Sandra; Peñalver, Lourdes
2014-01-01
Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes. PMID:25202715
Spontaneous ad hoc mobile cloud computing network.
Lacuesta, Raquel; Lloret, Jaime; Sendra, Sandra; Peñalver, Lourdes
2014-01-01
Cloud computing helps users and companies to share computing resources instead of having local servers or personal devices to handle the applications. Smart devices are becoming one of the main information processing devices. Their computing features are reaching levels that let them create a mobile cloud computing network. But sometimes they are not able to create it and collaborate actively in the cloud because it is difficult for them to build easily a spontaneous network and configure its parameters. For this reason, in this paper, we are going to present the design and deployment of a spontaneous ad hoc mobile cloud computing network. In order to perform it, we have developed a trusted algorithm that is able to manage the activity of the nodes when they join and leave the network. The paper shows the network procedures and classes that have been designed. Our simulation results using Castalia show that our proposal presents a good efficiency and network performance even by using high number of nodes.
Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improvemore » the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.« less
ERIC Educational Resources Information Center
Zadahmad, Manouchehr; Yousefzadehfard, Parisa
2016-01-01
Mobile Cloud Computing (MCC) aims to improve all mobile applications such as m-learning systems. This study presents an innovative method to use web technology and software engineering's best practices to provide m-learning functionalities hosted in a MCC-learning system as service. Components hosted by MCC are used to empower developers to create…
ERIC Educational Resources Information Center
Johnson, Doug
2010-01-01
Web-based applications offer teachers, students, and school districts a convenient way to accomplish a wide range of tasks, from accounting to word processing, for free. Cloud computing has the potential to offer staff and students better services at a lower cost than the technology deployment models they're using now. Saving money and improving…
A New Cloud Architecture of Virtual Trusted Platform Modules
NASA Astrophysics Data System (ADS)
Liu, Dongxi; Lee, Jack; Jang, Julian; Nepal, Surya; Zic, John
We propose and implement a cloud architecture of virtual Trusted Platform Modules (TPMs) to improve the usability of TPMs. In this architecture, virtual TPMs can be obtained from the TPM cloud on demand. Hence, the TPM functionality is available for applications that do not have physical TPMs in their local platforms. Moreover, the TPM cloud allows users to access their keys and data in the same virtual TPM even if they move to untrusted platforms. The TPM cloud is easy to access for applications in different languages since cloud computing delivers services in standard protocols. The functionality of the TPM cloud is demonstrated by applying it to implement the Needham-Schroeder public-key protocol for web authentications, such that the strong security provided by TPMs is integrated into high level applications. The chain of trust based on the TPM cloud is discussed and the security properties of the virtual TPMs in the cloud is analyzed.
NASA Technical Reports Server (NTRS)
Maluf, David A.; Shetye, Sandeep D.; Chilukuri, Sri; Sturken, Ian
2012-01-01
Cloud computing can reduce cost significantly because businesses can share computing resources. In recent years Small and Medium Businesses (SMB) have used Cloud effectively for cost saving and for sharing IT expenses. With the success of SMBs, many perceive that the larger enterprises ought to move into Cloud environment as well. Government agency s stove-piped environments are being considered as candidates for potential use of Cloud either as an enterprise entity or pockets of small communities. Cloud Computing is the delivery of computing as a service rather than as a product, whereby shared resources, software, and information are provided to computers and other devices as a utility over a network. Underneath the offered services, there exists a modern infrastructure cost of which is often spread across its services or its investors. As NASA is considered as an Enterprise class organization, like other enterprises, a shift has been occurring in perceiving its IT services as candidates for Cloud services. This paper discusses market trends in cloud computing from an enterprise angle and then addresses the topic of Cloud Computing for NASA in two possible forms. First, in the form of a public Cloud to support it as an enterprise, as well as to share it with the commercial and public at large. Second, as a private Cloud wherein the infrastructure is operated solely for NASA, whether managed internally or by a third-party and hosted internally or externally. The paper addresses the strengths and weaknesses of both paradigms of public and private Clouds, in both internally and externally operated settings. The content of the paper is from a NASA perspective but is applicable to any large enterprise with thousands of employees and contractors.
Towards real-time photon Monte Carlo dose calculation in the cloud
NASA Astrophysics Data System (ADS)
Ziegenhein, Peter; Kozin, Igor N.; Kamerling, Cornelis Ph; Oelfke, Uwe
2017-06-01
Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.
Towards real-time photon Monte Carlo dose calculation in the cloud.
Ziegenhein, Peter; Kozin, Igor N; Kamerling, Cornelis Ph; Oelfke, Uwe
2017-06-07
Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions.
OpenID connect as a security service in Cloud-based diagnostic imaging systems
NASA Astrophysics Data System (ADS)
Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter
2015-03-01
The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.
Application research of Ganglia in Hadoop monitoring and management
NASA Astrophysics Data System (ADS)
Li, Gang; Ding, Jing; Zhou, Lixia; Yang, Yi; Liu, Lei; Wang, Xiaolei
2017-03-01
There are many applications of Hadoop System in the field of large data, cloud computing. The test bench of storage and application in seismic network at Earthquake Administration of Tianjin use with Hadoop system, which is used the open source software of Ganglia to operate and monitor. This paper reviews the function, installation and configuration process, application effect of operating and monitoring in Hadoop system of the Ganglia system. It briefly introduces the idea and effect of Nagios software monitoring Hadoop system. It is valuable for the industry in the monitoring system of cloud computing platform.
Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing
NASA Technical Reports Server (NTRS)
Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane
2012-01-01
Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then applying them to a given cloud-enabled infrastructure to assesses and compare environment setup options and enabled technologies. This project reviews findings that were observed when cloud platforms were evaluated for bulk geoprocessing capabilities based on data handling and application development requirements.
NASA Astrophysics Data System (ADS)
Schnase, J. L.; Duffy, D.; Tamkin, G. S.; Nadeau, D.; Thompson, J. H.; Grieg, C. M.; McInerney, M.; Webster, W. P.
2013-12-01
Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS built on this principle. MERRA/AS enables MapReduce analytics over NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRA/AS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRA/AS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to organizational change, fosters innovation and experimentation, facilitates technology transfer, and provides the agility required to meet our customers' increasing and changing needs. Cloud Computing is providing a new tier in the data services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility-driven applications and modes of work. For climate science, Cloud Computing's capacity to engage communities in the construction of new capabilies is perhaps the most important link between Cloud Computing and Big Data.
NASA Technical Reports Server (NTRS)
Schnase, John L.; Duffy, Daniel Quinn; Tamkin, Glenn S.; Nadeau, Denis; Thompson, John H.; Grieg, Christina M.; McInerney, Mark A.; Webster, William P.
2014-01-01
Climate science is a Big Data domain that is experiencing unprecedented growth. In our efforts to address the Big Data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS). We focus on analytics, because it is the knowledge gained from our interactions with Big Data that ultimately produce societal benefits. We focus on CAaaS because we believe it provides a useful way of thinking about the problem: a specialization of the concept of business process-as-a-service, which is an evolving extension of IaaS, PaaS, and SaaS enabled by Cloud Computing. Within this framework, Cloud Computing plays an important role; however, we it see it as only one element in a constellation of capabilities that are essential to delivering climate analytics as a service. These elements are essential because in the aggregate they lead to generativity, a capacity for self-assembly that we feel is the key to solving many of the Big Data challenges in this domain. MERRA Analytic Services (MERRAAS) is an example of cloud-enabled CAaaS built on this principle. MERRAAS enables MapReduce analytics over NASAs Modern-Era Retrospective Analysis for Research and Applications (MERRA) data collection. The MERRA reanalysis integrates observational data with numerical models to produce a global temporally and spatially consistent synthesis of 26 key climate variables. It represents a type of data product that is of growing importance to scientists doing climate change research and a wide range of decision support applications. MERRAAS brings together the following generative elements in a full, end-to-end demonstration of CAaaS capabilities: (1) high-performance, data proximal analytics, (2) scalable data management, (3) software appliance virtualization, (4) adaptive analytics, and (5) a domain-harmonized API. The effectiveness of MERRAAS has been demonstrated in several applications. In our experience, Cloud Computing lowers the barriers and risk to organizational change, fosters innovation and experimentation, facilitates technology transfer, and provides the agility required to meet our customers' increasing and changing needs. Cloud Computing is providing a new tier in the data services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility-driven applications and modes of work. For climate science, Cloud Computing's capacity to engage communities in the construction of new capabilies is perhaps the most important link between Cloud Computing and Big Data.
Privacy authentication using key attribute-based encryption in mobile cloud computing
NASA Astrophysics Data System (ADS)
Mohan Kumar, M.; Vijayan, R.
2017-11-01
Mobile Cloud Computing is becoming more popular in nowadays were users of smartphones are getting increased. So, the security level of cloud computing as to be increased. Privacy Authentication using key-attribute based encryption helps the users for business development were the data sharing with the organization using the cloud in a secured manner. In Privacy Authentication the sender of data will have permission to add their receivers to whom the data access provided for others the access denied. In sender application, the user can choose the file which is to be sent to receivers and then that data will be encrypted using Key-attribute based encryption using AES algorithm. In which cipher created, and that stored in Amazon Cloud along with key value and the receiver list.
Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds
NASA Astrophysics Data System (ADS)
Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.
In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.
A computational- And storage-cloud for integration of biodiversity collections
Matsunaga, A.; Thompson, A.; Figueiredo, R. J.; Germain-Aubrey, C.C; Collins, M.; Beeman, R.S; Macfadden, B.J.; Riccardi, G.; Soltis, P.S; Page, L. M.; Fortes, J.A.B
2013-01-01
A core mission of the Integrated Digitized Biocollections (iDigBio) project is the building and deployment of a cloud computing environment customized to support the digitization workflow and integration of data from all U.S. nonfederal biocollections. iDigBio chose to use cloud computing technologies to deliver a cyberinfrastructure that is flexible, agile, resilient, and scalable to meet the needs of the biodiversity community. In this context, this paper describes the integration of open source cloud middleware, applications, and third party services using standard formats, protocols, and services. In addition, this paper demonstrates the value of the digitized information from collections in a broader scenario involving multiple disciplines.
Tavaxy: integrating Taverna and Galaxy workflows with cloud computing support.
Abouelhoda, Mohamed; Issa, Shadi Alaa; Ghanem, Moustafa
2012-05-04
Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis.The system can be accessed either through a cloud-enabled web-interface or downloaded and installed to run within the user's local environment. All resources related to Tavaxy are available at http://www.tavaxy.org.
USGEO DMWG Cloud Computing Recommendations
NASA Astrophysics Data System (ADS)
de la Beaujardiere, J.; McInerney, M.; Frame, M. T.; Summers, C.
2017-12-01
The US Group on Earth Observations (USGEO) Data Management Working Group (DMWG) has been developing Cloud Computing Recommendations for Earth Observations. This inter-agency report is currently in draft form; DMWG hopes to have released the report as a public Request for Information (RFI) by the time of AGU. The recommendations are geared toward organizations that have already decided to use the Cloud for some of their activities (i.e., the focus is not on "why you should use the Cloud," but rather "If you plan to use the Cloud, consider these suggestions.") The report comprises Introductory Material, including Definitions, Potential Cloud Benefits, and Potential Cloud Disadvantages, followed by Recommendations in several areas: Assessing When to Use the Cloud, Transferring Data to the Cloud, Data and Metadata Contents, Developing Applications in the Cloud, Cost Minimization, Security Considerations, Monitoring and Metrics, Agency Support, and Earth Observations-specific recommendations. This talk will summarize the recommendations and invite comment on the RFI.
Bio and health informatics meets cloud : BioVLab as an example.
Chae, Heejoon; Jung, Inuk; Lee, Hyungro; Marru, Suresh; Lee, Seong-Whan; Kim, Sun
2013-01-01
The exponential increase of genomic data brought by the advent of the next or the third generation sequencing (NGS) technologies and the dramatic drop in sequencing cost have driven biological and medical sciences to data-driven sciences. This revolutionary paradigm shift comes with challenges in terms of data transfer, storage, computation, and analysis of big bio/medical data. Cloud computing is a service model sharing a pool of configurable resources, which is a suitable workbench to address these challenges. From the medical or biological perspective, providing computing power and storage is the most attractive feature of cloud computing in handling the ever increasing biological data. As data increases in size, many research organizations start to experience the lack of computing power, which becomes a major hurdle in achieving research goals. In this paper, we review the features of publically available bio and health cloud systems in terms of graphical user interface, external data integration, security and extensibility of features. We then discuss about issues and limitations of current cloud systems and conclude with suggestion of a biological cloud environment concept, which can be defined as a total workbench environment assembling computational tools and databases for analyzing bio/medical big data in particular application domains.
Cloud computing: a new business paradigm for biomedical information sharing.
Rosenthal, Arnon; Mork, Peter; Li, Maya Hao; Stanford, Jean; Koester, David; Reynolds, Patti
2010-04-01
We examine how the biomedical informatics (BMI) community, especially consortia that share data and applications, can take advantage of a new resource called "cloud computing". Clouds generally offer resources on demand. In most clouds, charges are pay per use, based on large farms of inexpensive, dedicated servers, sometimes supporting parallel computing. Substantial economies of scale potentially yield costs much lower than dedicated laboratory systems or even institutional data centers. Overall, even with conservative assumptions, for applications that are not I/O intensive and do not demand a fully mature environment, the numbers suggested that clouds can sometimes provide major improvements, and should be seriously considered for BMI. Methodologically, it was very advantageous to formulate analyses in terms of component technologies; focusing on these specifics enabled us to bypass the cacophony of alternative definitions (e.g., exactly what does a cloud include) and to analyze alternatives that employ some of the component technologies (e.g., an institution's data center). Relative analyses were another great simplifier. Rather than listing the absolute strengths and weaknesses of cloud-based systems (e.g., for security or data preservation), we focus on the changes from a particular starting point, e.g., individual lab systems. We often find a rough parity (in principle), but one needs to examine individual acquisitions--is a loosely managed lab moving to a well managed cloud, or a tightly managed hospital data center moving to a poorly safeguarded cloud? 2009 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific m...
Now and next-generation sequencing techniques: future of sequence analysis using cloud computing.
Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav
2012-01-01
Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed "cloud computing") has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows.
Investigating the Use of Cloudbursts for High-Throughput Medical Image Registration
Kim, Hyunjoo; Parashar, Manish; Foran, David J.; Yang, Lin
2010-01-01
This paper investigates the use of clouds and autonomic cloudbursting to support a medical image registration. The goal is to enable a virtual computational cloud that integrates local computational environments and public cloud services on-the-fly, and support image registration requests from different distributed researcher groups with varied computational requirements and QoS constraints. The virtual cloud essentially implements shared and coordinated task-spaces, which coordinates the scheduling of jobs submitted by a dynamic set of research groups to their local job queues. A policy-driven scheduling agent uses the QoS constraints along with performance history and the state of the resources to determine the appropriate size and mix of the public and private cloud resource that should be allocated to a specific request. The virtual computational cloud and the medical image registration service have been developed using the CometCloud engine and have been deployed on a combination of private clouds at Rutgers University and the Cancer Institute of New Jersey and Amazon EC2. An experimental evaluation is presented and demonstrates the effectiveness of autonomic cloudbursts and policy-based autonomic scheduling for this application. PMID:20640235
OpenID Connect as a security service in cloud-based medical imaging systems.
Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter
2016-04-01
The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.
Large-scale parallel genome assembler over cloud computing environment.
Das, Arghya Kusum; Koppa, Praveen Kumar; Goswami, Sayan; Platania, Richard; Park, Seung-Jong
2017-06-01
The size of high throughput DNA sequencing data has already reached the terabyte scale. To manage this huge volume of data, many downstream sequencing applications started using locality-based computing over different cloud infrastructures to take advantage of elastic (pay as you go) resources at a lower cost. However, the locality-based programming model (e.g. MapReduce) is relatively new. Consequently, developing scalable data-intensive bioinformatics applications using this model and understanding the hardware environment that these applications require for good performance, both require further research. In this paper, we present a de Bruijn graph oriented Parallel Giraph-based Genome Assembler (GiGA), as well as the hardware platform required for its optimal performance. GiGA uses the power of Hadoop (MapReduce) and Giraph (large-scale graph analysis) to achieve high scalability over hundreds of compute nodes by collocating the computation and data. GiGA achieves significantly higher scalability with competitive assembly quality compared to contemporary parallel assemblers (e.g. ABySS and Contrail) over traditional HPC cluster. Moreover, we show that the performance of GiGA is significantly improved by using an SSD-based private cloud infrastructure over traditional HPC cluster. We observe that the performance of GiGA on 256 cores of this SSD-based cloud infrastructure closely matches that of 512 cores of traditional HPC cluster.
A service based adaptive U-learning system using UX.
Jeong, Hwa-Young; Yi, Gangman
2014-01-01
In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques.
A Service Based Adaptive U-Learning System Using UX
Jeong, Hwa-Young
2014-01-01
In recent years, traditional development techniques for e-learning systems have been changing to become more convenient and efficient. One new technology in the development of application systems includes both cloud and ubiquitous computing. Cloud computing can support learning system processes by using services while ubiquitous computing can provide system operation and management via a high performance technical process and network. In the cloud computing environment, a learning service application can provide a business module or process to the user via the internet. This research focuses on providing the learning material and processes of courses by learning units using the services in a ubiquitous computing environment. And we also investigate functions that support users' tailored materials according to their learning style. That is, we analyzed the user's data and their characteristics in accordance with their user experience. We subsequently applied the learning process to fit on their learning performance and preferences. Finally, we demonstrate how the proposed system outperforms learning effects to learners better than existing techniques. PMID:25147832
Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments
Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361
Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.
Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand
2013-01-01
We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.
Snore related signals processing in a private cloud computing system.
Qian, Kun; Guo, Jian; Xu, Huijie; Zhu, Zhaomeng; Zhang, Gongxuan
2014-09-01
Snore related signals (SRS) have been demonstrated to carry important information about the obstruction site and degree in the upper airway of Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS) patients in recent years. To make this acoustic signal analysis method more accurate and robust, big SRS data processing is inevitable. As an emerging concept and technology, cloud computing has motivated numerous researchers and engineers to exploit applications both in academic and industry field, which could have an ability to implement a huge blue print in biomedical engineering. Considering the security and transferring requirement of biomedical data, we designed a system based on private cloud computing to process SRS. Then we set the comparable experiments of processing a 5-hour audio recording of an OSAHS patient by a personal computer, a server and a private cloud computing system to demonstrate the efficiency of the infrastructure we proposed.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505
Volunteered Cloud Computing for Disaster Management
NASA Astrophysics Data System (ADS)
Evans, J. D.; Hao, W.; Chettri, S. R.
2014-12-01
Disaster management relies increasingly on interpreting earth observations and running numerical models; which require significant computing capacity - usually on short notice and at irregular intervals. Peak computing demand during event detection, hazard assessment, or incident response may exceed agency budgets; however some of it can be met through volunteered computing, which distributes subtasks to participating computers via the Internet. This approach has enabled large projects in mathematics, basic science, and climate research to harness the slack computing capacity of thousands of desktop computers. This capacity is likely to diminish as desktops give way to battery-powered mobile devices (laptops, smartphones, tablets) in the consumer market; but as cloud computing becomes commonplace, it may offer significant slack capacity -- if its users are given an easy, trustworthy mechanism for participating. Such a "volunteered cloud computing" mechanism would also offer several advantages over traditional volunteered computing: tasks distributed within a cloud have fewer bandwidth limitations; granular billing mechanisms allow small slices of "interstitial" computing at no marginal cost; and virtual storage volumes allow in-depth, reversible machine reconfiguration. Volunteered cloud computing is especially suitable for "embarrassingly parallel" tasks, including ones requiring large data volumes: examples in disaster management include near-real-time image interpretation, pattern / trend detection, or large model ensembles. In the context of a major disaster, we estimate that cloud users (if suitably informed) might volunteer hundreds to thousands of CPU cores across a large provider such as Amazon Web Services. To explore this potential, we are building a volunteered cloud computing platform and targeting it to a disaster management context. Using a lightweight, fault-tolerant network protocol, this platform helps cloud users join parallel computing projects; automates reconfiguration of their virtual machines; ensures accountability for donated computing; and optimizes the use of "interstitial" computing. Initial applications include fire detection from multispectral satellite imagery and flood risk mapping through hydrological simulations.
2016-04-01
the DOD will put DOD systems and data at a risk level comparable to that of their neighbors in the cloud. Just as a user browses a Web page on the...proxy servers for controlling user access to Web pages, and large-scale storage for data management. Each of these devices allows access to the...user to develop applications. Acunetics.com describes Web applications as “computer programs allowing Website visitors to submit and retrieve data
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
On the Modeling and Management of Cloud Data Analytics
NASA Astrophysics Data System (ADS)
Castillo, Claris; Tantawi, Asser; Steinder, Malgorzata; Pacifici, Giovanni
A new era is dawning where vast amount of data is subjected to intensive analysis in a cloud computing environment. Over the years, data about a myriad of things, ranging from user clicks to galaxies, have been accumulated, and continue to be collected, on storage media. The increasing availability of such data, along with the abundant supply of compute power and the urge to create useful knowledge, gave rise to a new data analytics paradigm in which data is subjected to intensive analysis, and additional data is created in the process. Meanwhile, a new cloud computing environment has emerged where seemingly limitless compute and storage resources are being provided to host computation and data for multiple users through virtualization technologies. Such a cloud environment is becoming the home for data analytics. Consequently, providing good performance at run-time to data analytics workload is an important issue for cloud management. In this paper, we provide an overview of the data analytics and cloud environment landscapes, and investigate the performance management issues related to running data analytics in the cloud. In particular, we focus on topics such as workload characterization, profiling analytics applications and their pattern of data usage, cloud resource allocation, placement of computation and data and their dynamic migration in the cloud, and performance prediction. In solving such management problems one relies on various run-time analytic models. We discuss approaches for modeling and optimizing the dynamic data analytics workload in the cloud environment. All along, we use the Map-Reduce paradigm as an illustration of data analytics.
Head in the Clouds: A Review of Current and Future Potential for Cloud-Enabled Pedagogies
ERIC Educational Resources Information Center
Stevenson, Michael; Hedberg, John G.
2011-01-01
This paper reviews the research on the disruptive and transformative potential of newly-emerging cloud-based pedagogies. It takes into consideration the extent to which Cloud Computing can be leveraged to disseminate and scale web-based applications within and across learning contexts. It examines ideas from current literature in Web 2.0- and…
Crowd-Funding: A New Resource Cooperation Mode for Mobile Cloud Computing.
Zhang, Nan; Yang, Xiaolong; Zhang, Min; Sun, Yan
2016-01-01
Mobile cloud computing, which integrates the cloud computing techniques into the mobile environment, is regarded as one of the enabler technologies for 5G mobile wireless networks. There are many sporadic spare resources distributed within various devices in the networks, which can be used to support mobile cloud applications. However, these devices, with only a few spare resources, cannot support some resource-intensive mobile applications alone. If some of them cooperate with each other and share their resources, then they can support many applications. In this paper, we propose a resource cooperative provision mode referred to as "Crowd-funding", which is designed to aggregate the distributed devices together as the resource provider of mobile applications. Moreover, to facilitate high-efficiency resource management via dynamic resource allocation, different resource providers should be selected to form a stable resource coalition for different requirements. Thus, considering different requirements, we propose two different resource aggregation models for coalition formation. Finally, we may allocate the revenues based on their attributions according to the concept of the "Shapley value" to enable a more impartial revenue share among the cooperators. It is shown that a dynamic and flexible resource-management method can be developed based on the proposed Crowd-funding model, relying on the spare resources in the network.
Crowd-Funding: A New Resource Cooperation Mode for Mobile Cloud Computing
Zhang, Min; Sun, Yan
2016-01-01
Mobile cloud computing, which integrates the cloud computing techniques into the mobile environment, is regarded as one of the enabler technologies for 5G mobile wireless networks. There are many sporadic spare resources distributed within various devices in the networks, which can be used to support mobile cloud applications. However, these devices, with only a few spare resources, cannot support some resource-intensive mobile applications alone. If some of them cooperate with each other and share their resources, then they can support many applications. In this paper, we propose a resource cooperative provision mode referred to as "Crowd-funding", which is designed to aggregate the distributed devices together as the resource provider of mobile applications. Moreover, to facilitate high-efficiency resource management via dynamic resource allocation, different resource providers should be selected to form a stable resource coalition for different requirements. Thus, considering different requirements, we propose two different resource aggregation models for coalition formation. Finally, we may allocate the revenues based on their attributions according to the concept of the "Shapley value" to enable a more impartial revenue share among the cooperators. It is shown that a dynamic and flexible resource-management method can be developed based on the proposed Crowd-funding model, relying on the spare resources in the network. PMID:28030553
Now and Next-Generation Sequencing Techniques: Future of Sequence Analysis Using Cloud Computing
Thakur, Radhe Shyam; Bandopadhyay, Rajib; Chaudhary, Bratati; Chatterjee, Sourav
2012-01-01
Advances in the field of sequencing techniques have resulted in the greatly accelerated production of huge sequence datasets. This presents immediate challenges in database maintenance at datacenters. It provides additional computational challenges in data mining and sequence analysis. Together these represent a significant overburden on traditional stand-alone computer resources, and to reach effective conclusions quickly and efficiently, the virtualization of the resources and computation on a pay-as-you-go concept (together termed “cloud computing”) has recently appeared. The collective resources of the datacenter, including both hardware and software, can be available publicly, being then termed a public cloud, the resources being provided in a virtual mode to the clients who pay according to the resources they employ. Examples of public companies providing these resources include Amazon, Google, and Joyent. The computational workload is shifted to the provider, which also implements required hardware and software upgrades over time. A virtual environment is created in the cloud corresponding to the computational and data storage needs of the user via the internet. The task is then performed, the results transmitted to the user, and the environment finally deleted after all tasks are completed. In this discussion, we focus on the basics of cloud computing, and go on to analyze the prerequisites and overall working of clouds. Finally, the applications of cloud computing in biological systems, particularly in comparative genomics, genome informatics, and SNP detection are discussed with reference to traditional workflows. PMID:23248640
Predictive Control of Networked Multiagent Systems via Cloud Computing.
Liu, Guo-Ping
2017-01-18
This paper studies the design and analysis of networked multiagent predictive control systems via cloud computing. A cloud predictive control scheme for networked multiagent systems (NMASs) is proposed to achieve consensus and stability simultaneously and to compensate for network delays actively. The design of the cloud predictive controller for NMASs is detailed. The analysis of the cloud predictive control scheme gives the necessary and sufficient conditions of stability and consensus of closed-loop networked multiagent control systems. The proposed scheme is verified to characterize the dynamical behavior and control performance of NMASs through simulations. The outcome provides a foundation for the development of cooperative and coordinative control of NMASs and its applications.
Hybrid Cloud Computing Environment for EarthCube and Geoscience Community
NASA Astrophysics Data System (ADS)
Yang, C. P.; Qin, H.
2016-12-01
The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.
Efficient Cryptography for the Next Generation Secure Cloud
ERIC Educational Resources Information Center
Kupcu, Alptekin
2010-01-01
Peer-to-peer (P2P) systems, and client-server type storage and computation outsourcing constitute some of the major applications that the next generation cloud schemes will address. Since these applications are just emerging, it is the perfect time to design them with security and privacy in mind. Furthermore, considering the high-churn…
Integrating the Apache Big Data Stack with HPC for Big Data
NASA Astrophysics Data System (ADS)
Fox, G. C.; Qiu, J.; Jha, S.
2014-12-01
There is perhaps a broad consensus as to important issues in practical parallel computing as applied to large scale simulations; this is reflected in supercomputer architectures, algorithms, libraries, languages, compilers and best practice for application development. However, the same is not so true for data intensive computing, even though commercially clouds devote much more resources to data analytics than supercomputers devote to simulations. We look at a sample of over 50 big data applications to identify characteristics of data intensive applications and to deduce needed runtime and architectures. We suggest a big data version of the famous Berkeley dwarfs and NAS parallel benchmarks and use these to identify a few key classes of hardware/software architectures. Our analysis builds on combining HPC and ABDS the Apache big data software stack that is well used in modern cloud computing. Initial results on clouds and HPC systems are encouraging. We propose the development of SPIDAL - Scalable Parallel Interoperable Data Analytics Library -- built on system aand data abstractions suggested by the HPC-ABDS architecture. We discuss how it can be used in several application areas including Polar Science.
Suciu, George; Suciu, Victor; Martian, Alexandru; Craciunescu, Razvan; Vulpe, Alexandru; Marcu, Ioana; Halunga, Simona; Fratu, Octavian
2015-11-01
Big data storage and processing are considered as one of the main applications for cloud computing systems. Furthermore, the development of the Internet of Things (IoT) paradigm has advanced the research on Machine to Machine (M2M) communications and enabled novel tele-monitoring architectures for E-Health applications. However, there is a need for converging current decentralized cloud systems, general software for processing big data and IoT systems. The purpose of this paper is to analyze existing components and methods of securely integrating big data processing with cloud M2M systems based on Remote Telemetry Units (RTUs) and to propose a converged E-Health architecture built on Exalead CloudView, a search based application. Finally, we discuss the main findings of the proposed implementation and future directions.
NASA Astrophysics Data System (ADS)
Cayirci, Erdal; Rong, Chunming; Huiskamp, Wim; Verkoelen, Cor
Military/civilian education training and experimentation networks (ETEN) are an important application area for the cloud computing concept. However, major security challenges have to be overcome to realize an ETEN. These challenges can be categorized as security challenges typical to any cloud and multi-level security challenges specific to an ETEN environment. The cloud approach for ETEN is introduced and its security challenges are explained in this paper.
Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing
NASA Astrophysics Data System (ADS)
Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim
2011-03-01
Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.
Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support
Camargo, João; Rochol, Juergen; Gerla, Mario
2018-01-01
A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends. PMID:29364172
Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.
Rosário, Denis; Schimuneck, Matias; Camargo, João; Nobre, Jéferson; Both, Cristiano; Rochol, Juergen; Gerla, Mario
2018-01-24
A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends.
Bailey, Sarah F; Scheible, Melissa K; Williams, Christopher; Silva, Deborah S B S; Hoggan, Marina; Eichman, Christopher; Faith, Seth A
2017-11-01
Next-generation Sequencing (NGS) is a rapidly evolving technology with demonstrated benefits for forensic genetic applications, and the strategies to analyze and manage the massive NGS datasets are currently in development. Here, the computing, data storage, connectivity, and security resources of the Cloud were evaluated as a model for forensic laboratory systems that produce NGS data. A complete front-to-end Cloud system was developed to upload, process, and interpret raw NGS data using a web browser dashboard. The system was extensible, demonstrating analysis capabilities of autosomal and Y-STRs from a variety of NGS instrumentation (Illumina MiniSeq and MiSeq, and Oxford Nanopore MinION). NGS data for STRs were concordant with standard reference materials previously characterized with capillary electrophoresis and Sanger sequencing. The computing power of the Cloud was implemented with on-demand auto-scaling to allow multiple file analysis in tandem. The system was designed to store resulting data in a relational database, amenable to downstream sample interpretations and databasing applications following the most recent guidelines in nomenclature for sequenced alleles. Lastly, a multi-layered Cloud security architecture was tested and showed that industry standards for securing data and computing resources were readily applied to the NGS system without disadvantageous effects for bioinformatic analysis, connectivity or data storage/retrieval. The results of this study demonstrate the feasibility of using Cloud-based systems for secured NGS data analysis, storage, databasing, and multi-user distributed connectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Fujita, Hideo; Uchimura, Yuji; Waki, Kayo; Omae, Koji; Takeuchi, Ichiro; Ohe, Kazuhiko
2013-01-01
To improve emergency services for accurate diagnosis of cardiac emergency, we developed a low-cost new mobile electrocardiography system "Cloud Cardiology®" based upon cloud computing for prehospital diagnosis. This comprises a compact 12-lead ECG unit equipped with Bluetooth and Android Smartphone with an application for transmission. Cloud server enables us to share ECG simultaneously inside and outside the hospital. We evaluated the clinical effectiveness by conducting a clinical trial with historical comparison to evaluate this system in a rapid response car in the real emergency service settings. We found that this system has an ability to shorten the onset to balloon time of patients with acute myocardial infarction, resulting in better clinical outcome. Here we propose that cloud-computing based simultaneous data sharing could be powerful solution for emergency service for cardiology, along with its significant clinical outcome.
OpenID Connect as a security service in cloud-based medical imaging systems
Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter
2016-01-01
Abstract. The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as “Kerberos of cloud.” We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682
Research on cloud-based remote measurement and analysis system
NASA Astrophysics Data System (ADS)
Gao, Zhiqiang; He, Lingsong; Su, Wei; Wang, Can; Zhang, Changfan
2015-02-01
The promising potential of cloud computing and its convergence with technologies such as cloud storage, cloud push, mobile computing allows for creation and delivery of newer type of cloud service. Combined with the thought of cloud computing, this paper presents a cloud-based remote measurement and analysis system. This system mainly consists of three parts: signal acquisition client, web server deployed on the cloud service, and remote client. This system is a special website developed using asp.net and Flex RIA technology, which solves the selective contradiction between two monitoring modes, B/S and C/S. This platform supplies customer condition monitoring and data analysis service by Internet, which was deployed on the cloud server. Signal acquisition device is responsible for data (sensor data, audio, video, etc.) collection and pushes the monitoring data to the cloud storage database regularly. Data acquisition equipment in this system is only conditioned with the function of data collection and network function such as smartphone and smart sensor. This system's scale can adjust dynamically according to the amount of applications and users, so it won't cause waste of resources. As a representative case study, we developed a prototype system based on Ali cloud service using the rotor test rig as the research object. Experimental results demonstrate that the proposed system architecture is feasible.
Performance implications from sizing a VM on multi-core systems: A Data analytic application s view
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Horey, James L; Begoli, Edmon
In this paper, we present a quantitative performance analysis of data analytics applications running on multi-core virtual machines. Such environments form the core of cloud computing. In addition, data analytics applications, such as Cassandra and Hadoop, are becoming increasingly popular on cloud computing platforms. This convergence necessitates a better understanding of the performance and cost implications of such hybrid systems. For example, the very rst step in hosting applications in virtualized environments, requires the user to con gure the number of virtual processors and the size of memory. To understand performance implications of this step, we benchmarked three Yahoo Cloudmore » Serving Benchmark (YCSB) workloads in a virtualized multi-core environment. Our measurements indicate that the performance of Cassandra for YCSB workloads does not heavily depend on the processing capacity of a system, while the size of the data set is critical to performance relative to allocated memory. We also identi ed a strong relationship between the running time of workloads and various hardware events (last level cache loads, misses, and CPU migrations). From this analysis, we provide several suggestions to improve the performance of data analytics applications running on cloud computing environments.« less
Cloud Computing Services for Seismic Networks
NASA Astrophysics Data System (ADS)
Olson, Michael
This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.
Geo-spatial Service and Application based on National E-government Network Platform and Cloud
NASA Astrophysics Data System (ADS)
Meng, X.; Deng, Y.; Li, H.; Yao, L.; Shi, J.
2014-04-01
With the acceleration of China's informatization process, our party and government take a substantive stride in advancing development and application of digital technology, which promotes the evolution of e-government and its informatization. Meanwhile, as a service mode based on innovative resources, cloud computing may connect huge pools together to provide a variety of IT services, and has become one relatively mature technical pattern with further studies and massive practical applications. Based on cloud computing technology and national e-government network platform, "National Natural Resources and Geospatial Database (NRGD)" project integrated and transformed natural resources and geospatial information dispersed in various sectors and regions, established logically unified and physically dispersed fundamental database and developed national integrated information database system supporting main e-government applications. Cross-sector e-government applications and services are realized to provide long-term, stable and standardized natural resources and geospatial fundamental information products and services for national egovernment and public users.
Bioinformatics and Microarray Data Analysis on the Cloud.
Calabrese, Barbara; Cannataro, Mario
2016-01-01
High-throughput platforms such as microarray, mass spectrometry, and next-generation sequencing are producing an increasing volume of omics data that needs large data storage and computing power. Cloud computing offers massive scalable computing and storage, data sharing, on-demand anytime and anywhere access to resources and applications, and thus, it may represent the key technology for facing those issues. In fact, in the recent years it has been adopted for the deployment of different bioinformatics solutions and services both in academia and in the industry. Although this, cloud computing presents several issues regarding the security and privacy of data, that are particularly important when analyzing patients data, such as in personalized medicine. This chapter reviews main academic and industrial cloud-based bioinformatics solutions; with a special focus on microarray data analysis solutions and underlines main issues and problems related to the use of such platforms for the storage and analysis of patients data.
Cloud Based Electronic Health Record Applications are Essential to Expeditionary Patient Care
2017-05-01
security46 and privacy concerns47). Privacy/Security Risks of Cloud Computing A quantitative study based on the preceding literature review...to medical IT wherever there is a Wi-Fi connection and a computing device (desktop, laptop , tablet, phone, etc.). In 2015 the DoD launched MiCare, a...Hosting Services: a Study on Students’ Acceptance,” Computers in Human Behavior, 2013. Takai, Teri. DoD CIO’s 10-Point Plan for IT Modernization
Unidata Cyberinfrastructure in the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Young, J. W.
2016-12-01
Data services, software, and user support are critical components of geosciences cyber-infrastructure to help researchers to advance science. With the maturity of and significant advances in cloud computing, it has recently emerged as an alternative new paradigm for developing and delivering a broad array of services over the Internet. Cloud computing is now mature enough in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Given the enormous potential of cloud-based services, Unidata has been moving to augment its software, services, data delivery mechanisms to align with the cloud-computing paradigm. To realize the above vision, Unidata has worked toward: * Providing access to many types of data from a cloud (e.g., via the THREDDS Data Server, RAMADDA and EDEX servers); * Deploying data-proximate tools to easily process, analyze, and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Leveraging Jupyter as a central platform and hub with its powerful set of interlinking tools to connect interactively data servers, Python scientific libraries, scripts, and workflows; * Exploring end-to-end modeling and prediction capabilities in the cloud; * Partnering with NOAA and public cloud vendors (e.g., Amazon and OCC) on the NOAA Big Data Project to harness their capabilities and resources for the benefit of the academic community.
Cloud computing for context-aware enhanced m-Health services.
Fernandez-Llatas, Carlos; Pileggi, Salvatore F; Ibañez, Gema; Valero, Zoe; Sala, Pilar
2015-01-01
m-Health services are increasing its presence in our lives due to the high penetration of new smartphone devices. This new scenario proposes new challenges in terms of information accessibility that require new paradigms which enable the new applications to access the data in a continuous and ubiquitous way, ensuring the privacy required depending on the kind of data accessed. This paper proposes an architecture based on cloud computing paradigms in order to empower new m-Health applications to enrich their results by providing secure access to user data.
Tavaxy: Integrating Taverna and Galaxy workflows with cloud computing support
2012-01-01
Background Over the past decade the workflow system paradigm has evolved as an efficient and user-friendly approach for developing complex bioinformatics applications. Two popular workflow systems that have gained acceptance by the bioinformatics community are Taverna and Galaxy. Each system has a large user-base and supports an ever-growing repository of application workflows. However, workflows developed for one system cannot be imported and executed easily on the other. The lack of interoperability is due to differences in the models of computation, workflow languages, and architectures of both systems. This lack of interoperability limits sharing of workflows between the user communities and leads to duplication of development efforts. Results In this paper, we present Tavaxy, a stand-alone system for creating and executing workflows based on using an extensible set of re-usable workflow patterns. Tavaxy offers a set of new features that simplify and enhance the development of sequence analysis applications: It allows the integration of existing Taverna and Galaxy workflows in a single environment, and supports the use of cloud computing capabilities. The integration of existing Taverna and Galaxy workflows is supported seamlessly at both run-time and design-time levels, based on the concepts of hierarchical workflows and workflow patterns. The use of cloud computing in Tavaxy is flexible, where the users can either instantiate the whole system on the cloud, or delegate the execution of certain sub-workflows to the cloud infrastructure. Conclusions Tavaxy reduces the workflow development cycle by introducing the use of workflow patterns to simplify workflow creation. It enables the re-use and integration of existing (sub-) workflows from Taverna and Galaxy, and allows the creation of hybrid workflows. Its additional features exploit recent advances in high performance cloud computing to cope with the increasing data size and complexity of analysis. The system can be accessed either through a cloud-enabled web-interface or downloaded and installed to run within the user's local environment. All resources related to Tavaxy are available at http://www.tavaxy.org. PMID:22559942
Unidata cyberinfrastructure in the cloud: A progress report
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan
2016-04-01
Data services, software, and committed support are critical components of geosciences cyber-infrastructure that can help scientists address problems of unprecedented complexity, scale, and scope. Unidata is currently working on innovative ideas, new paradigms, and novel techniques to complement and extend its offerings. Our goal is to empower users so that they can tackle major, heretofore difficult problems. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. To realize the above vision, Unidata is working toward: * Providing access to many types of data from a cloud (e.g., TDS, RAMADDA and EDEX); * Deploying data-proximate tools to easily process, analyze and visualize those data in a cloud environment cloud for consumption by any one, by any device, from anywhere, at any time; * Developing and providing a range of pre-configured and well-integrated tools and services that can be deployed by any university in their own private or public cloud settings. Specifically, Unidata has developed Docker for "containerized applications", making them easy to deploy. Docker helps to create "disposable" installs and eliminates many configuration challenges. Containerized applications include tools for data transport, access, analysis, and visualization: THREDDS Data Server, Integrated Data Viewer, GEMPAK, Local Data Manager, RAMADDA Data Server, and Python tools; * Fostering partnerships with NOAA and public cloud vendors (e.g., Amazon) to harness their capabilities and resources for the benefit of the academic community.
Secure and Resilient Cloud Computing for the Department of Defense
2015-07-21
that addresses that threat model, and (3) integrate the technology into a usable, secure, resilient cloud test bed. Underpinning this work is the...risks for the DoD’s acquisition of secure, resilient cloud technology by providing proofs of concept, technology maturity, integration demonstrations...we need a strategy for integrating LLSRC technology with the cloud services and applications that need to be secured. The LLSRC integration
Human face recognition using eigenface in cloud computing environment
NASA Astrophysics Data System (ADS)
Siregar, S. T. M.; Syahputra, M. F.; Rahmat, R. F.
2018-02-01
Doing a face recognition for one single face does not take a long time to process, but if we implement attendance system or security system on companies that have many faces to be recognized, it will take a long time. Cloud computing is a computing service that is done not on a local device, but on an internet connected to a data center infrastructure. The system of cloud computing also provides a scalability solution where cloud computing can increase the resources needed when doing larger data processing. This research is done by applying eigenface while collecting data as training data is also done by using REST concept to provide resource, then server can process the data according to existing stages. After doing research and development of this application, it can be concluded by implementing Eigenface, recognizing face by applying REST concept as endpoint in giving or receiving related information to be used as a resource in doing model formation to do face recognition.
Cloud-Based Perception and Control of Sensor Nets and Robot Swarms
2016-04-01
distributed stream processing framework provides the necessary API and infrastructure to develop and execute such applications in a cluster of computation...streaming DDDAS applications based on challenges they present to the backend Cloud control system. Figure 2 Parallel SLAM Application 3 1) Set of...the art deep learning- based object detectors can recognize among hundreds of object classes and this capability would be very useful for mobile
NASA Astrophysics Data System (ADS)
Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats
2014-06-01
Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt
Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared overmore » the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.« less
What CFOs should know before venturing into the cloud.
Rajendran, Janakan
2013-05-01
There are three major trends in the use of cloud-based services for healthcare IT: Cloud computing involves the hosting of health IT applications in a service provider cloud. Cloud storage is a data storage service that can involve, for example, long-term storage and archival of information such as clinical data, medical images, and scanned documents. Data center colocation involves rental of secure space in the cloud from a vendor, an approach that allows a hospital to share power capacity and proven security protocols, reducing costs.
NASA Astrophysics Data System (ADS)
Furht, Borko
In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.
GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.
Lee, Sheng-Ta; Lin, Chun-Yuan; Hung, Che Lun
2013-01-01
As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.
NASA Astrophysics Data System (ADS)
Moro, A. C.; Nadesh, R. K.
2017-11-01
The cloud computing paradigm has transformed the way we do business in today’s world. Services on cloud have come a long way since just providing basic storage or software on demand. One of the fastest growing factor in this is mobile cloud computing. With the option of offloading now available to mobile users, mobile users can offload entire applications onto cloudlets. With the problems regarding availability and limited-storage capacity of these mobile cloudlets, it becomes difficult to decide for the mobile user when to use his local memory or the cloudlets. Hence, we take a look at a fast algorithm that decides whether the mobile user should go for cloudlet or rely on local memory based on an offloading probability. We have partially implemented the algorithm which decides whether the task can be carried out locally or given to a cloudlet. But as it becomes a burden on the mobile devices to perform the complete computation, so we look to offload this on to a cloud in our paper. Also further we use a file compression technique before sending the file onto the cloud to further reduce the load.
On the Large-Scaling Issues of Cloud-based Applications for Earth Science Dat
NASA Astrophysics Data System (ADS)
Hua, H.
2016-12-01
Next generation science data systems are needed to address the incoming flood of data from new missions such as NASA's SWOT and NISAR where its SAR data volumes and data throughput rates are order of magnitude larger than present day missions. Existing missions, such as OCO-2, may also require high turn-around time for processing different science scenarios where on-premise and even traditional HPC computing environments may not meet the high processing needs. Additionally, traditional means of procuring hardware on-premise are already limited due to facilities capacity constraints for these new missions. Experiences have shown that to embrace efficient cloud computing approaches for large-scale science data systems requires more than just moving existing code to cloud environments. At large cloud scales, we need to deal with scaling and cost issues. We present our experiences on deploying multiple instances of our hybrid-cloud computing science data system (HySDS) to support large-scale processing of Earth Science data products. We will explore optimization approaches to getting best performance out of hybrid-cloud computing as well as common issues that will arise when dealing with large-scale computing. Novel approaches were utilized to do processing on Amazon's spot market, which can potentially offer 75%-90% costs savings but with an unpredictable computing environment based on market forces.
Visual Analysis of Cloud Computing Performance Using Behavioral Lines.
Muelder, Chris; Zhu, Biao; Chen, Wei; Zhang, Hongxin; Ma, Kwan-Liu
2016-02-29
Cloud computing is an essential technology to Big Data analytics and services. A cloud computing system is often comprised of a large number of parallel computing and storage devices. Monitoring the usage and performance of such a system is important for efficient operations, maintenance, and security. Tracing every application on a large cloud system is untenable due to scale and privacy issues. But profile data can be collected relatively efficiently by regularly sampling the state of the system, including properties such as CPU load, memory usage, network usage, and others, creating a set of multivariate time series for each system. Adequate tools for studying such large-scale, multidimensional data are lacking. In this paper, we present a visual based analysis approach to understanding and analyzing the performance and behavior of cloud computing systems. Our design is based on similarity measures and a layout method to portray the behavior of each compute node over time. When visualizing a large number of behavioral lines together, distinct patterns often appear suggesting particular types of performance bottleneck. The resulting system provides multiple linked views, which allow the user to interactively explore the data by examining the data or a selected subset at different levels of detail. Our case studies, which use datasets collected from two different cloud systems, show that this visual based approach is effective in identifying trends and anomalies of the systems.
Cloud Compute for Global Climate Station Summaries
NASA Astrophysics Data System (ADS)
Baldwin, R.; May, B.; Cogbill, P.
2017-12-01
Global Climate Station Summaries are simple indicators of observational normals which include climatic data summarizations and frequency distributions. These typically are statistical analyses of station data over 5-, 10-, 20-, 30-year or longer time periods. The summaries are computed from the global surface hourly dataset. This dataset totaling over 500 gigabytes is comprised of 40 different types of weather observations with 20,000 stations worldwide. NCEI and the U.S. Navy developed these value added products in the form of hourly summaries from many of these observations. Enabling this compute functionality in the cloud is the focus of the project. An overview of approach and challenges associated with application transition to the cloud will be presented.
Bent, John M.; Faibish, Sorin; Grider, Gary
2015-06-30
Cloud object storage is enabled for archived data, such as checkpoints and results, of high performance computing applications using a middleware process. A plurality of archived files, such as checkpoint files and results, generated by a plurality of processes in a parallel computing system are stored by obtaining the plurality of archived files from the parallel computing system; converting the plurality of archived files to objects using a log structured file system middleware process; and providing the objects for storage in a cloud object storage system. The plurality of processes may run, for example, on a plurality of compute nodes. The log structured file system middleware process may be embodied, for example, as a Parallel Log-Structured File System (PLFS). The log structured file system middleware process optionally executes on a burst buffer node.
A world-wide databridge supported by a commercial cloud provider
NASA Astrophysics Data System (ADS)
Tat Cheung, Kwong; Field, Laurence; Furano, Fabrizio
2017-10-01
Volunteer computing has the potential to provide significant additional computing capacity for the LHC experiments. One of the challenges with exploiting volunteer computing is to support a global community of volunteers that provides heterogeneous resources. However, high energy physics applications require more data input and output than the CPU intensive applications that are typically used by other volunteer computing projects. While the so-called databridge has already been successfully proposed as a method to span the untrusted and trusted domains of volunteer computing and Grid computing respective, globally transferring data between potentially poor-performing residential networks and CERN could be unreliable, leading to wasted resources usage. The expectation is that by placing a storage endpoint that is part of a wider, flexible geographical databridge deployment closer to the volunteers, the transfer success rate and the overall performance can be improved. This contribution investigates the provision of a globally distributed databridge implemented upon a commercial cloud provider.
Efficient Server-Aided Secure Two-Party Function Evaluation with Applications to Genomic Computation
2016-07-14
of the important properties of secure computation . In particular, it is known that full fairness cannot be achieved in the case of two-party com...Jakobsen, J. Nielsen, and C. Orlandi. A framework for outsourcing of secure computation . In ACM Workshop on Cloud Computing Security (CCSW), pages...Function Evaluation with Applications to Genomic Computation Abstract: Computation based on genomic data is becoming increasingly popular today, be it
Enabling a Scientific Cloud Marketplace: VGL (Invited)
NASA Astrophysics Data System (ADS)
Fraser, R.; Woodcock, R.; Wyborn, L. A.; Vote, J.; Rankine, T.; Cox, S. J.
2013-12-01
The Virtual Geophysics Laboratory (VGL) provides a flexible, web based environment where researchers can browse data and use a variety of scientific software packaged into tool kits that run in the Cloud. Both data and tool kits are published by multiple researchers and registered with the VGL infrastructure forming a data and application marketplace. The VGL provides the basic work flow of Discovery and Access to the disparate data sources and a Library for tool kits and scripting to drive the scientific codes. Computation is then performed on the Research or Commercial Clouds. Provenance information is collected throughout the work flow and can be published alongside the results allowing for experiment comparison and sharing with other researchers. VGL's "mix and match" approach to data, computational resources and scientific codes, enables a dynamic approach to scientific collaboration. VGL allows scientists to publish their specific contribution, be it data, code, compute or work flow, knowing the VGL framework will provide other components needed for a complete application. Other scientists can choose the pieces that suit them best to assemble an experiment. The coarse grain workflow of the VGL framework combined with the flexibility of the scripting library and computational toolkits allows for significant customisation and sharing amongst the community. The VGL utilises the cloud computational and storage resources from the Australian academic research cloud provided by the NeCTAR initiative and a large variety of data accessible from national and state agencies via the Spatial Information Services Stack (SISS - http://siss.auscope.org). VGL v1.2 screenshot - http://vgl.auscope.org
Mobile cloud-computing-based healthcare service by noncontact ECG monitoring.
Fong, Ee-May; Chung, Wan-Young
2013-12-02
Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service.
Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG Monitoring
Fong, Ee-May; Chung, Wan-Young
2013-01-01
Noncontact electrocardiogram (ECG) measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset) to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service. PMID:24316562
The JASMIN Cloud: specialised and hybrid to meet the needs of the Environmental Sciences Community
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Churchill, Jonathan; Pritchard, Matt
2014-05-01
Cloud computing provides enormous opportunities for the research community. The large public cloud providers provide near-limitless scaling capability. However, adapting Cloud to scientific workloads is not without its problems. The commodity nature of the public cloud infrastructure can be at odds with the specialist requirements of the research community. Issues such as trust, ownership of data, WAN bandwidth and costing models make additional barriers to more widespread adoption. Alongside the application of public cloud for scientific applications, a number of private cloud initiatives are underway in the research community of which the JASMIN Cloud is one example. Here, cloud service models are being effectively super-imposed over more established services such as data centres, compute cluster facilities and Grids. These have the potential to deliver the specialist infrastructure needed for the science community coupled with the benefits of a Cloud service model. The JASMIN facility based at the Rutherford Appleton Laboratory was established in 2012 to support the data analysis requirements of the climate and Earth Observation community. In its first year of operation, the 5PB of available storage capacity was filled and the hosted compute capability used extensively. JASMIN has modelled the concept of a centralised large-volume data analysis facility. Key characteristics have enabled success: peta-scale fast disk connected via low latency networks to compute resources and the use of virtualisation for effective management of the resources for a range of users. A second phase is now underway funded through NERC's (Natural Environment Research Council) Big Data initiative. This will see significant expansion to the resources available with a doubling of disk-based storage to 12PB and an increase of compute capacity by a factor of ten to over 3000 processing cores. This expansion is accompanied by a broadening in the scope for JASMIN, as a service available to the entire UK environmental science community. Experience with the first phase demonstrated the range of user needs. A trade-off is needed between access privileges to resources, flexibility of use and security. This has influenced the form and types of service under development for the new phase. JASMIN will deploy a specialised private cloud organised into "Managed" and "Unmanaged" components. In the Managed Cloud, users have direct access to the storage and compute resources for optimal performance but for reasons of security, via a more restrictive PaaS (Platform-as-a-Service) interface. The Unmanaged Cloud is deployed in an isolated part of the network but co-located with the rest of the infrastructure. This enables greater liberty to tenants - full IaaS (Infrastructure-as-a-Service) capability to provision customised infrastructure - whilst at the same time protecting more sensitive parts of the system from direct access using these elevated privileges. The private cloud will be augmented with cloud-bursting capability so that it can exploit the resources available from public clouds, making it effectively a hybrid solution. A single interface will overlay the functionality of both the private cloud and external interfaces to public cloud providers giving users the flexibility to migrate resources between infrastructures as requirements dictate.
Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems
NASA Technical Reports Server (NTRS)
Asano, S.; Sato, M.; Hansen, J. E.
1979-01-01
A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.
Distributed MRI reconstruction using Gadgetron-based cloud computing.
Xue, Hui; Inati, Souheil; Sørensen, Thomas Sangild; Kellman, Peter; Hansen, Michael S
2015-03-01
To expand the open source Gadgetron reconstruction framework to support distributed computing and to demonstrate that a multinode version of the Gadgetron can be used to provide nonlinear reconstruction with clinically acceptable latency. The Gadgetron framework was extended with new software components that enable an arbitrary number of Gadgetron instances to collaborate on a reconstruction task. This cloud-enabled version of the Gadgetron was deployed on three different distributed computing platforms ranging from a heterogeneous collection of commodity computers to the commercial Amazon Elastic Compute Cloud. The Gadgetron cloud was used to provide nonlinear, compressed sensing reconstruction on a clinical scanner with low reconstruction latency (eg, cardiac and neuroimaging applications). The proposed setup was able to handle acquisition and 11 -SPIRiT reconstruction of nine high temporal resolution real-time, cardiac short axis cine acquisitions, covering the ventricles for functional evaluation, in under 1 min. A three-dimensional high-resolution brain acquisition with 1 mm(3) isotropic pixel size was acquired and reconstructed with nonlinear reconstruction in less than 5 min. A distributed computing enabled Gadgetron provides a scalable way to improve reconstruction performance using commodity cluster computing. Nonlinear, compressed sensing reconstruction can be deployed clinically with low image reconstruction latency. © 2014 Wiley Periodicals, Inc.
Enabling Research Network Connectivity to Clouds with Virtual Router Technology
NASA Astrophysics Data System (ADS)
Seuster, R.; Casteels, K.; Leavett-Brown, CR; Paterson, M.; Sobie, RJ
2017-10-01
The use of opportunistic cloud resources by HEP experiments has significantly increased over the past few years. Clouds that are owned or managed by the HEP community are connected to the LHCONE network or the research network with global access to HEP computing resources. Private clouds, such as those supported by non-HEP research funds are generally connected to the international research network; however, commercial clouds are either not connected to the research network or only connect to research sites within their national boundaries. Since research network connectivity is a requirement for HEP applications, we need to find a solution that provides a high-speed connection. We are studying a solution with a virtual router that will address the use case when a commercial cloud has research network connectivity in a limited region. In this situation, we host a virtual router in our HEP site and require that all traffic from the commercial site transit through the virtual router. Although this may increase the network path and also the load on the HEP site, it is a workable solution that would enable the use of the remote cloud for low I/O applications. We are exploring some simple open-source solutions. In this paper, we present the results of our studies and how it will benefit our use of private and public clouds for HEP computing.
Context-aware distributed cloud computing using CloudScheduler
NASA Astrophysics Data System (ADS)
Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.
2017-10-01
The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.
Polyphony: A Workflow Orchestration Framework for Cloud Computing
NASA Technical Reports Server (NTRS)
Shams, Khawaja S.; Powell, Mark W.; Crockett, Tom M.; Norris, Jeffrey S.; Rossi, Ryan; Soderstrom, Tom
2010-01-01
Cloud Computing has delivered unprecedented compute capacity to NASA missions at affordable rates. Missions like the Mars Exploration Rovers (MER) and Mars Science Lab (MSL) are enjoying the elasticity that enables them to leverage hundreds, if not thousands, or machines for short durations without making any hardware procurements. In this paper, we describe Polyphony, a resilient, scalable, and modular framework that efficiently leverages a large set of computing resources to perform parallel computations. Polyphony can employ resources on the cloud, excess capacity on local machines, as well as spare resources on the supercomputing center, and it enables these resources to work in concert to accomplish a common goal. Polyphony is resilient to node failures, even if they occur in the middle of a transaction. We will conclude with an evaluation of a production-ready application built on top of Polyphony to perform image-processing operations of images from around the solar system, including Mars, Saturn, and Titan.
Optimization of over-provisioned clouds
NASA Astrophysics Data System (ADS)
Balashov, N.; Baranov, A.; Korenkov, V.
2016-09-01
The functioning of modern applications in cloud-centers is characterized by a huge variety of computational workloads generated. This causes uneven workload distribution and as a result leads to ineffective utilization of cloud-centers' hardware. The proposed article addresses the possible ways to solve this issue and demonstrates that it is a matter of necessity to optimize cloud-centers' hardware utilization. As one of the possible ways to solve the problem of the inefficient resource utilization in heterogeneous cloud-environments an algorithm of dynamic re-allocation of virtual resources is suggested.
Arkas: Rapid reproducible RNAseq analysis
Colombo, Anthony R.; J. Triche Jr, Timothy; Ramsingh, Giridharan
2017-01-01
The recently introduced Kallisto pseudoaligner has radically simplified the quantification of transcripts in RNA-sequencing experiments. We offer cloud-scale RNAseq pipelines Arkas-Quantification, and Arkas-Analysis available within Illumina’s BaseSpace cloud application platform which expedites Kallisto preparatory routines, reliably calculates differential expression, and performs gene-set enrichment of REACTOME pathways . Due to inherit inefficiencies of scale, Illumina's BaseSpace computing platform offers a massively parallel distributive environment improving data management services and data importing. Arkas-Quantification deploys Kallisto for parallel cloud computations and is conveniently integrated downstream from the BaseSpace Sequence Read Archive (SRA) import/conversion application titled SRA Import. Arkas-Analysis annotates the Kallisto results by extracting structured information directly from source FASTA files with per-contig metadata, calculates the differential expression and gene-set enrichment analysis on both coding genes and transcripts. The Arkas cloud pipeline supports ENSEMBL transcriptomes and can be used downstream from the SRA Import facilitating raw sequencing importing, SRA FASTQ conversion, RNA quantification and analysis steps. PMID:28868134
A compressive sensing based secure watermark detection and privacy preserving storage framework.
Qia Wang; Wenjun Zeng; Jun Tian
2014-03-01
Privacy is a critical issue when the data owners outsource data storage or processing to a third party computing service, such as the cloud. In this paper, we identify a cloud computing application scenario that requires simultaneously performing secure watermark detection and privacy preserving multimedia data storage. We then propose a compressive sensing (CS)-based framework using secure multiparty computation (MPC) protocols to address such a requirement. In our framework, the multimedia data and secret watermark pattern are presented to the cloud for secure watermark detection in a CS domain to protect the privacy. During CS transformation, the privacy of the CS matrix and the watermark pattern is protected by the MPC protocols under the semi-honest security model. We derive the expected watermark detection performance in the CS domain, given the target image, watermark pattern, and the size of the CS matrix (but without the CS matrix itself). The correctness of the derived performance has been validated by our experiments. Our theoretical analysis and experimental results show that secure watermark detection in the CS domain is feasible. Our framework can also be extended to other collaborative secure signal processing and data-mining applications in the cloud.
Real-time WAMI streaming target tracking in fog
NASA Astrophysics Data System (ADS)
Chen, Yu; Blasch, Erik; Chen, Ning; Deng, Anna; Ling, Haibin; Chen, Genshe
2016-05-01
Real-time information fusion based on WAMI (Wide-Area Motion Imagery), FMV (Full Motion Video), and Text data is highly desired for many mission critical emergency or security applications. Cloud Computing has been considered promising to achieve big data integration from multi-modal sources. In many mission critical tasks, however, powerful Cloud technology cannot satisfy the tight latency tolerance as the servers are allocated far from the sensing platform, actually there is no guaranteed connection in the emergency situations. Therefore, data processing, information fusion, and decision making are required to be executed on-site (i.e., near the data collection). Fog Computing, a recently proposed extension and complement for Cloud Computing, enables computing on-site without outsourcing jobs to a remote Cloud. In this work, we have investigated the feasibility of processing streaming WAMI in the Fog for real-time, online, uninterrupted target tracking. Using a single target tracking algorithm, we studied the performance of a Fog Computing prototype. The experimental results are very encouraging that validated the effectiveness of our Fog approach to achieve real-time frame rates.
International Symposium on Grids and Clouds (ISGC) 2016
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2016 will be held at Academia Sinica in Taipei, Taiwan from 13-18 March 2016, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC). The theme of ISGC 2016 focuses on“Ubiquitous e-infrastructures and Applications”. Contemporary research is impossible without a strong IT component - researchers rely on the existence of stable and widely available e-infrastructures and their higher level functions and properties. As a result of these expectations, e-Infrastructures are becoming ubiquitous, providing an environment that supports large scale collaborations that deal with global challenges as well as smaller and temporal research communities focusing on particular scientific problems. To support those diversified communities and their needs, the e-Infrastructures themselves are becoming more layered and multifaceted, supporting larger groups of applications. Following the call for the last year conference, ISGC 2016 continues its aim to bring together users and application developers with those responsible for the development and operation of multi-purpose ubiquitous e-Infrastructures. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities, Arts, and Social Sciences (HASS) Applications, Virtual Research Environment (including Middleware, tools, services, workflow, etc.), Data Management, Big Data, Networking & Security, Infrastructure & Operations, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC), etc.
The EPOS Vision for the Open Science Cloud
NASA Astrophysics Data System (ADS)
Jeffery, Keith; Harrison, Matt; Cocco, Massimo
2016-04-01
Cloud computing offers dynamic elastic scalability for data processing on demand. For much research activity, demand for computing is uneven over time and so CLOUD computing offers both cost-effectiveness and capacity advantages. However, as reported repeatedly by the EC Cloud Expert Group, there are barriers to the uptake of Cloud Computing: (1) security and privacy; (2) interoperability (avoidance of lock-in); (3) lack of appropriate systems development environments for application programmers to characterise their applications to allow CLOUD middleware to optimize their deployment and execution. From CERN, the Helix-Nebula group has proposed the architecture for the European Open Science Cloud. They are discussing with other e-Infrastructure groups such as EGI (GRIDs), EUDAT (data curation), AARC (network authentication and authorisation) and also with the EIROFORUM group of 'international treaty' RIs (Research Infrastructures) and the ESFRI (European Strategic Forum for Research Infrastructures) RIs including EPOS. Many of these RIs are either e-RIs (electronic-RIs) or have an e-RI interface for access and use. The EPOS architecture is centred on a portal: ICS (Integrated Core Services). The architectural design already allows for access to e-RIs (which may include any or all of data, software, users and resources such as computers or instruments). Those within any one domain (subject area) of EPOS are considered within the TCS (Thematic Core Services). Those outside, or available across multiple domains of EPOS, are ICS-d (Integrated Core Services-Distributed) since the intention is that they will be used by any or all of the TCS via the ICS. Another such service type is CES (Computational Earth Science); effectively an ICS-d specializing in high performance computation, analytics, simulation or visualization offered by a TCS for others to use. Already discussions are underway between EPOS and EGI, EUDAT, AARC and Helix-Nebula for those offerings to be considered as ICS-ds by EPOS.. Provision of access to ICS-Ds from ICS-C concerns several aspects: (a) Technical : it may be more or less difficult to connect and pass from ICS-C to the ICS-d/ CES the 'package' (probably a virtual machine) of data and software; (b) Security/privacy : including passing personal information e.g. related to AAAI (Authentication, authorization, accounting Infrastructure); (c) financial and legal : such as payment, licence conditions; Appropriate interfaces from ICS-C to ICS-d are being designed to accommodate these aspects. The Open Science Cloud is timely because it provides a framework to discuss governance and sustainability for computational resource provision as well as an effective interpretation of federated approach to HPC(High Performance Computing) -HTC (High Throughput Computing). It will be a unique opportunity to share and adopt procurement policies to provide access to computational resources for RIs. The current state of discussions and expected roadmap for the EPOS-Open Science Cloud relationship are presented.
Dalpé, Gratien; Joly, Yann
2014-09-01
Healthcare-related bioinformatics databases are increasingly offering the possibility to maintain, organize, and distribute DNA sequencing data. Different national and international institutions are currently hosting such databases that offer researchers website platforms where they can obtain sequencing data on which they can perform different types of analysis. Until recently, this process remained mostly one-dimensional, with most analysis concentrated on a limited amount of data. However, newer genome sequencing technology is producing a huge amount of data that current computer facilities are unable to handle. An alternative approach has been to start adopting cloud computing services for combining the information embedded in genomic and model system biology data, patient healthcare records, and clinical trials' data. In this new technological paradigm, researchers use virtual space and computing power from existing commercial or not-for-profit cloud service providers to access, store, and analyze data via different application programming interfaces. Cloud services are an alternative to the need of larger data storage; however, they raise different ethical, legal, and social issues. The purpose of this Commentary is to summarize how cloud computing can contribute to bioinformatics-based drug discovery and to highlight some of the outstanding legal, ethical, and social issues that are inherent in the use of cloud services. © 2014 Wiley Periodicals, Inc.
A Cloud-Based Infrastructure for Near-Real-Time Processing and Dissemination of NPP Data
NASA Astrophysics Data System (ADS)
Evans, J. D.; Valente, E. G.; Chettri, S. S.
2011-12-01
We are building a scalable cloud-based infrastructure for generating and disseminating near-real-time data products from a variety of geospatial and meteorological data sources, including the new National Polar-Orbiting Environmental Satellite System (NPOESS) Preparatory Project (NPP). Our approach relies on linking Direct Broadcast and other data streams to a suite of scientific algorithms coordinated by NASA's International Polar-Orbiter Processing Package (IPOPP). The resulting data products are directly accessible to a wide variety of end-user applications, via industry-standard protocols such as OGC Web Services, Unidata Local Data Manager, or OPeNDAP, using open source software components. The processing chain employs on-demand computing resources from Amazon.com's Elastic Compute Cloud and NASA's Nebula cloud services. Our current prototype targets short-term weather forecasting, in collaboration with NASA's Short-term Prediction Research and Transition (SPoRT) program and the National Weather Service. Direct Broadcast is especially crucial for NPP, whose current ground segment is unlikely to deliver data quickly enough for short-term weather forecasters and other near-real-time users. Direct Broadcast also allows full local control over data handling, from the receiving antenna to end-user applications: this provides opportunities to streamline processes for data ingest, processing, and dissemination, and thus to make interpreted data products (Environmental Data Records) available to practitioners within minutes of data capture at the sensor. Cloud computing lets us grow and shrink computing resources to meet large and rapid fluctuations in data availability (twice daily for polar orbiters) - and similarly large fluctuations in demand from our target (near-real-time) users. This offers a compelling business case for cloud computing: the processing or dissemination systems can grow arbitrarily large to sustain near-real time data access despite surges in data volumes or user demand, but that computing capacity (and hourly costs) can be dropped almost instantly once the surge passes. Cloud computing also allows low-risk experimentation with a variety of machine architectures (processor types; bandwidth, memory, and storage capacities, etc.) and of system configurations (including massively parallel computing patterns). Finally, our service-based approach (in which user applications invoke software processes on a Web-accessible server) facilitates access into datasets of arbitrary size and resolution, and allows users to request and receive tailored products on demand. To maximize the usefulness and impact of our technology, we have emphasized open, industry-standard software interfaces. We are also using and developing open source software to facilitate the widespread adoption of similar, derived, or interoperable systems for processing and serving near-real-time data from NPP and other sources.
A PACS archive architecture supported on cloud services.
Silva, Luís A Bastião; Costa, Carlos; Oliveira, José Luis
2012-05-01
Diagnostic imaging procedures have continuously increased over the last decade and this trend may continue in coming years, creating a great impact on storage and retrieval capabilities of current PACS. Moreover, many smaller centers do not have financial resources or requirements that justify the acquisition of a traditional infrastructure. Alternative solutions, such as cloud computing, may help address this emerging need. A tremendous amount of ubiquitous computational power, such as that provided by Google and Amazon, are used every day as a normal commodity. Taking advantage of this new paradigm, an architecture for a Cloud-based PACS archive that provides data privacy, integrity, and availability is proposed. The solution is independent from the cloud provider and the core modules were successfully instantiated in examples of two cloud computing providers. Operational metrics for several medical imaging modalities were tabulated and compared for Google Storage, Amazon S3, and LAN PACS. A PACS-as-a-Service archive that provides storage of medical studies using the Cloud was developed. The results show that the solution is robust and that it is possible to store, query, and retrieve all desired studies in a similar way as in a local PACS approach. Cloud computing is an emerging solution that promises high scalability of infrastructures, software, and applications, according to a "pay-as-you-go" business model. The presented architecture uses the cloud to setup medical data repositories and can have a significant impact on healthcare institutions by reducing IT infrastructures.
Assessing the Need for Supercomputing Resources Within the Pacific Area of Responsibility
2015-05-26
portion of today’s research and development dollars are going toward developing machines that will be better suited for addressing big data applications...2009; Radu Sion, “To Cloud or Not to? Musings on Clouds, Security and Big Data ,” in Secure Data Management, Vol. 8425, May 2014, pp. 3–5; Yao Chen...Applied Parallel and Scientific Computing, Vol. 7134, 2010. Sion, Radu, “To Cloud or Not to? Musings on Clouds, Security and Big Data ,” in Secure Data
Processing NASA Earth Science Data on Nebula Cloud
NASA Technical Reports Server (NTRS)
Chen, Aijun; Pham, Long; Kempler, Steven
2012-01-01
Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.
A Hierarchical Auction-Based Mechanism for Real-Time Resource Allocation in Cloud Robotic Systems.
Wang, Lujia; Liu, Ming; Meng, Max Q-H
2017-02-01
Cloud computing enables users to share computing resources on-demand. The cloud computing framework cannot be directly mapped to cloud robotic systems with ad hoc networks since cloud robotic systems have additional constraints such as limited bandwidth and dynamic structure. However, most multirobotic applications with cooperative control adopt this decentralized approach to avoid a single point of failure. Robots need to continuously update intensive data to execute tasks in a coordinated manner, which implies real-time requirements. Thus, a resource allocation strategy is required, especially in such resource-constrained environments. This paper proposes a hierarchical auction-based mechanism, namely link quality matrix (LQM) auction, which is suitable for ad hoc networks by introducing a link quality indicator. The proposed algorithm produces a fast and robust method that is accurate and scalable. It reduces both global communication and unnecessary repeated computation. The proposed method is designed for firm real-time resource retrieval for physical multirobot systems. A joint surveillance scenario empirically validates the proposed mechanism by assessing several practical metrics. The results show that the proposed LQM auction outperforms state-of-the-art algorithms for resource allocation.
Static Memory Deduplication for Performance Optimization in Cloud Computing.
Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan
2017-04-27
In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.
Static Memory Deduplication for Performance Optimization in Cloud Computing
Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan
2017-01-01
In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible. PMID:28448434
Climate simulations and services on HPC, Cloud and Grid infrastructures
NASA Astrophysics Data System (ADS)
Cofino, Antonio S.; Blanco, Carlos; Minondo Tshuma, Antonio
2017-04-01
Cloud, Grid and High Performance Computing have changed the accessibility and availability of computing resources for Earth Science research communities, specially for Climate community. These paradigms are modifying the way how climate applications are being executed. By using these technologies the number, variety and complexity of experiments and resources are increasing substantially. But, although computational capacity is increasing, traditional applications and tools used by the community are not good enough to manage this large volume and variety of experiments and computing resources. In this contribution, we evaluate the challenges to run climate simulations and services on Grid, Cloud and HPC infrestructures and how to tackle them. The Grid and Cloud infrastructures provided by EGI's VOs ( esr , earth.vo.ibergrid and fedcloud.egi.eu) will be evaluated, as well as HPC resources from PRACE infrastructure and institutional clusters. To solve those challenges, solutions using DRM4G framework will be shown. DRM4G provides a good framework to manage big volume and variety of computing resources for climate experiments. This work has been supported by the Spanish National R&D Plan under projects WRF4G (CGL2011-28864), INSIGNIA (CGL2016-79210-R) and MULTI-SDM (CGL2015-66583-R) ; the IS-ENES2 project from the 7FP of the European Commission (grant agreement no. 312979); the European Regional Development Fund—ERDF and the Programa de Personal Investigador en Formación Predoctoral from Universidad de Cantabria and Government of Cantabria.
An Interactive Web-Based Analysis Framework for Remote Sensing Cloud Computing
NASA Astrophysics Data System (ADS)
Wang, X. Z.; Zhang, H. M.; Zhao, J. H.; Lin, Q. H.; Zhou, Y. C.; Li, J. H.
2015-07-01
Spatiotemporal data, especially remote sensing data, are widely used in ecological, geographical, agriculture, and military research and applications. With the development of remote sensing technology, more and more remote sensing data are accumulated and stored in the cloud. An effective way for cloud users to access and analyse these massive spatiotemporal data in the web clients becomes an urgent issue. In this paper, we proposed a new scalable, interactive and web-based cloud computing solution for massive remote sensing data analysis. We build a spatiotemporal analysis platform to provide the end-user with a safe and convenient way to access massive remote sensing data stored in the cloud. The lightweight cloud storage system used to store public data and users' private data is constructed based on open source distributed file system. In it, massive remote sensing data are stored as public data, while the intermediate and input data are stored as private data. The elastic, scalable, and flexible cloud computing environment is built using Docker, which is a technology of open-source lightweight cloud computing container in the Linux operating system. In the Docker container, open-source software such as IPython, NumPy, GDAL, and Grass GIS etc., are deployed. Users can write scripts in the IPython Notebook web page through the web browser to process data, and the scripts will be submitted to IPython kernel to be executed. By comparing the performance of remote sensing data analysis tasks executed in Docker container, KVM virtual machines and physical machines respectively, we can conclude that the cloud computing environment built by Docker makes the greatest use of the host system resources, and can handle more concurrent spatial-temporal computing tasks. Docker technology provides resource isolation mechanism in aspects of IO, CPU, and memory etc., which offers security guarantee when processing remote sensing data in the IPython Notebook. Users can write complex data processing code on the web directly, so they can design their own data processing algorithm.
2014-09-01
becoming a more and more prevalent technology in the business world today. According to Syal and Goswami (2012), cloud technology is seen as a...use of computing resources, applications, and personal files without reliance on a single computer or system ( Syal & Goswami, 2012). By operating in...cloud services largely being web-based, which can be retrieved through most systems with access to the Internet ( Syal & Goswami, 2012). The end user can
High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL.
Stone, John E; Messmer, Peter; Sisneros, Robert; Schulten, Klaus
2016-05-01
Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications.
High Performance Molecular Visualization: In-Situ and Parallel Rendering with EGL
Stone, John E.; Messmer, Peter; Sisneros, Robert; Schulten, Klaus
2016-01-01
Large scale molecular dynamics simulations produce terabytes of data that is impractical to transfer to remote facilities. It is therefore necessary to perform visualization tasks in-situ as the data are generated, or by running interactive remote visualization sessions and batch analyses co-located with direct access to high performance storage systems. A significant challenge for deploying visualization software within clouds, clusters, and supercomputers involves the operating system software required to initialize and manage graphics acceleration hardware. Recently, it has become possible for applications to use the Embedded-system Graphics Library (EGL) to eliminate the requirement for windowing system software on compute nodes, thereby eliminating a significant obstacle to broader use of high performance visualization applications. We outline the potential benefits of this approach in the context of visualization applications used in the cloud, on commodity clusters, and supercomputers. We discuss the implementation of EGL support in VMD, a widely used molecular visualization application, and we outline benefits of the approach for molecular visualization tasks on petascale computers, clouds, and remote visualization servers. We then provide a brief evaluation of the use of EGL in VMD, with tests using developmental graphics drivers on conventional workstations and on Amazon EC2 G2 GPU-accelerated cloud instance types. We expect that the techniques described here will be of broad benefit to many other visualization applications. PMID:27747137
NASA Astrophysics Data System (ADS)
Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.
2015-12-01
Cloud resources nowadays contribute an essential share of resources for computing in high-energy physics. Such resources can be either provided by private or public IaaS clouds (e.g. OpenStack, Amazon EC2, Google Compute Engine) or by volunteers computers (e.g. LHC@Home 2.0). In any case, experiments need to prepare a virtual machine image that provides the execution environment for the physics application at hand. The CernVM virtual machine since version 3 is a minimal and versatile virtual machine image capable of booting different operating systems. The virtual machine image is less than 20 megabyte in size. The actual operating system is delivered on demand by the CernVM File System. CernVM 3 has matured from a prototype to a production environment. It is used, for instance, to run LHC applications in the cloud, to tune event generators using a network of volunteer computers, and as a container for the historic Scientific Linux 5 and Scientific Linux 4 based software environments in the course of long-term data preservation efforts of the ALICE, CMS, and ALEPH experiments. We present experience and lessons learned from the use of CernVM at scale. We also provide an outlook on the upcoming developments. These developments include adding support for Scientific Linux 7, the use of container virtualization, such as provided by Docker, and the streamlining of virtual machine contextualization towards the cloud-init industry standard.
Looking at Clouds from All Sides Now
ERIC Educational Resources Information Center
Katz, Richard N.
2010-01-01
On February 9 and 10, 2010, fifty leaders from colleges, universities, corporations, professional associations, and state networks met in Tempe, Arizona, to discuss cloud computing and the impending shift in the mix of where infrastructure, applications, and services are sourced. This group identified a set of actions that colleges and…
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan. PMID:27348127
2010-04-29
Cloud Computing The answer, my friend, is blowing in the wind. The answer is blowing in the wind. 1Bingue ‐ Cook Cloud Computing STSC 2010... Cloud Computing STSC 2010 Objectives • Define the cloud • Risks of cloud computing f l d i• Essence o c ou comput ng • Deployed clouds in DoD 3Bingue...Cook Cloud Computing STSC 2010 Definitions of Cloud Computing Cloud computing is a model for enabling b d d ku
Motion/imagery secure cloud enterprise architecture analysis
NASA Astrophysics Data System (ADS)
DeLay, John L.
2012-06-01
Cloud computing with storage virtualization and new service-oriented architectures brings a new perspective to the aspect of a distributed motion imagery and persistent surveillance enterprise. Our existing research is focused mainly on content management, distributed analytics, WAN distributed cloud networking performance issues of cloud based technologies. The potential of leveraging cloud based technologies for hosting motion imagery, imagery and analytics workflows for DOD and security applications is relatively unexplored. This paper will examine technologies for managing, storing, processing and disseminating motion imagery and imagery within a distributed network environment. Finally, we propose areas for future research in the area of distributed cloud content management enterprises.
NASA Astrophysics Data System (ADS)
Micheletti, Natan; Tonini, Marj; Lane, Stuart N.
2017-02-01
Acquisition of high density point clouds using terrestrial laser scanners (TLSs) has become commonplace in geomorphic science. The derived point clouds are often interpolated onto regular grids and the grids compared to detect change (i.e. erosion and deposition/advancement movements). This procedure is necessary for some applications (e.g. digital terrain analysis), but it inevitably leads to a certain loss of potentially valuable information contained within the point clouds. In the present study, an alternative methodology for geomorphological analysis and feature detection from point clouds is proposed. It rests on the use of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN), applied to TLS data for a rock glacier front slope in the Swiss Alps. The proposed methods allowed the detection and isolation of movements directly from point clouds which yield to accuracies in the following computation of volumes that depend only on the actual registered distance between points. We demonstrated that these values are more conservative than volumes computed with the traditional DEM comparison. The results are illustrated for the summer of 2015, a season of enhanced geomorphic activity associated with exceptionally high temperatures.
A Development of Lightweight Grid Interface
NASA Astrophysics Data System (ADS)
Iwai, G.; Kawai, Y.; Sasaki, T.; Watase, Y.
2011-12-01
In order to help a rapid development of Grid/Cloud aware applications, we have developed API to abstract the distributed computing infrastructures based on SAGA (A Simple API for Grid Applications). SAGA, which is standardized in the OGF (Open Grid Forum), defines API specifications to access distributed computing infrastructures, such as Grid, Cloud and local computing resources. The Universal Grid API (UGAPI), which is a set of command line interfaces (CLI) and APIs, aims to offer simpler API to combine several SAGA interfaces with richer functionalities. These CLIs of the UGAPI offer typical functionalities required by end users for job management and file access to the different distributed computing infrastructures as well as local computing resources. We have also built a web interface for the particle therapy simulation and demonstrated the large scale calculation using the different infrastructures at the same time. In this paper, we would like to present how the web interface based on UGAPI and SAGA achieve more efficient utilization of computing resources over the different infrastructures with technical details and practical experiences.
NASA Astrophysics Data System (ADS)
Martin, William G. K.; Hasekamp, Otto P.
2018-01-01
In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also possible to retrieve the vertical profile of clouds that are separated by clear regions. The vertical profile retrievals improve for smaller cloud fractions. This leads to the conclusion that cloud edges actually increase the amount of information that is available for retrieving the vertical profile of clouds. However, to exploit this information one must retrieve the horizontally heterogeneous cloud properties with a 2D (or 3D) model. This prototype shows that adjoint methods can efficiently compute the gradient of the misfit function. This work paves the way for the application of similar methods to 3D remote sensing problems.
NASA Technical Reports Server (NTRS)
Endlich, R. M.; Wolf, D. E.
1980-01-01
The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).
Planning and management of cloud computing networks
NASA Astrophysics Data System (ADS)
Larumbe, Federico
The evolution of the Internet has a great impact on a big part of the population. People use it to communicate, query information, receive news, work, and as entertainment. Its extraordinary usefulness as a communication media made the number of applications and technological resources explode. However, that network expansion comes at the cost of an important power consumption. If the power consumption of telecommunication networks and data centers is considered as the power consumption of a country, it would rank at the 5 th place in the world. Furthermore, the number of servers in the world is expected to grow by a factor of 10 between 2013 and 2020. This context motivates us to study techniques and methods to allocate cloud computing resources in an optimal way with respect to cost, quality of service (QoS), power consumption, and environmental impact. The results we obtained from our test cases show that besides minimizing capital expenditures (CAPEX) and operational expenditures (OPEX), the response time can be reduced up to 6 times, power consumption by 30%, and CO2 emissions by a factor of 60. Cloud computing provides dynamic access to IT resources as a service. In this paradigm, programs are executed in servers connected to the Internet that users access from their computers and mobile devices. The first advantage of this architecture is to reduce the time of application deployment and interoperability, because a new user only needs a web browser and does not need to install software on local computers with specific operating systems. Second, applications and information are available from everywhere and with any device with an Internet access. Also, servers and IT resources can be dynamically allocated depending on the number of users and workload, a feature called elasticity. This thesis studies the resource management of cloud computing networks and is divided in three main stages. We start by analyzing the planning of cloud computing networks to get a comprehensive vision. The first question to be solved is what are the optimal data center locations. We found that the location of each data center has a big impact on cost, QoS, power consumption, and greenhouse gas emissions. An optimization problem with a multi-criteria objective function is proposed to decide jointly the optimal location of data centers and software components, link capacities, and information routing. Once the network planning has been analyzed, the problem of dynamic resource provisioning in real time is addressed. In this context, virtualization is a key technique in cloud computing because each server can be shared by multiple Virtual Machines (VMs) and the total power consumption can be reduced. In the same line of location problems, we propose a Green Cloud Broker that optimizes VM placement across multiple data centers. In fact, when multiple data centers are considered, response time can be reduced by placing VMs close to users, cost can be minimized, power consumption can be optimized by using energy efficient data centers, and CO2 emissions can be decreased by choosing data centers provided with renewable energy sources. The third stage of the analysis is the short-term management of a cloud data center. In particular, a method is proposed to assign VMs to servers by considering communication traffic among VMs. Cloud data centers receive new applications over time and these applications need on-demand resource provisioning. Each application is composed of multiple types of VMs that interact among themselves. A program called scheduler must place each new VM in a server and that impacts the QoS and power consumption. Our method places VMs that communicate among themselves in servers that are close to each other in the network topology, thus reducing communication delay and increasing the throughput available among VMs. Furthermore, the power consumption of each type of server is considered and the most efficient ones are chosen to place the VMs. The number of VMs of each application can be dynamically changed to match the workload and servers not needed in a particular period can be suspended to save energy. The methodology developed is based on Mixed Integer Programming (MIP) models to formalize the problems and use state of the art optimization solvers. Then, heuristics are developed to solve cases with more than 1,000 potential data center locations for the planning problem, 1,000 nodes for the cloud broker, and 128,000 servers for the VM placement problem. Solutions with very short optimality gaps, between 0% and 1.95%, are obtained, and execution time in the order of minutes for the planning problem and less than a second for real time cases. We consider that this thesis on resource provisioning of cloud computing networks includes important contributions on this research area, and innovative commercial applications based on the proposed methods have promising future.
Cloud Service Selection Using Multicriteria Decision Analysis
Anuar, Nor Badrul; Shiraz, Muhammad; Haque, Israat Tanzeena
2014-01-01
Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios. PMID:24696645
Cloud service selection using multicriteria decision analysis.
Whaiduzzaman, Md; Gani, Abdullah; Anuar, Nor Badrul; Shiraz, Muhammad; Haque, Mohammad Nazmul; Haque, Israat Tanzeena
2014-01-01
Cloud computing (CC) has recently been receiving tremendous attention from the IT industry and academic researchers. CC leverages its unique services to cloud customers in a pay-as-you-go, anytime, anywhere manner. Cloud services provide dynamically scalable services through the Internet on demand. Therefore, service provisioning plays a key role in CC. The cloud customer must be able to select appropriate services according to his or her needs. Several approaches have been proposed to solve the service selection problem, including multicriteria decision analysis (MCDA). MCDA enables the user to choose from among a number of available choices. In this paper, we analyze the application of MCDA to service selection in CC. We identify and synthesize several MCDA techniques and provide a comprehensive analysis of this technology for general readers. In addition, we present a taxonomy derived from a survey of the current literature. Finally, we highlight several state-of-the-art practical aspects of MCDA implementation in cloud computing service selection. The contributions of this study are four-fold: (a) focusing on the state-of-the-art MCDA techniques, (b) highlighting the comparative analysis and suitability of several MCDA methods, (c) presenting a taxonomy through extensive literature review, and (d) analyzing and summarizing the cloud computing service selections in different scenarios.
Cloud@Home: A New Enhanced Computing Paradigm
NASA Astrophysics Data System (ADS)
Distefano, Salvatore; Cunsolo, Vincenzo D.; Puliafito, Antonio; Scarpa, Marco
Cloud computing is a distributed computing paradigm that mixes aspects of Grid computing, ("… hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities" (Foster, 2002)) Internet Computing ("…a computing platform geographically distributed across the Internet" (Milenkovic et al., 2003)), Utility computing ("a collection of technologies and business practices that enables computing to be delivered seamlessly and reliably across multiple computers, ... available as needed and billed according to usage, much like water and electricity are today" (Ross & Westerman, 2004)) Autonomic computing ("computing systems that can manage themselves given high-level objectives from administrators" (Kephart & Chess, 2003)), Edge computing ("… provides a generic template facility for any type of application to spread its execution across a dedicated grid, balancing the load …" Davis, Parikh, & Weihl, 2004) and Green computing (a new frontier of Ethical computing1 starting from the assumption that in next future energy costs will be related to the environment pollution).
Data distribution method of workflow in the cloud environment
NASA Astrophysics Data System (ADS)
Wang, Yong; Wu, Junjuan; Wang, Ying
2017-08-01
Cloud computing for workflow applications provides the required high efficiency calculation and large storage capacity and it also brings challenges to the protection of trade secrets and other privacy data. Because of privacy data will cause the increase of the data transmission time, this paper presents a new data allocation algorithm based on data collaborative damage degree, to improve the existing data allocation strategy? Safety and public cloud computer algorithm depends on the private cloud; the static allocation method in the initial stage only to the non-confidential data division to improve the original data, in the operational phase will continue to generate data to dynamically adjust the data distribution scheme. The experimental results show that the improved method is effective in reducing the data transmission time.
Claims and Identity: On-Premise and Cloud Solutions
NASA Astrophysics Data System (ADS)
Bertocci, Vittorio
Today's identity-management practices are often a patchwork of partial solutions, which somehow accommodate but never really integrate applications and entities separated by technology and organizational boundaries. The rise of Software as a Service (SaaS) and cloud computing, however, will force organizations to cross such boundaries so often that ad hoc solutions will simply be untenable. A new approach that tears down identity silos and supports a de-perimiterized IT by design is in order.This article will walk you through the principles of claims-based identity management, a model which addresses both traditional and cloud scenarios with the same efficacy. We will explore the most common token exchange patterns, highlighting the advantages and opportunities they offer when applied on cloud computing solutions and generic distributed systems.
Modelling operations and security of cloud systems using Z-notation and Chinese Wall security policy
NASA Astrophysics Data System (ADS)
Basu, Srijita; Sengupta, Anirban; Mazumdar, Chandan
2016-11-01
Enterprises are increasingly using cloud computing for hosting their applications. Availability of fast Internet and cheap bandwidth are causing greater number of people to use cloud-based services. This has the advantage of lower cost and minimum maintenance. However, ensuring security of user data and proper management of cloud infrastructure remain major areas of concern. Existing techniques are either too complex, or fail to properly represent the actual cloud scenario. This article presents a formal cloud model using the constructs of Z-notation. Principles of the Chinese Wall security policy have been applied to design secure cloud-specific operations. The proposed methodology will enable users to safely host their services, as well as process sensitive data, on cloud.
NASA Astrophysics Data System (ADS)
Bamiah, Mervat Adib; Brohi, Sarfraz Nawaz; Chuprat, Suriayati
2012-01-01
Virtualization is one of the hottest research topics nowadays. Several academic researchers and developers from IT industry are designing approaches for solving security and manageability issues of Virtual Machines (VMs) residing on virtualized cloud infrastructures. Moving the application from a physical to a virtual platform increases the efficiency, flexibility and reduces management cost as well as effort. Cloud computing is adopting the paradigm of virtualization, using this technique, memory, CPU and computational power is provided to clients' VMs by utilizing the underlying physical hardware. Beside these advantages there are few challenges faced by adopting virtualization such as management of VMs and network traffic, unexpected additional cost and resource allocation. Virtual Machine Monitor (VMM) or hypervisor is the tool used by cloud providers to manage the VMs on cloud. There are several heterogeneous hypervisors provided by various vendors that include VMware, Hyper-V, Xen and Kernel Virtual Machine (KVM). Considering the challenge of VM management, this paper describes several techniques to monitor and manage virtualized cloud infrastructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pais Pitta de Lacerda Ruivo, Tiago; Bernabeu Altayo, Gerard; Garzoglio, Gabriele
2014-11-11
has been widely accepted that software virtualization has a big negative impact on high-performance computing (HPC) application performance. This work explores the potential use of Infiniband hardware virtualization in an OpenNebula cloud towards the efficient support of MPI-based workloads. We have implemented, deployed, and tested an Infiniband network on the FermiCloud private Infrastructure-as-a-Service (IaaS) cloud. To avoid software virtualization towards minimizing the virtualization overhead, we employed a technique called Single Root Input/Output Virtualization (SRIOV). Our solution spanned modifications to the Linux’s Hypervisor as well as the OpenNebula manager. We evaluated the performance of the hardware virtualization on up to 56more » virtual machines connected by up to 8 DDR Infiniband network links, with micro-benchmarks (latency and bandwidth) as well as w a MPI-intensive application (the HPL Linpack benchmark).« less
An Overview of Cloud Computing in Distributed Systems
NASA Astrophysics Data System (ADS)
Divakarla, Usha; Kumari, Geetha
2010-11-01
Cloud computing is the emerging trend in the field of distributed computing. Cloud computing evolved from grid computing and distributed computing. Cloud plays an important role in huge organizations in maintaining huge data with limited resources. Cloud also helps in resource sharing through some specific virtual machines provided by the cloud service provider. This paper gives an overview of the cloud organization and some of the basic security issues pertaining to the cloud.
User Inspired Management of Scientific Jobs in Grids and Clouds
ERIC Educational Resources Information Center
Withana, Eran Chinthaka
2011-01-01
From time-critical, real time computational experimentation to applications which process petabytes of data there is a continuing search for faster, more responsive computing platforms capable of supporting computational experimentation. Weather forecast models, for instance, process gigabytes of data to produce regional (mesoscale) predictions on…
New Information Dispersal Techniques for Trustworthy Computing
ERIC Educational Resources Information Center
Parakh, Abhishek
2011-01-01
Information dispersal algorithms (IDA) are used for distributed data storage because they simultaneously provide security, reliability and space efficiency, constituting a trustworthy computing framework for many critical applications, such as cloud computing, in the information society. In the most general sense, this is achieved by dividing data…
A Fast Infrared Radiative Transfer Model for Overlapping Clouds
NASA Technical Reports Server (NTRS)
Niu, Jianguo; Yang, Ping; Huang, Huang-Lung; Davies, James E.; Li, Jun; Baum, Bryan A.; Hu, Yong X.
2006-01-01
A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 - 1179.5/cm) and the short-to-medium wave (SMW) band (1180.1 - 2228.9/cm). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD(F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.
Phenomenology tools on cloud infrastructures using OpenStack
NASA Astrophysics Data System (ADS)
Campos, I.; Fernández-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.
2013-04-01
We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.
Exploiting NASA's Cumulus Earth Science Cloud Archive with Services and Computation
NASA Astrophysics Data System (ADS)
Pilone, D.; Quinn, P.; Jazayeri, A.; Schuler, I.; Plofchan, P.; Baynes, K.; Ramachandran, R.
2017-12-01
NASA's Earth Observing System Data and Information System (EOSDIS) houses nearly 30PBs of critical Earth Science data and with upcoming missions is expected to balloon to between 200PBs-300PBs over the next seven years. In addition to the massive increase in data collected, researchers and application developers want more and faster access - enabling complex visualizations, long time-series analysis, and cross dataset research without needing to copy and manage massive amounts of data locally. NASA has started prototyping with commercial cloud providers to make this data available in elastic cloud compute environments, allowing application developers direct access to the massive EOSDIS holdings. In this talk we'll explain the principles behind the archive architecture and share our experience of dealing with large amounts of data with serverless architectures including AWS Lambda, the Elastic Container Service (ECS) for long running jobs, and why we dropped thousands of lines of code for AWS Step Functions. We'll discuss best practices and patterns for accessing and using data available in a shared object store (S3) and leveraging events and message passing for sophisticated and highly scalable processing and analysis workflows. Finally we'll share capabilities NASA and cloud services are making available on the archives to enable massively scalable analysis and computation in a variety of formats and tools.
Future of Department of Defense Cloud Computing Amid Cultural Confusion
2013-03-01
enterprise cloud - computing environment and transition to a public cloud service provider. Services have started the development of individual cloud - computing environments...endorsing cloud computing . It addresses related issues in matters of service culture changes and how strategic leaders will dictate the future of cloud ...through data center consolidation and individual Service provided cloud computing .
NASA Astrophysics Data System (ADS)
Lin, Guofen; Hong, Hanshu; Xia, Yunhao; Sun, Zhixin
2017-10-01
Attribute-based encryption (ABE) is an interesting cryptographic technique for flexible cloud data sharing access control. However, some open challenges hinder its practical application. In previous schemes, all attributes are considered as in the same status while they are not in most of practical scenarios. Meanwhile, the size of access policy increases dramatically with the raise of its expressiveness complexity. In addition, current research hardly notices that mobile front-end devices, such as smartphones, are poor in computational performance while too much bilinear pairing computation is needed for ABE. In this paper, we propose a key-policy weighted attribute-based encryption without bilinear pairing computation (KP-WABE-WB) for secure cloud data sharing access control. A simple weighted mechanism is presented to describe different importance of each attribute. We introduce a novel construction of ABE without executing any bilinear pairing computation. Compared to previous schemes, our scheme has a better performance in expressiveness of access policy and computational efficiency.
Secure and Resilient Cloud Computing for the Department of Defense
2015-11-16
platform as a service (PaaS), and software as a service ( SaaS )—that target system administrators, developers, and end-users respectively (see Table 2...interfaces (API) and services Medium Amazon Elastic MapReduce, MathWorks Cloud, Red Hat OpenShift SaaS Full-fledged applications Low Google gMail
[Porting Radiotherapy Software of Varian to Cloud Platform].
Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin
2017-09-30
To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.
Privacy-preserving public auditing for data integrity in cloud
NASA Astrophysics Data System (ADS)
Shaik Saleem, M.; Murali, M.
2018-04-01
Cloud computing which has collected extent concentration from communities of research and with industry research development, a large pool of computing resources using virtualized sharing method like storage, processing power, applications and services. The users of cloud are vend with on demand resources as they want in the cloud computing. Outsourced file of the cloud user can easily tampered as it is stored at the third party service providers databases, so there is no integrity of cloud users data as it has no control on their data, therefore providing security assurance to the users data has become one of the primary concern for the cloud service providers. Cloud servers are not responsible for any data loss as it doesn’t provide the security assurance to the cloud user data. Remote data integrity checking (RDIC) licenses an information to data storage server, to determine that it is really storing an owners data truthfully. RDIC is composed of security model and ID-based RDIC where it is responsible for the security of every server and make sure the data privacy of cloud user against the third party verifier. Generally, by running a two-party Remote data integrity checking (RDIC) protocol the clients would themselves be able to check the information trustworthiness of their cloud. Within the two party scenario the verifying result is given either from the information holder or the cloud server may be considered as one-sided. Public verifiability feature of RDIC gives the privilege to all its users to verify whether the original data is modified or not. To ensure the transparency of the publicly verifiable RDIC protocols, Let’s figure out there exists a TPA who is having knowledge and efficiency to verify the work to provide the condition clearly by publicly verifiable RDIC protocols.
User friendly IT Services for Monitoring and Prevention during Pregnancy.
Crişan-Vida, Mihaela; Serban, Alexandru; Ghihor-Izdrăilă, Ioana; Mirea, Adrian; Stoicu-Tivadar, Lacramioara
2014-01-01
A healthy lifestyle for a mother and monitoring both mother and fetus activities are crucial factors for a normal pregnancy without hazardous conditions. This paper proposes a cloud computing solution and a mobile application which collect data from the sensors to be used in Obstetrics-Gynecology Department. This application monitors the dietary plan of the pregnant and gives her the possibility to socialize and share pregnancy experience with the rest of women from the social network from the hospital. The physicians can access the information's of the patient in real time and they can alert mothers in some situations. Using this cloud computing device, the health condition of the pregnant women may be improved.
AGM: A DSL for mobile cloud computing based on directed graph
NASA Astrophysics Data System (ADS)
Tanković, Nikola; Grbac, Tihana Galinac
2016-06-01
This paper summarizes a novel approach for consuming a domain specific language (DSL) by transforming it to a directed graph representation persisted by a graph database. Using such specialized database enables advanced navigation trough the stored model exposing only relevant subsets of meta-data to different involved services and components. We applied this approach in a mobile cloud computing system and used it to model several mobile applications in retail, supply chain management and merchandising domain. These application are distributed in a Software-as-a-Service (SaaS) fashion and used by thousands of customers in Croatia. We report on lessons learned and propose further research on this topic.
Autonomic Management of Application Workflows on Hybrid Computing Infrastructure
Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...
2011-01-01
In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less
Cloud-Based Applications for Organizing and Reviewing Plastic Surgery Content
Luan, Anna; Momeni, Arash; Lee, Gordon K.
2015-01-01
Cloud-based applications including Box, Dropbox, Google Drive, Evernote, Notability, and Zotero are available for smartphones, tablets, and laptops and have revolutionized the manner in which medical students and surgeons read and utilize plastic surgery literature. Here we provide an overview of the use of Cloud computing in practice and propose an algorithm for organizing the vast amount of plastic surgery literature. Given the incredible amount of data being produced in plastic surgery and other surgical subspecialties, it is prudent for plastic surgeons to lead the process of providing solutions for the efficient organization and effective integration of the ever-increasing data into clinical practice. PMID:26576208
Cloud Based Earth Observation Data Exploitation Platforms
NASA Astrophysics Data System (ADS)
Romeo, A.; Pinto, S.; Loekken, S.; Marin, A.
2017-12-01
In the last few years data produced daily by several private and public Earth Observation (EO) satellites reached the order of tens of Terabytes, representing for scientists and commercial application developers both a big opportunity for their exploitation and a challenge for their management. New IT technologies, such as Big Data and cloud computing, enable the creation of web-accessible data exploitation platforms, which offer to scientists and application developers the means to access and use EO data in a quick and cost effective way. RHEA Group is particularly active in this sector, supporting the European Space Agency (ESA) in the Exploitation Platforms (EP) initiative, developing technology to build multi cloud platforms for the processing and analysis of Earth Observation data, and collaborating with larger European initiatives such as the European Plate Observing System (EPOS) and the European Open Science Cloud (EOSC). An EP is a virtual workspace, providing a user community with access to (i) large volume of data, (ii) algorithm development and integration environment, (iii) processing software and services (e.g. toolboxes, visualization routines), (iv) computing resources, (v) collaboration tools (e.g. forums, wiki, etc.). When an EP is dedicated to a specific Theme, it becomes a Thematic Exploitation Platform (TEP). Currently, ESA has seven TEPs in a pre-operational phase dedicated to geo-hazards monitoring and prevention, costal zones, forestry areas, hydrology, polar regions, urban areas and food security. On the technology development side, solutions like the multi cloud EO data processing platform provides the technology to integrate ICT resources and EO data from different vendors in a single platform. In particular it offers (i) Multi-cloud data discovery, (ii) Multi-cloud data management and access and (iii) Multi-cloud application deployment. This platform has been demonstrated with the EGI Federated Cloud, Innovation Platform Testbed Poland and the Amazon Web Services cloud. This work will present an overview of the TEPs and the multi-cloud EO data processing platform, and discuss their main achievements and their impacts in the context of distributed Research Infrastructures such as EPOS and EOSC.
An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center
NASA Astrophysics Data System (ADS)
Gleason, J. L.; Little, M. M.
2013-12-01
NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.
Exploiting Parallel R in the Cloud with SPRINT
Piotrowski, M.; McGilvary, G.A.; Sloan, T. M.; Mewissen, M.; Lloyd, A.D.; Forster, T.; Mitchell, L.; Ghazal, P.; Hill, J.
2012-01-01
Background Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. Objectives Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon’s Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. Methods The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. Results It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of algorithm. Resource underutilization can further improve the time to result. End-user’s location impacts on costs due to factors such as local taxation. Conclusions: Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds. PMID:23223611
Exploiting parallel R in the cloud with SPRINT.
Piotrowski, M; McGilvary, G A; Sloan, T M; Mewissen, M; Lloyd, A D; Forster, T; Mitchell, L; Ghazal, P; Hill, J
2013-01-01
Advances in DNA Microarray devices and next-generation massively parallel DNA sequencing platforms have led to an exponential growth in data availability but the arising opportunities require adequate computing resources. High Performance Computing (HPC) in the Cloud offers an affordable way of meeting this need. Bioconductor, a popular tool for high-throughput genomic data analysis, is distributed as add-on modules for the R statistical programming language but R has no native capabilities for exploiting multi-processor architectures. SPRINT is an R package that enables easy access to HPC for genomics researchers. This paper investigates: setting up and running SPRINT-enabled genomic analyses on Amazon's Elastic Compute Cloud (EC2), the advantages of submitting applications to EC2 from different parts of the world and, if resource underutilization can improve application performance. The SPRINT parallel implementations of correlation, permutation testing, partitioning around medoids and the multi-purpose papply have been benchmarked on data sets of various size on Amazon EC2. Jobs have been submitted from both the UK and Thailand to investigate monetary differences. It is possible to obtain good, scalable performance but the level of improvement is dependent upon the nature of the algorithm. Resource underutilization can further improve the time to result. End-user's location impacts on costs due to factors such as local taxation. Although not designed to satisfy HPC requirements, Amazon EC2 and cloud computing in general provides an interesting alternative and provides new possibilities for smaller organisations with limited funds.
NASA Astrophysics Data System (ADS)
Kershaw, Philip; Lawrence, Bryan; Gomez-Dans, Jose; Holt, John
2015-04-01
We explore how the popular IPython Notebook computing system can be hosted on a cloud platform to provide a flexible virtual research hosting environment for Earth Observation data processing and analysis and how this approach can be expanded more broadly into a generic SaaS (Software as a Service) offering for the environmental sciences. OPTIRAD (OPTImisation environment for joint retrieval of multi-sensor RADiances) is a project funded by the European Space Agency to develop a collaborative research environment for Data Assimilation of Earth Observation products for land surface applications. Data Assimilation provides a powerful means to combine multiple sources of data and derive new products for this application domain. To be most effective, it requires close collaboration between specialists in this field, land surface modellers and end users of data generated. A goal of OPTIRAD then is to develop a collaborative research environment to engender shared working. Another significant challenge is that of data volume and complexity. Study of land surface requires high spatial and temporal resolutions, a relatively large number of variables and the application of algorithms which are computationally expensive. These problems can be addressed with the application of parallel processing techniques on specialist compute clusters. However, scientific users are often deterred by the time investment required to port their codes to these environments. Even when successfully achieved, it may be difficult to readily change or update. This runs counter to the scientific process of continuous experimentation, analysis and validation. The IPython Notebook provides users with a web-based interface to multiple interactive shells for the Python programming language. Code, documentation and graphical content can be saved and shared making it directly applicable to OPTIRAD's requirements for a shared working environment. Given the web interface it can be readily made into a hosted service with Wakari and Microsoft Azure being notable examples. Cloud-hosting of the Notebook allows the same familiar Python interface to be retained but backed by Cloud Computing attributes of scalability, elasticity and resource pooling. This combination makes it a powerful solution to address the needs of long-tail science users of Big Data: an intuitive interactive interface with which to access powerful compute resources. IPython Notebook can be hosted as a single user desktop environment but the recent development by the IPython community of JupyterHub enables it to be run as a multi-user hosting environment. In addition, IPython.parallel allows the exposition of parallel compute infrastructure through a Python interface. Applying these technologies in combination, a collaborative research environment has been developed for OPTIRAD on the UK JASMIN/CEMS facility's private cloud (http://jasmin.ac.uk). Based on this experience, a generic virtualised solution is under development suitable for use by the wider environmental science community - on both JASMIN and portable to third party cloud platforms.
An innovative privacy preserving technique for incremental datasets on cloud computing.
Aldeen, Yousra Abdul Alsahib S; Salleh, Mazleena; Aljeroudi, Yazan
2016-08-01
Cloud computing (CC) is a magnificent service-based delivery with gigantic computer processing power and data storage across connected communications channels. It imparted overwhelming technological impetus in the internet (web) mediated IT industry, where users can easily share private data for further analysis and mining. Furthermore, user affable CC services enable to deploy sundry applications economically. Meanwhile, simple data sharing impelled various phishing attacks and malware assisted security threats. Some privacy sensitive applications like health services on cloud that are built with several economic and operational benefits necessitate enhanced security. Thus, absolute cyberspace security and mitigation against phishing blitz became mandatory to protect overall data privacy. Typically, diverse applications datasets are anonymized with better privacy to owners without providing all secrecy requirements to the newly added records. Some proposed techniques emphasized this issue by re-anonymizing the datasets from the scratch. The utmost privacy protection over incremental datasets on CC is far from being achieved. Certainly, the distribution of huge datasets volume across multiple storage nodes limits the privacy preservation. In this view, we propose a new anonymization technique to attain better privacy protection with high data utility over distributed and incremental datasets on CC. The proficiency of data privacy preservation and improved confidentiality requirements is demonstrated through performance evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.
International Symposium on Grids and Clouds (ISGC) 2014
NASA Astrophysics Data System (ADS)
The International Symposium on Grids and Clouds (ISGC) 2014 will be held at Academia Sinica in Taipei, Taiwan from 23-28 March 2014, with co-located events and workshops. The conference is hosted by the Academia Sinica Grid Computing Centre (ASGC).“Bringing the data scientist to global e-Infrastructures” is the theme of ISGC 2014. The last decade has seen the phenomenal growth in the production of data in all forms by all research communities to produce a deluge of data from which information and knowledge need to be extracted. Key to this success will be the data scientist - educated to use advanced algorithms, applications and infrastructures - collaborating internationally to tackle society’s challenges. ISGC 2014 will bring together researchers working in all aspects of data science from different disciplines around the world to collaborate and educate themselves in the latest achievements and techniques being used to tackle the data deluge. In addition to the regular workshops, technical presentations and plenary keynotes, ISGC this year will focus on how to grow the data science community by considering the educational foundation needed for tomorrow’s data scientist. Topics of discussion include Physics (including HEP) and Engineering Applications, Biomedicine & Life Sciences Applications, Earth & Environmental Sciences & Biodiversity Applications, Humanities & Social Sciences Application, Virtual Research Environment (including Middleware, tools, services, workflow, ... etc.), Data Management, Big Data, Infrastructure & Operations Management, Infrastructure Clouds and Virtualisation, Interoperability, Business Models & Sustainability, Highly Distributed Computing Systems, and High Performance & Technical Computing (HPTC).
Scientific Data Storage for Cloud Computing
NASA Astrophysics Data System (ADS)
Readey, J.
2014-12-01
Traditionally data storage used for geophysical software systems has centered on file-based systems and libraries such as NetCDF and HDF5. In contrast cloud based infrastructure providers such as Amazon AWS, Microsoft Azure, and the Google Cloud Platform generally provide storage technologies based on an object based storage service (for large binary objects) complemented by a database service (for small objects that can be represented as key-value pairs). These systems have been shown to be highly scalable, reliable, and cost effective. We will discuss a proposed system that leverages these cloud-based storage technologies to provide an API-compatible library for traditional NetCDF and HDF5 applications. This system will enable cloud storage suitable for geophysical applications that can scale up to petabytes of data and thousands of users. We'll also cover other advantages of this system such as enhanced metadata search.
NASA Technical Reports Server (NTRS)
Molthan, A. L.; Haynes, J. A.; Case, J. L.; Jedlovec, G. L.; Lapenta, W. M.
2008-01-01
As computational power increases, operational forecast models are performing simulations with higher spatial resolution allowing for the transition from sub-grid scale cloud parameterizations to an explicit forecast of cloud characteristics and precipitation through the use of single- or multi-moment bulk water microphysics schemes. investments in space-borne and terrestrial remote sensing have developed the NASA CloudSat Cloud Profiling Radar and the NOAA National Weather Service NEXRAD system, each providing observations related to the bulk properties of clouds and precipitation through measurements of reflectivity. CloudSat and NEXRAD system radars observed light to moderate snowfall in association with a cold-season, midlatitude cyclone traversing the Central United States in February 2007. These systems are responsible for widespread cloud cover and various types of precipitation, are of economic consequence, and pose a challenge to operational forecasters. This event is simulated with the Weather Research and Forecast (WRF) Model, utilizing the NASA Goddard Cumulus Ensemble microphysics scheme. Comparisons are made between WRF-simulated and observed reflectivity available from the CloudSat and NEXRAD systems. The application of CloudSat reflectivity is made possible through the QuickBeam radiative transfer model, with cautious application applied in light of single scattering characteristics and spherical target assumptions. Significant differences are noted within modeled and observed cloud profiles, based upon simulated reflectivity, and modifications to the single-moment scheme are tested through a supplemental WRF forecast that incorporates a temperature dependent snow crystal size distribution.
Analysis of the new health management based on health internet of things and cloud computing
NASA Astrophysics Data System (ADS)
Liu, Shaogang
2018-05-01
With the development and application of Internet of things and cloud technology in the medical field, it provides a higher level of exploration space for human health management. By analyzing the Internet of things technology and cloud technology, this paper studies a new form of health management system which conforms to the current social and technical level, and explores its system architecture, system characteristics and application. The new health management platform for networking and cloud can achieve the real-time monitoring and prediction of human health through a variety of sensors and wireless networks based on information and can be transmitted to the monitoring system, and then through the software analysis model, and gives the targeted prevention and treatment measures, to achieve real-time, intelligent health management.
NASA Technical Reports Server (NTRS)
Albrizzio, C.; Andressen, A.
1974-01-01
A simple method to determine the approximate altitude of clouds is described, with the objective of refining their classification using only marginal data from the photographs. Results of the application of this method on photographs of the Goajira Peninsula, Paraguana Peninsula and the Central Coast of Venezuela are presented. Here, the altitudes computed are used to classify clouds and to identify the genus of others without typical form. Instability of air masses through clouds vertical development, and wind direction as well as other local climatic characteristics such as moisture content, loci of condensation, area, etc. are determined using repetitive coverage for the time interval of the photography. Applications for the regional and urban planning (including airport location and flights schedule) and natural resources evaluation are suggested.
GATE Monte Carlo simulation of dose distribution using MapReduce in a cloud computing environment.
Liu, Yangchuan; Tang, Yuguo; Gao, Xin
2017-12-01
The GATE Monte Carlo simulation platform has good application prospects of treatment planning and quality assurance. However, accurate dose calculation using GATE is time consuming. The purpose of this study is to implement a novel cloud computing method for accurate GATE Monte Carlo simulation of dose distribution using MapReduce. An Amazon Machine Image installed with Hadoop and GATE is created to set up Hadoop clusters on Amazon Elastic Compute Cloud (EC2). Macros, the input files for GATE, are split into a number of self-contained sub-macros. Through Hadoop Streaming, the sub-macros are executed by GATE in Map tasks and the sub-results are aggregated into final outputs in Reduce tasks. As an evaluation, GATE simulations were performed in a cubical water phantom for X-ray photons of 6 and 18 MeV. The parallel simulation on the cloud computing platform is as accurate as the single-threaded simulation on a local server and the simulation correctness is not affected by the failure of some worker nodes. The cloud-based simulation time is approximately inversely proportional to the number of worker nodes. For the simulation of 10 million photons on a cluster with 64 worker nodes, time decreases of 41× and 32× were achieved compared to the single worker node case and the single-threaded case, respectively. The test of Hadoop's fault tolerance showed that the simulation correctness was not affected by the failure of some worker nodes. The results verify that the proposed method provides a feasible cloud computing solution for GATE.
Integrating Learning Services in the Cloud: An Approach That Benefits Both Systems and Learning
ERIC Educational Resources Information Center
Gutiérrez-Carreón, Gustavo; Daradoumis, Thanasis; Jorba, Josep
2015-01-01
Currently there is an increasing trend to implement functionalities that allow for the development of applications based on Cloud computing. In education there are high expectations for Learning Management Systems since they can be powerful tools to foster more effective collaboration within a virtual classroom. Tools can also be integrated with…
NASA Astrophysics Data System (ADS)
Chidburee, P.; Mills, J. P.; Miller, P. E.; Fieber, K. D.
2016-06-01
Close-range photogrammetric techniques offer a potentially low-cost approach in terms of implementation and operation for initial assessment and monitoring of landslide processes over small areas. In particular, the Structure-from-Motion (SfM) pipeline is now extensively used to help overcome many constraints of traditional digital photogrammetry, offering increased user-friendliness to nonexperts, as well as lower costs. However, a landslide monitoring approach based on the SfM technique also presents some potential drawbacks due to the difficulty in managing and processing a large volume of data in real-time. This research addresses the aforementioned issues by attempting to combine a mobile device with cloud computing technology to develop a photogrammetric measurement solution as part of a monitoring system for landslide hazard analysis. The research presented here focusses on (i) the development of an Android mobile application; (ii) the implementation of SfM-based open-source software in the Amazon cloud computing web service, and (iii) performance assessment through a simulated environment using data collected at a recognized landslide test site in North Yorkshire, UK. Whilst the landslide monitoring mobile application is under development, this paper describes experiments carried out to ensure effective performance of the system in the future. Investigations presented here describe the initial assessment of a cloud-implemented approach, which is developed around the well-known VisualSFM algorithm. Results are compared to point clouds obtained from alternative SfM 3D reconstruction approaches considering a commercial software solution (Agisoft PhotoScan) and a web-based system (Autodesk 123D Catch). Investigations demonstrate that the cloud-based photogrammetric measurement system is capable of providing results of centimeter-level accuracy, evidencing its potential to provide an effective approach for quantifying and analyzing landslide hazard at a local-scale.
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Murphy, K. J.; Baynes, K.; Lynnes, C.
2016-12-01
With the volume of Earth observation data expanding rapidly, cloud computing is quickly changing the way Earth observation data is processed, analyzed, and visualized. The cloud infrastructure provides the flexibility to scale up to large volumes of data and handle high velocity data streams efficiently. Having freely available Earth observation data collocated on a cloud infrastructure creates opportunities for innovation and value-added data re-use in ways unforeseen by the original data provider. These innovations spur new industries and applications and spawn new scientific pathways that were previously limited due to data volume and computational infrastructure issues. NASA, in collaboration with Amazon, Google, and Microsoft, have jointly developed a set of recommendations to enable efficient transfer of Earth observation data from existing data systems to a cloud computing infrastructure. The purpose of these recommendations is to provide guidelines against which all data providers can evaluate existing data systems and be used to improve any issues uncovered to enable efficient search, access, and use of large volumes of data. Additionally, these guidelines ensure that all cloud providers utilize a common methodology for bulk-downloading data from data providers thus preventing the data providers from building custom capabilities to meet the needs of individual cloud providers. The intent is to share these recommendations with other Federal agencies and organizations that serve Earth observation to enable efficient search, access, and use of large volumes of data. Additionally, the adoption of these recommendations will benefit data users interested in moving large volumes of data from data systems to any other location. These data users include the cloud providers, cloud users such as scientists, and other users working in a high performance computing environment who need to move large volumes of data.
Templet Web: the use of volunteer computing approach in PaaS-style cloud
NASA Astrophysics Data System (ADS)
Vostokin, Sergei; Artamonov, Yuriy; Tsarev, Daniil
2018-03-01
This article presents the Templet Web cloud service. The service is designed for high-performance scientific computing automation. The use of high-performance technology is specifically required by new fields of computational science such as data mining, artificial intelligence, machine learning, and others. Cloud technologies provide a significant cost reduction for high-performance scientific applications. The main objectives to achieve this cost reduction in the Templet Web service design are: (a) the implementation of "on-demand" access; (b) source code deployment management; (c) high-performance computing programs development automation. The distinctive feature of the service is the approach mainly used in the field of volunteer computing, when a person who has access to a computer system delegates his access rights to the requesting user. We developed an access procedure, algorithms, and software for utilization of free computational resources of the academic cluster system in line with the methods of volunteer computing. The Templet Web service has been in operation for five years. It has been successfully used for conducting laboratory workshops and solving research problems, some of which are considered in this article. The article also provides an overview of research directions related to service development.
Private and Efficient Query Processing on Outsourced Genomic Databases.
Ghasemi, Reza; Al Aziz, Md Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian
2017-09-01
Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time consuming and expensive process. Second, it requires large-scale computation and storage systems to process genomic sequences. Third, genomic databases are often owned by different organizations, and thus, not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 Single Nucleotide Polymorphisms (SNPs) in a database of 20 000 records takes around 100 and 150 s, respectively.
Private and Efficient Query Processing on Outsourced Genomic Databases
Ghasemi, Reza; Al Aziz, Momin; Mohammed, Noman; Dehkordi, Massoud Hadian; Jiang, Xiaoqian
2017-01-01
Applications of genomic studies are spreading rapidly in many domains of science and technology such as healthcare, biomedical research, direct-to-consumer services, and legal and forensic. However, there are a number of obstacles that make it hard to access and process a big genomic database for these applications. First, sequencing genomic sequence is a time-consuming and expensive process. Second, it requires large-scale computation and storage systems to processes genomic sequences. Third, genomic databases are often owned by different organizations and thus not available for public usage. Cloud computing paradigm can be leveraged to facilitate the creation and sharing of big genomic databases for these applications. Genomic data owners can outsource their databases in a centralized cloud server to ease the access of their databases. However, data owners are reluctant to adopt this model, as it requires outsourcing the data to an untrusted cloud service provider that may cause data breaches. In this paper, we propose a privacy-preserving model for outsourcing genomic data to a cloud. The proposed model enables query processing while providing privacy protection of genomic databases. Privacy of the individuals is guaranteed by permuting and adding fake genomic records in the database. These techniques allow cloud to evaluate count and top-k queries securely and efficiently. Experimental results demonstrate that a count and a top-k query over 40 SNPs in a database of 20,000 records takes around 100 and 150 seconds, respectively. PMID:27834660
The design of an m-Health monitoring system based on a cloud computing platform
NASA Astrophysics Data System (ADS)
Xu, Boyi; Xu, Lida; Cai, Hongming; Jiang, Lihong; Luo, Yang; Gu, Yizhi
2017-01-01
Compared to traditional medical services provided within hospitals, m-Health monitoring systems (MHMSs) face more challenges in personalised health data processing. To achieve personalised and high-quality health monitoring by means of new technologies, such as mobile network and cloud computing, in this paper, a framework of an m-Health monitoring system based on a cloud computing platform (Cloud-MHMS) is designed to implement pervasive health monitoring. Furthermore, the modules of the framework, which are Cloud Storage and Multiple Tenants Access Control Layer, Healthcare Data Annotation Layer, and Healthcare Data Analysis Layer, are discussed. In the data storage layer, a multiple tenant access method is designed to protect patient privacy. In the data annotation layer, linked open data are adopted to augment health data interoperability semantically. In the data analysis layer, the process mining algorithm and similarity calculating method are implemented to support personalised treatment plan selection. These three modules cooperate to implement the core functions in the process of health monitoring, which are data storage, data processing, and data analysis. Finally, we study the application of our architecture in the monitoring of antimicrobial drug usage to demonstrate the usability of our method in personal healthcare analysis.
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, M. K.; Fisher, W.; Yoksas, T.
2014-12-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high student expectations. These changes are upending traditional approaches to accessing and using data and software. It is clear that Unidata's products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our initial efforts to deploy a subset of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
Toward a Fault Tolerant Architecture for Vital Medical-Based Wearable Computing.
Abdali-Mohammadi, Fardin; Bajalan, Vahid; Fathi, Abdolhossein
2015-12-01
Advancements in computers and electronic technologies have led to the emergence of a new generation of efficient small intelligent systems. The products of such technologies might include Smartphones and wearable devices, which have attracted the attention of medical applications. These products are used less in critical medical applications because of their resource constraint and failure sensitivity. This is due to the fact that without safety considerations, small-integrated hardware will endanger patients' lives. Therefore, proposing some principals is required to construct wearable systems in healthcare so that the existing concerns are dealt with. Accordingly, this paper proposes an architecture for constructing wearable systems in critical medical applications. The proposed architecture is a three-tier one, supporting data flow from body sensors to cloud. The tiers of this architecture include wearable computers, mobile computing, and mobile cloud computing. One of the features of this architecture is its high possible fault tolerance due to the nature of its components. Moreover, the required protocols are presented to coordinate the components of this architecture. Finally, the reliability of this architecture is assessed by simulating the architecture and its components, and other aspects of the proposed architecture are discussed.
An Interface for Biomedical Big Data Processing on the Tianhe-2 Supercomputer.
Yang, Xi; Wu, Chengkun; Lu, Kai; Fang, Lin; Zhang, Yong; Li, Shengkang; Guo, Guixin; Du, YunFei
2017-12-01
Big data, cloud computing, and high-performance computing (HPC) are at the verge of convergence. Cloud computing is already playing an active part in big data processing with the help of big data frameworks like Hadoop and Spark. The recent upsurge of high-performance computing in China provides extra possibilities and capacity to address the challenges associated with big data. In this paper, we propose Orion-a big data interface on the Tianhe-2 supercomputer-to enable big data applications to run on Tianhe-2 via a single command or a shell script. Orion supports multiple users, and each user can launch multiple tasks. It minimizes the effort needed to initiate big data applications on the Tianhe-2 supercomputer via automated configuration. Orion follows the "allocate-when-needed" paradigm, and it avoids the idle occupation of computational resources. We tested the utility and performance of Orion using a big genomic dataset and achieved a satisfactory performance on Tianhe-2 with very few modifications to existing applications that were implemented in Hadoop/Spark. In summary, Orion provides a practical and economical interface for big data processing on Tianhe-2.
Wang, Likun; Yang, Luhe; Peng, Zuohan; Lu, Dan; Jin, Yan; McNutt, Michael; Yin, Yuxin
2015-01-01
With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services.
2015-01-01
Background With the burgeoning development of cloud technology and services, there are an increasing number of users who prefer cloud to run their applications. All software and associated data are hosted on the cloud, allowing users to access them via a web browser from any computer, anywhere. This paper presents cisPath, an R/Bioconductor package deployed on cloud servers for client users to visualize, manage, and share functional protein interaction networks. Results With this R package, users can easily integrate downloaded protein-protein interaction information from different online databases with private data to construct new and personalized interaction networks. Additional functions allow users to generate specific networks based on private databases. Since the results produced with the use of this package are in the form of web pages, cloud users can easily view and edit the network graphs via the browser, using a mouse or touch screen, without the need to download them to a local computer. This package can also be installed and run on a local desktop computer. Depending on user preference, results can be publicized or shared by uploading to a web server or cloud driver, allowing other users to directly access results via a web browser. Conclusions This package can be installed and run on a variety of platforms. Since all network views are shown in web pages, such package is particularly useful for cloud users. The easy installation and operation is an attractive quality for R beginners and users with no previous experience with cloud services. PMID:25708840
Maratt, Joseph D; Srinivasan, Ramesh C; Dahl, William J; Schilling, Peter L; Urquhart, Andrew G
2012-08-01
As digital radiography becomes more prevalent, several systems for digital preoperative planning have become available. The purpose of this study was to evaluate the accuracy and efficiency of an inexpensive, cloud-based digital templating system, which is comparable with acetate templating. However, cloud-based templating is substantially faster and more convenient than acetate templating or locally installed software. Although this is a practical solution for this particular medical application, regulatory changes are necessary before the tremendous advantages of cloud-based storage and computing can be realized in medical research and clinical practice. Copyright 2012, SLACK Incorporated.
Techniques and resources for storm-scale numerical weather prediction
NASA Technical Reports Server (NTRS)
Droegemeier, Kelvin; Grell, Georg; Doyle, James; Soong, Su-Tzai; Skamarock, William; Bacon, David; Staniforth, Andrew; Crook, Andrew; Wilhelmson, Robert
1993-01-01
The topics discussed include the following: multiscale application of the 5th-generation PSU/NCAR mesoscale model, the coupling of nonhydrostatic atmospheric and hydrostatic ocean models for air-sea interaction studies; a numerical simulation of cloud formation over complex topography; adaptive grid simulations of convection; an unstructured grid, nonhydrostatic meso/cloud scale model; efficient mesoscale modeling for multiple scales using variable resolution; initialization of cloud-scale models with Doppler radar data; and making effective use of future computing architectures, networks, and visualization software.
Cloud-Based Numerical Weather Prediction for Near Real-Time Forecasting and Disaster Response
NASA Technical Reports Server (NTRS)
Molthan, Andrew; Case, Jonathan; Venners, Jason; Schroeder, Richard; Checchi, Milton; Zavodsky, Bradley; Limaye, Ashutosh; O'Brien, Raymond
2015-01-01
The use of cloud computing resources continues to grow within the public and private sector components of the weather enterprise as users become more familiar with cloud-computing concepts, and competition among service providers continues to reduce costs and other barriers to entry. Cloud resources can also provide capabilities similar to high-performance computing environments, supporting multi-node systems required for near real-time, regional weather predictions. Referred to as "Infrastructure as a Service", or IaaS, the use of cloud-based computing hardware in an on-demand payment system allows for rapid deployment of a modeling system in environments lacking access to a large, supercomputing infrastructure. Use of IaaS capabilities to support regional weather prediction may be of particular interest to developing countries that have not yet established large supercomputing resources, but would otherwise benefit from a regional weather forecasting capability. Recently, collaborators from NASA Marshall Space Flight Center and Ames Research Center have developed a scripted, on-demand capability for launching the NOAA/NWS Science and Training Resource Center (STRC) Environmental Modeling System (EMS), which includes pre-compiled binaries of the latest version of the Weather Research and Forecasting (WRF) model. The WRF-EMS provides scripting for downloading appropriate initial and boundary conditions from global models, along with higher-resolution vegetation, land surface, and sea surface temperature data sets provided by the NASA Short-term Prediction Research and Transition (SPoRT) Center. This presentation will provide an overview of the modeling system capabilities and benchmarks performed on the Amazon Elastic Compute Cloud (EC2) environment. In addition, the presentation will discuss future opportunities to deploy the system in support of weather prediction in developing countries supported by NASA's SERVIR Project, which provides capacity building activities in environmental monitoring and prediction across a growing number of regional hubs throughout the world. Capacity-building applications that extend numerical weather prediction to developing countries are intended to provide near real-time applications to benefit public health, safety, and economic interests, but may have a greater impact during disaster events by providing a source for local predictions of weather-related hazards, or impacts that local weather events may have during the recovery phase.
2012-05-01
cloud computing 17 NASA Nebula Platform • Cloud computing pilot program at NASA Ames • Integrates open-source components into seamless, self...Mission support • Education and public outreach (NASA Nebula , 2010) 18 NSF Supported Cloud Research • Support for Cloud Computing in...Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing. NIST Special Publication 800-145 • NASA Nebula (2010). Retrieved from
A Hybrid Cloud Computing Service for Earth Sciences
NASA Astrophysics Data System (ADS)
Yang, C. P.
2016-12-01
Cloud Computing is becoming a norm for providing computing capabilities for advancing Earth sciences including big Earth data management, processing, analytics, model simulations, and many other aspects. A hybrid spatiotemporal cloud computing service is bulit at George Mason NSF spatiotemporal innovation center to meet this demands. This paper will report the service including several aspects: 1) the hardware includes 500 computing services and close to 2PB storage as well as connection to XSEDE Jetstream and Caltech experimental cloud computing environment for sharing the resource; 2) the cloud service is geographically distributed at east coast, west coast, and central region; 3) the cloud includes private clouds managed using open stack and eucalyptus, DC2 is used to bridge these and the public AWS cloud for interoperability and sharing computing resources when high demands surfing; 4) the cloud service is used to support NSF EarthCube program through the ECITE project, ESIP through the ESIP cloud computing cluster, semantics testbed cluster, and other clusters; 5) the cloud service is also available for the earth science communities to conduct geoscience. A brief introduction about how to use the cloud service will be included.
Reflection of solar radiation by a cylindrical cloud
NASA Technical Reports Server (NTRS)
Smith, G. L.
1989-01-01
Potential applications of an analytic method for computing the solar radiation reflected by a cylindrical cloud are discussed, including studies of radiative transfer within finite clouds and evaluations of these effects on other clouds and on remote sensing problems involving finite clouds. The pattern of reflected sunlight from a cylindrical cloud as seen at a large distance has been considered and described by the bidirectional function method for finite cloud analysis, as previously studied theoretically for plane-parallel atmospheres by McKee and Cox (1974); Schmetz and Raschke (1981); and Stuhlmann et al. (1985). However, the lack of three-dimensional radiative transfer solutions for anisotropic scattering media have hampered theoretical investigations of bidirectional functions for finite clouds. The present approach permits expression of the directional variation of the radiation field as a spherical harmonic series to any desired degree and order.
Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.
Baroukh, Caroline; Jenkins, Sherry L; Dannenfelser, Ruth; Ma'ayan, Avi
2011-10-13
Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.
Genes2WordCloud: a quick way to identify biological themes from gene lists and free text
2011-01-01
Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications. PMID:21995939
Making Spatial Statistics Service Accessible On Cloud Platform
NASA Astrophysics Data System (ADS)
Mu, X.; Wu, J.; Li, T.; Zhong, Y.; Gao, X.
2014-04-01
Web service can bring together applications running on diverse platforms, users can access and share various data, information and models more effectively and conveniently from certain web service platform. Cloud computing emerges as a paradigm of Internet computing in which dynamical, scalable and often virtualized resources are provided as services. With the rampant growth of massive data and restriction of net, traditional web services platforms have some prominent problems existing in development such as calculation efficiency, maintenance cost and data security. In this paper, we offer a spatial statistics service based on Microsoft cloud. An experiment was carried out to evaluate the availability and efficiency of this service. The results show that this spatial statistics service is accessible for the public conveniently with high processing efficiency.
On Study of Application of Big Data and Cloud Computing Technology in Smart Campus
NASA Astrophysics Data System (ADS)
Tang, Zijiao
2017-12-01
We live in an era of network and information, which means we produce and face a lot of data every day, however it is not easy for database in the traditional meaning to better store, process and analyze the mass data, therefore the big data was born at the right moment. Meanwhile, the development and operation of big data rest with cloud computing which provides sufficient space and resources available to process and analyze data of big data technology. Nowadays, the proposal of smart campus construction aims at improving the process of building information in colleges and universities, therefore it is necessary to consider combining big data technology and cloud computing technology into construction of smart campus to make campus database system and campus management system mutually combined rather than isolated, and to serve smart campus construction through integrating, storing, processing and analyzing mass data.
Arnold, Robert W; Jacob, Jack; Matrix, Zinnia
2012-01-01
Screening by neonatologists and staging by ophthalmologists is a cost-effective intervention, but inadvertent missed examinations create a high liability. Paper tracking, bedside schedule reminders, and a computer scheduling and reminder program were compared for speed of input and retrospective missed examination rate. A neonatal intensive care unit (NICU) process was then programmed for cloud-based distribution for inpatient and outpatient retinopathy of prematurity monitoring. Over 11 years, 367 premature infants in one NICU were prospectively monitored. The initial paper system missed 11% of potential examinations, the Windows server-based system missed 2%, and the current cloud-based system missed 0% of potential inpatient and outpatient examinations. Computer input of examinations took the same or less time than paper recording. A computer application with a deliberate NICU process improved the proportion of eligible neonates getting their scheduled eye examinations in a timely manner. Copyright 2012, SLACK Incorporated.
Reid, Jeffrey G; Carroll, Andrew; Veeraraghavan, Narayanan; Dahdouli, Mahmoud; Sundquist, Andreas; English, Adam; Bainbridge, Matthew; White, Simon; Salerno, William; Buhay, Christian; Yu, Fuli; Muzny, Donna; Daly, Richard; Duyk, Geoff; Gibbs, Richard A; Boerwinkle, Eric
2014-01-29
Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples.
Federated and Cloud Enabled Resources for Data Management and Utilization
NASA Astrophysics Data System (ADS)
Rankin, R.; Gordon, M.; Potter, R. G.; Satchwill, B.
2011-12-01
The emergence of cloud computing over the past three years has led to a paradigm shift in how data can be managed, processed and made accessible. Building on the federated data management system offered through the Canadian Space Science Data Portal (www.cssdp.ca), we demonstrate how heterogeneous and geographically distributed data sets and modeling tools have been integrated to form a virtual data center and computational modeling platform that has services for data processing and visualization embedded within it. We also discuss positive and negative experiences in utilizing Eucalyptus and OpenStack cloud applications, and job scheduling facilitated by Condor and Star Cluster. We summarize our findings by demonstrating use of these technologies in the Cloud Enabled Space Weather Data Assimilation and Modeling Platform CESWP (www.ceswp.ca), which is funded through Canarie's (canarie.ca) Network Enabled Platforms program in Canada.
A Platform for Scalable Satellite and Geospatial Data Analysis
NASA Astrophysics Data System (ADS)
Beneke, C. M.; Skillman, S.; Warren, M. S.; Kelton, T.; Brumby, S. P.; Chartrand, R.; Mathis, M.
2017-12-01
At Descartes Labs, we use the commercial cloud to run global-scale machine learning applications over satellite imagery. We have processed over 5 Petabytes of public and commercial satellite imagery, including the full Landsat and Sentinel archives. By combining open-source tools with a FUSE-based filesystem for cloud storage, we have enabled a scalable compute platform that has demonstrated reading over 200 GB/s of satellite imagery into cloud compute nodes. In one application, we generated global 15m Landsat-8, 20m Sentinel-1, and 10m Sentinel-2 composites from 15 trillion pixels, using over 10,000 CPUs. We recently created a public open-source Python client library that can be used to query and access preprocessed public satellite imagery from within our platform, and made this platform available to researchers for non-commercial projects. In this session, we will describe how you can use the Descartes Labs Platform for rapid prototyping and scaling of geospatial analyses and demonstrate examples in land cover classification.
IBM Cloud Computing Powering a Smarter Planet
NASA Astrophysics Data System (ADS)
Zhu, Jinzy; Fang, Xing; Guo, Zhe; Niu, Meng Hua; Cao, Fan; Yue, Shuang; Liu, Qin Yu
With increasing need for intelligent systems supporting the world's businesses, Cloud Computing has emerged as a dominant trend to provide a dynamic infrastructure to make such intelligence possible. The article introduced how to build a smarter planet with cloud computing technology. First, it introduced why we need cloud, and the evolution of cloud technology. Secondly, it analyzed the value of cloud computing and how to apply cloud technology. Finally, it predicted the future of cloud in the smarter planet.
T-Check in System-of-Systems Technologies: Cloud Computing
2010-09-01
T-Check in System-of-Systems Technologies: Cloud Computing Harrison D. Strowd Grace A. Lewis September 2010 TECHNICAL NOTE CMU/SEI-2010... Cloud Computing 1 1.2 Types of Cloud Computing 2 1.3 Drivers and Barriers to Cloud Computing Adoption 5 2 Using the T-Check Method 7 2.1 T-Check...Hypothesis 3 25 3.4.2 Deployment View of the Solution for Testing Hypothesis 3 27 3.5 Selecting Cloud Computing Providers 30 3.6 Implementing the T-Check
2010-07-01
Cloud computing , an emerging form of computing in which users have access to scalable, on-demand capabilities that are provided through Internet... cloud computing , (2) the information security implications of using cloud computing services in the Federal Government, and (3) federal guidance and...efforts to address information security when using cloud computing . The complete report is titled Information Security: Federal Guidance Needed to
ERIC Educational Resources Information Center
Abrams, Neal M.
2012-01-01
A cloud network system is combined with standard computing applications and a course management system to provide a robust method for sharing data among students. This system provides a unique method to improve data analysis by easily increasing the amount of sampled data available for analysis. The data can be shared within one course as well as…
A Cloud-Computing Service for Environmental Geophysics and Seismic Data Processing
NASA Astrophysics Data System (ADS)
Heilmann, B. Z.; Maggi, P.; Piras, A.; Satta, G.; Deidda, G. P.; Bonomi, E.
2012-04-01
Cloud computing is establishing worldwide as a new high performance computing paradigm that offers formidable possibilities to industry and science. The presented cloud-computing portal, part of the Grida3 project, provides an innovative approach to seismic data processing by combining open-source state-of-the-art processing software and cloud-computing technology, making possible the effective use of distributed computation and data management with administratively distant resources. We substituted the user-side demanding hardware and software requirements by remote access to high-performance grid-computing facilities. As a result, data processing can be done quasi in real-time being ubiquitously controlled via Internet by a user-friendly web-browser interface. Besides the obvious advantages over locally installed seismic-processing packages, the presented cloud-computing solution creates completely new possibilities for scientific education, collaboration, and presentation of reproducible results. The web-browser interface of our portal is based on the commercially supported grid portal EnginFrame, an open framework based on Java, XML, and Web Services. We selected the hosted applications with the objective to allow the construction of typical 2D time-domain seismic-imaging workflows as used for environmental studies and, originally, for hydrocarbon exploration. For data visualization and pre-processing, we chose the free software package Seismic Un*x. We ported tools for trace balancing, amplitude gaining, muting, frequency filtering, dip filtering, deconvolution and rendering, with a customized choice of options as services onto the cloud-computing portal. For structural imaging and velocity-model building, we developed a grid version of the Common-Reflection-Surface stack, a data-driven imaging method that requires no user interaction at run time such as manual picking in prestack volumes or velocity spectra. Due to its high level of automation, CRS stacking can benefit largely from the hardware parallelism provided by the cloud deployment. The resulting output, post-stack section, coherence, and NMO-velocity panels are used to generate a smooth migration-velocity model. Residual static corrections are calculated as a by-product of the stack and can be applied iteratively. As a final step, a time migrated subsurface image is obtained by a parallelized Kirchhoff time migration scheme. Processing can be done step-by-step or using a graphical workflow editor that can launch a series of pipelined tasks. The status of the submitted jobs is monitored by a dedicated service. All results are stored in project directories, where they can be downloaded of viewed directly in the browser. Currently, the portal has access to three research clusters having a total number of 70 nodes with 4 cores each. They are shared with four other cloud-computing applications bundled within the GRIDA3 project. To demonstrate the functionality of our "seismic cloud lab", we will present results obtained for three different types of data, all taken from hydrogeophysical studies: (1) a seismic reflection data set, made of compressional waves from explosive sources, recorded in Muravera, Sardinia; (2) a shear-wave data set from, Sardinia; (3) a multi-offset Ground-Penetrating-Radar data set from Larreule, France. The presented work was funded by the government of the Autonomous Region of Sardinia and by the Italian Ministry of Research and Education.
Efficient operating system level virtualization techniques for cloud resources
NASA Astrophysics Data System (ADS)
Ansu, R.; Samiksha; Anju, S.; Singh, K. John
2017-11-01
Cloud computing is an advancing technology which provides the servcies of Infrastructure, Platform and Software. Virtualization and Computer utility are the keys of Cloud computing. The numbers of cloud users are increasing day by day. So it is the need of the hour to make resources available on demand to satisfy user requirements. The technique in which resources namely storage, processing power, memory and network or I/O are abstracted is known as Virtualization. For executing the operating systems various virtualization techniques are available. They are: Full System Virtualization and Para Virtualization. In Full Virtualization, the whole architecture of hardware is duplicated virtually. No modifications are required in Guest OS as the OS deals with the VM hypervisor directly. In Para Virtualization, modifications of OS is required to run in parallel with other OS. For the Guest OS to access the hardware, the host OS must provide a Virtual Machine Interface. OS virtualization has many advantages such as migrating applications transparently, consolidation of server, online maintenance of OS and providing security. This paper briefs both the virtualization techniques and discusses the issues in OS level virtualization.
Development of a Secure Mobile GPS Tracking and Management System
ERIC Educational Resources Information Center
Liu, Anyi
2012-01-01
With increasing demand of mobile devices and cloud computing, it becomes increasingly important to develop efficient mobile application and its secured backend, such as web applications and virtualization environment. This dissertation reports a systematic study of mobile application development and the security issues of its related backend. …
Economic Perspective on Cloud Computing: Three Essays
ERIC Educational Resources Information Center
Dutt, Abhijit
2013-01-01
Improvements in Information Technology (IT) infrastructure and standardization of interoperability standards among heterogeneous Information System (IS) applications have brought a paradigm shift in the way an IS application could be used and delivered. Not only an IS application can be built using standardized component but also parts of it can…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
...--Intersection of Cloud Computing and Mobility Forum and Workshop AGENCY: National Institute of Standards and.../intersection-of-cloud-and-mobility.cfm . SUPPLEMENTARY INFORMATION: NIST hosted six prior Cloud Computing Forum... interoperability, portability, and security, discuss the Federal Government's experience with cloud computing...
Embracing the Cloud: Six Ways to Look at the Shift to Cloud Computing
ERIC Educational Resources Information Center
Ullman, David F.; Haggerty, Blake
2010-01-01
Cloud computing is the latest paradigm shift for the delivery of IT services. Where previous paradigms (centralized, decentralized, distributed) were based on fairly straightforward approaches to technology and its management, cloud computing is radical in comparison. The literature on cloud computing, however, suffers from many divergent…
The Research of the Parallel Computing Development from the Angle of Cloud Computing
NASA Astrophysics Data System (ADS)
Peng, Zhensheng; Gong, Qingge; Duan, Yanyu; Wang, Yun
2017-10-01
Cloud computing is the development of parallel computing, distributed computing and grid computing. The development of cloud computing makes parallel computing come into people’s lives. Firstly, this paper expounds the concept of cloud computing and introduces two several traditional parallel programming model. Secondly, it analyzes and studies the principles, advantages and disadvantages of OpenMP, MPI and Map Reduce respectively. Finally, it takes MPI, OpenMP models compared to Map Reduce from the angle of cloud computing. The results of this paper are intended to provide a reference for the development of parallel computing.
An efficient framework for modeling clouds from Landsat8 images
NASA Astrophysics Data System (ADS)
Yuan, Chunqiang; Guo, Jing
2015-03-01
Cloud plays an important role in creating realistic outdoor scenes for video game and flight simulation applications. Classic methods have been proposed for cumulus cloud modeling. However, these methods are not flexible for modeling large cloud scenes with hundreds of clouds in that the user must repeatedly model each cloud and adjust its various properties. This paper presents a meteorologically based method to reconstruct cumulus clouds from high resolution Landsat8 satellite images. From these input satellite images, the clouds are first segmented from the background. Then, the cloud top surface is estimated from the temperature of the infrared image. After that, under a mild assumption of flat base for cumulus cloud, the base height of each cloud is computed by averaging the top height for pixels on the cloud edge. Then, the extinction is generated from the visible image. Finally, we enrich the initial shapes of clouds using a fractal method and represent the recovered clouds as a particle system. The experimental results demonstrate our method can yield realistic cloud scenes resembling those in the satellite images.
Cloud computing basics for librarians.
Hoy, Matthew B
2012-01-01
"Cloud computing" is the name for the recent trend of moving software and computing resources to an online, shared-service model. This article briefly defines cloud computing, discusses different models, explores the advantages and disadvantages, and describes some of the ways cloud computing can be used in libraries. Examples of cloud services are included at the end of the article. Copyright © Taylor & Francis Group, LLC
A Novel College Network Resource Management Method using Cloud Computing
NASA Astrophysics Data System (ADS)
Lin, Chen
At present information construction of college mainly has construction of college networks and management information system; there are many problems during the process of information. Cloud computing is development of distributed processing, parallel processing and grid computing, which make data stored on the cloud, make software and services placed in the cloud and build on top of various standards and protocols, you can get it through all kinds of equipments. This article introduces cloud computing and function of cloud computing, then analyzes the exiting problems of college network resource management, the cloud computing technology and methods are applied in the construction of college information sharing platform.
Castedo, Luis
2017-01-01
Fog computing extends cloud computing to the edge of a network enabling new Internet of Things (IoT) applications and services, which may involve critical data that require privacy and security. In an IoT fog computing system, three elements can be distinguished: IoT nodes that collect data, the cloud, and interconnected IoT gateways that exchange messages with the IoT nodes and with the cloud. This article focuses on securing IoT gateways, which are assumed to be constrained in terms of computational resources, but that are able to offload some processing from the cloud and to reduce the latency in the responses to the IoT nodes. However, it is usually taken for granted that IoT gateways have direct access to the electrical grid, which is not always the case: in mission-critical applications like natural disaster relief or environmental monitoring, it is common to deploy IoT nodes and gateways in large areas where electricity comes from solar or wind energy that charge the batteries that power every device. In this article, how to secure IoT gateway communications while minimizing power consumption is analyzed. The throughput and power consumption of Rivest–Shamir–Adleman (RSA) and Elliptic Curve Cryptography (ECC) are considered, since they are really popular, but have not been thoroughly analyzed when applied to IoT scenarios. Moreover, the most widespread Transport Layer Security (TLS) cipher suites use RSA as the main public key-exchange algorithm, but the key sizes needed are not practical for most IoT devices and cannot be scaled to high security levels. In contrast, ECC represents a much lighter and scalable alternative. Thus, RSA and ECC are compared for equivalent security levels, and power consumption and data throughput are measured using a testbed of IoT gateways. The measurements obtained indicate that, in the specific fog computing scenario proposed, ECC is clearly a much better alternative than RSA, obtaining energy consumption reductions of up to 50% and a data throughput that doubles RSA in most scenarios. These conclusions are then corroborated by a frame temporal analysis of Ethernet packets. In addition, current data compression algorithms are evaluated, concluding that, when dealing with the small payloads related to IoT applications, they do not pay off in terms of real data throughput and power consumption. PMID:28850104
Suárez-Albela, Manuel; Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Castedo, Luis
2017-08-29
Fog computing extends cloud computing to the edge of a network enabling new Internet of Things (IoT) applications and services, which may involve critical data that require privacy and security. In an IoT fog computing system, three elements can be distinguished: IoT nodes that collect data, the cloud, and interconnected IoT gateways that exchange messages with the IoT nodes and with the cloud. This article focuses on securing IoT gateways, which are assumed to be constrained in terms of computational resources, but that are able to offload some processing from the cloud and to reduce the latency in the responses to the IoT nodes. However, it is usually taken for granted that IoT gateways have direct access to the electrical grid, which is not always the case: in mission-critical applications like natural disaster relief or environmental monitoring, it is common to deploy IoT nodes and gateways in large areas where electricity comes from solar or wind energy that charge the batteries that power every device. In this article, how to secure IoT gateway communications while minimizing power consumption is analyzed. The throughput and power consumption of Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC) are considered, since they are really popular, but have not been thoroughly analyzed when applied to IoT scenarios. Moreover, the most widespread Transport Layer Security (TLS) cipher suites use RSA as the main public key-exchange algorithm, but the key sizes needed are not practical for most IoT devices and cannot be scaled to high security levels. In contrast, ECC represents a much lighter and scalable alternative. Thus, RSA and ECC are compared for equivalent security levels, and power consumption and data throughput are measured using a testbed of IoT gateways. The measurements obtained indicate that, in the specific fog computing scenario proposed, ECC is clearly a much better alternative than RSA, obtaining energy consumption reductions of up to 50% and a data throughput that doubles RSA in most scenarios. These conclusions are then corroborated by a frame temporal analysis of Ethernet packets. In addition, current data compression algorithms are evaluated, concluding that, when dealing with the small payloads related to IoT applications, they do not pay off in terms of real data throughput and power consumption.
Environments for online maritime simulators with cloud computing capabilities
NASA Astrophysics Data System (ADS)
Raicu, Gabriel; Raicu, Alexandra
2016-12-01
This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.
Eleven quick tips for architecting biomedical informatics workflows with cloud computing.
Cole, Brian S; Moore, Jason H
2018-03-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world's largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction.
Eleven quick tips for architecting biomedical informatics workflows with cloud computing
Moore, Jason H.
2018-01-01
Cloud computing has revolutionized the development and operations of hardware and software across diverse technological arenas, yet academic biomedical research has lagged behind despite the numerous and weighty advantages that cloud computing offers. Biomedical researchers who embrace cloud computing can reap rewards in cost reduction, decreased development and maintenance workload, increased reproducibility, ease of sharing data and software, enhanced security, horizontal and vertical scalability, high availability, a thriving technology partner ecosystem, and much more. Despite these advantages that cloud-based workflows offer, the majority of scientific software developed in academia does not utilize cloud computing and must be migrated to the cloud by the user. In this article, we present 11 quick tips for architecting biomedical informatics workflows on compute clouds, distilling knowledge gained from experience developing, operating, maintaining, and distributing software and virtualized appliances on the world’s largest cloud. Researchers who follow these tips stand to benefit immediately by migrating their workflows to cloud computing and embracing the paradigm of abstraction. PMID:29596416
Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center
NASA Astrophysics Data System (ADS)
Molthan, A.; Limaye, A. S.
2011-12-01
Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by geostationary satellite observations processed on virtual machines powered by Nebula. This presentation will provide an overview of these activities from a scientific and cloud computing applications perspective, identifying the strengths and weaknesses for deploying each project within an IaaS environment, and ways to collaborate with the Nebula or other cloud-user communities to collaborate on projects as they go forward.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z; Gao, M
Purpose: Monte Carlo simulation plays an important role for proton Pencil Beam Scanning (PBS) technique. However, MC simulation demands high computing power and is limited to few large proton centers that can afford a computer cluster. We study the feasibility of utilizing cloud computing in the MC simulation of PBS beams. Methods: A GATE/GEANT4 based MC simulation software was installed on a commercial cloud computing virtual machine (Linux 64-bits, Amazon EC2). Single spot Integral Depth Dose (IDD) curves and in-air transverse profiles were used to tune the source parameters to simulate an IBA machine. With the use of StarCluster softwaremore » developed at MIT, a Linux cluster with 2–100 nodes can be conveniently launched in the cloud. A proton PBS plan was then exported to the cloud where the MC simulation was run. Results: The simulated PBS plan has a field size of 10×10cm{sup 2}, 20cm range, 10cm modulation, and contains over 10,000 beam spots. EC2 instance type m1.medium was selected considering the CPU/memory requirement and 40 instances were used to form a Linux cluster. To minimize cost, master node was created with on-demand instance and worker nodes were created with spot-instance. The hourly cost for the 40-node cluster was $0.63 and the projected cost for a 100-node cluster was $1.41. Ten million events were simulated to plot PDD and profile, with each job containing 500k events. The simulation completed within 1 hour and an overall statistical uncertainty of < 2% was achieved. Good agreement between MC simulation and measurement was observed. Conclusion: Cloud computing is a cost-effective and easy to maintain platform to run proton PBS MC simulation. When proton MC packages such as GATE and TOPAS are combined with cloud computing, it will greatly facilitate the pursuing of PBS MC studies, especially for newly established proton centers or individual researchers.« less
NASA Astrophysics Data System (ADS)
Dong, Yumin; Xiao, Shufen; Ma, Hongyang; Chen, Libo
2016-12-01
Cloud computing and big data have become the developing engine of current information technology (IT) as a result of the rapid development of IT. However, security protection has become increasingly important for cloud computing and big data, and has become a problem that must be solved to develop cloud computing. The theft of identity authentication information remains a serious threat to the security of cloud computing. In this process, attackers intrude into cloud computing services through identity authentication information, thereby threatening the security of data from multiple perspectives. Therefore, this study proposes a model for cloud computing protection and management based on quantum authentication, introduces the principle of quantum authentication, and deduces the quantum authentication process. In theory, quantum authentication technology can be applied in cloud computing for security protection. This technology cannot be cloned; thus, it is more secure and reliable than classical methods.
Rautenberg, Philipp L.; Kumaraswamy, Ajayrama; Tejero-Cantero, Alvaro; Doblander, Christoph; Norouzian, Mohammad R.; Kai, Kazuki; Jacobsen, Hans-Arno; Ai, Hiroyuki; Wachtler, Thomas; Ikeno, Hidetoshi
2014-01-01
Neuroscience today deals with a “data deluge” derived from the availability of high-throughput sensors of brain structure and brain activity, and increased computational resources for detailed simulations with complex output. We report here (1) a novel approach to data sharing between collaborating scientists that brings together file system tools and cloud technologies, (2) a service implementing this approach, called NeuronDepot, and (3) an example application of the service to a complex use case in the neurosciences. The main drivers for our approach are to facilitate collaborations with a transparent, automated data flow that shields scientists from having to learn new tools or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment from the originator and cloud based syncing—thus making experimental and modeling data available across the collaboration with minimum overhead. Since data sharing is cloud based, our approach opens up the possibility of using new software developments and hardware scalabitliy which are associated with elastic cloud computing. We provide an implementation that relies on existing synchronization services and is usable from all devices via a reactive web interface. We are motivating our solution by solving the practical problems of the GinJang project, a collaboration of three universities across eight time zones with a complex workflow encompassing data from electrophysiological recordings, imaging, morphological reconstructions, and simulations. PMID:24971059
Rautenberg, Philipp L; Kumaraswamy, Ajayrama; Tejero-Cantero, Alvaro; Doblander, Christoph; Norouzian, Mohammad R; Kai, Kazuki; Jacobsen, Hans-Arno; Ai, Hiroyuki; Wachtler, Thomas; Ikeno, Hidetoshi
2014-01-01
Neuroscience today deals with a "data deluge" derived from the availability of high-throughput sensors of brain structure and brain activity, and increased computational resources for detailed simulations with complex output. We report here (1) a novel approach to data sharing between collaborating scientists that brings together file system tools and cloud technologies, (2) a service implementing this approach, called NeuronDepot, and (3) an example application of the service to a complex use case in the neurosciences. The main drivers for our approach are to facilitate collaborations with a transparent, automated data flow that shields scientists from having to learn new tools or data structuring paradigms. Using NeuronDepot is simple: one-time data assignment from the originator and cloud based syncing-thus making experimental and modeling data available across the collaboration with minimum overhead. Since data sharing is cloud based, our approach opens up the possibility of using new software developments and hardware scalabitliy which are associated with elastic cloud computing. We provide an implementation that relies on existing synchronization services and is usable from all devices via a reactive web interface. We are motivating our solution by solving the practical problems of the GinJang project, a collaboration of three universities across eight time zones with a complex workflow encompassing data from electrophysiological recordings, imaging, morphological reconstructions, and simulations.
Establishing a Cloud Computing Success Model for Hospitals in Taiwan.
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services.
Establishing a Cloud Computing Success Model for Hospitals in Taiwan
Lian, Jiunn-Woei
2017-01-01
The purpose of this study is to understand the critical quality-related factors that affect cloud computing success of hospitals in Taiwan. In this study, private cloud computing is the major research target. The chief information officers participated in a questionnaire survey. The results indicate that the integration of trust into the information systems success model will have acceptable explanatory power to understand cloud computing success in the hospital. Moreover, information quality and system quality directly affect cloud computing satisfaction, whereas service quality indirectly affects the satisfaction through trust. In other words, trust serves as the mediator between service quality and satisfaction. This cloud computing success model will help hospitals evaluate or achieve success after adopting private cloud computing health care services. PMID:28112020
The Many Colors and Shapes of Cloud
NASA Astrophysics Data System (ADS)
Yeh, James T.
While many enterprises and business entities are deploying and exploiting Cloud Computing, the academic institutes and researchers are also busy trying to wrestle this beast and put a leash on this possible paradigm changing computing model. Many have argued that Cloud Computing is nothing more than a name change of Utility Computing. Others have argued that Cloud Computing is a revolutionary change of the computing architecture. So it has been difficult to put a boundary of what is in Cloud Computing, and what is not. I assert that it is equally difficult to find a group of people who would agree on even the definition of Cloud Computing. In actuality, may be all that arguments are not necessary, as Clouds have many shapes and colors. In this presentation, the speaker will attempt to illustrate that the shape and the color of the cloud depend very much on the business goals one intends to achieve. It will be a very rich territory for both the businesses to take the advantage of the benefits of Cloud Computing and the academia to integrate the technology research and business research.
NASA Astrophysics Data System (ADS)
Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration
2014-06-01
The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.
phpMs: A PHP-Based Mass Spectrometry Utilities Library.
Collins, Andrew; Jones, Andrew R
2018-03-02
The recent establishment of cloud computing, high-throughput networking, and more versatile web standards and browsers has led to a renewed interest in web-based applications. While traditionally big data has been the domain of optimized desktop and server applications, it is now possible to store vast amounts of data and perform the necessary calculations offsite in cloud storage and computing providers, with the results visualized in a high-quality cross-platform interface via a web browser. There are number of emerging platforms for cloud-based mass spectrometry data analysis; however, there is limited pre-existing code accessible to web developers, especially for those that are constrained to a shared hosting environment where Java and C applications are often forbidden from use by the hosting provider. To remedy this, we provide an open-source mass spectrometry library for one of the most commonly used web development languages, PHP. Our new library, phpMs, provides objects for storing and manipulating spectra and identification data as well as utilities for file reading, file writing, calculations, peptide fragmentation, and protein digestion as well as a software interface for controlling search engines. We provide a working demonstration of some of the capabilities at http://pgb.liv.ac.uk/phpMs .
The Education Value of Cloud Computing
ERIC Educational Resources Information Center
Katzan, Harry, Jr.
2010-01-01
Cloud computing is a technique for supplying computer facilities and providing access to software via the Internet. Cloud computing represents a contextual shift in how computers are provisioned and accessed. One of the defining characteristics of cloud software service is the transfer of control from the client domain to the service provider.…
Cloud Computing. Technology Briefing. Number 1
ERIC Educational Resources Information Center
Alberta Education, 2013
2013-01-01
Cloud computing is Internet-based computing in which shared resources, software and information are delivered as a service that computers or mobile devices can access on demand. Cloud computing is already used extensively in education. Free or low-cost cloud-based services are used daily by learners and educators to support learning, social…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yu; Sengupta, Manajit
Solar radiation can be computed using radiative transfer models, such as the Rapid Radiation Transfer Model (RRTM) and its general circulation model applications, and used for various energy applications. Due to the complexity of computing radiation fields in aerosol and cloudy atmospheres, simulating solar radiation can be extremely time-consuming, but many approximations--e.g., the two-stream approach and the delta-M truncation scheme--can be utilized. To provide a new fast option for computing solar radiation, we developed the Fast All-sky Radiation Model for Solar applications (FARMS) by parameterizing the simulated diffuse horizontal irradiance and direct normal irradiance for cloudy conditions from the RRTMmore » runs using a 16-stream discrete ordinates radiative transfer method. The solar irradiance at the surface was simulated by combining the cloud irradiance parameterizations with a fast clear-sky model, REST2. To understand the accuracy and efficiency of the newly developed fast model, we analyzed FARMS runs using cloud optical and microphysical properties retrieved using GOES data from 2009-2012. The global horizontal irradiance for cloudy conditions was simulated using FARMS and RRTM for global circulation modeling with a two-stream approximation and compared to measurements taken from the U.S. Department of Energy's Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Our results indicate that the accuracy of FARMS is comparable to or better than the two-stream approach; however, FARMS is approximately 400 times more efficient because it does not explicitly solve the radiative transfer equation for each individual cloud condition. Radiative transfer model runs are computationally expensive, but this model is promising for broad applications in solar resource assessment and forecasting. It is currently being used in the National Solar Radiation Database, which is publicly available from the National Renewable Energy Laboratory at http://nsrdb.nrel.gov.« less
Can cloud computing benefit health services? - a SWOT analysis.
Kuo, Mu-Hsing; Kushniruk, Andre; Borycki, Elizabeth
2011-01-01
In this paper, we discuss cloud computing, the current state of cloud computing in healthcare, and the challenges and opportunities of adopting cloud computing in healthcare. A Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis was used to evaluate the feasibility of adopting this computing model in healthcare. The paper concludes that cloud computing could have huge benefits for healthcare but there are a number of issues that will need to be addressed before its widespread use in healthcare.
2008-01-01
the sensor is a data cloud in multi- dimensional space with each band generating an axis of dimension. When the data cloud is viewed in two or three...endmember of interest is not a true endmember in the data space . A ) B) Figure 8: Linear mixture models. A ) two- dimensional ...multi- dimensional space . A classifier is a computer algorithm that takes
Range wise busy checking 2-way imbalanced algorithm for cloudlet allocation in cloud environment
NASA Astrophysics Data System (ADS)
Alanzy, Mohammed; Latip, Rohaya; Muhammed, Abdullah
2018-05-01
Cloud computing considers as a new business paradigm and a popular platform over the last few years. Many organizations, agencies, and departments consider responsible tasks time and tasks needed to be accomplished as soon as possible. These agencies counter IT issues due to the massive arise of data, applications, and solution scopes. Currently, the main issue related with the cloud is the way of making the environment of the cloud computing more qualified, and this way needs a competent allocation strategy of the cloudlet, Thus, there are huge number of studies conducted with regards to this matter that sought to assign the cloudlets to VMs or resources by variety of strategies. In this paper we have proposed range wise busy checking 2-way imbalanced Algorithm in cloud computing. Compare to other methods, it decreases the completion time to finish tasks’ execution, it is considered the fundamental part to enhance the system performance such as the makespan. This algorithm was simulated using Cloudsim to give more opportunity to the higher VM speed to accommodate more Cloudlets in its local queue without considering the threshold balance condition. The simulation result shows that the average makespan time is lesser compare to the previous cloudlet allocation strategy.
The method of a joint intraday security check system based on cloud computing
NASA Astrophysics Data System (ADS)
Dong, Wei; Feng, Changyou; Zhou, Caiqi; Cai, Zhi; Dan, Xu; Dai, Sai; Zhang, Chuancheng
2017-01-01
The intraday security check is the core application in the dispatching control system. The existing security check calculation only uses the dispatch center’s local model and data as the functional margin. This paper introduces the design of all-grid intraday joint security check system based on cloud computing and its implementation. To reduce the effect of subarea bad data on the all-grid security check, a new power flow algorithm basing on comparison and adjustment with inter-provincial tie-line plan is presented. And the numerical example illustrated the effectiveness and feasibility of the proposed method.
Commentary: New Technologies on the Horizon for Teaching
ERIC Educational Resources Information Center
Parslow, Graham R.
2013-01-01
A well-researched report has listed the technologies that should increasingly feature in teaching. It is projected that in the coming year there will be increased use of cloud computing, mobile applications, social exchanges, and tablet computing. The New Media Consortium (NMC) that produced the report is an international association of…
A Catalog of Architectural Tactics for Cyber-Foraging
2015-01-06
Grid Access for Mobile Devices. PhD thesis, University of Southampton, 2008. [12] S.-H. Hung, J.-P. Shieh, and C.-P. Lee. Migrating android applications...computing. International Journal of Interactive Multimedia and Artificial Intelligence, 1(7):6–15, 2012. [17] K. Kumar and Y.-H. Lu. Cloud computing
Research on the application of wisdom technology in smart city
NASA Astrophysics Data System (ADS)
Li, Juntao; Ma, Shuai; Gu, Weihua; Chen, Weiyi
2015-12-01
This paper first analyzes the concept of smart technology, the relationship between wisdom technology and smart city, and discusses the practical application of IOT(Internet of things) in smart city to explore a better way to realize smart city; then Introduces the basic concepts of cloud computing and smart city, and explains the relationship between the two; Discusses five advantages of cloud computing that applies to smart city construction: a unified and highly efficient, large-scale infrastructure software and hardware management, service scheduling and resource management, security control and management, energy conservation and management platform layer, and to promote modern practical significance of the development of services, promoting regional social and economic development faster. Finally, a brief description of the wisdom technology and smart city management is presented.
If It's in the Cloud, Get It on Paper: Cloud Computing Contract Issues
ERIC Educational Resources Information Center
Trappler, Thomas J.
2010-01-01
Much recent discussion has focused on the pros and cons of cloud computing. Some institutions are attracted to cloud computing benefits such as rapid deployment, flexible scalability, and low initial start-up cost, while others are concerned about cloud computing risks such as those related to data location, level of service, and security…
Chung, Chi-Jung; Kuo, Yu-Chen; Hsieh, Yun-Yu; Li, Tsai-Chung; Lin, Cheng-Chieh; Liang, Wen-Miin; Liao, Li-Na; Li, Chia-Ing; Lin, Hsueh-Chun
2017-11-01
This study applied open source technology to establish a subject-enabled analytics model that can enhance measurement statistics of case studies with the public health data in cloud computing. The infrastructure of the proposed model comprises three domains: 1) the health measurement data warehouse (HMDW) for the case study repository, 2) the self-developed modules of online health risk information statistics (HRIStat) for cloud computing, and 3) the prototype of a Web-based process automation system in statistics (PASIS) for the health risk assessment of case studies with subject-enabled evaluation. The system design employed freeware including Java applications, MySQL, and R packages to drive a health risk expert system (HRES). In the design, the HRIStat modules enforce the typical analytics methods for biomedical statistics, and the PASIS interfaces enable process automation of the HRES for cloud computing. The Web-based model supports both modes, step-by-step analysis and auto-computing process, respectively for preliminary evaluation and real time computation. The proposed model was evaluated by computing prior researches in relation to the epidemiological measurement of diseases that were caused by either heavy metal exposures in the environment or clinical complications in hospital. The simulation validity was approved by the commercial statistics software. The model was installed in a stand-alone computer and in a cloud-server workstation to verify computing performance for a data amount of more than 230K sets. Both setups reached efficiency of about 10 5 sets per second. The Web-based PASIS interface can be used for cloud computing, and the HRIStat module can be flexibly expanded with advanced subjects for measurement statistics. The analytics procedure of the HRES prototype is capable of providing assessment criteria prior to estimating the potential risk to public health. Copyright © 2017 Elsevier B.V. All rights reserved.
NGScloud: RNA-seq analysis of non-model species using cloud computing.
Mora-Márquez, Fernando; Vázquez-Poletti, José Luis; López de Heredia, Unai
2018-05-03
RNA-seq analysis usually requires large computing infrastructures. NGScloud is a bioinformatic system developed to analyze RNA-seq data using the cloud computing services of Amazon that permit the access to ad hoc computing infrastructure scaled according to the complexity of the experiment, so its costs and times can be optimized. The application provides a user-friendly front-end to operate Amazon's hardware resources, and to control a workflow of RNA-seq analysis oriented to non-model species, incorporating the cluster concept, which allows parallel runs of common RNA-seq analysis programs in several virtual machines for faster analysis. NGScloud is freely available at https://github.com/GGFHF/NGScloud/. A manual detailing installation and how-to-use instructions is available with the distribution. unai.lopezdeheredia@upm.es.
Introducing the Cloud in an Introductory IT Course
ERIC Educational Resources Information Center
Woods, David M.
2018-01-01
Cloud computing is a rapidly emerging topic, but should it be included in an introductory IT course? The magnitude of cloud computing use, especially cloud infrastructure, along with students' limited knowledge of the topic support adding cloud content to the IT curriculum. There are several arguments that support including cloud computing in an…
Enabling Earth Science Through Cloud Computing
NASA Technical Reports Server (NTRS)
Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian
2012-01-01
Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.
Optimizing Security of Cloud Computing within the DoD
2010-12-01
information security governance and risk management; application security; cryptography; security architecture and design; operations security; business ...governance and risk management; application security; cryptography; security architecture and design; operations security; business continuity...20 7. Operational Security (OPSEC).........................................................20 8. Business Continuity Planning (BCP) and Disaster
Arc4nix: A cross-platform geospatial analytical library for cluster and cloud computing
NASA Astrophysics Data System (ADS)
Tang, Jingyin; Matyas, Corene J.
2018-02-01
Big Data in geospatial technology is a grand challenge for processing capacity. The ability to use a GIS for geospatial analysis on Cloud Computing and High Performance Computing (HPC) clusters has emerged as a new approach to provide feasible solutions. However, users lack the ability to migrate existing research tools to a Cloud Computing or HPC-based environment because of the incompatibility of the market-dominating ArcGIS software stack and Linux operating system. This manuscript details a cross-platform geospatial library "arc4nix" to bridge this gap. Arc4nix provides an application programming interface compatible with ArcGIS and its Python library "arcpy". Arc4nix uses a decoupled client-server architecture that permits geospatial analytical functions to run on the remote server and other functions to run on the native Python environment. It uses functional programming and meta-programming language to dynamically construct Python codes containing actual geospatial calculations, send them to a server and retrieve results. Arc4nix allows users to employ their arcpy-based script in a Cloud Computing and HPC environment with minimal or no modification. It also supports parallelizing tasks using multiple CPU cores and nodes for large-scale analyses. A case study of geospatial processing of a numerical weather model's output shows that arcpy scales linearly in a distributed environment. Arc4nix is open-source software.
Using Cloud Computing infrastructure with CloudBioLinux, CloudMan and Galaxy
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-01-01
Cloud computing has revolutionized availability and access to computing and storage resources; making it possible to provision a large computational infrastructure with only a few clicks in a web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this protocol, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatics analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to setup the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command line interface, and the web-based Galaxy interface. PMID:22700313
Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy.
Afgan, Enis; Chapman, Brad; Jadan, Margita; Franke, Vedran; Taylor, James
2012-06-01
Cloud computing has revolutionized availability and access to computing and storage resources, making it possible to provision a large computational infrastructure with only a few clicks in a Web browser. However, those resources are typically provided in the form of low-level infrastructure components that need to be procured and configured before use. In this unit, we demonstrate how to utilize cloud computing resources to perform open-ended bioinformatic analyses, with fully automated management of the underlying cloud infrastructure. By combining three projects, CloudBioLinux, CloudMan, and Galaxy, into a cohesive unit, we have enabled researchers to gain access to more than 100 preconfigured bioinformatics tools and gigabytes of reference genomes on top of the flexible cloud computing infrastructure. The protocol demonstrates how to set up the available infrastructure and how to use the tools via a graphical desktop interface, a parallel command-line interface, and the Web-based Galaxy interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Shawn
This code consists of Matlab routines which enable the user to perform non-manifold surface reconstruction via triangulation from high dimensional point cloud data. The code was based on an algorithm originally developed in [Freedman (2007), An Incremental Algorithm for Reconstruction of Surfaces of Arbitrary Codimension Computational Geometry: Theory and Applications, 36(2):106-116]. This algorithm has been modified to accommodate non-manifold surface according to the work described in [S. Martin and J.-P. Watson (2009), Non-Manifold Surface Reconstruction from High Dimensional Point Cloud DataSAND #5272610].The motivation for developing the code was a point cloud describing the molecular conformation space of cyclooctane (C8H16). Cyclooctanemore » conformation space was represented using points in 72 dimensions (3 coordinates for each molecule). The code was used to triangulate the point cloud and thereby study the geometry and topology of cyclooctane. Futures applications are envisioned for peptides and proteins.« less
Towards Large-area Field-scale Operational Evapotranspiration for Water Use Mapping
NASA Astrophysics Data System (ADS)
Senay, G. B.; Friedrichs, M.; Morton, C.; Huntington, J. L.; Verdin, J.
2017-12-01
Field-scale evapotranspiration (ET) estimates are needed for improving surface and groundwater use and water budget studies. Ideally, field-scale ET estimates would be at regional to national levels and cover long time periods. As a result of large data storage and computational requirements associated with processing field-scale satellite imagery such as Landsat, numerous challenges remain to develop operational ET estimates over large areas for detailed water use and availability studies. However, the combination of new science, data availability, and cloud computing technology is enabling unprecedented capabilities for ET mapping. To demonstrate this capability, we used Google's Earth Engine cloud computing platform to create nationwide annual ET estimates with 30-meter resolution Landsat ( 16,000 images) and gridded weather data using the Operational Simplified Surface Energy Balance (SSEBop) model in support of the National Water Census, a USGS research program designed to build decision support capacity for water management agencies and other natural resource managers. By leveraging Google's Earth Engine Application Programming Interface (API) and developing software in a collaborative, open-platform environment, we rapidly advance from research towards applications for large-area field-scale ET mapping. Cloud computing of the Landsat image archive combined with other satellite, climate, and weather data, is creating never imagined opportunities for assessing ET model behavior and uncertainty, and ultimately providing the ability for more robust operational monitoring and assessment of water use at field-scales.
Automatic cloud tracking applied to GOES and Meteosat observations
NASA Technical Reports Server (NTRS)
Endlich, R. M.; Wolf, D. E.
1981-01-01
An improved automatic processing method for the tracking of cloud motions as revealed by satellite imagery is presented and applications of the method to GOES observations of Hurricane Eloise and Meteosat water vapor and infrared data are presented. The method is shown to involve steps of picture smoothing, target selection and the calculation of cloud motion vectors by the matching of a group at a given time with its best likeness at a later time, or by a cross-correlation computation. Cloud motion computations can be made in as many as four separate layers simultaneously. For data of 4 and 8 km resolution in the eye of Hurricane Eloise, the automatic system is found to provide results comparable in accuracy and coverage to those obtained by NASA analysts using the Atmospheric and Oceanographic Information Processing System, with results obtained by the pattern recognition and cross correlation computations differing by only fractions of a pixel. For Meteosat water vapor data from the tropics and midlatitudes, the automatic motion computations are found to be reliable only in areas where the water vapor fields contained small-scale structure, although excellent results are obtained using Meteosat IR data in the same regions. The automatic method thus appears to be competitive in accuracy and coverage with motion determination by human analysts.
Identity-Based Authentication for Cloud Computing
NASA Astrophysics Data System (ADS)
Li, Hongwei; Dai, Yuanshun; Tian, Ling; Yang, Haomiao
Cloud computing is a recently developed new technology for complex systems with massive-scale services sharing among numerous users. Therefore, authentication of both users and services is a significant issue for the trust and security of the cloud computing. SSL Authentication Protocol (SAP), once applied in cloud computing, will become so complicated that users will undergo a heavily loaded point both in computation and communication. This paper, based on the identity-based hierarchical model for cloud computing (IBHMCC) and its corresponding encryption and signature schemes, presented a new identity-based authentication protocol for cloud computing and services. Through simulation testing, it is shown that the authentication protocol is more lightweight and efficient than SAP, specially the more lightweight user side. Such merit of our model with great scalability is very suited to the massive-scale cloud.
Cloud-based Jupyter Notebooks for Water Data Analysis
NASA Astrophysics Data System (ADS)
Castronova, A. M.; Brazil, L.; Seul, M.
2017-12-01
The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative and reproducible science.
Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung
2015-04-01
To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.
Modeling the Cloud to Enhance Capabilities for Crises and Catastrophe Management
2016-11-16
order for cloud computing infrastructures to be successfully deployed in real world scenarios as tools for crisis and catastrophe management, where...Statement of the Problem Studied As cloud computing becomes the dominant computational infrastructure[1] and cloud technologies make a transition to hosting...1. Formulate rigorous mathematical models representing technological capabilities and resources in cloud computing for performance modeling and
Automating NEURON Simulation Deployment in Cloud Resources.
Stockton, David B; Santamaria, Fidel
2017-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the OpenStack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon's proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model.
Automating NEURON Simulation Deployment in Cloud Resources
Santamaria, Fidel
2016-01-01
Simulations in neuroscience are performed on local servers or High Performance Computing (HPC) facilities. Recently, cloud computing has emerged as a potential computational platform for neuroscience simulation. In this paper we compare and contrast HPC and cloud resources for scientific computation, then report how we deployed NEURON, a widely used simulator of neuronal activity, in three clouds: Chameleon Cloud, a hybrid private academic cloud for cloud technology research based on the Open-Stack software; Rackspace, a public commercial cloud, also based on OpenStack; and Amazon Elastic Cloud Computing, based on Amazon’s proprietary software. We describe the manual procedures and how to automate cloud operations. We describe extending our simulation automation software called NeuroManager (Stockton and Santamaria, Frontiers in Neuroinformatics, 2015), so that the user is capable of recruiting private cloud, public cloud, HPC, and local servers simultaneously with a simple common interface. We conclude by performing several studies in which we examine speedup, efficiency, total session time, and cost for sets of simulations of a published NEURON model. PMID:27655341
Homomorphic encryption experiments on IBM's cloud quantum computing platform
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Zhao, You-Wei; Li, Tan; Li, Feng-Guang; Du, Yu-Tao; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su
2017-02-01
Quantum computing has undergone rapid development in recent years. Owing to limitations on scalability, personal quantum computers still seem slightly unrealistic in the near future. The first practical quantum computer for ordinary users is likely to be on the cloud. However, the adoption of cloud computing is possible only if security is ensured. Homomorphic encryption is a cryptographic protocol that allows computation to be performed on encrypted data without decrypting them, so it is well suited to cloud computing. Here, we first applied homomorphic encryption on IBM's cloud quantum computer platform. In our experiments, we successfully implemented a quantum algorithm for linear equations while protecting our privacy. This demonstration opens a feasible path to the next stage of development of cloud quantum information technology.
Comparison of the different approaches to generate holograms from data acquired with a Kinect sensor
NASA Astrophysics Data System (ADS)
Kang, Ji-Hoon; Leportier, Thibault; Ju, Byeong-Kwon; Song, Jin Dong; Lee, Kwang-Hoon; Park, Min-Chul
2017-05-01
Data of real scenes acquired in real-time with a Kinect sensor can be processed with different approaches to generate a hologram. 3D models can be generated from a point cloud or a mesh representation. The advantage of the point cloud approach is that computation process is well established since it involves only diffraction and propagation of point sources between parallel planes. On the other hand, the mesh representation enables to reduce the number of elements necessary to represent the object. Then, even though the computation time for the contribution of a single element increases compared to a simple point, the total computation time can be reduced significantly. However, the algorithm is more complex since propagation of elemental polygons between non-parallel planes should be implemented. Finally, since a depth map of the scene is acquired at the same time than the intensity image, a depth layer approach can also be adopted. This technique is appropriate for a fast computation since propagation of an optical wavefront from one plane to another can be handled efficiently with the fast Fourier transform. Fast computation with depth layer approach is convenient for real time applications, but point cloud method is more appropriate when high resolution is needed. In this study, since Kinect can be used to obtain both point cloud and depth map, we examine the different approaches that can be adopted for hologram computation and compare their performance.
Mobile Cloud Learning for Higher Education: A Case Study of Moodle in the Cloud
ERIC Educational Resources Information Center
Wang, Minjuan; Chen, Yong; Khan, Muhammad Jahanzaib
2014-01-01
Mobile cloud learning, a combination of mobile learning and cloud computing, is a relatively new concept that holds considerable promise for future development and delivery in the education sectors. Cloud computing helps mobile learning overcome obstacles related to mobile computing. The main focus of this paper is to explore how cloud computing…
76 FR 13984 - Cloud Computing Forum & Workshop III
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... public workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop III to be held on April 7... provide information on the NIST strategic and tactical Cloud Computing program, including progress on the...
NASA Astrophysics Data System (ADS)
Marinos, Alexandros; Briscoe, Gerard
Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.
Unidata's Vision for Transforming Geoscience by Moving Data Services and Software to the Cloud
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan; Fisher, Ward; Yoksas, Tom
2015-04-01
Universities are facing many challenges: shrinking budgets, rapidly evolving information technologies, exploding data volumes, multidisciplinary science requirements, and high expectations from students who have grown up with smartphones and tablets. These changes are upending traditional approaches to accessing and using data and software. Unidata recognizes that its products and services must evolve to support new approaches to research and education. After years of hype and ambiguity, cloud computing is maturing in usability in many areas of science and education, bringing the benefits of virtualized and elastic remote services to infrastructure, software, computation, and data. Cloud environments reduce the amount of time and money spent to procure, install, and maintain new hardware and software, and reduce costs through resource pooling and shared infrastructure. Cloud services aimed at providing any resource, at any time, from any place, using any device are increasingly being embraced by all types of organizations. Given this trend and the enormous potential of cloud-based services, Unidata is taking moving to augment its products, services, data delivery mechanisms and applications to align with the cloud-computing paradigm. Specifically, Unidata is working toward establishing a community-based development environment that supports the creation and use of software services to build end-to-end data workflows. The design encourages the creation of services that can be broken into small, independent chunks that provide simple capabilities. Chunks could be used individually to perform a task, or chained into simple or elaborate workflows. The services will also be portable in the form of downloadable Unidata-in-a-box virtual images, allowing their use in researchers' own cloud-based computing environments. In this talk, we present a vision for Unidata's future in a cloud-enabled data services and discuss our ongoing efforts to deploy a suite of Unidata data services and tools in the Amazon EC2 and Microsoft Azure cloud environments, including the transfer of real-time meteorological data into its cloud instances, product generation using those data, and the deployment of TDS, McIDAS ADDE and AWIPS II data servers and the Integrated Data Server visualization tool.
Arctic Boreal Vulnerability Experiment (ABoVE) Science Cloud
NASA Astrophysics Data System (ADS)
Duffy, D.; Schnase, J. L.; McInerney, M.; Webster, W. P.; Sinno, S.; Thompson, J. H.; Griffith, P. C.; Hoy, E.; Carroll, M.
2014-12-01
The effects of climate change are being revealed at alarming rates in the Arctic and Boreal regions of the planet. NASA's Terrestrial Ecology Program has launched a major field campaign to study these effects over the next 5 to 8 years. The Arctic Boreal Vulnerability Experiment (ABoVE) will challenge scientists to take measurements in the field, study remote observations, and even run models to better understand the impacts of a rapidly changing climate for areas of Alaska and western Canada. The NASA Center for Climate Simulation (NCCS) at the Goddard Space Flight Center (GSFC) has partnered with the Terrestrial Ecology Program to create a science cloud designed for this field campaign - the ABoVE Science Cloud. The cloud combines traditional high performance computing with emerging technologies to create an environment specifically designed for large-scale climate analytics. The ABoVE Science Cloud utilizes (1) virtualized high-speed InfiniBand networks, (2) a combination of high-performance file systems and object storage, and (3) virtual system environments tailored for data intensive, science applications. At the center of the architecture is a large object storage environment, much like a traditional high-performance file system, that supports data proximal processing using technologies like MapReduce on a Hadoop Distributed File System (HDFS). Surrounding the storage is a cloud of high performance compute resources with many processing cores and large memory coupled to the storage through an InfiniBand network. Virtual systems can be tailored to a specific scientist and provisioned on the compute resources with extremely high-speed network connectivity to the storage and to other virtual systems. In this talk, we will present the architectural components of the science cloud and examples of how it is being used to meet the needs of the ABoVE campaign. In our experience, the science cloud approach significantly lowers the barriers and risks to organizations that require high performance computing solutions and provides the NCCS with the agility required to meet our customers' rapidly increasing and evolving requirements.
NASA Astrophysics Data System (ADS)
Weeden, R.; Horn, W. B.; Dimarchi, H.; Arko, S. A.; Hogenson, K.
2017-12-01
A problem often faced by Earth science researchers is the question of how to scale algorithms that were developed against few datasets and take them to regional or global scales. This problem only gets worse as we look to a future with larger and larger datasets becoming available. One significant hurdle can be having the processing and storage resources available for such a task, not to mention the administration of those resources. As a processing environment, the cloud offers nearly unlimited potential for compute and storage, with limited administration required. The goal of the Hybrid Pluggable Processing Pipeline (HyP3) project was to demonstrate the utility of the Amazon cloud to process large amounts of data quickly and cost effectively. Principally built by three undergraduate students at the ASF DAAC, the HyP3 system relies on core Amazon cloud services such as Lambda, Relational Database Service (RDS), Elastic Compute Cloud (EC2), Simple Storage Service (S3), and Elastic Beanstalk. HyP3 provides an Application Programming Interface (API) through which users can programmatically interface with the HyP3 system; allowing them to monitor and control processing jobs running in HyP3, and retrieve the generated HyP3 products when completed. This presentation will focus on the development techniques and enabling technologies that were used in developing the HyP3 system. Data and process flow, from new subscription through to order completion will be shown, highlighting the benefits of the cloud for each step. Because the HyP3 system can be accessed directly from a user's Python scripts, powerful applications leveraging SAR products can be put together fairly easily. This is the true power of HyP3; allowing people to programmatically leverage the power of the cloud.
Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
NASA Astrophysics Data System (ADS)
Pierce, S. A.
2017-12-01
Decision making for groundwater systems is becoming increasingly important, as shifting water demands increasingly impact aquifers. As buffer systems, aquifers provide room for resilient responses and augment the actual timeframe for hydrological response. Yet the pace impacts, climate shifts, and degradation of water resources is accelerating. To meet these new drivers, groundwater science is transitioning toward the emerging field of Integrated Water Resources Management, or IWRM. IWRM incorporates a broad array of dimensions, methods, and tools to address problems that tend to be complex. Computational tools and accessible cyberinfrastructure (CI) are needed to cross the chasm between science and society. Fortunately cloud computing environments, such as the new Jetstream system, are evolving rapidly. While still targeting scientific user groups systems such as, Jetstream, offer configurable cyberinfrastructure to enable interactive computing and data analysis resources on demand. The web-based interfaces allow researchers to rapidly customize virtual machines, modify computing architecture and increase the usability and access for broader audiences to advanced compute environments. The result enables dexterous configurations and opening up opportunities for IWRM modelers to expand the reach of analyses, number of case studies, and quality of engagement with stakeholders and decision makers. The acute need to identify improved IWRM solutions paired with advanced computational resources refocuses the attention of IWRM researchers on applications, workflows, and intelligent systems that are capable of accelerating progress. IWRM must address key drivers of community concern, implement transdisciplinary methodologies, adapt and apply decision support tools in order to effectively support decisions about groundwater resource management. This presentation will provide an overview of advanced computing services in the cloud using integrated groundwater management case studies to highlight how Cloud CI streamlines the process for setting up an interactive decision support system. Moreover, advances in artificial intelligence offer new techniques for old problems from integrating data to adaptive sensing or from interactive dashboards to optimizing multi-attribute problems. The combination of scientific expertise, flexible cloud computing solutions, and intelligent systems opens new research horizons.
Cost-effective cloud computing: a case study using the comparative genomics tool, roundup.
Kudtarkar, Parul; Deluca, Todd F; Fusaro, Vincent A; Tonellato, Peter J; Wall, Dennis P
2010-12-22
Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource-Roundup-using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon's Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon's computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure.
75 FR 64258 - Cloud Computing Forum & Workshop II
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-19
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Cloud Computing Forum... workshop. SUMMARY: NIST announces the Cloud Computing Forum & Workshop II to be held on November 4 and 5, 2010. This workshop will provide information on a Cloud Computing Roadmap Strategy as well as provide...
76 FR 62373 - Notice of Public Meeting-Cloud Computing Forum & Workshop IV
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...--Cloud Computing Forum & Workshop IV AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice. SUMMARY: NIST announces the Cloud Computing Forum & Workshop IV to be held on... to help develop open standards in interoperability, portability and security in cloud computing. This...
Project #OA-FY14-0126, January 15, 2014. The EPA OIG is starting fieldwork on the Council of the Inspectors General on Integrity and Efficiency (CIGIE) Cloud Computing Initiative – Status of Cloud-Computing Environments Within the Federal Government.
Intelligent cloud computing security using genetic algorithm as a computational tools
NASA Astrophysics Data System (ADS)
Razuky AL-Shaikhly, Mazin H.
2018-05-01
An essential change had occurred in the field of Information Technology which represented with cloud computing, cloud giving virtual assets by means of web yet awesome difficulties in the field of information security and security assurance. Currently main problem with cloud computing is how to improve privacy and security for cloud “cloud is critical security”. This paper attempts to solve cloud security by using intelligent system with genetic algorithm as wall to provide cloud data secure, all services provided by cloud must detect who receive and register it to create list of users (trusted or un-trusted) depend on behavior. The execution of present proposal has shown great outcome.
Cloud Computing with iPlant Atmosphere.
McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos
2013-10-15
Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.
Delivering Unidata Technology via the Cloud
NASA Astrophysics Data System (ADS)
Fisher, Ward; Oxelson Ganter, Jennifer
2016-04-01
Over the last two years, Docker has emerged as the clear leader in open-source containerization. Containerization technology provides a means by which software can be pre-configured and packaged into a single unit, i.e. a container. This container can then be easily deployed either on local or remote systems. Containerization is particularly advantageous when moving software into the cloud, as it simplifies the process. Unidata is adopting containerization as part of our commitment to migrate our technologies to the cloud. We are using a two-pronged approach in this endeavor. In addition to migrating our data-portal services to a cloud environment, we are also exploring new and novel ways to use cloud-specific technology to serve our community. This effort has resulted in several new cloud/Docker-specific projects at Unidata: "CloudStream," "CloudIDV," and "CloudControl." CloudStream is a docker-based technology stack for bringing legacy desktop software to new computing environments, without the need to invest significant engineering/development resources. CloudStream helps make it easier to run existing software in a cloud environment via a technology called "Application Streaming." CloudIDV is a CloudStream-based implementation of the Unidata Integrated Data Viewer (IDV). CloudIDV serves as a practical example of application streaming, and demonstrates how traditional software can be easily accessed and controlled via a web browser. Finally, CloudControl is a web-based dashboard which provides administrative controls for running docker-based technologies in the cloud, as well as providing user management. In this work we will give an overview of these three open-source technologies and the value they offer to our community.
Energy Consumption Management of Virtual Cloud Computing Platform
NASA Astrophysics Data System (ADS)
Li, Lin
2017-11-01
For energy consumption management research on virtual cloud computing platforms, energy consumption management of virtual computers and cloud computing platform should be understood deeper. Only in this way can problems faced by energy consumption management be solved. In solving problems, the key to solutions points to data centers with high energy consumption, so people are in great need to use a new scientific technique. Virtualization technology and cloud computing have become powerful tools in people’s real life, work and production because they have strong strength and many advantages. Virtualization technology and cloud computing now is in a rapid developing trend. It has very high resource utilization rate. In this way, the presence of virtualization and cloud computing technologies is very necessary in the constantly developing information age. This paper has summarized, explained and further analyzed energy consumption management questions of the virtual cloud computing platform. It eventually gives people a clearer understanding of energy consumption management of virtual cloud computing platform and brings more help to various aspects of people’s live, work and son on.
Improving Pixel Level Cloud Optical Property Retrieval using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Marshak, Alexander; Cahalan, Robert F.
1999-01-01
The accurate pixel-by-pixel retrieval of cloud optical properties from space is influenced by radiative smoothing due to high order photon scattering and radiative roughening due to low order scattering events. Both are caused by cloud heterogeneity and the three-dimensional nature of radiative transfer and can be studied with the aid of computer simulations. We use Monte Carlo simulations on variable 1-D and 2-D model cloud fields to seek for dependencies of smoothing and roughening phenomena on single scattering albedo, solar zenith angle, and cloud characteristics. The results are discussed in the context of high resolution satellite (such as Landsat) retrieval applications. The current work extends the investigation on the inverse NIPA (Non-local Independent Pixel Approximation) as a tool for removing smoothing and improving retrievals of cloud optical depth. This is accomplished by: (1) Delineating the limits of NIPA applicability; (2) Exploring NIPA parameter dependences on cloud macrostructural features, such as mean cloud optical depth and geometrical thickness, degree of extinction and cloud top height variability. We also compare parameter values from empirical and theoretical considerations; (3) Examining the differences between applying NIPA on radiation quantities vs direct application on optical properties; (4) Studying the radiation budget importance of the NIPA corrections as a function of scale. Finally, we discuss fundamental adjustments that need to be considered for successful radiance inversion at non-conservative wavelengths and oblique Sun angles. These adjustments are necessary to remove roughening signatures which become more prominent with increasing absorption and solar zenith angle.
Cloud-free resolution element statistics program
NASA Technical Reports Server (NTRS)
Liley, B.; Martin, C. D.
1971-01-01
Computer program computes number of cloud-free elements in field-of-view and percentage of total field-of-view occupied by clouds. Human error is eliminated by using visual estimation to compute cloud statistics from aerial photographs.
Design and verification of a cloud field optical simulator
NASA Technical Reports Server (NTRS)
Davis, J. M.; Cox, S. K.; Mckee, T. B.
1983-01-01
A concept and an apparatus designed to investigate the reflected and transmitted distributions of light from optically thick clouds is presented. The Cloud Field Optical Simulator (CFOS) is a laboratory device which utilizes an array of incandescent lamps as a source, simulated clouds made from cotton or styrofoam as targets, and an array of silicon photodiodes as detectors. The device allows virtually any source-target-detector geometry to be examined. Similitude between real clouds and their CFOS cotton or styrofoam counterparts is established by relying on a linear relationship between optical depth and the ratio of reflected to transmitted light for a semiinfinite layer. Comparisons of principal plane radiances observed by the CFOS with Monte Carlo computations for a water cloud at 0.7 micron show excellent agreement. Initial applications of the CFOS are discussed.
Lagrangian condensation microphysics with Twomey CCN activation
NASA Astrophysics Data System (ADS)
Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna
2018-01-01
We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets
to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation, transport of super-droplets in the physical space, and the coupling between super-droplets and the Eulerian temperature and water vapor field are discussed in detail. Some of these are relevant to the original super-droplet methodology as well and to the ice phase modeling using the Lagrangian approach. As a computational example, the scheme is applied to an idealized moist thermal rising in a stratified environment, with the original super-droplet methodology providing a benchmark to which the new scheme is compared.
NASA Astrophysics Data System (ADS)
Molina Garcia, Victor; Sasi, Sruthy; Efremenko, Dmitry; Doicu, Adrian; Loyola, Diego
2017-04-01
In this work, the requirements for the retrieval of cloud properties in the back-scattering region are described, and their application to the measurements taken by the Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) is shown. Various radiative transfer models and their linearizations are implemented, and their advantages and issues are analyzed. As radiative transfer calculations in the back-scattering region are computationally time-consuming, several acceleration techniques are also studied. The radiative transfer models analyzed include the exact Discrete Ordinate method with Matrix Exponential (DOME), the Matrix Operator method with Matrix Exponential (MOME), and the approximate asymptotic and equivalent Lambertian cloud models. To reduce the computational cost of the line-by-line (LBL) calculations, the k-distribution method, the Principal Component Analysis (PCA) and a combination of the k-distribution method plus PCA are used. The linearized radiative transfer models for retrieval of cloud properties include the Linearized Discrete Ordinate method with Matrix Exponential (LDOME), the Linearized Matrix Operator method with Matrix Exponential (LMOME) and the Forward-Adjoint Discrete Ordinate method with Matrix Exponential (FADOME). These models were applied to the EPIC oxygen-A band absorption channel at 764 nm. It is shown that the approximate asymptotic and equivalent Lambertian cloud models give inaccurate results, so an offline processor for the retrieval of cloud properties in the back-scattering region requires the use of exact models such as DOME and MOME, which behave similarly. The combination of the k-distribution method plus PCA presents similar accuracy to the LBL calculations, but it is up to 360 times faster, and the relative errors for the computed radiances are less than 1.5% compared to the results when the exact phase function is used. Finally, the linearized models studied show similar behavior, with relative errors less than 1% for the radiance derivatives, but FADOME is 2 times faster than LDOME and 2.5 times faster than LMOME.
A cloud computing based 12-lead ECG telemedicine service
2012-01-01
Background Due to the great variability of 12-lead ECG instruments and medical specialists’ interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists’ decision making support in emergency telecardiology. Methods We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. Results This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. Conclusions This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan. PMID:22838382
2014-01-01
Background Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. Results To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. Conclusions By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples. PMID:24475911
A cloud computing based 12-lead ECG telemedicine service.
Hsieh, Jui-Chien; Hsu, Meng-Wei
2012-07-28
Due to the great variability of 12-lead ECG instruments and medical specialists' interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists' decision making support in emergency telecardiology. We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan.
SIMPLEX: Cloud-Enabled Pipeline for the Comprehensive Analysis of Exome Sequencing Data
Fischer, Maria; Snajder, Rene; Pabinger, Stephan; Dander, Andreas; Schossig, Anna; Zschocke, Johannes; Trajanoski, Zlatko; Stocker, Gernot
2012-01-01
In recent studies, exome sequencing has proven to be a successful screening tool for the identification of candidate genes causing rare genetic diseases. Although underlying targeted sequencing methods are well established, necessary data handling and focused, structured analysis still remain demanding tasks. Here, we present a cloud-enabled autonomous analysis pipeline, which comprises the complete exome analysis workflow. The pipeline combines several in-house developed and published applications to perform the following steps: (a) initial quality control, (b) intelligent data filtering and pre-processing, (c) sequence alignment to a reference genome, (d) SNP and DIP detection, (e) functional annotation of variants using different approaches, and (f) detailed report generation during various stages of the workflow. The pipeline connects the selected analysis steps, exposes all available parameters for customized usage, performs required data handling, and distributes computationally expensive tasks either on a dedicated high-performance computing infrastructure or on the Amazon cloud environment (EC2). The presented application has already been used in several research projects including studies to elucidate the role of rare genetic diseases. The pipeline is continuously tested and is publicly available under the GPL as a VirtualBox or Cloud image at http://simplex.i-med.ac.at; additional supplementary data is provided at http://www.icbi.at/exome. PMID:22870267
Applying a cloud computing approach to storage architectures for spacecraft
NASA Astrophysics Data System (ADS)
Baldor, Sue A.; Quiroz, Carlos; Wood, Paul
As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.
77 FR 26509 - Notice of Public Meeting-Cloud Computing Forum & Workshop V
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
...--Cloud Computing Forum & Workshop V AGENCY: National Institute of Standards & Technology (NIST), Commerce. ACTION: Notice. SUMMARY: NIST announces the Cloud Computing Forum & Workshop V to be held on Tuesday... workshop. This workshop will provide information on the U.S. Government (USG) Cloud Computing Technology...
National electronic medical records integration on cloud computing system.
Mirza, Hebah; El-Masri, Samir
2013-01-01
Few Healthcare providers have an advanced level of Electronic Medical Record (EMR) adoption. Others have a low level and most have no EMR at all. Cloud computing technology is a new emerging technology that has been used in other industry and showed a great success. Despite the great features of Cloud computing, they haven't been utilized fairly yet in healthcare industry. This study presents an innovative Healthcare Cloud Computing system for Integrating Electronic Health Record (EHR). The proposed Cloud system applies the Cloud Computing technology on EHR system, to present a comprehensive EHR integrated environment.
Performance Evaluation of Resource Management in Cloud Computing Environments.
Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci
2015-01-01
Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price.
Performance Evaluation of Resource Management in Cloud Computing Environments
Batista, Bruno Guazzelli; Estrella, Julio Cezar; Ferreira, Carlos Henrique Gomes; Filho, Dionisio Machado Leite; Nakamura, Luis Hideo Vasconcelos; Reiff-Marganiec, Stephan; Santana, Marcos José; Santana, Regina Helena Carlucci
2015-01-01
Cloud computing is a computational model in which resource providers can offer on-demand services to clients in a transparent way. However, to be able to guarantee quality of service without limiting the number of accepted requests, providers must be able to dynamically manage the available resources so that they can be optimized. This dynamic resource management is not a trivial task, since it involves meeting several challenges related to workload modeling, virtualization, performance modeling, deployment and monitoring of applications on virtualized resources. This paper carries out a performance evaluation of a module for resource management in a cloud environment that includes handling available resources during execution time and ensuring the quality of service defined in the service level agreement. An analysis was conducted of different resource configurations to define which dimension of resource scaling has a real influence on client requests. The results were used to model and implement a simulated cloud system, in which the allocated resource can be changed on-the-fly, with a corresponding change in price. In this way, the proposed module seeks to satisfy both the client by ensuring quality of service, and the provider by ensuring the best use of resources at a fair price. PMID:26555730
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers’ perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers’ legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients’ control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale. PMID:27755563
Charlebois, Kathleen; Palmour, Nicole; Knoppers, Bartha Maria
2016-01-01
This study aims to understand the influence of the ethical and legal issues on cloud computing adoption in the field of genomics research. To do so, we adapted Diffusion of Innovation (DoI) theory to enable understanding of how key stakeholders manage the various ethical and legal issues they encounter when adopting cloud computing. Twenty semi-structured interviews were conducted with genomics researchers, patient advocates and cloud service providers. Thematic analysis generated five major themes: 1) Getting comfortable with cloud computing; 2) Weighing the advantages and the risks of cloud computing; 3) Reconciling cloud computing with data privacy; 4) Maintaining trust and 5) Anticipating the cloud by creating the conditions for cloud adoption. Our analysis highlights the tendency among genomics researchers to gradually adopt cloud technology. Efforts made by cloud service providers to promote cloud computing adoption are confronted by researchers' perpetual cost and security concerns, along with a lack of familiarity with the technology. Further underlying those fears are researchers' legal responsibility with respect to the data that is stored on the cloud. Alternative consent mechanisms aimed at increasing patients' control over the use of their data also provide a means to circumvent various institutional and jurisdictional hurdles that restrict access by creating siloed databases. However, the risk of creating new, cloud-based silos may run counter to the goal in genomics research to increase data sharing on a global scale.
CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping.
Nguyen, Tung; Shi, Weisong; Ruden, Douglas
2011-06-06
Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface. To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80%) mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at http://cloudaligner.sourceforge.net/ and its web version is at http://mine.cs.wayne.edu:8080/CloudAligner/. Our results show that CloudAligner is faster than CloudBurst, provides more accurate results than RMAP, and supports various input as well as output formats. In addition, with the web-based interface, it is easier to use than its counterparts.
Cloud Computing for Complex Performance Codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Gordon John; Hadgu, Teklu; Klein, Brandon Thorin
This report describes the use of cloud computing services for running complex public domain performance assessment problems. The work consisted of two phases: Phase 1 was to demonstrate complex codes, on several differently configured servers, could run and compute trivial small scale problems in a commercial cloud infrastructure. Phase 2 focused on proving non-trivial large scale problems could be computed in the commercial cloud environment. The cloud computing effort was successfully applied using codes of interest to the geohydrology and nuclear waste disposal modeling community.
Using Web Speech Technology with Language Learning Applications
ERIC Educational Resources Information Center
Daniels, Paul
2015-01-01
In this article, the author presents the history of human-to-computer interaction based upon the design of sophisticated computerized speech recognition algorithms. Advancements such as the arrival of cloud-based computing and software like Google's Web Speech API allows anyone with an Internet connection and Chrome browser to take advantage of…
Automatic 3D Building Detection and Modeling from Airborne LiDAR Point Clouds
ERIC Educational Resources Information Center
Sun, Shaohui
2013-01-01
Urban reconstruction, with an emphasis on man-made structure modeling, is an active research area with broad impact on several potential applications. Urban reconstruction combines photogrammetry, remote sensing, computer vision, and computer graphics. Even though there is a huge volume of work that has been done, many problems still remain…
Cloud Fingerprinting: Using Clock Skews To Determine Co Location Of Virtual Machines
2016-09-01
DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Cloud computing has quickly revolutionized computing practices of organizations, to include the Department of... Cloud computing has quickly revolutionized computing practices of organizations, to in- clude the Department of Defense. However, security concerns...vi Table of Contents 1 Introduction 1 1.1 Proliferation of Cloud Computing . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement
Big data processing in the cloud - Challenges and platforms
NASA Astrophysics Data System (ADS)
Zhelev, Svetoslav; Rozeva, Anna
2017-12-01
Choosing the appropriate architecture and technologies for a big data project is a difficult task, which requires extensive knowledge in both the problem domain and in the big data landscape. The paper analyzes the main big data architectures and the most widely implemented technologies used for processing and persisting big data. Clouds provide for dynamic resource scaling, which makes them a natural fit for big data applications. Basic cloud computing service models are presented. Two architectures for processing big data are discussed, Lambda and Kappa architectures. Technologies for big data persistence are presented and analyzed. Stream processing as the most important and difficult to manage is outlined. The paper highlights main advantages of cloud and potential problems.
Enterprise application architecture development based on DoDAF and TOGAF
NASA Astrophysics Data System (ADS)
Tao, Zhi-Gang; Luo, Yun-Feng; Chen, Chang-Xin; Wang, Ming-Zhe; Ni, Feng
2017-05-01
For the purpose of supporting the design and analysis of enterprise application architecture, here, we report a tailored enterprise application architecture description framework and its corresponding design method. The presented framework can effectively support service-oriented architecting and cloud computing by creating the metadata model based on architecture content framework (ACF), DoDAF metamodel (DM2) and Cloud Computing Modelling Notation (CCMN). The framework also makes an effort to extend and improve the mapping between The Open Group Architecture Framework (TOGAF) application architectural inputs/outputs, deliverables and Department of Defence Architecture Framework (DoDAF)-described models. The roadmap of 52 DoDAF-described models is constructed by creating the metamodels of these described models and analysing the constraint relationship among metamodels. By combining the tailored framework and the roadmap, this article proposes a service-oriented enterprise application architecture development process. Finally, a case study is presented to illustrate the results of implementing the tailored framework in the Southern Base Management Support and Information Platform construction project using the development process proposed by the paper.
Processing Shotgun Proteomics Data on the Amazon Cloud with the Trans-Proteomic Pipeline*
Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W.; Moritz, Robert L.
2015-01-01
Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. PMID:25418363
Processing shotgun proteomics data on the Amazon cloud with the trans-proteomic pipeline.
Slagel, Joseph; Mendoza, Luis; Shteynberg, David; Deutsch, Eric W; Moritz, Robert L
2015-02-01
Cloud computing, where scalable, on-demand compute cycles and storage are available as a service, has the potential to accelerate mass spectrometry-based proteomics research by providing simple, expandable, and affordable large-scale computing to all laboratories regardless of location or information technology expertise. We present new cloud computing functionality for the Trans-Proteomic Pipeline, a free and open-source suite of tools for the processing and analysis of tandem mass spectrometry datasets. Enabled with Amazon Web Services cloud computing, the Trans-Proteomic Pipeline now accesses large scale computing resources, limited only by the available Amazon Web Services infrastructure, for all users. The Trans-Proteomic Pipeline runs in an environment fully hosted on Amazon Web Services, where all software and data reside on cloud resources to tackle large search studies. In addition, it can also be run on a local computer with computationally intensive tasks launched onto the Amazon Elastic Compute Cloud service to greatly decrease analysis times. We describe the new Trans-Proteomic Pipeline cloud service components, compare the relative performance and costs of various Elastic Compute Cloud service instance types, and present on-line tutorials that enable users to learn how to deploy cloud computing technology rapidly with the Trans-Proteomic Pipeline. We provide tools for estimating the necessary computing resources and costs given the scale of a job and demonstrate the use of cloud enabled Trans-Proteomic Pipeline by performing over 1100 tandem mass spectrometry files through four proteomic search engines in 9 h and at a very low cost. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Classification of Clouds in Satellite Imagery Using Adaptive Fuzzy Sparse Representation.
Jin, Wei; Gong, Fei; Zeng, Xingbin; Fu, Randi
2016-12-16
Automatic cloud detection and classification using satellite cloud imagery have various meteorological applications such as weather forecasting and climate monitoring. Cloud pattern analysis is one of the research hotspots recently. Since satellites sense the clouds remotely from space, and different cloud types often overlap and convert into each other, there must be some fuzziness and uncertainty in satellite cloud imagery. Satellite observation is susceptible to noises, while traditional cloud classification methods are sensitive to noises and outliers; it is hard for traditional cloud classification methods to achieve reliable results. To deal with these problems, a satellite cloud classification method using adaptive fuzzy sparse representation-based classification (AFSRC) is proposed. Firstly, by defining adaptive parameters related to attenuation rate and critical membership, an improved fuzzy membership is introduced to accommodate the fuzziness and uncertainty of satellite cloud imagery; secondly, by effective combination of the improved fuzzy membership function and sparse representation-based classification (SRC), atoms in training dictionary are optimized; finally, an adaptive fuzzy sparse representation classifier for cloud classification is proposed. Experiment results on FY-2G satellite cloud image show that, the proposed method not only improves the accuracy of cloud classification, but also has strong stability and adaptability with high computational efficiency.
Proposal for a Security Management in Cloud Computing for Health Care
Dzombeta, Srdan; Brandis, Knud
2014-01-01
Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources. PMID:24701137
Proposal for a security management in cloud computing for health care.
Haufe, Knut; Dzombeta, Srdan; Brandis, Knud
2014-01-01
Cloud computing is actually one of the most popular themes of information systems research. Considering the nature of the processed information especially health care organizations need to assess and treat specific risks according to cloud computing in their information security management system. Therefore, in this paper we propose a framework that includes the most important security processes regarding cloud computing in the health care sector. Starting with a framework of general information security management processes derived from standards of the ISO 27000 family the most important information security processes for health care organizations using cloud computing will be identified considering the main risks regarding cloud computing and the type of information processed. The identified processes will help a health care organization using cloud computing to focus on the most important ISMS processes and establish and operate them at an appropriate level of maturity considering limited resources.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... include cloud computing applications that allow for personalized accessible interfaces. The RERC must... the article search feature at: www.federalregister.gov . Specifically, through the advanced search...
ERIC Educational Resources Information Center
Kaestner, Rich
2012-01-01
Most school business officials have heard the term "cloud computing" bandied about and may have some idea of what the term means. In fact, they likely already leverage a cloud-computing solution somewhere within their district. But what does cloud computing really mean? This brief article puts a bit of definition behind the term and helps one…
Cloud Computing in Higher Education Sector for Sustainable Development
ERIC Educational Resources Information Center
Duan, Yuchao
2016-01-01
Cloud computing is considered a new frontier in the field of computing, as this technology comprises three major entities namely: software, hardware and network. The collective nature of all these entities is known as the Cloud. This research aims to examine the impacts of various aspects namely: cloud computing, sustainability, performance…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
...-1659-01] Request for Comments on NIST Special Publication 500-293, US Government Cloud Computing... Publication 500-293, US Government Cloud Computing Technology Roadmap, Release 1.0 (Draft). This document is... (USG) agencies to accelerate their adoption of cloud computing. The roadmap has been developed through...
Reviews on Security Issues and Challenges in Cloud Computing
NASA Astrophysics Data System (ADS)
An, Y. Z.; Zaaba, Z. F.; Samsudin, N. F.
2016-11-01
Cloud computing is an Internet-based computing service provided by the third party allowing share of resources and data among devices. It is widely used in many organizations nowadays and becoming more popular because it changes the way of how the Information Technology (IT) of an organization is organized and managed. It provides lots of benefits such as simplicity and lower costs, almost unlimited storage, least maintenance, easy utilization, backup and recovery, continuous availability, quality of service, automated software integration, scalability, flexibility and reliability, easy access to information, elasticity, quick deployment and lower barrier to entry. While there is increasing use of cloud computing service in this new era, the security issues of the cloud computing become a challenges. Cloud computing must be safe and secure enough to ensure the privacy of the users. This paper firstly lists out the architecture of the cloud computing, then discuss the most common security issues of using cloud and some solutions to the security issues since security is one of the most critical aspect in cloud computing due to the sensitivity of user's data.
A Fog Computing and Cloudlet Based Augmented Reality System for the Industry 4.0 Shipyard.
Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Vilar-Montesinos, Miguel
2018-06-02
Augmented Reality (AR) is one of the key technologies pointed out by Industry 4.0 as a tool for enhancing the next generation of automated and computerized factories. AR can also help shipbuilding operators, since they usually need to interact with information (e.g., product datasheets, instructions, maintenance procedures, quality control forms) that could be handled easily and more efficiently through AR devices. This is the reason why Navantia, one of the 10 largest shipbuilders in the world, is studying the application of AR (among other technologies) in different shipyard environments in a project called "Shipyard 4.0". This article presents Navantia's industrial AR (IAR) architecture, which is based on cloudlets and on the fog computing paradigm. Both technologies are ideal for supporting physically-distributed, low-latency and QoS-aware applications that decrease the network traffic and the computational load of traditional cloud computing systems. The proposed IAR communications architecture is evaluated in real-world scenarios with payload sizes according to demanding Microsoft HoloLens applications and when using a cloud, a cloudlet and a fog computing system. The results show that, in terms of response delay, the fog computing system is the fastest when transferring small payloads (less than 128 KB), while for larger file sizes, the cloudlet solution is faster than the others. Moreover, under high loads (with many concurrent IAR clients), the cloudlet in some cases is more than four times faster than the fog computing system in terms of response delay.
A Comprehensive Review of Existing Risk Assessment Models in Cloud Computing
NASA Astrophysics Data System (ADS)
Amini, Ahmad; Jamil, Norziana
2018-05-01
Cloud computing is a popular paradigm in information technology and computing as it offers numerous advantages in terms of economical saving and minimal management effort. Although elasticity and flexibility brings tremendous benefits, it still raises many information security issues due to its unique characteristic that allows ubiquitous computing. Therefore, the vulnerabilities and threats in cloud computing have to be identified and proper risk assessment mechanism has to be in place for better cloud computing management. Various quantitative and qualitative risk assessment models have been proposed but up to our knowledge, none of them is suitable for cloud computing environment. This paper, we compare and analyse the strengths and weaknesses of existing risk assessment models. We then propose a new risk assessment model that sufficiently address all the characteristics of cloud computing, which was not appeared in the existing models.
Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems
2012-01-31
2012 UNCLASSIFIED 1 of 58 Impacts and Opportunities for Engineering in the Era of Cloud Computing Systems A Report to the U.S. Department...2.1.7 Engineering of Computational Behavior .............................................................18 2.2 How the Cloud Will Impact Systems...58 Executive Summary This report discusses the impact of cloud computing and the broader revolution in computing on systems, on the disciplines of
NASA Technical Reports Server (NTRS)
Hasler, A. F.
1981-01-01
Observations of cloud geometry using scan-synchronized stereo geostationary satellites having images with horizontal spatial resolution of approximately 0.5 km, and temporal resolution of up to 3 min are presented. The stereo does not require a cloud with known emissivity to be in equilibrium with an atmosphere with a known vertical temperature profile. It is shown that absolute accuracies of about 0.5 km are possible. Qualitative and quantitative representations of atmospheric dynamics were shown by remapping, display, and stereo image analysis on an interactive computer/imaging system. Applications of stereo observations include: (1) cloud top height contours of severe thunderstorms and hurricanes, (2) cloud top and base height estimates for cloud-wind height assignment, (3) cloud growth measurements for severe thunderstorm over-shooting towers, (4) atmospheric temperature from stereo heights and infrared cloud top temperatures, and (5) cloud emissivity estimation. Recommendations are given for future improvements in stereo observations, including a third GOES satellite, operational scan synchronization of all GOES satellites and better resolution sensors.
Service-oriented Software Defined Optical Networks for Cloud Computing
NASA Astrophysics Data System (ADS)
Liu, Yuze; Li, Hui; Ji, Yuefeng
2017-10-01
With the development of big data and cloud computing technology, the traditional software-defined network is facing new challenges (e.g., ubiquitous accessibility, higher bandwidth, more flexible management and greater security). This paper proposes a new service-oriented software defined optical network architecture, including a resource layer, a service abstract layer, a control layer and an application layer. We then dwell on the corresponding service providing method. Different service ID is used to identify the service a device can offer. Finally, we experimentally evaluate that proposed service providing method can be applied to transmit different services based on the service ID in the service-oriented software defined optical network.
Cloud Computing Value Chains: Understanding Businesses and Value Creation in the Cloud
NASA Astrophysics Data System (ADS)
Mohammed, Ashraf Bany; Altmann, Jörn; Hwang, Junseok
Based on the promising developments in Cloud Computing technologies in recent years, commercial computing resource services (e.g. Amazon EC2) or software-as-a-service offerings (e.g. Salesforce. com) came into existence. However, the relatively weak business exploitation, participation, and adoption of other Cloud Computing services remain the main challenges. The vague value structures seem to be hindering business adoption and the creation of sustainable business models around its technology. Using an extensive analyze of existing Cloud business models, Cloud services, stakeholder relations, market configurations and value structures, this Chapter develops a reference model for value chains in the Cloud. Although this model is theoretically based on porter's value chain theory, the proposed Cloud value chain model is upgraded to fit the diversity of business service scenarios in the Cloud computing markets. Using this model, different service scenarios are explained. Our findings suggest new services, business opportunities, and policy practices for realizing more adoption and value creation paths in the Cloud.
Virtualization and cloud computing in dentistry.
Chow, Frank; Muftu, Ali; Shorter, Richard
2014-01-01
The use of virtualization and cloud computing has changed the way we use computers. Virtualization is a method of placing software called a hypervisor on the hardware of a computer or a host operating system. It allows a guest operating system to run on top of the physical computer with a virtual machine (i.e., virtual computer). Virtualization allows multiple virtual computers to run on top of one physical computer and to share its hardware resources, such as printers, scanners, and modems. This increases the efficient use of the computer by decreasing costs (e.g., hardware, electricity administration, and management) since only one physical computer is needed and running. This virtualization platform is the basis for cloud computing. It has expanded into areas of server and storage virtualization. One of the commonly used dental storage systems is cloud storage. Patient information is encrypted as required by the Health Insurance Portability and Accountability Act (HIPAA) and stored on off-site private cloud services for a monthly service fee. As computer costs continue to increase, so too will the need for more storage and processing power. Virtual and cloud computing will be a method for dentists to minimize costs and maximize computer efficiency in the near future. This article will provide some useful information on current uses of cloud computing.
Global Software Development with Cloud Platforms
NASA Astrophysics Data System (ADS)
Yara, Pavan; Ramachandran, Ramaseshan; Balasubramanian, Gayathri; Muthuswamy, Karthik; Chandrasekar, Divya
Offshore and outsourced distributed software development models and processes are facing challenges, previously unknown, with respect to computing capacity, bandwidth, storage, security, complexity, reliability, and business uncertainty. Clouds promise to address these challenges by adopting recent advances in virtualization, parallel and distributed systems, utility computing, and software services. In this paper, we envision a cloud-based platform that addresses some of these core problems. We outline a generic cloud architecture, its design and our first implementation results for three cloud forms - a compute cloud, a storage cloud and a cloud-based software service- in the context of global distributed software development (GSD). Our ”compute cloud” provides computational services such as continuous code integration and a compile server farm, ”storage cloud” offers storage (block or file-based) services with an on-line virtual storage service, whereas the on-line virtual labs represent a useful cloud service. We note some of the use cases for clouds in GSD, the lessons learned with our prototypes and identify challenges that must be conquered before realizing the full business benefits. We believe that in the future, software practitioners will focus more on these cloud computing platforms and see clouds as a means to supporting a ecosystem of clients, developers and other key stakeholders.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-22
... explored in this series is cloud computing. The workshop on this topic will be held in Gaithersburg, MD on October 21, 2011. Assertion: ``Current implementations of cloud computing indicate a new approach to security'' Implementations of cloud computing have provided new ways of thinking about how to secure data...
77 FR 74829 - Notice of Public Meeting-Cloud Computing and Big Data Forum and Workshop
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-18
...--Cloud Computing and Big Data Forum and Workshop AGENCY: National Institute of Standards and Technology... Standards and Technology (NIST) announces a Cloud Computing and Big Data Forum and Workshop to be held on... followed by a one-day hands-on workshop. The NIST Cloud Computing and Big Data Forum and Workshop will...
ERIC Educational Resources Information Center
Tweel, Abdeneaser
2012-01-01
High uncertainties related to cloud computing adoption may hinder IT managers from making solid decisions about adopting cloud computing. The problem addressed in this study was the lack of understanding of the relationship between factors related to the adoption of cloud computing and IT managers' interest in adopting this technology. In…
NASA Astrophysics Data System (ADS)
Yu, Xiaoyuan; Yuan, Jian; Chen, Shi
2013-03-01
Cloud computing is one of the most popular topics in the IT industry and is recently being adopted by many companies. It has four development models, as: public cloud, community cloud, hybrid cloud and private cloud. Except others, private cloud can be implemented in a private network, and delivers some benefits of cloud computing without pitfalls. This paper makes a comparison of typical open source platforms through which we can implement a private cloud. After this comparison, we choose Eucalyptus and Wavemaker to do a case study on the private cloud. We also do some performance estimation of cloud platform services and development of prototype software as cloud services.
Cloud4Psi: cloud computing for 3D protein structure similarity searching.
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-10-01
Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.
Cloud4Psi: cloud computing for 3D protein structure similarity searching
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-01-01
Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141
Rai, Rashmi; Sahoo, Gadadhar; Mehfuz, Shabana
2015-01-01
Today, most of the organizations trust on their age old legacy applications, to support their business-critical systems. However, there are several critical concerns, as maintainability and scalability issues, associated with the legacy system. In this background, cloud services offer a more agile and cost effective platform, to support business applications and IT infrastructure. As the adoption of cloud services has been increasing recently and so has been the academic research in cloud migration. However, there is a genuine need of secondary study to further strengthen this research. The primary objective of this paper is to scientifically and systematically identify, categorize and compare the existing research work in the area of legacy to cloud migration. The paper has also endeavored to consolidate the research on Security issues, which is prime factor hindering the adoption of cloud through classifying the studies on secure cloud migration. SLR (Systematic Literature Review) of thirty selected papers, published from 2009 to 2014 was conducted to properly understand the nuances of the security framework. To categorize the selected studies, authors have proposed a conceptual model for cloud migration which has resulted in a resource base of existing solutions for cloud migration. This study concludes that cloud migration research is in seminal stage but simultaneously it is also evolving and maturing, with increasing participation from academics and industry alike. The paper also identifies the need for a secure migration model, which can fortify organization's trust into cloud migration and facilitate necessary tool support to automate the migration process.
Cost-Effective Cloud Computing: A Case Study Using the Comparative Genomics Tool, Roundup
Kudtarkar, Parul; DeLuca, Todd F.; Fusaro, Vincent A.; Tonellato, Peter J.; Wall, Dennis P.
2010-01-01
Background Comparative genomics resources, such as ortholog detection tools and repositories are rapidly increasing in scale and complexity. Cloud computing is an emerging technological paradigm that enables researchers to dynamically build a dedicated virtual cluster and may represent a valuable alternative for large computational tools in bioinformatics. In the present manuscript, we optimize the computation of a large-scale comparative genomics resource—Roundup—using cloud computing, describe the proper operating principles required to achieve computational efficiency on the cloud, and detail important procedures for improving cost-effectiveness to ensure maximal computation at minimal costs. Methods Utilizing the comparative genomics tool, Roundup, as a case study, we computed orthologs among 902 fully sequenced genomes on Amazon’s Elastic Compute Cloud. For managing the ortholog processes, we designed a strategy to deploy the web service, Elastic MapReduce, and maximize the use of the cloud while simultaneously minimizing costs. Specifically, we created a model to estimate cloud runtime based on the size and complexity of the genomes being compared that determines in advance the optimal order of the jobs to be submitted. Results We computed orthologous relationships for 245,323 genome-to-genome comparisons on Amazon’s computing cloud, a computation that required just over 200 hours and cost $8,000 USD, at least 40% less than expected under a strategy in which genome comparisons were submitted to the cloud randomly with respect to runtime. Our cost savings projections were based on a model that not only demonstrates the optimal strategy for deploying RSD to the cloud, but also finds the optimal cluster size to minimize waste and maximize usage. Our cost-reduction model is readily adaptable for other comparative genomics tools and potentially of significant benefit to labs seeking to take advantage of the cloud as an alternative to local computing infrastructure. PMID:21258651
Public Auditing with Privacy Protection in a Multi-User Model of Cloud-Assisted Body Sensor Networks
Li, Song; Cui, Jie; Zhong, Hong; Liu, Lu
2017-01-01
Wireless Body Sensor Networks (WBSNs) are gaining importance in the era of the Internet of Things (IoT). The modern medical system is a particular area where the WBSN techniques are being increasingly adopted for various fundamental operations. Despite such increasing deployments of WBSNs, issues such as the infancy in the size, capabilities and limited data processing capacities of the sensor devices restrain their adoption in resource-demanding applications. Though providing computing and storage supplements from cloud servers can potentially enrich the capabilities of the WBSNs devices, data security is one of the prevailing issues that affects the reliability of cloud-assisted services. Sensitive applications such as modern medical systems demand assurance of the privacy of the users’ medical records stored in distant cloud servers. Since it is economically impossible to set up private cloud servers for every client, auditing data security managed in the remote servers has necessarily become an integral requirement of WBSNs’ applications relying on public cloud servers. To this end, this paper proposes a novel certificateless public auditing scheme with integrated privacy protection. The multi-user model in our scheme supports groups of users to store and share data, thus exhibiting the potential for WBSNs’ deployments within community environments. Furthermore, our scheme enriches user experiences by offering public verifiability, forward security mechanisms and revocation of illegal group members. Experimental evaluations demonstrate the security effectiveness of our proposed scheme under the Random Oracle Model (ROM) by outperforming existing cloud-assisted WBSN models. PMID:28475110
Li, Song; Cui, Jie; Zhong, Hong; Liu, Lu
2017-05-05
Wireless Body Sensor Networks (WBSNs) are gaining importance in the era of the Internet of Things (IoT). The modern medical system is a particular area where the WBSN techniques are being increasingly adopted for various fundamental operations. Despite such increasing deployments of WBSNs, issues such as the infancy in the size, capabilities and limited data processing capacities of the sensor devices restrain their adoption in resource-demanding applications. Though providing computing and storage supplements from cloud servers can potentially enrich the capabilities of the WBSNs devices, data security is one of the prevailing issues that affects the reliability of cloud-assisted services. Sensitive applications such as modern medical systems demand assurance of the privacy of the users' medical records stored in distant cloud servers. Since it is economically impossible to set up private cloud servers for every client, auditing data security managed in the remote servers has necessarily become an integral requirement of WBSNs' applications relying on public cloud servers. To this end, this paper proposes a novel certificateless public auditing scheme with integrated privacy protection. The multi-user model in our scheme supports groups of users to store and share data, thus exhibiting the potential for WBSNs' deployments within community environments. Furthermore, our scheme enriches user experiences by offering public verifiability, forward security mechanisms and revocation of illegal group members. Experimental evaluations demonstrate the security effectiveness of our proposed scheme under the Random Oracle Model (ROM) by outperforming existing cloud-assisted WBSN models.
A survey and taxonomy on energy efficient resource allocation techniques for cloud computing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hameed, Abdul; Khoshkbarforoushha, Alireza; Ranjan, Rajiv
In a cloud computing paradigm, energy efficient allocation of different virtualized ICT resources (servers, storage disks, and networks, and the like) is a complex problem due to the presence of heterogeneous application (e.g., content delivery networks, MapReduce, web applications, and the like) workloads having contentious allocation requirements in terms of ICT resource capacities (e.g., network bandwidth, processing speed, response time, etc.). Several recent papers have tried to address the issue of improving energy efficiency in allocating cloud resources to applications with varying degree of success. However, to the best of our knowledge there is no published literature on this subjectmore » that clearly articulates the research problem and provides research taxonomy for succinct classification of existing techniques. Hence, the main aim of this paper is to identify open challenges associated with energy efficient resource allocation. In this regard, the study, first, outlines the problem and existing hardware and software-based techniques available for this purpose. Furthermore, available techniques already presented in the literature are summarized based on the energy-efficient research dimension taxonomy. The advantages and disadvantages of the existing techniques are comprehensively analyzed against the proposed research dimension taxonomy namely: resource adaption policy, objective function, allocation method, allocation operation, and interoperability.« less
A Comparative Study of Point Cloud Data Collection and Processing
NASA Astrophysics Data System (ADS)
Pippin, J. E.; Matheney, M.; Gentle, J. N., Jr.; Pierce, S. A.; Fuentes-Pineda, G.
2016-12-01
Over the past decade, there has been dramatic growth in the acquisition of publicly funded high-resolution topographic data for scientific, environmental, engineering and planning purposes. These data sets are valuable for applications of interest across a large and varied user community. However, because of the large volumes of data produced by high-resolution mapping technologies and expense of aerial data collection, it is often difficult to collect and distribute these datasets. Furthermore, the data can be technically challenging to process, requiring software and computing resources not readily available to many users. This study presents a comparison of advanced computing hardware and software that is used to collect and process point cloud datasets, such as LIDAR scans. Activities included implementation and testing of open source libraries and applications for point cloud data processing such as, Meshlab, Blender, PDAL, and PCL. Additionally, a suite of commercial scale applications, Skanect and Cloudcompare, were applied to raw datasets. Handheld hardware solutions, a Structure Scanner and Xbox 360 Kinect V1, were tested for their ability to scan at three field locations. The resultant data projects successfully scanned and processed subsurface karst features ranging from small stalactites to large rooms, as well as a surface waterfall feature. Outcomes support the feasibility of rapid sensing in 3D at field scales.
Forensic Investigation of Cooperative Storage Cloud Service: Symform as a Case Study.
Teing, Yee-Yang; Dehghantanha, Ali; Choo, Kim-Kwang Raymond; Dargahi, Tooska; Conti, Mauro
2017-05-01
Researchers envisioned Storage as a Service (StaaS) as an effective solution to the distributed management of digital data. Cooperative storage cloud forensic is relatively new and is an under-explored area of research. Using Symform as a case study, we seek to determine the data remnants from the use of cooperative cloud storage services. In particular, we consider both mobile devices and personal computers running various popular operating systems, namely Windows 8.1, Mac OS X Mavericks 10.9.5, Ubuntu 14.04.1 LTS, iOS 7.1.2, and Android KitKat 4.4.4. Potential artefacts recovered during the research include data relating to the installation and uninstallation of the cloud applications, log-in to and log-out from Symform account using the client application, file synchronization as well as their time stamp information. This research contributes to an in-depth understanding of the types of terrestrial artifacts that are likely to remain after the use of cooperative storage cloud on client devices. © 2016 American Academy of Forensic Sciences.
e-Collaboration for Earth observation (E-CEO): the Cloud4SAR interferometry data challenge
NASA Astrophysics Data System (ADS)
Casu, Francesco; Manunta, Michele; Boissier, Enguerran; Brito, Fabrice; Aas, Christina; Lavender, Samantha; Ribeiro, Rita; Farres, Jordi
2014-05-01
The e-Collaboration for Earth Observation (E-CEO) project addresses the technologies and architectures needed to provide a collaborative research Platform for automating data mining and processing, and information extraction experiments. The Platform serves for the implementation of Data Challenge Contests focusing on Information Extraction for Earth Observations (EO) applications. The possibility to implement multiple processors within a Common Software Environment facilitates the validation, evaluation and transparent peer comparison among different methodologies, which is one of the main requirements rose by scientists who develop algorithms in the EO field. In this scenario, we set up a Data Challenge, referred to as Cloud4SAR (http://wiki.services.eoportal.org/tiki-index.php?page=ECEO), to foster the deployment of Interferometric SAR (InSAR) processing chains within a Cloud Computing platform. While a large variety of InSAR processing software tools are available, they require a high level of expertise and a complex user interaction to be effectively run. Computing a co-seismic interferogram or a 20-years deformation time series on a volcanic area are not easy tasks to be performed in a fully unsupervised way and/or in very short time (hours or less). Benefiting from ESA's E-CEO platform, participants can optimise algorithms on a Virtual Sandbox environment without being expert programmers, and compute results on high performing Cloud platforms. Cloud4SAR requires solving a relatively easy InSAR problem by trying to maximize the exploitation of the processing capabilities provided by a Cloud Computing infrastructure. The proposed challenge offers two different frameworks, each dedicated to participants with different skills, identified as Beginners and Experts. For both of them, the contest mainly resides in the degree of automation of the deployed algorithms, no matter which one is used, as well as in the capability of taking effective benefit from a parallel computing environment.